

OMEP-81-5-9

010

PRELIMINA EVALUATION

MW RESOURCES LIMITED

Cu.-Zn-Ag-Au PROPERTY

CUNNINGHAM TOWNSHIP ONTARIO

BY

Dennis Fairbairn, P.Eng.,

May 1, 1981

SONN Milledge

	page
CURRENT EVALUATION	1
HISTORY	2
LOCATION & ACCESS	2
GENERAL GEOLOGY	2
GEOLOGY & MINERALIZATION	2
ORE ZONE DESCRIPTION	3
OBSERVATIONS	4
BASIC ASSUMPTIONS	5
GRADE ESTIMATES	6
DETAILS OF CASH FLOW	7
Addendum	9

EVALAUATION

1.

BASED ON

MAY 1st., 1981 INFORMATION

		·
1.	Tonnage	80,000 tons plus.
2.	Grade	3.9% Copper; 6.2% Zinc; 1.2 OPT Silver; 0.03 OPT Gold.
3.	Mining Costs	Loaded, rail cars, \$35.00/ton.
4.	Transp., rail	\$12.50/ton.
5.	Milling costs.	\$12.00/ton.
6.	Production	40,000 tons per year, 200 TPD, 2years.
7.	Metal Prices	Copper \$1.05/1b., Canadian. Zinc \$0.50/1b., " Silver \$16.00/oz., " Gold \$600.00/oz., "
8.	Recovery	Copper, mill, 90% Zinc, mill, 85% Silver, mill, 90%; conc., 90%. Gold, mill, 90%; conc., 90%.
9.	Payment	Copper 75¢/lb. Cu. in mill conc. Zinc 22¢/lb. Zn. in mill conc. Silver \$16.00/oz./oz./ over 0.2oz./ton. Gold \$600.00/oz. in conc
10.	Net Smelter	Zinc6.2(0.85)(22)(20)23.20/tonSilver0.9(0.9)(1.2-0.2)(16.00)12.95/tonGold0.9(0.9)(600.00)(0.03)14.60/ton
		Net Smelter Returns \$103.40/ton
11.	Profit	N.S.R.: $80,000(\$103.40)$ $\$8,272,000$
		Mining Costs 80,000(\$35.00) \$2,800,000 Transp. 80,000(\$12.50) 1,000,000 Milling 80,000(\$12.00) 960,000 Pre Production 150,000
		Total Costs, Direct, \$4,910,000
		Continuing O.H., Taxes, Net Capital Outlay, Interest, Contingency, \$1,200,000
		Total Costs,
		Profit, 2 years,

HISTORY

The property has been intensively explored for stratigraphicallycontrolled mineralization, of large tonnage, to supply a proposed on-site mill to be fed from an underground and/or open-pit operation. Results have been negative. Diamond-drilling has outlined several million tons, but with values sub-commercial.

Placer Development's late 1980 withdrawal was the end of such exploration. Since then, the target of in-Company engineering has been the locating of suspected narrow, higher-grade mineralization, which, by underground methods, would yield profitable shippingore. One such zone has been located. Potentially, there are two first additional zones, both uninvestigated.

LOCATION & ACCESS

There are 64 claims, 20 of which are patented, 10 are leased, and 34 are staked. These are in Cunningham Township, Ontario, 85 airmiles S.W. of Timmins, and 120 air-miles N.W. of Sudbury. Minor road work on the existing but unused 10-mile Swayze road from Sultan to the property would provide good trucking-road connections to both Timmins and Sudbury. The C.P.R. main line passes through Sultan.

GENERAL GEOLOGY

The property lies in the Swayze greenstone belt, which is S.W. of the Timmins greenstone belt. The Timmins belt contains the Texas Gulf Cu-Zn-Ag mine, and others such as Hollinger and Dome. In the Swayze belt, the M.W.R. property contains the best Cu-Zn-Ag deposit.

GEOLOGY & MINERALIZATION

The westerly-dipping cherty iron formation is locally separated into an upper and lower chert ohert member by an interlayered variolitic greenstone. Each is about 250 feet thick. The base of the lower chert, which contains the ore zone of current interest, is in fault-contact with the later diorite intrusive. 2.

vorth of 25 ROOD to Forestry Drill-indicated, (Probable) F.W. V., I M.C. B.C. Tomer Diorite 051 (I mile) Reserves 80,000 Tons -3.9% Cu.; 6.2%. Zn. 1.25 0.P.T Ag; 0.03 O.F. A (Mining Thickness-7ft Possible Fault Disd. [±] 25• 41 Ione (No estimates) = 650 ft.t Road to 41 Sultan . (10 miks) M.C. V. B.C. F.W. MARIE ADDA SOUND ON GOULD Drill-indicated (-Passible) Reserves NOTES: I. CHERT & Cist. beds 970,000 Tons - (1/2 Potential) are 200ft. + 300ft. 1.2%.Cu; 5.0%.Zn (NO AQ OF AU ASSOYS) thick . (Mining Thickness- 10ff.t) 2. Sulphides & cherts in ore zones are typically banded a stratified (exhalative 3. M.C = Middle Chert M.W. RESOURCES LTD V. UST. = Variol. Grst. B.C. = Basal Chert Plan View GEOLOGY E' MINERAL ZONES TWP. CUNNINCHAM ONTARIO Drawn by Dennis Fairbairn P.E. May 1981 NZS

OBSERVATIONS

- 1. Basic and prerequisite to this proposal is proving the North Zone Basal Chert orebody as a result of surface stripping, trenching, and sampling the ore zone where it reaches the surface at its northern extremity, and of fill-in or confirmatory diamond-drilling of up to 25 short holes, (with a maximum length of about 150 Ft.) The estimated cost of this program is \$134,000.00.
- 2. The South Zone, faulted off, could contain a similar ore-zone in the Basal Chert, and of considerably larger tonnage. This zone has not as yet been investigated. Both the North and South Zones in the Middle Chert probably contain mineralized zones of tonnages equal to those in the Basal Chert, but of lower copper and higher zinc content. There have been no Gold or Silver assays on any of the drill core from the South Zone.
- 3. In the North Zone Basal Chert, there could be an additional 50,000 tons of shipping ore above the desumed ore horizon. For example, DDH 77 intersected <u>34 ft.</u> of 4.6% Copper and 1.3% Zinc. In our calculations, we used only <u>5.6 ft.</u> of 15.5% Cu., and 3.0% Zn.. (DDH 77 is a vertical hole). Such material could be mined simultaneously and profitably where and when incremental costs of mining, hauling, and milling are less than net smelter returns.
- 4. Under a tentative agreement reached with a Noranda subsidiary, ore will be milled at its Cu-Zn-Ag-Au concentrator. Empty returning concentrate cars would haul from the main C.P.R. line at Sultan to the mill.
- 5. Time to completion would be about two years from the completion of the first-phase stripping, trenching, and confirmatory diamond-drilling program..... a total period of about three years ... in the North Zone Basal Chert deposit....
- 6. Under favourable circumstances, Dennis Fairbairn, P.Eng., (Mining), would be available to direct the operations.

BACIC ASSUMPTIONS

- 1. No environmental problems.
- 2. Production 200 T.P.D. -(8'x10'x30'), 1 shift per day, - 2 drills.
- 3. Mining Method modified room-and-pillar, with escape and ventilation raises and almost all underground work in ore.
- 4. Maximum adverse grades in decline and stopes -- about 15 deg.
- 5. A five-day work week and week-ends "at home", (1-hour drive to Chapleau and 2-hour to Timmins and Sudbury).
- 6. Possibly, portable primary crusher on site, if mine-run shipments not feasible.
- 7. That pre-production stripping, trenching, bulk-sampling and test-milling, confirm the expected quantity and value of the ore and the metallurgical amenability of the ore.
- 8. That recoveries at the concentrator are 90%, 85%, 90%, and 90%, for Cu., Zn., Ag., and Au., respectively.
- 9. That prices, remain at"current"levels of \$1.05/1b., Cu., \$0.50/1b. Zn., \$16.00/oz. Ag., and \$600.00 Au.,(Canadian).
- 10. That the milling toll, Noranda, is \$12.00 per ton.
- 11. That the existing LO-mile Swayze road, from Sultan to the property, can be made serviceable, with Government assistance, at nominal cost to MW R. (the existing"Grandoro" road from the east can be made serviceable with minor bulldozer work).
- 12. For estimating puposes, the underground work would be contracted, and that, based on detailed estimates by the writer, the cost, loaded, will be \$35.00 per ton. There would therfor be only minor attendant MWR capital expenditures.
- 13. That production and shipment be on a 12-month per year basis.

GRADE ESTIMATES

÷.,

Section Number	DDH Number	Copper %	Zinc %	Inters. ft.	Apparent Width	Silver Аббау
<u>16</u>	25 75 Av.	1.9 <u>1.8</u> <u>1.9</u>	3.7 <u>13.1</u> <u>8.4</u>	5.0 <u>5.2</u> <u>5.1</u>	150 ft.	3.2 oz
<u>17</u>	17 20 21 22 Av.	2.7 0.9 2.4 10.4 4.1	? 7.5 6.4 <u>Tr.</u> <u>3.5</u>	7.4 11.0 2.5 <u>2.6</u> <u>5.9</u>	150 ft.	
<u>18</u>	77 79 A v .	15.5 <u>1.0</u> <u>8.2</u>	3.0 <u>5.3</u> <u>4.2</u>	5.6 7.7 6.7	170 ft.	1.06 oz 0.55 oz
<u>19</u>	60 80 Av.	1.8 <u>4.8</u> <u>3.6</u>	0.8 2.2 1.6	5.5 8.3 6.9	120 ft.	0.48 oz
<u>20</u>	26 35 33	10.4 0.5 <u>3.3</u> 4.2	0.5 3.9 <u>7.8</u> <u>3.9</u>	7.0 10.0 <u>6.0</u> 7.7	140 ft. ?	
21	5	3.4	<u>Av.</u>	8.7	<u>130 ft.</u> ?	
<u>25</u> Approxima	8	1.9	17.0	4.0	<u>60 ft.</u> ?	0.8 oz (DDH 76)
Arithmeti Averages.	.cal	3.9%	6.2%	7.0 ft.	<u>130 ft.</u>	<u>1.2 oz.</u>

Note:"Section Number" refers to vertical section prepared by DF, June, '78. Assays and intersections are from independent consultants' logs. Very few Ag. assays made, but when samples were taken from this cre zone, the results were always positive... with respect to Ag.

MW Resources Ltd. Cunningham Township Ontario

通知

÷.

CASH FLOW & OPERATING PROFIT from

DEVELOPMENT & PRODUCTION of

80,000 Tons Cu-Zn-Ag Ore

1981-1982-1983

Preliminary Estimates

1982 Month	Production (tons)	Shipments (tons)	Cash Out (MWR) \$ M	Cash Out (Dir. C) \$ M	Cash Out (Total) \$ M	Receipts (NSM & Grant)
Jan.	nil	nil	1.0	7.1	8.1	nil
Feb.	nil	nil	1.0	7.2	8.2	nil
Mar.	nil	nil	2.5	8.7	11.2	25.0
Apr.	1,000	nil	0.5	90.0	90.5	nil
May.	2,000	nil	0.5	107.0	107.5	nil
June	4,000	6,000	1.0	168.0	169.0	nil
Jul.	4,000	4,000	1.0	168.0	169.0	nil
Aug.	4,000	4,000	1.0	168.0	169.0	422.0
Sep.	4,000	4,000	1.0	168.0	169.0	282.0
Oct.	4,000	4,000	1.0	168.0	169.0	282.0
Nov.	4,000	4,000	0.5	168.0	168.5	282.0
Dec.	4,000	4,000	nil	175.0	175.0	282.0
Year	31,000	30,000	11.0	1,403.0	1,414.0	1,575.0
		Opera	ating Profi	$t = \frac{\$ 726}{}$	<u>,000</u>	
Year, 1983	49,000	50,000	12.0	2,036.0	2,048.0	3,523.0
	• • • • • • • • • • • • • • • • • • •					(incl. 564.0
		Opera Opera Op. H Less Cash Balar Bulge	at. Profit, at. Profit, Pr., '82-'83 '81 Pre-Pr Flow, '81- ncing, (0.R	\$2 od '82-'83 \$2 .) ,'81-'83 <u>\$</u> 2	2,201,000 134,000 2,067,000 31,000	

CaBh On Hand (start)	Cash On Hand (dec) inc	Cash On Hand (end)	Cash,Borr (Month)	OW,	Notes
$\begin{array}{r} 44.0\\ 35.9\\ 27.7\\ 41.5\\ (49.0)\\ (156.5)\\ (325.5)\\ (494.5)\\ (240.5)\\ (127.5)\\ (14.5)\\ 99.0\\$	(8.1) (8.2) 13.8 (90.5) (107.5) (169.0) (169.0) 254.0 113.0 113.0 113.5 107.0 162.0	35.9 27.7 41.5 (49.0) (156.5) (325.5) (494.5) (240.5) (127.5) (14.5) 99.0 206.0	nil nil 49.0 107.5 169.0 (254.0) (113.0) (113.0) (113.5) (107.0) nil		(plus \$50,000 working capital) (total borrow. \$494,500)

1,475.0 1,649.0 162.0 nil

May 1st., 1981.

These estimates were prepared early in 1981 and are based on some ass-Note: umptions wich are somwhat different from those current. The order-ofmagnitude remains relatively unchanged. 6

CONFIDENTIAL

March 10, 1981

MEMO TO: Ross Weeks FROM: J.A. Gibson

SUBJECT:

M.W. Resources Cu-Zn Property, Cunningham Township, Ontario (Formerly Shunsby Mines Ltd.,)

Further to our phone conversation last week and yours and Mr. Fairbairn's conversations with Mr. Schmitt^{*} re, the above property, I called Dennis Fairbairn of M.W. Resources to confirm that, subject to certain conditions, Geco would be prepared to mill ore from the M.W. property.

Mr. Fairbairn is in the process of obtaining financing by private placement from existing shareholders for the purpose of developing the property. In order to do this he requires a letter from Geco stating that they would be prepared to mill M.W's ore subject to whatever conditions Geco would state at this time. Mr. Fairbairn can be reached at:

> R.R. 3 Mount Hope, Ontario LOR 1W0 Phone # 416-765-6534

For your information, the parameters relating to the M.W. property are:

80,000 tons reserves 3.9% Cu, 6.2% Zn, 1.2 opt Ag, 0.015 opt Au

Mr. Schmitt - Senior V.P. Mines, - Normon.

..../2

Production - 40,000 tons ore/year, for 2 years (mid 1982 to mid 1984)

Metallurgy (Mines Branch IR 58-42, attached)

	Recovery	Conc. Grade	Production
Cu	908	26%	5400 tpy
Zn	85%	51%	4400 tpy
Ag	?	4 opt (in Cu conc.)	

Metal Prices (1981 \$.)

	Market	Net
Cu	1.15	0.80
Zn	0.485	0.22
Ag	14.50	-

Cu - Zn ore occurs in the basal cherts of the Ridout series which are in fault contact with older Keewatin volcanics. The mineralized zone of interest contains massive chalcopyrite and sphalerite and has a drill indicated width of 150 fect, thickness of 7 feet and length of 1,000 feet. The zone apparently reaches the surface at its northern extremity and dips 10° to south. Vertical depth from surface is about 150 feet.

Development work would involve shallow diamond drilling and stripping and exposure of the ore zone at its northern extremity. Removal of 5 feet of overburden would expose the zone and permit bulk sampling.

Jim Gibson

OMEP-81-5-C-55

020

REVIEW OF 1981 DIAMOND DRILLING PROGRAMME COPPER-ZINC-SILVER-GOLD PROPERTY CUNNINGHAM TOWNSHIP, ONTARIO NTS 41 0 10

Prepared for MW RESOURCES LIMITED

Arctex Engineering Services Locke B. Goldsmith, P.Eng. Consulting Geologist

November, 1981

OM 81 - 5 - C - 55

020C

TABLE OF CONTENTS

SUMMARY	111
INTRODUCTION	1
LOCATION AND ACCESS	1
CLAIM GROUP	2
LOCATION MAP	3
CLAIM MAP	4
TOPOGRAPHY	5
HISTORY	5
GENERAL GEOLOGY AND MINERALIZATION	6
1981 DIAMOND DRILLING	7
GEOPHYSICS AND DIAMOND DRILLING, 1980	8
MILLING	8
CONCLUSIONS	9
RECOMMENDATIONS	9
COST ESTIMATE	10
ENGINEER'S CERTIFICATE	11
REFERENCES	12
APPENDIX: ASSAYS OF PORTIONS OF 1981 DRILLING PROVIDED BY D. FAIRBAIRN, P.ENG.	3,
REVIEW OF EM-17 ANOMALIES, PLACER DEVELOPMENT LTD.	

REVIEW OF 1981 DIAMOND DRILLING PROGRAMME COPPER-ZINC-SILVER-GOLD PROPERTY CUNNINGHAM TOWNSHIP, ONTARIO NTS 41 0 10

SUMMARY

The 1981 drill programme has been successful in obtaining high-grade intersections of copper-zinc mineralization and increasing the economic potential which extends from surface to shallow depths with a dip of $\pm 30^{\circ}$ westerly and plunge of $\pm 10^{\circ}$ southerly. Dimensions of the zone are in the order of 1000 feet long, 130 feet wide, and ± 7 feet thick. Lower-grade material is known from previous drilling to extend outwards from the highergrade zone. A detailed report is now being prepared by MW Resources Limited. Model studies of open pit versus underground mining plans should be commenced when the report is completed. A small programme of perhaps 2000 feet of confirmatory drilling may be advisable to assist in completing the grade and tonnage estimates.

An EM-17 survey over the high-grade zone is recommended to provide base data with which to re-evaluate EM-17 anomalies which have been located on other portions of the property.

INTRODUCTION

This review of activities was prepared at the request of the directors of MW Resources Limited. A study of geological maps and sections, drill logs, geophysics and geochemistry preceded an inspection of the property October 3-5, 1981, while the drilling was in progress. Discussions with Dennis Fairbairn, P.Eng., President, MW Resources Limited, who was on-site drill supervisor, contributed greatly to the visualization of the spatial configuration within the deposit. Available assay data to the date of this report were provided by Mr. Fairbairn.

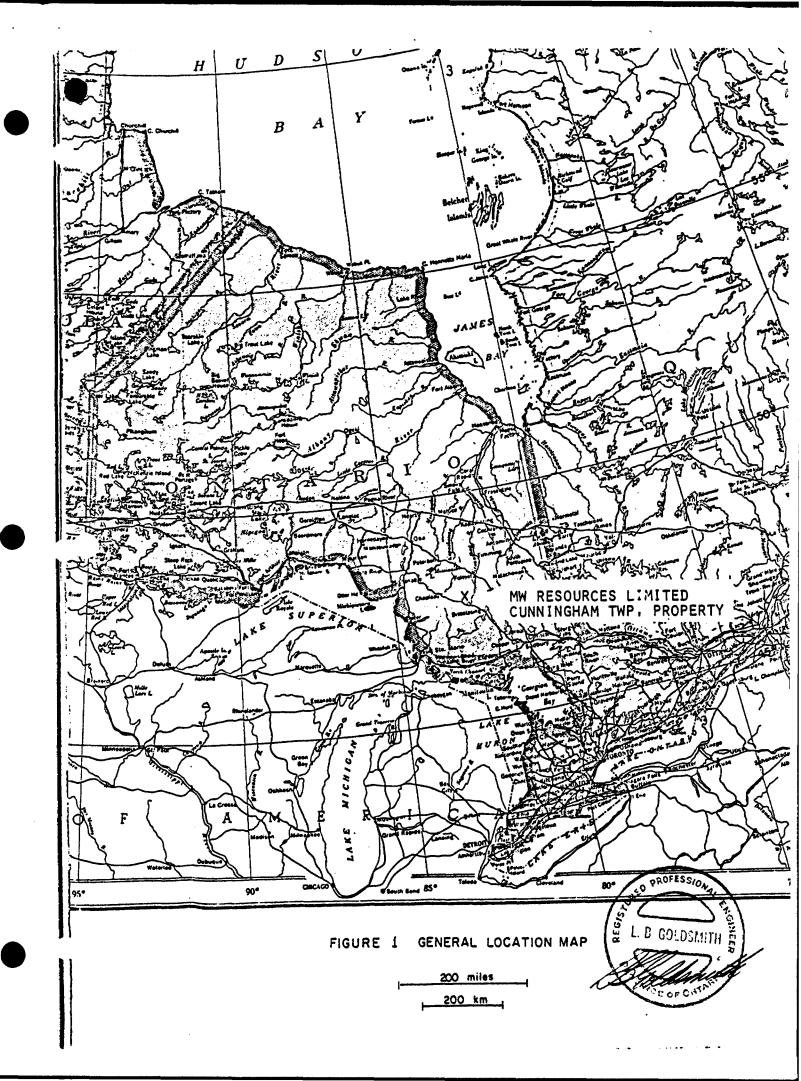
An extensive data file has been accumulated throughout several periods of active exploration and is available in the offices of MW Resources Limited. Discussion of the obvious potential in each portion of the property is beyond the scope of this report. Of immediate interest is the horizon known as the North Zone, which has been the target for confirmatory drilling during 1981. An evaluation of EM-17 surveys and diamond drilling performed by Placer Development Ltd. during 1980 is included in the section entitled Geophysics, and comments upon individual EM-17 anomalies are listed in the Appendix.

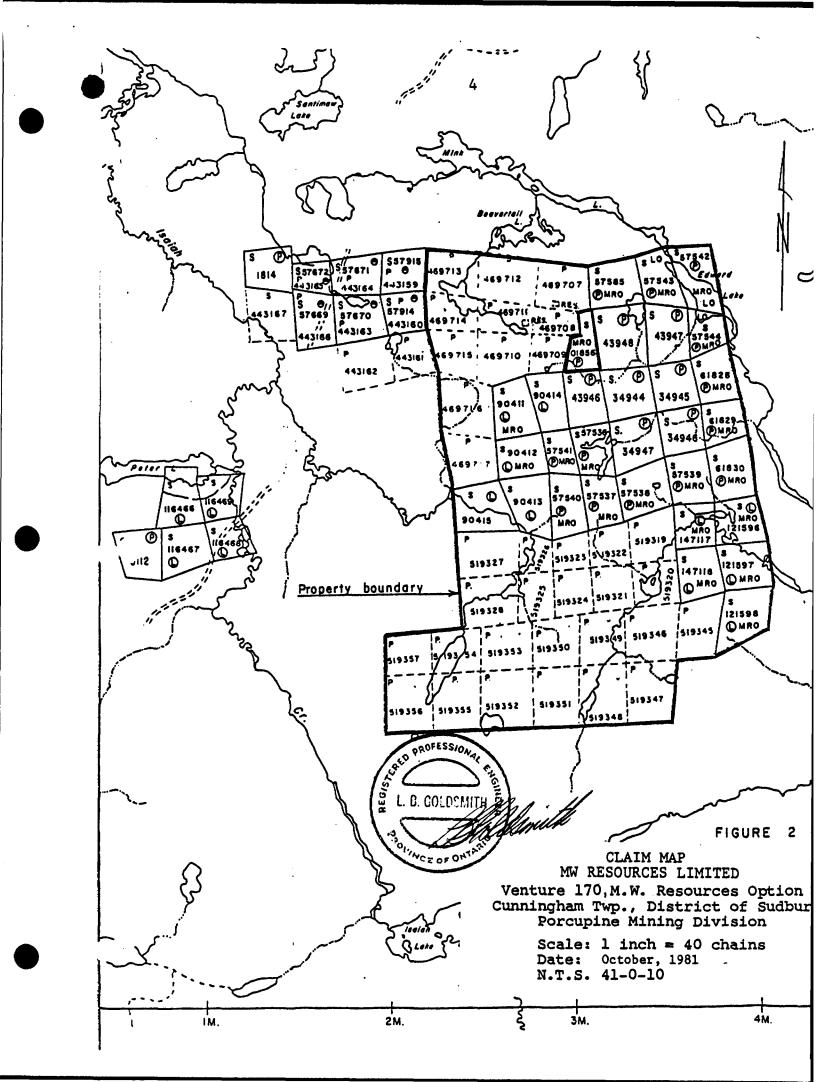
LOCATION AND ACCESS

The MW property is located in central Cunningham Township, Porcupine Mining Division, Ontario. The centre of the property is approximately 85 air miles southwest of Timmins and 120 air miles northwest of Sudbury. Access to the property is possible with a 4-wheel drive vehicle on an unused logging road, or with an All Terrain Vehicle on the old Swaze Road to the camp site at Hiram Lake. Helicopter service from Timmins also provides access to the property.

CLAIM GROUP

The property consists of the following:


(1) Twenty patented mining claims:


Claim No.	Parcel No.
S.34944	11110
S.34945	11111
S.34946	11112
S.34947	11113
S.43946	15413
S.43947	15414
S.43948	15945
S.57536	18417
S.57537	18416
S.57538	18415
s.57539	18414
S.57540	18413
S.57541	18412
S.57542*	18411
S.57543*	18410
S.57544*	18409
S.57585	18408
S.61828	18420
5.61829	18419
S.61830	18418

*Parts not covered by water

- (2) License of Occupation No. 13525 dated February 8, 1963, comprising those parts of claims S.57542, S.57543 and S.57544 covered by the waters of Edwards Lake, comprising 23.32 acres.
- (3) Ten patented mining claims held under ten Mining Leases:

<u>Claim No.</u>	Mining Lease No.	Parcel No.	Registered No.
S.90411	100921	742-LSWS	1717-LSWS
S.90412	100920	739-LSWS	1714-LSWS
S.90413	100919	740-LSWS	1715-LSWS
S.90414	100918	741-LSWS	1716-LSWS
S.90415	100917	743-LSWS	1718-LSWS
S.121598	102270	904-LSWS	278782
S.147118	102271	906-LSWS	278784
S.147117	102272	905-LSWS	278783
S.121596	102273	902-LSWS	278780
S.121597	102274	903-LSWS	278781

<u>Claim No.</u>	<u>Claim No.</u>
P.469707	P.519325
P.469708	P.519326
P.469709	P.519327
P.469710	P.519328
P.469711	P.519345
P.469712	P.519346
P.469713	P.519347
P.469714	P.519348
P.469715	P.519349
P.469716	P.519350
P.469717	P.519351
P.519319	P.519352
P.519320	P.519353
P.519321	P.519354
P.519322	P.519355
P.519323	P.519356
P.519324	P.519357

(4) Thirty-four unpatented mining claims:

TOPOGRAPHY

A series of low ridges striking roughly N-S with swampy ground between are the typical topographical features on the claim group. The fire tower hill in the northwest corner of the property is at an elevation of ± 300 feet above the surrounding area. There are several lakes and streams on the property providing adequate drainage.

HISTORY

Numerous investigators have examined the property with different concepts and requirements for target sizes/grades of ore. It is important to note that most drill holes in the past encountered base metal mineralization of economic interest Mary of the early records are vague concerning the location and attitude of holes. Total footage drilled through 1980 is approximately 65,000'. The disjointed, discontinuous programmes have generated varying estimates of the tenor of mineralization. Evaluation in the past was usually directed towards developing a mediumto large-tonnage, medium- to low-grade deposit which could be bulk-mined. While this is still a very distinct possibility, the present operators are obtaining encouraging results in delineating a relatively high-grade, near-surface horizon within the section termed the North Zone.

GENERAL GEOLOGY

Within Cunningham Township a suite of Precambrian mafic volcanics which contains subordinate rhyolite, trachyte, dacite, tuff, agglomerate, and iron formation is overlain by the Ridout Series of conglomerate, quartzite, and greywacke. Granite, diorite, diabase, and peridotite intrude both volcanics and sediments.

Host rocks near the base metal mineralization are cherts and argillaceous cherts, with an intercalated variolitic andesite, all subtended by diorite and cut by quartz-feldspar porphyry and digestive diorite dykes. A stylized crosssection of the North Zone is shown below.

UPPER CHERT.	. (Cherc and chert breccia	+40'	Mineralized in part
		Variolitic andesite	±40'	Unmineralized, Marker horizon
	ſ	Argillite, graphitic	±6'	Mineralized, with high-grade sections
BASAL CHERT.	_	Argillaceous chert	±12'	Mineralized, with high-grade sections
ZONE OF CURRENT	T	Chert and chert breccia	±30'	Mineralized, with high-grade sections
INTEREST.	L	Chert breccia	± 4'	Unmineralized or lightly mineralized
		Diorite		Unmineralized

Economic minerals are chalcopyrite, sphalerite, lesser amounts of galena, and low values in silver and gold.

Strata and mineralization dip 30° westerly and plunge approximately 10° southerly. East-west-trending reverse faults with shallow southerly dips of $20^{\circ}-30^{\circ}$ elevate the south blocks of the north-south-striking mineralization.

Nature of the sulphides and host rocks suggests a distal facies of an exhalative volcanogenic (massive) sulphide deposit, possibly formed in channels in a partially restricted basinal environment. It is clear that some sulphides have been remobilized with little (?) transport into fractures which crosscut bedding. Particularly in argillaceous sections sulphides can be observed on bedding planes. Intrusion of diorite may have acted to drive metals from chert proximal to the contact outwards into fractures to create an upgraded concentration of mineralization which is the target of the 1981 drilling.

An earlier total estimate of grade and tonnage in both the North and South Zones was 2.4 million tons grading 0.39% copper, 2.37% zinc, within a strike length of 3000 feet and a dip length of 1000 feet. Silver and gold content was not included in the valuation.

1981 DIAMOND DRILLING

Study of previous drill data by Dennis Fairbairn, P.Eng. indicated that the 1981 programme should consist of drilling short vertical holes on a closely spaced grid over the North Zone, as allowed by topography. Prior to commencing the current drilling, a preliminary estimate of 80,000 tons grading approximately 3.9% copper, 6.2% zinc, 1.2 oz Ag/ton, and 0.03 zo Au/ton, contained in an area measuring 1000 feet long, 130 feet wide and at least 7 feet thick was calculated. The north end of the deposit outcrops on a ridge and has a westerly dip of 30° and southerly plunge of 10° .

Results from the 1981 drilling are not yet tabulated. Unsplit core from DDH 81-25 was observed by myself on the property. Continuous mineralization from 109.5' to 157.5' with a high-grade chalcopyrite interval between 144'-147.5' was noted. Some assay data have since been provided by Mr. Fairbairn and are included in the Appendix. From inspection of the hole locations and assays it appears that the preliminary estimate will be substantiated, with a probable increase in the tonnage.

It is worthy to note that the present drilling is developing a high-grade mineral deposit within an area which had been subjected to saturation drilling at varying attitudes, thus rendering correlation difficult and misleading.

GEOPHYSICS AND DIAMOND DRILLING, 1980

Conductive zones outlined by EM-17 surveys were related to geological maps. It is felt that insufficient resolution was used in the summary by Placer Development Ltd. in positioning and discussing anomalies with respect to geology and previous drill holes. Examples are provided in the Appendix, which indicate different interpretations. It appears that examination of conductor axes may not have been made after the data had been compiled and before the report was completed.

All drill holes by former operators are not plotted on the Placer composite geology map, drawing number 170-17, from which some of the interpretation must have been made.

A hole on the North Grid at coordinates 3+00S, 4+50W was recommended to test aonomaly 7 which may be on the extension of a mineralized zone to the north which was tested by 6 holes. The hole was not drilled during 1980 because of "swampy conditions", and should be planned for part of a future programme regardless of conditions.

MILLING

A letter of intent has been received from Geco Mines at Manitowadge wherein their mill will accept the MW Resources Limited mineralization; negotiations on rates would be required. Transport would involve a truck haul for 14 miles from the property to Sultan, and approximately 200 miles rail from Sultan to Manitowadge.

A milling arrangement at Timmins should be investigated. A truck haul of approximately 220 miles round-trip could possibly be coordinated to back-haul supplies.

If an adequate reserve of mill feed can be developed, on-site beneficiation should be considered. A base metal mill owned by Selco at Uchi Lake is currently idle and available.

CONCLUSIONS

The 1981 drill programme has been successful in expanding the potential of the high-grade, near-surface, base metal mineralization. Evaluation should continue using the same method of grid drilling in short vertical holes. Necessity for grid drilling on all targets of merit is emphasized, in particular the partially-explored South Zone.

Exploration and confirmatory drilling as may be required should proceed vigorously to acquire adequate data upon which to prepare economic and mining models.

All intervals above the base of the chert should be assayed to provide information on waste:ore ratios for an open pit model. Both pit and underground concepts should be investigated by modelling.

RECOMMENDATIONS

1. Subject to the conclusions of the drilling report in preparation, a continuance of the confirmatory drilling may be warranted during the winter. At this time it is thought that 2000' of additional coring may be required.

2. Models of underground and open pit designs should be commenced upon completion of the drill summary. Economic models for variations in metal prices should be fitted to the optimum physical plans.

3. Data within the North Zone have been re-examined with a concept of high-grade, lower tonnage potential. In view of the results, data from other portions of the property should be reassessed and short hole, vertical drilling on a grid basis considered.

4. a) An EM-17 survey should be completed over the North Zone and the results extrapolated to aid in evaluating EM-17 anomalies in other portions of the claim group.

b) The EM-17 conductors from 1980 work should be field checked and related to drill holes and geology.

c) This information, 1980 raw EM-17 readings, a copy of this review, and all other background data should be re-evaluated by a geophysicist.

5. An upgrading of one of the access roads will be a necessity if a mining operation is feasible. Overtures to the provincial government for a Roads to Resources grant and cost-sharing arrangement should be made. An estimate of the expense of construction and thence the net cost to the company should be calculated for use in a projection of cost per ton mined.

COST ESTIMATE

An itemized budget forecast should await a report of the season's drilling. Perhaps \$150,000 would be adequate to advance the property to a production decision.

All of which is respectfully submitted,

REGISTER PROFESSIONAL L.C

Locke D. Coldsmith, P.Eng. Consulting Geologist

Vancouver, B. C. November 8, 1981

ENGINEER'S CERTIFICATE LOCKE B. GOLDSMITH

- I, Locke B. Goldsmith, am a Registered Professional Engineer in the Province of Ontario and a Registered Professional Geologist in the State of Oregon. My address is 301, 1855 Balsam Street, Vancouver, B. C.
- 2. I have a B.Sc. (Honours) degree from Michigan Technological University and have done postgraduate study in Geology at Michigan Tech, University of Nevada and the University of British Columbia. I am a graduate of the Haileybury School of Mines and am a Certified Mining Technician. I am a member of the Society of Economic Geologists, the AIME, and the Australasian Institute of Mining and Metallurgy, and a Fellow of the Geological Association of Canada.
- 3. I have been engaged in mining exploration for the past 23 years.
- 4. I have authored the report entitled, "Review of 1981 Diamond Drilling Programme, Copper-Zinc-Silver-Gold Property, Cunningham Township, Ontario," dated November, 1981. The report is based upon a property inspection October 3-5, 1981, and literature research by the author.
- 5. I have no ownership in the property. I currently hold 666 shares of MW Resources Limited, acquired in 1977 prior to a 3-for-1 rollback.
- 6. I consent to the use of this report in a prospectus or in a statement of material facts related to the raising of funds.

RECISA PROFESSION Respectfully submitted, allanil L.B. cke B. Goldsmith, P.Eng. WAGE OF DHICONSULTING Geologist

Vancouver, B. C. November 8, 1981

REFERENCES

Fairbairn, Dennis, P.Eng.: Preliminary Evaluation, MW Resources Limited Cu-Zn-Ag-Au Property, Cunningham Township, Ontario. May 1, 1981.
MW Resources Limited: Various maps, sections, drill logs.
Placer Development Limited: MW Resources Ltd., Report on Geophysics,

Cunningham Township, Venture 170; July 1980.

. .

APPENDIX

~ ·

MW RESOURCES LIMITED CUNNINGHAM TOWNSHIP, ONTARIO

. .

,

PARTIAL ASSAYS

Hole No.	Footag From	e (feet) <u>To</u>	Length (feet)	Cu X	Zn Z	
81-1	36	42	6	0.39	3.08	
	61	65	4	0.25	2.83	
	65	69	4	1.84	12.59	
	91	97.5	6.5	0.03	2.74	
	97.5	100	2.5	3.65	4.78	
	103	109	6	1.81	0.05	
	109	114	5	1.32	0.03	
	114	117.5	3.5	3.75	0.05	
	117	119.5	2	19.38	0.05	
	119.5	123	3.5	0.55	0.02	
81-2	68	73	5 5 5 5 5	0.83	1.29	
	73	78	5	1.70	2.30	
	78	83	5	2.0	2.96	
	83	88	5	1.72	3.00	
	88	93		1.34	4.86	
	110	113	3	1.29	0.72	
	114.5	118	3.5	2.80	0.12	
	119.5	124	4.5	1.99	1.28	
	124	128	4	0.45	2.00	
81-3	76	79	3	2.04	1.96	
	81	85	4.5	2.98	0.54	
	92	92.5	0.5	12.56	0.85	
81-6	169	173.5	4.5	6.4	6.4	
81-8	170	180	10	3.6	7.7	
81-10	Values, 9'-56.5'					
81-11	28.5	30	2	4.31	0.20	
	30.5	33	2.5	0.36	2.36	
	33	37	2.5 4 5 5 5.5	0.83	3.84	
	37	42	5	0.35	3.37	
	42	47	5	0.11	1.36	
	47	52.5	5.5	0.04	0.50	

A-1

A-2

	Footage		Length	Cu	Zn	
lole No.	From	<u> </u>	(feet)	_%	_%	
81-12	17	21.5	4.5	3.28	1.71	
	21.5	31.0	9.5	0.38	1.62	
	21	34	3	0.84	5.26	
	34	36.5	2.5	6.15	1.95	
	37	42	5	0.60	0.30	
	85.5	88.5	3	2.11	0.19	
81-13	52.5	61	8.5	0.33	2.07	
81-14A	95.5	97	1.5	4.1	0.6	
81-15	26	30.2	4.2	6.54	0.82	
	30.2	42	11.8	0.14	0.18	
81-16			1.2	5.4	6.0	
81-22	12	16	4.0	0.70	4.77	
	17	21	4	0.17	1.68	Possibly
	21	32.5	11.5	0.05	0.68	Confusio ?
81-24	20	24	4	0.16	7.50	•
01 27	24	29	5	0.45	3.19	
	96.5	100	3.5	2.26	1.93	,
	100	102.5	2.5	0.57	0.56	
	102.5	104.5	2	1.14	0.13	
81-25	60	65	5	0.14	5.91	
		67.5	2.5	0.60	3.79	
		72.5	5	1.73	6.48	
	109	115.5	6.3	2.84	2.56	
		121.5	6	5.16	0.39	
		127.5	6	0.94	0.27	
		134.0	6.5	3.08	0.48	
		137	3	6.18	0.24	
		144	7	0.44	1.04	
		147.5	3.5	10.10	2.31	
		152	4.5	1.54	0.39	nAA
		158	6	1.32	0.69	
					T.	UY

•

,

•

Hole No.	Footage (feet)		Length	Cu	Zn
	From	To	(feet)	_%	<u></u>
81-30	16	23	7	0.56	2.72
	23	28	5	0.31	2.66
	28	34	6	1.38	5.77
	48	55	7	0.26	0.89
	62	66	4	0.48	3.45
	72	74.5	2.5	1.84	6.33
	105.5	110	4.5	1.14	0.54
	110	112	2	1.0	0.24
	112	117	5	8.76	0.11
81-31	89.5	94	4.5	1.76	1.64
					jet

A-3

~ ·

REVIEW OF EM-17 ANOMALIES, MAGNETICS, AND GEOLOGY PLACER DEVELOPMENT LIMITED, 1980

All anomalies should be field checked.

NORTH GRID

Anomaly 1

The location of the anomaly as taken from Placer Map 170-11 (EM-17 Profiled Data, North Grid) extends from approximately 3380' on Ll6S at 0+75W to 4180' on L24S at 2+00E due south of a point near the southwestern corner of Tower Lake. Using the same point on Tower Lake for reference, and scaling the collar of DDH Jim 2 from Placer Map 170-17 (Summarized Geology), the hole location is 3240' south and 680' west, which is approximately 17+80S, 7+40W on the Placer grid.

Using the southeast corner of the outline on Placer Map 170-17 designated "Cons. Shunsby Mines Tower (North) Group, Aug. 1970" and assuming that the southeast claim corner on Map 170-11 is the same location, then the plot of DDH Jim 2 is at coordinates 17+80S, 1+80E.

The trace of hole Jim 2 on Map 170-17 indicates that 120' of horizontal distance was transected. This is incorrect because 357' of horizontal distance can be calculated from the drill log.

If the hole is at the first coordinate location, the length of the hole is not sufficient to have probed EM-17 anomaly 1. If the hole is located at the second coordinate location it was directed away from the conductor axis and is unlikely to have tested the anomaly, which is interpreted from the EM-17 data to dip steeply easterly.

It may be that hole Jim 2 did, indeed, intersect the anomaly but reference to original drill logs and maps cannot establish the fact; sulphides in chert were cut in the drill hole. Interpretation remains ambiguous; the site of the drill hole should be ascertained on the ground with relation to the EM-17 anomaly.

Location of the pyrite and copper reported in a trench should be related to the EM-17 anomaly. One easterly strike-southerly dip on chert is at right angles to the conductor. If possible, a precise geological map of the immediate vicinity should be prepared if resolution of the old mapping is inadequate. Rocks in the area of interest have been mapped by different investigators as both cherts and iron formation. Important copper-zinc deposits elsewhere on the property are hosted in the chert units.

Magnetic high-low pairing of anomalies with up to ± 4500 gammas above background is associated with the EM-17 anomaly, thus enhancing the importance of the EM responses.

There is a suggestion from the magnetic contours and the EM profiles that another anomaly is present to the east of anomaly 1 near the east end of the grid. An extension of the geophysical surveys should be completed to the east, with additional lines to the south to close off the extension of anomaly 1.

The ground to the south appears to be part of the MW group and is held by claim S.90415.

If it cannot be established that hole Jim 2 tested the conductor, two angled holes should be drilled on line 16S from the hangingwall (east) side of the anomaly to probe both the EM and magnetic responses. Subsequent to the evaluation of the recommended geophysics, holes to probe the southern portion of anomaly 1 in the vicinity of L24S may be warranted. Exact location, lengths and attitudes of holes should be planned on site.

EM-17 Anomaly 2

The response appears to be located within the favourable chert horizon. A magnetic association of approximately 1000 gammas above background is displayed in a broad contour pattern. Although the anomaly is not a highpriority target, one drill hole should be planned in conjunction with testing of anomaly 1.

Anomaly 3

The reasoning within the discussion of the geophysics as related to the geology is unclear. A diorite-chert contact is not shown on the Shunsby geological map on the compilation by Placer (Map 170-17). Perhaps the andesite-chert contact is meant; the response is approximately parallel to this contact. The old baseline does not parallel the contact, nor does it parallel EM-17 anomaly 3.

The anomaly trace does not appear to truncate magnetic features but rather is coincident with elongated magnetic highs throughout much of its length, possibly excepting the portion south of L12S. A rather tenuous joining of two sections of anomaly 3 between L8S and L12S in an area where three EM-17 responses converge makes the trace appear to cross a magnetic contour pattern. It seems more probable that there is a fault zone trending north-northeasterly approximately parallel to the old baseline, which has offset magnetic patterns, and that anomaly 3 is better shown as two anomalies. The southern ends of EM-17 anomalies 4, 5, 6, and possibly 12, might be defined by this linear. If it truncates anomaly 6, the structure may postdate the fault zone which is mapped as being coincident with 6.

Imprecision in plotting the unnumbered drill holes near the old baseline makes it impossible from the data at hand to determine if anomaly 3 has been tested near L12S.

Pyrite and pyrrhotite in chert is noted near the trace of the anomaly. Anomaly 3, at least from 8S to 12N, appears to be formational.

It is possible that hole 27 penetrated the northern end of anomaly 3 near L12N. Logs of this hole show copper-zinc mineralization between 41'-46', 122'-135', and 160'-183' in chert and chert breccia, probably in the basal chert.

Geological investigation along the trace of the anomaly should be completed prior to committing to a drill test. Conductivity thicknesses should be calculated for several locations along the zone.

Anomaly 4

While there is not a strong magnetic high associated with the anomaly an elongate magnetic contour pattern coincides with the trace of the EM conductor.

It is not clear is a drill hole has tested the zone. Pyrite and pyrrhotite are noted nearby.

Anomaly 5

The EM trace lies on the east flank of an elongated magnetic anomaly. If the conductor dips westerly as suggested by the profiles, the magnetics may correspond with the EM. Conductivity thicknesses are required.

