REPORT ON

PHASE 1a EXPLORATION PROGRAM
ON THE
SHUNSBY PROPERTY, CUNNINGHAM TWP
of
KIRKTON RESOURCES CORP.
0m90-028

December, 1990
Toronto, Ontario
P.A. Sobie, B.Sc.

MPH CONSULTING LIMITED

A major exploration program has been completed on the Shunsby base metals property during 1990 on behalf of Kirkton Resources Corp. by MPH Consulting Limited of Toronto.

Located in the south portion of the Swayze greenstone belt some 130 km southwest of Timmins, Ontario, the Shunsby property has a history of exploration dating back to the early 1900's when the area was examined for its iron potential. In excess of 200 diamond drill holes have been completed on the property to date. This work has been focused on two small copper-zinc (\pm lead, silver, cadmium) deposits, the so-called "Main" and "South" zones. Virtually all of this drilling has been relatively shallow and some of it rather poorly directed. Very small areas in the Main Zone, for example, may contain upwards of $10-15$ drill holes.

The present work completed on behalf of Kirkton Resources Corp. consisted of:
(a) A comprehensive compilation of all existing drill data and the generation of vertical cross-sections using Micromine computer software. Considerable time was spent in the field in locating and accurately positioning previous drill collars. Lack of accurate drill collar locations has led to problems in previous interpretations and has necessitated the invention of numerous faults to explain offsets in mineralized units.

Considerable time was spent in re-logging and re-sampling the old core found on the property to the extent that condition of the core permitted. This information, both assay and geological, was then integrated into that of the previous workers. A significant amount of mineralization was discovered in the old core in the course of this work.
(b) A large surface stripping and trenching program on the known mineralized zones and on geophysical targets located by the 1989 surveying. One of the highlights of this work was the discovery of massive chalcopyrite-sphalerite \pm galena mineralization in Upper Cherts of both the Main and South Zones.
(c) Detailed geological mapping over all the stripped areas along with limited property-wide traversing. One observation from this latter work is that there are a great deal more volcanics on the property in areas where gabbroic intrusives were previously indicated to be the predominant rock type. As well, results of geological mapping filed for assessment credit on adjoining properties have been integrated with our work. All of the various geological nomenclatures have been rationalized to produce consistent identifiers for the various rock units.
(d) Detailed geophysical surveys (MaxMin II EM, magnetics) on detailed, 50 m lines over the area encompassing the known mineralized
stratigraphy and priority geophysical targets from the previous (1989) surveying.

Geologically, our work determined that the geology of the deposits area, and that of the property as a whole, is relatively simple. Copper and zinc mineralization is hosted by two chert-argillite units ("Upper" and "Lower" cherts) separated by a variolitic basalt unit. The sedimentary sequence has a true thickness of up to 200 m or more with the Upper Cherts being considerably thicker then the Lower Cherts. The sediments are floored by a conformable mafic volcanic/sill complex and are capped by a quartz and feldspar phyric intermediate volcaniclastic unit. These units form a northstriking, shallow ($30^{\circ}-40^{\circ}$) west-dipping, upwards-facing homoclinal sequence. Copperzinc mineralization occurs as stratiform to stratabound matrix fillings, blebs, disseminations, fracture filings and thin, massive, laminated material, the latter typically associated with argillitic interbeds. Lead occupies late fractures and openings which often trend perpendicular to the host units.

In the larger sense, the mineralization seems to be occupying a distinct shale basin off a local volcanic centre located directly to the southwest. It is best characterized as being of distal volcanogenic origin, although there are some sedex-type characteristics present.

These are "first-pass" computer-calculated approximations only, which simply average the values found within block outlines, without weighting or the use of geostatistics.
olock outlines themselves are geologically inferred based on knowledge of the deposits, and are not in any way meant to reflect mineable blocks, or mineability scenarios.

Also, it is believed that economically significant amounts of $\mathrm{Pb}, \mathrm{Ag} \pm \mathrm{Cd}$ will be added to the above numbers through further work.

Attempts to trench the Lower Cherts south of the Joubin Fault and certain EM conductors east of the known mineralization were unsuccessful. This work however did locate high grade Cu float (to $11 \%+$) in till directly over the conductors in question (particulary conductors $40 \mathrm{~b}(1 \mathrm{~d})$ and $40 \mathrm{a}(12)$). These float occurrences are herein felt to be related to historical, high grade copper-zinc float on the property in the area of $5+00 \mathrm{~S}, 2+00 \mathrm{E}$. Collectively, these mineralized boulders appear to define a Cu-rich dispersion train the source of which appears with certainty to be these untested EM targets with some contribution from the up-dip portion of the Lower Cherts.

Chemical results and petrographic studies point to significant hydrothermal alteration in the mafic rocks underlying both the upper and lower chert mineralization. These data, along with metal ratios, further suggest that the exhalative vent area may be located down-dip along the known mineralized stratigraphy. This raises the attendant possibilities for a massive, higher grade, more proximal deposit in the untested downdip (down-basin?) area.

In all, we are considerably encouraged by results to date. The known deposits may turn out to be peripheral to or up-dip from a much more substantial body. We further feel that if more of the low grade near-surface material can be outlined, an open pit operation could be viable.

A next round of work is strongly recommended for the Shunsby property. This should consist of additional surface work plus diamond drilling and is budgeted at $\$ 620,000.00$

The surface work should be a continuation of that carried out in 1990 with efforts concentrated in the following areas:
(a) south of the existing stripping on line $1+00 S$ in the South Zone to try and extend the known mineralization here to the south
(b) on either side and to the west of the present trench on line $1+00 \mathrm{~N}$ to try and locate at surface the mineralization known to be in this area from drill results
(c) on the extensive swarm of geophysical conductors including 48(14a), $54(14 \mathrm{~b}), 55$ and 56 in the upper cherts of the Main Zone. This area is known to be Zn -bearing but has only been superficially investigated
(d) in the west portion of the property on conductor 18c, 19b, 20 etc. (Another base metal-bearing sedimentary sequence unrelated to the foregoing is present in this area).

Also, the existing trenches in the area of line $1+00 S$ and line $3+00 \mathrm{~N}$ should be properly blasted and re-sampled in the course of the above.

This first phase of diamond drilling should be directed towards the following targets:
(a) testing of the up-dip portion of the lower cherts in the South Zone as marked by EM conductors $40 \mathrm{a}(2 \mathrm{c}), 41$ (2d) and 49 from the Joubin Fault to line $3+00 S$ (1500 m of drilling)
(b) testing of EM targets $40 \mathrm{~b}(1 \mathrm{~d}), 42 \mathrm{a}(12), 28,16,42 \mathrm{~b}(13 \mathrm{~b}), 13 \mathrm{c}$ and 14 d (1000 m of drilling) which encompasses the northern strike extent of the Main Zone lower cherts as well as the presumed source(s) of the Cu-rich float.
(c) deep drill testing of the area down-dip from the Main and South Zones; four 400 m holes should be drilled on lines $5+00 \mathrm{~N}, 3+00 \mathrm{~N}, 1+00 \mathrm{~N}$ and $1+00 \mathrm{~S}$ at $7+00 \mathrm{~W}$. A contingency allowance of an additional 1400 m should be made available for two deeper tests based on the results of the foregoing for a total of 3000 m .

The above program is considered to be a critical phase in the exploration of the Shunsby claims and will determine to a large degree the economic possibilities for the property.
Page
1.0 INTRODUCTION 1
2.0 LOCATION ACCESS AND INFRASTRUCTURE 2
3.0 PROPERTY AND LEGAL 4
4.0 PREVIOUS WORK 7
5.0 EXPLORATION PROGRAM - OPERATIONS 15
5.1 General 15
5.2 Historical Drill Core Recovery 15
5.3 Stripping and Trenching 16
5.4 Geological Mapping 17
5.5 Linecutting 17
5.6 Geophysical Surveying 18
5.6.1 Magnetometer Survey 18
5.6.2 Horizontal Loop Electromagnetic Survey 18
6.0 GEOLOGY AND MINERALIZATION 19
6.1 Regional Geology and Mineralization 19
6.2 Property Geology 24
6.2.1 General 24
6.2.2 Lithologies and Stratigraphy 24
6.2.3 Structure 30
6.3 Mineralization 33
6.4. Lithogeochemistry and Petrography 34
7.0 SAMPLING RESULTS 39
7.1 Historical Drillcore 39
7.2 Stripping and Trenching 39
8.0 MINERAL INVENTORY 46
8.1 Past Reserve Estimates 46
8.2 Geological Mineral Inventory 47
9.0 GEOPHYSICAL SURVEYING 50
9.1 General 50
9.2 Total Field Magnetics 50
9.3 Horizontal Loop EM Survey 50
10.0 DISCUSSION 56
11.0 CONCLUSIONS AND RECOMMENDATIONS 58

REFERENCES

LIST OF TABLES

Table 1 Exploration History 7
Table 2 Lithogeochemical Summary 36
Table 3 Historical Drill core Intersections 40
Table 4 Past Reserve Estimates 46
Table 5 Mineral Inventory 48
LIST OF EIGURES
Figure 1 Location Map 3
Figure 2 Property Map 5
Figure 3 General Geology 20
Figure 4 Local Geology 22

LIST OF APPENDICES

APPENDIX 1 Drill Sections (4+00S to 6+50N) - Separate Volume APPENDIX 2 Analytical Results APPENDIX 31989 Geophysical Results and Interpretation APPENDIX 4 Lithogeochemical Processing Technique APPENDIX 5 Equipment Specifications

LIST OF MAPS (VOLUME II)

Map 1a, b Property Geological Compilation (1:2500 East and West Sheets)
Map 2 Main \& South Deposits Area (1:1000 Geological Plan)
Map 3 Main Zone Detailed Geology (1:125)
Map 4a,b Property Magnetics (1:2500, East and West Sheets)
Map 5a,b Property HLEM-1777Hz (1:2500, East and West Sheets)
Map 6a,b Property HLEM-444Hz (1:2500, East and West Sheets)
Map $7 \quad$ Main \& South Deposits Area Magnetics(1:1000)
Map 8 Main \& South Deposits Area HLEM-1777Hz(1:1000, 50m cable)
Map 9 Main \& South Deposits Area HLEM-444Hz(1:1000,50m cable)

1.0 INTRODUCTION

The Shunsby property, located southwest of Timmins, contains two known copper-zinc deposits which are, by far, the most significant concentrations of base metals within the Swayze greenstone belt. The Swayze represents the westward continuation of the prolific Abitibi greenstone belt which hosts the gold-base metal camps of TimminsPorcupine, Noranda, Val d'Or and Chibougamau.

Extensive exploration efforts on the present property between 1954 and 1981 by several groups included 67,000 feet of drilling in 225 holes, the majority of which were concentrated in the known areas of mineralization. This work was constantly hampered by poor access and technical problems, but was successful in delineating two small deposits of reportedly distal volcanogenic character. Relatively low grades deterred these previous operators who, for the most part, were attempting to establish an underground mining operation. Kirkton's inital interest revolved around the potential for establishing an open-pit operation on the property supplemented by selective underground mining of some higher grade zones. As well, the property as a whole was felt to be highly pregnant base metal ground which had never been thoroughly explored.

Initial work by Kirkton on the property during the $1989 / 90$ fall and winter consisted of extensive data compilation combined with linecutting, preliminary geological investigations and blanket geophysical surveying (magnetic and horizontal loop EM).

Work during the past summer field season included a large stripping/trenching program, careful relogging and resampling of the old core as well as accurate location of these holes relative to the grid system, along with detailed geological mapping. Most recently, additional detailed linecutting and geophysics were carried out over the area hosting the Main and South deposits. The new geophysical data were integrated with the previous survey results and the entire geophysical picture was re-interpreted in light of our improved understanding of property geology. The aim of all this work was to better understand the nature and distribution of the mineralization, and to correlate the copper and zinc values in drill core with known surface mineralization and the various geophysical zones.

As well, a number of footwall volcanic/intrusive samples were collected to help characterize the hydrothermal alteration assemblage associated with mineralization on the property. And finally, a computer-aided mineral inventory was calculated for the two deposits.

Results of all of the latest work, as well as re-interpretation of some of the 1989 work, form the subject of this report.

2.0 LOCATION, ACCESS AND INFRASTRUCTURE

The Shunsby property is located in the central portion of Cunningham Township, approximately 50 kilometres south of Foleyet and 60 kilometres east of Chapleau (Figure 1). The large mining centres of Timmins and Sudbury are approximately 130 and 180 kilometres to the northeast and southeast, respectively. The property is centred at $47^{\circ} 43^{\prime} \mathrm{N}$ latitude and $82^{\circ} 39^{\prime} 30^{\prime \prime} \mathrm{W}$ longitude, within NTS area $410 / 10$.

An existing network of gravel logging roads established by E.B. Eddy Forest Products Ltd. off the Timmins-Sudbury highway, no. 144, provides easy truck access to the south end of the property. To reach the property, it is necessary to follow the Ramsey-Sultan road west from highway 144 thence north along the Cunningham Township spur of the Blamey Road to the property. It is approximately 90 km from highway 144 to the property. The Cunningham Township road in turn connects with a number of old drill roads and trails which provide access to the balance of the claims. Alternatively, the Dore Road of Foleyet Timber Limited can be followed south from Highway 101 just east of the town of Foleyet to the Ramsey-Sultan Road. A wagon trail/drill road connects the Shunsby property to the Dore Road at Garnet Lake, just south of the Wakami River crossing. Up-grading of this road would cut the road distance to Timmins to approximately 160 kilometres.

The E.B. Eddy logging operations have currently covered the three southernmost claims and much of the western portion of the property.

The property is well located in terms of exploration and mining supplies, services, etc., being approximately equidistant from Marathon/Manitouwadge/Wawa, Timmins and Sudbury. There is a large and relatively stable work force in the region from which to draw miners for any new mining operation.

The CPR main line passes through the small railhead of Sultan, approximately 30 kilometres by road to the southwest of the property. E.B. Eddy maintains a large camp at Ramsay, approximately 65 km by road to the southeast, also on the CPR line.

The original drill camp on the property at Hiram Lake still includes one cabin in good condition as well as all of the core racks. There is an old MNR forestry tower camp, which includes two winterized cabins in excellent condition, approximately 1.5 kilometres to the northwest.

Abundant fresh water is available on the property from Edwards Lake. The nearest hydro-electric power is at Sultan, 16 km across country to the south-southwest. There is also an old telegraph line and right-of-way which extends from Sultan to the forestry tower.

3.0 PROPERTY AND LEGAL

The Shunsby property is within the Porcupine Mining Division of Ontario and consists of 20 patented mining claims and 10 mining leases (Figure 2) more properly described as follows:

| Patented Mining Claims | Number | Mining
 Rights Only |
| :--- | :--- | :--- | | Surface and |
| :---: |
| $M i n i n g$ |

S34944-34947	4		x
S43946-43948	3		x
S57536-57544	9	x	
S57585	1	x	
S61828-61830	$\frac{3}{20}$	x	

Mining Leases
Number

P90411-90412	2
P90413-90415	3
P121298	1
P147117-147118	2
P121596-121597	$\frac{2}{10}$

x
x
x
x

Under the current Mining Act in Ontario, leases are granted on mining claims following completion of required amounts of assessment work for an initial 21 year term. This is renewable in perpetuity.

Where both surface and mining rights are leased, a payment to the Crown of $\$ 1.00$ per acre the first year and $\$ 0.25$ per acre for each subsequent year is required. For mining rights only the required payments is $\$ 1.00$ per acre for the first year and $\$ 0.10$ per acre for each subsequent year.

For all of the Shunsby patented claims, an acreage tax of $\$ 0.50$ per acre payable to the Crown is required on or before October 1 of each year.

We have not independently verified the ownership and status of the above claims. Also, there may be some changes to the above payments following implementation of the new Ontario Mining Act expected sometime in 1991.

Kirkton Resources Corporation may earn a 100% undivided interest in the property, subject to a $12-1 / 2 \%$ net profits royalty, by carrying out exploration totalling $\$ 2,750,000$ and making cash payments totalling $\$ 250,000$ to MW Resources Ltd., Toronto and Chelsea Resources Ltd., Vancouver by four years after the date that the

Ontario Securities Commission issues a receipt for a final prospectus regarding an initial public financing for the company. Kirkton may earn a 20% undivided interest after exploration expenditures of $\$ 750,000$ and option payments of $\$ 50,000$, after which the interest of the company shall be calculated by the lesser of either:
(a) percentage amount of exploration expenditures in relation to $\$ 2,750,000$; or
(b) percentage amount of option payments in relation to $\$ 250,000$.

In the event that Kirkton does not acquire 100% of the property, the option agreement calls for the formation of a joint venture to further explore the claims.

Kirkton has expended approximately $\$ 450,000.00$ on the claims to date.

4.0 PREVIOUS WORK

The property has been the subject of extensive exploration dating back to the turn of the century when the iron formation in central Cummingham Township was first staked for its iron content. Table 1 summarizes the exploration history of the Shunsby property.

TABLE 1-EXPLORATION HISTORY

Date	Company	Interest	Diamond Drill Holes	Drilling Footage	Claims Worked	$\begin{aligned} & \text { Work } \\ & \text { Performed } \end{aligned}$
1904-07	Ridout Mining	Iron	-	-	-	Staking
1927-29	Ridout Cunningham	Zn, Pb	some	?	$\begin{aligned} & 34944 \\ & \text { to } 47 \end{aligned}$	Trenching Drilling
1954	Am Metal Co.	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	1	560	121596, 597	Drilling
1954	Cominco	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	4	1,500	57539, 57543	Drilling
1955-57	Shunsby Gold Mines, Teck etc. Syndicate	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	74	20,336	34947 etc.	Geology Trenching Drilling
1957	Martin Shunsby	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	3	200	90415	Packsack Drilling
1960-61	Shunsby Mines	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 3,605 \\ & 4,110 \end{aligned}$	34947	EM, Geology, Drilling
1965-66	FRJ Prospecting Syndicate	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	41	14,279	$\begin{aligned} & 34944 \\ & \text { to } 47 \end{aligned}$	EM, Geology Drilling
1968-69	Con. Shunsby Mines Ltd.	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	23	9,091	$\begin{gathered} 34945 \\ 46,47 \\ 57539 \end{gathered}$	Geology, Drilling
1969-70	Umex	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	Nil	Nil	-	Geology
1974-75	Grandora Explorations	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	21	7,444	57539 34947	Trenching Drilling Geochemical
1978	MW Resources	$\begin{aligned} & \mathrm{Zn}, \mathrm{Cu}, \mathrm{~Pb} \\ & \mathrm{Ag}, \mathrm{Au} \end{aligned}$	5	1,237	Tower Group	Geology, Drilling
1979-80	Placer Development	$\begin{aligned} & \mathrm{Zn}, \mathrm{Cu}, \mathrm{~Pb} \\ & \mathrm{Ag}, \mathrm{Au} \end{aligned}$	4	1,250	Southern Extension	$\begin{aligned} & \mathrm{E} \quad \mathrm{M} \\ & \text { Geachemistry, } \\ & \text { Mag, Drilling } \end{aligned}$
1981	MW Resources	$\begin{aligned} & \mathrm{Zn}, \mathrm{Cu} \\ & \mathrm{Ag}, \mathrm{Au} \end{aligned}$	$\begin{aligned} & 30 \\ & - \\ & 224+ \\ & === \end{aligned}$	$\begin{gathered} 3,474 \\ \hline 67,000+ \end{gathered}$	$\begin{aligned} & 34947 \\ & 57539 \end{aligned}$	Map, Drilling

Initial interest in the iron ore possibilities of the property by Ridout Mining quickly waned when it was determined that the iron content of the chert formations was noneconomic. Subsequent discoveries of lead and zinc-bearing veins(?) within the iron formation prompted a 1927 exploration campaign over the entire strike length of the iron formation under the merged Ridout Cunningham Mines, Limited. While no record of this work remains, Meen (1942) reports that, "systematic prospecting of the many claims along with some diamond drilling was undertaken in 1928-29, but no body of economic importance was discovered and no further work has been carried out". He reports on the discovery of many showings however, and it seems probable that this work first identified what would become the Texas Gulf deposit located 3 km to the northwest and the Shunsby deposit, the latter named after prospector Martin Shunsby.

The present property was staked in central Cunningham Township by Earle Sootheran and Hiram Paul. In 1954 it was optioned to Cominco Ltd. who drilled 1499 feet in 4 holes designated A through D. Three of these were in the area of the present South Zone and one was drilled in the northeast corner near Edwards Lake. The southern drilling encountered several narrow, zinc \pm lead-bearing horizons, while the northern hole encountered felsic volcaniclastics and graphitic sediments.

Also in 1954, American Metal Company drilled a single, 559.5 ft hole in the area of present line $9+00 \mathrm{~S}$ at $5+00 \mathrm{E}$. No assays are reported but the section from 29 to 30.1 feet is described as "tuffaceous material ... heavily mineralized by pyrrhotite with pyrite, chalcopyrite and sphalerite". The section from 192.6 to 195.6 feet is described as "highly altered rock ... pyrrhotite, chalcopyrite and sphalerite disseminated throughout ...".

In 1955 Nipiron Mines, Ltd., who optioned the property from Shunsby Gold Mines Ltd., funded and directed the drilling of 57 diamond drill holes mostly in the so-called Main Zone area. Much of this work was rather poorly directed and W.S. Savage (1956), the Department of Mines resident geologist at that time, noted: "It is obvious that some of the long sulphide-bearing intersections in the diamond drill holes resulted from inadvertently drilling down the dip of a mineralized bed". Nipiron reportedly defined 100,000 tons of 1% copper mineralization from their drilling, but negotiated a termination to their option agreement in the summer of 1956.

A syndicate consisting of Teck Explorations, Cochenour-Willans Mines, Northern Canada Mines, Nipiron Mines and Shunsby Mines was subsequently formed to further explore the property. This group drilled a further 17 holes during the fall of 1956 and winter of 1957. Three holes were drilled into the Main Zone deposit, with most of the others directed towards the South Zone. As well, deep holes 72 and 74 were drilled in the vicinity of the Hiram Lake camp to test for down-dip extensions of the Main Zone. Copper-zinc mineralization was encountered and this became known as the West Zone. Virtually all of the Syndicate holes encountered encouraging to potentially economic mineralization, however, falling base metal prices forced a halt to the program during March of 1957. Teck Explorations calculated an ore reserve for the Main Zone of 152,000 tons grading $1.35 \% \mathrm{Cu}$ and $1.22 \% \mathrm{Zn}$ at this time. Also during this period, the east-west access road linking the property to the Sultan-Kenty

Mine road was cut. Shunsby Mines Ltd. also completed the purchase of the optioned Southeran-Paul property. In addition, flotation tests were run on lead-zinc and copper ore samples by the metallurgical division of the Department of Mines, indicating that there would be no apparent difficulty in producing commercial grade concentrates.