A-6

Dips recorded in chert to the northwest are 45° off the direction of the conductor. However, these may have been obtained in the vicinity of L4N where magnetic contours would parallel bedding attitudes.

Anomaly 6

A fault zone is mapped along much of the course of the EM-17 response. Generally low magnetic contours suggest possible destruction of magnetite/ pyrrhotite along a zone of crushing with attendant oxidation. The south end may merge or be terminated at a north-northeast-trending discordance.

Field checking, particularly where the anomaly appears to be strongest, is recommended.

Anomaly 7

Definition of the anomaly is incomplete because the coverage on lines 0, 4N, 8N and 12N was not extended far enough to the east. EM-17 should be rerun on the east-west grid to detail the conductor. A different pattern, perhaps linking anomalies 7 and 21, may emerge.

Magnetic contours parallel the conductive zone. Disjointed highs on Base Line No. 2 contour raggedly because the high values are the last readings on the lines. Additional magnetic data should be acquired at the time of extension of the EM-17 survey.

One dip within greenstone parallels the conductor. Mapping indicates that the conductor passes from chert into greenstone and back into chert, suggesting a structural explanation.

The conductor has not been tested by holes 19 through 25. Hole 25 alone may have intersected the extreme northern tip of anomaly 7. Logs of hole 25 are not available at this time. Field checking is required before undertaking the recommended hole, which was not attempted in Placer's 1980 drill programme.

Anomaly 8

A discrete magnetic high of 2000 gammas above background coincides with the EM-17 conductor. Cherts are mapped at the location.

Anomaly 9

The EM trace may be associated with a magnetic low. Andesite and variolitic andesite host the weak anomaly. A fault zone is suggested. Variolitic andesite overlies the mineralized basal chert.

Anomaly 10

Conductivity thicknesses are required. A magnetic high of +4000 gammas above background is coincident. Very high magnetic response obtained to the east and north was interpreted as iron formation.

Hole 27 may have tested the anomaly but appears to be too far west; the exact location of the collar, from the available information, is in doubt. Logs of hole 27 record copper-zinc mineralization. Trenches are shown on the geology map to the northwest of the anomaly. Chert is mapped around the conductor.

Anomaly 11

A discrete magnetic high of +4000 gammas above background is associated with the moderately strong EM conductor. Iron formation is interpreted from magnetic data to underlie the southern portion of the anomaly. Chert i. mapped as the host rock. Trenching is shown on Map 170-17 approximately 400 feet south of the response.

Anomaly 12

Two faults with quartz-feldspar porphyry, and an andesite-chert fault contact are mapped near this anomaly. A pronounced magnetic low, which coincides with the EM trace, lies immediately west of an area interpreted from high, erratic magnetics to be underlain by iron formation.

A structural explanation is suggested, but field examination is required.

Anomaly 13

The moderately strong anomaly is subparallel with a magnetic low. A fault is mapped in chert to the west of Springer Lake and could be projected easterly beneath Springer Lake along the EM conductor. Line 24W should have EM-17 and magnetic surveys completed to better define the position of the conductor with respect to the chert and to the fault.

Anomaly 14

Low magnetic contours parallel the conductor. An east-west fault is suggested.

Lines 12W, 16W, and 20W should be extended northerly with EM-17, magnetics, and geological mapping completed to enhance the single-line response.

Anomaly 15

Conductivity thickness is required. There is no magnetic anomaly association. Geophysics and geological mapping should be completed on lines 12E and 20E as required to close off the strike of the conductor.

Anomaly 16

The trace is coincident with a pattern of magnetic high-low pairs on the northerly flank of a band of erratic magnetic data interpreted as iron formation. A chert-andesite contact as mapped corresponds well with the strike of the anomaly, although one dip in the chert is 70° northerly, whereas a dip on the conductor is southerly. One drill hole may have tested the zone at the eastern end between lines 12E and 16E. No trenches are shown on the geological map. If the contact between L4W and L12E has had "Considerable prospecting and drilling..." (Placer, July 1980, Part II, p. 7), the records should be reviewed.

Anomaly 17

Conductivity thicknesses are required. The broad conductor is located within an outline of erratic magnetics interpreted as iron formation, but mapped as chert with a southerly dip. One trench is shown on the geologic map. One drill hole may have intersected the anomaly ±100 feet east of line 16. Review of data and field checks are necessary.

Anomaly 18

The anomaly may be part of anomaly 17, separated or offset by an easttrending fault zone. In the case of 18, the geological map shows iron formation although magnetic highs are less pronounced than in the adjacent unit mapped as chert. Past work should be reviewed, with subsequent field checks.

Anomalies 19, 20, 21

The group of responses is broadly conformable with narrow, steep magnetic gradients of high-low pairs which trend into an area of confused patterns ascribed to iron formation. Mapping indicates chert and iron formation to be present.

Six holes have been drilled in the central and western portions of 21, one of which may have intersected the southern part of 20. These drill logs are not available at this time, but should be reviewed and results related to the geophysics prior to field checks.

Anomaly 22

The eastern end of the EM trace is within a band of subdued low magnetics along a contact mapped as andesite-chert (iron-formation). The western portion is in confused magnetics, possibly iron formation. Two drill holes have probed the eastern end of the anomaly; raw data should be re-evaluated.

SOUTH GRID

Anomaly 23

The EM-17 conductor occurs within a slight magnetic trough between long pronounced highs. Andesites are mapped nearby, although the magnetic pattern suggests that other rock types (iron formation?) are present.

Anomaly 24

Lines 28S and 32S should be extended westerly to complete the geophysics around the anomaly. A narrow magnetic low within flanking magnetic highs is associated with the EM-17 response. Andesites are mapped but the magnetic contours suggest that iron formation occurs near the anomaly.

Anomaly 25

The EM trace has an associated elongate magnetic high. Andesite is mapped nearby, adjacent to the swamp which masks part of the conductor. Heavy pyrite is noted in a trench 120 feet east of the anomaly. The occurrence should be examined.

This zone was considered for a drill test dependent upon the results of a drill hole in anomaly 27. A decision to drill should be made on the merits of each anomaly on an individual basis.

Anomaly 26

Drill hole MW 80-4 probed the anomaly. No clear cause of the EM response was noted in the drill log. Andesite was the only rock type which was intersected. It is worthwhile to note that the EM coincides with a magnetic low.

Anomaly 27 .

Drill hole MW 80-3 tested the EM response. Andesite is the predominant rock type. A section of siltstone between 178.5'-190' contains 30% pyrrhotite and presumably explains the conductor.

A magnetic high corresponds with the EM.

Anomaly 28

Drill holes SH 64-3 and -4 appear to have tested this anomaly. Hole SH 64-5 appears to be in the vicinity of line 32S and may have probed a fault zone. Drill results should be reviewed; logs are not available at the time of writing.

A series of magnetic highs and lows are strung out along the zone, except where noted by question marks. The north end of 28 appears to be a separate anomaly.

Anomaly 29

Hole SH 64-2 appears to have been drilled into anomaly 29 at approximately 49S, 4W. Drill results should be reviewed; the EM conductor appears to dip away from the drill hole. Logs are not available. The conductor as joined between lines transects the magnetic contours south of L49S. It is suggested

that anomalies 28 and 29 should be separated into another response, being the conductor at L52S, Base Line, and the portion of anomaly 28 on L56S, 1W. Each of these three anomalies would then have an associated magnetic high.

Anomaly 30

The conductor lies on the eastern flank of a magnetic high, more directly associated with a narrow magnetic low.

Hole MW 80-2 was drilled beneath a soil geochemical anomaly and intersected 1-2% pyrrhotite in siltstone at several horizons which may explain the magnetic high. The EM conductor was probably not intersected in the hole. A variety of rock types are mapped nearby.

Anomaly 31

An area of magnetic highs is associated with the conductor; iron formation was interpreted to be the cause. Geological mapping does not extend into the vicinity of anomaly 31. Peridotite is mapped to the northwest, west, and south.

Anomaly 32

The response has a magnetic high association although the conductor trends at a small angle across the magnetic contours. Peridotite is mapped surrounding the conductor.

1979 GRID

Em-17 anomalies are unnumbered and are discussed herein by grid coordinates. Designation on the EM-17 map of depth in feet/conductivity thickness in mhos is reversed in order from the 1980 maps.

<u>4S 29E</u>

Hole MW 80-1 was drilled on a short, moderately strong conductor with a coincident magnetic low. Graphitic schists, tuff, and chert, all with pyrite-pyrrhotite up to 20-30% (in tuff) were intersected. Chert and andesite are mapped.

2S 33E, extending to 12N 24E and 10S 35+50E

Within the grid of map 170-5, the anomaly may have been drilled in holes 113, 114, SE3, and C where minor mineralization was encountered. To the north of L12N the zone may have been intersected in holes SE2 68-20, and 68-18, with values of economic interest, particularly in zinc, occurring at least in the latter two holes. There is no magnetic signature with the conductor.

Because base metals occur in the zone farther north, the response at 2S 33E warrants further investigation. Basal chert is mapped near this location.

<u>8N 33E</u>

There is no magnetic pattern associated with the conductor. Country rock is mapped as diorite.

6N 20E

Holes A, 74-16, 70, 68, 74-14, and others to the north of map 170-5 have probably intersected the zone. Base metals were encountered farther north. Important zinc values with subordinate copper were obtained in holes 74-16, 70, 68, and 74-14, although assays are missing and some sections were not sampled in holes 74-16 and 74-14. Lead is present as an appreciable constituent in hole 74-16.

OMEPBI-5-C-55

41010NE0035 63.4004 CUNNINGHAM

030

REPORT ON THE DIAMOND DRILLING EXPLORATION PROGRAM

1981 AND PRIOR TO 1981

M W RESOURCES LTD.

CUNNINGHAM TOWNSHIP, ONTARIO

PROPERTY

NORTH ZONE ..

February, 1982

Prepared By

Dennis Fairbairn, P.Eng., Mount Hope, Ontario LOR 1WO

TABLE OF

030C

INTRODUCTION	2
SUMMARY	3
CONCLUSIONS	4
RECOMMENDATIONS	6
Alternative A	6
Alternative B	7
Choice	7
LOCATION AND ACCESS	9
HISTORY	
GEOLOGY	15
FAULTING	17
MINERALIZATION	18
MINERALIZATION AN OVERVIEW	21
DIAMOND DRILLING	23
Pre-1981 Programs	23
1981 Program	
REFERENCES	33

APPENDIX: Drill logs, Pre-1981 Drill logs, 1981 Plan and Longitudinal Section Vertical Sections -- Reduced Scale -- 30-scale Assay certificates, 1981. Summary of Assays Tonnage and Grade Calculations

/3

INTRODUCTION

This report covers the previous diamond drilling and the 1981 drilling in the North Zone of M W R's Cunningham Township, Ontario, copper-zinc property.

The object of the 1981 program was to prove a tonnage and grade of ore sufficient to support profitably an underground miningcustom-milling operation.

The program was directed in the field from before commencement to after completion, by the writer.

The report summarizes results to-date, and recommends a future course of action.

It contains much more than the normal quantity of back-up data in order to ensure distribution to Directors, under one cover, of all information required for future study and decisionmaking by those Directors. This, because, to date, the writer has been the sole custodian of such information.

The writer very much regrets the several periods of incapacitation which have delayed the submission of this report in its final form until this date. Due to these and other circumstances, the typing, as well as all writing, mapping, colouring, etc., was done personally by the writer, by hand. There are obvious deficiencies, particularly in the typing, for which apologies are tendered.

Fage .J.

/4

SUMMARY

The 1981 North Zone program was successful in proving about 50,000 tons of 5.2% equivilent copper mineralization, (3.2% Cu., 3.1% Zn.), in a length, width, and thickness of roughly 500-fect, 100-fect, and 7.2-fect, respectively. Gold and silver values are of the order of 0.02 OPT and 0.75 OPT.

A CARLES AND A CARLES

and another an in anticipation of the

To prove tonnage and grade in the remaining 500-feet of the 1,000-foot zone, approximately 2,000-feet of vertical, shorthole drilling remains to be done. Of this 2,000-feet, roughly one half will be required in the northern one-quarter of the zone, and one-half in the southern one-quarter. Successful, this drilling will prove additional reserves of up to another 40,000 tons of a grade equal to, or better than, that above.

High-grade zones of similar genesis may be expected to exist in several, or many, other locations in the Property. In order to locate these, which should be of considerably larger size, it is recommended that a program consisting of thorough geological mapping, geophysical surveying, and diamond drilling precede any attempts at production from the North Zone. It is further recommended that such a program procede under the terms of a satisfactory farm-out agreement with, and under the direction of, a major mining company.

CONCLUSIONS

The combined 1981 and pre-1981 diamond-drilling has confirmed the existence of the previously-suspected 1000-foot-long enriched horizon in the North Zone.

It is reasonably certain that within approximately one-half of its strike length, the zone contains more than 50,000 tons of recoverable material which grades 5.2% equivilent copper. This tonnage is contained in that portion of the zone which lies to the east of the dividing N-S-striking fault.

Further drilling is required to establish additional tonnage and grades both in the western portion of the zone which lies to the north in the 250-foot interval between DDH's 81-23 and 81-18, and in the untested southern portion of the zone which is located between DDH 81-8 and the Main Fault. This additional drilling can be expected to develop an additional 30,000 tons of at least equivilent grade material.

The enrichment in the North Zone basal chert remnant was probably the result of post-depositional sedimentary dewatering. There is therefor valid reason for expecting similar zones of enrichment in the basal cherts, (and, perhaps, in the middle cherts), in the east limb, the trough, and the west limb of the syncline. This, ? both north and south of the Main Fault. This has expanded very significantly the potential of the Property.

While the grade of material in the North Zone is considered to be commercial, the relatively small tonnage which can be considered to have been now established there with reasonable certainty, plus the significant drop in metal prices since the early-1981 preliminary estimates were made, combine to reduce to marginal the likely profitability of extraction and custom-milling at this time.

15

/6

A production decision should properly await further developments, the keys being the results from further North Zone drilling, the results of further evaluation of cherts both north and south of the Main Fault, and, probbly, a significant improvement in, or satisfactory stabilization of, metal prices.

RECOMMENDATIONS

Alternative A

Phase 1

Place the North Zone "in the bank" until after finishing a reassessment of the balance of the Property. Should the Board reach the contrary decision to proceed with further drilling in the North Zone in advance of a Property reassessment, be prepared to drill up to 2,000 feet of BQ hole under the field-direction of an engineer, competent, and with authority to adjust or curtail drilling as it prgresses. For this work, field time is estimated at one month and total cost at \$60,000.

an a star was been a transfer in a transfer a transfer and the star

Phase 11

Irrespective of the action taken in Phase 1, proceed, immediately after arranging the necessary financing, with a thorough Property reassessment, following, generally, the recommendations of Goldsmith, (November, 1981).

More specifically, after engaging a competent, available, geologist-geophysicist, proceed, under his/her field direction, and in chronological order, to:

- 1. complete Geological mapping of all potentiallyfavourable parts of the Property; simultaneously, acquire additional property in the area, contiguous or otherwise, base-metal or otherwise.
- 2. After running a check or a "calibrating" EM 17 survey over the known North Zone mineralization, field-check the conductors indicated in Placer's 1980 EM survey. Follow-up by extending the survey to previously-unsurveyed but favourable ground.

3. Complile and assess all data, and establish drilltargets.

Page .6.

Page .7.

For Phase 11, field time is forecast at one year, and cost is estimated at \$175,000.

and the second second

Phase 111

Diamond-drill the Property through either to a production decision or to the reverse.

The time and cost for Phase 111 work is indeterminate at this stage of development and planning. Time could be two years and costs certainly several hundred thousand dollars.

Phase 1V

If the Phase 111 decision is "no mill", consider carefully the economics of salvage custom-milling whatever tonnage of direct-shipping ore that had been developed, including, of course, that in the North Zone.

Alternative B

Attempt, now, to conclude a satisfactory farm-out agreement with a "major" who will provide capital, operating expertise, and the committment necessary to carry the Property through to a logical and final conclusion.

The Choice - A or B

The potential of the Property is good, but it is demonstrably still in an early stage of development as a profitable and significant producer.

The Property's continued development by MWR will require acceptance of the considerable financial risk to be taken, would require further early financing and dilution of present shareholders' equity at a time of scarce and expensive money, would require engagement, probably on a consulting

basis, of a force of professionals supported by an MER part-time, if not full-time, administrative and technicalstaff, would involve still more significant moneys to complete Phase 111, and, if all were successful, major financing to bring in to production.

The choice of this alternative would not be unwise, for a successful conclusion would result both in an appreciable capital gain by the shareholders and in MWR becoming a successful and, perhaps, diversified mining company. It would be the proper choice were the Directors confident of MWR's ability to carry the project through to its conclusion without having to give up part way there, and of their willingness to accept the continuing risks and probable disappointments which will be encountered.

The alternative is to pass on to a major the total responsibility for the provision of capital and expertise, and, down the road, for MWR to accept, through a carried interest, a somewhat lesser but still significant return from the proposition.... after taking no risk other than that already taken, providing no additional staff and incurring no further technical and administrative headaches, and necessitating no continuing or material expenditures of Directors' time and effort.

This is a old and recurring situation in mining development, and the choice is often divisive and difficult due to varying points of view and objectives. In my view, this choice must be made -- and made now. It is a matter for discussion and decision by the Directors. On the basis of what knowledge I possess of pertinent present circumstances, and as Technical Director of MWR and as a Professional Mining Engineer, with respect, my recommendation is, definitely, proceed with Alternative B.

/9

· · · · · · · · · · ·

LOCATION

The North Zone mineralization is centred in Cunningham T'w'p., Porcupine Mining Division, Ontario. The Township is about 80 air miles southwest of Timmins, 40 west of Chapleau, and 120 northwest of Sudbury.

ACCESS

Road access is from Sultan, a flag-stop on the C.P.R. main line, 42 miles on paved highway 129 from Chapleau.

From Sultan, there is access via 27 miles of good gravel road to Garnet Lake, Garnet Township. This is followed by 7 miles of cat road to Hiram Lake and the property. The 7 miles is boulder-strewn, unmaintained since bulldozer construction in 1974, and now barely passable with 4-wheel-drive vehicles and then only from June to November. In 1981, the diamond-drillers used this route in, with skidder or 4x4.

Otherwise, from Sultan, road access is about 12 miles via the old Sultan-Kentey wagon road, (the Swayze Road), which, until recently, served the Ministry and their forestry tower about one mile west of the North Zone. In spring and early summer, three swamps, one beaver dam and the Isiah Creek crossing near Peters Lake, preclude truck travel. In 1981, MWR used this route and an A.T.V., (Terra Jet), without problem and with about a 4-hour turnaround. The walk from the deposit to Sultan took the writer about four hours. A net expenditure of perhaps \$50,000 could render this road suitable for year-round truck travel. The crossing at Isiah Creek is shown on p.3, O.D.M. Report, V.B. Meen, 1944, and by the 1981 photo by the writer, attached.

In winter, access from Sultan by snow vehicles would involve only a one-half hour's easy drive.

Helicopter access is about one-half hour from Timmins base to Sultan staging, and less than ten minutes Sultan to the site. Placer, in 1980, serviced themselves totally in this manner.

An alternative route for personnel is via float plane, Chapleau to Peters Lake, followed by 3 miles' walking or A.T.V. riding to the site.

Chapleau is serviced daily by Norontair with service from Sault Ste. Marie connecting with Air Canada from Toronto. Torontoto-Sultan via commercial airlines and car is less than five hours.

HISTORY

The chronology of work on the property and of the various "owners" is summarized for the record on Schedule 1.

The mineral potential, particularly for lead and zinc having been recognized by 1927, and the favourable chert members having been identified and located by geological, geophysical and diamonddrilling work, the object of most, if not all, work, was to develop ore tonnages sufficient to support an on-site mill. The middle and basal cherts, both north and south of the main E-W fault and on the west limb of the regional syncline were explored by diamond-drilling which, by 1974, totalled almost 59,000 feet. Some holes tested to as much as 1,000 feet from surface. Umex, in 1969, calculated reserves on the basis of prior drilling at 2,614,000 tons assaying 0.47% Cu., and 1.84% Pb.-Zn., (and 0.25 OPT Ag.). Grandora Explorations, after their 1974 drilling program, reported, in both chert members north of the Main Fault, 766,000 tons assaying 1.00% Cu., and 1.33% Zn.; south of the Main Fault, they calculated 721,000 tons assaying 0.40% Cu., and 3.0% Zn.. Placer, in 1980, estimated a total drill-indicated 2,400,000 tonnage assaying about 0.4% Cu. and 2.4% Zn.. In 1981, the writer calculated, in the south zone, on the basis of narrower widths, but of mining widths, a drill-indicated tonnage of 970,000 grading 1.2% Cu. and 4.9% Zn..

Both Umex and Placer gave thought to open-pitting what we now refer to as the North Zone, and both concluded that, because of expected heavy handling of wall-rock, low grades, and relatively small tonnages, such an operation would be sub-economic.

The last diamond-drilling in this North Zone was in 1974, (Grandora). This, and previous drilling in this basal chert was rather haphazard. About a dozen holes intersected the high-grade, and some very good, ore-grade assays appear in the logs, but, in all cases, these appear to have attributed to isolated pods and to have become buried in clculations such as those of Umex, Grandora and Placer involving thicknesses of perhaps 30 feet in several-hundred feet of projected down-dip mineralization. Additionally, mineralization was typically described disseminated and fracture-filling. The significance and possible importance of the quite different massive or ropey chalco in these pods as an indicator of possibly continuous ore-grade material seems to have been largely lost on all investigators save Joubin.

In 1980, after Placer had dropped their option after a small amount of superficial drilling, and after a futile attempt by the writer to refine the Umex work and to isolate a smaller tonnage of openpit ore in the North Zone, a last-ditch attempt was made to locate some commercial mineralization before the property was placed in moth balls.

Following an earlier suggestion by Joubin, the available drill-hole data were tested to determine if the apparently random occurrences of massive chalco did fit a pattern ofdeposition in certain crossstructures, or, alternatively, were "drag" along those structures. In the course of this work, the writer noticed that four highergrade intersections in old DDH's 17, 20, 21 and 22 were, at widely separated points, located at approximately the same elevation. Follow-up accurate mapping and analysis revealed the probability of the high-grade occupying a continuous N-striking horizon which dipped gently to the west, and plunged about 12 degrees to the south. It appeared to parallel the footwall diorite-chert contact only a few feet above that contact.

This mapping, the object of which was simply to determine continuity of the high-grade horizon, utilised only massive chalcosphalerite intersections, irrespective of their widths being six inches or six feet, or of their mineable depth or grade being or not being of commercial value.

To obtain a rough handle on the commercial potential of the obviously small body which was indicated, simple arithmetical averages of

the assays and intersections were calculated. Assays worked out to 3.9% Cu., 6.2% Zn., and 0.03 OPT Au. and 1.25 OPT Ag.. Only an occasional assay was made for gold or silver. Vertical crosssections were prepared and, haphazard though the intersections were, they strongly indicated a zone width of more than 100 feet, and a thickness sufficient for mining, (between 6 and 7 feet), a possible strike length of 1,000 feet, and, therefor, some 80,000 tons of material.

A quick study indicated that this volume of this grade, under these circumstances, and at early 1981 metal prices, could be extracted, shipped, and custom-milled at a significant profit and at a satisfactory return on investment. The object of the now-completed 1981 diamond-drilling program was to <u>prove</u> that there was or was not a tonnage of commercial ore in this North Zone.

CHRONOLOGY

Date	Company	Interest	Diamond Holes	Drilling Footage	Claims Worked	Work Performed
1904-07	Ridout Mining	Iron	-	-	-	-
1927 - 29	Ridout Cunningham	Zn., Pb.	some	?	34944 47	Trenching Drilling
1955 - 57	Shunsby G.M.	Zn,Cu,Pb	74	20,336	34947 etc	Geol.,Trench Map, Drilling
1960 - 61	Shunsby Mines	Zn,Cu,Pb	9 9	3,605 4,110	34947	Em,Mag.,Geol., Drilling
1965-66	FRJ Prosp. Synd.	Zn,Cu,Pb	41	14,279	34944 47	EM, Map, Geol. Drilling
1 968-6 9	Con.Shunsby	Zn,Cu,Pb	23	9,091	34945 46 ,4 7 57539	Geol., Map Drilling
1969-70	Umex	Zn,Cu,Pb	nil	nil	-	Geol., Map, Examine
1974-75	Grandora Expl.	Zn,Cu,Pb	21	7,444	57539 34947	Trench, Drill. Geochem.
1978	MWR	Zn,Cu,Pb, Ag,Au	5	1,237	Tower Group	Geol., Map, Drill
1979-80	Placer Dev.	Zn,Cu,Pb, Ag,Au.	4	1,250	Southern Extension	EM 17, Chem., h Mag., Drill
1981	MWR	Zn,Cu, Ag,Au	30	3,474	34947 57539	Map, Drill
			216	64,826		

Schedule 1

GEOLOGY LOCAL

The North Zone mineralization occupies the basal remnant of a 10-to-50-degree westerly dipping, northerly-striking cherty iron formation. The remnant is the near-surface expression of the easterly limb of a regional southerly-plunging syncline. The iron formation has a true maximum thickness of about 850 feet. Two 300-feet-thick chert beds and an interlayered 250-feet-thick band of greenstone, (generally variolitic and therefor an excellent marker), comprise the iron formation in this location. The assemblage is of submarine, volcanogenic origin.

The basal chert member is up to 300-feet thick and is in contact, possibly fault contact, with the intrusive footwall diorite. Northstriking, dioritic, "digestive dykes", up to 100-feet thick, which possibly originate in and are concurrent with the diorite, cut across the basal chert member from both the east and the west. Characteristically, the digestive dykes are of either a light green or a distinctive yellow, pea-soup colour. They are well-named, for they display abundant evidence of having digested, or partlydigested, chert wall-rock and the contained sulphide mineralization.

The forgoing assemblage is unquestionably and frequently intruded by late felsitic porphyries, though none were observed by the writer in the core from the 1981 drilling.

The mineralized basal-chert remnant, (the North Zone), occupies a north-striking, south-plunging basin, which reaches the surface at its northern extremity. At a depth of approximately 200-feet, its southern extremity abuts the "Main Fault", (a flat-lying, E-W thrust, left-hand).

This chert basin is bounded on both its east flank and its base by the contact with the westerly-dipping footwall diorite, and,

on its west flank, by the relatively steeply and easterly-dipping digestive diorite.

The basal chert remnant is composed of, first, an argillaceous, banded and black-coloured fraction, second, by a less-argillaceous, greyto-black and brecciated fraction, and, third, a fraction which is light-coloured, often a pale blue, and is generally massive, unbrecciated, and unmineralized with sulphides. That is, significant sulphide mineralization, when it occurs, is almost always in the brecciated and argillaceous chert fraction.

REGIONAL GEOLOGY

This has been adequately mapped and described by a succession of professionals, governmental and otherwise, between the early 1900's and the present day. A repetition would be superfluous other than to record that the area of interest lies in the southwest corner of the regional greenstone belt which stretches from Cunningham Township northeast and includes the gold and base metal deposits of the Timmins area.

/17

FAULTING

The North Zone is cut by a fault complex composed, first, of N-S striking, east-dipping structures, and, second, by E-Wstriking and south-dipping structures.

The only north-south-striking structure observed or which seems to be a factor, strikes N-10-W and lies along the westerly side of the mineralized zone, is normal, and produced the prominent escarpment which marks the west side of the Zone.

The set of E-W-striking faults are thrusts which dip flatly, (20-to-30-degrees), to the south. The North Zone mineralization terminates at its south end against the Main Fault, which strikes about N-70-E and is left-hand, with a displacement, lateral, of about 650 feet. Its vertical movement is not known, and it could be a factor in locating the southern offset of the North Zone. Belonging to this set of faults, and being a factor in the North Zone picture, are two parallel thrusts located a few hundred feet to the north of the Main Fault; both are probably of minor lateral displacement and have a vertical displacement of perhaps 40 feet. Thus, these two structures probably caused the stacking of the high-grade zone as is indicated in the longitudinal section and the southerly cross-sections.

MINERALIZATION

Prior to the current 1981 work, sulphide mineralization was generally considered by engineers to have been syngenetic with the chert, and, particularly by those involved in "reserve" calculations, as being comprised of widespread, stratabound, conformable, and relatively low-grade disseminations and fracture fillings. The noteable exception was Joubin, who often expressed the opinion that, were the higher-grade horizons not relatively continuous zones of enrichment, they represented either drag or continuous zones of mineralization in E-W, or cross-structures. Potapoff, (Umex, 1969), stated, "... the Cu-Zn-Pb prospects are disseminated and fracture-filling types of mineralization in a cherty formation ... ". Hough, (Umex, 1969), stated "... the chalcopyrite and sphalerite occur predominantly in the chert and mainly as very narrow, discontinuous fracture fillings, but also as disseminations and irregularly shaped "blebs"...".

The occasionally-encountered higher-grade chalcopyrite-sphalerite intersections were generally ignored as being isolated pods and were incorporated, and lost, in large-volume tonnage calculations. This, in spite of the chalco in the pods having been massive, ropey, and otherwise having exhibited remobilization characteristics. Our current observations and studies have revealed or confirmed that the high-grade horizon or horizons in the North Zone were indeed of exhalative and submarine origin, that the suphides and the cherts were simultaneously deposited by primary chemical sedimentation, and that the heavy sulphides do not occur in small, isolated pods -- they do occur as enrichments in a horizon which is clearly continuous.

Joubin, 1965, stated, "... the sulphide mineralization is primarily syngenetic, but the diorite, and/or the digestive diorite, has been responsible for redistribution and concentration of the sulphides..". Goldsmith, 1965, stated, "... a distal facies of an exhalative volcanogenic suphide deposit intrusion of diorite may have

/19

20.28.

Page .19.

driven metals from chert proxymal to the contact outwards into fractures to create an upgraded concentration". Both views are on target.

An important observation is that neither the diorite nor the digestive diorite was the source of the massive sulphides. It was noted during the logging of certain core from the 1981 drilling, (particularly that from DDH 81-18), that earlier chalco veinlets or "ropes", as well as chert, had been digested by the intrusive, and that ghosts of both chalco and chert remained in the margin of the intrusive. The sudden gradation from fresh chalco to partially digested chalco was clearly visible in the core. Not only because of this observed digestion, but because of the frequently-observed occurence by myself and others, of sulphide veinlets lying at a high angle to the bedding, and also because of the occasionally-observed crenulation of pyrite, sphalerite, and chalcopyrite veinlets, (into tight folds or wrinkles ampliture 1", wave length %"), I will, until there is strong evidence to the contrary, believe that enrichment was the result of upward, and, perhaps, lateral, remobilization of the sulphides during sedimentary dewatering. This, as at Norita, and as reported there by MacGeehan, MacLean and Bonenfant.

It is repeated that the digestive diorite intrusion is considered to have been, not a positive, but a negative factor in at least the quantity of sulphides in the present enriched, or high-grade, horizons.

I Grandora, log DDH 74-6 : @41 ft. to 46 ft., chert banding @ 45 degrees to core. -- cpy. stringers parallel to core
I Meen, 1944, p.22 :sphalerite and chalcopyrite were

of the chert at right angles.

observed cutting across the strike

Other possible modes of deposition should not be ignored. It is possible that the high-grade is either proxymal. (having been a primary deposit at or near the original vent zone), or that it is distal -- the concentration of sulphides having been carried down-stream from the vent zone and redeposited, unconformably. in a relatively narrow channel in previously exhaled and distal cherts. This latter mode of deposition was the basis of my working theory during most of the 1981 drilling program. The theory was supported, to a degree, by the apparent existence of a northsouth striking, south-plunging, channel of higher grade and more auriferous copper-zinc mineralization. -- DDH 81-25 to 81-1 to 60-77 to 81-15 --. This "channel" thinned or disappeared up-dip to the east; it also immediately overlay the relatively barren westerly-dipping cherts. At the time, I believed the cherts to have been a chemical precipitate from an east-to-west flow. It was subsequently felt to be more likely that the primary flows from the vents were from south-to-north and that the original vents were located somewhere to the south of the Main Fault and, possibly, south of the higher-grade copper mineralization in an apparent north-south-striking channel which was indicated in DDH's 74-13, 74-18, 68-16 and 66-22. This having been so, and the plunge continuing to the south, the possible favourable tonnage and grade implications in the South Zone were obvious.

Nevertheless, and irrespective of the genesis of the high-grade mineralization, (and irrespective of whether the two zones which are indicated in X-Sections A-B, C, D, E & F are, in fact two distinct zones or are a stacking due to the E-W-striking thrustfault set), of practical importance is that the 1981 diamonddrilling has helped to establish, first, that the high-grade zones are in fact there, second, that they are continuous in both longitudinal and vertical sections, and, third, that they almost certainly are of commercial grade and quantity.

Price .21.

MINERALIZATION -- AN OVERVIEW

Given that the enrichment in the North Hone was the result of upward remobilization of the sulphides during sedimentary dewatering, and theorizing that the dewatering was related to intrusives, as both the very close paralleling of the enriched zone and the intrusives, and the existence of the narrow band of relatively barren cherts between the enrichment and the basal intrusives, would indicate, enrichment on the Property should not necessarily be restricted to the one basal chert remnant with which we are currently concerning ourselves.... in the top of the east limb of the regional syncline.

Similar enrichment could very well have occurred under similar circumstances anywhere in the more than five miles of strike length and one mile of dip length of cherts where primary zinc and copper mineralization is known to have occurred.

Similar enrichment could very well exist undetected by past scattered drilling proxymal to the intrusives and directly downdip from the North Zone.

Pregnant exploration ground exists down dip on the syncline's east limb, in the trough of the syncline, and up the west limb. Significant zinc and copper mineralization has been reported and observed in the area of the west limb's outcropping both where trenches have exposed it or the one or two "Jim" drill-holes have penetrated it.

The possibility of enrichment in other zones on the Property has received little, if any attention. It definitely should receive attention in the form of, first, mapping and close study of the available existing information, and, second, whatever follow-up geophysics, geochemistry and drilling which is warranted by that work.

Similar thinking and similar attention should obviously be directed toward the cherts in the South Sone, (the cherts nouth of the Main Fault), where enrichment has already been noted, and where the potential for major discoveries is considered by the writer to be very good -- if not excellent.

DIAMOND DRILLING

Pre-1981

The logs of all holes which were pertinent to the 1980 identification or the limiting of a horizon of possible commercial value, (the North Done), are contained in the Appendix. These include:

DDH	(55) - 4,5,6,7,8,11 (56) - 17,20,21,22, 25,26,27,30,
	31, 33, 35, 36, 39, 48, 51, 60.
	(65) - 93,99.
	(74) - 1,6,7.

Pertinent details, including assays of all significant intersections, are summarized in the tables in Schedule II as well as on all vertical cross-sections, A-B to 1. . Where these old drill results enter into the picture, they are shown in the calculations of tonnages and grades in Schedule III.

While the log records may appear tooprecise with respect to collar locations and elevations, and hole dips, of the various holes, it is known that they are not. In some cases, they are only approximations. The pletting of the data by the writer is accurately in accordance with the records. It will therefor be understandable if some latitude seems to have been taken by the writer in locating some of the intersections on the plans, particularly in respect of some of the longer inclined holes. A ten-foot adjustment shows up an being quite significant or even unacceptable in 30-scale plotting, but, such adjustments are considered to be consistent with the actual situation.

Of significance is the large number of old drill-holes which missed the high-grade none by passing over or under it and then into the up-dip low-grade cherts or down-dip into the hangingwall precentiones and digentive diorites. Several holes were previously considered to have been drilled down-dip the 45degree-dipping sediments and the long intersections therefor to have represented only narrow true widths of conformable mineralization. The high-grade horizon having been now established as being flat or dipping gently to the west alters that interpretation of the true widths of the intersections.

Also of significance is the frequent inconsistency in the identification of the various rock types. The digestive diorite, for example, was not properly identified or described until after we (on in the early drilling; it appears in the logs under several different names. In the early going, the cherts are described as quartzites. Otherwise, there is fuzziness in differentiating between greenstones, andesites, tuffs, fine-grained diorites, dioritic dykes, etc., and, occasionally, fuziness in differentiating porphyry from variolitic greenstone. The forgoing is written, not to belittle previous engineering, but to advise future investigators that, structurally, they are dealing only with four basic rock types -the cherts, the volcanics, and the intrusive diorites and porphyrys.

The pre-1981 drilling left a considerable gap, (300-feet), in the north end of the North Zone between DDN's 55-5 and 55-6 and DDH 55-8. This left some doubt regarding the continuity of good mineralization, and particularly about whether the good intersection in 55-8, (4.0-feet of 1.87% Cu., and 17.01% Zn.), was simply an example of a down-dip intersection -- which nearby 56-7 seemed to indicate that it was. The narrow intersection in '81-16, (1.2 ft. of 5.5% Cu., and 15.4% Zn. dispelled the continuity fears -- and established the proximity of troublesome west-dipping digestive diorite.

12%

drandora drill-holes 74-1 and 74-6 were used for structural interpretation, but ignored in tonnage and grade calculations because assays of most samples are not available, and because, not only were apparently high-grade sections not sampled, but it is suspected that some unsampled chalco occurrences, (veinlets), were mistakenly identified as pyrite. The writer was not able to identify any veinlets which were composed of pyrite.

10. A 4 754

1981 DRILLING PROGRAM

General

The 1981 program was to have commenced with road access work in Eay, but, due to delayed provision of funds, record June rainfalls, and a Province-wide drill shortage, the first hole was not collared until July 25th.. The contractor was Markstay Drillers, Markstay, Ontario, Markstay experienced repeated serious mechanical and consequent labour problems. By August 16, only 3% holes, totalling 479 feet had been drilled. Markstay was asked to leave, and Heath & Sherwood who, very fortunately, had a drill available, were engaged. Drilling recommenced on August 30th. and finished on October 9th.. 26% holes, totalling 2995 feet, were drilled by H&S in 40 days. Average footage by H&S was about 85 feet per day worked.

The chert host rock is extremely hard; penetration by experts was as little as 12 feet per shift. In the very blocky Argillites, penetration was frequently only 20 feet per shift. Up to 100 feet per shift was obtained in Greenstone and Diorite. Bit consumption was extremely high; 5-to-10-foot runs were not uncommon.

The 1981 holes were, with one exception, either vertical or inclined at 75-degrees or more -- the latter inclination either to provide an intersection under a bad set-up or to provide tight geological information. The drill-pattern was established as drilling progressed.

All holes are plotted in plan and longitudinal mection in Schedule 11, and in vertical cross-section in Schedules 111-to-X11, incl.. All significant assays are tabulated in Schedule X111. Intermections used in tonnage-grade calculations are undermcored. Similarly, similar data are shown on each vertical cross-section.

126

JAR

All holes were located in a closed Brunton-tape nurvey which was tied in to old drill-holes 55-4 and 56-33, which were located and positively identified. All holes were spotted, surveyed, logged and sampled by the writer except for DDH S1-25, which was logged and sampled jointly by Locke B. Goldsmith, P.Eng., Consulting Geologist.

Tagged and well-packaged samples were shipped by bus from Chapleau to Swastika Labs in Swastika, Ontario. Assay turn-around averaged about ten days.

Drilling costs, per foot, for 3474 feet, B-Q, H&S, were approximately \$22.50 per foot, as follows:

-	2.75 17.95 0.50 1.20
Total \$	22.37

The drillers occupied the old Shunsby cabin, (cook-house), and one four-man tent at Hiram Lake. The writer and Tra-Jet driver, cook, etc., -- Henry Burke -- occupied, by Ministry connent, the very adequate Forestry cabin at Tower Lake.

All 1981 core was properly boxed, nailed, labelled, and stored in substantial core racks built by ourselves at the Tower Lake cabin. Old core, all at the Hiram Lake camp, is there, but many racks have collapsed, many have been destroyed of dumped, many are identifiable with difficulty, but most, with care, could be re-examined. Placer's drill core was dumped, unlidded, by the Shunsby cabin, and almost all lost.

A base cabin was rented in Sultan to house Project Manager David Christianson when he was there. The main purpose was, initially,

128

to provide accomodation for two during initial road construction and repair and camp rehabilitation, but later proved emential in order to provide the contracted-for radio communication base-tocamp, to handle grocery orders, spare part orders, replacement personnel, possible emergencies, etc.. .. as well as to provide the essential telephone link between base and the Toronto Office, ansay lab, equipment suppliers, etc..

It became quickly evident that the only reliable or feasible means of personnel or freight transportation between camp and Sultan was an ATV . MWR wisely purchased a Terra Jet which proved to be invaluable. It was sold to Henry Burke at the conclusion of the work.

During September and August we were bothered at the site by a black bear and two cubs. The cubs were killed, but mama was wounded and dangerous. Her presence precluded the writer from walking alone on the property or without a gun. The importance is that this situation demands an extra body in camp.

Water for drilling came from the creek which flows east out of Hiram Lake. In future, it should be borne in mind that Hiram Lake makes very little water in the summer and, should the old beaver dam go out, Hiram Lake would become only a swamp and a very uncertain source of water.

129

1981 DRILLING PROGRAM

Specifics

The program commenced with holes 81-2, 81-1, and 81-3, in that order. The drill-section was located immediately south of DDH 60-77 which was the site of the previous highest grade intersection and the location where the most information would be supplied by the fewest additional holes.

The first hole, 81-2, revealed the probable existence of the N-S-striking fault which divides the North Zone into the East and West Blocks. Close plotting of the argillite beds, which were thought to be a marker horizon, suggested, in conjunction with the apparent absence of fault-breccia in DDH 81-2, a normal fault, west-dipping, the east side haing moved upward. (this was a surprize in view of the present surface elevation of the east side being some 25-feet lower than the west). This split reduced almost to zero the likelihood of continuous, one-level mining from DDH 56-8 at the north extremity to the Main Fault at the south extremity, and, as a consequence, foreshadowed a reduction in mineable tonnage, an increase in unit mining costs, or both.

Continued drilling revealed the continuity of the high-grade zone from the surface north of DDH 81-15 to beyond 81-8 in the south. However, the southern thrust-fault-set picture then emerged, and, with it, the probability of the stacking of the high-grade zone. This development further complicated the mining picture, although it has the probable effect of increasing tonnage in a given length, but decreasing nomewhat the grade of that increased tonnage.

The '81-drilling greatly and importantly clarified the digentive diorite picture, including the location, thickness, strike, and

dip of both the main dyke and its several offshoots. There were some surprising dissappointments. After obtaining excellent intersections in DDH 81-25, DDH 81-26 was angled to the west from the same set-up, and encountered yellow digestive diorite throughout its length, indicating, for the first time, west-dipping off-shoots. Similarly, DDH 81-16, at the north extremity of the West Block, encountered narrow high-grade, (5.5% Cu., 15.4% 2n.), between walls of digestive diorite. Previous data had indicated east-dipping off-shoots at this location, (DDH 56-31). Therefor, the 81-16 check-hole, 81-18, was angled steeply to the west to pick up the high-grade to the west of the dyke. Instead, as in 81-25, we encountered only the west-dipping digestive diorite offshoot.

Results from the West Block drilling were therefor very unsatisfactory. DDH 81-14 was bottomed in apparently good chalco when the core-barrel and bit were lost at 81 feet. Follow-up 81-144was a disappointment. Shortage of time and money held down the amount of drilling in the DDH 81-14 to 81-16 interval, and one of the few holes drilled here was stopped during the night at the pre-determined 75-foot level in chert and 0.5-feet of 0.9% Cu. and 6.4% Zn. However, the high-grade intersections which were obtained in the West Block drilling support the recommendation for further, conclusive drilling in this sector.

Otherwise, of reportable significance was only that several holes towards the north end of the East Block lost core, and, probably, good mineralization, due to grinding of core, the loss of water, or both, in the mineralized zones near or on the thrust-faults. Additionally, some moderately heavy leaching of chalco has obviously occurred in the near-suface portion of the flat-lying East Block.

The occasional loss of core and the leaching have caused the writer to make some assumptionn regarding the continuity and quantity of mineralization across certain sections at the north

/31

- <u>.</u> . . .

No. C . 33.

end of the East Block. With these assumptions, which have been noted in calculations, issue may apparently and properly be taken. Nevertheless, on the basis of his local knowledge, the writer believes they are valid and that eventual mining or further drilling will substantiative them.

With respect to future fill-in drilling, when it occurs, it should be located in obvious sections between Sections 1 and L, and, from probably difficult set-ups, between SectionA-B and the Main Fault. The immediate north, east, and south of DDH 81-15 could also receive drilling attention. All of which is respectfully submitted.

in p. DWITT WIDE MUSH leun

Dennis Fairbairn, P.Eng..

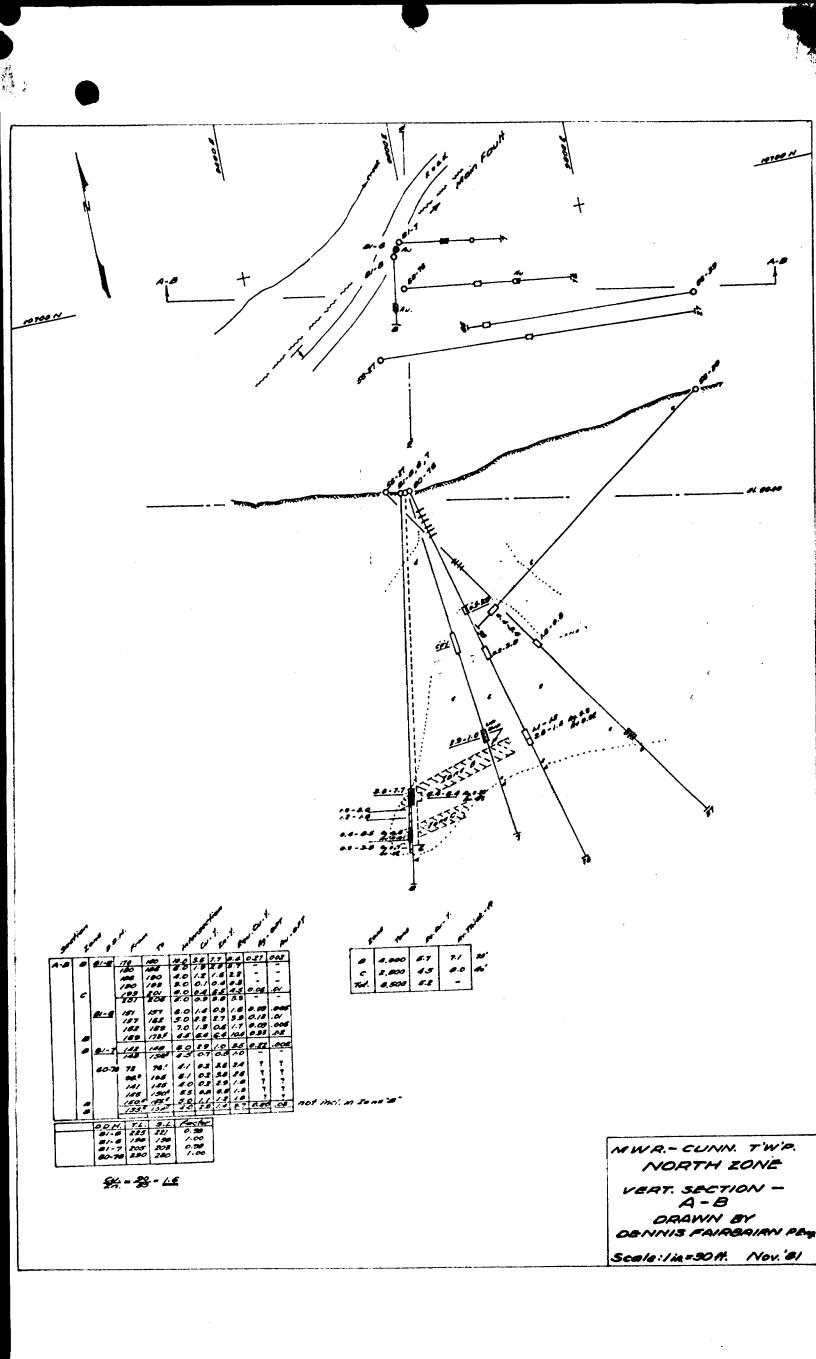
Mount Hope, Ontario. February, 1981.

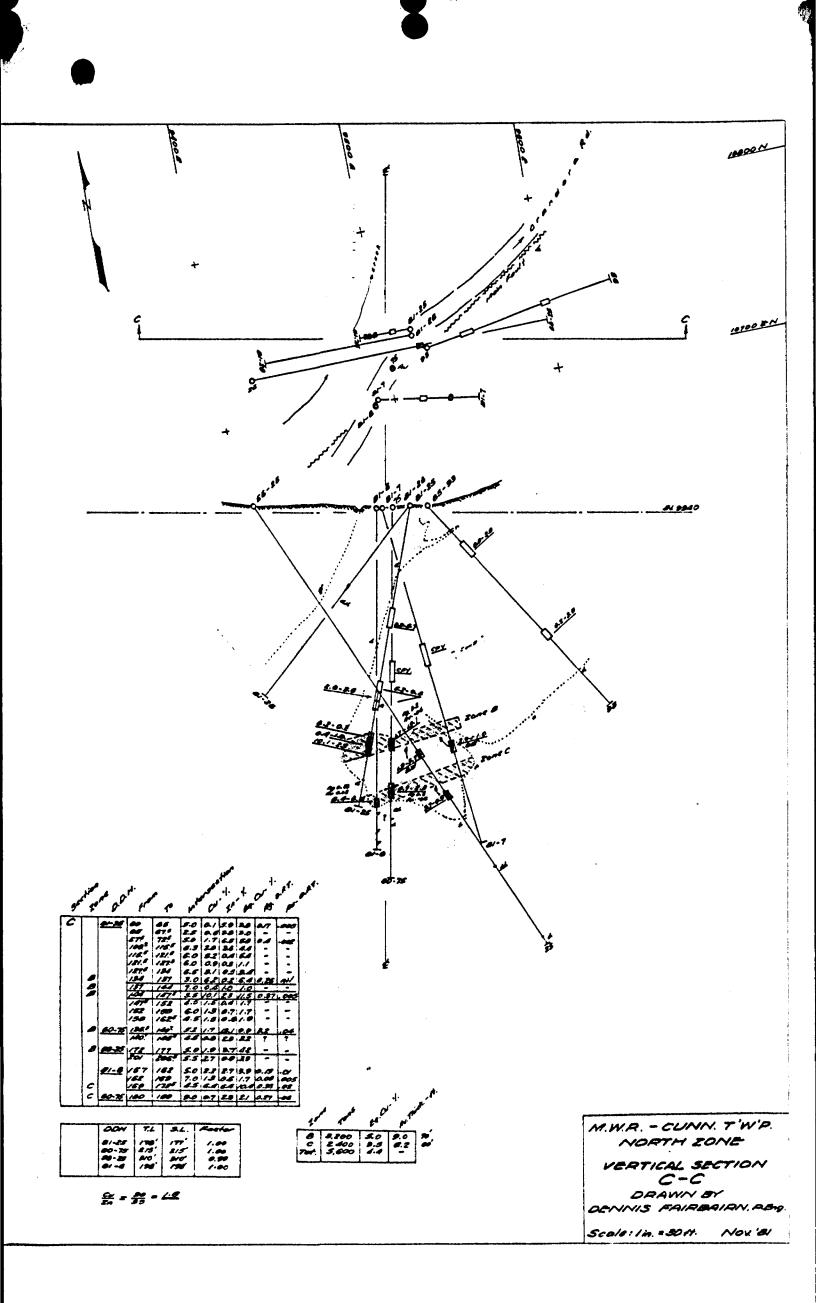
1400

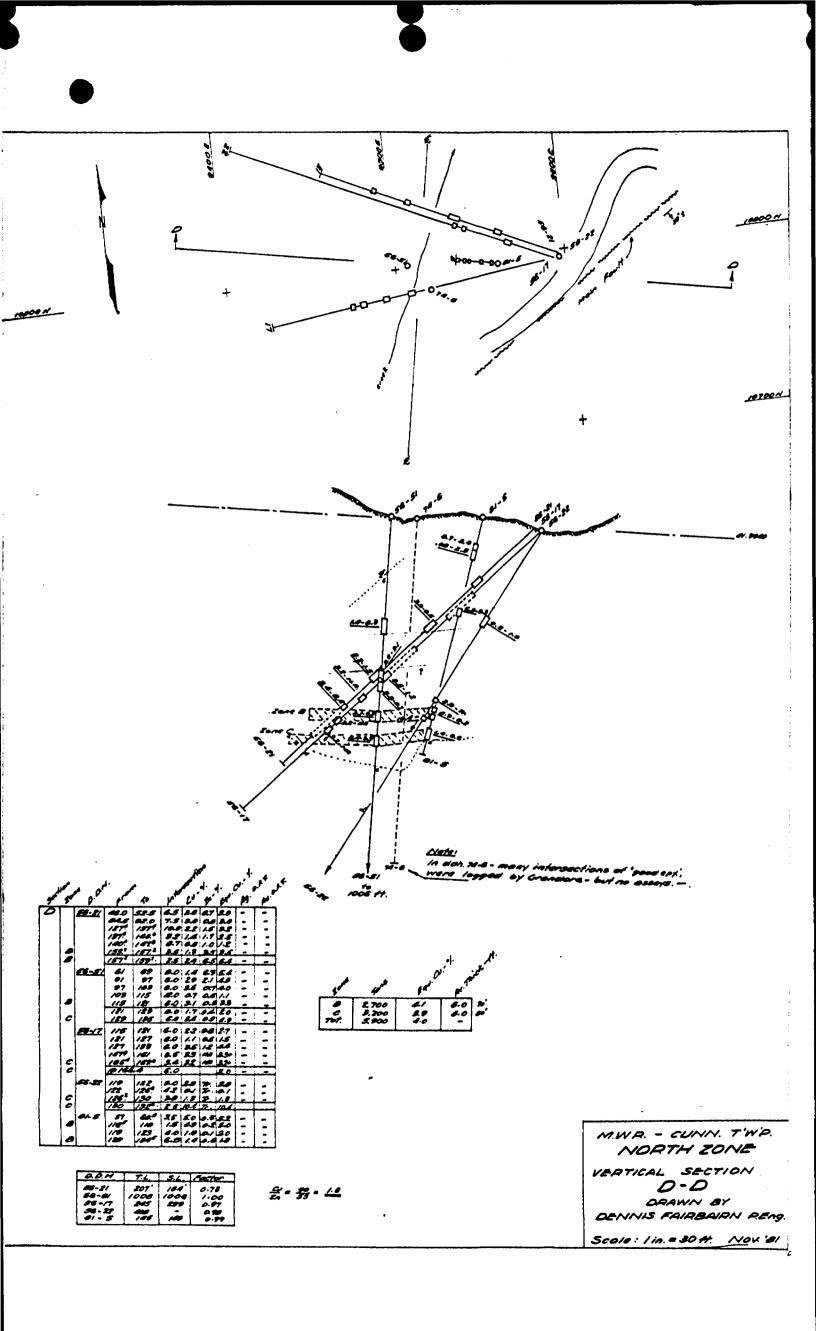
REFERENCES

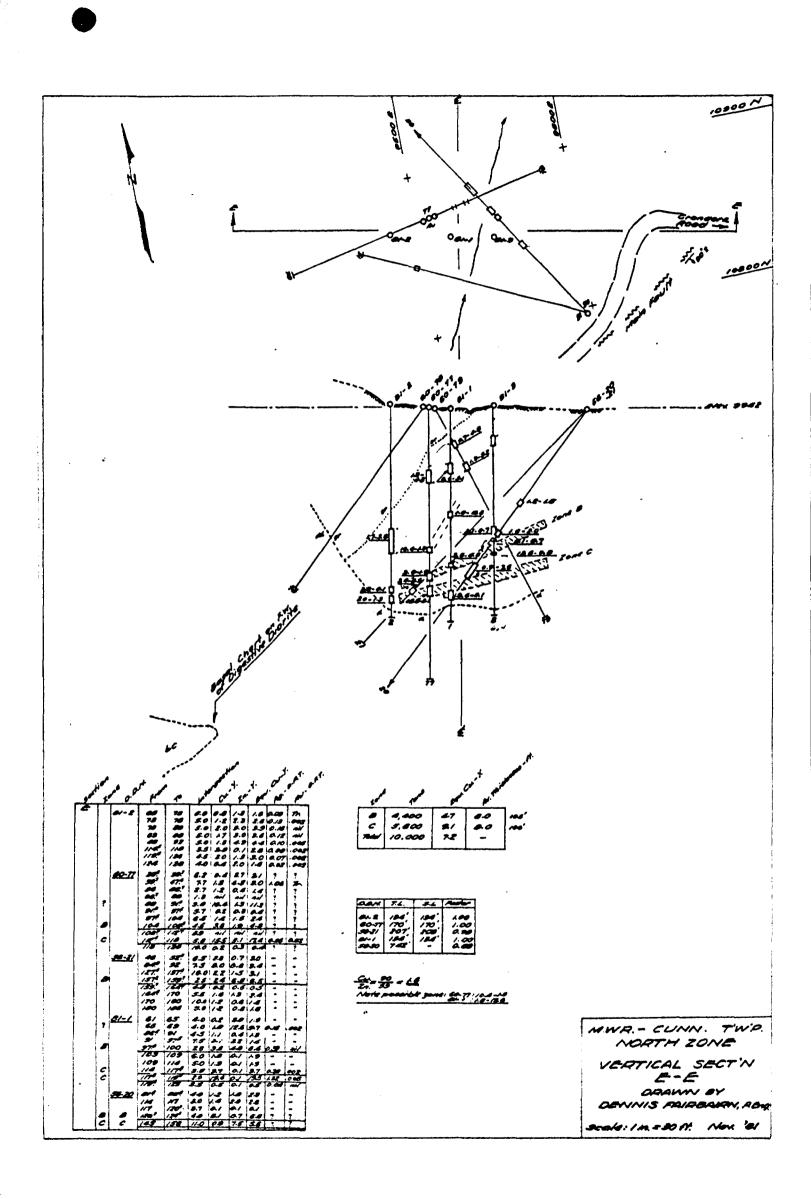
1.	Meen, V.B.	1942	The geology of the Cunningham- Garnet Area, O.D.N
2.	Hough, A.J.	1969	A report on the potential of the Cunningham deponit, in-house, to Umex, Ltd., October 22, 1969.
3.	Potapoff, P.	1969	A summary report covering the Cunn- ingham deposit, in-house, to Umex Ltd., December 4, 1969
4.	Joubin, F.R.	1978 to 1982	Personal communications.
5.	Goldsmith, L.	1981	A review of the 1981 Diamond Drilling Program and Placer Development's Geophysics and Diamond Drilling, November, 1981.
6.	Placer .	1980	Three reports covering Geophysics and Geochemistry, Geophysics, and Diamond Drilling, February, 1980; July, 1980; November, 1980.

•••••

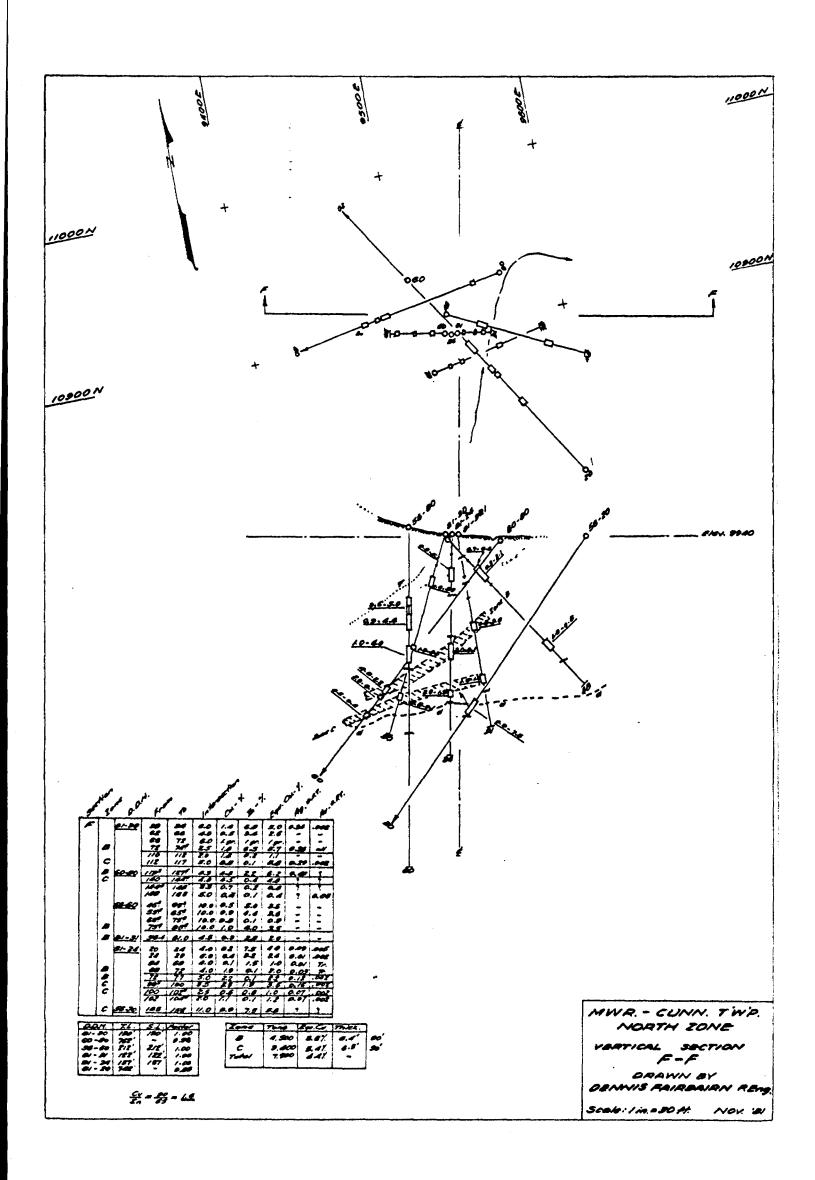

<u>j</u>

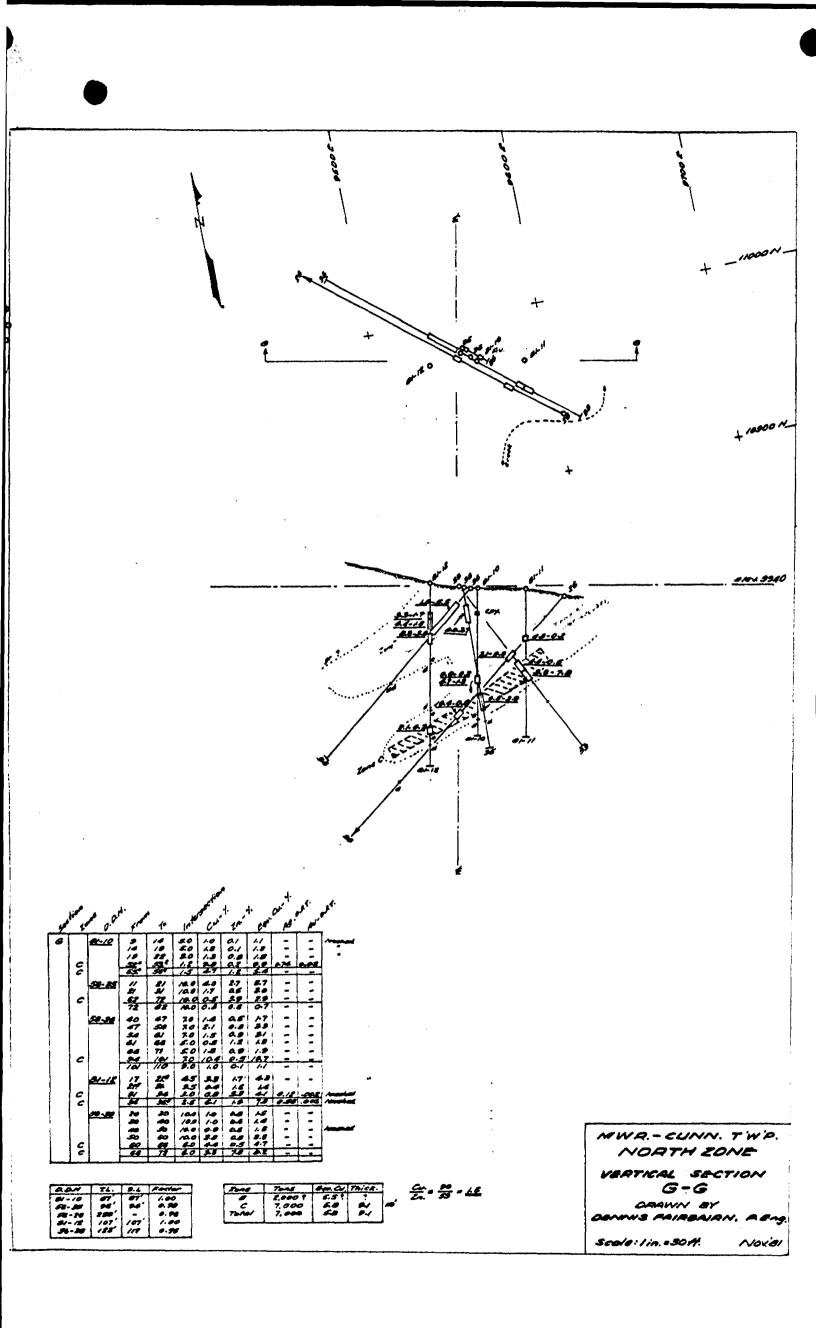


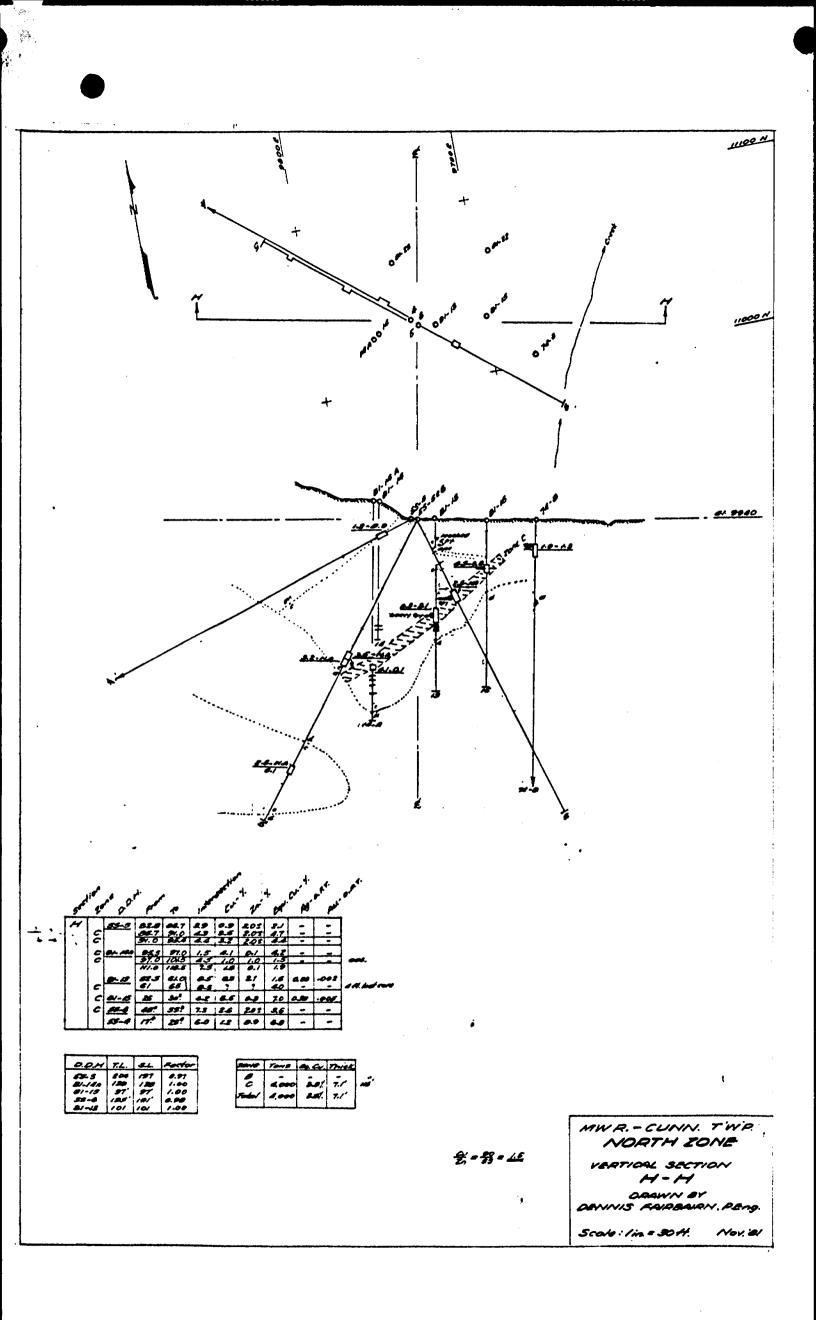


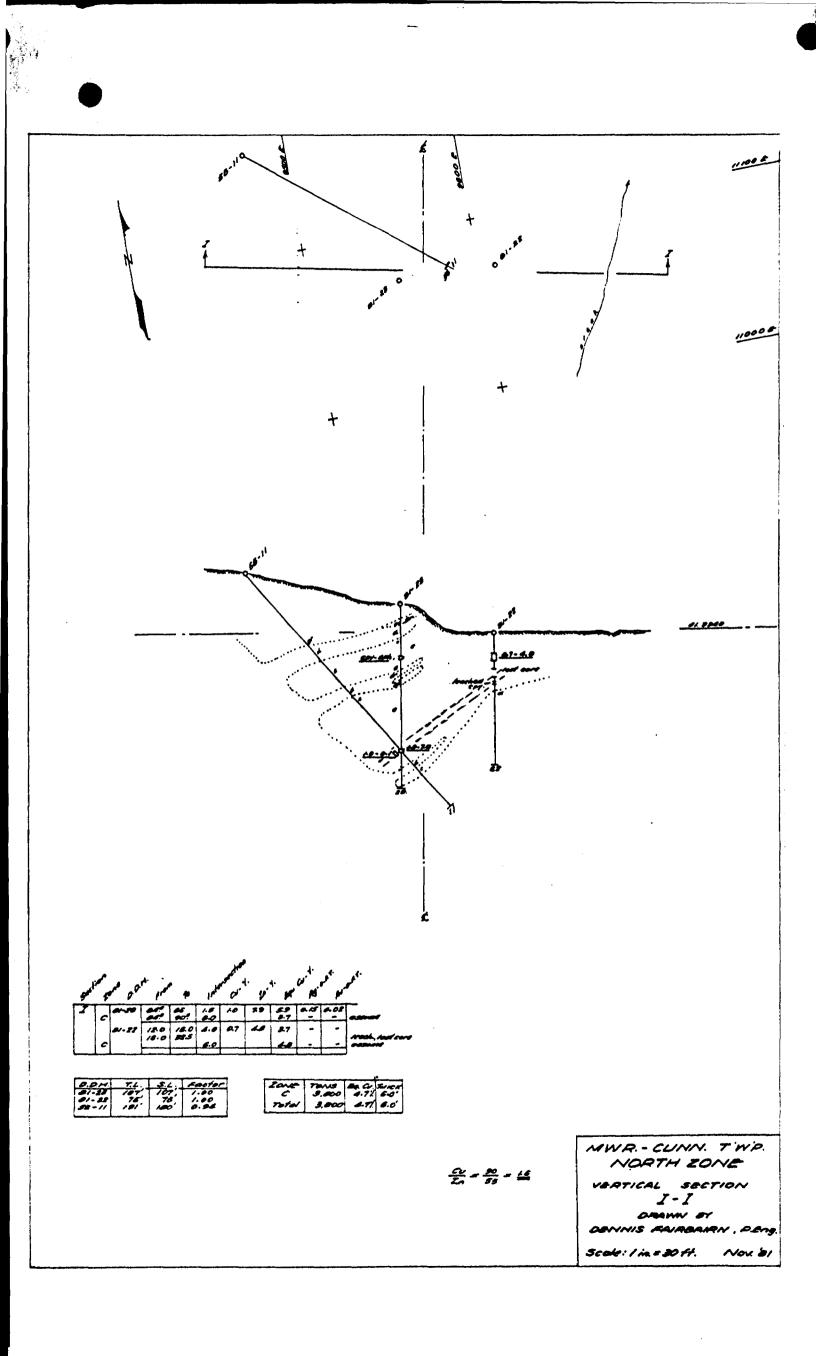

M.W. lesosters, the lesoners B+C Zonas High-grade ropy chalco. Sept 24/82.

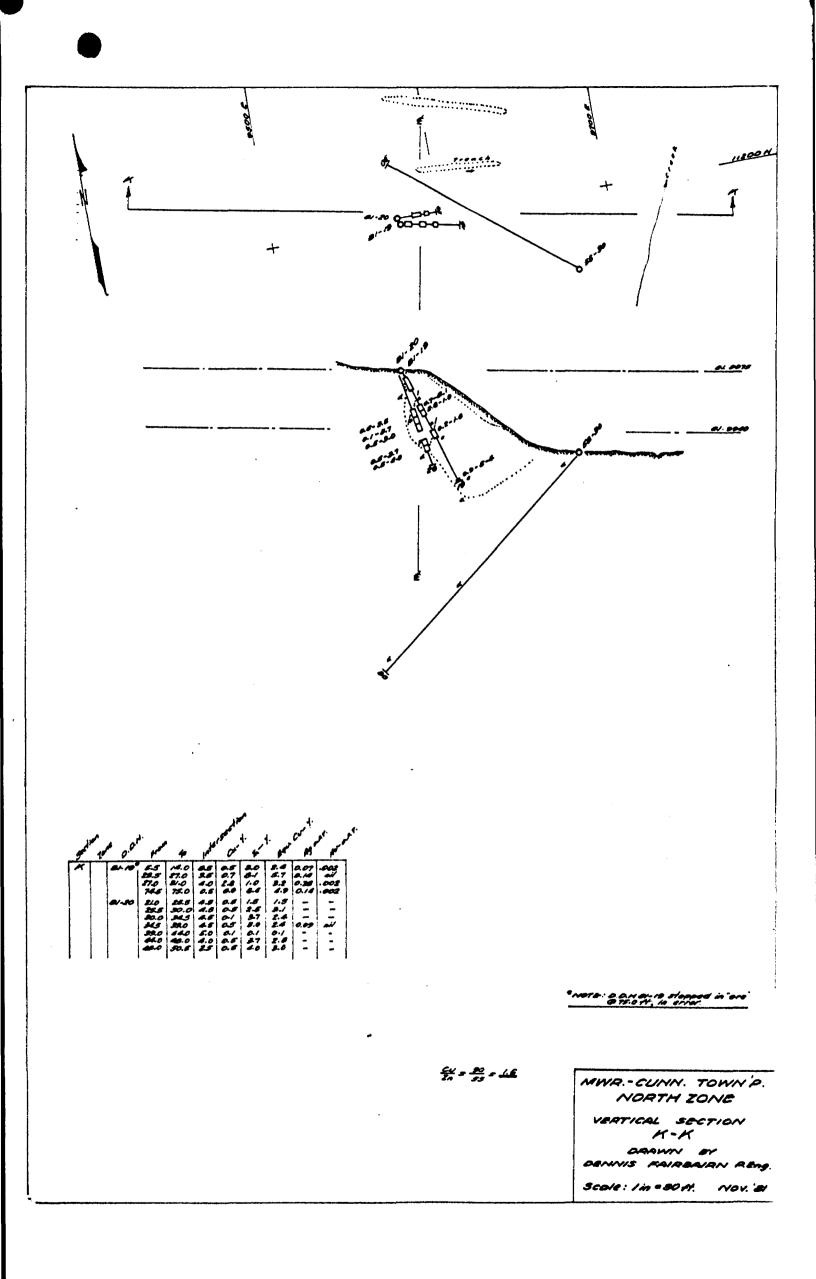
Section	Tons	Equiv Co Grade
E E	10,000	7-2
F - F	7,900	મ ન્મ
C-C	5.600	L4 - L4
D-D	5,900	4.0
A - &	6,500	د، دُ
	7,000	\$.3 ?
н-н	Щ.000	3.6?
I - I	3,802	4.7
Total	50.700	5.03

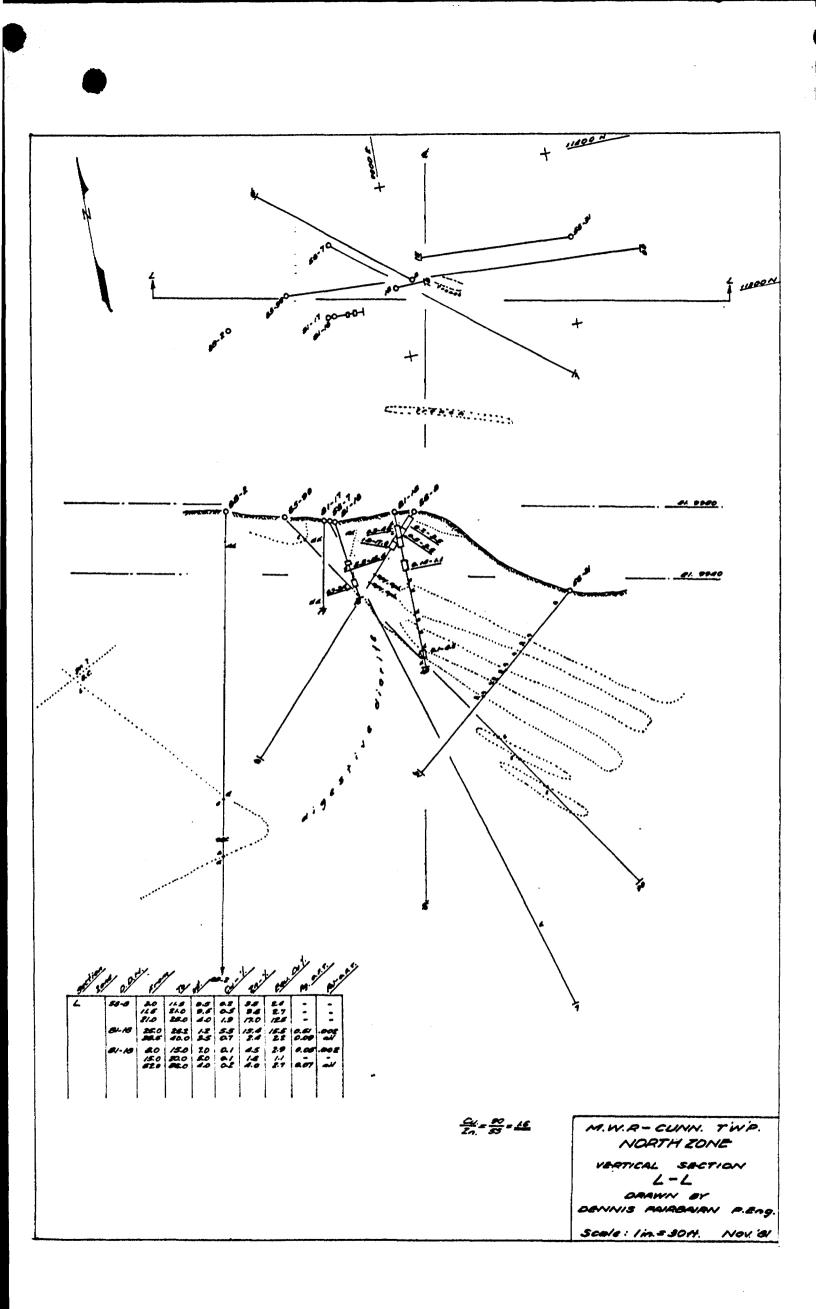












SWASTIKA LABORATORIES LIMITED P.O. BOX 10, SWASTIKA, ONTARIO POK 110 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS)
Certificate of Analysis	

Certificate No. <u>52602</u>	Date: <u>Oct.</u> 28, 1981
Received Oct. 19, 1981 38	Samples of <u>split</u> core
Submitted by M.W. Resources Limited,	Mount Hope, Ontario

SAMPLE NO.	GOLD Oz./ton	SILVER Oz./ton	COPPER %	ZINC %
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0.33 1.83 0.38 0.38 0.13 0.13 0.13 0.28 0.28 0.23 0.05 0.04 0.03 0.05 0.05 0.05 0.05 0.05 0.05	$\begin{array}{c} 0.08\\ 0.01\\ 0.02\\ 0.01\\ 0.69\\ 3.39\\ 1.69\\ 0.31\\ 1.17\\ 1.12\\ 0.17\\ 0.06\\ 0.06\\ 1.10\\ 1.35\end{array}$
.59 22 59 23 5924 5925	NTL - 0.002	0.05 - 0.11	0.52 0.07 0.62 0.13	1.64 1.04 2.80 11.68

11 V Per. G. Lob.L. Manager ١

ESTABLISHED 1928

ME CAR	6AIRI		rical chemis				OCT © 0 1991 SCS (1975) L
Certificate No.	52546			Date:	<u>Oct.16,</u>	1981	
Received_Oct		30		of <u>spli</u>			
Submitted by	M.W. Resour	ces Limi	ted, Mount	•			
					E. Chris		
	SAMPLE NO. C	GOLD Dz./ton	SILVER Oz./ton	COPPER %	ZINC %	LEAD %	
	3356 33578 33558 33366 33366678 33366678 33366678 333772 3337780 333882 33888 3388678 338812 33888 3388678 33888 3388678 338888 3388888 338888 338888 338888 338888 338888 338888 338888 338888 338888 3388888 3388888 338888 33888888	0.005 0.01 0.005 0.02 	0.09 0.13 0.09 0.33 - 0.22 0.06 0.27 - - - 0.06 0.27 - - - 0.06 0.07 - - - 0.17 0.45 - - 0.26 0.37	$\begin{array}{c} 1.37\\ 2.10\\ 6.37\\ 0.18\\ 0.69\\ 0.752\\ 9.752\\ 9.823\\ 0.389\\ 9.11\\ 0.00\\ 0.16\\ 0.16\\ 3.816\\ 9.144\\ 0.16\\ 1.52\\ 0.144\\ 0.154\\ 1.52\end{array}$	0.27 0.6645 -0.0568937155492919866937444199 0.0001200 -0.001200	2.23	

6 fel Per ___ ٩. G. Lebel, Manager

ESTABLISHED 1928

5 a 1

× .

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. <u>52451</u> Date: <u>Oct.6</u>, 1981

Received Sept.25, 1981 27 Samples of split core

Submitted by <u>M.W. Resources Limited</u>, Sultan, Ontario

CAMPLE NO.	GOLD Oz./ton	SILVER Oz./ton	cotterar %	XINC %		· • • • •	
3329	**	-	0.98	7.87			
3330	mp	-	0.88	0.06			
3331	1	-	2.15	0.20			
3332	-		5.53	15.39			
3333	-	-	0.73 0.02	2.40 0.13	•		
3334	-		0.02	0.58			
3335 3336	-	-	0.49	1.47			
3337	_	-	0.46	2.47			
3338	-	-	0.12	3.69			
3339	-	-	0.54	2.96			
337.0	-	-	0.05	õ.31			
3341	_ ·	-	0.50	3.74			
3342	0.002	0.08	0.55	4.02			
3343	-	-	0.04	1.75			
3344		-	0.07	3.37			
3345	-	-	0.08	2.29			
3346	-	-	4.99	0.29		•	
3347	-	-	0.02	2.29			
3348	-	-	0.85	1.28			
3349	-	-	0.11	1.48			
3350	-	-	0.34	2.57			
3351	-	-	0.87	2.70			
3352	-		4.91	0.16			
3243	-	-	1.87	0.14			
33.44	-	-	0.07	0.03			
3356	-	-	1.44	0.58			
/							

Per. G. Lebel

ESTABLISHED 1928

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	5240	7		-	Date: _	Sept.25,	1981	
Received Sep	t.18,	1981	88	Samples of	core			
Submitted by	<u>M.W.</u>	Resources	Limited,	Sultan,	Ontario			
								1 .

SAMPLE	NO.	GOLD Oz./ton	SILVER Oz./ton	COPPER %	ZINC %
3321		0.002	0.01	0.07	0.06
3322		-	-	0.70	4.77
3323		-	-	0.17	1.62
3324		-	-	0.05	0.68
3325		-	-	0.06	0.02
3326		-	-	0.18	0.35
3327		-	-	0.09	0.66
3328		-	-	0.24	0.42

Per. G. Lebel, Manager

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	52358			Date: _	September 22 1981
Received Sept.	14/81	4	Samples of	Split C	ore
Submitted by	M W Resources	Ltd., Sulta	an, Ontario	Per: [). Christianson
	SAMPLE NO.	GOLD Oz./ton	SILVER Oz./ton	COPPER %	ZINC %
	3317	10 to e		0.41	0.36
	3318	0.005	0.38	6.54	0.82
	3319			0.14	0.18
	3320	0.002	0.03	0.33	2.07

Per ____

G. Lebel - Manager

SWA	ASTIKA P.O. B ANALYTICA	OX 10, SWAST	FIKA, ONTAR E: (705) 642-33 • ASSAYERS	
Certificate No. <u>52356</u>		-	Date: <u>Se</u>	ept. 24, 1981
Received <u>Sept. 11, 1981</u>	46	Samples of	split cor	<u>'é</u>
Submitted by <u>M.W. Resour</u>	ces Limited,	Sultan,	Ontario	
SAMPLE NO	. GULD Oz./ton	SILVER Oz./ton	COPPER %	ZINC %
3291 3292 3293 3294 3295 3296 3297 3298 3299	NIL C.O2	 0.01 0.74	0.53 0.55 0.11 0.54 0.51 4.69 0.06 0.07 9.82	0.92 1.70 0.29 0.78 0.19 1.25 0.02 0.40 0.16
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316	0.002 0.002 NIL 0.002	0.14 0.06	3.28 0.38 0.84 6.15 0.60 0.14 2.11 0.69 4.31 0.36 0.83 0.35 0.11 0.04	1.71 1.62 5.26 1.95 0.30 0.48 0.19 0.04 0.20 2.36 3.84 3.37 1.36 0.50

Per ...

G. Lebel, Manager

ESTABLISHED 1928

P13

.

.

-		-
	ALL	
	SUD	

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. <u>52356</u>	Date: <u>Sept.24</u> , 1981	
Received Sept.11, 1981 46	Samples of	
Submitted by <u>M.W. Resources Limite</u>	d. Sultan. Ontario	

SAMPLE NO.	(OL)	SILVER	COPPER	ZINC
	Oz./ton	Oz./ton	%	%
3267 3268 3259 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3281 3282 3281 3282 3283 3285 3285 3286 3287 3288 3289 3280	0.002 0.002 0.002 NIL NIL NIL NIL NIL	0.06 0.05 0.29	1.14 1.02 8.76 0.56 0.31 0.28 1.38 0.48 1.84 0.75 1.336 1.75 0.26 1.75 0.27 1.75 1.57 1.32 0.51	0.54 0.24 0.11 2.72 2.66 5.77 0.89 3.45 6.33 2.29 0.53 1.00 2.23 1.65 0.71 2.76 0.85 7.27 1.64 0.12 0.12 0.12 0.12 0.06 0.76 0.69

contt....

Per. G. Lebel, Manager

÷

P.O. BOX 10, SWASTIKA, ONTARIO POK 1TO TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	52305			Date: <u>Sep</u>	t. 14, 1981	
Received Sept	. 4, 1981	7	Samples of	split core		
Submitted by	M.W. Resour	rces Limited,	<u>Sultan</u> ,	Ontario		

SAMPLE NO.	GOLD Oz./ton	SILVER Oz./ton	COPPER %	ZINC %
3260 🗸	NIL	0.04	0.37	0.81
3261 •	0.002	0.17	1.62	1.37
3262 -	440 4 40 8 50		0.07	0.39
3263 •			0.44	0.08
3264 -	0.002	0.16	2.26	1.93
3265 -	0.002	0.07	0.57	0.56
3266 🖌	0.002	0.07	1.14	0.13

Per G. Lebel, Manager

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. <u>52292</u>	Date: <u>Sept. 14, 1981</u>
Received <u>Sept. 2, 1981</u> :6 Samples of	split core
Submitted by <u>M.W. Resources Limited, Sultan, On</u>	ntario

SAMPLE NO.	GOLD Oz./ton	SILVER Oz./ton	COPPER %	ZINC %
3252 🖌			12.56	0.85
3254 🖊			0.38	0.84
3256 🗲	0.002	0.05	1.29	0.72
3257 r	0.002	0.09	2.80	0.12
3258 -	0.002	0.07	1.99	1.28
3259 🖊	0.002	0.02	0.45	2.00

Per

G. Lebel, Manager

ESTABLISHED 1928

Canada lints

P.O. BOK TO, SWAGTINA, ONTARIO POR 110 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	· <u></u>	52245		-	Date: _	Sept.	2, 1981	
Received Aug	. 25,	1981	2	Samples of	split	core		
Submitted by	<u>M.W.</u>	Resource	s Limited,	Toronto,	Ontario			

SAMPLE NO.	GOLD Oz./ ton	SILVER Oz./ton	COPPER %	LEAD %	ZINC %
_3250	0.002	0.12	0.84	0.60	2.71
.3251	NIL	0.03	0.25	0.03	0.50

Per. Lebel G.