Nipiron Mines Ltd. under an option agreement with Shunsby Mines undertook further exploration in the winter of 1960 . Nine holes (75-83) were completed during December and January totalling 3,605 feet. These were again directed towards the Main and West Zones, apparently to replace/legitimize much of the earlier, down-dip intersections. Geological mapping as well as EM and magnetic surveys were reported as being completed during this campaign. A further nine diamond drill holes totalling 4,110 feet were completed the following summer. This consisted of several holes (85 , 90,91 and 92) drilled vertically. These successfully intersected the down-dip projection of the Main Zone, between the camp and the main showings to the east. Significantly, the other five holes were again drilled down-dip in this same area, possibly to avoid a topographic rise represented by a large diorite intrusive.

During the summer of 1964, Nipiron extended hole 82 from 503 feet to 836 feet and encountered the down-dip projection of the Main Zone, i.e. the West Zone.

This is the most westerly hole drilled in this portion of the deposit to date. This hole encountered some significant copper values including $4.2 \% \mathrm{Cu}$ over 4.1 ft and 4.3% Cu over 5.5 ft . The mineralization is completely open in the down-dip direction beyond this hole.

The F.R. Joubin Prospecting Syndicate became involved with the property in 1965, with Joubin becoming president of the reorganized/refinanced Consolidated Shunsby Mines Ltd. in 1966 following the death of Martin Shunsby. The syndicate itself consisted of personnel from mining organizations including Leitch Gold Mines Ltd., Noranda Explorations, Ltd. and Wright-Hargreaves Mines Ltd.

Joubin instigated an aggressive exploration campaign which included much staking of surrounding ground followed by geochemical, magnetometer and Turam EM surveying, step-out drilling along strike to both the north of the Main Zone and the south of the South Zone, as well as limited drilling and trenching in the western property area. The two holes drilled by Joubin on the western property showings both intersected an "upper" low grade zinc-mineralized chert horizon but were felt to be of insufficient length to test the "Basal Chert" he thought to be present here. This latter unit hosts much of the potentially economic base metal mineralization in the Main, South and West Zones. Stratigraphy here was thought to correspond to the western limb of a major syncline which transects the property. We doubt the existence of such a structure, and feel that Joubin was drilling stratigraphy correlative with the Texas Gulf and Tower Group iron formation.

Joubin's work on the South Zone was designed to better understand stratigraphy as
well as confirm a number of previous, high-grade intersections. The program, which included lengthening several holes to the "footwall diorite", was felt to indicate that an upper (middle?) chert horizon hosted high grade copper-zinc mineralization here, while the "basal" chert intersections were of lower grade.
The Syndicate's work to the north consisted of several in-fill holes within the Main Zone, as well as holes designed to:
(a) further define the down-dip extension (West Zone);
(b) extend the Main-West zones to the north; and
(c) explore the area in between the Main and South Zones.

In general, results indicated that:
(a) significant mineralization in the West Zone persists to a vertical depth of at least 840 feet;
(b) significant copper \pm zinc, lead mineralization within the chert extends at least 1,200 feet to the north of the Main Zone but is offset; and
(c) the intermediate area between the Main and South Zones is of high potential but is complicated by a fault.

Within the Main Zone, Joubin calculated an average grade of 1.2% copper and 1.28% zinc over a true width of 26 to 27 feet. He recommended shallow underground investigations and states (1966):
"There is sound reason to believe that this drill-indicated average grade will be raised by bulk sampling. This is because the copper values appear to be controlled by both disseminations in the Basal Chert and also as narrow chalcopyrite-filled fractures. It is improbable that the several vertical drill holes have intersected a representative amount of the vertical fracture mineralization.

I concur with and endorse the opinion of other geologists that the Main Zone section justifies shallow level underground exploration intended to check on (a) grade, (b) mineral distribution characteristics, (c) the attitude of cross and strike fracturing and relationship to mineralization, (d) the attitude and relationship (if any) to the post-mineral "D" dyke, and (e) general rock characteristics as these would relate to possible underground mining and/or some limited open-pit extraction."

A qualifying report written by W.F. Atkins, P.Eng. in 1968 raised $\$ 100,000$ for Consolidated Shunsby Mines Ltd. through a public underwriting which was used to finance a 1968 drill program of 23 holes. The majority of this work was directed towards the South Zone and the intermediate area, with several holes (68-7, 8 and 9) spotted to test a showing within granitic(?) rocks to the west of the present property. This campaign allowed for a calculation of geologic reserves for both the South and

Main zones.

Joubin then brought the property to the attention of Union Miniere Explorations and Mining Corporation Limited (UMEX) in March of 1969. Their examinations and compilations allowed for reserve calculations by P. Potapoff of:

UPPER CHERT ZONE -	929,000 tons averaging $0.24 \% \mathrm{Cu}$,
	2.25%
(middle chert, South and Main Zones)	$\mathrm{Zn}+\mathrm{Pb}$ from surface to -300 feet over
	2,700 foot strike extent.
LOWER CHERT ZONE -	$1,684,000$ tons averaging $0.59 \% \mathrm{Cu}$,
	1.6%
(middle chert, South and Main Zones)	$\mathrm{Cu}+\mathrm{Pb}$ from surface to -900 feet over
	2,400 foot strike length.

Potapoff notes that some of the mineralized zones form discontinuous blocks due to faulting, and some of the better intersections appear isolated. However, A.J. Hough of UMEX notes that reported collar elevations and locations at that time were suspect. This, of course, can have a major bearing on the inferred continuity of mineralized zones. Potapoff concluded that the chances were good of firming up a large tonnage $(\sim 10,000,000$ tons $)$, low grade ($0.5 \% \mathrm{Cu}, 2.0 \% \mathrm{Zn}+\mathrm{Pb}, 0.25$ oz/ton Ag) deposit. He recommended a program of deep drilling for down-dip extensions as well as comprehensive property-wide follow-up drilling of old Turam anomalies and surface showings which had not been drilled and were located in otherwise geologically favourable areas. It appears that UMEX subsequently returned the property to Consolidated Shunsby Mines without doing any further work and it sat idle until 1974.

In 1973, B.D. Weaver, a consulting geologist, reviewed the historical data on the Shunsby property. He concluded that all drilling thus far was of little value and that the Main Zone should be drilled off vertically on 100 foot centres.

Grandora Explorations Ltd. in the fall of 1974 optioned the property from Consolidated Shunsby Mines and instigated a program of geochemical sampling, bulldozer trenching and 7,444 feet of diamond drilling in 21 holes. During the initial phase of the drill program, 10 holes were targeted on the Main Zone, to extend and delimit the eastern extent of the mineralization. Holcapek (1975) states that the boundaries of the "possible open pit ore zone" are marked by two northerly trending fault zones.

Grandora drilled 11 holes in the South Zone spaced at approximately 200 feet centres to extend the known mineralization and clarify the structural setting. Inexplicably, most of these holes were stopped before reaching the basal chert and footwall diorite. Holcapek states, however:
"The results of this drill program showed that the best mineralized
sections are located within the argillites or along the argillite-chert contact, localized along the crestal region of tight, low amplitude folds. Anticlinal folds appear to be more favourable for localizing mineralization because of greater thickening of the sedimentary units and more intense brecciation, but in the vicinity of the fault zones, strong brecciation of the synclinal crestal region can carry good widths of ore grade mineralization as is evident in the eastern part of the Main Zone.

Further, the bedded mineralization suggests that the original sulphides are syngenetic in origin and have been partially remobilized from the limbs of the fold structures into the crestal regions. More work will be necessary to definitely confirm this model."

Holcapek calculated geologic, drill indicated reserves totalling some 1.6 million tons as follows:

Main Zone-Basal Cherts
Main Zone-Middle Cherts
South Zone-Basal Cherts
South Zone-Middle Cherts

528,160 tons grading $1.0 \% \mathrm{Cu}$ and $1.2 \% \mathrm{Zn}$ 350,000 tons grading $1.0 \% \mathrm{Cu}$ and $1.5 \% \mathrm{Zn}$ 400,900 tons grading $0.27 \% \mathrm{Cu}$ and $2.48 \% \mathrm{Zn}$ 320,000 tons grading $0.58 \% \mathrm{Cu}$ and $2.48 \% \mathrm{Zn}$

He further concluded that approximately 1.16 million tons of this material was mineable by open pit. Holcapek recommended linecutting along with detailed lithologic/structural mapping of the whole property and magnetic and EM surveying, to be followed by deep drilling of the down-dip extensions of the known mineralized zones.

In 1978, the renamed MW Resources drilled five holes in the vicinity of the Forestry Tower, then part of the Shunsby property, with little success.

Placer Development Limited optioned the property from MW Resources Ltd. in 1980 and completed geochemical and EM-17 surveying. Placer then drilled four holes, all in the southern portion of the property as it existed at that time. Two holes were drilled on what is now Cominco ground to the southwest of the present Shunsby property. The holes intersected massive pyrite horizons in explanation of the EM conductivity. Placer calculated their own ore reserve figure for the Shunsby deposit, arriving at 2.4 million tons grading $0.4 \% \mathrm{Cu}$ and $2.4 \% \mathrm{Zn}$.

The final phase of exploration was conducted by MW Resources in 1981 and was directed towards delineating a small, high-grade pod within the Main Zone which could be extracted to generate cash-flow. To this end, D. Fairbairn, P.Eng., President of MW Resources Ltd., reviewed all past data and identified a "flat-lying ore zone" of dimensions 1,000 feet long by 130 feet wide by 7 feet thick. This was estimated to contain some 80,000 tons of material grading $3.9 \% \mathrm{Cu}, 6.2 \% \mathrm{Zn}, 1.2$ oz/ton Ag and
$0.03 \mathrm{oz} / \mathrm{t} \mathrm{Au}$. He proposed mining this zone by room-and-pillar methods using a decline from surface, with the ore to be milled at Manitouwadge (Geco). In order to prove up this reserve, Fairbairn proposed a program of short vertical holes as well as stripping and trenching in the Basal Chert horizon of the Main Zone. He was also encouraged by the work to date on the South Zone basal chert, and the middle chert horizons of both zones. Fairbairn calculated reserves of 970,000 tons grading $1.2 \% \mathrm{Cu}$ and $5.0 \% \mathrm{Zn}$ for the South Zone, and notes that no assays for Au or Ag were performed.

In the interim, L.B. Goldsmith, P.Eng. reviewed the Placer geophysics and concluded that Placer had not comprehensively compiled known geology with respect to their EM-17 results. He recommended that an EM-17 survey be run over the North (Main) Zone and the results used to re-interpret the Placer results.