SWASTIKA LABORATORIES LIMITED P.O. BOX 10, SWASTIKA, ON FARIO POK 110

TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No. 52240	Date: Sept. 3, 1981
Received Aug. 25, 1981 16	Samples of <u>split core</u>
Submitted by <u>M.V. Resources Limited</u>	Toronto, Ontario

SAMPLE NO.	$\begin{array}{c} \text{GOLD} \\ \text{Oz} \text{ℓ_{LOD}} \end{array}$	STLVER Oz Zton	COPPER #	LEAD %	Z TNC %	
- 3234	NIL	0.01	0 02	0.12	C.41	
3 235	NTL,	0 02	0.05	0.46	2.04	
, 3236	0.002	0.03	0.16	0.20	0.80	
• 3237	0.002	0.05	0.40	0.01	0.91	
. 3238	0.005	0.09	0.16	1.82	7.50	
, 3239	0.002	0.11	0.45	0.94	3.19	
3240	NIL	0.02	0.19	0.16	0.48	
<u>,</u> 3241	NIL	0.01	0.03	0.11	0.63	
-3242	NTL	0.01	0.05	0.25	1.38	
3243	0.005	0.03	0.63	0.13	2.25	
- 3244	0.002	0.03	0.11	0.37	2.00	
- 3245	0.005	0.03	0.35	0.14	0.80	
- 3245	0.002	0 01	0.10	0.03	0.47	
, 3247	NIL	0-05	0.51	0.04	0.53	
• 3248	NTL	0.01	0.05	0.05	1.46	
~ 3249	NIL	0 03 -	0.18	0.07	1.92	

Per

G. Lebel, Manager

ESTABLISHED 1928

 $\substack{A_{ij},\\a,a^*}$

V

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTERA, ONTARIO POR 110 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

Certificate No.	52199			Date: <u>Au</u>	gust 28, 1981	
Received Aug	ust 21, 1981	7	Samples of	Split Core		
Submitted by	M. W. Resources	Limited,	Toronto, Onta	rio Per:	D. Fairbairn	
	SAMPLE N		LD SILVER	COPPER	ZINC	

SAMPLE NU.	GULD	SILVER	LUPPER	
	oz/ton	oz/ton	%	, NA
3003	-	-	2.55	NA
3229	-	-	2.04	1.96
3230	0.002	0.21	2.98	0.54
3231	0.002	0.07	1.19	0.12
3232	0.002	0.02	-	-
3233_	0.002	0.03	0.19	0.11
3301	0.002	0.48	6.16	4.18
3302	0.005	0.42	3.95	13.90
3223 —	NO ASSA	1 3		
3224-	. <i>11</i> 11	F		
3225-	44 14	Ŧ		
3226-	H 7	5		
3227-		オ		

Per

G. Lebel, Manager

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244

ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

Certificate of Analysis

RECEIVED

AUG 2 1 198.

Certificate No. <u>52091</u>			Date: <u>Aug. 18, 1981</u>	SCS (1975) L
Received Aug. 7, 1981	22	Samples of	split_core	

Submitted by M.W. Resources Limited, Toronto, Ontario ____ Att: D. Fairbairn ____

SAMPLE NO.	GOLD Oz./ton	SILVER Oz./ton	COPPER %	LEAD %	ZINC %
3201	NIL	0.08	0.83	0.27	1.29
3202 3203	0.002 NIL	0.13 0.16	1.20 2.00	0.99 0.71	2.30 2.96
3204	NIL ·	0.12	1.72	0.49	3.00
3205	0.005	0.10	1.34	0.92	4.86
3206			0.02		0.07
3207	0.002	0.02	0.08	0.27	1.00
3208	0.002	0.03	0.07	0.42	1.33
3209			0.39		3.08
3210 3211	0.002	0.16	0.25 1.84		2.83 12.59 —
3212					0.21
3213			0.17		0.88
3214					1.86
3215			1.11		0.44
3216	0.002	0.02	0.03		2.24
3217 3218	NIL	·· 0 . 39	$\frac{3.65}{1.81}$		4.78 -
3219			1.32		0.05
3220	0.002	0.28	3.75		0.05
3221	0.005	1.32	19.38		0.07 -
3222	NIL	0.04	0.55		0.02
	An	M	G	tu	In

Per. G. Lebel, Manager

ESTABLISHED 1928

100

躗

に、他にして

た。 売

新期

POBORIO, SWAMERA, ONTAROPORITO TELEPHONE: (705) 642 3244 ANALYTICAL CHEMISTS

ASSAYERS

CONSULTANTS

Certificate of Analysis

Certificate No. 5285	50		D	ate: <u>Dece</u> ir	<u>ber 9 198</u>	1
Received	15	Sam	ples of Pulj	o, and new	pulp from	<u>stored reje</u> ct
Submitted by <u>M</u>	Resources Ltd.,	Toronto,	Ontario	<u>Att'n: Mr</u>	. D. W. F	airbairn
	SAMPLE NO.	601 D 0z , / ton	SILVER Oz./ton	COPPER %	Z 1 N C %	
	3320	0.002	0.03	0.33	2.12	
	3272	0.002	0.24			
	3305	0.002	0.12			
	3329	0.02	0.15			
	3331	Nil	0.13			
	3332	0.002	0.51			
	3333	Níl	0.09			
	3339	Nil	0.09			
	3380	0.002	0.15			
	3391	0.002	0.05			
	3396	Nil	0.07			
	3397	0.002	0.07			
	3400	Nil	0.14			
	5901	0.002	0.28			
	5904	0.002	0.14			

Pulps - gold & silver checks - December, 1981

Per . G. Lebel -Manager

NI. W. R. - CUNNINGHANT T'W'P. DRILL HOLE

INTERSECTIONS

e ASSAYS

Section tone	D.DH.	ų.	70	Ft.	Cu' .	Z %.	Eq., C., 1.	Ag o.pt.	AU. OPT.
A-8 8	<u>81-8</u>	170 180 186 190 193	180 186 190 193 201	<u>10.0</u> 6.0 4.0 3.0 8.0	<u>3.6</u> 1.9 1.2 0.1 0.4	7.7 2.9 1.6 0.4 6.5	8.4 3.7 2.2 0.3 4.5	<u>0.27</u> - - 0.06	<u>0.002</u> - - 0.0/
B	<u>81-6</u>	201 151 157 162 169	206 157 162 169 173 ⁵	5.0 6.0 5.0	0.9 1.4 2.2 1.3 6.4	3.8 0.3 2.7 0.6 6.4	3.3 1.6 3.9 1.7 10.4	- 0.09 0.13 0.09 0.33	0.003 0.01 0.003 0.02
	<u>81-7</u>	144 148	14.8 154 ⁵	<u>6.0</u> 6.5	2.9 0.7	<u>1.0</u> 0.5	<u>3.5</u> 1.0	<u>0.21</u>	<u>0.002</u>
	<u>60-76</u>	7X 98 141 145 150 155 159 159 159 159 159 159	76' 1050 145 150 159 159 159 159 159 159 159 159 159	4.1 4.0 5.5 5.0 4.0 3.0	0.2 0.2 0.02 0.8 <u>1.1</u> 3.8 0.6	3.6 3.8 2.9 0.8 1.2 1.4 0.8	2.4 2.6 1.8 1.3 <u>1.8</u> <u>1.8</u> <u>1.1</u> <u>1.1</u>	7. 7. 7. 7. 7. 9 0.68	7 7 7 7 7 7 0.02 0.01

M.W.R

OMEP-81-5-C-55

DRILLING

Page. 1.

Feb: 182

0M81-5-C-55

9								·	······
Section	0.0.H.	Fr.	70	Ft.	Cu 1.	Z !	EqCu	Ag.	Av.
2000							· 7.	O.DT.	0.P.T.
C/0	81-25	60	65	5.0	0.1	5.9	3.8	0.17	,005
		65 675 109 ²	675	2.5	0.6	3.8	3.0	-	-
		675	725	5.0	1.7	6.5	5.8	0.40	,002
		1092	1155	6.3	2.8	2.6	4.4	-	
		115	/d/	6.0	5.2	0.4	5.4	-	-
		12/-	1275	6.0	0.9	0.3	1.1	-	-
B		1275	1340	6.5	3.1	0.5	3.4	-	-
.0		134	137	3.0	<u>6.2</u> <u>0.4</u> <u>10.1</u>	0.2	6.4	0.26	nil
B		/37	144 147 152°	7.0	0.4	1.0	1.0	-	-
B		144	1475	35	10.1	1.0	11.5	0.37	.005
		1444 1475	152°	<u>7.0</u> <u>3.5</u> 4.5	1.5	0.4	1.7	- :	-
		152	158	6.0	1.3	0.7	1.7	-	· -
		158°	1625	4.5	1.5	0.6	1.9	-	
8	60-75	<u>135</u> 5 1407	1407	5.2	1.7	13.1	9.9	3.2	0.04
	<u><u><u>a</u></u></u>	140	1452	<u>5.2</u> 4.5	<u>1.7</u> 0.85	13.1	9.9 1.2	<u>3.2</u> ?	<u>0.04</u> <u>7</u>
8	56-25	17.11	177	50	1.9	3.7	4.2	·	
		<u> 74</u> 201	177 2065	<u>5.0</u> 5.5	<u>1.9</u> 2.7	$\frac{3.7}{0.9}$	$\frac{4.2}{3.3}$	-	_
		407	ure				a -		
	81-6	157	162	5.0	1.2	2.7	3.9	0.13	0.01
		162	169	1.0	1.3	0.6	1.7	0.09	.005
		169	1735	4.5	6.4	6.4	10.4	0.33	1 1
			<u> ////</u>				10.7		0.02
	60-75	160	169	9.0	0.7	2.3	2.1	0.27	0.06
								<u></u>	
	60-25	201	2065	5.5	2.7	0.9	3.3		-
L		المراجع مستعملهما							

Page. 2.

Poge 3.

section /tone	0.Q.H.	Æ.	То	Ft.	Cv. 1.	In %.	Eq. Cu !.	Ag 0. A. T.	AU 0. P. T.
c/ c	<u>81-6</u>	157 162 169 ⁹ -	162 169 <u>173 ⁵</u>	5.0 7.0 4.5	2.2 1.3 6.4	2.7 0.6 6.4	3,9 1.7 <u>10.4</u>	0.13 0.09 0.33	0.01 •005 <u>0.02</u>
C	60-75	160	169	9.0	<u>0.7</u>	2.3	2.1	0.27	0.06
C	56-25	201	<u> 206</u> 5	5.5	2.7	0.9	33	-	-
0/	<u>A-21</u>	46° 845 1274 1374 1406	525 92° 137* 140 ⁶ 147 ³	6.5 1.5 10.0 3.2 6.7	2.6 3.0 2.2 1.4 0.6	0.7 0.6 1.5 1.7 1.0	3.0 3.4 3.2 2.5 1.2		
8	56.51	<u>153</u> ? <u>157</u> ? 61	<u>157</u> <u>159</u> <u>69</u>	<u>3.5</u> 2.5 8.0	<u>1.3</u> <u>3.4</u> 1.4	<u>9.5</u> <u>6.5</u> 6.3	<u>3.5</u> <u>6.4</u> 5.4	-	1 1
		91 97 /03 /15	97 103 115 141	6.0 6.0 <i>R</i> .0 6.0	2.9 3.6 0.7 3.1	2.1 0.7 0.6 0.3	4.3 4.0 1.1 3.3		
B		113 121 129	<u>189</u> 135	8.0	<u> </u>	0.4 0.9	2.0	-	-
			· · ·						

repeat, A-B.

Sections Zone	D.D.H.	F .	70	Ft.	Co %.	Z. 1.	Eq.Cu. 1.	Ag OPT	AU OFT	•
0/	56-17	115	121	6.0	2.2	0.8	2.7	-	-	
		121	127	6.0	1.1	0.6	1.5	-	-	
		127	133	6.0	3.5	1.2	4.4	-	-	
		147 ⁵	151-	3.5	3.3	NA	3.3+	-	-	
c		<u>_166</u> <u>@ 166</u> +	<u>_169</u> *	<u>3.4</u> <u>6.0</u>	3.2	NA	<u>3.2+</u> <u>3.0</u>	-	-	Est.
	56-12	119	122	3.0	2.8	Tr.	2.8	-	-	·
_		122	1262	4.2	0.1	Tr.	0.1	-	-	
с с		<u>126</u> 2 130	130- 152-	<u>3.8</u> 2.6	<u>1.3</u> <u>10.4</u>	TE: TE:	<u>1.3</u> <u>10.4</u>	-	-	
8	81-5	57 116 ⁵	605 118°	3.5 1.5	5.0	0.3	5.2 5.0		-	81-5 NOT USED.
c		119° 128	1230 1345	4.0 6.5	1.9 1.4	0.1 0.6	2.0 1.8	-	-	
E	81-2	68	73	5.0	0.8	1.3	1.6	0.08	nil	81-2 NOT USED
		73	.78	5.0	1.2	2.3	2.6	0.13	0.002	
		18 83	23 88	5.0	2.0	3.0 3.0	3,9	0.16	nil	
		88	00 93	5.0 5.0	1.7	· · ·	3.6	0.121	nil	
		5,15	115	3.5	1.3 2.8	4.9 0.1	4.4 2.8	0.10 0.09	·005 .002	
		1195	124	4.5	2.0	1.3	3.0	0.07	. 002	
1		124	128	4.0	0.4	2.0	1.6	0.02	.002	

.

.

Page.

Section	D.D.H.	Æ.	70	Et.	C= %.	Za %.	Eq.Cu 1.	Ag. Q.P.T.	АU. 0.Р.Т.	
E/	60-77	33.5	39.7	6.2	0.4	2.7	Q.1	?	?	
		37.7	47.4	7.7	1.3	4.3	3.0	1.06	<i>Tr</i> .	
		84	867	2.7	1.2	0.4	1.4	7	?	
		867	88	1.3	nil	Nil	nil	?	?	
		88	918	3.8	10.4	1.3	11.2	?	?	not used.
		918	975	5.7	0.2	0.3	0.4	?	?	
		975	lat	6.5	1.4	1.5	2.4	?	?	
8	B	lail	1085	4.5	3.6	1.9	4.8	?	2	
		Ters	112+	3.9	nil	nil	nil	?	?	
C	С	124	112 + 118 °	5.6	15.5	3.1	17.4	0.88	0.02	
	_	118	128	To. 0	0.2	0.3	0.4	?	· ·	
	56-21	46	52,5	6.5	2.6	0.7	.3,0	-	_	
		845	920	1.5	3.0	0.6	3.4	-	-	
		· · · · · · · · · · · · · · · · · · ·	1004	10.0	2.2	1.5	3.1	-	-	
B		1572	1597	2.5	1.4	6.4	6.4	— .	-	1.3-3.5
0		1597	1645	4.8	0.2	0.5	0.5	_	-	- 3.5'
		1645	170	5.5	1.6	1.3	2.4	_	-	
					1.2	0.6	1.6	_	-	
		170	180	10.0	1.2		1	_	_	
		180	185	5.0	1.2	0.6	1.6	_		
	56-20	815	855	4.0	1.2	1.8	2.3	?	?	
-		114	117	3.0	1.4	2.0	2.6	?	?	
		In_	120	3.7	0.1	0.1	0.1	?	?	
B		1207	120 1247	3.7 4.0	5.1	<u>0.7</u> <u>7.5</u>	0.1 <u>5.6</u> <u>5.6</u>	?	?	
C		1207 145	156	11.0	0.1	7.5	5.6	?	?	massive that
			1							

法的

ether which a shaket in the

PARTS AND

.

sive cholos?

Page 5

5.64

Section Ione	QOH.	<i>Ik</i>	7 6.	Et.	Cu /.	In 1.	Eq.Cx.	Ag OPT.	AU OPT.	
E			· · · · · ·							
	81-1	61	65	4.0	0.2	2.8	1.9	-	-	
		65	69 91	4.0	1.8	12.6	9.7	0.16	.002	
		865	91	4.5	1.1	0.4	1.3	-	-	
		91	975	1,5	0./	2.2	1.5	-	-	
B		975	100°	2.5	3.6	4.8	66	0.39	<u>nil</u> .	
		103	109	6.0	1.8	0.1	1.9	- '	-	
		109	114	5,0	1.3	0.1	1.3	-	-	
		114	117	3.5	3.7	0.1	3.7	0.28	.002	
C		1175	1193	3.5	<u>19.4</u>	<u>0.1</u>	19.5	1.32	.005	
C		119	123	3.5	0.4	0.1	05	0.04	nil.	
F/	81-30	28	34	6.0	1.4	5.8	5.0	0,24	,002	
		62,	66	4,0	0.5	3.4	2.6	-	-	
		66	72	6.0	I.gr.	I.gr.	1.gr.	-	-	
8		12	<u>74</u> 5 1120	8.5	1.8	6.3	5.7	0.26	nil	
		110	112-	2.0	1.0	0.2	1.1		-	
C		112		5.0	8.8	0.1	8.8	0.29	.002	divite e 111'
B	60-80	101	1275	02	.1.4		12	0.11	7	
		119.2	12/	<u>8.3</u> <u>4.8</u> <u>5.0</u>	4.8	2.2	<u>6.2</u> <u>4.8</u>	0.48	?	
c		148'	153		0.4	0.7	0.4			
		140	148'	3.3	.0.7	0.2	· ·	2	0.03	
			,		,		D. 8		•	
	56-60	455 535 655 - <u>155</u>	555	10.0	0.5	5.0	3.6	-	-	
		535	655	10.0	0.9	4.4	3.6	-	-	
		655	65 ⁵⁵ 75 ⁵⁵	10.0	0.8	0.1	0.9	-	-	
8		<u>_15°</u>	_853	10.0	1.0	4.0	3.5	-	-	

THERE IS IT FORGER TO THE T

1922年1月

ti nate

.

. .

•

.

Page 6.

section	DOH.	Fr.	70	Ft.	Cu %.	Zn %.	Eq.Cu	Ag.	BU	
/tore							<i>'</i> .	OPT.	OPT.	
F/ 8	81-31	56.5	61.0	4.5	0.3	2.8	3.0	-		
	81-24		24	4.0	0.2	7.5	4.9	0.09	. 005	
		24	29	5.0	0.4	3.2	2.4	0.01	.002	
		64	68	4.0	.05	1.5	1.0	0.01	Tr.	
B		<u> 68</u>	<u>72</u>	4.0	1.9	0.1	2.0	0.03	Tr.	
8		<u>72</u> 965	<u>17</u> 100°	5.0	2.2	0.1	<u>2.2</u> 3.5	0.12	. 002	
C		96	100	3.2	2.3	1.9		0.16	.002	
C		100 5	1025	2.5	0.6	0.6	1.0	0.07	.002	
		1025	1045	2.0	1.1	0./	1.2	0.07	,002	
6	81-10	9.0	14.0	5.0	1.0	0.1	1.1	1	-	leached.
		<i>p t</i>	19	5.0	13	0.1	1.3	-	-	"
		19	22	3.0	1.3	0.8	1.8		-	11
C		55	<u>565</u> 632	1.5	4.7	1.2	4.5	-	-	
C		521	<u>63</u>	1.21	9.8	0.2	<u>9.9</u>	0.74	0.02	ADH 56-36
	56-35	11	21	10.0	40	2.7	5.7	-	-	
		21	31	10.0	1.7	0.5	2.0	-		
C		62	74	10.0	0.5	3.9	2.9		-	OOH 81-1
		72	82	10.0	0.3	0.6	0.7	-	-	•
	G1 11		<i>a.</i> 3	4.5	93		13	· · · · · · · · · · · · · · · · · · ·		
	81-12	17 21 ⁵	2/3 3/0	9,5	3.3	1.7	4.3		-	
		31		3.0	0.4 0.8	1.6 5.3	1.4			
		34	34 365	2.5	6.1	J.3 1.9	4.11 7,3	0.56	a. 002	leached
		@ 85'		4 7 4	60	,.,	4.5	v. • •	~ 001	1
										leached e

こうちょうして、アードのないのできない、このできるとなるなどではななない。ないで

Page .1.

1.0

35

- 10 '

Page 8.

									· · · · · · · · · · · · · · · · · · ·	
section zone	0.0.H.	ŀF.	70	FH.	Cu !.	Za 1.	Eq. Ca. 1.	Ag. QAT.	AU. 01.T.	
G	56-33	20	30	10.0	1.0	0.8	1.5	-	-	
		30	40	10.0	1.0	0.6	1.4	-	-	
		40	50	10.0	0.9	0.6	1.3	-	-	10
		50	60	10.0	2.8	0.8	3.3	-	-	
c c		<u>60</u> <u>110</u>	<u>66</u> 72	<u>6.0</u> <u>6.0</u>	<u>4.4</u> <u>3.3</u>	<u>0.5</u> <u>7.8</u>	$\frac{4.7}{8.2}$	-	-	
Ā	36-36	}	-				5.5%		-	Pre
D ¹	56 -13) 								
11/	55-5	828	867	3.9	09	2.0 ±	2.1	. –	-	
C C		<u>867</u> <u>91</u>	91° 95+	<u>4.3</u> <u>4.4</u>	<u>3.5</u> <u>3.2</u>	<u>2.0 ±</u> <u>2.0 ±</u>	4.7 4.4		-	
c	<u>81-14</u>	95.5	97.0	1.5	4.1	0.1	4.2		· _	-
c		97.0	1015	4.5	1.0	1.0	1.5	-	-	<i>a</i> .
		111.0	118,5	7.5	1.8	0.1	1.9	-	-	
	BI-13	575 61	61° }	8.5	0.3	2.1	1.6	.03	.002	
		61	65)	8.5	?	?	4,0	-	-	4+
	81-15	Z	362	4.2	6.5	0.5	7.0	0.38	.00.5	
	55-6	480	553	7.3	2.6	2.0+	3.6	-	-	
L	L									

leoched. last core

nd. 2,000 T Alar ourface

a755.

4 ft. lest core in 5

SIGNIFICANT SILVER COLD ASSAYS

NORTH ZONE.

D. D.H.	- 1	51L VIA 0. P.T.	GOLD 0.P.T.	SECTION.
81-23 81-10 60-80 60-77 60-75 60-75 81-6 81-6 81-8 81-8	tootage 84' 52' 148' 112' 40' 141' 160' 157' 169' 201' 193'	0.P.T. 0.15 0.74 20.5 0.85 1.06 3.20 0.27 0.09 0.33 0.07 0.06	0.P.T. 0.02 0.02 0.03 0.03 0.02 Tr. 0.04 0.06 0.01 0.02 0.02 0.02 0.01	I G F E C C C C C A-B A-B A-B
60 - 76 60 - 16	155' 159'	0.80 0.68	0.02 0.01	A-B A-B.

	Shunsby Mines Ltd.	Cunningh n Twp, Ont.	Page 1	Holo Ro. 4
	Lat. 11037.0 Dep. 9556.50 Elev. 9940.04	Bearing 1 52 % Dip -25		Dec.16/55 ed Dec. 20/55 299,01
.0 - 12.0	Casing	See DOH 11		
2.0-31.0 Mi ^r Y [°]	Breccia, silicicus, and patches 17.4 - 23.4 Massive	with sections good chalcopyri e chalcopyrite and some zinc i	ite and zin	c in fractures and fractures
1,0-33.0 p.2	Agglomerate & tuff,	fine disseminated pyrite.	x	·
NC	At 41.7 3" Massive			
6.0-103	Fine grained andesis considerable dissemi veinlet of chalcopy	te, tuff and agglomerate inter inated pyrrhotite and sphaler: rite (Corresponds with long to	rbanded pyr Lte, occasi renches 200	ite and onal narrow N East,
		251	No	<u>Width ZCu ZZn.</u>
017.4- J23.4	breccia massiva ch		808	6.0 - 1.25 2.88
065.0-070.0 070.0-076.0 076.0-036.0 086.0-091.0	Andes, py., pyrrh. ditto :	, chalco & zn,	809 810 811 :/s 812	$\begin{array}{c} 5.0 \\ 6.0 \\ 10.0 \\ 5.0 \\ 5.0 \\ \end{array} \begin{pmatrix} 0.49 \\ 0.20 \\ 0.20 \\ 0.24 \\ 0.05 \\ 0.42 \\ 0.$
	Sample #809 assaye	d for nickel Tr., & lead. Nil.		
161.5-299.0 299.0	Quartz diorite - q END OF HOLE,	uite macsive.		
		·		
				•
				Page X 1 Hole 4
			/ IIII	

,

١

And the second					
		Shunsby Mines Ltd.	Sultan, Ontario	Fage 1 Hole No. 5	
ar épuilte air an Arrain		Lat. 11033.89 Dep. 9560.36 Elev. 9940.04	Bearing N 52 W Dip 60	Started Jan.5/55 Completed Jan.7/56 Depth 204.01	
	0 - 6.0	Casing.			
Acres 1	6.0 -16.0	Breccia		•	
	16.0-21.8	Highly silicious brec rite	cia fairly well miner	calized Zn fine specks chalcopy-	
	21.8-25.3	Fine grained dark roc	k Lamprophyre dike?	1 d	
	25.3-45.0	Highly silicious brec	cia some pyrite in so	ections odd speck ZN	
	45.0-46.8	Breccia odd specks py	rite	P/	
	46.8-51.1	Highly silicious brec	cia mineralized with	Zn odd specks chalcopyrite	der 1
	51.1-64.0	Breccia from 59.0 - 6	0.0 some Zn mineraliz	ation odd specks chalcopyrite 1	
「おいい」	64.0-71.0	Agglomerate no minera	lization		Ľ.
	71.0-82.8	Very silicious minera fair Zn chalcopyrite	lization 73.6 - 79.0	bleb chalcopyrite 72.6 - 77.9	
	62.8-86.7	Highly silicious brec Zn pyrite	cia slightly minerali	zed chalcopyrite fine specks	
小田市 書う いっぷ	86.7-91.0	Fractured silicious b fine disseminated Zn.	reccia fairly well mi	ineralized chalcopyrite, pyrite 3.4	_
	91,0-95.4	Silicious breccia fai	r amount chalcopyrite	, pyrite fine dissoninated Zn.	
	95.4-103.0	Tuff slightly mineral	ized with pyrite and	fine specks chalcopyrite 🦢	٢,
	103,0-1.06,0	Tuff not mineralized		Ŧ	<u>ج</u> رَّ
and the second second	106.0-119.0	Coarse grained andesi	te fine pyrite	V	- 1
	119.0-128.0	Tuff a little pyrite	on fractures		
and the second se	128.0-148.0	Coarse grained andesi	te fine pyrite on fra	actures	
in a financial de la company	148.0-156.5	Silicious fractured b inated Zn.	reccia mineralized c:	halcopyrite, pyrite, fine dissem-	
	156,5-165.0 よく			copyrite, pyrite, fine specks Zn a) at 158.9 and 9" at 164.0	~
an Martin	165.0-166.4	Quartz and pinkish ca	rbonate . lig?		
	166.4-171.5	Silicious breccia fai fine specks possibly	rly mineralized chald Zn? at 170.5 ground d	copyrite, pyrite, graphite some core 2 fcet.	
	171,5-177.7	Silicious breccia poo fractures (agglomerat		copyrite, pyrite, graphite on	
重要 () 生命	177.7-139.0	Agglomerate some fine	pyrite	$\tau \rightarrow \tau$	He.
	189.0-201.5	Tuff slight pyrite in	spots		
and the second	201.5-204	Quartz diorite		Page 1	
	204	END OF HOLE.		. Hole 5	
				•	

•	Shunsby Mines Limited Sultan, Ontario.	Page	2 Hole	No. 5
	Samples:	. <u>No</u> .	Width	<u>%Cu %Zn.</u>
016.0-021.8	Breccia zn and chalco	813	5.8	0,20
046.8-051.1	Breccia zn and chalco	814	4.3	0.34
0828-086.7 086.7-091.0 091.0-095.4 095.4-103.0	Breccia py., chalco zn assume z''. Tu ditto ditto Tuff py., chalco	815 816 817 818	3.9 4.3 4.4 7.6	0.88 3.53) 3.37 ^{7,Cu} 3.23 () 7 0.17
148.0-156.5 156.5-165.0 165.0-166.4 166.4-171.5 171.5-177.7	Breccia py., chalco, sphalerite dittoll" ground core Quartz carb. Breccia fair py and chalco zn poor mineralization	819 820 824 821 822	8.5 8.5 1.4 5.1 6.2	0,34 0,78 0,31 2,50 0,12
	Averages 82.8 - 95.4		12.6	2.61
	156.5 - 171.5		15.0	1.32

Kitter All a set

きまたがありた

いたいであったとう

「おいいい

3.4 % 86.7 - 95

and the second second				
and a state of the		$\bigoplus_{i=1}^{n}$	F	
No. of Maria			-	
		Shunsby Mines Limited	Sultan, Outario	Page 1 Hole No. 6
Hing Ng Silang Ng Silang		Lat. 11033.89	Bearing S 52 E	Started Jan. 10/56
E Start Start Start		Dep. 9560.36 Elev. 9940.04	Dip -60	Completed Jan. 14/56 Depth 195.0
R. COMPAN	0 = 10	Casing - Extended to 25	' on account of cave later a	t 24 ¹
A CAR COLOR	10 - 15.6	Agglomerate interbanded fractures disseminated	tuff, scattered chalcopyrit	e fine zinc in ///
ant i - and water of the	661. 15.6-21.6	Breccia very silicious ground core	odd specks chalcopyrite, gal	ena, zinc 21.0 - 23.0
Belighter meine All	21.6-31.0	Fine grained andesite t 28.0 - 29.6 - ground co	uff agglomerate interbanded	fine pyrite in fractures
Construction of			uff agglomerate interbanded	sparse pyrite
and the second		Righly silicious brecci chalcopyrite	a fine disseminated pyrite 3	7.0 - 38.0 fine streaks
ownerstern.	44.0-48.0 (0-	Agglomerate at 45 - 45.	4 some zinc, chalcopyrite	
Battle Ban - Birr Si	48.0-55.3		uff narrow stringers graphit	e l' foot section fairly
n dalahin di	55.3-69.0	Agglomerate interbanded	tuff disseminated pyrite py	rrhotite
Summer .	59.0-87.0	Agglomerate silicious f	ine threads calcite specks p	yrite
145 H	87.0-106.7	Silicious agglomerate d	isseminated pyrite	•
a la	106.7-125.6	Ditto as above	•	
新田村主い	125.6-143.0	Fine grained andesite i	nterbanded agglomerate (
- State	143.0-163.3	Fine grained andesite i	nterbanded agglomerate	1. IN FR
ALC: No. 1	163.3-173.0	Ditto		
	173.0-195.0	Coarse grained quartz d	iorite (FW Dr?) dia	P
چمانغونچارد، چ	195.0	END OF HOLE	1 41	
Service .		Samples:		<u>No. Width ZCu ZZn.</u>
新事業の新	048.0-055.3	Breccia and tuff some m		823 7.3 2.59 0
	055.3-061.0 061.0-069.0	Agglomerate py and pyrr ditto		826 5.7 0.11 0.94 827 8.0 nil nil
原わり、青泉	120.6-125.6	Sil. agglom, py. specks	of zn.	828 5.0 nil Tr.
「日本」			scc n	
		·	\	Frank and the second
				18-53 1'- MASS CPY .
の変更な			²	
が変え	• •			•
「「「「「「」」			7	Page 1 Hole 6
	· .			Hole 6
ALC: NO.				
			•	

Shunsby Mines Limited Sultan, Ostario, Page 1 Hole No. 7 Started Jan. 17/56 11373.11 Bearing S 52 E Lat, 9563.83 60 Completed Jan. 22/56 Dep. Dip Elev. 9972.33 Depth 327.01 0. - 14.0 Casing 14.0-31.0 F Slightly siliceous agglomerate from 29 - 30' odd specks galena in C fractures and pyrite. 71.0-52.6 Highly altered interbanded tuff agglomerate andesite fine galena on fractures slightly siliceous - <u>N</u>C 12.6-57.0 Ditto as above 7.0-69.5 Badly shattered agglomerate. 61.6 - 61,9 fine disseminated chalcophrite en ton 66.0 - 67.0 fine galena and phrrhotite. S. Werth ROAR C 69.5-88.0 Fine grained andesite tuff agglomerate no mineralization 88.0-108.0 Andesite agglomerate fine disseminated pyrite poorly Mineralized. 108.0-126.0 Fine grained andesite interhanded tuff agglomerate, poorly mineralized pyrite. 41 411 ta 126.0-130.6 Agglomerate hadly fractured 130.6-148.0 Interbanded tuff agglomerate poorly mineralized pyrite 148.0-164.5 Tuff and agglomerate no mineralization 164.5-172.9 Tuff silicious breccia pyrite graphite very fine disseminated chalcopyrite. 172.9-181.0 Highly silicious breccia fine pyrite, pyrrhotite. 181.0-186.9 Highly silicious tuff from 181.0 - 182.5 slightly mineralized pyrite, graphite. M. C. 186.9-206 Interbanded tuff agglomerate breccia fine disseminated pyrite, pyrrhotite in patches. 1.1 . . Agglomerate interbanded tuff very fine pyrite. 206.0-225.4 225.4-245.0 Th Andesite agglomerate fine threads calcite off specks pyrite. 1 245.0-265.0 Ditto as above. 74 Ng: Tuff from 280.0 - 284.0 graphite schist some pyrite. 265.0-284.6 284.6-305.0 Banded tuff little pyrite on fractures threads calcite. Banded tuff badly fractured. 305.0-310.6 310.6-321.0 Andesite fine grained. 321.0-327.0 Fine grained quartz diorite. 5 END OF HOLE 327.0 Samples: 164.5-172.9 Tuff breccia, py. chalco. No. Width <u>%Cu</u> <u>%7.n</u>. 825 0.01 offeet ' Page 2 1 Hols 7

								·
					1			
	Shunsby F	tines Limited,	Sultan, Ontari	0	Fage 1	llol.e	No. 8	
	Lat.	11343.02	Bearing N 52 W	ŗ	Starte	d Jan	24/5	6
	Dep. Elcv.	9609•42 9977•23	Dip 54		Comple Depth	ted Jan. 177.		6
		////			Dopon	~11		
3 - 3.0 ∧	Casing							
³.0−11.5 ₽°			ia well minerali	zed, zn patch	es, cha	lcopyri	to	Do
11.5-21.0 00	Ditto as	above						
21.0-25.0 BC	Ditto as	above		- معمد المحمد المحم المحمد المحمد		ethis 6	u.?	
25.0-41.0	Banded tu	iff fine pyrite	, zn poorly min	eralized	1	sthis and makes	7	-
41.0-60.0	Badly sha	attered tuff hi	ighly altered	43.3 - 44.0 d	issemin	ated cha	alcopy	rite
	zn, 50.0 zinc.	- JUO IINE CR	nalcopyrite zn,	770 - 7844 P		Vanu/12		TTUR
.0.0-67.0	Fine grai	ined andesite]	little pyrite on	fractures		,		1.1.
67.0−75 ₊0	Prob fine	e grained quart	z diorite			~ ~	•	
75.0-84.4	Coarse gr	rained quartz d	iiorite 76.4 gro	und core 6"		917		-
84.4-94.5	Highly si	llicious andesi	ite odd specks p	yrite on frac	tures	-		FL X
94.5-120.0	Coarse gr	rained quartz d	diorite with som	e sections fi	.ner gra	incd od	d narr	ow !
	quartz st	tringers.	an a					ı
1 20.0-138. 0		rained quartz d tz stringers	diorite some fin	er sections f	ine thr	eads ca	lcite	đ.
138.0-168.0	Coarse gr	rained quartz d	iiorite					
140 0 100 0		ained avents di	iorite					••••
168.0-177.0	Finer gra	ituen duares at						
108.0-177.0	Finer gra	-				* .		
	-	-			<u>No.</u>	Width	<u>%Cu</u>	<u>LIn</u>
	END OF HO	-		(<u>No.</u> 829	<u>Width</u> 8.5		<u>£72n</u> 3.52
177.0	END OF HO	-		{			0.16	
177.0 3.0-11.5	END OF HO	-		{	829	8,5	0.16 0.51	3.52
177.0 3.0-11.5 11.5-21.0	END OF HO	-		{	829 830	8,5 9,5	0.16 0.51	3.52
177.0 3.0-11.5 11.5-21.0	END OF HC	-			829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830	8,5 9,5	0.16 0.51	3.52
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01
177.0 3.0-11.5 11.5-21.0	END OF HC	-		3.	829 830 831	8.5 9.5 4.0	0.16 0.51 1.87	3.52 3.60 17.01

Page 1 Hole No. 8

10,60

		۵ ۲	
	Shunsby Mines Ltd.	Sultan, Ontario	Page 1 Hole No. 11
	lat. 13162.10 Dep. 9473.71 Elev. 9974.91	Bearing (5.52). Dip Collar -45	Started Feb. 3/56 Completed Feb. 5/56 Depth 1917
0 - 5	Casing		
5 - 58 J gr.	FLOW BRECCIA - interbed andesite. Generally gr	ded and intergrading silice een to gray-green no sulphi	cous agglomerate and Conducts. MC C
58 - 70	dia. Green to gray, ve	angular, to rounded fragme ery hard and compact, occasi mall blebs of pyr., chalcop	ents, grain size to 1" onal banding at 30 to C
70 - 8 4	to core, varies from ha ational over about 6". 74-78 fine pyrrhotite i	cen and <u>chloritic</u> , irregula and siliceous to fairly in bands up to 1" wide otly fine pyrite and pyrrho	soft. Contact grad-
84 - 89.5		us, dark gray and green, th blue quartz. 85-85.5 bande	
89.5 - 98	grained, Compact fresh	green, fine-grained, in cor looking feldspar and pyrox ore in up hole contact with	cene. Down hole contact / and
98 - 1 28		reen, blue and black graphi with secondary quartz, scat stly secondary quartz.	
128 - 133	TRAP DYKE - gray, fine-	grained. Contact at 45 sli	ghtly finer grained. 77
		hard, siliceous, sheared a Pyrite with a little chalc	
135 - 156	Scattered calcite strin	glassey blue to gray quart gers and graphite. Blebs a mostly pyrite with minor ch	and long parallel
156 - 158	GRAPHITIC TUFF - black, of pyrite.	hard, siliceous, contacts	at 45. Scattered bands
158 - 163	GRAY LAVA - gray, finc- core, possibly flow lin	grained, scattered pyrite, les.	vague banding at 30 to
163 - 191		egular white to pink feldsp 163-167 Crude banding, vag	par, fine light green _ Sy
191	end of hole.	•	
	Samples:		No. Width %Cu %Zn
66.0-71.0	Agglomerate py. chalco	& Zn.	837 5.0 0.30 0.52
74.0-34.0 84.0-93.0	Tuff fine pyrrh, and p Ditto	yrite	838 10.0 0.08 0.47 839 9.0 0.08 0.28
98.0-106.0	Tuff graphitic some sp	halerite	840 8.0 0.05 1.50
133.0-140.0 140.0-150.0 150.0-156.0	ditto plus some chalco breccia well mineraliz ditto	ed with py.	841 7.0 1.02 0.14 842 10.0 0.23 0.28 843 6.0 0.03 0.33
150.0-156.0		· · · /	Page 1 Hole 11

Page 1 Hole No. 17

Lat.	10795.03	Beat
Dep.	9597.76	Dip
Elev.	9940.04	-

Shunsby Mines Ltd.

aring 3 83 W 5 45

57

Ê

0.0 - 5.8 Casing

Precier

- 5.8 -12.2 Graphitic andesite
- 12.2 -54.0 Highly siliccous breccia. Somewhat fragmental in narrow sections. Slight mineralization in scattered threads, mostly pypite.

Sultan, Ostario

- 54.0 -67.0 Grayish tuff, less silicious, fracturing at 30 to core, sparse mineraliza-
- 57.0 -98.0 Graphite shear with quartz and carbonate blebs and threads. Bands of breecia and silicious tuff at 30 to core. 72.0' - 76.0' - Fair Cpy. in massive patches and threads, clight Zns. Mineralization starts at 56.5' on to 80.0'. 62.5 - 72.0, erratic distrib. of sulphides including mass. pyrite, pyrr., chalco and Zns. 76.0 - 79.9, mostly pyrite in a breecia, slight cpy. and threads of Zns. 56.5 - 62.5, scattered patches of py., cpy., & Znc., also threads. 91.0 - 98.0, pyrite, chalco and Zns. mostly in fractures from 30 to 90 to core
- 98.0 -133.0 Graphitic breccia fracturing at 30 to core. Fair amount of pyrite in cubes (1/16") slight cpy. in fractures. From 109.0' good chalco, slight Zns. in blebs and threads.

Slight cpy, & Py. (sampled to complete section) 103.0 - 106.0', fair Zns & Cpy. in fractures in graphitic shearing. 106.0 - 109.0, very slight cpy. sampled to complete section. 109.0 - 115.0, good distribution of cpy. with slight zns. in fractures and blebs. 115.0 - 121.0, very good chalco, in massive narrow threads and blebs in graphitic breccia, slight Zns. 121.0 -127.0', good cpy. & slight zns. in patches. 127.0 - 133.C, good cpy. & slight zns. in threads and blebs. Graphitic breccia, fracturing at 30 to core, good chalcopyrite slight Zns in

133.0 /147.5 Dark green basic andesite. Patches of pyrite in cubes slight chalcopyrite

147.5 -107.4 Fine grained grey tuff. 147.5 - 151.0 massive patches chalcopyrite

167.4 -177.0 Silicicus breccia, large angular quartz fragments, massive patches chalcopyrite, some bands of andesite. 166.4 - 169.8 - massive pyrite and patches massive chalcopyrite. 173.4 - 177.4 - Fair chalcopyrite in massive patches 169.8 - 173.4 - Slight pyrite - samples to complete section.

177.0 -;85.0 Grey tuff, sparse mineralization slight pyrite

blebs and threads

185.0 -200.3 Greyish green agglomerate, few splashes of pyrite

200.3 -245.0 Fine grained grading to coarse quartz diorite, coarse starts at 215.0'. No mineralization.

3.3 ° Cu 3.5

245.0 END OF HOLE

Page 1 Hole No.17.

3 16/3.4

	Shunsby Mines Ltd. Sultan, Ontaric.	Page	2 ilolo	No. 17	7
	Samples:	No.	Width	<u>SCu</u>	\$2n 0.5
56.5-62.5 62.5-72.0 72.0-76.0 76.0-79.9	graphite shear py, chalco, zinc ditto "	867 865 864 866	6.0 9.5 4.0 3.9	0.35 0.31 0.76 0.05	1.50 ^{-1,95} 2.73 20 2.73 0.38
98.0-103.0 103.0-106.0 106.0-109.0 109.0-115.0 115.0-121.0 121.0-127.0 127.0-133.0	graphitic breccia chalco and zn. ditto " " " " "	874 870 871 872 873 873 875 876	5.0 3.0 3.0 6.0 6.0 6.0	$\begin{array}{c} 0.15 \\ 0.51 \\ 1.63 \\ 1.63 \\ (2.19 \\ 1.07 \\ 3.47 \end{array}$	nil 1.60 nil 0.35 0.30 1.17
147.5-1.51.0	Tuff massive patches chalco	877	3.5	3.31	و لي و
	breccia mass. patches of chalco ditto slight pyrite "	878 880 879	3.4 3.6 4.0	3.16 - 0.20 2.24	NA
•	Averages: 56.5 - 79.9 103.0 - 133.0 166.4 - 177.4		23.4 30.0 11.0	0.35 1.88 1.86	2,02 0,73

 $127 - 133 - 147^{5} - 151 - 166^{5} - 166^{5} - 166^{5} - 166^{5} - 166^{5} - 166^{5} - 166^{5} - 173^{5} - 166^{5} - 173^{5} - 133^{5} - 173^{5$ 6.0 -3.5 3.4 3.6 4.0 messive patches Cpt.