A 1981 drill program initiated by Fairbairn for MW Resources consisted of 30 vertical or near vertical holes in the Main Zone. These he concluded were successful in proving up 50,000 tons of material grading 5.2% equivalent copper ($3.2 \% \mathrm{Cu}+3.1 \%$ Zn along with $0.02 \mathrm{oz} /$ ton Au and $0.75 \mathrm{oz} /$ ton Ag) over approximately half of the inferred 1,000 foot strike length of the zone. Fairbairn recommended another 2,000 feet of drilling to evaluate the northern and southern quarters of this shallow, high grade zone, and postulated that the base metal enrichment was the result of postdepositional sedimentary dewatering, and as such, more high grade pods could be expected. He further recommended that a program of thorough geological mapping, geophysical surveying and diamond drilling be initiated to locate more zones before any production attempts. The suggestion was also made that MW might entice a major mining company, via a suitable option agreement, to get involved in the project.

In 1982, a lake sediment and water sampling program was performed in the vicinity of Tower, Mink and Edwards lakes by The Environmental Applications Group Ltd. (EAG) for MW Resources. The lake sediment survey, although encompassing a very small number of samples, suggested that a high metal background was present, with possible bedrock related responses noted in the area of Beavertail Lake, Tower Lake and downstream of Edwards Lake. Water at all sites did not reflect these concentrations and was deemed of excellent quality for both potable and mill uses.

In 1983, a fully independent review and assessment of all previous exploration work was performed by Hill, Goettler, De Laporte Ltd. of Toronto for MW Resources. Significantly, they conclude that "sufficient uncertainties with respect to the results and interpretations of both the Placer and recent MW work on the property cast doubts upon the conclusions of the previous work and the reserves supposedly established. Despite extensive drilling in the North and South Zones of the property, therefore, it is H.G.D.'s opinion that the property has not been fully tested... There is enough information presently available in core and reports to enable a thorough assessment to be made and an attractive exploration programme to be outlined by MW preparatory to seeking such a partner".

To this end, Brian Wilson and Associates Ltd., was contracted in 1989 to compile the exploration data and recommend an integrated exploration plan. Wilson's work arrived at a geological reserve figure of approximately 1.0 million tonnes grading 1.0% Cu and $1.5 \% \mathrm{Zn}$. He further noted that the two mineralized horizons are open to depth and, in part, along strike. He also concluded that Fairbaim's calculation of 80,000 tons at $3.9 \% \mathrm{Cu}, 6.2 \% \mathrm{Zn}$ and $1.2 \mathrm{oz} /$ ton Ag for the high grade pod was reasonable, but that extraction of this ore would break even at best. Wilson recommended a one million dollar, two-phase exploration program to consist of:

Phase One - Re-establish access road.

- Re -logging/re-sampling old core.
- Linecutting.
- Geological mapping.
- HLEM and gradient magnetic surveying.
- Detailed levelling survey to locate old drill collars.

Phase Two - 10,000 feet of anomaly drilling. - 25,000 feet of detailed drilling.

5.0 EXPLORATION PROGRAM - OPERATIONS

5.1 General

MPH personnel established a permanent 6-8 man tent camp in late May of 1990 at the end of the logging road, just west of \#4 post, claim S-147118 in the southern property area. This was used to accommodate and feed all company and contract personnel for the duration of the field season, and has been left intact for future work.

The project essentially consisted of three phases: an initial heavy equipmentintensive stripping and washing program during which all of the old drill core was extensively examined and re-sampled, a subsequent mapping and trenching program, and a final linecutting/detailed geophysical surveying/geological mapping program through September and October.

MPH personnel involved with the project consisted of :

W.E. Brereton, P.Eng	Consultant
P. Sobie, B.Sc.	Project Manager
D. Jones, M.Sc.	Geophysical Consultant
A. Kamo, B.Sc.	Field Geologist
D. Croft	Geological Technician
B. Mortson	Geological Technician
K. Blackshaw	Senior Geophysical Operator
R. Chasse	Geophysical Technician

As well, in-house computer and drafting personnel were utilized as needed.

5.2 Historical Drill Core Recovery

The vast majority of the old drill core was stored at the Shunsby Mines camp on Hiram Lake, while that from MW Resources' 1981 program was stored at the MNR fire tower to the northwest of the property.

Initial work consisted of locating the old drill collars and accurately chaining these in relative to the new Kirkton grid. This was relatively simple for the step-out holes and those in the less densely drilled areas. Some uncertainty remains however, in the Main and South zone areas, particularly with the locations of several Grandora Explorations holes drilled in 1974. Careful attention was also paid to topography by surveying lines with a Brunton compass to more accurately ascertain collar elevations. The initial surveying of the first 74 holes by the workers of that era served as control for this work.

All of the core stored at Hiram Lake was carefully examined and resampled during the course of this program. While approximately $10-20 \%$ of the boxes had either rotted, been dumped or had sunk into the ground, a significant
portion of most holes was available. Past samples were duplicated with the remaining split and have been stored for eventual re-assay (plus lead and silver). Where these splits were re-assayed as part of broader zones, the copper and zinc numbers were uniformly within an acceptable margin of the original assays. Much of our assaying was on whole core samples of low grade material to fill in gaps between previous intersections. All analytical work was performed by Swastika Laboratories of Swastika, Ontario. Certificates of analysis are presented in Appendix 2.

Generally, extensive weathering made identification of mineralization difficult and precluded comprehensive logging of the old core. It was possible, however, to check the old work and often elaborate on or correct vague or confusing descriptions in many cases. A uniform descriptive legend for all of the different drill campaigns was constructed for all of our work.

5.3 Stripping and Trenching

The mechanical stripping and washing was sub-contracted to D.P. Larche Mining Exploration Ltd. of Timmins, Ontario. Equipment supplied included:

Fiat Allis 16B Bulldozer
Caterpillar D-4D Wide-track Bulldozer
John Deere 690B Excavator
Bombardier Muskeg-mounted Backhoe
Timberjack-mounted Backhoe
Wajax high-pressure pump + hoses
Honda Four-trax utility vehicle
Along with the above, Larche supplied three operators and fuel, supplies etc. for the equipment.

The general methodology involved clearing a swath of ground to be stripped with the Fiat Allis bulldozer (approximately the size of a Caterpillar D-7) and pushing as much overburden to the sides as possible. This was followed by major overburden removal with the excavator afterwhich the Timberjack backhoe did the final clean-up of loose overburden.

All bedrock exposed by the stripping operations was thoroughly washed with the Wajax high pressure pump by Larche/MPH personnel. The newly exposed rock was then examined and various mineralized areas were selected for rock saw channel sampling and/or trenching and sampling. The trenching was carried out by drilling short blast holes with a gasoline plugger followed by loading and blasting with stick powder.

Operations were concentrated in the following areas:

AREA	$\frac{\text { LINE }}{}$	FROM	TO
"A"	$0+75 \mathrm{~S}$	$0+25 \mathrm{E}$	$0+75 \mathrm{E}$
"A"	$1+00 \mathrm{~S}$	$0+00$	$3+00 \mathrm{E}$
"A"	$1+00 \mathrm{~S}$	$5+00 \mathrm{E}$	$5+25 \mathrm{E}$
"B"	$3+00 \mathrm{~S}$	$0+50 \mathrm{~W}$	$2+25 \mathrm{E}$
""C"	$1+00 \mathrm{~N}$	$1+50 \mathrm{~W}$	$1+00 \mathrm{E}$
"D"	$3+00 \mathrm{~N}$	$0+50 \mathrm{E}$	$0+75 \mathrm{E}$
"E"	$1+00 \mathrm{~N}$	$3+00 \mathrm{E}$	$3+50 \mathrm{E}$
"MZ"	$3+00 \mathrm{~N}$	$2+25 \mathrm{~W}$	$0+75 \mathrm{~W}$

Also, an extensive portion of the Lower Cherts in the Main Zone between $2+75 \mathrm{~N}$ and $4+00 \mathrm{~N}$ was stripped and washed.

5.4 Geological Mapping

Computer compilation work had determined that 1:500 and 1:125 were the two scales most effective for dealing with the drill data. These were therefore used in the detailed mapping work of the above stripped areas. The 1:500 detailed map of the deposits area (Map 2) as well as the drill sections have been photoreduced to $1: 1000$ to allow integration with the geophysical data.

As well, limited 1:2500 scale property mapping was performed to clear up some of the ambiguities through the central and western property regions.

Results of mapping on surrounding properties, specifically Cominco to the south and Grand American Metals to the west, have been filed for assessment credit with the Ministry of Northern Development and Mines. We have obtained copies of this material and have integrated this work with ours.

5.5 Linecutting

The linecutting was sub-contracted to Halo Explorations of Connaught, Ontario who established a detailed grid totalling 15 km between line $9+00 \mathrm{~N}$ and $4+00 \mathrm{~S}$, from approximately $5+00 \mathrm{~W}$ to $5+00 \mathrm{E}$. These new lines consisted of intermediate 50 m crosslines extending off the baseline between the existing 100 m crosslines, and as well, tielines were established at $4+00 \mathrm{~W}, 2+00 \mathrm{~W}$, $2+00 \mathrm{E}$ and $4+00 \mathrm{E}$. Picket stations were established at 25 m intervals on all lines.

Deviations have been accurately determined on all lines, and this entire portion of the grid has been digitized to provide a truer representation of the grid for all relevant maps.

5.6 Geophysical Surveying

5.6.1 Magnetometer Survey

Total field magnetic surveys were carried out along all new crosslines within the detailed grid area. These data were integrated with that gathered last year in this portion of the property grid.

Readings were taken at 25 m station intervals with intermediate readings at 12.5 m in areas of high magnetic gradients.

An OMNI PLUS magnetometer was used to measure total field values. An OMNI-IV base station was employed to record and correct for diurnal variations.

The corrected total field magnetic data are presented in contour form on Maps 4a, 4b and 7. Several contouring intervals have been used to accommodate the range in anomaly amplitudes. No attempt was made to bias the contours.

5.6.2 Horizontal Loop Electromagnetic (HLEM) Survey

All of the new crosslines within the detailed grid area were surveyed with an Apex Parametrics MaxMin II EM unit utilizing a 100 m coil separation and transmitting frequencies of 444 Hz and 1777 Hz . Readings were taken at 25 m station intervals. Topographic corrections were performed at every station to ensure optimum alignment of the transmitter and receiver coils in the often rough terrain.

Also, the detail grid area from $4+00 \mathrm{~S}$ to $7+00 \mathrm{~N}$, encompassing both the new and the existing lines, was resurveyed with a 50 m coil separation to more sharply define the several zones of multiple conductivity.

The horizontal loop electromagnetic data is presented as in-phase and quadrature profiles at a vertical scale of 1 cm to 20% with positive facing.

The new 100 m cable data has been integrated with the property wide data set acquired in 1989/90, and is presented at a scale of 1:2500 on Maps 5 a and $\mathrm{b}(1777 \mathrm{~Hz})$, and 6 a and $\mathrm{b}(444 \mathrm{~Hz})$.

The 50 m cable 1777 Hz and 444 Hz data is presented on Maps 8 and 9, respectively. The 50 m 444 Hz data was utilized for the bulk of the interpretation through this detailed area.

6.0 GEOLOGY

6.1 Regional Geology and Mineralization

The Shunsby property lies within the Swayze greenstone belt. This is considered to be the southwest extension of the Abitibi belt which hosts the Timmins, Kirkland Lake-Noranda, Val d'Or, Mattagami and Chibougamau mining camps. North to northwest striking faults and granodiorite/monzonite batholiths partially disconnect the Swayze from the Abitibi belt (Figure 3).

The Swayze can be thought of as an arcuate volcano-sedimentary belt, convex to the west, extending from Sewell Township in the northeast, through Swayze Township in the central region, to Groves Township in the southeast. The volcanics consist primarily of mafic rocks which floor some substantial intermediate-felsic eruptive centres. Clastic and chemical sedimentary rocks, including major banded iron formations, are intercalated with the volcanics. A variety of synvolcanic to post-volcanic intrusions have invaded the supracrustal rocks. The Swayze belt is truncated to the west by the fault-bounded, northnortheast trending Kapuskasing Structural Zone, which contains high grade metamorphic rocks and associated carbonatite intrusive complexes.

Within the southeast Swayze, mapping and lithogeochemical studies by the O.G.S. (Siragusa, personal communication, 1985) have revealed a sequence of tholeiitic and komatiitic volcanics overlain by assorted calc-alkaline volcanics and sediments, in marked similarity to the Deloro/Tisdale Groups at Timmins. Structural and geophysical evidence also suggests that the Destor-Porcupine Fault extends through the northeast portion of the Swayze into at least Newton Township.

No base metal deposits have been mined in the Swayze to date although the proper geological conditions for such deposits would certainly appear to be present. Gold production has been limited to approximately $1,000,000$ tons of ore from seven rather small-scale producers. By far the largest base metal deposit in the belt is the present Shunsby deposit with the Texas Gulf deposit immediately to the northwest reportedly containing 100,000 tons of drill indicated material grading 3% zinc, 1% lead and 0.5% copper to a depth of 100 ft (Rye, 1984). The base metal sulphides occur in a sequence of mafic tuffs, chert breccias and sulphide facies iron formation.

The geology of Cunningham Township has been described by Siragusa (1978) as follows; and is presented in Figure 4:
"Metamorphosed volcanic flows interpreted as high-magnesium tholeiitic basalt are predominant in the northern half of Cunningham Township and over most of Garnet Township. The metavolcanics trend east-southeast, are locally pillowed, vesicular

or amygdaloidal and rarely variolitic, have undergone metamorphism which seldom exceeds greenschist rank, and evidence of primary features, notably selvage margins of pillows, may be found even in foliated or sheared flows. The pillows tend to have lobate or irregular outlines which may locally reflect conditions of near parallelism between the depositional plane of the flows and the present erosional surface, and, at any rate, rarely permit top determinations. Determinations made at a few localities suggest that tops face north. Thin layers of dacitic crystal tuff occur in the upper section of the (assumedly) north-facing series, but owing to scanty outcrop distribution these units, which otherwise would be excellent marker horizons, cannot be traced laterally for significant distances.

Cycles of chemical and clastic sedimentation occurred during development of the basaltic series and resulted in the deposition of chert iron formation, and epiblastic rocks in the middle and upper section of the series. The chert units consist mostly of laminated to medium-bedded, barren to ferruginous chert which is commonly interbedded with iron-rich layers containing an estimated 20 to 60 percent magnetite, and which is locally the host of sulphide mineralization. Deformation and fracturing of chert has resulted in conspicuous development of chert breccia in some of these units.

The main chert units are in Cunningham Township and stratigraphically are in the middle section of the basaltic sequence of the map-area. The largest chert body is located about 1600 m south of Mink Lake, has an unusual broadly triangular outline, and has a planimetric area of about $2 \mathrm{~km}^{2}$. The strike of the chert varies from west-northwest on the west side of the body to northnortheast on the east side of it. This change, as well as the unusual shape of the body itself, are the effects of displacement in the west side of the body (i.e. Isaiah Creek Fault), and folding in the east. A displaced western lobe of this body presently found about 2000 m south of the latter in the Peter Lake area, trends east-northeast and is about 1800 m long and 700 m wide. Another significant chert unit trending north-northeast to southsoutheast occurs eastward of a small lake located at the very centre of Cunningham Township (Hiram Lake). Most of the drilling conducted by Consolidated Shunsby Mines Limited prior to 1970 and which indicated a 1.1 million ton copper-zinc deposit was concentrated on one claim (S34947) within this chert unit.

Closely associated (spatially) with the main chert units of Cunningham Township are relatively small bodies of feldspar porphyry with aphanitic matrix and feldspar crystals that are

mostly 2 to 3 mm in size. The porphyry, which is thought to be a subjacent felsic volcanic rock, is well exposed along the northern shore of the tiny lake about 350 m southwest of the fire tower, at the very core of the folded eastern tip of the Mink Lake chert deposit. A prominent, although rather heavily forested, ridge of this rock is also found about 3.4 km north and 2.3 km west of the southeastern corner of Cunningham Township.

Interbedded with the metavolcanics in the upper and central sections of the basaltic sequence are bands of epiblastic metasediments trending east-northeast, northwest and west, occurring in northwestern Cunningham Township, and northeastern and west-central Garnet Township, respectively. These metasediments include dominant matrix-supported polymictic conglomerate, and subordinate arkosic arenite and minor slate which are of only local occurrence. The coarse fraction of the conglomerate consists largely of variably deformed pebbles and boulders of chert, felsic metavolcanics, and minor granitic rocks. The latter are thought to represent early granitic rocks which predate the quartz monzonite underlying southwestern Cunningham Township.

Mafic intrusive rocks in bodies of irregular shape and variable size are commonly found spatially associated with the metavolcanics, and are particularly frequent in southern Cunningham Township and northeastern Garnet Township. These rocks have composition varying from diorite to gabbro, the latter being dominant, and are massive although commonly affected by variably well developed jointing. In general they have medium-grained diabasic texture which locally gives way to a very coarse knotty pyroxenite where hornblende may be pseudomorphed after brown pryoxene.

Porphyritic varieties with tabular plagioclase phenocryst up to 4 cm in size are also present in a few localities. Basaltic and chert xenoliths are occasionally found within these rocks and where these occur the rock's intrusive nature is clearly indicated.

Gabbro is affected by retrograde metamorphism along a north-northeast-trending shear zone extending eastward of Isaiah Lake (Cunningham Township). This zone is thought to post-date regional metamorphism and to be a local feature related to the emplacement of quartz monzonite west of Isaiah Lake.

Discrete intrusions of peridotite occur in a few localities of southern Cunningham Township. Peridotite is massive,
serpertinized to variable extent, and is locally much more magnetic than interbedded chert-magnetite. Although in some areas exposures of peridotite and gabbro occur only a few metres apart, exposed contacts between these rocks were never found. No peridotite was found in Garnet Township but a large outcrop was found in the northwestern corner of Benton Township, approximately 700 m east of the present map area.

A small pluton of massive porphyritic quartz monzonite of about $13 \mathrm{~km}^{2}$ underlies parts of western and southwestern Cunningham Township. The pluton is poorly exposed and is bisected by the Isaiah Creek Fault so that the western half of the pluton is displaced about 2000 m south of the eastern half of it. Two small peridotite bodies are in contact with the northern and southern tips of the eastern half of the pluton adjacent to the trace of the fault plane.

Lamprophyre is of rare occurrence and consists of minette dikelets 2 m or less in thickness, cutting metavolcanics or gabbro at a few localities. A dike about 4 m thick of hornblende syenite was found to intrude sheared basalt at one locality along the shear zone east of Isaiah Lake. Both the lamprophyre and syenite dikelets are thought to have about the same age as the quartz monzonite. Only one diabase cutting quartz monzonite was found and this is thought to be the youngest rock in the map-area."

6.2 Property Geology

6.2.1 General

As a general statement, it is our feeling, as well as that of other exploration groups in the township, that a great deal more volcanics are present than indicated by Siragusa. In particular, much of the area mapped as diorite/gabbro through the centre of the Shunsby property, as well as south of it, is in fact mafic to felsic metavolcanics. As well, a large felsic pyroclastic centre would appear to occupy the area just south of the property, approximately due south of Hiram Lake. This is evidenced by coarse felsic pyroclastic breccia outcrops throughout that region. Sulphide clasts are present in some of these breccias. Much of the rock mapped as feldspar porphyry by previous workers in the area is in fact quartz or feldspar-phyric felsic metavolcanics and pyroclastics. Such rocks cap the Shunsby sedimentary-volcanic stratigraphy in the deposit area.
6.2.2 Lithologies and Stratigraphy

All evidence gathered thus far from field mapping, drill core examination and geophysical dip estimates suggests that the Shunsby lithologies lie in
the form of a west dipping, upwards-younging, homoclinal sequence with shallow dips $\left(30-40^{\circ}\right)$ to the west. Later north-south cross folding resulting in locally steeper dips would appear to be present. As well, local troughs thought to be a function of primary basement topography appear to be present based on thickening of the lower cherts.
(a) Footwall Rocks

Lowermost in the stratigraphy and covering the eastern portion of the Shunsby property (Maps 1 and 2) is an extensive mafic volcanic/synvolcanic sill unit locally termed the "Footwall Diorite". These rocks vary from aphanitic fine-grained mafic flows through to coarsegrained gabbros, with generally a gradual transition between the two. Siragusa (1987) has also noted both (i) presence of basaltic xenoliths in gabbro and (ii) presence of gabbro xenoliths in basalt and feels that "the contact relationships of gabbro and basalt reflect differences in the depth at which the present erosional surface intersects the former volcanoplutonic edifice." Chemically, these rocks are generally basaltic in composition and tholeitic in classification, and indeed, the coarse-grained rocks are probably better described as gabbros.

The footwall rocks to the Shunsby metasediments form a prominent N-S ridge through the southern property area south of line $1+00 \mathrm{~N}$. This ridge includes some of the highest ground on the property, and throughout this area the rocks most certainly are gabbros. A small trench on line $1+00 S$ targeted on Conductor 1c exposed a graphitic zone at the east base of the gabbroic ridge here.

The "Footwall Diorite" rocks within the wedges formed by conductors 43 (13a) and $42 \mathrm{a}(12)$ north of the Joubin Fault, and conductors 41 (2d) and $40 \mathrm{~b}(1 \mathrm{~d})$ (see Maps $5 \mathrm{a}, \mathrm{b}$, and 8) to the south of the fault, have been intersected by numerous drill holes and exposed in the Main Zone contact area between lines $3+00$ and $4+00 \mathrm{~N}$. On surface this rock appears as a light grey-blue, fine-to-medium grained mafic volcanic, somewhat hydrated but not excessively altered. Drill holes which have penetrated deeply into the footwall have generally intersected this mafic volcanic which grades into a coarse-grained gabbro at depths of $10-50$ feet below the main footwall contact. The deepest hole to probe the Footwall Diorite complex, no. 56-51, drilled vertically, penetrated three gabbroic bodies with apparent thickness of 100-200 feet separated by "andesite" or "grey lava" units less than 100 feet thick.

Attempts to trench conductors $42 \mathrm{a}(12)$ and $40 \mathrm{~b}(1 \mathrm{~d})$ were unsuccessful in reaching bedrock, but did encounter significant mineralized chert, graphite and argillite lithologies. The relationship of these sediments to the Lower Cherts and Footwall Diorite is still unknown at this point, however, dips
appear steeper and there seems to be marked lithologic similarities to the Lower Chert package.
(b) Lower Cherts

Surface stripping (Map 3) and extensive drill core examination have revealed the Lower Chert sedimentary package to be a complex of graphitic argillite, argillite, argillaceous chert and chert with minor mafic flows and tuffs. The package as a whole would appear to represent a quiescent, deep basinal environment relatively distal to a volcanic vent given the relative lack of intercalated flows.