//

行動を読みたち

のいろうでのないののの

Page 2 Hole No. 17

••••••••••••••••••••••••••••••••••••••			.
	Change Marine I to J	Sultan Outanta	
•	Shunsby Mines Ltd. Lat. 10795.03 Dep. 9597.76 Elev. 9940.04	Sultan, Ontario Bearing N 34 W Dip 45	Page 1 Hole No.20 Started Feb. 26/56 Completed Mar. 15/56 Depth 742
0.0 - 7.0	Casing	•.	
7.0 - 8.2	Andesite - no min.		7 <i>5r</i>
8.2 -107.0 Be	Silicious breccia - mo massive pyrite. 37.5' chalco. 43.0 - Few th and little zinc. 52.6 zns. 64.8' - few thre thickness. 48.0' - 51 threads cpy. and littl patches and threads in	 threads and patches cpy ads of cpy. Threads are in .4' widely scattered threads zn. >81.5 - 85.5 - scattered fractures, fair zinc in page 	cht pyrite. 9.2 ¹ - 10.0 ¹ 42.0 ¹ - 2 ["] heavy fine 1.4 - Few threads of chalco y. 62.5 ¹ - patch of cpy. & (n fractures up to 1/8" in
	threads of cpy. and a	few patches Zns.	
		e, sparse min.	
	copyrite in tull.	11, lew patches chalco. 10	07.0 - 114.0 few patches chal-
-14.0-125.0 1 Cu 0.1 Zm 0.1 Zm	117.0 scattered patche quartzite? Sparse min. 197.5 light greenish t patches coarse pyrite, little cpy. in threads	uff, well pyritized . 137. little chalcopyrite. 13'	17.0 - 120.7 hard light green $/^{3}$ ve patches chalco. 125.0 - .5 - 145.0 graphitic andesite $/\sim$
145.0-156.0			ery massive sections of chalco
156.0-161.0		breccia) Lost core - 2.01	~~
161.0- 198.0 <i>Cand</i>	Dark green andesite, s Agglomerate.	light pyrite with agglomers	ate bands. 174.0 - 176.5 -]Fr
198.0-263.0	and much more dissemin	ated pyrite. 227.0 - Thin 27.0 - 231.8 Fine dissemina	ation. 215.5 - darker green thread of chalcopyrite at ated pyrite. 231.8 to
263.0-276.57	Light greyish green al	tered tuff and agglomerate	, slight pyrite.
276.5-290.00	Dark green medium grai	ned andesite? coarse pyrit	•] <i>97 • 97</i>
290.0	ers. 309.0 - 325.0 li 325.0 - 416.0 medium g	diorite sparse mineraliza ght green fine grained dio: rained diorite sparse mine: a little pyrite dark grees	ralization. 416.0 - 584
290.0-638.0	Diorite - gradational. fine grained. Tuff or		se, fine disseminated pyrite, 🕳
638.0- 679.6		er phase from dark green to mineralization finer pyri	o greenish grey and finer definer to, and increasing.
579. 6-687.0	Graphitic schist, may at 30 to core down dip patches.	be altered greywacke, good . Looks like steep wester:	pyrite in fractures. Contact \pounds ly dip quartz threads and
587.0 693.5	Sheared agglomerate or	tuff, fine disseminated p	yrite. T-1 149
		Pag	el Hole No.20

高い

2 5 5 11 7 5						
17 27	Shunsby Mines Ltd,	Sultan, Ontario.	Page	2 Hole	e No. 20	
693•5-705•0	Coarse grained "spotted" porphyritic.	" rock may be agglomerat	e. No min	eraliza	tion, lo	oks de
205.0-709.0	Grey tuff fine grained,	fair pyrite.				5.1
709.0-713.5	Graphitic shear, good p	yrite in fractures, cont	act sharp	at 30 ti	o core.	~~~
713.5-718.5	Grey tuff, fine grained	, fair pyrite.				9T
718,5-722,5	Graphitic shear, scatte.	red quartz blebs, good p	yrite in t	hreads.	-	
722.5-739.5	Dark grey tuff, fine gr	ained, fair pyrite in th	rcads			9T
739.5-742.0	Dark green andcsite, so	ne pyrite. K? Z	Ż.			91.
742.0	END OF HOLE.	d				
	Samples:		No.	<u>W3.dth</u>	ZCu.	<u>%Zn</u>
+8.0-51.4	breccia py, slight chal-	co	886	3.4	0.30	
1.5-85.5	breccia patches of moss	, chalco	887	4.0	1,17	1.82
101.0-107.0 107.0-1.4.0 114.0-117.0 117.0-120.7 120.7-124.7	quartz, specks of chalce Tuff II II II II II II Quartzite sparse mineral breccia mass. patches of	" "	883 889 890 7 891 892	6.0 7.0 3.0 3.7 4.0	0.51 0.30 1.37 0.10 5.10	0.65 1.96 0.70
137.5-145.0 .45.0-155.0	tuff breccia little chal breccia py. mass chalco		. 893 894	7.5 11.0	0.45	7.53
20	Average: 114.0 - 12		V	10.7	2.32	0.81

7. 00 4.1 120x 16, 17.18 Rightine dioute, forlage un however, warging to file and prophypy. Who is Annos Box 19 - Course grand anderite will timing filo-plenas. Box 20 - June overrid ande te will ting fildspor plande. Probably alla plane of dig disents. Will Jon 29/64

pateries (pt 120.1 - 124.7 - 4.0 - 5.10-0.70 150 - 11.0 - 0.86-7.53

Page 2 Hole No. 20

sia .

Shunsby Mines Ltd. Sultan, Ontario Page 1 Hole No. 21. Mar. 2/56 10795.00 Bearing N C7 W Lat. Starled 9597.76 Dep. Dip 45 Completed Mar. 4/56 Elev. 9940.04 Depth 207

au

K

pr BE

¢c.

¢.

- 0.0 5.0 Casing
- 5.0 6.0 Andecite sparce mineralization
- 6.0 -20.0 Brecciated iron formation. Few blebs and threads of chalcopyrite and pyrite. At 17.5 some minor faulting with slight displacement.
- 20.0 -25.0 Grey fine grained tuff, may be altered version of iron formation, sparse mineralization. 21.3 25.4 10" Ground.
- 25.0 -4.2.0 Brecciated from formation. Could be fault 32.0 35.0 Sludge sample. 35.0 - 42.0 Numerous fractures filled with chalcopyrite some zinc, also blebs chalcopyrite in fragments. 25.4 - 30.0 - 3.0' Ground. 30.0 - 31.0 - 6" Ground. 31.0 - 32.5 - 6" Ground. 32.5 - 35.0 - 2.0 Ground
- 42.0 46.0 Slatey greywacke, slightly graphitic thread chalcopyrite at contact with I.F. 42.0 - 46.0 slight chalcopyrite in threads.
- **46.0** -59.3 Brecciated iron formation; chalcopyrite well distributed in fractures and irregulab blebs, slightly graphitic. 46.0 52.5 considerable chalcopyrite in threads and blebs, 52.5 59.3 scattered blebs and threads chalcopyrite some zinc.
- 59.3-69.5 Slaty greywacke, bedding at 40 to core. slight pyrite
- 69.5 -111.0 Brecciated iron formation with tuff and graphitic bands. Scattered blebs and threads chalcopyrite and zincs. 68.5 - 79.5 scattered threads chalcopyrite slight zinc, 79.5 - 84.5 Ditto #900. 81.6 - 86.0 - 1.01 ground. 84.5 - 92.0 Some very good sections chalcopyrite in threads and irregular blebs. 92.0 - 97.0 Scattered threads chalcopyrite some zinc. 97.0 - 102.0 Ditto #903. 102.0 - 107.4 Ditto #904. 107.4 - 111.4 Scattered threads chalcopyrite.
- 111.0-119.0 Slaty graphitic greywacke patches chalcopyrite some zinc.
- 119.0-140.0 Silicious breccia, numerous chalcopyrite filled fractures. 119.0 127.4 Fair chelcopyrite in numerous threads also fair zinc. 127.4 - 137.4 Good threads and patches chalcopyrite. 137.4 - 140.6 patch chalcopyrite and threads
- 140.6-147.3 Grey tuff, chalcopyrite and pyrite disceminated
 153.7 157.7 and 3.5 C 1.3 C 3.5 Z (A)
 147.3 Hard silicious breccia scattered threads and patches chalcopyrite zinc and slight Phs. 157.2 159.7 Fairly massive zincs and good chalcopyrite. 159.7 164.5 Few threads Chalcopyrite. 164.5 170.0 First 10" very massive chalcopyrite. 170.0 180.0 Consistent patches massive chalcopyrite. 180.0 185.0 Scattered patches chalcopyrite and zinc.
- 147.3-192.0 Hard silicious breccia.

192.0-207.0 Diorite, fine to medium grained. Few threads pyrite chalcopyrite. 194.0 - 196.3 Grey tuff.

207.0 END OF HOLE.

Page 1 Hole No. 21.

		-							
and the second second	• •								
「「ない」						`			
1997 - 1998 -	•	Shunsby Mines Ltd	• . Sulta	n, Ontari	.0	Page	2 Ho	le 110. 21	L
		Samples:	•			No.	Widt	h <u>ZCu</u>	<u>25"n</u> •
Citra and Andrews	35.0-42.0				•	896	7.0	•92	1.63
BURN SHIPLIN	42.0-46.0					897	4 . 0	.15	.].8
-	46.0-52.5			·		893	6.5	(2.00	.70
t. Ministratio	52.5-59.3	12-1-12-13				899	6.8	.87	.51
4 (N 2 -)	- 3.5-79.5	1 2				900	11.0	• 36	•65
	7.5-84.5					901	5.0	.15	.70
State of the state	34.5-92.0					902	7.5	(2.96	.60
	2.0-97.0		•	١		903	5.0	.46	.47
Strates & .	97.0-102.0					904	5.0	•37	•75
	102.0-107.4					905	5.4	•46	.23
1.1.1 × 1.1.1.1	107.4-111.4					906	4.0	1.12	.23 >
and the second	111.4-119.0					907	7.6	.51	2.29 5
	119.0-127.4	·				908	8.4	.66	2.71
	27.4-137.4					(909	. 10.0	(2.24	1.49
an de la seconda	.37.14-140.6					. 910	3.2	1.43	1.73
A Martine	140.6-147.3					6911	6.7	• 56	,98
	157.2-159.7	. 46 				-> 912	2.5	2.40	6.45
dingenderspecifie die ersterender	159.7-164.5					913	4.B	.20	•47
	164.5-170.0					914	5.5	1,58	3.26
	170.0-180.0					915	10.0	1.17	.65
	180.0-185.0					916	5.0	1.22	• 56
		Averages:		1		-		-	
Strates	84.5-185.0	-					100.5	1.09	1,14
	35.0-59.3						24.3	1.23	0.83
SULUE Resultation	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						~~~~~~		
				1					
the address of the design of t				2.6	6.9 3.5	a w.			
n Securit			ک بی	1.3	3.5				
and the local				1.7 					
	•								
						Barra O	U	د د	
-						Page 2	N 9⊥¢n	V, KL	
and									•

Shunsby Mines Limited, Sultan, Ontario

Page 1 Hole No. 22

IF

10

9.

8

120

Lat. Dep. Elev.	10795.03 9597.76 9940.04	Bearing Dip	n 67 w 60	Started Completed Depth	Mar. 5/56 Mar.10/56 408.01	
	••••					

00 - 6.0Casing

3.0 - 13.0 BC Hard silic. breccia, fair diss. py. & slight cpy.

13.0- 29.557 Tuff - greyish green, almost parallel to core. Sparse min.

29.5-40.0 FAULT ZONE - Frag. breccia. 30.0' - 34.0 - 3.5 ground. 34.0' - 40.0 - 4.0' ground. Fault probably.

Silicious breccia, large angular fragments good cpy. in sections. 44.0 - UC 47.5 Few large patches chalcopyrite, some zinc. 61.5 - 69.5 - few threads 40.0-74.0 cpy. and diss. zns. 56.0 - 56.7 - fair cpy. & zn. in patches.

- 74.0-93.7 Brecciated iron formation, diss. sphalerite with few threads cpy. 83.0 -85.0 - fine diss. zns Some rinor displacement up to 1/4", almost down dip. H. OC 88.0 - 88.6 - fine diss, zns. 91.0 - 98.7 - Two sections good chalco in threads plus diss. zns.
- Silic. Breccia scattered threads of cpy. & patches Zns. 111.0 111.5 -& Band of andesite, slight py. **98.7-111.**0
- 110.0-;26.2 [Interbanded slaty greywacke (slightly graphitic) and iron formation. Most of min. confined to brecciated I.F. Some good patches cpy. & Zns. 111.5 -117.0 Includes <u>1 foot</u> slaty gwke., slight py. plus well distrib. cpy. in patches, slight zns. 117.0 - 119.0 - andesite, slight py. 119.0 -122.0 - Massive patches chalco, pyrite slight zns in silic breccia. 133 bC. 122.0 - 126.2 - Grey tuff well min. pyrite in mass. patches. ΞN
- Slaty graphitic greywacke, patches massive pyrite, slight cpy. 130.0 132.6 includes 1 foot massive chalco. slight zns. 126.2-149.5
- 149.5-197.0 Sheared agglomerate, diss. pyrite

Dicrite - gradational from coarse to fine to medium. Sparse min. 197.0 -197.0-408.0 202.0 - looks perphyritic with large felds par (pink) fragments. Slight pyrite. 206.0 - 210.0 - Few specks chalco & pyrite. 221.0 - 224.0 -Few specks chalco & pyrite, slight zns. 238.0 - 238.8 - Few coarse cubes pyrite, little cpy. 256.0 - 265.0 - Grey tuff greenish grey, a little fine pyrite. May be fine grained phase of diorite? 265.0 - 335.0 - Sparse dig ~ min. in med. grained diorite. 335.0 - 408.0 - Coarcer grained and very sparse min. Few threads quartz & carbonate. 377.0 - 379.0 - Fine grained incles. diorite.

107-335 dig dig 335-408 C.G - dig END OF HOLE 408.0 Samples: <u>Width NCu</u> <u>%7.n</u> 26.0-36.0 918 10.0 0.10 0,89 36.0-40.0 919 4.0 0.25 1.32 44.0-47.5 920 3.5 0.41 1.30 54.5-61.5 930 7.0 0.05 nil 0.02 ú1.5-69.5 921 8.0 1.93-922 0,20 0.91 91.0-98.7 7.7 99.7-104.0 931 0.02 5.3 tr, 932 0.07 ·7.5 tr. 104.0-111.5 111.5-117.0 923 0.46 5.5 0.71 117.0-119.0 924 2.0 Nil 0,46 119.0-122.0 ⇒925 Tr. 3.80 1.2 = 4.9 2.60 10.4 6.4 5.0 electe with 3.0 2.85 Tr. 4.2 0.07 122.0-1.26.2 934 -> 933 126.2-130.0 1.28 3.8 Tr. 2.6 > 926 **130.0-132.6** \downarrow 10.40 Tro

i.						•					
	• • ·	Shunsby I	Mines L	td.	Sultan,	Ontario		Page :	2 Hole	22	
•		Samples:	(cont'	i)				No.	Math	<u>&Cu</u>	<u>%Zn</u>
	170.5-172.5							935	2.0	0.05	NIL
	182.5-184.5							936	2,0	0,15	Nil
	206.0-210.0 210.0-214.0 214.0-221.0 221.0-224.0 224.0-230.0		Spectro	>			}	927 937 938 928 939	4.0 4.0 7.0 3.0 6.0	0.30 0.02 0.03 0.35 0.05	1,17 0,25 0,25 2,04 0,28
	237.0-241.0				ı			940	4.0	0,02	0.15
; ·		Averages	: :	19.0 -	132.6	. .			13.6	3.00	Tr.

Page 2 Hole No. 22

2) 2 1 1 2			2				5			
							N	st .	١	
			<u>-</u> *				· _ V	4 1.00	~//	¥
			, .			P	100.	di jue	mayb	4
And Annal Anna		Shunsby M	ines Ltd.	Sultan, (`∷t.		Page	1 Hole	No. 25	
「「「「」」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」、「		Lat. Dep. Elcv.	10723.57 9420.69 9944.81	Bearing Dip	N 88 E 55	/.	Start Compl Depth	eted Ka		
	0.0 - 5.5	Casing					,			THAP
al an an Elsi	5.5 -122.3		tep tuff - e							
1424.4	Sister	rounded	speck chalcon pherical incl	usions, 68	3,2 few :	specks cha	lcopyri	te in cu	artz	
1999 - 1997 -	haftert,		te stringer. ture at 45 to				chalco	pyrite a	t and -	:'
戦が出る	122.3-141.5		to graphitic							7.90
altrages (subscript)	80		quartz strin 41.5 Numerous							
	141.5 24-		d slaty & I.F							
5 17 1		146.5 Fai	r chalcopyrit ght chalcopyr	e and sligh	ZnS in	patches a	nd thre	ads. 14	.6.5 -	IF
2 4 1 1 4 T	· · ·	161.0 511	ght chalcopyr	ite and Zir	nc. 161.	0 - 166.0	Slight	chalcop	yrite a	nd
	T. BC	ground.	6.0 - 172.0 F 172.0 - 177.0) - Good Mas	ss. Patch	nes cpy. &	Zns.	177.0 -	183.0 -	1
記載	-work		y, & Zns, 18 and of andesi							-
and the state	,	alt and all	alco. 194.0 Sludge (2.8'	202 01	Cood ab.	lco, mass	• patch	192	-01 -	
in and	206.0-253.0	Fine grey	tuff with ir	reg. thread	is & pate	ches cpy.	& zns.	201.0 -	206.51	
19. 19. 19. 19. 19.	DC.	includes	mass. patch of $01.0 - badly$	py. at 203. shattered h	5 (3"). precciate	206.5 -	212.01 ob. on	- Thread	s cpy.	act 57
		with tuff	Ground 2.8	' of good o	chalco [~] bu	it have 31	udgon	Quite ma	<u>esive</u>	
いるいとう	237?		At 219.0' - 4 with fractur			t zns _e fr	om 237.	U' - mor	0	
Callenge He	253.0-303.0		ned dark grad • 303.0 - 310				tz. thr	eads & s	trgs.	
の調査で	310	END OF HO	LE	253-30	= lig	n).				
- The state		Samples:		253-30 30 3 - 31	1 - 1	•	No.	Width	<u>%Cu</u>	<u>ZZn</u> .
		contrar.								
ALL STREET	141.6-1 46.5 146.5-1 52.3				- '		941 942	5.0 5.8	0.77 0.41	0.66
	152.3-161.0 161.0-166.0						943 944	8.7 5.0	0.51 0.92	0.77
	166.0-172.0						945	6.0	0.20	0.05
	172.0-177.0- 177.0-183.0	Constant of the second	annan a sa i sa mangana nga sa iga sa an ina ina ina ina ina ina ina ina ina	,		>	. 946 947	5.0	1.89	3.67
	183.0-1.88.0						948	.5.0	0.77	1.02 0000
Since State	188.0-1 90.0 190.0- 194.0						950 951	2.0 4.0	0,20 0,26	0.07 1,27
	194.0-201.0 201.0-205.5					>	954 1952 -	7.0	0.45	1.53
Wardson and	206.5-212.0					U	953	5.5	0.41	1.48
「なかとうない		Average:							•	
「東シー」	141.5-212.0							70.5	0.77	1.06
新東京の記し									•	
No shares	n.					/				
「「「「」」」「「」」」」」」」」」」」」」」」」」」」」」」」」」」」	•. •					V ·				
in range and the						Page 1	Hole	25.		
Stranger a	ма 									
西日ちゃみ									. •	

	5-15 - c + g, act. 15-28-37-C 28-37-C
	Shunsby Mines Ltd. Sultan, Ont. Page 1 Nole No. 26
	Lat. 10943.53 Bearing N 52 W Started Mar. 29/56 Dep. 9603.88 Dip 45 Completed Apr. 6/56 Elev. 9933.75 Depth 253
0-5	Casing
5 - 37	Shattered broken, <u>geathered</u> core, probable fault zone, odd specks of chalcopyrite and sphalerite, much lost core. 5 - 11 Fine to coarse dior- ite. 11 - 13 - 75% fine granular pyrite banded at 30 to core. 13 - 15 Coarse green rather fresh diorite. 15 - 28 Alternating blue quartzite and greenstone bands. 28 - 37 Blue brecciated quartzite. Lost core - 17 - 19, 21 - 24, 25 - 26, 27.5 - 28, 30 - 32.
37 - 71 good Num	Graphitic quartzite - gray, blue to dark graphitic all considerably brecc- iated. 37 - 40.5 Almost void of sulphides. 40.5 - 71 Chalcopyrite and a little sphalerite as blebs and irregular stringers often near parallel to the core. Grading into blue quartzite.
71 - 91	Blue quartzite - Hard, glassey, slightly brecciated, sparse scattered $\int QE$ grains of chalcopyrite and sphalerite.
5 31 - 94 €	Argillite - Dark gray, graphitic, fine grain, sharp contacts at 45. Almost $\int A$ void of sulphides except for small blebs in the contacts. $71 - 82$, $82 - \int A$ 94. Q^{\dagger}_{3} te!
34 - 101	Chalcopyrite Vein - brecciated blue quartite with long coarse stringers of] Cu chalcopyrite at 20 to 30 to core. About 25% chalcopyrite.
101 - 13 0	Graphitic quartzite - Generally dark graphitic brecciated quartzite inter- bedded with gray fine grained argillite bands up to 1' wide. Scattered small belbs of chalcopyrite mostly in the quartzite. 106 - 107 stringer of chal- copyrite parallel to core. 101 - 110, 110 - 129, 120 - 130, 128 - 130 Sul- phides 20% but mostly pyrite.
130 - 1 38	Andesite - Green, fine grain, scattered pyrite and odd specks of chalcopy- $\int \mathcal{G}_{\ell}$ rite.
138 - 161	Breccia - Irregular bands of andesite, brecciated quartzite and graphitic material. Sheared and broken. Scattered pyrite and odd specks of chalcopy- rite.
161 - 178	Andesite - Green, fine grain, leucoxene alteration, scattered pyrite.
178 - 180	Quartz diorite - medium grain, sharp contacts at 30 to core.
180 - 192	Andesite - as above. 44
192 - 201	Quartz breccia - while quartz with large inclusions of greenstone. Scatter-
201 - 222	Graphitic shear - graphitic, quartz, heavily sheared and broken. About 50% of core ground. Scattered pyrite and a few specks of chalcopyrite. Lost core 204 - 08, 209 - 10, 211 - 12, 215 - 16, 220 - 21. Sludge 198 - 221. 224
222 - 258	Andesite - pale green, fine grain, scattered quartz stringers and specks of] pyrite.
258	END OF HOLE.
31 · ()2 ·	to Part .
	I VWV

Page 1 Hole 26

31 . ()

	Shunsby Mines Ltd.	Sultan, Ont.	1	Page 2	l llole	26	
	Samples:	· · ·	· <u>1</u>	No.	<u>Width</u>	.Cu	<u>ZZn</u>
40 - 47 47 - 54 54 - 61 61 - 66 66 - 71	·				7.0 7.0 5.0 5.0	1.43 2.09 1.53 0.46 1.32	0.51 0.30 0.91- 1.22 0.86
71 - 82 82 - 94	· · ·	•			11.0 12.0	0,05 0,25	0.15 0.46
94 - 102 101 - 110 110 - 120 120 - 130		\rightarrow		972 973	.7.0 9.0 10.0 10.0	10.45 1.02 C.45 0.81	0.51) 0.10 0.40 1.47
192.0-201.0 198 - 221.0		Bludge		980 931	9.0 23.0	0.09 0.20	nil 0.05
	Averages:						
40 - 71 71 - 94 94 - 130 $40_{1} - 130$		•		•	31. 23. 36 90	1.42 0.15 2.63 1.58	0.72 0.31 0.64 0.58

言語にもおお

影

たちが夜にしていたいで、あてきまたのま

Shunshy Mines Ltd.Sultan, Ont.Page 1. FLat.10637.10Bearing S 87 EStartedDep.9459.37Dip - minus 45CompletedDev.9945.57Dip - minus 45Completed0 - 9Casing9 - 41Quartz Breccia - Light gray, hard and siliceous, angular to roments.Seattered fine pyrite.14 - 56Quartz Breccia - As above with sphalerite, scattered chalco-py9 - 41Quartz Breccia - As above with sphalerite, scattered chalco-py56 - 62Fault - Sheared and broken, graphitic gouge, 31 lost core.62 - 122Andesite agglomerate - Gray to light gray, soft, minor schistight	one bleb prite and 56-67 Ing. Rounded proken. Lost
 Dep. 9469.37 Dip - minus 45 Completed Depth Dev. 9945.57 Dip - minus 45 Completed Depth O - 9 Casing 9 - 41 Quartz Breccia - Light gray, hard and siliceous, angular to roments. Scattered fine pyrite. 14 - 15 sphalerite and pyrite, of chalcopyrite. Lost core 28 - 30. 41 - 56 Quartz Breccia - As above with sphalerite, scattered chalco-py pyrite 56 - 62 Fault - Sheared and broken, graphitic gouge, 3¹ lost core. 	Apr. 2/56 260 Punded frag- one bleb Prite and 56-67 Ing. Rounded proken. Lost
 9 - 41 Quartz Breccia - Light gray, hard and siliceous, angular to roments. Scattered fine pyrite. 14 - 15 sphalerite and pyrite, of chalcopyrite. Lost core 28 - 30. 41 - 56 Quartz Breccia - As above with sphalerite, scattered chalco-py pyrite 56 - 62 Fault - Sheared and broken, graphitic gouge, 3¹ lost core. 	one bleb prite and 56-62 Ing. Rounded proken. Lost
 ments. Scattered fine pyrite. 14 - 15 sphalerite and pyrite, of chalcopyrite. Lost core 28 - 30. 41 - 56 Quartz Breccia - As above with sphalerite, scattered chalco-py pyrite 56 - 62 Fault - Sheared and broken, graphitic gouge, 3¹ lost core. 	one bleb prite and 56-62 Ing. Rounded proken. Lost
<pre>pyrite 56 - 62 Fault - Sheared and broken, graphitic gouge, 3¹ lost core.</pre>	55-62 Ing. Rounded proken. Lost
	ing. Rounded proken. Lost
62 ~ 122 Andesite agglomerate - Grav to light grav, soft, minor schisti	oroken. Lost
fragments (lapilli) up to 1" diameter. 89 - 122 Sheared and the core - 89-91, 95-97, 120-122. Scattered irregular graphitic bar 92 ^t . 103 - 1" graphite with grains of chalcopyrite.	
122 - 143 Graphitic tuff - Thin banding at 70 degrees to core, black to Sulphides as bands and fine irregular stringers also fine disc grains. Mostly pyrite with scattered chalcopyrite and sphaler silicious bands increasing down hole. Lost core 33-35. 122-1 chalcopyrite. 127-137 - chalco, almost nil, 2' lost core. 137 chalcopyrite. Sludge.	seminated vite. Gray 127 - sparse 2-143 - Sparse
143 - 192 Quartzite Breccia - Blue to pale gray quartzites generally bre Occassional argillaceous band up to 1' wide. 143-160 - Scatt of pyrite. 160-171 - Blebs and fine stringers of chalcopyrite cu. 171-133 - Scattered large blebs of pyrite with minor chal 183-192 - Scattered pyrite	ecciated. Sered grains possibly 1%
192 - 205 Graphitic Quartzite - Blue to black graphitic, scattered pyrit bleb of sphalerite, very little chalco. 195-200 - Sheared and ite stringers. 1.5' lost core.	e with odd A: broken, calc- 20
205 - 260 Andecite - Uniform gray green, fine grain, widely scattered gr	ains of pyrite. 🗲
260 END OF HOLE.	
Samples: <u>No Wic</u>	ith <u>SCu ZZn</u>
041.0-046.0 breccia pyrite, chalco, sphalerite 955 5.0 046.0-051.0 """"""""""""""""""""""""""""""""""""	0.82 1.02
122.0-127.0 graphitic tuff py. chalco, sphalerite 958 5.0 127.0-137.0 """"""""""""""""""""""""""""""""""""	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
160.0-171.0breccia some chalco96111.0171.0-183.0"pyrite% "96212.0	$\begin{array}{c} 0 & & 1.63 \\ 0 & & 0.51 \\ 0.51 & 0.55 \end{array}$
Averages: 41.0 - 56.0 15.0	0.61 1.80
122.0 - 143.0 21.0	0.51 1.16
160.0 - 193.0 23.0) 1.04 0.63

ないやくてき

利用

ないた

1948 - 1840 -

!

Page 1 Hole No. 27

 \int

Hole	No.	30

Page 1

Shunsby	Mines Ltd.	Sultan, Ont.	Page 1 Holo No. 30
Lat. Dep. Elev.	11155.12 9675.74 9927.58	Bearing N 52 W Dip - minus 45	Started Apr. 8/56 Completed Apr.11/56 Depth 180
Casing	•		

0 - 11

 λ Andesite - uniform gray green, fine grain, scattered pyrite as sparse grains. 16 - 24 - Badly broken core. 83 - 110 - Badly broken core, no 11 - 130 ٦, sulphides.

180

END OF HOLE.

54

B jrt

	Shunsby Mines Ltd.	Sultan, Ont.	Page 1 Hole No. 31				
	Lat. 11350.05 Dep. 9705.19 Elev. 9932.42	Bearing N 87 W Dip - Minus 45	Started Apr. 12/56 Completed Apr. 14/56 Depth 149				
0 - 8	Casing						
8 - 38	Quartzite Breccia - Blue to gray brecciated quartzite scattered grains & irregular stringers of pyrite with odd blebs of sphalerite. 8 - 24 - Core generally badly broken with rusty fractures. 26 - 29 - Irregular 1/2" sulphide stringer running down core - pyrite, sphalerite and chalcopyrite. 29 - 38 - Almost void of sulphides.						
38 - 46.5	Trap dyke - Fine grained, dark gray green. Sharp contact at 45. Similar Jung. to andesite but appears to be a dyke.						
46.5- 57	Quartzite Breccia - Blue to gray. Sulphides almost nil.						
57 - 63 7	(Fault) Broken and crumbled quartzite. Lost core 61-62, 62, 5-63.						
63 - 75	Andesite? Cray green, generally fine grained with scattered vague pheno- crysts, also faint banding, possibly tuff or scdiments - no sulphides. J_{v}						
75 - 85	Blue Quartzies - Generally brecciated with blebs and stringers of pyrite. 4" banded graphite in up hole contact. Also scattered small blebs of sphalerite.						
35 - 1 49 ک کان ^و	Andesite - Green, fine grain generally with vague phenocrysts, Possibly altered diorite; Sulphides almost nil, Generally badly broken with rusty weathered fractures. Leucoxene alteration, 145 - 46 - Broken quartz						
149	END OF HOLE.	· ·					
75.0- 85.0	Samples: Quartzite py. blebs of	sphalerite	<u>No. Width %Cu. %zn</u> 986 10.0 Tr C.46				

時間時に行きい

 $\begin{array}{r} 8-38-e\\ 38-46-\text{Trop}(5.7)\\ 146-57-6\\ =7.63-c+266-61-63\\ -63-73-7.547\\ 75.85-6\\ 85-149-6.701 \text{ for }\end{array}$ 75. 85 -

Page 1 Hole No. 31

		·		
	Shunsby Mines Ltd.	Sultan, Ont.	Page 1	Hole No. 33
•	Lat. 10979.00 Dep. 9552.00 Elev. 9938.58	Bearing S 52 E Dip - 50	Started Complete Depth	Apr. 17/56 d Apr. 18/56 123
0 - 17	Casing Gtz	te !		
17 - 85	banding usually at 4 throughout as coarse	- Blue to gray brecciated 5 approximately, Chalcopy <u>stringers and blebs</u> also and broken, only a few s	rite scattered a little sphal	fairly uniformly crite. 17 - 20
85 - 1 23	Andesite- Gray at con	ntact, becoming gray gree widely scattered fine str	n, fine grain m ingers of sphal	assive. Scatter- crite.
123	END OF HOLE.			
	Samples:	•	No 11	idth <u>%Cu</u> <u>%Cn</u>
20 - 30 30 - 40 40 - 50 50 - 60 60 - 66 66 - 72	8" lost core Increasing sphalerite		991 992 50-60993 60-66994	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
72 - 85	Mostly pyrite		996	13 .25 1.94
	Averages:			
50 - 72 20 - 85		. ·		22.0 3.36 2.61 65.0 1.67 1.55

「「「「「「」」」」」」」」

16<u>7-1.55</u> 651

food Cu .

Page 1 Hole No. 33

	Shunsby Hines Ltd.	Sultan, Ont.	Fage 1 Hole No. 36
	Let. 10975.00 Dep. 9558.00 Elev. 9938.58	Bearing N 52 W Dip - Ninus 45	Started Apr. 20/56 Completed Apr. 21/56 Depth. 140
0 - 13	Casing		
. 13 → 33	and sphalerite as fine		ly broken. Scattered chalco .5 - irregular 1/2" stringer ost core 30.5 - 31.5.
33 - 78	patches, sphalerite, p	oyrite and sparse chalcopyr 76.5 - 78 - Blebs of pyri	
78 - 94	Green sediment? Compac pyrite crystals. Coul	t fine grain green <u>chlorit</u> d be intrusive dyke.	ic, sprinkled with fine
94 - 104		ragments - probably contac irregular quartzite patche	
104 - 111	Diorite - Gray green m	nodium grain, fine white fe	ldspar. Sharp contacts.
111 - 116	Quartzite - Blue, fine	, glassey.	
116 - 119	Andesite - Quartzite - fine chalcopyrite,	Contact material as above	118 - $1/2"$ stringer with $\int a$
11 9 → 140		lark green, sheared and bro agths. No sulphides. 122	ken, Sometimes recembles - 128 - Intense shearing,
140	END OF HOLE.	0	•
	Samples:		No <u>Width</u> ZCu ZZn
13 - 20 20 - 30 30 - 40 40 - 44 44 - 49	(very sparse) chalco & s increasing " " decreasing " " chalco almost nil chalco nil	phalorite u u	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

御御をろ

いたいないない

「ない」

and the states of the states

- 続きに見たってい

「あいないのようで、使われ

いい語れの

Average:

13.0 - 44.0

ļ

Page 1 Hole No. 36

31.0

1.65

4.87

-							
	Shunsby Hines I	.td. Sultan,	Ont.	Page 1	101e No. 35		
	Lat. 10981. Dep. 9549 Elev. 9938.	91 Dip	S 52 E -80	Started Completed Depth	Apr. 10/56 Apr. 19/56 96		
0 - 11	Casing						
11 - 62 BC	Quartzite and chert - banded chert and quartzite light gray to dark graph- itic. Banding usually about 60 to core. $11 - 31$ Scattered chalcopyrite mostly as irregular bands up to $1/2^{n}$ wide. No sphalerite. $31 - 62$ Very sparse chalcopyrite and sphalerite as widely scattered fins irregular stringers. $62 - 72$ Increasing pyrite, patches of sphalerite and sparse small blebs of chalcopyrite. $72 - 62$ Probably 5% pyrite. very sparse ephalerite, no chalcopyrite scen. $74.5 - 77$ Sheared graphite and pink calcite.						
82 - 96 (Andesite - gray	green, massive,	no sulphides,	Sharp contact a	it steep angle.		
96	END OF HOLE.				רי ני		
	Samples:			llo Wic	lth SCu SZn		
11.0-21.0 21.0-31.0	Chert some chal				0 3.98 2.70 0 1.73 0.46		
62.0-72.0 72.0-82.0	•	o and sphalerite d sphalerite		999 100. 1000 2010.	0 5% 0.46 2 + 3.87 0 0.30 0.56		
	Average:	11.0 - 31.0		20,	0 2.85 1.58		

<u>a</u>

日本語 いい

1.23

Page 1 Hold No. 35

 \checkmark

	Shunsby Mines Ltd.		Sultan, (Ont.	Page 1	Page 1 Hole No. 37		
·	Lat, Dep. Elev.	10639.01 9655.74 10000.94	Bearing Dip	N 87 W -45	Starte Comple Depth	sted .	Apr. 25/ Apr. 28/ 186	
0 - 8	Casing							
8 - 1 44	pyrite,	reccia - Gray, pyrrhotite. 78 hotite and pyr:	3 - 1" Stri	nger with splis	alerite. 119	7 - Ler	ge bleb	
144 - 166	breccia	e agglomerate : ted with graph: 146 - 47, 149 ·	ltic string	ers. Very bad	ily sheared a	and bro	ken. Ios	GAR.
166 - 178		raphitic - Blue e châlcopyrite			olack graphi	te. 170	- 176	at Ge
178 - 186	Andesit	e agglomerats .	Gray to b	iff, fragments	al no sulphie	des.		-, 67 (444-4
186	END OF	HOLE.	·					`
	Samples	:			No	Width	<u> &Cu</u>	<u>52n</u>
170.0- 176.0					417	6.0	0.41	3.41

Page 1 Hole No. 39

Shuncby Mines Ltd. Sultan, Ont. Page 1 Hole No. 51 832 N Lat, Bearing vortical Started May 29/56 330-++ Dop. 90 Completed June 9/50 Dip Elev. 19 . 1006 Depth 0 - 3Casing Gray agglomerate, relatively soft. Scattered round fragments or variolites /vg. 3 - 34 up to 2" diameter. Also irregular banding. Scattered pyrite. 34 - 97 Graphitic chert, dark gray to black, hard silicoous banding at 30 & 45 C BC degrees to core. Sharp contact at 45. Chert generally blue to gray with graphitic sections up to 6" wide. Banding Q! 77 - 135 BC varies from 60 to 30 degrees to core. Breccieted cections up to 2 or 3 ft. wide, Scattered pyrite and chalco mainly in precointed sections. 97 - 103 Brecciated, Scattered large blebs of chalco. 103 - 115 sparse sphalerite and chalco, 115 - 129.5 scattered small blobs of chalco and ophalerite. 119 - 119.5 - 50% chalco. 129.5 - 135 Large blebs of chalco & a little sphalerite. Gray lava - Uniform gray, fine grain in contact, becoming vaguely porphy-ritic down hole. 138 - 39 Sheared with graphite on slips a few speeks 135 - 146 9Ŀ 91 of chalcopyrite, 138,2 - 1" stringer of quartz and pink calcite, Feldspar porphyry - (sometimes logged as quartz diorite) vague irregular pale feldspar phenocrysts in darker groundmass. Scattered pyrite. 177 - 76 225 A? Banding at 45. Phenocrysts gradually disappear down hole. Crading into andesite, Andesite - Gray green, fine grain, scattered, leucoxene <u>alteration</u>. 227 - 227,5 - Blue <u>quartz stringer</u> near parallel to core. A few specks of chalcopyrite and sphalerite. Gradually becoming coarser grained grading 225 - 255 di? ٨ı into diorits without definite contact, Diorite - Uniform dark green, massive, varies from medium to fairly coarse grain. Scattered fine grained bands 1" to 6" wide. 255 - 314 314 - 317 Trap dyke - Reddish grey, fine grain, hard, charp contacts. 317 - 387 Diorite - as above, sometimes becoming fine grained over 3 or 4 feet finally grading into andesite. 387 - 401 Andesite - Green, fine grain as above. Gray Lava - Gradational contact, uniform pale gray, fine grain, scattered 401 - 417 9, quartz stringers with pyrite. Graphitic shearing - sheared graphite at 30. Calcite stringers, cherty blue 417 - 418.5 quartz. Scattered pyrite, A few fine specks of galena and chalcopyrite, Gray lave - Uniform pale gray, fine grain, scattared fine quartz stringers. 410.5 - 485 9L 428 - 29 porphyritic band. Gradually taking on a greenish tinge after 475. 485 - 536 And Andesite - Generally pale gray green, fine grain. Occasional bands with pale feldspar phenocrysts. 502 - 511 Mostly feldspar porphyry. 536 - 540 Gray dyke - Light gray, fine grain, hard, silicious, sharp contacts at 45. 540 - 567 Andecite - Gray green, fine grain, coattered quartz stringers up to 1/2" 150 widc, Diorite - sharp irregular contact. Fairly fine grain in contact becoming 567 - 583 medium in centre. Dark green to 581. 551 - 63 - Fine grain, gray green, 19 fine quartz carbonate stringers. Quartz Feldspar Porphyry - dark gray matrix with abundant white phonocrysts of quarts and feldspar about $\frac{1}{2}$ diam. Sharp contacts almost at 90. No -63 - 594 1 quenching at contacts. Page 1 Nole Nc. 51

	•	
	Shunsby Mines Ltd. Sultan, Ont.	Page 2 Hole No. 51
594 - 604	Diorite - as above to 600, then becomes finer gra- ionly,	ined & gray green gradat-
604 - 778	Diorite - Dark green, uniform modium grain. Cont ite above. 635 -53 - Becoming gray green & rather contact. 671-673 - Fine grained trap dyke contac grained trap dyke contacts at 45. 703.5-705 - Whi 703-708.5 - Blue quartz, fine grain, altered appe side. 750 - Gradually becoming finer grained and about 778.	fine grain, no definite ts at 70. 675 -675.5 Fine te quartz, contacts at 30. arance for 31 on either
178 - 823	Andesits - Uniform dark green, fine grain, scatto to 1/4" wide.	red quartz stringers up q
823 - 840 ^.(Diorite - dark green, compact, fairly coarse grai stringers . Sharp contact at 60 to axis of core	
897	Diorite - dark green, somewhat finer grained gran with diorite above. 892 - 94 - Becoming dark gra	
897 - 935	Diorite - Cenerally dark green, grading from medi- widths of 3 or 4 feet. Scattered quartz stringer	
935 - 937	Diorite - Uniform dark green, rather fine granula ed quartz stringers less than 1/4" wide. Sharp o 979 - 987 Becoming coarser grained.	
98 7 - 1 006	Diorite - Dark green, fine grained sharp contact medium grained by 997.	at 85 to core becoming
1006	END OF HOLE,	
	Samples:	No <u>Width ZCu</u> ZZn
61.0 - 69.0 9.0 - 83.0 83.0 - 91.0 1.0 - 97.0 97.0 - 103.0 103.0 - 115.0 115.0 - 121.0 121.0 - 129.0 129.0 - 135.0 135.0 - 140.0	Graphitic chert py., some chalco & zn. ditto ditto ditto strs. of chalco & sphalerite Chert py. chalco slight sphalerite ditto ditto ditto Grey lava slight py & chalco	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Averages: 91.0 - 135.0 61.0 - 135.0	44.0 2.27 0.79 74.0 1.60 1.27
Ano st	e dorito 897 935	, . , .
178	935 good volvers	
423 d.Ac.	iona iologica	
		657
	goo	· · · · · · · · · · · · · · · · · · ·
		J
		115
	Pa	ge 2 Hole 51

د بر الم مراجع الم

	Shunsby Mines Ltd.	Sultan, Cnt.	Page 1 Hole No. 60
- 	Lat. 10933.24 Dep. 9507.46 Elev. 9945.75	Bearing Dip -90	Startod Nov. 8/56 Completed Nov. 10/56 Depth 212.0
0,0 - 13.0	Cosing		
13.0 - 19.0	Tuff, scattered chalc	o and sphalerite in seaw	s and specks.
19.0 - 36.0	Interbodded tuff and chalco and sphalerite		cattered scens and specks of $\int T_{\perp}$
36.0 - 111.0 90 ⁹⁴ 11	45.5 - 65.51 - Minera Slight sphalerite, in	lized sphalerite and sli	
111.0-117.0	Tuff, fine grained, s	parse pyrite.]T
117.0-129.0	Chart breecia, slight	pyrite with scattered o	halco and sphalerite.]C
129.0-130.5	Possible fault zone.	Graphitic schist with pi	nk carbonate. Fine pyrite.
±30.5-1 35.0	Grey tuff, some pyrit	C.	ST
135.0-137.5	Chert breccia, minera	lized with pyrits with s	ome sphalerite.]C
.37.5-139.5	Fine grained tuff wit	h graphitic streaks.]31
-39.5-200.0	Andesite, gradational	contact with above.]91
200.0-212.0	Tuff with a few speck	s of sphalerite.]T
212.0	END OF HOLE		
	Samples:	· ·	<u>No Width SCu 52n</u>
45.5 - 55.5 $55.5 - 65.5$ $65.5 - 75.5$ $75.5 - 85.5$ $85.5 - 95.5$ $95.5 - 105.5$ $105.5 - 111.0$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Average:

45.5 - 111.0

65.5

· V

0.95

2.55

- Ada Ada - Ada - Ada	~		
2011年1月1日 - 1997年1月1日 - 1997年1日 - 1997 - 1 977 - 1 97	Charles Margar Tha	0.11 A-1	** · * 11-* 11_ 01#
加 。 译 2 图 图 图	Shunsby Mines Ltd.	Sultan, Ont.	Page 1 Hole No. 75
	Lat. 10718,22 Dep. 9505.15 Elev. 9943.07	Bearing Dip 90	Started Dec. 12/60 Completed Dac. 14/60 Depth 215 D-69-66
6 0 - 10	Casing		0-69-62
10 - 105 - T+ Pag	p shows veriation in frag	te with minor breccia ban mont - size. The banding te is disseminated and in	nakes angles of 25 - 45
, they? and	occur in bands up to an possible speck of chalc silicious breccia with	wids. 28 - 33' - agglome cpyrite. 09 - 76 - agglom patches of disseminated c	rato band. 66.8 - erato hand. 90.5 - 92.3 -
	etc - filled - fracture	. $96 - 98.6 - sidicicus b$ specks of C.F. in a $1/16$	recola with sparsely
105 - 136 act / 137 ac., lip.	in patches. Pyrite pres ress. A 1/8" wide carbo 25 - 35 with the cors -	nate band is present. Th axis, 119.6' - procks of rite, 126.1' and 127.5'	s and se outer up to 1" ac- e bedding makes angles of ' C.P. in a 1/16" wide
136 - 1.69 C	These culphides occur a graphitic tuff 1361 - 4 and fracture - fillings	tains disseminated C.P., s patches and <u>fracture fi</u> band of massive sulphid of C.P. and sphalerite. ssive C.P. and sphalerite	llings. 140.5 - 142.3'- les containing patches 140' - 9" wide band of
169 - 180.5 Je- Nucce		ne breccia - 169 - 176† - pyrite. 176 - 180.5† - " wide.	
180.5 - 22.5 215 4 203-215 4 219 180.5 - 22.5 215 180.5 - 22.5 215 215 215 215 215 215 215 21	zone with sparsely dics	201.7 - 203.51 - chloriti eminated pyrite. 203.5 - e, and chloritic conte, a	215' fine grained diorite
215	END OF HOLE.		
	Sampless		No Midth 204 32r
	Dark sheared, chert, py Chert, well min, py, C. Chert, py, some C.P. Andes, chert, slight mi Chert, breccia, some mi Chert breccia, py, some Andes. carb, graph, cli	P. n. C.P.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Average: 1.35.5 - 16	9,0	33.5 0.63 3.60
	All camples were assaye best assays	d for silver and gold	4025 2 13.20 0.01
	41)		029 0.27 0.05
• 2 	1.05 AU 3. V Ag		
	g i i i		te state

141. 1945

14. Page 1 Hele Ne. 75

Example of the second sec	Shunchy Mines Ltd.	Sulten, On	t.	Page 1 H	ole No. 76
	Lat. 10574.43 Dep. 9491.37 Elev. 9943.98		S 32 B . -65	Completed	Dec. 15/60 Dec. 17/60 230.
0 - 11	Cacing.				· .
11 - 72 Marth V	Greenstone breccia wi ous breccia with mass sections, shout 1' wi coarse tuff with spar breccia with 2" wide threads and sparse in	de of broken se specks of carbonate ban regular masse	core totalling (b) C.P. 44.5 - 59' - ds and discominat s up to 3/8" in d	graphitic ed C:P iwaeter.	$7 - \frac{1}{1.5} - \frac{1}{1.5}$ tuff and id C.P, as
	Graphitic silicious t irregular maccos of C	reccia - Cont .P.	ains disseminated	ryrite an	d C.P. and
79.3 - 99 <i>Gr</i>	Greenstone breccia en tuff with coarse frag coloured fine grained	ments and wit			
	Silicious breecia wit widely disseminated p in masses up to 1/8" and C.P. and sphalerit C.P. and sphalerite i 146' - a 3/4" fractur stringers of C.P. 15 1 foot zone of broken	yrite in sect in diameter, ite in stringe nbands up to e filled with 7! - # 3/4" f	dons, and in band 99 - 105' - spar ors of pyrite. 11 #" wide. 120': 2 marsive C.P. 146	c up to ±" sely disse 0 - 117 - 2 - 3 fzet 5 - 1621 -	wide, C.P. minated C.P. massive of tuff. spots and
172 - 224 ? dij	Chloritic greenstone 1/3" wide band of pyr present.				
224 - 230 L.	Diorite with carbonat	e bands up to	1/4" wide.		
230	END OF HOLE,				
	Samples:			<u>No Vii</u>	dth ZCu ZZa
72,0 - 76.1 72,0 - 105.0 105.0 - 109.7 107.7 - 117.3 141.0 - 145.0 145.0 - 150.5 150.5 - 155.5 155.5 - 159.5 159.5 - 162.5	Silic, breccia, py, C Chert breccia, graphi barren, not sampled. silic, breccia, C.P. silic, breccia, C.F. silic, breccia, graph silic, breccia, graph Chert, graphite, C.P. Chert, graph, py, C.I	Sph. , C.F. , C.P.	-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Average: 145.0	- 162.5	$\left(\right)$	17.	5 1.31 1.00
	All samples were asso Best results as follo		er and gold Page 1 Ho	-037 C.	79 C.02 58 0.01

•

Shunchy Mincz Litd. Sultan, Ont. Page 1 Hole No	. 77.
	. 10/60 . 19/60
0-7 Casing	
7 - 24.3 Course gray tuff with come rounded fragments and disseminated ryvit	e: Tha
W wide, band of quarty. The pyr more concentrated near fractures filled with fine grained dark colo	ite in
Wheney set	,
 24.3 - 47.5 Siliceous breacia with graphitic chert and disceminated pyrite: Constructed and patches of pyrite. 27. 21: a patch, 2" in diameter, massive galena and sphalerite. 201: 5" zone of disseminated op. an C threads of the same mineral. 29.5 - 30.51: chloritic greenstane. 33 40.51: discominated op. and sphalerite. Also patches of cp. and sphalerite less than 2" in diameter. 40.5 - 47.51: cimilar to 33.6 - 40.5 with more cp. and sphalerite. 	of d .6 - haler-0
47.5 - 93 Gray tuff with fine grained chloritic sections: The bedding makes of 25 - 40 with the core-axis. Carbonate bands, less than 5" wide 7 present as well as discominated pyrite, and stringers of pyrite. 5 scattared patches up to 4" in dismeter and stringers of cr. The co tion of cp. is greater in 62.9 - 64', 69.5 - 70.0, and in 76.2 - 77 discominated ophelerite in a band 1/16" wide.	ero 2.9 - 83 ncentra-
 S3 → 131.5 Siliceous breccia and graphitic chert with minor groenctone section Contains sections of massive op. and disseminated pyrite - 02.2 - 0 	
<pre>massive op. e.d op to ophalerite in brenciated graphitic chort. 59.7 few stringers of cp. in graphitic chert. 90.6 - 91.5: stringers an massive op. in brecciated graphitic chert. 97.6 - 1001: disseminate massive op. and sphalerite in ciliceous breccia. Stringers of cp. siliceous broccia. Cp. is more concentrated in 104.5 - 106.51: 103 1121: greenstone. 112 - 113.5: ever 50% of this section is massive and lessor amounts of sphalerite. The rest contains stringers of cp. siliceous breccia. 118.5 - 131.51: disseminated cp. stringers of p and few patches of cp. less than 4" in diameter, in siliceous brecc graphitic chert.</pre>	1: d ed aud in cp. p. in yrite (E.)
131.5 - 170 Chloritic tuff. Contains disseminated pyrite stringers and patches pyrite, up to 1/8" in diameter. Also, carbonate bands up to 4" wid def 136' - 137' broken core.	of *.
170 END OF HOLE.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
S4.0 - 118.0 ← → 31+.0 4	.90 3.6° .60 1.27 .42
All samples were accepted for silver and cold. Bred accay. Bilv 040 1 045 0	
good min	

•

- 1999年後の第二部ではようないで、こので、1990年後、1990年後、1990年にはないような、1990年後、1990年後、1990年後の1990年によったのではないようないで、

Same and the second s

いたの日本の

and the second

		· ·		,
	Shunchy Mines Ltd.	Sultan, Ont.	Page 1 Ho	le No. 60
	Lat. 10927.33 Dep. 9564,51	Beering C 79 W Dip Coller - 50-6001- 50 Dip 3001 - 48-7621- 50		Dec. 26/60 Jan. 1/61
	Elev. 9936.70		Depth	762
0 - 13	Casing			
13 - 19.0 ST	Gray tuff with some rou 18.0 - 19.0': massive p	nded fragments and sparsely yrile and pyrrhotite.	disseminate	d pyrtic.
19.0 - 62.3 C+14	Contains disceminated r pyrrhotito. Bedding pl 27.0 - 32.51: silicocus	ert, siliceous brecsia, argi yrtie and pyrrhotite and si anes are opproximately paral breccia zone with stringers 57.51: threads, stringers a	lol to core and patche	printe and -axis. s of C.P.
(++A - 4,15 (4) 2.18 2m 2.18	sections: Contains wine ranging from 0 - 15 vit patches, up to 4" in di of graphite, stringers pyrrhettic. 79.71: 1/5" sphalerite. 100 - 103" section 61.8 - 114.0, 1 stringers and petches of breccia matrix. 127.5 - breccia and greenstone stringers and patches of scattered stringers and The petches are up to 2 breccia, and miner gree and pyrite ac well as a The op. of more concent 153.51: greenstone.	a, interbedded argillite and ralized sections. Bedding y h core-axis. 61.8 - 114.0: a ameter, of C.P. and spheleri and patches, up to 1" in dia wide band of pyrite, pyrrho shows more mineralization to 19.2 - 127.5: Chert with sil f CP and sphalerite and loca 123.6': greenstone, 120.6 - with disseminated CP and sph f CP and sphalerite. 132.5 patches of ep. and lesser a " in diameter. 140.0 - 152. nstone sections with dissemi- tringers and patches of ep, rated from 140 - 145' and no	blanes make specke, stri ite. Also f imeter, of p bite, CP, s blan any oth liceous bree ally measive - 132.5: sil balerite and - 140.01: w imounts of s .41: cjert, inated op, s and some ma	angles rgers and ew specks write and nd lesser ev part of cia with CP so iccous with dely phalarite. ciliccous phalorite assive cp.
153.5 - 155.3	Tuff and breccie with c	arbonate stringers.		
155,3 - 223.7	Diorite of varying grai	n size with disceminated pyr . 189,51: 2" wide shear zone quartz band.		
228.7 - 239.0 L.	Siliceous braccia with ers and bands up to $\frac{1}{2}$ "	disseminated pyrific and pyra wide, of pyrite and pyrrhoti	chotits and te.	with string-
239.0 - 266.0 krg?	Greenstone)varying grai with stringers of quart carbonate breccia zone.	n size with disseminated pyr z and carbonates. 245.3 - 2	rite and pyr 246.21: gree	rhetite and motone and
266.0 - 762.0 <i>dig</i>		n size with disseminated py: <u>bonate string</u> ers. 273.0 - 2 ments.		
762.0	END OF HOLE.	• · ·		
	Samples:		No Wid	th <u>XOu IIn</u>
26.4 - 31.3 100.0-102.9 10.2-127.5 127.5-128.6 123.6-132.5 132.5-140.0	Barren, not sampled	aphile and py. In matrix, lesser sph.,py. e,cp,in part of matrix and	054 2.9 055 <u>8.</u> 3	$\begin{array}{c} 1.99 \\ 0.16 \\ 0.16 \\ 0.14 \\ \end{array}$
	D	$\mathcal{D}_{\mathcal{D}}^{(N)}$) Page J.	Hole No. 8	0

Shundby Mines Itd.

Sultan, Ont.

Samples: (cont'd)

. ·

いたるの目前

140.0-144.8 A Chert breccia, greenstone, op, rich matrix, lesser oph. and py. 144.8 - 143.1 148.1 - 153.1 Chert, greenstone, cp., little sph. py. Chert, some cp., py., minor greenstone

Averages: 119.2 - 144.8

All samples were assayed for silver and gold with negative recults. Eest accayc: No. 055 - 0.48 oz. Silver. | No. 060 - 0.03 oz. Gold 4.964. 171-

	. 76° 20	4.10 Ch
100 - 153.1 53.1 /6 1	f; Ca	

53' 1.47 ca. Star 13/3/4/2/RSC. 100 13/3/4/2/RSC.

Page 2 Hole No. 30 <u>%Cu</u> Width <u>:7.r.</u> <u>No</u> 4.8 3.3 5.0 4.48 0.14 057 **D**58 060 0.42 0.08 25.6 2.74 1,02 8.7 83.9

4.8

r			La Willia Liter a	فلاتنا والمقال				
		Property:	Consolidated Shunsby Claim No. S. 34	Mines Limited	HOL	E NO.	<u>93</u>	
	Sheet No. 1		Section from 0.0*	to162.4*	Star	ted: Sept	tember 1	16, 1965
		+00 N) North +20 W) Grid	Bearing N 80 E	Ultimat	Comp e Depth: 16	leted So 2 ft.	eptembei	r 17, 1965
	<u>Elevation: -</u>	•	Dip: - 45°	Propose	d Depth: 15		~~~~~	
	Depth Feet)	Description		No. of Sample	Width or Sample		Zn
	0.0 - 17.0	Casing	vario	•••				
[ve	179.0 - 19.9	<u>Chert</u> , py, a lit	tle sphal.& cpy.local	ly B'ccd.	MS 1	(3.01	0.10	0.6
Vauke.	*• > ·	Diorite, a little			MS 2	8.5	0.06	0.27
reriv	21.1 - 27.3	<u>Greenstone</u> , varia possibly mispla	ablè, some sections w ced core Z	/sphal-gal. but				
	27.3 - 28.5	Lost core (1.2')	·····?					
A	28.5 - 29.1	Argillite fracta sphal. & py. in	ured, carb.veinlets.	A little cpy.	MS 3	10.5'	0.08	2.89
C			cd., locally with much	sphal.& some cp	у.)		
. —		Lost core		<u> </u>		ſ		
		35.7 - 35.8 fain	dly broken (some misp r sphal. – gal.assoc.	w/fracts.				
A	35.8 - 52.0	Argillite (?Tuff: in bands, trace:	s) f/gr, some pyrr. s of other sulphides.	dissem., py.	MS B	13.0'	0.10	0.65
C TA		sphalgal. min dissem. sphalg (?B'ccd, altered	phases, locally band . along fracts. local gal. esp. in dark mot d) a little cpy. ve, l/col.chert, litt f sulphides	ly tled zones	MS 5 MS 6 MS 7 MS 8 MS 9	10.0° 10.0° 10.0° 10.0° <u>8.7</u>	0.02 0.06 0.19 0.01 0.02	0.3. 0.71 0.16 0.08 0.44
dyn	97.8 - 100.7		r diorite) a little p	у.	MS 10/7	- 6.51	0.23	2.84
C	100.7 - 101.6	<u>Chert</u> , massive, we sphalgal.	ell-min'd along 4 sep	arate veins with				
· A	101.6 - 103.5	<u>Argillite</u> banded cutting veinlets	d py., some sphalga s	1. in cross-				
ć	103.5 - 106.9		rk, local sphalgal. ood sphalgal., some					

. • 🔪

-

. .

٩.

1.7

٠

+

.

• • • •

• • 2.

....

فمعج

.

.

. •

.

DIAMOND DRILL RECORD

SHEET No. 2

HOLE NO. <u>93</u>

「「「「「「」」」

CONTRACTOR

inter det

en en nom so se remetidades

atd.	Ĭ
-	

V.

1977年中国的1994年

			·				\backslash
		Depth Feet	Description	No. of Sample	Width of Sample	Cu	Zn
•	A.	106.9 - 115.8	Argillite normal py. min. A little sphalgal. & cpy. assoc. with fracts.	MS 11	8.6	0.06	0.71
erd	~	115.8 - 123.4	<u>Chert</u> with diorite phases, chert locally mind'd. with sphal.	MS 12	8.01	0.08	0.38
· ·	A	123.4 - 132.8	Argillite normal py., a little assoc. cpy.	MS 13	11.01	0.05	0.44
	- C	132.8 - 133.9	<u>Chert</u> , sphal. min. in centre section	107.2-134.8	27.6	0.06	05
·	1 4	133.9 - 134.6	Argillite, py. min.				(r.r.)
	•	134.6 - 162.0	Diorite, f/gr with a little pyrite, changing very little throughout section. A few qtz. veinlets wit py. and pyrr. 145.4 - 145.7 silic. zone, dissem. sphalgal.	h		·	
1		@ 162.0	END OF HOLE				
د	•		· ·	Dip Test - (at 162.	43° (corre 0')	cted)	
				Casing p	ulled		
3 - be decret	le je		Drilled by: Continental Diamond Drilling Co. Ltd.				
could we have	AND IS	<u>P.S.</u>	E. Menard, foreman	sgd. Geo.	Checklin,	geolog	ist
3-1- be decret could be perfect bent well perfect did well perfect	•	110.0 - 125.0	Sludge (sample) covering part of chert, mineralized with sphal./gal.in which section there was a lot of lost core	MS 18	15.0'	0.C8	0.44

아파는 동영상품은 소문에는 것이 방법을 가능한 눈 사람은 것이 가지 않는 것이 힘든 것이 없다. でなる、ないで、海ームを発展の時間になっている時間になった。 and the second 1000000 HOLE No. 99 (14A) Consolidated Shunsby Mines Ltd. Property: NC 16-18 -Claim No. S.34944 dig idighter 18-181-Sheet No. 1 Section From 0.0 to 298.0 Started: October 8, 1965 ØC. -240 --257 -Al4 Dearing Flay ? Latitude: 14+ 11N.) North October 12, 1965 Completed: RS7 - 271 -LC. Grid 271-298 æ. 2 + 03₩) -45° Departure Dip Ultimate Depth: 2981 × Width of Depth Feet Description Sample No. Sample Cu РЪ 220-240-257 - 259 -0.0 - 21.0Casing Coring started at 16.5* 261 -270 1 272 - 2775 16.5 - 17.7 Chert Breccia, No. min. Diorite (?)Intr., Broken core, a little cpy. near 2nd contact 17.7 -18.3 <u>Greenstone</u>(volcs) Much broken core <u>yellowish alt.with black alt.</u> along fractures in Lt.(?), very little cpy.& sphal.minor diorite/intr. F 18.3 - 62.6 62.6 - 180.9 Diorite, variable, locally intr.into sheared greenstone to form alternating planes of each. A little cpy., sphal. & gal. locally, also py. 180.9 - 197.8 Chert, variable, light-col.to black, w/a little py.locally 197.8 - 220.1 Diorite (?) Intr. 110 Chert, black with graphite slips, py min, (but not major), in streaks, 220.1 - 239.2bands, blebs, Traces only of sphal. & cpy. Lost Core (1.3') 239.2 - 240.5his: Diorite(?)Intr., F/Gr.grey, no vis.mafics, towards end becomes 240.5 - 252.7 5. more altered & veined. Diorite (?)Intr., badly altered to greenish-grey, soft material Reg 252.7 - 256.6 with much lost core, some py. Lost Core (2.4[†]) 256.6 - 259.0 259.0 - 263.9Chert, badly broken, variable, with py. min. Lost Core (6.1') 263.9 - 270.0 270.0 - 270.3 Chert, several fragments only. Diorite, veined & altered 270.3 - 271.9 Aig Lost Core 271.9 - 277.5 Diorite, grey, sheared at 80° locally, streaky unidentified crystals. 277.5 - 298.0 @ 296.0 END OF HOLE Dip Test at 280' - 52° (uncorrected) -45° (corrected sgd. Geo. Checklin, geologi Continental Diamond Drilling Co. Ltd. Drilled by: R. Manard, Corecon

				ATTA DEUNOBY this is a	evised be	33		<u>No. 6</u>	
		Latitu	de: L 14 N	at yole #	65-2	Started: Completed:	Oct. Oct.	26, 10 29, 15	968 968
		Dopart	ure: 240 W			Ultimate D	epth:	331	
	Fe	et	Doscrij	tion	Samp] No.	le Vidth	Cu	Zn	Pb
0.0		18.0	Casing						
18.0	•	47.0	<u>Felaspar Andr</u> ively porphyr phenocrysts, diorite	esite Porphyry Tytic,fine to probably phas	coarse	F	An _. T	dia	
47.0	-	74.0	<u>Digestive Dic</u> phyry as aior cryscalling e phenos of dig	tte in short sects.contacts	soots.	dig	7	•	
74.0	-	83.0		ll defined gre gr.massive co wined at bott	meact, uni-	Jæ			
83.0	-	168.0	varies. At 94 coarse feldsp At 11.5 to fi 130.0 - 135.0	rey greenish.C C sudden gra car-andesite j ine phenocrust) a definite d riation possib	ompaction dation to orphyry. prophyry. ig.diorite	dig	•		
68.0	-	191.0	no visible bu and broken. Li fractures and dissem., sphal bands of alte 170.6 - 174.0 179.0 Grades <u>SAUPLE</u> :	act bluich alm reccia, core sh ittle py.as py i isolated ble L. Includes in arei andesite D. Alteredat 1 in Arg.below 182.0 - 189. contains abt. r str.sphal.	attered rr.in bs.Little termittent or set.at 78.0 - 179.0 0 516	7.01	0.05	0.57	C
91.0		201.0	shattered gra by py.in frac chert at 192.	Contact a faul aphitic,minera stures,qtz.str O and 195.0 - Fy. and pyrr.	lized ingers,			•	
U1.0	-	331.0	sheared and g to 210. ft.Un varies in col schistosity. diorite phase quartz 307.0 u/soopstone a	c.grey,almost graphitic and maltered there lour + amount At.240.0 coul a. Inclusions - 308.0,Alter appearance at sect.contains	silicified after but of a be F.W. of bluish ed rock 305.0 -			lip?	
			END OF HOLE.						
	Dr	illed	by: Continents	al Diamona Dri	lling Co. Siį	jned: "Will.	iam lle	ohka"	

	/	-			Ð	INIO	10	DRILL I	RECORD	2				° † ∎
	All States				NSOI	IDATI	D	GHUNSB	Y MINES	.D.		HOLE	110. (68-2
	Latitud	0:	L 14	N						Start Compl		Oct. Oct.	26, 29,	1968 1968
	Departu	re:	240	W		Dip	;	90 °	***	Ulti:	uto I)epth:	331	
Depth	Feet								Sample No.		Cu	Zn		Ръ
0.0	- 18.0	Cas	ing											
18.0	- 25.0	rew	narr	Dw 1/	/8" č	uart	zືs	ey, un: tringen l of al	CB		نە	ly ?		•
25.0	- 73.0	phen interphen flow crys pos: well Cont sect def: shea dior	nocry nocry w plan stalin ite.Ch l deve tact o tions tions ined a ared a	st of y at at el nes.G ne ro rysta slope undi well appea and a secti	f fel irre longa brade bock of allin ad pu bad pu pu pu pu bad pu pu pu pu pu pu pu pu pu pu pu pu pu p	dspan gul.i ited a s ont of dic ie sec irplis f the guish ined. ined. itrusi	r ö Int Sori Sheeh Nab Nab		ing sible sdium tains le. alline other TW and HW ligestive			tes?		
1000 73.0	- 83.0	crys crys grat Fine is r grac comp cont	stals stals ined r er gra not d dual	a fe abt. nassi lined listin but r lon.F	w gr t" i ve,c i at iguis rock <u>iner</u>	eenis ompac topcc hable types	sh in. ont e.C s n	ot of a d_at_bo	ar n- ich same			d ·		n.
33.0	- 93.0	abor	ve but	: inc v lig	lude	s pur	.pl	ish cry	to /stals ;ioclase)		a	lig		
93.0	- 130.0	cont unii felo stri into cont	tact form f ispar inger erval:	vith grain crys s t" s t v grade	dior hed; stals wide vario es in	ite t conta thro inte us ar	al in vg ere	ance 11 s tiny hout,qu	random com		-	/ · ?		
30.0	- 139.0	not crys	well	form Crys	ied.li stall	unero inity	ous	d but o <u>Furpli</u> ocrease	erystals Ish Is		d	liq?	d .	•
39.0	- 168.0	gree basi pitei	enish ic to nocry	Comp more 503 1	osit aci in so	ion v dic.V	rar lis ect	to dk.g ies fro ible ions. o core.				Gr.	•	
											·	-con	itd	

and the second sec	ISOLIDATED SHUJSBY MIN		1101.E No. 68-2 -conta
Depth Feet) 	Sample No. Width	Cu Zn Pl
/ 168.0 - 1 9	21.0 <u>Chart</u> - Compact, dk. bluich to almost black; no visible breccia- tion. Contains minor pyrite and pyrrhotite especially in factures and in isolated plebs. Little dis- seminated sphalerite. Includes sect of greenstone at 170.0-174.C. Altered and epilotized at 178.0 to 179.0. Grades into argillite below epidote.		Ċ
	SAMPLES - 516 - 182.0 -189.0 chert, bluish top and dark, bedded nr.bottom, contains abt.2% sulphide few stringers of sphalerite. SAMPLE 182.0 - 189.0	516 7.0	0.05 0.57
191.0 - 20	01.0 <u>Argillite</u> - Contact or fault zone- shattered, graphite, mineralized by pyrite in fractures + planes, quart stringers.Contains sections of che at 192.0 + from 195.0 - 196.3. One section of andesite at 199.0.Much pyrite and pyrrhotite.	rt	C+A
201.0 - 24	3.0 <u>Andesite</u> - Dark grey almost black, sheared + graphitic on top. Schistosed diorite at 202.0 - 204. schistosity abt.45° to core.Sheare and graphite+pyritized at 210.0 - 214.0.Grades into quartz-aniesite composition of abt.12.0 long.Hydro thermal alteration from 233.0 to 2	.0 ed	7 shear (1) alt (1) sclient) 11
243.0 - 25	54.0 <u>Altered Diorite</u> - top andesite grades into well defined schistose rock at 30° to core.schistosity decreasing to 254.0	ad .	dig
254.0 - 33	81.0 <u>Andesite</u> - composition and appear- ance as above; variable acidity of short sections.Altered hydro-th appears at 284.0 - 395.0 but less intense.Altered products resemble scapstone. Section 305.0 - 308.0 pyritized.Inclusion of bluish quartz 307.0 - 308.0.	erral	dig?
	END OF HOLE AT 331 .		
Drilled by	r: Continental Diamond Drilling Company	Sign	ed: William Hesh

	PROPERTY	SHUNSR)	/	— нс	DLE NO.	74-6		
		SECTION FROM_	О то_	<u>30'</u>	_ STA		·	
ATITUDE	10785N	DATUM			_ col	MPLETED		
EPARTURE	9520 E	BEARING				rimate de	PTH 2	ORF
	T	DIP		r	r		cu.	r
DEPTH FEET	F	ORMATION		SAMPLE NO.	WIDTH OF SAMPLE	FROM	COLD-4	ZH
2-H'	OVERBURD	EN						-
1= 36'	OVER BURD	HTO 11, 2.5	FT CORE	26860	5 71	4-11'	<u></u>	-
•	LOST.			26861 4	<u>q'</u>	11-20		-
• • • • • • • • • • • • • • • • • • •	4-17.5' MASE		CASIONA					-
	BANDING AT	•				,,	<u></u>	-
	PYRITE & P)				5'	20-25		-
	MINOR SHE							
	17.5-21 ABUN				6'	25-31		
	PYRRHOTITE					<u>a. a</u> /	,	-
	-EMINATED -					31-36		
	CRE. GRAP	HITIE SLIP	2 АТ	26865A		36-51	•	
	20° TO ECRE				5	41-46		
	21-22 5' BANI	DED 200 TC	CORE		<u>ر م</u>			∮
	22.5-26.5' MI				· · · · · · · · · · · · · · · · · · ·		. <u></u>	
	FILLED FRACT							
		DIAMETER						 ,-
	26 5-29 TUF			r				
	GREENISH IN	REAXIS P						+-
	24-36 TUFF- 1	ASSIVE CO	XISII TA		· · · · · · · · · · · · · · · · · · ·			
	107 W IVIII	UN VOLTE CORE	VI DIA IO					t

and the

energy Sector

41.2

da de l'attention a companya, a l'antique said antique series

	PROPERTY	SHUNSB	7	HC	DLE NO.	74-6					
HEET NUMBER	2		· .			•					
ATITUDE		DATUM	. <u>_</u>	COMPLETED							
EPARTURE	ARTURE BEARING				ULTIMATE DEPTH						
LEVATION		DIP			_ PRO	OPOSED DE	PTH				
DEPTH FEET FORMATION				SAMPLE NO.	WIDTH OF SAMPLE	FROM	EU ,	Zr	1_		
4-36'	AT 30' ONE	FOOT OF LOST C	ORE					60	财		
ONTINUED)	AT 31' PYRIT	IC BANDS PARA	LLEL					0100			
/		AXIS, CALENA?		ITE?		il.	as as				
	DISSEMIN					Marte 1.					
	AT 33' BECC	omes Aeglomi	FRATIC			P. a.	pot				
		S ARE OUTLINED			×	o g lao					
36-56'	Provide and the second s	ERT STRONG				'					
	TRANSITI	ONAL AT 3/0-	371	268651	5'	36-41	_ Mass	sto	ingers		
	AT 36.2'5	HEARING AT 10°	TO CORE	268661	5	41-46	····				
	GRAPHITIC	ALONG PLANES	X								
	CHERT. BL	UE, MASSIVE V	HTIV								
		S AND BLEBS									
	CHALLOP)	RITE & SPHAL	ERITE								
		INCH CHALECP									
	STRINGE	R.						İ			
······································	41-46'TUFF	CHERT BANDIN	1G AT 450	TOPOT	RE.						
·····		OPYRITE STRING	•	26867A		46-51					
	SPHALERITI	₹									
		IRING 10° TO FO						 			
	40- 51 LESS	SPHALERITE OF	YEINLET	rs.							
N.M.P. TORONTO-STO	AND DISSI	EMINATIONS, 5	1								

DRILLED BY

₹ 7 •

and the second sec

148

State States

and a strategy.

SIGNED

	PROPERTY	SHUNSBY		— НС	LE NO	74-6	<u>)</u>	
SHEET NUMBER	3					RTED		
LATITUDE		DATUM			. co	MPLETED_		
DEPARTURE		BEARING			UL'	TIMATE DE	PTH	
ELEVATION		DIP				OPOSED DE		
					WIDTH OF SAMPLE	FIROM COLONE TO		Z
36-56'	51-561 045	RT GREY-NEARY	VELLON	46868		1		
		& CHALCOPYRITE			······ ••			1
		MINOR PARALI						1
		LEL TO CORE,			· · ·			
	SHOULD B	· · · · · · · · · · · · · · · · · · ·	/					
56-66'		E, PARTLY BRECC	ATED	86869 H	5'	56-61	ŗ	
		F SMALL FRAC	1					
	· ·	SFT. SPHALER						
		PYRITE DISSE		86870A	51	61-66	<u>ج</u>	No
		TINGERS BAN						
•		CORE CHÁLCOP					<u></u>	1
	1	FRITE STRING	1					
	0 TO 10° T	O ECORE BUTN	EARLY	868711	5	66-71		<u> </u>
		ETO BANDING						
	569-57.5'	GOOD CHALCOPY	RITE				····	
-re -	& SPHALER	ITE						.
- Unit	61-66 6000	SPHALERITE	PLUS					
<u> </u>	3 STRINGE	rs of CHALCOP	YRITE					
	1/2 INCH WI	IDE. DISSEMI	NATED					
		ITE STRINGER						ļ
	50° TO EC	DRE AND NEARI	7					<u> </u>
N.M.F., TORONTO-STO	PARALLEL	TO CORE.						

	PROPERTY	SHUNSBY	•	нс	LE NO	74-6	2_	4
HEET NUMBER	H	/	2_то_	<u> </u>	. STA	RTED		
ATITUDE	•	DATUM		l I		MPLETED		
						FIMATE DE	PLH	
EVATION		DIP			PRC	POSED DE	PTH	
DEPTH FEET		FORMATION		BAMPLE NO.	WIDTH OF SAMPLE	FROM	SOLD S	
	······································	الشائل والإشارة الأركر الأكاني الالاريب في الكاريب والمراجع ومواصلها والمتحادثة والوريد فاستعربها والمحادي						
-6-76'		UE, VERY HARD						
•		IE, & SPHALERIT	E					
	AT 69 & 70							
, <u> </u>	1 1 1	RT MASSINE VEI	•	86872	15	71-76		
······································	1	SEMINATED OR						
	· ·	AL SPECKS OR F						┨┥
		PYRITE & SPHALE						
		PARALLEL TO CO	DRE					{ /
		GRADE.						
76-102'		E-MASSIVE NO P						
		OOD EHALEOPYRI		86873	15	76-81	·•	
		TTE, STRINGERS						
		RE, COOD SPHALI						
· · · · · · · · · · · · · · · · · · ·		PYRITE HINCHES	WIDE	0/4-		a. al		
		SEMINATED		868741	10	81-91		
	1	STRINGER 1/2 IN		<u>86875</u> A	7	<u>q1-98</u>		
		ITE, VERY MINO	- 1					
	DISSENTI	• • • • • • • • • • • • • • • • • • •						}
		REENSIONE DYK	۲					

/40

驚い

T

西方に赤井田の花をある

「変換」

-

-

	PROPERTY	SHUNSB	7	HC	DLE NO	e no74-(2					
HEET NUMBER _	5	SECTION FROM	_98_то_	1231	STA	RTED					
ATITUDE		DATUM	1								
DEPARTURE		BEARING	ULTIMATE DEPTH								
LEVATION		DIP					EPTH				
DEPTH FEET		FORMATION					SLUDGY GOLD S	ZN			
76-102'	91-98 CHER	BLUFISH TO	WHITE			Te					
ONTINUED	NERY HARD Y	ERY OCCASION	Ah		98-106						
/		CHALCOPYRITE		HOT	SAMP	LED					
	SPHALERITE,	101' SHEAR GR	APHITIC								
	20° TO CORE	E PYRITE & PYRE	RHOTITE								
		DI MASSINE - B									
	NO SULPHI	DES									
106-112.5	CHERT GOO	D SULPHIDES	AS	28676A	6.5'	106-112.5	.1				
		& DISSEMINA									
		108.									
2.5-1101	TUFF - SIA	ICEOUS, MINO	PCHAL-	24677 A	6.5	1125-11	7'				
		BANDS UPT					1				
		PHITIC SLIP									
	-	MINOR CHALE						+-			
		PORE- RHODE									
		BONATE) AS									
	& YEINLETS										
19-124'		22.5' ERAPHI	TIP	28678A	5'	19-124					
12/-1024		CHROSITE		Version		1.7 1.42		 			
	SOME COF	\	<u> </u>								
		WIDE TALC -					}	┟╌╌╌╴┼			

DRILLED BY

.

. .

. ..

÷15-

攁

「「「「「「「「」」」

時に設定

日本語の語言で見

SIGNED

.

.

....

		AMOND DI				4. 1			
		SHUNSBY		—— HC	DLE NO	14-6			(
SHEET NUMBER _	6	SECTION FROM	1 <u>123</u> TO	146	_ STA	RTED		••••••••••	
LATITUDE		DATUM			_ coi	MPLETED_			
DEPARTURE			LIMATE DI	EPTH					
	BEARING DIP						PTH		
			FROM		r				
DEPTH FEET		FORMATION		SAMPLE NO.	WIDTH OF BAMPLE	TO	SLUDGE GOLD S	ZN	4
119-124	CHALCOPYRITI	EASSOCIATE	ED WITH					 	
CONTINUED)	PYRITE STR	INGERS AT	0-10°						-
	20° & 70° T	O PORE. 1	MINOR.					┨┤	_
	SPHALERITI	E AS STRIN	GERS.					 	L
124-134	CHERT . BL		•		10'	124-134	1		ļ_
		ED WELL M		Þ		•		╏────┤	
	•	THE CHALEC					·	 i	<u> </u>
		SPHALERI	· · · · · · · · · · · · · · · · · · ·					┨───┤	_
134-140'	CHERT BRE							┨────┤	-
	-LIZED AS 1			26880A	6'	134-14	S'	<u> </u>	
	FRAGMENT	S&AS BAD	IDS 50					 +	!
		CORE. PYRI						 	
		E, MINOR C						┨───┤	-
	والمشرافية المتحدث المراجع ومحمد والمراجع ومراجع ومناحب والمحمد والمراجع والمراجع والمراجع والمراجع والمراجع و	PHALERITE &	STRINGER	<u>}</u>				 	
	OF CALENA.				- / 1		1		
140-146	TUFF - WELL	• •		26881A	6	140-146)		• · · •
		> SPHALERI							
	CHALCOPYRI.	TE AT 30° T	G CORE					<u> </u> +	\vdash
	INCH STRI	PYRITE - 0	NE			· •		┨┤	┝

N.M.P., TORONTO-STOCK FORM NO. SOI REV. 12/51

5

「「「「「「「「」」」」」

際業業

÷. 影

No. (Barrison Participation)

ŝ

のないまして

Caller So

Contraction of the local division of the loc

DRILLED BY

••••

	PROPERTY	SHUNSB	7	— НС	DLE NO	74-6	2		1
SHEET NUMBER			146' то	202	_ STA	RTED	<u> </u>		
						MPLETED_			
DEPARTURE		BEARING			_ UL	LIMATE D	EPTH 2	02	7
LEVATION		DIP					EPTH		
DEPTH FEET	<u> </u>	FORMATION	I		WIDTH OF SAMPLE	FROM GOLD &	SLUDGE GOLD S	Zn	٩.
146-149'	CHERT - WEL	L MINERALIZE	D CHANCO	26882	AB				
		PHALER ITE DIS				- 1			
	. / /	E, MULTITUDE	4						
	STRINGER	5 AT 30° TO Q	O TO FORE	-	SAMF	LING	SUMM	ARY	
		2 FOOT OF CON				cu	21.	en.e	<u>نې ا</u>
49-202		NE CONTAC		4-1	49' (145	1) 0.30	077	0.6	8
• 1		DRE- SHEARIN		106-1	49 (43	') 0.67	1.07	1.2	0
/		E GRAINED DA		134-1	49' (15) 0.80	2,07	1,8	33
	- BRE	CCIATED & BP	OKEN	R					_
	FOR 3 F	EET 7							
/	162 1/2 INCH	CHALCOPYRI	TEIN						
		45° TO PORE							
		O BE LAVA?							
- IN		OKEN ROCK							
Y/	By ?	MOVEMENT							
	168-169 ANI	DESITE ALMO	ST.					ļ!	
	DIORI-E? 1	N TEXTURE.	ZIMEH						
	WIDE ?	ZONE WITH	O° PYRITE						
	2453	CHALCOP							
	168-202 A	NDESITE HAS	A COAL	SE					
***	GRAINED	AND ESTTI	C TO TOI	-					

; *****

「「「「「「「「」」」」

こう うちょう かんてい ないまた かいまま あんかい ちょう うちょう しい

10年の第二

- Station (Stat

御日御田

Andrea Martin andre

	PROPERTY	SHUNS	BY	H(OLE NO.	74-8		4
SHEET NUMBER		SECTION FRO	M_0_1	10_32F	T. ST.	ARTED		
LATITUDE	11005 N.	DATUM			_ co	MPLETED_		
	9625 E.					TIMATE DE		RE
	l l							<u></u>
ELEVATION	· · · · · · · · · · · · · · · · · · ·	DIP	<u></u>		PR(OPOSED DE	PTH	
DEPTH FEET		FORMATION	•	SAMPLE NO	WIDTH OF BAMPLE	FROM Getos To	ELUGOT COLD-	ZN.
NO-10'	CASING			26886	5'	10-15	•46	.2
D-10'	CHERT BRI	ECCINTED	PYRITE	26887	7'	15-22	1.01	1.3
	AS STRINGER	RS AND B	ANDS_	26888	4.8'	22-26.8	.08	.0
	AT 30° TO C	ORE, SHE	ARING					
	SOME ?	STRONGE	ST AT 14	-				
	15' ERAPHI	TIC.						
5-18 Marine 2	16-18' GRAP	HITIC.	·····					
	22-26' TUFE	WITH DIS	SSEMINAT	ED				
	PYRITE - BRE	CELATED						
	24-27' CORE	STRONG	LY BROKI	EN				
	BLOEKY DR		· · · · · · · · · · · · · · · · · · ·					
	24-30' STR	ONG GRA	PHITIE					
36-431	AT 36' CON	TACT WI	THTUF	E 26889	5.2	268-32	.25	
	SHARP ANG	LE TO C	ORE				<u>, </u>	
	OLIVE GREE	EN - SOFT	, VERY			1 CP		
	DIFFICULT					Good		·
	& OPEASIC	MAL CHAN	EOPYRIT	E)/			
43-60?	GREENSTOP	TE MASS	IVE '	1.2	<u> </u>			
	(TUFF OR C							
	HIGHLY SILL)_/				
	GOOD CHALEC	DPYRITE ?	16.8-281	1				

	PROPERTY SHUNSB	7	HC	DLE NO.	74-8	•	
HEET NUMBER	SECTION FROM_				RTED		
ATITUDE	DATUM			- CO	MPLETED_		
FPARTURE	BEARING			LH.	TIMATE DE	PTH	
	DIP						
	DIP				DPOSED DE	eq.	
DEPTH FEET	FORMATION		SAMPLE No.	WIDTH OF SAMPLE	FROM	SOLD S	ZN.
43-60'	ANDESITE - FINE GRAINED	<u>, 7</u>					
CHTINUED) OF FLOWS PARTLY FRA	PTURED	26880	5!	32-37'	·02	.2.
	OCEASIONAL STRINGER	S 1/3 INCH			•		
(ad)	CALCITE CONTAINING F	YRITE					·
11	CUTTING CORE AT 30°						·
	AT 55' 1/8INCH STRING						·
	PYRITE 15° TO CORE.						
······	53-60' 2 INCH DISSEMIN	ATED					
	PYRITE.						
	60' 1/1 INCH EALEITE S	STRINGE	R				
	45° TO CORE						
60' 106	ANDESITIC TUFES. L						ļ
	FINE GRAINED CHLORI						
	AT 67.5' 1/2 INCH CARBON						1
A	ZONE WITH 20% FYRITI	E. WITH					
	SOME DISSEMINATED	1					;
	EITHER GIDE						
	AT 77-80' BREERIATED -	NUFE					
······································	BY CARBONATE VEINS						
	IN TA LINGH WINT						
	AT &I' 10 INCH CARBONI K FORM NO. BOI REV. 1451	ATE VEIN					

「大変に見る

The second second

*

	PROPERTY	SHUNSBY	}	IOLE NO	74-8		
HEET NUMBER	3.	SECTION FROM 81	то 1361	ET STA	RTED		
ATITUDE		DATUM		CON	MPLETED_		
EPARTURE		BEARING	· · · · · · · · · · · · · · · · · · ·	UL1	IMATE D	EPTH	
LEVATION		DIP		PRC	POSED DI	EPTH	
DEPTH FEET	T	FORMATION	SAMPLE N	OF SAMPLE	GOLD \$		
0-106'	AT 82' 1/2 IN	CH CARBONATE VI	=IN				
	1 7 * *	TE 30° TO CORE					
-	<i>x ' /</i>	ARBONATE VEINS					
		ECIATION LOW					
	PYRITE -	7 SOME MOVER					
****	HEALED ?	SECTION 7					
	7						
	90-106' CAR	BONATE VEINLETS					
		SOME HAVE ASSO	1				
	PYRITE	•					
	-07-103' MOT-	TLED TUFF IN APPEA	RANCE				
	105-106' HEA	VY ALTERATION AND	>			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	<u> </u>
	QUARTZ - EA	ARBONATE VEINLET	5				
06 - 136		Some WHI					İ
	T D	EVELOPING, MINO					
	CARBOATE V	EINLETS					<u> </u> '
	1 · A	INCH OF 15% PYRI	TE				
	AT 80° TO						
	AT 102.4 - 125'	HEAVY ? CARBO	ATE TAP				
	VEINING, W	11TH 5% PYRITE	•		· · · · · · · · · · · · · · · · · · ·		┇↓
	AT 128' TWO						

「「「「「「」」」」」

「「「「「「「「」」」」」

.

新.