An idealized section through the Lower Cherts, included on Map 3, suggests that the stratigraphy consists of, from lower to upper, approximately 10 m of schistose argillite, graphitic argillite with subordinate chert locally referred to as the Basement Fault; an overlying $5-7 \mathrm{~m}$ of argillaceous chert, chert and mafic flows; approximately $7-10 \mathrm{~m}$ of banded cherts and argillite capped by a thin ash tuff unit; a highly mineralized $6-8 \mathrm{~m}$ argillaceous chert breccia unit with subordinate graphitic argillite; and an uppermost 10-20 metres of argillaceous chert, graphitic argillite and chert with some volcanic breccia near the contact. This 38-55 metres of surface/drill core exposure would appear to have a true thickness of approximately 35 m , however, differential weathering as well as an apparent cross-fold controlled "bulge" in the sediments at the Main Zone complicates the picture locally.

In detail the various units mentioned above are more accurately described as:

Graphitic Argillite
Very fine-grained, black, carbonaceous, generally highly contorted schist, usually containing interbeds of massive $\mathrm{py} \pm \mathrm{cp}, \mathrm{sp}$

Argillite
Very fine-grained, grey to black, carbonaceous to feldspathic pelite, variably schistose and mineralized with thin beds of massive $p y \pm c p, s p$

Argillaceous Chert
Very fine-grained to cryptocrystalline, grey to black, carbonaceous, laminated to medium-bedded, variably brecciated and mineralized with cp , py, sp as matrix-filling and fracture-fillings

Massive Chert
White cryptocrystalline to micritic, thickly-bedded and generally fractured and cross-cut with quartz-carbonate $\pm \mathrm{py}, \mathrm{sp}, \mathrm{gn}$ veinlets

Banded Chert
White to greenish-brown, cryptocrystalline to micritic, laminated to medium bedded with very thin argillite interbeds \pm massive py, cp. This is probably the rock which prompted the "iron-formation" field classification of past workers.

Ash Tuff

Fine-to-medium-grained, light grey, thinly-bedded, feldspathic lithic tuff
Limited drilling of the lower cherts in the south property area suggests that the stratigraphy here is virtually identical, with generally more argillaceous cherts and argillites than to the north.

(c) Variolitic Basalt

Serving as a marker horizon between the two sedimentary packages, the "Variolitic Andesite" ranges in thickness from 30-50 metres. In outcrop and drill core, the unit appears to consist of several flows, not all of which contain feldspar spherulites. Pillowed and massive flows are common within the unit, which chemically is basaltic in composition.

(d) Upper Cherts

The upper sedimentary package is much thicker than the lower cherts, and, based on stripping and drill core examination, much more predictable and less chaotic in terms of internal stratigraphy. In general, chert is much more abundant than argillite and graphite, and "clean" chert predominates over "dirty", or argillaceous chert. As well, debris-flow breccias and a variety of soft sediment slumpage features are common, suggesting that at least a portion of the upper cherts represent gravity controlled deposition.

The package appears to have a true thickness exceeding 100 m and consists of, from lower to upper, a thin $3-5 \mathrm{~m}$ graphitic argillite and argillaceous chert unit; a thick $20-25 \mathrm{~m}$ sequence of clean cherts and banded cherts with subordinate interbedded chloritic argillite, all grading over the upper 10 m to an angular chert breccia; $10-15 \mathrm{~m}$ of argillite, graphitic argillite, greywacke and chert; an upper $50-75 \mathrm{~m}$ of a rounded chert debris-flow type breccia; and an uppermost 10 m argillite unit. Mineralization is primarily limited to the three argillite units.

The debris-flow/sedimentary chert breccia is a rather exotic unit composed of rounded, clean chert cobbles and is matrix-supported with a matrix of iron carbonate, chert and pyrrhotite. Occasional clasts of argillite and greywacke are also found within the breccia.
(e) Intermediate to Felsic Metavolcanics

These rocks cap the sedimentary sequence within the Main and South deposits area, and to the south become intercalated with the upper cherts. For the most part they are pyroclastics and massive porphryitic flows with subordinate intercalated graphitic argillite.

Past workers on the property have referred to these rocks as quartzfeldspar porphyry of intrusive origin related to the cross-cutting quartzfeldspar porphyry dykes. Detailed examination of these rocks on surface and in drill core however, clearly shows the bedded and fragmented nature of these lithic tuffs. It appears that the blocky weathering nature of these outcrops gave the impression of dykes and domes. Within the deposits area, the capping sequence appears to have a true thickness of approximately 20 metres and the graphite units are well-mineralized with coarse-grained euhedral pyrite.

The intercalated felsic metavolcanics in the south property area are seen primarily in hole 74-16, and are found down-dip within the upper cherts. These are generally cherty ash tuffs which are likely related to the chert beds seen up-dip and along-strike to the north.

(f) "Digestive Diorite"

Intruding into the Shunsby stratigraphy north of the Joubin Fault, this unit dips steeply to the east and, based on drill sections, would appear to have a laccolith form. The "bowl" of the laccolith appears to extend to a maximum depth of 50 m with a surface width of 75 m . One possible intrusive feeder area or "neck" is thought to be in the area of line $3+75 \mathrm{~N}$ with possibly another at $5+50 \mathrm{~N}$. The rock appears in the field as a greenish, medium to coarse-grained diorite, however, chemically it would appear to be basaltic in composition, and therefore possibly associated with the footwall rocks.

Rounded chert xenoliths and the clearly intrusive nature of this unit distinguish it from the stratifrom gabbro/diorite sills elsewhere on the property. It should be noted that this intrusive does not appear to be present south of the Joubin Fault. This probably relates to vertical movement on this structure, possibly of a south side up, ie reverse, sense.

(g) Central Property Area

Limited mapping suggests that the Shunsby sedimentary sequence is overlain by a thick volcano-plutonic complex consisting primarily of mafic volcanics and gabbro with some felsic pyroclastics.

Immediately above the Shunsby sedimentary-volcanic sequence is a large conformable gabbro body which is in fault contact with the Digestive

Diorite to the north. The offset equivalent of the conformable sill to the north of the Joubin Fault is believed to be present west of Hiram Lake.

Several hundred metres of intermediate to felsic metavolcanics and pyroclastics are indicated to overlie the gabbro. A second large mafic volcanic/sill complex is indicated to then extend to the western sedimentary unit.

(h) Westem Sediments

This sedimentary package strikes northerly in the extreme west portion of the Shunsby property, but immediately to the north warps around to the west, where a small deposit has been outlined by Texas Gulf (now Falconbridge, Figure 4). Road-building and logging activity by E.B. Eddy this past fall have now made this region of the property easily accessible, and has exposed much outcrop. This package of sediments has seen very limited trenching and diamond drilling in the past (Holes Jim 1 and 2, 1965) on the Shunsby property.

A comprehensive description of stratigraphy is provided by Rye (1984) who reports on an overturned, south-dipping sequence of basalts stratigraphically underlying a 430 m thick intermediate to felsic flow and tuff unit with minor chert which grades into a 200 m thick ironformation, all overlain by intermediate to mafic flows.

In detail on the Falconbridge property, the iron-formation consists of an underlying mafic tuff unit; a lowermost 20 m chert breccia unit with intercalated tuffs, pyritic shales and graphitic cherts; approximately 25 m of sulphide facies iron-formation consisting of finely laminated black pyritic shales up to 1.5 m thick with interbedded cherts and chert breccia up to 2 m thick and an uppermost 125 m thick oxide iron-formation unit which consists of clean massive cherts up to 30 cm thick separated by magnetite bands of 1 to 5 cm .

The oxide facies iron-formation is characterized by the absence of tuffs and sulphides, and by the presence of actinolite and grunerite within the cherts. All base metal sulphide mineralization is found within the lower sequence of the formation, i.e. within the footwall tuffs, chert-breccias and pyritic shales.

The overturned relationship seen on the Falconbridge ground would not appear to extend onto the Shunsby property, as both Jim holes (drilling easterly), passed through much chert before argillite, and then into footwall volcanics.

(i) Intrusive Dykes

Narrow dykes of felsic (quartz-feldspar porphyry) through to intermediate (lamprophyre) and mafic (diorite-gabbro) compositions were noted in drill core and mapping on the property.

The quartz-feldspar porphyry dykes appear in all cases to trend E-W and dip steeply southward and are thought to cut all lithologies of at least, the Shunsby sedimentary sequence and most likely, the footwall and hanging wall rocks. Lamprophyre has been mapped in several localities south of the Main Fault and appears concordant with stratigraphy. Dioritic to gabbroic dykes and dyklets are common in the Main Zone area striking WNW and steeply dipping, and would appear to be intimately related to the Digestive Diorite intrusive on the basis of appearance and location.

The quartz-feldspar porphyry dykes seen on surface are up to three metres in width, grey to light pink, medium-grained with phenocryst of feldspar up to 1 cm in length. The rock is very similar in appearance to the massive, intermediate to felsic rocks described above, and may be intimately related to these rather than the Isaiah Lake granitic batholith to the southwest.

Lamprophyre dykes appear in the field as a dark greenish brown, fine to medium-grained rock with biotite aggregates plainly visible. These dykes are narrow, to a maximum of two metres in width, and would appear to have a rather short strike extent as they are not traceable from hole to hole or between adjacent surface exposures.

6.2.3 Structure

Rock units on the property generally trend slightly west of north and dip $25^{\circ}-40^{\circ}$ on average to the west. Strikes swing markedly to the west off the northwest portion of the claims, in the area of the Forestry Tower. Strikes to the south of the property are to the southeast or east-west. The north-south strikes on the property are a local aberration in terms of the general east-west strikes in the Swayze and appear to reflect regional warping around the Isaiah Lake granitic stock located to the west. This stock may, in turn, represent the remnants of a large scale volcanic centre possibly analogous to the Dufault/Flavrian/Powell grantic complexes at Noranda, Quebec.

Previous workers (e.g. Mudford 1956) consistently refer to a large, overturned, west-verging synclinal fold on the property. This presumed fold would have a recumbent nature and plunge gently ($10^{\circ} \pm$) to the south. The fold interpretation was apparently based on the assumption of stratigraphic equivalence between the cherts containing base metal mineralization east of Hiram Lake with the iron formation along the west
property boundary. The gentle south plunge was invoked to explain the gradual disappearance of the cherts in the "up-plunge", i.e. north, direction.

Our interpretation at this point is one of a west dipping (and facing), north striking homoclinal sequence. The chert and the iron formation are lithologically dissimilar, mainly in the presence of magnetite in the latter. The gradual disappearance of the cherts to the north on the present property may well reflect original basin morphology.

Detailed mapping on the property has clarified the rather complicated fault picture presented in our 1989 report. While the structures and trends noted by Holcapek (1975) and earlier workers would appear to be present, many of those interpreted from the recent geophysical surveying are now felt to be either absent or of minor consequence. Also, even in cases wherer linear structures do exist, offset along these appears to be generally of small scale. Specific structural trends present are:
" 090° trend"
This is the most important trend on the property and is manifested by shear zones, faults, fractures and joints as well as quartz-feldspar porphyry dykes and quartz-carbonate veinlets which carry galena plus chalcopyrite, sphalerite and pyrite.

Detailed mapping in the Main Zone lower cherts (Map 3) reveals this to be the latest trend, cross-cutting and sporadically slightly offsetting stratigraphy and older structures. The remobilized aspect of some of the mineralization appears to be at least partially related to this trend, as mineralized horizons show definite enrichment or "podding" adjacent to these fractures and faults.

Stripping on line $1+00 \mathrm{~N}$ has revealed a sinuous E-W shear zone approximately 5 metres in width and dipping steeply southward. The shear cuts a large portion of Upper Cherts debris flow material with no apparent lateral movement. Where the zone cuts the cherty debris flow breccia there is a definite rotation of clasts into the plane of foliation, and as well massive mineralized argillite clasts are sporadically seen. Quartzcarbonate galena veins are common within the shear. Iron-carbonate alteration is intense.

The Main Fault (Joubin Fault) also occupies this trend, and also dips steeply south. From surface exposures and drill core examination this feature would appear to be a zone(s) of highly sheared rock with leftlateral displacement of approximately 225 metres. Several splays are thought to be present, complicating the structural and stratigraphic picture
in the vicinity of line $2+00 \mathrm{~N}$ (ie. Hole 56-49 area).
" 120° trend"
Older than the 090° trend, but still cutting older structures, are faults, fractures and joints of this orientation seen primarily in the Main Zone but also in both the " A " and " C " stripped areas. Drag-folding along this direction is also seen in the Main Zone at $4+00 \mathrm{~N}$, although the amplitude of the fold is relatively minor, ie. less than 5 metres. As well, a diorite dyke occupies this trend in the Main Zone at $3+40 \mathrm{~N}$ and is surrounded by highly brecciated chert and argillite units. Hole 81-22 intersected this dyke for some 40 of its 76 feet.

Fractures and joints along this trend are variably mineralized with chalcopyrite, sphalerite and pyrite within mineralized horizons of the Main Zone. The mineralization does not appear to transgress stratigraphic horizons within these structures, while that within the quartz-carbonate veins trending 090° does.

Similar structures seen in the Upper Cherts of the South Zone are mineralized with iron carbonate, pyrrhotite, pyrite and galena.
" 0 " trend"
This trend actually varies from approximately 330° to 030° and is approximately parallel to the strike and dip of bedding. This bedding trend is cut by the two structural trends above, and would therefore appear to be oldest. It is manifested by shearing within the argillites, graphitic argillites and cherts of the lowermost Main Zone Lower Cherts ("Basement Fault"), and by joints within the footwall volcanics and the more brittle cherts horizons.

A similar sheared graphitic argillite package is found at the base of the Upper Cherts in contact with the Variolitic Basalt.

These structures would appear to be bedding faults, and "draping" exposed in the Main Zone suggests that these were caused by slippage of the incompetent units over the more competent volcanics. The magnitude of this movement is not known, but does not appear significant in the field.

At odds with the above west-dipping trend is the east-dipping shear which marks the eastern contact of the intrusive gabbro (Digestive Diorite). It is not known how deeply this structure penetrates, nor whether the west contact also dips easterly, however the indicated laccolithic form to the digestive diorite suggests these are shallow structures.

6.3 Mineralization

The descriptions of mineralization style by particularity Holcapek (1975), and Fairbairn (1982) included in the 1989 MPH report have proven to be excellent, but incomplete. Surface exposures as well as extensive re-examination of the historical drill core has shown the following distinctive mineralization styles to be present:
(1) Argillaceous breccia with sulphide matrix (cp \& py, sp, bn) \pm graphite
(2) Argillaceous chert/sulphide breccia with cp, py as blebs, disseminations
(3) Massive argillaceous chert carrying disseminated $\mathrm{sp} \& \mathrm{py}, \mathrm{cp}$ as well as fracture-filling $\mathrm{sp}, \mathrm{py} \pm \mathrm{gn}$
(4) Massive banded py-sp-cp \pm po horizons within argillite
(5) Late cross-cutting quartz-carbonate veins, veinlets carrying $\mathrm{gn}+\mathrm{cp}$, sp, py.

Pyrrhotite is present at the expense of pyrite within the upper cherts while pyrite is the predominant accessory sulphide in the lower cherts. With the exception of the late veins, all mineralization appears to be stratabound in the sense that local remobilization appears to have resulted in the textures seen above, but these have not been observed transgressing stratigraphic contacts.

The observed sulphide mineralization at Shunsby is considered to be originally of distal volcanogenic origin. The mineralization in the upper cherts is felt to represent further pulses of hydrothermal activity which probably utilized the same conduit system as that in the lower cherts. The variably remobilized nature of much of the mineralization is related to subsequent tectonic activity.

Detailed studies on the Texas Gulf mineralization are of some interest in this regard as follows (Rye, 1984):
(1) "Grains of chalcopyrite, concentrically rimmed by galena and sphalerite from centre to margin, occur within the tuffs."
(2) "Within the chert breccias near the base of the iron formation, sulphides occur as coarse aggregates of chalcopyrite, sphalerite, galena and pyrrhotite."
(3) "Sphalerite is the most abundant sulphide in the veins, with lesser amounts of galena, chalcopyrite and pyrite. Where they occur
together, there is a distinct zoning of the sulphides in which sphalerite is typically adjacent to the vein wall, with galena and chalcopyrite respectively situated towards the vein centre. Sphalerite has commonly exsolved chalcopyrite in these veinlets, and is was noted by Mullen (1974), that sphalerite in carbonate veins is darker red than the lighter brown sphalerite in the iron formation adjacent to the vein."

Despite the complexity of textures related above, crude lateral and vertical metal zoning is present at Shunsby.

Within both the Upper and Lower Cherts, individual mineralized beds or units grade from Cu -rich bases to Zn -rich tops. This is particularly evident in the Main Zone where several units display this characteristic over distances of a metre or less.

Within both the overall Lower Chert and Upper Chert formations, the zoning includes an upwards gradation from Cu -rich to Zn -rich to Fe -rich mineralized beds. This is particularly obvious in the Upper Cherts where Cu-rich argillite interbeds are overlain by Cu -breccia, $\mathrm{Cu}-\mathrm{Zn}$ breccia, massive $\mathrm{Zn}-\mathrm{Cu}$, and Zn -py breccia mineralization styles. Pyrrhotite with iron-carbonate caps this sequence in the form of the matrix of the extensive chert slumpage breccia. Pyrrhotite and pyrite with minor sphalerite appear to be the primary sulphides found within the uppermost argillaceous section of the Upper Cherts. In the Lower Cherts, a very pronounced Cu -rich base to the sequence is gradually superseded by an extremely Zn -rich, fractured argillaceous chert unit near the top of the sequence. This relationship is seen in even the deepest holes to penetrate the Lower Chert, for example no. 64-82e on Section 3+00N (Appendix 1). Pyrrhotite is not evident within the Lower Cherts until the upper 10 m or so.

At the property or deposit scale, an upwards and outwards metal distribution from Cu to Zn to Fe is also seen. This is particularly obvious in the Main Zone where the Lower Cherts are much more Cu-rich than the Zn -rich Upper Cherts. Also, the South Zone is much more Zn -rich than the Main Zone, however there also, the Lower Cherts contain more copper than the Upper Cherts.

Float examined from the inferred lowest stratigraphic unit marked by conductors $42 \mathrm{a}(12)$ and $40 \mathrm{~b}(1 \mathrm{~d})$ is extremely Cu-rich, containing significant amounts of bornite, suggesting this may be the lowest, and richest, mineralized horizon.

6.4 Lithogeochemistry and Petrography

One is immediately struck by the impressive amount of iron-carbonate seen when walking around the Shunsby exposures. Iron carbonate is seen in shear zones, late quartz-carbonate veins, and forms a major component of the matrix
of the chert breccia lithologies. While always present with mineralization, iron carbonate would appear to be ubiquitous throughout the Shunsby sedimentary basin lithologies, and as such possibly represents an alteration "halo" rather than a pipe-like feature.

Also present at surface, albeit locally, is chlorite in the form of chloritic argillite interbeds within the banded chert units of the Main Zone lower cherts, and the upper cherts of both zones. Green argillite appears to be related to mineralization specifically, as these beds are invariably mineralized with chalcopyrite and sphalerite plus pyrite. It is unknown whether the chloritic component of these argillites is a metamorphic or hydrothermal alteration product. Chloritic argillite "veins" do cut stratigraphy though, but have the appearance of being squeezed into pre-existing fractures.

Sericite has been noted in the Variolitic Basalt unit, often near the contacts as in shear zones on lines $1+00 \mathrm{~N}$ and $1+00 \mathrm{~S}$.

The footwall rocks, where exposed and from drill core examination, have a somewhat pale, bleached appearance. This is true of both the "Variolitic Andesite" and "Footwall Diorite" units and likely promoted the previous "intermediate" compositional field terms, while the rocks, are in fact, mafic.

Chemical analysis of 26 "Footwall Diorite" and 16 "Variolitic Andesite" samples suggests that, within the limits of sampling thus far, these rocks display significant hydrothermal alteration trends with more intense alteration proximal to base metal mineralization. Table 3 summarizes the results of this lithogeochemical processing which is elaborated upon in Appendix 4.

General chemical trends include:
(1) slight MgO depletion
(2) slight $\mathrm{K}_{2} \mathrm{O}$ enrichment
(3) modest Zn enrichment
(4) slight Cu enrichment
(5) high LOI and CO_{2}

Chemical trends proximal to base metal mineralization consist of:
(1) negligible to moderate MgO enrichment
(2) negligible to slight $\mathrm{K}_{2} \mathrm{O}$ enrichment
(3) moderate FeT enrichment
(4) moderate $\mathrm{Na}_{2} \mathrm{O}$ depletion
(5) strong CaO depletion
(6) sporadic SiO_{2} depletion
(7) strong $\mathrm{Al}_{2} \mathrm{O}_{3}$ enrichment
(8) slight MnO enrichment
(9) strong Zn enrichment
(10) strong Cu enrichment
(11) low LOI, CO_{2}

These chemical trends are recognizable in both the footwall and variolitic basalt units.

This alteration assemblage would appear to be analogous to that seen at the Mattabi Mine in the Sturgeon Lake Camp with variations due to fundamental footwall rock differences. At Mattabi, a regional dolomitic chemistry exists which is overprinted by an alkali-depleted siderotic alteration pipe containing highly elevated Cu and Zn values at its centre. Proximal to massive ore are local chlorite pods, a semi-conformable quartz-andalusite-chloritoid zone at the base of the mineralization and local sericite-chloritoid nodes. Siderite, chloritoid and andalusite contents increase toward the ore (Franklin et al., 1975).

The chemical work was supplemented by limited petrographic studies on some of the key samples in an attempt to correlate the chemical data with mineralogy. In general, chemical trends, have quite obvious mineralogic correlations in thin section. For example, increased CO_{2} and $\mathrm{Mg}(\pm \mathrm{Fe})$ contents clearly relate to anomalous carbonate and chlorite \pm biotite contents respectively. Na depletion correlates closely with enhanced sericite contents formed by the destruction of plagioclase.