むいう高

(

	PROPERTY	SHUNSE	27	H(OLE NO	74-8	<u><</u>		4
SHEET NUMBER	4	SECTION FROM	136_то	179 F	ET STA	RTED			
ATITUDE	د می موجه در می در می می می می می می می اور اور می می می می می می می می می می می می می	DATUM		· · ·	CON	APLETED_			
DEPARTURE		BEARING			ULT	IMATE DI	EPTH	• 	
ELEVATION		DIP			_ PRO	POSED DE	EPTH		
DEPTH FEET	Ţ	FORMATION		SAMPLE NO.	WIDTH OF SAMPLE	GOLD .	BLUDGE GOLD S		
126-1021	ANDESITIP	VOLEANICS	TIFES					<u> </u>	Т
120-140		S- MOTTLED		1					+
······································	APPEARANC		· · · · · · · · · · · · · · · · · · ·						t
		AVY CARBONAT	E VEININ	4			· · · · · · · · · · · · · · · · · · ·		Γ
<u> </u>		LETS ONE INC						·	T
		E, SOME SLI							T
		7 AT 45°							
	1	1/2 INCH WIDI							
		AT 30° TO C				•			
	7 7	2							
	·150-153' C	ALCITE VEIN Y	2 INCH W	IDE.					
		HOR PYRIT							1
		TO CORE, SO							1
	CALCITE	VEINLETS AT	70° TO 8	ORE_					
	SOME BI	RECCIATION	AT 152'					 	-
	1 -	LETS AND FI	-	\$ <u> </u>					
		70° TO CORE							:
	•	APPEARANCE	-						Ļ
	7	7 7	150'						+
		NCH DYKE BE	•		 				╞
	FINE GRAIN	NED ANDEGIT	E WITH					l	1

		SHUNG						
SHEET NUMBER	5,	SECTION FR	ом_179_то.	142	_ _ _{ ST/	ARTED		<u></u>
LATITUDE		DATUM			CO	MPLETED.		
DEPARTURE		BEARING			UL'	rimate d	EPTHC	75
ELEVATION		DIP			_ PRO	DPOSED D	EPTH	•
DEPTH FEET		FORMATION		BAMPLE NO	WIDTH OF SAMPLE	GOLD'S	SLUDGE GOLD S	
136-193	(179' CONTI	NUED SUL	PHIDESIN					
	CARBONA							
· · · · · · · · · · · · · · · · · · ·	FRACTURI	NG MORE	? ONE	<u>S</u>	AMPLI		UMMAR	
		ITHER SIL						Cv,
	10% SULP	HIDES - PY	RITE -	10-3	7 (27	0,43	0712	<u> </u>
		TS CORE						ļ
	TO PORE	<u>, 7</u> T	XKE					
	MOTTLED	ANDESIT	E -					
		?						
	FINE GRO	UNDMASS						ļ
••••••••••••••••••••••••••••••••••••••	187' SOME	PARALLEL	ALCITE					<u> </u>
	VEINLETS				<u> </u>			Ì
<u> </u>	189-193-							
193-195'	TUFES . F	INE CRAINE	D, BROWN	·				
	TO GREEN	;						
	END OF	HOLE	05 FEET.					
					1			

N.M.P. TORONTO-STOCK FORM NO. SOI REV. 12/51

-

81-1 to B1-10m

(1,1)=(1,1)+(1,1

and the second sec

NAME OF PROPERTY LE HOLE NO LE LOCATION DE LATITUDE DE ELEVATION AZ STARTED FI	EPARTURE DIP	FOOTAGE DIP	AZIMUTH	FOOTAGE DIP		REMARKS_	DWLF	
FOOTAGE FROM TO	DESCRIPTION		NO. SULPH- IDES	SAMPLE FOOT FROM T	AGE	3 3	A S S A Y S OZ/TON OZ/TON	
2. TT = 3 "Zero p 15 No.1 (10,000 4. Note-68 Aifferen 5. Survey	To O. DAILL RECORD. <u>M.W.R.</u> CUNN 19 aigestive diorite. intrusive, green-to-) (pea soup) in colour hos clearly "digest chert and sulphides w which it has come contact. f'spor. porphyry. point of coordinate Ne 10,000 E). North Ne 10,000 E). North Net (decl. 66° ±). Elev oss umed @ N,000 fl. Series holes are poten. to 1981 holes tied in 4 Etst which were loss brutton Etope by Ow	Alote Vellow which which is oysten is is is is is is is is is is is is is	6 7. 8.	ver con che che	1. mos 1. mos	vole. vole. vole. vole. grap (2 - 1) vole. grap (2 - 1) vole. grap (2 - 1) vole. (2 - 1) (2	2 AU, fgr. 5 and use 5 and use	1/100 1/

ander ander die de stander ander and ander ander ander and ander and ander and ander and ander

RECORD HOLE NO. SHEET NO. OF PROPERTY M.W.R. CUNNINGHAM AZIMUTH DIP FOOTAGE DIP AZIMUTH FOOTAGE NO. 81-1 134-REMARKS LENGTH LOCATION 10'S # 15'E of old DOH. 77 MARKSTAY DRILLING DEPARTURE 9521 STARTED JULY 28/8/ FINISHED JULY 30/8/ LOGGED BY _ D.W.L.F. FOOTAGE SAMPLE LA SCAY Su DESCRIPTION FOOTAGE OZ TON OZ/TON NO. SUL PH FROM то % 36 FROM TOTAL TO 9 Casing. 0 Greenslone - Variolitic typical Contact - Srist-chert. sharp(1/2) 9 21º 5º 0.0% 0.07 nil · 16° ' Al 3206 Contact 16 17 - Greec, intersedded black 23 17 Chert for Argillite Some Ane Coy in Fractures Some pyth. 5- 0.08 1.00 0.02 0.002 0.27 23-28° - f.gr. , black; min. mainly pyr. 3261 Ľ Prgillite 23 36- 8°- p.07 1.33 0.03 p.002 0.42 18° \$208 Sparce coy, sph., gal., Rych. - for, black A. bandingelo 280 Digilite Ľ 61 - fine pyr. cubes, e oce. blebs 42- 6- 0-37 3.08 136 chert Cpy .. Sph. 36 - 42 see note - 54-57 chert. En epy in fract. 1 - 42' - 6" 1/4" blebs sph., some [p]. below 0.25 1.83 61° 65° 4° 3210 - Black, graph. py. cubes. @80° 61 65 Argillite, 1.84 12.59 0.16 0.002 0.16 69° 4° ine62 Oce. sph. in fredures. 650 - 665 - 69° - 2.5' massive Gch. 3211 Chert-Er. 73°-86° MA. 0.21 45 69**-**80° e lesser Cpy. along 32/2 0.88 0.17 Sh. e.of. boundaries. Cpy in blees estring. 13 nA. 1.86 72 73°-80° 18" - 1/4" wide. 81/cf 1 12°' 13° Tuff stringers sph. ecpy. NOTE: 422-612 should be someled) of (ditto BOau,

NAME OF PROP HOLE NO.	ERTYLENGTH	FOOTAGE DIP	AZIMUTH	FOOTAGE	DIP	AZ IMUTH		NO. 8/	<u>_/</u> _s+	IEET NO.	4
LATITUDE	DEPARTURE DIP						LOGGE	D BY	DHI	Œ.	
FOOTAGE	DESCRIPTION		1	SAMP			Cu	The A	s MA	Au.	
FROM TO		- 7 •	NO. SUL PI	FROM	TO	TOTAL		76	OZ/TON	OZ/TON	
73° 86° 86° 109° 86° 109°	$\frac{40745-100-103}{86^{5}-91^{6}-chert, lightsch., some91^{-} 97^{5}-chert, domr, gr forr, gr forgr forr, gr for$	5 Ech. e Coy. 9 - Oph., 3 104 ht spores 1 - opy. t. (Arg). - 3 90 Coy. - 3 98 2 - 98 2 - 98 2 - 104 - 3 104 - 3 104 	1217 1278		47] <u>-</u> 100 -	6.0	0.03 3.65 1.81	2.24 4.7 8 0.05	 0. 3 9		
		Links [32/9 271	109-	114-	3.5	3.75	0.05	0.28	.002	
TORONT	112 - 1175 - Litto 1195 - 1195 - MOSSIVE		221	1175	1195	2.0	19.38	0.07	1.32	.005	
(GRIDGES -	1195 - 1230 - chert - 113 col string son - - apporent bond.	pht - ers, minior	7222	1195	123-	2.0 3.5	0.55	0.02	0:04	nil	

FORM 2

NAME OF PROPERTY	r. w. R.	CUNN.
HOLE NO. 81-1	SHEET NO	3

					SAMPL					ASSAYS		
ROM	то	DESCRIPTION	NO.	% SULPH		FOOTAGE		~.	7,	OZ/TON	OZ TON	
		Diorite - f.gr typical. (f.gr. dark green)		IDES	FROM	то	TOTAL		- 4 			
6000												
									£.4	19.	E de	
	En 184	En de la companya de										

ଚ	Ministry Natural	of	Diamond													
Ontario	Resourc	es	Drilling Log										Fill in on every pag		tole No. 81-2	Page No.
Drilling Co	mpany	MARKS	TAY	Collar Elevation	Bearing of hole from true North	Total Footage	Dip of Hole at Collar			relation to a claim.		Map Refe	erence No.		Claim No.	
Date Hole	Started	25/81 Date (Completed	Date logged 27/7/8/	Logged by		Ft. .	10	862 483	N. F					at. and Long.)	
	1. W			Date Submitted	Submitted by (Si	gnature)	Ft.	41	40 V	6 -			CUNI	<i>v</i> .		
	Cun	<i></i>					• Ft.					Property	Name			
Foc From	otage To	- Rock Type		Colour, g	Descriptio rain size, texture, mine	erais, alteration, etc.		Planar Feature Angle *	Core Specimen Footage †	Your Sample No.	Sample From	e Footage To	Sample Length	lu	Assays t	Ay A
0	7	Casing		lific ge		ne ou	terop.									
1	68	Greenston	e Vario	Idec , +	1 picol					-						
68	78	chert.	Brecci	a - 31	horp c	ontact	@ 68'			-						
				- 00	rasion	of ble	55 Sph. in e versa. (mg @30°@78'							 		
			·	Cpy	matri	X E VIO	e versa									
				- "6	ve" al	ert	·									
				- <u>q</u> p	parent	. bank	(mg @30 @78					-				
					<i>•</i>					3201	68'	73	50	01	3 1.29	
			······································		dissen	n.e.4	et-fill.						0,0		46 0.27	
				,	•		*- 6" Totts			320%	73	18	5.0	1.4	0 1.3	13.0
															P6-0.9	Į
78	124	Argilite		- 00	55-614A	ing @ 8	5	<u> </u>		1		·		<u> </u>		
		ToHs		- f.g	r. black	Arg.;	some Silice									
								<u> </u>					_	 	e al	
				18-	83 - 1	iths si	· veinlets blob sign. gol.			3203	78	83	5.0	2.0	$\frac{q_{i}q_{i}}{(p_{i})} = 0$	16 1
·					Ç	- qui	<u> </u>	1						† '		<u> </u>
				83	- 88 - V	f.gr. e	herly Arg. . occ. cpl.			3/04	\$3	88	5.0	1.1	2 3.00	IT N
					-	-									(18 - 0.4	P
				88	- 93 - A	476 83-88		 	_	3205	88	93	5.0	1.5.	4 4.86	10,00
														<u> </u>	(Ro-0	472

Form LA. 056 (11/74)

* For features such as foliation, bedding, schistosity, measured from the the axis of the core.

† Additional credit available. See Assessment Work Regulations.

R	Ministry Natural Resource		Diamond Drilling Log										Fill in on every page	Hole No.	- 2	Page
Drilling Con	npany		••••••••••••••••••••••••••••••••••••••	Collar Elevation	Bearing of hole from true North	Total Footage	Dip of Hole at	Locatio	on of hole in bint on the o	relation to a claim.		Map Refe	and the second se	Claim No		
Date Hole S	started	Date Comp	leted	Date Logged	Logged by	i	Collar Ft.	•				Location (Twp., Lot, Con	or Lat. and	Long.)	
xploration	Co., Owne	r or Optionee		Date Submitted	Submitted by (Sig	nature)	Ft. _Ft.	•				Property	Name			
Foot	tage To	Rock Type		Colour, gr	Description rain size, texture, minera		Ft.	Planar Feature Angle *	Core Specimen Footage †	Your Sample No.	Sample	Footage To	Sample Length	As	ssays †	
128	130	Diorite		Sharp @ NS	arp Cor- dior. contract e 128'											
180	132	Contact			ome C + Opy + pyr. Chert + Aro, ch. + Some Cort pt.											
782	134	Chert +														
134	4			diorit	Chart + Arg. ch. + Some Coy+ pt. + biffs on dior. contect. Diorite - for.											
Éne	6										· · · · ·					
	84'+															
			No	fe: No	fourths to	ogged (o	1 Observed)				·····					
																_
														· · · · · · · · · · · · · · · · · · ·		

a second second to prove the second second second second second second second second second second second second

"这些你们就是我们的人们的?""我们还是我们的人们还是这个人,是**那**些你的,还是我们们还是我们的人们还能够是这个你的人们的,你们们们们们的,你就是不能

ntario	Resour		Log											Fill in on every pa	ge	le No. 81-3	Page N
illing Co	mpany	MARKSTR	<i>y.</i>	Collar Elevation	Bearing of hole from true North	Total Footage	Dip of Hole at Collar	90	Locatio	n of hole in bint on the c	relation to a laim.	1	Map Refe	erence No.	Cla	aim No.	
te Hole	Started	./BI Date Cor	mpleted 9. 14/81	Date Logged	Logged by	L.F	Ft.	•	10	085.	L N.		Location	(Twp., Lot, C			
ploration	n Co., Own	er or Optionee		Date Submitted	Submitted by (Sig	gnature)	Ft.	•	9	754	8 E					/ .	
	~7.1	xr. FC					F1.						Property	Name			
Foc	otage	Rock Type			Description		FL		Planar Feature	Core Specimen	Your	Sample	Footage	Sample	Cu	A says †	Aq
From	To	Casing	Co	Colour, gr	rain size, texture, mine				Angle *	Footage †	Sample No.	From	То	Length		_	
A	8	Chert		reken -		•							<u> </u>				
8	18	Arginhite					n. py cul	6.46				8	18	no .	som	des	1
<u> </u>	10				•												
			7	ec. 4 vHs.	Bea	Ling @	dark g 55	<i>Ry</i>							<u> </u>		
18	36	chert														+	
			/	- <u>2</u> -'lig	ht sph.	0 19' E	E 21' C 3 F'- Toff.	55				18	*6	10	601	noles	
									1				<u> </u>				1
36	46	Chert		kight, E	anded	, e.b.	Minor m	in.									-
				21.5-38.	5- 300	Hered,	1-grede,	fgr.				16	46	10	50 M	ples	•
r																	
				38.5-40	.0 - MT	erb. Tot	f bleck	,									1
					o h	ringers	ne fine		1	· · · ·	<u> </u>	<u> </u>	+			+	+
.11-	11	Chert.				•	mostled, a				<u> </u>	216	21	30/17	6	of ver	41
46				-										- 10	7 43	SOVON	<u>.</u>
46				MINOC	Sch. e.	coy.											+
					ce.de la	oht a	othird	1.01	1	1	1	11	76	5.0	0.56	NA	NI
71	77.5	Chert		C- Mars Sph. E	COV.	gni - ce		- Ver	1	1	1	1					1-

.

			Log									Fill in or every pa	ige	81_3	Page No.
Iling Com	pany		Collar Elevation	Bearing of hole from true North	Total Footage	Dip of Hole at	Locatio	on of hole in pint on the	relation to a claim.	a	Map Refer	rence No.	Clai	m No.	
te Hole Sta	arted	Date Complete	d Date Logged	Logged by		Collar Ft.					Location (Twp., Lot, (J Con. or Lat. a	and Long.)	
oloration C	Co., Owner	or Optionee	Date Submitted	Submitted by (Sig	inature)	Ft.	1								
						Ft.]				Property N	Jame			
						Ft.			.				-		
Foota From	age To	Rock Type	Colour,	Description grain size, texture, miner	als, alteration, etc.		Planar Feature Angle *	Core Specimen Footage †	Your Sample No.		Footage To	Sample Length	Car	Assays †	Ag h
17.5		~~~~	Sraphi	He, bro	Ken I	b"diorite									
17.5	19.0	Chert.	Light	C.61.	Dissen	n. Hebs			3229	76.0	79.0	3.0	2.04	1.96	NA.
					<u>Sch. r.s</u>	n Elebs tringers apy.	<u> </u>							<u> </u>	+
					18 - 14	@ 45°-60°									+
Marco -	81.0														+
19.0	81.0	Diorite	F.g	mass. wit @ Bl	- broker	n- grachike.	,			79.0	81.0	N.S.			
\$10	85.5	Chert							32.30	31.0	85.5	4.5	2.98	0.54	21 .0
	00.0	011877	e lig	ht sph.	e galen	rovy CPY-py a.									
							<u> </u>								
85.5	92.0	Diorite	Shar	o. contac	1 260	12" mass. ble between s. py cubes									
			Lio,	- py. cher	6 85.5										
			Qior	ite-f.	gr 115	ss. py cubes									
87		~~~		graphike		×	1								+
12.0		Chert	Vari Son	a and	nated C	py 050°			3452	92.0	97.5	0,5	12.56	P.35	NA
98	m														1
5.41	4/13	Orierito Chert				h. 095,41									+
7.5	¶7,5 98.0	Chert	C E	st. Some	epy, 3	di- py.			1	47.3 47.5	7:5	98.0	M N		<u> </u>
1		Siorite			· · · · · · · · · · · · · · · · · · ·		+		1					ļ	+
18.0	101.0	Chert		oicol : - graphi	40		+		+				 	 	+
101	103.0	<u>Cherr</u>	<u>~ C</u>	- graphi	xC			 			1				

Ontario	Ministry o Natural Resource		Diamond Drilling Log										Fill in on every pa		No. 3	Page No.
Drilling Co	mpany			Collar Elevation	Bearing of hole from true North	Total Footage	Dip of Hole at	Locatio	on of hole in bint on the	n relation to a	a	Map Refer			im No.	
Date Hole	Started	Date Compl	eted	Date Logged	Logged by	<u> </u>	Collar	lixeo po	ant on the	ciann.		Location (Two Lot (Con. or Lat.	and Long)	
							Ft.	-				Location	· wp., 200, 0	John of Lat.	and cong./	
Exploratio	n Co., Ownei	r or Optionee		Date Submitted	Submitted by (Sig	nature)	Ft.									
							F1.					Property N	lame			
Foo	otage		T		Description	· · · · · · · · · · · · · · · · · · ·	FL	Planar	Core Specimen	Your	Sample	Footage	Sample	Cer	Assays t	Ng A
From	То	Rock Type			ain size, texture, miner		an la mant	Feature Angle *	Footage †	Sample No.		To	Length			
103	106	Chert	m	Some CI	of mi	inor sol	dark, grach.	+		3231	103.0	106.0	3.0	1.19	0.12	.07 .00
106	107	Diorite	1													
				4" Gtz	0 106.	6'	lost core	1								
	101.5															
107.5	111.0	Chert		Sande	A, ligh	t, acc	. blebs cpy				107.5	11.0	3.5	No S	ample	-
111.0	129.0	chert		~ 112.0-11	6.5'- t	moken,	bonded, graph Y.	•		3254	112 -	1165	4.5	0.38	0.84	NA.
				116.5 -	R1.0 -	c. br.	Lot. Pyr. oy e goh.			3739	116.5	121.0	5.5	0.19	0.11	.43 .20
						-	oy r gon. A. Py. cubes	•			131.0	1.89.0	8.0	No S	ample	• •
129	131	Diorite		Typica												
				· · · · ·												
[].	End (1 - 8 -		<u> </u>	Note	: Sachi above	on Sho	wing Lass			<u> </u>					<u> </u>	<u> </u>
	0	DAML .	\downarrow —				·····									
			1						 							<u> </u>
•					·											<u> </u>

-3-

Ontar		MINING ACT - MINISTRY C		SOURCES			ery new hole, but fill in top first page for each hole.						ILL IN ON		± /10. 5/- 5	PAGE NO.
	LAGA	TH: E S.		COLLAR ELEVATION 9945 DATE LOGGED	PROM TRUE JORTH	TOTAL FOOTAGE	collor				TION TO A	MAP REFE			AIM NO.	
The second second second second second second second second second second second second second second second s		DATE COMPLET	20/81	DATE SUBMITTED	Q. W. L.		<u>ft </u>	9	196 N 561 L	5			· (r p., Lor,	Con. UK L	ot. and Long.	,
/	A. 1	w.R. Co	NN.	-	this	land	fr fr	•					Y NAME	•		
F OO'	TAGE TO	ROCK TYPE		Colour,	DESCRIPTI , grain size, texture, mi			PLANAR PEATURE ANGLE		YOUR SAMPLE NUMBER	SAMPLE FROM	FOOTAGE	SAMPLE	Cu.	ASSAYS :	AgA
0	6	Casing														<u></u>
6	114	Argilite	Black 3/8:	K, F.g.	, scottere	A Ar. cu	ibas up to									
14	18	Chert.	Braca	a Q	18', sha 15', 14'-	rp Ch.→ 18'- spar	Ang contact			<u>334</u> 3	14.0	18.0	4.0	0.04	1.05	N.A.
/8	20 ~~	Argillite"	Grap	hitic, 4	ault, fo	n min s	ch. golena,									· · ·
to	63	Chert.	Lo'-	215	. core bo like gal		en (looks oir gon.			834H	18.0	31.5	3.5	0.07	3.37	NA.
<u> </u>			21.5 -	- 11	61 6	- Arg T.	Mist & Long	2.		3345	215	37.0	5.5	0:08	2.89	NA.
			27-	44'	- ch. br. occasio	, dork,	spott									
P			A14	<u>'</u>	<u>sph. 32</u>	.5 - 35.5.	No Sample.									
			~~~	- 00	Min. ex		-60.5			3346	57.0	60.5	3.5	4.99	0.27	NA
					10550r 0.910/00	sed rope seh. Ge ment.	me bornite ±101.5.									•
63	64	"Argitt ite"	Trop	ntic, 6	OCK, f.g	r. soora	e pyr.									+
				······		· · · · · · · · · · · · · · · · · · ·										
											<u> </u>					
			-													+

Ontar	DIA	IINING ACT - MINISTRY C		ESOURCES		•••	every new hole, but fill in top on first page for each hole.						ILL IN ON		E NO.	PAGE NO.
DRILLING	COMPANY			COLLAR ELEVATION	BEARING OF HOLE	TOTAL FOOTAGE	DIP OF HOLE AT	FIXED P	ON OF HOL	E IN RELAT	TION TO A	MAP REFE	RENCE NO	CLA	IM NO.	
DATE HOL	E STARTED	DATE COMPLET	ED	DATE LOGGED	LOGGED BY	<u>.</u>	collar ft					LOCATION	(Tp., Lot,	Con. OR La	t. and Long.)	
EXPLORA	TION CO., O	WNER OR OPTIONEE		DATE SUBMITTED	SUBMITTED BY (Si	gnature)	fr									
							ft ]					PROPERT	Y NAME			
FOO	TAGE		1	<u> </u>	DESCRIPT	TION	<u>ff</u>	PLANAR	CORE	YOUR	SAMPLE	FOOTAGE	SAMPLE	<u>C.</u>	ASAYS +	Ag Kha
FROM	то	ROCK TYPE			, grain size, texture, m		·····	FEATURE ANGLE		SAMPLE Humber	FROM	то	LENGTH			
64.0	112.5	Chert.	64-	the second second second second second second second second second second second second second second second s	ork C.b. 55 cm · F	61865 3	scottored									
				01	1 the we	ry. Bon flad che	A.C 60			3347	64.0	7/.5	1.5	.02	1.19	N.A.
				~ /5						3348	71.5	73.5	2.0	.85	1.28	~
			<b>A</b> .19	-97 - 0	M. 61	hork. Web co	YE Sph. In )			3349	19.0	83.5	4.5	.11	1.48	~
	1.6			0 9	0' - /*	Hab .	· · @(69')									
107	108		41	-112.5 -	<u>cn.</u> –	C 107-	108° - scattered			3350	<b>\$0.</b> 0	90.0	2.0	.84	1.57	~
			0	108.5'-	CPY YE	inter te	echod wit									
				• •						3351	108-	112-	4.5	187	1.70	~
				08- 112-	- fair Aro.	COY- OP	h., some						200		<u> </u>	
												[				
112-	116-	Provite	d.d.	- 600	coming	dig.e I	//6									
1165	118	Chert.	ligh	t 90	od Cpy	in 14 -	-1 17 6/100			3352	1165	118-	1.5	4.91	0.16	
118	119	Diorite		- 501		nement	in dd.elly									
											<u> </u>					
119	180	Chert	Arg.	- 6/00 6 00	K lami	p., pyr.	, cey, olong			1353	119-	123-	4.0	1.87	0.14	÷
13	1345	Chert	1		- 185 - W	- 4	•				123		5.0	•	0.03	
	14.4 -			- /4	- 128 - 9	ool col										[
		· · ·		- 18 - N	3-128-	- good C	573 - Arq. py 181-133			3355	128-	1345	6.5	1.44	0.58	
1345	145	Diorite														
/ •4			Ma	te: leach	ing of c	oy @ 1085	down.					<u></u>				
	GA	U														Į

CATION TITUDI EVATIC ARTED	N - 10	LENGTH 699 N, DEPARTURE948 7944 20-9-81FINISHED	9E DIP <u>90°</u> 81							LOGGE	D BY	DWC	F.	
тоот	AGE		IPTION				SAMP	LΕ			A	SSA	YS	
ROM	то				NO.	SUL PH	FROM	FOOTAG	TOTAL	76	%	OZ/TON	OZ/TON	
0	8	Casing												
8		chert bree												
10	81	Diorite type	nical pea soup	•										
		- / · · · ·	2'- chert remn											
		6	3-64											
1	151	Argilite 81	7'-68'-~~~	a. 6										
		8/ 8/	-96 - 6010. 21 , spore pri 6-114 - 6ana 0	0 1. 000 CP	<b>/</b> .						-			
		91	6-114 - bande.	55-60										
			- pyr sea clusters c 1°- 99° - pec. bleb	ubes a D	'0									
		9	7- 99 - 00c. bleb	s coy.										
		( ) ( )	4-133 - goloxies @ 60°+	pyr. coc	35									
			133-161 - band .C											
			- pyr. co - @135 ⁵ _											
			- (-/2)	6 a.a.										
					H	1	1	1	1	Ă		1	1 [	

DIAMOND DRILL RECORD						
NAME OF PROPERTY M.W.R. CUNNINGHAMI.	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
HOLE NO. 81-6 LENGTH 109'						

FORM T

HOLE NO. 81-6 SHEET NO. 1

REMARKS ___

001	AGE	DESCRIPTION			SAMP	'LE		a	L. ^	S #	Ha.
ROM	то		NO.	SULPH	FROM	FOOTAGE	TOTAL.	%	76	OZ/TON	
151	735	Chert Breccite: 151-157: C.br. graphitic 151-153 Fair Cu-Lu minieraliz Coy - in 1/4"- 3/2 blebs Lu - minor: 157-167: ditto - better Sch. 159-160. 162-169: ditto - @166-Coy Sch band. @ 30"?-50; 162'-166 169°-1735 - Very good Coy Sch	3357 3359 3359	171 £	157°- 157°- 162°- 169°-	137- 1620- 1690- 1735-	5,0 7.0	2.17 1.30	0.27 2.69 0.64 6.45	· 09 · 13 · 09 · 33	.005 .01 .008 .02
	181 188	Drorite: come remnants at chert. (Dyke) (Drorite: come remnants at chert.	_								
	.02	Diorite 3.8' lost core. ~ ~ ~ ~ ~ ~ ~	:								
194	198	diorite									

LOCATIO LATITUD ELEVATI	ON	PERTY <u>N</u> 31-7 702 N. 7944	_ DEPARTURE _ AZIMUTH	<u>949/</u> 580°E. DIP <u>73</u> °	FOOTAGE	DIP	AZIMUTH	FOOTAGE	qid		REMA	ARKS	1-7 st	EET NO.	/
<b></b>		1-9-81	FINISHED	25-9-81		·1	ال			LJ	LOGGE				
FOO	T A G E	4		DESCRIPTION			O. SUL PH	SAM	FOOTA		Cu 3	<b>Z</b> ./ 78	SSA	OZ/TON	
0 8	8 63	Casine Diorite (d.)	9	Typicald.d.; @485,5° cpy. stri	ngers		IDES	FROM	то	TOTAL ,		70			
63	80			51-54- Arg., fin 54-63- d.d. with	remnants a small stringer py. ec. blebs e sph.	c B									
80	99	chert_		No sample. brece. pyr. Bo C 83'96', CP1. j some galana G	-82' @84', Şch. 85'										
99	<del>#35</del> 133	Chert.		85-88 ⁵ - Argill. - CA5° 99-116-C+Cb. 200 Sample. 116-118 - Ch., light	occ. Sph.; minor (	で、 33 75 王	62 <del>25</del> 83 <del>64</del>	120 126	126 133	6.0	0 ·18 0.68	0.14			
				118-120 - Arg. che 120-122 - cbr., 34 128-126 = ch ar 126-133 - ch.br., epy @ 12	ene coy.										

FORM I

and the second second

FORM 1

		F PROP	ERTY					FOOTAGE	DIP	AZIMU	TH FO	<b>OOTAGE</b>	DIP A	MUTH			81-7 _{st}	IEET NO.	2/	
LO La	CATIO TITUD	N	· · · · · · · · · · · · · · · · · · ·	_ DEPARTURI	£					 							DW			
				_ FINISHED _						L	<u>H</u>				LOGGE			•		1
	ROM	TO			DESCR	IPTION				10. SU	и П_РН- DES	SAMP	L E		lu 3	tu "	1	OZ/TON		
/	:33 :39	205 190	Diòrite Chert. Diorite		148 -	154- 0	remnants . 6r., py - goo grach.) e 6r. cpy pyr., som	stringer	Ś	84 85		FROM 142/ 148	148 154:	6.0 6.5		1.00				4-
LANGRIDGES - TORONTO - 366-1168																				

tario	Natural Resource	es	Drilling Log									Fill in on every pa	ge 🕨 Hole	No. 8/_8	Page
Iling Co	mpany	H. E. S.		Collar Elevation	Bearing of hole from true North	Dip of Hole at Collar		on of hole in bint on the	relation to a claim.		Map Refe	rence No.	Clai	im No.	<u> </u>
	6 - 9.	81 Date Comple	eted	Date Logged	Logged by DWLF. Submitted by (Signature)	Ft.					Location	(Twp., Lot, C 75 N 189 L	Con. or Lat. :	and Long.)	
	$\sim$	7. w. R.				Ft.					Property I		CUN	N.	
	otage	Rock Type		Colour ar	Description in size, texture, minerals, alteration, etc.	Ft.	Planar Feature	Core Specimen	Your Sample No.		Footage	Sample Length	•	Assays †	Ag
From O	то <b>8</b>	Cosing.					Angle *	Footage †	Sample No.	From	To	Lengin	<b>}</b>		+
8	170	"Diarite"	~~U	iorite =	shloritie « yel angestive dia	we of						·			<u> </u>
		-			Sigestive dio	cite						1		<u> </u>	
170	208	chert+Arg.	1		br. + Argillites ), Dior-Chert		1					5			
				Stringer	ns sch-cpy	in long									+
					- dd. with K. Stringers C										
				. /	black C an ropey" coy in" and dissem.				3366	170	180	10.0	3.57	7.68	.27
181	183		· · · · · · · · · · · · · · · · · · ·						3367	180	186	6.0	1.89	1.99	-
					- Argill., graph stringers. Go	me oph.									
188	190			186-190'	- Argil. grap spare vis.	. 188-190 mineral?			3368	186	190	4.0	1.23	7.63	-
-			]	190-193	- Argill. span	min. (1.gr.)			3369	Mo	193	3.0	0.08	0.37	-
				193 -201	- C br. + Arg. Sphol. Min Some gold	c - good or doy.			3370	193	801	8.0	0.38	6.51	.06
					- Cbr. good 3 - light. C, So			-	337/ 3372	201	<i>dob</i>	6.0	0.89	3.85	.07
				206-208	- light. C. Son	ne sch. 5%. pyr.			3372	206	208	2.0	0.19	1.74	1-

··· | ·

* For features such as foliation, bedding, schistosity, measured from the long axis of the core.

† Additional credit available. See Assessment Work Regulations.

Tatio     Log       With Gompany     Collar Elevation     Total Polage     Dip of Hold at   Collar Clevation     Map Reference No.     Caller No.       Iting Gompany     Date Logged     Logged by     n.1     Iting Collar Clevation     Name Reference No.     Caller No.       plotation Co. Conner or Optionse     Date Sobmitted     Stormitted by (Signature)     n.1     Iting Company     Name Reference No.     Caller No.       plotation Co. Conner or Optionse     Date Sobmitted     Stormitted by (Signature)     n.1     Iting Company     Iting Company       from     To     Rock Type     Cover, pan size, stormitted by (Signature)     n.1     Iting Cover, pan size, stormitted by (Signature)     n.1       from     To     Rock Type     Cover, pan size, stormitted by (Signature)     n.1     Iting Cover, pan size, stormitted by (Signature)     n.1       from     To     Rock Type     Cover, pan size, stormitted by (Signature)     Iting Cover, pan size, stormitted by (Signature)     Iting Cover, pan size, stormitted by (Signature)     Iting Cover, pan size, stormitted by (Signature)     Iting Cover, pan size, stormitted by (Signature)     Iting Cover, pan size, stormitted by (Signature)     Iting Cover, pan size, stormitted by (Signature)     Iting Cover, pan size, stormitted by (Signature)     Iting Cover, stormitted by (Signature)     Iting Cover, stormitted by (Signature)     Iting Cover, stormitted by (Signature)     It	m No.
ate Hole Started       Date Completed       Date Logged       Logged by       Ft.         ploration Co., Owner or Optionee       Date Submitted       Submitted by (Signature)       Ft.       Image: Started in the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the s	
Ploration Co., Owner or Optione     Date Submitted     Submitted by (Signature)     Ft.       FL     FL     FL       From     To     Description       From     To     Core     Your       Sample No.     From     To       Length     -     Sample No.       From     To     Sample No.       Storife     -     Signature)       Image: Storige     Sample No.       From     To       Length     -       Storife     -       Signature     -       Signature     -       Property Name       Property Name       Property Name       Sample No.     Sample No.       From     To       Length       -     -       Signature     -	
Fi.       Property Name       Footage       Property Name       Footage       Sample Footage       Sample Footage       Colour, grain size, texture, minerals, elteration, etc.       Property Name       <	Assays †
Property Name       Footage     Property Name       Footage     Rock Type     Description       To     Colour, grain size, texture, minerals, alteration, etc.       Parameter     Protect       Voir     Sample Footage     Sample Ass:       Protocol     Protect	Assays †
Ful       Footage     Rock Type     Description       To     To     Colour, grain size, texture, minerals, alteration, etc.     Planar     Core specime how footage     Sample No.     Sample Footage     Length     Asset       08     J12     Diorite     - Si//ccoos + pyrite     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     <	Assays †
rom To Hock type Colour, grain size, texture, minerals, alteration, etc. Peduge Angle Somple No. From To Length 08 212 Diorite - Silicous + pyrite - Single No. From To Length 18 225 Storite - Liorite is bonded forced - Internation - Single No. From To Length - Single No. From To Length - Single No. From To	Assays †
18 212 Diorite - Silicoos + pyrite - Silicoos	
A 225 Storite iorite is bondod force	
foworks end of hole.	
fowarks end of hole.	
fowarks end of hole.	
And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th	
	ļ
Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th	
Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:	ļ
	<b>├</b> ── <b>├</b> ──
	<u> </u>
	1

Onta		MINING ACT - MINISTRY ( MOND DRILLING L(	OF NATURAL RESOURCES		portion of form only	every new hole, but fill in top on first page for each hole.					Ε	ILL IN ON	GE	81-/0	PAGE NO.
	COMPANY	THES.	COLLAR ELEVATION 4439	BEARING OF HOLE	TOTAL FOOTAGE	DIP OF HOLE AT	1			TION TO A	MAP REFE		D. CLA	IM NO.	
ATE HOL	T. 5	DATE COMPLE		LOGGED BY		61	10	973	N E		LOCATION	(Tp., Lot,	Con. OR La	i. ond Long.	<b>,</b>
(PLORA	-	WHER OR OPTIONEE	DATE SUBMITTED	SUBMITTED BY (Sig	nature)	<u> </u>									
	~7.					fr   fr					PROPERT	Y NAME	N.		
F00 FROM	TAGE	- ROCK TYPE	Color	DESCRIPT		· · · · · · · · · · · · · · · · · · ·	PLANAR FEATURE ANGLE	CORE SPECIMEN FOOTAGE +	YOUR SAMPLE NUMBER	SAMPLE	FOOTAGE	SAMPLE	Cu	ASTAYS +	Antag
0	8	Casing.													
8	15	Chart.	Breccia.	Sroken, /	sached,	some fair			3787		ml -	5.0	0.97	0.13	
				Lo 15'					3288				1.27		
15	26	chert	Aco black		1* 4065	and and t	<u> </u>						1.32		
			My, Olaok	, <u> </u>	/ muss. / * v	cov @ 19.5 V @ 21.0			560 1	11.0		3.0	1.36	0.70	
22	43	dyke	Dieritic	1 1 1					70.7				0.51	0.67	
23	53	Chert	Broccia -	where c	of loace	out (14)					28.0				
			· · · · · · · · · · · · · · · · · · ·	e Jo' - /"	Mass. cp	y-seh. 040							0.53		1
			<u>_</u>	Bornte G 37'- blebs	35,5' string					34.5			0.55		
			-	H6- V H8-000	6/165	CPY-SPA. Cdiss.CPY				37.5			0.11		
				52-53 -	leached	heavily.			3294	420	47.0	5.0	0.54	0.78	-
		······		- 55 - 565	1° graphi Good	To UNDER S)				47.0			0.51		-
		Tutts	Srey - borren	- 10 500	nöle.				1 .		1		4.69		1
53-	76-	Chert	Plebs epy -	-	-	<u> </u>	<b> </b>			1	1	- ·	9.82	1	70.02
76.5	59.0	Toffs	1/8 veinlet cp				<b> </b>						0.06		
59.d	77.5	Chert.	Ch. br. 666	- band	0 55 - 6	2			3298	66.0	71.0	11.0	0.07	0.40	1
नन र	87 .	Diorite	me C70'	-71 V	winlets p	r-pych.						<u> </u>			
112	- 1.0	SIDE IIT	Charp contest (NoTE - N	O FOLALTI	NY CC	NTACT.			1	1	1	1	1		1

LOCATI LATITU ELEVAT STARTE	ON	ERTY <u>M. W. R. CONN.</u> 		MUTH FOOTAGE			REMA		<u>. //</u> эн	EET NO.	
	TAGE	DESCRIPTION		SAM	FOOTAGE		Cu		S SAR	<b>•</b> •	
FROM		Parino	NU.	SUL PH	TO	TOTAL		76	OZ/TON	OZ/TON	
8	#211	Casing Core -									
11	23	Argillite no oign. min. Chert light, lost core some "granite" in c	· 5 ft.								
LANGRIDGES - TORONTO - 368-1168	<del>54</del> 525	Angrillite No organ. mm. Chert light, lost core some "granite" in c . Probably drille large "boulder" e Letritar materia neath: e30' - 2" e30' - 2" e31' - banding( graphitic G g1' - 33' - Tuff (e 33' - 30h. band (33-37' good 32) 35'-5+L' - c E cbr 30me of partic. good st (e 35' - baud: e10 e 55' - baud:	COY. 3310 10°(Flot) 30' 30' 33/3 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 33/4 3/4	36 33 37	33- 37- 42° 47- 57- 57-	2.5 4.0 5.0 5.0	4.31x 0.36 * 0.834 0.35; 0.11 ×	0.204 2.364 3.844 .3.374 1.364		0 0 	+ T

HOLE NO	». <u>81</u> »	ERTY N.W. R. CONNEMENT. -12 LENGTH 107' 10976 10976 10974 10974 10974 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10976 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10076 10		IMUTH	FOOTAGE	DIP AZ	ІМОТН	REMA	RKS		еет NO.	
FOOT	TAGE TO	DESCRIPTION	N0.	SULPH	SAMP FROM	L E	TOTAL	la 3		S CA		
0 8 11 14	8 <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	Casing Cas. Core - Chert - coarse c.br. Pyr., chl. olong fractures. sparce min. Tuff - grey. shorp contact with Arg. @ 14' @ 45° ± Arg f.gr. Fine veinlets Cpy. @ 70° - 2" graphite @ 16'			31.0	3d.0	3.0	0.84				
165 179 215 23		Tuff grev. Arg stockwork stringers & blebs of CpY. basinovly @60°, but come 11 to core (vert.). Tuff - some fgr. sph. along bede 40° Arg Arg chert deer. Cpy e incr Py.	3303 3304 3305 3305			340	4.5 9.5 3.0	3.28 0.38 0.84 6.15 0.60	1.62 5.26	0.56	NA NA .50 .002 NA	9.3-200 9.3-200 9.3-200 9.3-
LANGRIDGES - TORONTO - 368-1168	32 34 42 2(47 48	some to cubes pyr. dissent.		1.5 20.5	n ^e (	• •	5.0 C 8.5 C 5.5	J. <del>8</del> . J. = <u>6</u> . 15 = <b>3</b> . <del>2</del>	2:57 15:40 17:47		5-5- 	12.9 20-2 20-2

LOCATION	DEPARTUREDIP						R EM A		Qn/c	Ţ,
FOOTAGE FROM TO	DESCRIPTION		NO.	S A M P	L E FOOTAGE TO	TOTAL	lu 36	Tre A	S HA	OZ/TON
48 48 ⁵ Diorite 48 ⁵ 48 ⁸ Chert 48 ⁸ 48 ⁸ Chert 48 ⁸ 65 Diorite 75 77 Chert 77 79 Diorite 79 84 Chert. 84 85 ⁵ Diorite 85 ⁸ 87 Chert 87 88 ⁹ 88 ⁵ 89 ⁰ 89 [°] 89 ⁵ Chert -	cherty.	horpebo some ng eBA soh. 3"	5 23.8	27= 1 <b>85.5</b> 77.0	<del>****</del> 88,5	<b>3.0</b>	n · · ·	0.48	NA	NA 0.002

21

FORM

Ontar		NINING ACT - MINISTRY OF N MOND DRILLING LOG	NATURAL RESOURCES			every new hole, but fill in top on first page for each hole.						ILL IN ON	SE HOL	E NO. 1-13	PAGE NO.
		1. E S	COLLAR ELEVATION GG44	BEARING OF HOLE T	OTAL FOOTAGE	Collor 90			E IN RELA	TION TO A				NIM NO.	
ATE HOL	E STARTED	81 Seft. 11/8	DATE LOGGED	LOGGED BY		ft [		033 #			LOCATION	(Tp., Lot,	Con. OR Lo	t. and Long.	2
	TION CO., O	WNER OR OPTIONEE	DATE SUBMITTED	SUBMITTED BY (Signa	ture)	<u>6</u>	9	571	E						
	$\sim$	7. W.R.				ft   ft					PROPERT		UNI	v.	<u> </u>
FOO'	TAGE TO	ROCK TYPE	Colour	DESCRIPTIO , grain size, texture, mine		**************************************	PLANAR FEATURE ANGLE		YOUR SAMPLE NUMBER	SAMPLE	FOOTAGE TO	SAMPLE	lu	ASAYS +	A.
0	18	DIORITE		· · · · · · · · · · · · · · · · · · ·				<u> </u>		1					4
18	30	Chert	Broken Scotterad No Samp	cov, se	h. cpy	leeched; y elsis	· · · · · ·								<u> </u>
30	46	chert	Ch. brec No somp	-		Grea MM.									
46	66	chert				55-'57'			3370	52 ⁵	61=	8.5	0.33	2.07	.01/
4	10	chert	light co			0 55°			3321	"	10	4.0	· 07	.06	.01/.
			669'-	Gtz-fille	. fracte	VIC C 30°									
10	101	Diorite								*					
			Note		' lost a	core 61-65									<u> </u>
				Should "Gre 30 Water											
			· · · · · · · · · · · · · · · · · · ·	leaching	lost m ng cpy e	18'+								· · · · ·	
															1
															+
									1		+	1			1

.

HOLE NO. 81-149 SHEET NO. NAME OF PROPERTY <u>M.W.R.</u> CONN. HOLE NO. <u>81-14A</u> LENGTH <u>188</u> AZIMUTH FOOTAGE AZIMUTH FOOTAGE DIP DIP REMARKS ORILLE) @ 81-14 . (81-14 LOCATION last barrel & bits @81') LATITUDE 110.31 N. DEPARTURE 9534E ELEVATION 9950 AZIMUTH _____ DIP 90 LOGGED BY ________ STARTED ____ FINISHED FOOTAGE Cu LuASSAYS SAMPLE DESCRIPTION FOOTAGE SUL PH FROM то NO. OZ/TON OZ/TON 7% FROM TOTAL то Casing. 10 0 chert . _____ 10'-27'- Sil. chert (semi-dig. chert - no sig. min.) 27-46 - C + Cbr. . 14. fair scholg 123 10 @43'. 10 somale \$6'-65'- C "("Er. - 10" good In @ 14-65 Offerwise 65-81- C. Cor - 6" good in @14 otherwise- nil. 95- 97- 1.5 4.1 0.06 - 15/. Coy. - large 6/063 100⁵-111° - broken, grochitic cherty A. Significant 11°-118⁵ (cpy 6/865 & broken 4. good cpy. 3000, 5907 (75%. core redovery) 5907 104° 3.5 0.06 0.04 1005  $\begin{array}{c} 10 \text{ at} & 111 \stackrel{\circ}{,} & 7.0 & 0.33 & 0.08 \\ 111 \stackrel{\circ}{,} & 118 \stackrel{\circ}{,} & 7.5 & 1.83 & 0.01 \\ 118 \stackrel{\circ}{,} & 188 \stackrel{\circ}{,} & 34 \stackrel{\circ}{,} & 0.38 & 0.02 \\ 118 \stackrel{\circ}{,} & 188 \stackrel{\circ}{,} & 34 \stackrel{\circ}{,} & 0.38 & 0.02 \end{array}$ 1215 1240 2.5 0.38 0.01 111-1185 _ as above 5910 1185-1230 - CER. Miner. Min . Diorite _____ mottled. fisprs. appear. "fluxion" - flattened -123 128 drawn out -

# DIAMOND DRILL RECORD NAME OF PROPERTY M.W.R. CUNN. HOLE NO. 81-4 LENGTH 81.4 LOCATION 10033 DEPARTURE 95.37 LATITUDE 1033 DEPARTURE 95.37 ELEVATION 97.0 Azimuth DIP STARTED STARTED SAMPLE LOGGED BY DESCRIPTION DESCRIPTION SAMPLE SAMPLE

FORM I

HOLE NO. 8/-124 SHEET NO.

001	AGE			DESCRI	PTION					SAMP			La	Thes "	SSA	YS	
ROM	то							NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	- 76	<b>7%</b>	OZ/TON	OZ/TON	
0		Casing			- 9		1 6-20										
8		Erst. V.	: 01	2' 4. 0	930°.	Tr. Cr	rh. <b>band</b> 3 1			•							
12	28	Chert		- grom	e 21	222. 69	n d. e 55°						×,	×			
			2	25				3325	+	12°-	28-	6.0	0.06	0.02			
	225	Toff.		· ·	/	60t 1.9					1	ł	1 347		1		
28	30	Toff. E	¥	Yr. 60	nd.@60		- 3 ( F 27 5	3326		ت ^د 4 تو	392	4.0	-/8				
235	46-	Chert		mass.	E bar	nen, exc h. bana nss pir.	34 - 39 5 @ +0	2327		655- 740-	12 - 81 -		.09	.66			
	10		-	_ 30me 85/2 -	z / me	255. PT.	e some	832 832		74°-	81-	7.0	. 74	.42			
				CPY. C	750 ' "		e source ch. Epymh										
				@ 45-	46', 1	/amin. c	ch. Epym										
	٢			@ 80 @ 48 -						~	<u> </u>						
6	49	chert -		048 - 10/. 6	Garren			3325					· 755 	0			
195	52'	Toff.					- 10	*	<b>K</b>	74	-						
2/		Chert-		. re/. E	arren.	10.50						÷.					
4		chert-		m	@ 72 E	- 72', æ	rmded										
				Sparce	En - C	some ga	lena.										
		NOTE															
			PRODA	G TH	E KAS	7 6 4	COLE					01-7	3	17 7	45	X Con	10

Onta	rio DIAI	MINING ACT - MINISTRY OF MOND DRILLING LO	G			Start a new page for e portion of form only or	n first page for eac	•					E	LL IN ON	ЭE <b>8</b>	e no. 7 <b>-15</b>	PAGE NO.
DRILLING		<b>≠ ∈ 5</b> .		ATION 9939	BEARING OF HOLE	TOTAL FOOTAGE	Collor	76°	FIXED P	N OF HOLI	E IN RELAT	ION TO A	MAP REFE	RENCE NO	CLA	IM NO.	
DATE HOL	T. $9/8$	DATE COMPLETE	ED DATI	E LOGGED	LOGGED BY		ft	0	110	032 939	N		LOCATION	(Tp., Lot,	Con. OR La	t. and Long.	,
		WNER OR OPTIONEE	DATE	SUBMITTED	SUBMITTED BY (Sig		ft		9	939	E						
	~7	. w.R.					ft		-				PROPERTY	NAME	CUN		
		1	<u></u>				ft						l	·····			Hald
FOC FROM	TAGE	ROCK TYPE		Colour,	DESCRIPT grain size, texture, mi	inerals, alteration, etc.			PLANAR FEATURE ANGLE	CORE SPECIMEN POOTAGE +	YOUR Sample Number	FROM	TO	SAMPLE	Cu	ABRAYS +	Agite
0	7	Cosing		· · · · · · · · · · · · · · · · · · ·													
•7	22	Chert	brace.	14-	15 foir	CPY m	•			3317	13	21	8.0	0.41	0:36	NA	
			······································		11: C.D	15 foir 13tices. 1. spore 1. spore	Min So	ne									
22	26	Dyke	Diorit		borren	¥											
L	42	Chert	1	•		d Cpy, s	one s	oh.									26/
				34	cpy.	L CPY S Massive graphite	28 - 29 6 (3 ⁻ )	.3			33/8	86.0	302	4.2	6.54	0.8%	- 35/.005
				<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	- / .	<u>ΥΓαρπίπς</u>											 
			30	42	- Med	· Co/. C	hert be	COM.			3319	30.2	42.0	11.8	0.14	0.18	NA
					Decreas	· Col. c. eeds e ing coy pyr te	e incr.	end									
44	97	Diorite															
	E	1097'															
																	<u> </u>
			·····		· · · · · · · · · · · · · · · · · · ·												<b> </b>
																	+
					· · · · · · · · · · · · · · · · · · ·												

NAME OF PROPERTY <u>M.W.R. CUNNINGHAM</u> HOLE NO. <u>81-17</u> LENGTH <u>51</u> HOLE NO. 81-17 SHEET NO. AZIMUTH AZIMUTH FOOTAGE DIP FOOTAGE DIP REMARKS LOCATION LATITUDE 11332 N. DEPARTURE 9559 E. ELEVATION 9973 AZIMUTH DIP 90 STARTED SEPT. 17/81 FINISHED SEPT. 17/8/81 LOGGED BY D.W.L.F. FOOTAGE SAMPLE ASSAYS DESCRIPTION FOOTAGE NO. SULPH FROM то 26 76 OZ/TON OZ/TON FROM TO TOTAL 9 Casing. 51 Diorite - typical pa-soup d.d. (dd) occasional remnant 0 9 chert - broken - more dioritie in goots. No visible mineralzation peo panyles (This hole was to check the down-dip mineralization in \$16 - and missed.) (In doite of chert exposure on the east face of the accorponent, a hole in the section, about to' and of ST-15-17 and @ 55 oust 15 warrantal) @ 10 W er DDH & e 75 Vertral

•	HOLE NO	o. <u>81</u>	ERTY N. W. R. CUNN. -18 LENGTH 91 FT.	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH		NO. 8/	<u>- /8</u> _{st}	IEET NO.	/
E	ELEVATI	on <u>9</u>	341 N DEPARTURE 9598 E 976 AZIMUTH EAST. DIP -80 001.2/81 FINISHED 001 \$181						1		ĮWŲ		
	FOO	TAGE TO	DESCRIPTION	N	0. SULF	SAM F	FOOTAG	E	<u>lu</u> 3	<u> </u>	OZ/TON	V Hec OZ/TON	
	0 8 ⁻	8 42°	Dionite: Dig. Dio. in cooing core. (al) Chert: 8-15: good sch., losser cpy chert: 6. both in blobs estringers sph. bed. coo? some galena along fract	. 3: .'	91			7-			V0.05	0.00Z	
			15-20: some digestion@16'. cb. minor minerolization 20-28: good sph. in blets & cb. Stringers. 22-26 ⁵ .	53 33	72 73	15°= 20°- 28°-	20°	8-	.03 .05	1.56 0.92			
			28-33: fair sph. minor cpy. cb Some galance 33-37: mottled cbr. slight cb-al. digestion. no sig. min cb-al. digestion. no sig. min 37-47: partly dig. chert-some sphalarite remnants. No So	55	74	28°-	<u>33°</u>	5-	0.14	1.14			
- 366-1168	17- 100 1 5	605	Drorite: 42-65: d.d. (dd) chart: light col., pyrite stringers (acc					r					
ES - TORONTO -	60 ⁵ 64 ⁰ 68 ⁵	64 65 ⁵ 74	Chert: cbr. light Sch. ePyr. Dior. (dic)	11	75	64 ⁻	1	45	1		1	ail	
LANGRIDG	74 82 86	87 86 91 END	Dior. Chert: tor. fair sph., heavy galena. Dior : some d.d.	33	<b>R</b> 6	82-	\$6	° 4°-	0./5	9.77	0.07	nil 81 - 8 01	

FORM I

LE NO CATION TITUDE	81. 1/0 1/0 1/0	ERTY <u>M. W. M.</u> LENGTH LENGTH <u>203 N</u> DEPARTU <u>76</u> AZIMUTH <b>061. 1/81</b> FINISHED	75 +1. RE <u>9576 E</u> . <b>GAST.SIZE</b> DIP 60			FOOTAGE			in	E ST	in	error. error. ek, op) IUF.
ROM	A G E TO		DESCRIPTION	NC	2. ISU P	SAMP	L E FOOTAGE		lu.	<u>Tu</u>	S SA	OZ/TON
0 5-	5	Cosing. Diorite (de) Chert	55- 14 ebr. fai		D. SULP IDES		то 14 [°]	тотац 8,5	.47			0.002 JA
5=	£ <b>4</b> *	A	еру. 14°- 19 ⁵ - сбг с мілог п 13 ⁵ - 13 ⁵ - А с35°.	xid: - incrol. vf.gr.	78	140	235	5.0	,05		7	
			4-nely 010 30-11-235- 21-235-	5. d.						8-12	A. A.	an. Nil
	-		27°-40' - A, tra - 27-31-	acel no signing 590	61	Sec. 1	31°	4.0				-002 .*
			- 31-405- - 405-45 - 405-45 - 45-75 - 4" 50h	nor min . Arg. c e.c.b. 59 - C. br. Min.mi. 590 - E 1/4" b/ebs		31- 40-	40 ⁵ 45°	9.5 4.5	0.51 0.16	0.33 1.64		
Eur	e		E GHVING - 1" bleb (no so 14 ⁵ -75° - fair to in strin dissemb	good Coy, Sch. St.	64	74 ⁵	75-	0.5	0.88	6.43	0. 14 Az	0.002 Re

Ontar		NINING ACT - MINISTRY OF			ige for every new hole, but fill in top n only on first page for each hole.	•					ILL IN ON		LE NO.	PAGE NO.
A	E STARTED	4. E. S. DATE COMPLETE 7/81 SEATIS WNER OR OPTIONEE 7. W. R.	DATE LOGGED	D. W.L.F	AGE DIP OF HOLE AT collor   70 ft   ft   ft   ft   ft	- 11	an of hol Point on t 203/ 5761		ION TO A	PROPERT	(Tp., Lot,		AIM NO. of. and Long.	<b>}</b>
FOOT FROM	TAGE TO 6	ROCK TYPE	C•	DESCRIPTION lour, grain size, texture, minerals, alterati	ion, etc.	PLANAR FEATURE ANGLE	CORE SPECIMEN FOOTAGE +	YOUR SAMPLE NUMBER	SAMPLE FROM	FOOTAGE TO	SAMPLE LENGTH	Cu	As ys +	AglAu
6	15	Diorite	•	te - broken.									· · · · · · · · · · · · · · · · · · ·	
15	21	Chert	Ch. brecc. Slight a Cet. Sporce	- JOMC MO It. Jlight Jome mossiv MIN.	e chert.	<u>.</u>		3335	15.0	21.0	6.0	.08	158	NA
21-	255	Chert	Chert- 6/2 C 23-25	ack - fair to.	good Cu-h			3336	21.0	45.5	4.5	. 49	1.47	NA
25.5	50.0	Argill.	seme Sph. in	black) - moseiv colcite stringe "tractures" (bri gr dissemine I" Cpy.	ers eaks)			3337 3338 3339 3340 3341 3342	\$5.5 30.0 34.5 39.0 44.0 48.0	48.0	4.0	·06 ·50	2.47 3.69 2.96 0.31 3.74 4.02	~
•			39-50 E Sph: Contac	es obove, be + galena, towa. + C 50'	ras diorito			3339				0.54	2.96	0.09 cil
50.0	<b>F8.0</b>	Dorite		chtly broken (no graphi)										•
	Eud	.058	·											

,

				ILL RECORD	<b></b>		<b>.</b>	- <b></b>		······			-21	IEET NO.	/
	NAME O	F PROP	ERTY 7.	W.R. CUNNINGHAM	FOOTAGE	DIP	AZIMUT	H FOOTAG	E DIP	AZIMUTH		ARKS	SF	IEET NO	
	LOCATIO						ļ			l					
			145 N. DEP	ARTURE 9570 E			ļ			L					
,	ELEVATI	ON	9972/ AZI	MUTH DIP						<b></b> ]			-		
	STARTE	. <u> </u>	17. 16 FIN	MUTHDIP ISHED		I	1	<u> </u>		L]	LOGG	ED BY 📈	2.W.	L.F.	
	FOO	TAGE			<u> </u>			SAN	PLE		Cu	Ľ.	5 Mg	Y 5 A.	
	FROM	то		DESCRIPTION		,	NO. SUL	PH FRO				7%		OZ/TON	
	0	8	Casing										1	[]	
	-			- silicified e d.d.	orite										
	8	24	"Drorite"	_ 050°					1						
				- massive - no sign	min										
	24	27		- Massive - no orgin		•									
	27	34	"Diorite" Chert	- silic. e d.d. e45°											
		كنيروا	Phank	_ mass. @70°@38'	~ /										
1	34	345	Cheri	@40.5 -> 44.0 diss	5.50h.	ε									
				- @40.5 - 44.0, diss Cpy. in small bands veinlets. No cample	e 000										
				veinlets. No cample											
	کر ا	0	im	- broken e lightly grad	chite	2		· 73	7.0	2	.58	.06	NA	NA	
	45-	48	nn "Dror ite" Chert	- Silie. (d.d.).		2				1	2.15	.20	NAF	NA	
	480	483	Dearite	- Silie . (a.a.) .		3	33/ 17	19 78-	- 1.0	2	2.15		0.13	nil	
	195	650	chert	- mass. e cbr.	, 5										
	70			- Hass & EON. - few blebs cor @ 57', 6 - @61'; minor veinlets	ø', <del>e</del>										1
				all', minor veinlets	COY.										
1		0	61 4	- breccia.											
t satisfied	65	73	Cher.	- Hobs & Aringers Cor	1046,6	9,									
				- breccia. - blebs & Aringers Coy e, in C.br., from 10:	73 - 5										
				brebs. Cpy. in interste	es.							1			
N P 2				- 10-10+, dd.	-										
				- remnants -" lior".											
∧ ⁶ [	73	75	·····	- remnight of the contract of											
√ ¹ ' ♥ Sg	75	17	Diorite	- d.d.											
GRIC	75 78	83	Drorite	- broken, Silic.	60 mm	<b>n</b>									
LAN	03	ac	~ (eud)	-117-18 - Golten, graphing some epy. remnants											
FORM 1	0	70		(verne ep) en anno	•	1									

HOLE NO. 22 SHEET NO. NAME OF PROPERTY M. R. - CUNNINGHAM AZIMUTH FOOTAGE DIP AZIMUTH FOOTAGE DIP HOLE NO. 81-22 LENGTH 76 REMARKS LOCATION ____ 90° LOGGED BY _D. W. L. F. FOOTAGE SAMPLE Cu Tu " SHA Y fre DESCRIPTION NO. SUL PH-FOOTAGE OZ/TON OZ/TON FROM то TOTAL FROM TO Casing 12 0 Chert 13 - Casing core Cbr.+ mass. 12 good Coy-Sch, - ad mixed einkred. 4°- 0.70 4.77 - NA NA 4°- 0.17 1.62 ~NA NA 115 .05 0.68 ~NA - ANC 16° 21° 325-13³ Foreign _ broken, <u>C.gr. diarite</u> 13⁴ 16⁻ Chert _ br. tair In, dissen. E bands, 14^{*}-1[°] In-Pyr. Minor Coy. 17 Siorite _ dyke. 20 Chert _ ac 123 10 12-170 21-(This moy be a large boulder. VNA- Male + ske 13° 13³ e/14 @ \$7--lat core - 21 26 16 30 Chert - as 133-16° 20 17 Chert+A - cor. + Ang. - contortels. hoot core - 4' lost core- remnants are graph. c-br. Highly graphitic edb'. only vis. min. is Pyr. cutos 21 do 26 21 27 ? _____ Some foreign (1) donte? 30 Chert ______ Br. 27°-275. The state? 1 Diorite @ 21th 1 dictrice 27th-30'- 2.6' loot core 31 Arg. _____ graphitic. 355-1/2" blabs Goy. Interction @ end. of Arg. heached @ 31" -5mail - 1/32 26 27 -07 3322 +.77 23 77-1325 తేం 077 ·++6Z 24 77-----33 Chert ---- minor Zu, specs galena, 1/2 Norite no vis epy. 31 Dorife 16 33

FORM I

HOLE NO. 81-23 SHEET NO. 1 NAME OF PROPERTY M. W. R. CUNNING HAMT AZIMUTH AZIMUTH FOOTAGE DIP FOOTAGE DIP HOLE NO. 81-23 LENGTH REMARKS. NO MINERALIZATION CX CODT. 845-86-LOCATION __ DEPARTURE 9551 LATITUDE 11074 FINISHED 500'T. 16 th ELEVATION 9957 LOGGED BY DWLF. STARTED SEPT. 15th. tu-FOOTAGE Tun SAg Y Au SAMPLE DESCRIPTION FOOTAGE SUL PH NO. OZ/TON OZ/TON FROM то 26 FROM TO TOTAL 135 Sist. V. - Intersectaded. gist. V. e chert. Scotleral pyr. in gist. 1-2" Cpy, light, @ 105 195 Diorite - Dyke. 8 Casing 0 8 13° 19° Vorite - Orke. 13° 26° Chert - Diss. pr. @ 23° - band @ bo° - No sign. min. 26° 27° Dorite - Dyke. 27° 37° Chert - Sonded & Grecc. C 52'-60° 37° 37° Chert - Sonded & Grecc. C 52'-60° 37° - 55° 31.5' - 32.5' - 12° coy & soh. Grebs & Stringers - Otherwise - Gorren chert. 205 11.5 Durite - Dyke 135 0.15 (0.02 84⁵ 86- 1.5 0.98 7.87 ** **\$** 41- Diorite - Dyke us chart - or sil "diorite". 395 3379 5.00 415 Cher 4.25 Norit banded - ebo" + 465 no signif mineralization Chert > banded @ 55-60 med. col., little chert 6r., No min. except ecc. pyr. A - fair sphol. c. coy. 811/2-86 in chert breccia . (Arg. cont. - Cbr., Arg., some pyr. flocu, the Chert 81 64 1961 Chert Diorite 102 105 end @107! Diorito 107

'ORM

EVATI Artec	on <u>9</u>	942 V AZIMI 8-81 FINIS	RTURE <u>9527 E</u> : UTH <u>DIP 90, V</u> HED <u>16-8-81</u> aug 2/9/81						LOGGE	D BY	0 · W.	L.F.	
	T A G E TO		DESCRIPTION		NO.	S A SULPH IDES FR	MPLE FOOTAG	E TOTAL	Gee 3	<b>Zu</b> * 33	SA A OZ/TON	OZ/TON	1
7	625	Casing. Chert (br.) Chert (Arg.) Chert Chert Chert Chert (Arg)	- dark chert brecia light Coy along fracts small blebs. Doc. Pb. - f.gr. org. chert. + ble some Coy, Sch., Sol., F. - as 13-24' - grey, f.gr.; @ 36 ⁵ -0 e botf ats. (lotter loo scheelite). Est @ 37'- B" black, gr. Some occ. fair sch. pyr. & occ. galent. - grey, fair sch. e cp. Come blebs Cpy. - dark, arg. chert Occ. cpy. E 3. @ 51', 55', "band." et	rom son. ack c.brac y. o.7' white ks like achitic some	. 3236 3237	47 1015 24 34 34 34 34 46 49 57 64 68 72	34 39 44 46 49 54 59 64 68 72 77	5.00-5.00-5.00-4.00-4.00-4.00-00-00-00-00-00-00-00-00-00-00-00-00-	· 19 · 03 · 05 · 63 · 11 · 35 · 10 · 51 · 05 · 18 · 04	2.04 0.80 0.91 0.48 0.63 1.38 2.25 2.00 0.74 0.53 1.46 1.92 2.17	. 02 . 03 . 05 . 05 . 07 . 07 . 03 . 03 . 07 . 03 . 07 . 03	.002 .002 - - .005 .005 .005 .005 - - - .005	· 12 · 20 · 20 · 01 · 20 · 01 · 20 · 01 · 0.12 · 0.12 · 0.14 · 0.02 · 0.02 · 0.02 · 0.02 · 0.02 · 0.02 · 0.02 · 01
2 <u>5</u> 53	65.5 81°	Sichert	- blue gret Chert E C. fair Sch. E Dec. 3/8° 6/ -Sch. @ 78'- 6" green, chi Deuding@60°	-breccia 1ebs corp	3251 3238 3239	- du 24		4.0 4.0 5.0	·/6 .45	7.50		.005 .002	

				,	. <b></b>							5	71-2-	L TEET NO.	2
		ERTY M. M.	H 137 Canu	ingham	FOOTAGE D		илтн е	OOTAGE	DIP A	ZIMUTH	REMA		Sr	HEET NO.	
	J			<u></u>									<u> </u>	,	
ATITUDE	_/(	896N; 9517E	TURE FENISH @ 137'	Sept. 2/81							140	ATH	E JA	requi	000
LEVATIO	N	AZIMU'											A ia	1.L.F	_
TARTED	aug	Vo/8 FINISH	ED C SO Ft. (From		·····		Ji	I_	<u>.</u>	J	LOGGE	D BY	<u></u>		•
гоот	AGE		DESCRIPTION					SAMP	LE		Cu	Tre "	S DA	Y Are	Pa
FROM	то		WESCRIPTION			NO.	SUL PH- IDES	FROM	FOOTAGE TO	TOTAL	7%	76		OZ/TON	
80°	1nd -	chert	80-885 c 6/a	ok, Arg.			1023		<u> </u>	· · · · ·	-0.37	. 81	.04		
æ	(0)		CPY 8	4-86-		360		80° 86°	86- 885	2.5	1.62	1.37	.17	.002	
· · •				6-00		3261		885	020	4.5	10.07	0.39	-	-	
						3262		88 93°	015	3.5-	10.44	0.08	-	-	
			- 93-1025 061	r Elebse	str. cpy.	3263			R.		1.26	1.93	0.16	002	-
			1075-1045 - V	_ lean (sp.	min) .	ACET		100	5 A 2 5 4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.57	0.56	0.07	.00~	
			_ 100°-102°- 1	"mass dov	Some Z	07770			704	2.0	1.14	0.13	007	.00 V	
			965-100-12	- 4, K/ahe Ca	v. É	3766		ICH -	1.01						
			- 96 ⁵ - 100 [°] - 12 [°]	ingers coj.	some tu										
							,								
								AI 5	12	2-	1.26	193	0/6	.002	
X	61	me c -> d	iorite			3764		76 -	100	3.5	0 57	~ 51		007	
_0	18-1	nic -> de diorite				8265		100	102	3,5 15 7.0	0.37	613	0.07	.002	
»7-  ·	3	acum				3-266		102.2	104,0	4.0	1.74	0,0			
		1													
1		1				11 1			ł	t	H	Į	1		

LOCATIC	DE 10	738 N DE	W. R. CUNNINGHAMI ENGTH	FOOTAGE	DIP AZ	MUTH FOO	TAGE DIP	AZIMUTH	REMA	.RKS	<u>-25</u> 5H	іеет NO.	
FOO	TAGE		DESCRIPTION			5	AMPLE		Gu	Tu ^	s sta	Y SAce	Pb
FROM	то				NO.		FOOTA	the second second second second second second second second second second second second second second second s	36	76	OZ/TON	OZ/TON	
0	28	( <i>a</i> . <i>a</i> ).	- Typical. Possibly some remnants of variolitic g	st.?	4								
38	45	Chert	- Fine C. br. & highly Gilic. Some Coy & Sch. @ contac and @ 41'. 38'-43' - dark, mass. ch	A & 38	.' <i>33</i> 73		38°- 43	3- 5.0'	0.11	1.79	<b>AA</b>	AR.	-
4.5		Chert (Arg.)	f.gr. Arg. chert @60° Joh. E cpy. along fra Possibly good v.f.gr. a (typical - could sunpris	stores Liss. Sp	7.	4	43- 50	7.0	0.13	1.12	ØA	<b>141</b>	~
			43-50 - very fgr. Arg. C. Zn Cpy. alon 50-60 - ditto 43-50. 3 forinly heavy gr approaching 60 60-65 - ditto 43-50. Inc golena. cpy ch	dissem ng "fræct om o olen a olen a	.* 3375		X	- 10.0°				NA . 055	- 2,13 -
LANGRIDGES - TORONTO - 366-1168			<u>Note</u> : some leeching @ 43' @62'	of Copy									

NAME OF PROPERTY HOLE NO. <u>BL25</u> LENGTH LOCATION LATITUDE DEPARTURE ELEVATION AZIMUTH DIP STARTED FINISHED		P AZIMUTH	FOOTAGE	DIP AZ		REMA	RKS	<u>_ 25</u> 5H	IEET NO	
FOOTAGE DESCRIPTION			SAMP			Ca	Tre A	S S A Y	Acc	
FROM TO		NO. SULPH IDES	FROM	TO	TOTAL	7%	76	OZ/TON	OZ/TON	
of cpy	con . - cobes - dissen. Inerolizate graphitic graphitic go ( 2 80 Hog. C. C. Mag. C. C. Mag. C. C. Mag. C. C. Ses pyr. 	3380	109.2	115.5	<b>6.3</b>	2.84	2.56	0.15	a <u>0</u> 02	

ME OF PROPERTY	LENGTH	1		FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH			<u>~ ~~</u> SH	IEET NO	<u> </u>
	DEPART	TURE										A		
ARTED	FINISHI	ED			L	1		1		LOGGE	D BY	DWC	1	
OOTAGE		DESCRIP	T 1 O N				SAM	PLE		Cu	Tre "	5 \$Aq	SAu.	
FROM TO					NC	). SUL PI	FROM	FOOTAG	E TOTAL	73	76	OZ/TON		
1625 1630 Dra	orite dd)	121 5 - 1275 - 1275 - 1340 - 134 - 137 - 1370 - 144 1440 - 147 1475 - 152 152 - 158 152 - 158 158 - 162 Pea Soup		55. COY. 55. COY. 55. COY. 55 COY. 55 COY. 55 COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY. 55. COY.	938 338 338 338 338 338 338 338	22456789 52557 631	060 1.73 0.87 2.84 5.16	1.5e 8.65 10.8 17.8 30.9	6.0 6.0 5.0 7.5 4.0 4.5 7.5 6.0 5 7.5 6.0 5 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 7.5 6.0 7.5 7.5 6.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10.10 1.54 1.32 1.49 7 5.0 2.5 5.0 7.5 6.3 6.0	3.79 L.U.8 5.71 2,56 0.39	71.42		4 4
163 170 Dr 70 178 Dr eucl	rorite						1007		- 3.97 38  7.5	3.12	1.01			
leave .					33	90	1625	170	7.5	.09	.15			

FORM I

HOLE NO. ______ SHEET NO. _____ NAME OF PROPERTY M.W.R. CONN. HOLE NO. 81-26 LENGTH 155 AZIMUTH AZIMUTH FOOTAGE DIP FOOTAGE DIP REMARKS Dip too flat. Probably, went down west conjust of min. in Br-25 LATITUDE 10738 N DEPARTURE 9516 E ELEVATION 9944 AZIMUTH WEST (270) DIP 55° STARTED 30-9-81 FINISHED (= 10-91 LOGGED BY DWLF . FOOTAGE SAMPLE ASSAYS DESCRIPTION FOOTAGE NO. SULPH-FROM то OZ/TON OZ/TON 25 % FROM TOTAL то Casing 12 Ø 142 Diorito - Typical, predom. per soup. (dd) - (some remnants vor.grst?) 12 14-8 -152 Diorite -155 Diorite end Note 6" chert & good min. 0142

LE NO	<u> </u>	ERTY <u>M. K. CUNN</u> 1-30 LENGTH <u>130</u>	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE		- <b>Z</b> st	HEET NO	
TITUD Evatio	e <u>10</u> DN	$\frac{81-24}{996N} = \frac{9527E}{9944/2} = \frac{9527E}{281} = \frac{9527E}{100} = \frac{100}{100} = $							Book	5. Д <b>зрал</b>	11Z'	-117	
FROM	TO	DESCRIPTION		N		S A M	PLE FOOTAC	GE	ta 3	<b>Tu</b> ^ 36		oz/ton	
0 4 7	4 7 22	- Casing. Dark, fgr. chert. No.sig.min - Chert - dark, <del>tgr. beccai</del> n cbr. b fgr., dark, c 214.			76	16	23	7.0	0.56 0.31	2.724 2.66	NA NA	NA N A	
12 28	28 34	16-23 some v.f.gr. diss. sch - chert dark, fgr. f.gr. diss sch. - Chert dark, arg., "bed". @60, so Knife-edge to 1/4" veinlets	ME @ 90	i. 31 + 32	77/ 73	23/ 28/ 48 6R	34 55 66	6.0 7.0 4.0	0	5.77 0.89	NA NA NA	NA - 0.24 NA NA	0.0
94 97	97 38	-Tuff - grey, barren - nun - grach., broken, e 37.2' - 2" epy blees + 3 - (resting on fault)	ome Sch	· 3/	76	261 80 861	86	6.0 5.0	0 51 0.75	6.33 2.29 0.53	•26 •06 NA NA	nil NA NA	
38	48	- Tuff _ + tuff chert bed of - Sevenal, - The v.f.gr., E arg. chert - T cont. very fin	woically	31 31 31		91/ 955/ 100/	95- 100- 104-		1.33 0.86 1.75	2.25	-	NA NA	
		60491-003810 Zu - & Coy &	514-A-51 Palene 15	. 2	275	72.0	74.5	d.5	1.84	6.33	. 26	nil	
-8	72	Chert - black, arg. f.gr., inters grey toffs, Seh. diss., veinlets, fractures, 660	east										
2	86	Chert - 6receria Lood. Coy-Sph. (071', 84' (graph. 6"+) (74.5'-80'- white Barren )66-'12'-6/201', Arg.Ch,	12-3/4- 8086										

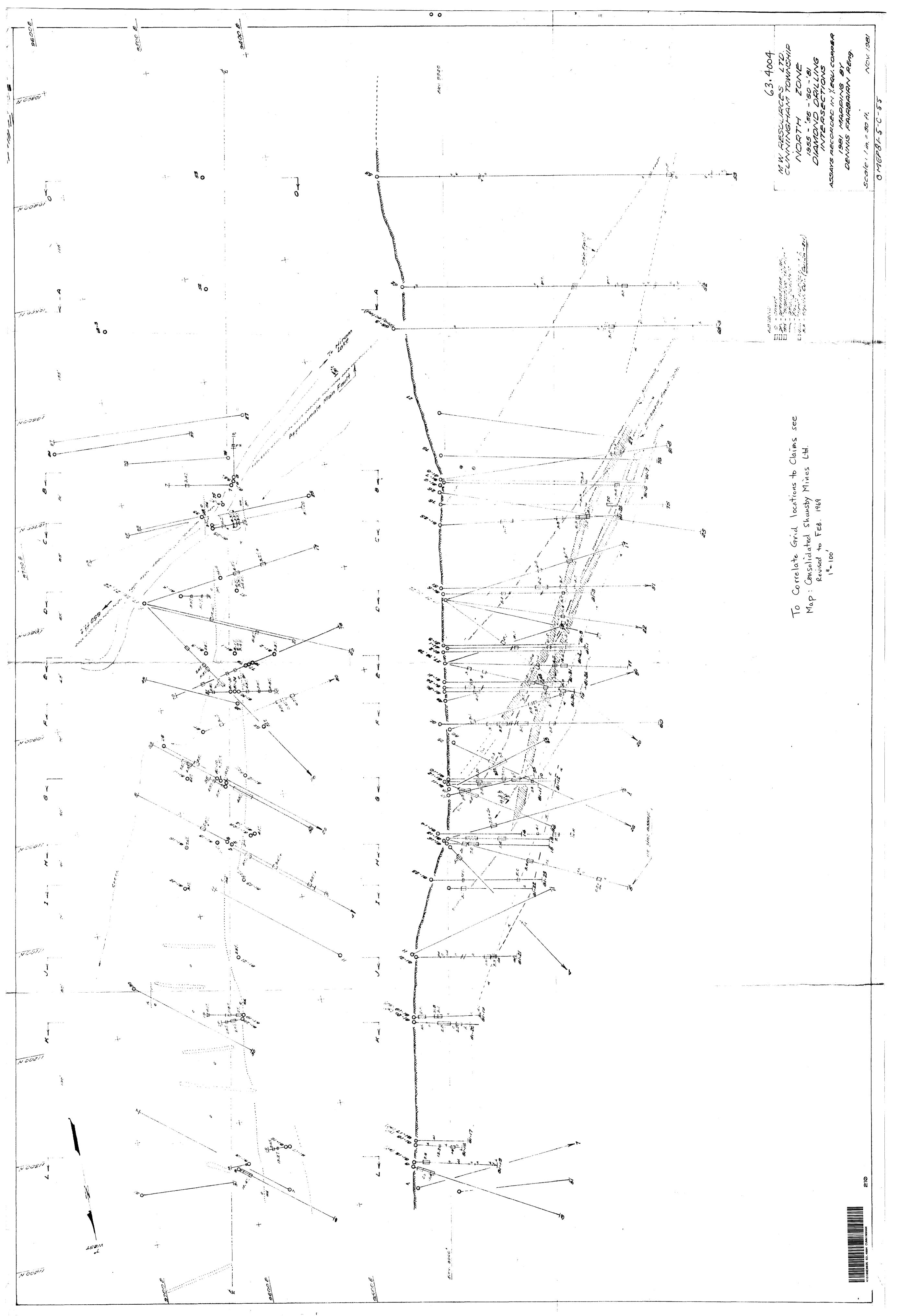
) - 36

• •

DIAMOND DKILL RECORD	<b></b>							. 8/-	<b>3</b> 0	EET NO.	2
NAME OF PROPERTY HOLE NOLENGTH	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH					
HOLE NO LENGTH							N Elling		<u> </u>		
LATITUDE DEPARTURE				<b> </b>							
ELEVATION AZIMUTH DIP											
STARTED FINISHED	Ll			<u> </u>	J		LOGGE	D BY			
FOOTAGE DESCRIPTION				SAMI	ΡΙΕ		a.	^ سر	S SA	^s A.	
		N	D. SULP	H-FROM	FOOTAG	E TOTAL	- 33		OZ/TON		
FROM TO 86 104 Chert C. 6r fair coy. e sph. e way. 104 105 Diorito F. gr. (dyke) 105 117 Chert Elebs, 1/2. , estringers coy. E 117 130 Diorite Sharp c-diorite contact (	all the	32		2005	110-		1.14	0.54	.06	. 002	
viay.		376	8	10	1120	2.0			. 05	.002	
~~ (4°) @ 87	0	32	9	al a		12.	8.76	0.11	. 29	.002	
Ind mes Dirite - F.gr. (duke)	1164-117										
Stand - Elebs 1/2-1" estringers Cor	Mass cor	. 32	10	1120	1170	5.0	8.76	0.11	. 29	.002	
105 117 Cherrie	ant		7	1							
119 130 Diorite - Sharp E-acovite contract											
Worker Attach and Make											
								[			
LANGRIDGES - TORONTO - 366-1188											
i 1 i		H		ł		l	H	ł	1		

DIAMOND DRILL RECORD HOLE NO. 81-31 SHEET NO. NAME OF PROPERTY N. W. R. CONN. TWP. AZIMUTH AZIMUTH FOOTAGE DIP FOOTAGE DIP HOLE NO. <u>21-31</u> LENGTH LOCATION <u>07 81-24</u> E 81-30 HOLE NO. 81-31 122 4 REMARKS LATITUDE 0896 N DEPARTURE 9527 E ELEVATION 9944 AZIMUTH EAST DIP STARTED SEPT. 3/81 FINISHED SEPT. 5 M/81 80E) LOGGED BY D.W. U.F. FOOTAGE SAMPLE En. The Ag Are DESCRIPTION FOOTAGE SUL PH OZ/TON OZ/TON FROM τo NO. 7 FROM TO TOTAL Casing 4 0 40-1 44-4.0 3281 2 br. + interb. Tuff - some fair 0.66 0.7/ NA NA Chert -Δ 26 4.5 61º-In but sampling if BI-24 . BI-30 Kick. Some CPY. 2.76 0.27 NA NA 3787, 82-7.5 6.85 NA 0.26 **I**A 3282 est-215. variolites ? 3183 1.76 1.64 .15 nil 0.23 nil 99-5.0 0.51 . 05 376 14-26 Chert. 30 block, fgr., Arg. C., Some Argillite 165 1.5 1.36 1.27 NA 85-NA Sph. - CPY - PYP. @ 60 3284 30 mm 89.5 PH.D 4.5 1.76 1.64 .15 31 nil Arg. M. + some Sch. 3715 40 Chert -31 "Bad" @ 50-60 1405 ' Breccies. Fair cove sph. 44 Ohert 445 chert_____ Brecc. Sparce Cu+ Sph. Toff. 475 C.+ Cbr., intersede Te hight chert 65. 86- Chert -650 86 87 875 Tuff 87 985 Chert _____ br. + good CpY. + pyr. / minor m@ 985 106 host Core ___ (lost water @ contact...?) 1895 98-106, lost core, Note probably carried 121 Diorite _ m @121! good volves


HOLE NO. 81-101 SHEET NO. NAME OF PROPERTY M.W.R. CONN. AZIMUTH AZIMUTH FOOTAGE DIP FOOTAGE DIP 188 HOLE NO. 81-101 LENGTH ____ REMARKS LOCATION DEPARTURE LATITUDE _____AZIMUTH _______DIP 90 ELEVATION LOGGED BY _ DWLF. STARTED 6-10-81 FOOTAGE Ľu Ze ^ 5 Ag ^ Y An SAMPLE DESCRIPTION FOOTAGE NO. SULPH FROM то 75 76 OZ/TON OZ/TON FROM TOTAL то 15 Casing 0 Diorite - peo soup-remnants got? 19 15 (dd) variolitic (finely variolitic) 3/5 215t. ---19 315 ___ pea soup. ____ variolitic 33-Sicrite 385 Erist .-33 Diorite _____ I.d. & digested grist. Alt. _____ grasing to semi-dig. chert Chert _____ Alt. e digested - remnants 385 43 45 43 45 46 epy e sch. Arg. Chert - Numerous calcite stringers 52 46 at all angles. Some Corolch Iraphitic @ 52 46-51 - Ar.Ch. cale. Ofringers By cubes e scattered ' CpY. Salence @51. 51 5.0 0.13 0.69 NA NA 46 5911 54 Arg.ch. 3.0 0.38 3.39 52 - minor sph., Cpy, gal. NA NA 54 51 5912 Dyke. _____ light gréy. ______ ebr. some fair /y-1" 54 56 chert To 61 NA 1.08 1.69 ## bands epy @ 30° 63 7.0 To 5913 chert 56-63: Ang.ch. oec 1"-3" 30nes good cpy-set-galena. 13 56-61 67 61 63-67: light chert. some 63- 670 4.0 0.28 0.31 NA NA And dissem. Col. Miner 5ch.


			r							8	1-106	HEET NO.	2
NAME O		ERTY	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH		RKS			
HOLE NO		ENGTH									· · · · ·		
		DEPARTURE											
ELEVATIO	ON	AZIMUTH DIP								D BY	NK//	F	
STARTED		FINISHED		1					LOGGE	D BY		· · · · · ·	
FOOT	TAGE	DESCRIPTION				SAM	PLE		Ca	Tu "	S SAA	Y SAcc	
FROM	то			И	O. SULPI	FROM	FOOTA	JE TOTAL	73	76		OZ/TON	
67	69	Chert Argillaceous - borren miner epy. No some	.50mC (C.										
69	73	A said for same											
73	87	Dyke dioritic - remnant e	cherter	e l									
	-,	(3") with good cor.											
87	105	Dyke dioritic _ remnant e (3°) with good cpy. Chert Argil. diss. cpy eg (Arg.) & gg' - not broken	?rachin	2									
	e –	(Arg.) Q'89 - not broken	•										
		87-93- v.f.gr. lam.	arg.	4/ 5	÷	870	93	6.0	0.23	1.17	.05	-002	
		Pyrite string foldel - som sph? Cor?	e qalan	2 59	15	0/	/*						
		Sph? Cor?											
		93-101- graphitic argillaceous occ. galen	very										ĺ
		argillaceous	5 1 <b>/</b>										
		Oec. garen											
		(@89° - bond. @ 15° (@95° - v v 80° graphitic +Qtg. @10 graphitic @ 104'	•										
~		(295	• 0/0-1										
6-116		graphitic + Qtg. (10)							•				
1 30		graduitec e 104	a mala				[						ł
05 /05	128	Argillite As \$7-105, but no a	ample,										
10H		(Cn.)	-4 -										
SE 128	141	Dyke light cream, silie.	10										
GRID .		visible mineraliza mottled in places											ĺ
LAN		MOTTICK IN PIGEES											
		1											l

HOLE NO. 81-10/SHEET NO. 3 AZIMUTH AZIMUTH FOOTAGE DIP _____ FOOTAGE DIP REMARKS LOCATION LATITUDE _____ DEPARTURE _____ ELEVATION _____ AZIMUTH _____ DIP LOGGED BY STARTED _____ FINISHED _____ FOOTAGE The S SAY SAL SAMPLE lu DESCRIPTION FOOTAGE NO. SULPH OZ/TON OZ/TON FROM то 2% 3 FROM TOTAL TO 150 155 50 .04 .17 .07 .002 155 162 7.0,03 .06 NA NA 162- 165- 3.0 .05 .06

**DIAMOND DRILL RECORD** NAME OF PROPERTY MAR. CONN. HOLE NO. 81-103 LENGTH 50 HOLE NO. 81-103 SHEET NO. 1 AZIMUTH FOOTAGE AZIMUTH FOOTAGE DIP DIP REMARKS LOCATION DEPARTURE LATITUDE ELEVATION _____ AZIMUTH _____ DIP 90° LOGGED BY _ DWCF. Cu In " Hay Hu FOOTAGE SAMPLE DESCRIPTION FOOTAGE OZ/TON OZ/TON NO. SULPH FROM то TOTAL FROM TO Casing 8 Ð 22 T ____ Qt3-fsp. 1/8 phenocrysts. 28 Chert _____ light c.br. tairsch. in 305 Scatteral. coots. 8 22 22-28- mainly barren light chert-oec. sch. ---28=30-- light chert fair sch. ---some ptr. 0 22.° 28° 6.0 .06 1.10 NA NA 1 28° 36° 2.5 0.18 1.35 NA NA 59do 5721 30⁵ 43[°] TT _____ 43° 50° divite ____ digestive (dd) aut

HOLE NO. 8/- Out SHEET NO. NAME OF PROPERTY M. W. R. CUNN. HOLE NO. BI-104 LENGTH 50' AZIMUTH DIP FOOTAGE AZIMUTH FOOTAGE DIP REMARKS ... LOCATION STARTED OCT 8/8/ FINISHED OCT. 9/8/ LOGGED BY _ WIF. Tur & Ag & Au Ru. FOOTAGE SAMPLE DESCRIPTION FOOTAGE NO. SULPH-OZ/TON OZ/TON FROM то FROM TO TOTAL 4 Casing. 12 Chert ---- c.br. come ch., L.Sr., 13 T no sample. 0 1 12 130 170 4.0 0.52 1.64 .05 17 Chert _____ fair Ca + tu. 9912 13 22 Chert _____ Cbr. 32 host Core ____ T@22 E 32 17 22 32 34 _ Sil Dorite - diorite 385 34 385 43° 4.5 0.07 1.04 NA NA - tight, fair cpy.e sch. in scattered blebs. - otherwise, relatively 23 7730 - Chert — 385  $43^{\circ}$   $49^{\circ}$  6.0 .01 1.80 NA NA  $49^{\circ}$   $50^{\circ}$  1.0 0.13 11.68 0.11 .002barren. 50 - Argilite 24 43 V. f.gr. pyr. stringers. 25 NOTE DANLERS POLLED LAST HOLE @ 50' -19-50 - 11.68 tm. (See DOH. 68-