Comments on specific samples are as follows:
$65-70 \mathrm{e}-\mathrm{FWb}$ (Footwall Mafic Complex, south of South Zone)

- no chemical alteration of note
- petrographically a massive medium-grained dioritic rock with large ragged hornblende grains enclosing and intermixed with sericitized, often lathy plagioclase; minor carbonate; a few weakly pleochroic epidote crystals are evident.

65-70e-FWa (Footwall Mafic Complex, south of South Zone, above b)
a fine grained, slightly schistose mafic rock; there is strong alteration as suggested by the chemistry consisting of extensive sercitization, chloritization and carbonitization, much of the carbonate (\pm quartz) occurs in distinct microveinlets; ragged green chlorite masses are typically opaque under crossed nicols.

SE-1-FW (Footwall Mafic Complex, South Zone)

- chemically a highly altered rock with Si and CO_{2} enrichment, Na depletion and anomalous $\mathrm{Cu}-\mathrm{Zn}$ petrographically a moderately schistose fine-grained mosaic of interlocking quartz \pm feldspar anhedra and carbonate; abundant fine

SUETE SECTION BROM TO THS PLRLL CD

	6+541	109.76	110.16	38.181 .08	85
56-110-8	3+003	169.94	190.14	48.511 .01	60
56-44-74	5+001	11.13	17.11	43.12 4.32	115
66-108-711	1+251	235.37	235.61	39.641 .51	95
51-01-2M	3+73!	1.08	0.31	72.644 .62	
ST-02-74	3+501	1.08	0.30	11.219 .11	
65-12e-1	3+5011	251.22	251.52	35.111 .04	1\%
14-82e-11	3+601	252.13	252.41	31.8010 .18	35
[1-81-TM	2475:	152.41	152.14	38.850 .89	15
6-79-711	2+751	35.38	36.24	19.29 8.06	105
(f-34-711	2+251	122.58	122.11	46.321 .15	75
(8-18-7\%	2+251	55.18	53.15	71.265 .14	215
36-27-17	26001	62.80	\$3.11	69.324 .69	150
36-49-11	2,001	85.85	66.16	37.661 .12	15
(6-5-74	1+001	155.18	155.49	69.913 .25	15
(8-13-14	1+001	6.28	86.59	39.351 .11	10
51-1-711	0,501	52.41	52.14	32.010 .90	235
(18-16-71	1+041	136.28	136.59	31.761 .05	10
68-30-P\%	$0+755$	96.95	87.26	38.791 .14	80
85-2-911	1+25S	103.86	103.98	40.650 .98	50
57-63-71	1+505	187.50	187.80	60.552 .85	130
65-74-7ha	$2+005$	152.44	132.71	38.961 .09	1
55-78-7ilb	3+005	163.11	163.72	46.141 .16	165
SE-4-7\%	32005	98.18	88.78	42.491 .15	60
St-3-7\%	$3+505$	33.99	34.30	37.211 .06	110

66-108-18 $4+231$

¢-10t-18 d+23	136.6	197.	13.362.	S	82	. 181	4.04	1.2	1.10	-1.11	4.	2.4	-1.3	12.	4.18	1.	1.				cort
\$1-85-185 3+501	1	. 33	48.101 .79				-1.07	1.42	-1.45	-3.39	-2.15	. 52	. 55			-1.32	-. 5	6-1 13stit	E165	3.05	
51-85-930 3+501	1	. 33	55.313 .18				-1.1	1.52	-3.63	-2.75	-4.01	-8.31	2.18			-4.68	-3.35	C-1 1170Lit		. 13	nora c 12.8
[1-41-17 $2+758$	11.95	12.26	33.191 .08	15	130	0.115	-2.92	0.14	-3.11	-1.18	0.15	4.18	-1.31	-4.69	- 1.35	4.15	- 1.92	T106 MSib	[16]	9.08	
56-31-78 1+171	98.09	99.35	89.819 .23	140	135	1.031	5.71	-1.23	4.56	-1.01	-1.32	1.46	1.11	2.14	2.18	1.75	1.15	tom MS comitilit		1.97	Horı
56-52-13 1+813	12.58	12.81	19.421 .86	5	450	0.011	-1.70	0.18	-1.11	-1.34	-4.89	8.43	-0.12	1.14	3.18	-4.12	-1.53	7104 3L54?	[39	3.62	
65-8-78 1+801	18.48	98.18	46.352 .31	100	1815	0.055	-2.62	0.25	4.48	-2.76	-4.71	- 13	-0.55	32.65	32.05	5.52	1.39	Tloh IEA-It B6SIL	1161	4.58	mors c 3.04
68-13-18 $1+8011$	8.11	7.01	45.982 .31	310	255	1.131	-3.19	\$. 09	5.26	-2.13	-5.11	1.52	-1.14	5.13	5.11	\$.51	4.69	flot [161-1] BLSIT		5.15	nots c 3.8.
64-16-73 0, 001	40.06	60.31	30.481 .28	100	125	0.808	-1.98	0.61	-1.42	-2.34	0.14	0.31	-1.12	-3.30	- 5.12	-4.11	-1.54	C-1 HSLL	IEI	1.88	
68-20-18 0+75S	11.63	11.94	78.603 .15	5	300	0.017	2.97	0.65	-1.22	- 3.29	-5.12	-1.14	3.65	-2.03	-2.11	-4.31	2.88	C-1 BLIt		1.58	nors 69.78
65-52e-18 0+755	115.85	116.16	17.131 .99	85	190	0.308	2.24	0.38	2.01	-3.14	-9.02	-2.53	2.85	11.55	11.48	4.04	4.69	TEOS MSALT		1.18	zort c $^{5} 5.54$
56-51-11 H175	64.35	84.63	61.122 .81	15	985	0.076	-0.06	0.t8	2.25	-1.35	-4.11	-1.31	1.12	11.81	13.88	3.11	1.50	THOL BLSAL		3.61	3018 © 6.15
at-0j-16 1+00s	1	. 33	15.061 .39				1.45	-. 31	-. 31	-. 39	-3.03	1.38	-. 14			. 13	2.15	T10\% BLSAL		3.78	
51.69-18 17505	12.50	72.87	14.901 .58	55	85	0.849	-2.13	1.85	-2.70	-2.11	-2.64	-0.75	0.03	. 5.91	-5.61	-3.25	-3.11	C-1 BSLL	8IGI	6.12	
56-64-18 1+505	42.58	12.98	65.262 .83	100	225	0.444	-0.12	1.88	-0.03	-3.17	-4.31	-4.85	2.82	-2.01	-2.61	1.14	1.38	C-1 HESSIIS		0.11	aori c 11.
85-70e-18 $2+005$	52.13	52.44	32.121 .33	10	120	0.585	-3.56	0.51	-2.52	-2.51	-1. 35	1.11	-1.08	-4.55	-5.12	-3.51	-1.76	C-1 BLSLT	716I	1.63	

\qquad
(10)
ad. teep tale cood aiseralization
nod. deep bole, cood aiberalization
thallon dole, tood of niseralization
cod. deep hole, poor aiserillation
oric if.1t shallon dole, food al niberalization
ballor bole, food niaeralization (UC?)
IIf 7.91
2.33 norn c 1.3%
hallon bole joubia halt loae, barzes
od. detp bole, in dje throug ic
challor bole, barrea
challoe bole. barrea
od. deep hole, cood alaeralization
ollon tole, cod ta nisaliation
ballor bole, goos is niaralisation
shallor tole, barrea
ood. deep tole, hirtes
ood. detp hole, darret
saje as sbove, Ill shanged sith depth
saje as ibove, II cia
shallon bole, barrea
challon bole, barrea
thallor bole, bartea shallor dole, cood 8 a ineralization
sod. deep bole, poor alaeralizatioa shallon dole, cood 13 vieeralization shallor bole joubia lanlt loae, barres od. teep hole, is dyte through if challor dole, barrea
challor bole. barrea
ISI 3.18
IISI 3.18
$\begin{array}{ll}1168 & 7.36 \\ 116 E & 1.68\end{array}$ |16E 1.68
\qquad 116E 8.02 11618.1 11618.05 116I 3.99
challon bole, barren, anch djte deep tole, ta dute for sued of le hallor tole, barrea, baet dife detp hole, good sintralisatios
sarace saple, cood 37 afmeralisatioa deep tole, zood ha, so da asaras deep bole, sood Ca
od teep, no airerelisation
 surface saple abope at
sarface anple, Hgher above bhallon, belon dis. diorite, so ais shallon, poor ilaeralisation halloi, 1000 sibtriliabioo 104. deep, zood niserallzation atar berface, prob. reased in bia. thallos, bustes
pear eurface, rood siceraliation bear corface, sood aiceralization bhallor, cood aigeralizatioa Barface cuaple, sheared, gip clote shallor, bartea challon, cood nimeralization
\qquad
sericite \pm chlorite defines schistosity; rock is probably a highly altered mafic volcanic.

68-6-FW (Footwall Mafic Complex, between Main and South Zones)

- an Fe enriched, Na, Ca depleted rock
- in thin section a fine-grained distinctly schistose rick with abundant sericite-chlorite in anhedral quartzo-feldspathic groundmass; a few larger quartz grains and minor carbonate veining; high Fe levels explained by presence of considerable opaque Fe oxides.

64-82e-FW (Footwall Mafic Complex, deep Main Zone hole)

- chemically a highly altered rock with strong Ca depletion and Mg enrichment.
- distinct brecciated aspect
- in thin section extensive chlorite superimposed on a very fine anhedral quartzo-feldspathic groundmass; outlines of original plagroclose laths still visible - now completely altered to chlorite \pm quartz; fine-grained, brownish biotite (?) forms small irregular patches intimately associated with chlorite; coarser quartz and carbonate occur in factures.

65-72e-FW (Footwall Mafic Complex, deep Main Zone hole) chemically, a CO_{2} enriched rock

- in thin section a strongly chloritic rock with chlorite superimposed on a fine, anhedral quartzo-feldspathic groundmass; some twinned plagioclase still visible; much carbonate occurs in east-west microfactures, and disseminated throughout groundmass.

66-108-FW (Footwall Mafic Complex, deep Main Zone hole)

- chemically depleted in most elements save for pronounced CO_{2} enrichment
- in thin section a massive fine-grained rock with abundant sericitecarbonate \pm chlorite superimposed on a fine quartzo-feldspathic groundmass

66-110-FW (Footwall Mafic Complex, north of Main Zone)

- chemically there is strong $\mathrm{Mg}, \mathrm{Si}, \mathrm{CO}_{2}$ enrichment
- petrographically a coarser, massive dioritic intrusive(?) rock with hornblende laths in a matrix of quartz, sericitized twinned feldspar and carbonate.

68-6-VB (Variolitic Basalt, between Main and South Zones)

- $\mathrm{Fe}, \mathrm{CO}_{2}$ enriched, Na, Ca depleted rock
- petrographically, Fe enrichment seen to be due to prominent "Berlin-blue" Fe-chlorite which occurs in quartz-chlorite
microveinlets in a generally very fine grained, moderately schistose sericite - chlorite - quartzo-feldspathic aggregate; some biotite may be present in a section of the slide rich in fine Fe -oxides.

66-108-VB (Variolitic Basalt, Main Zone)

- a strong $\mathrm{Mg}, \mathrm{Ca}, \mathrm{SiO}_{2}$ depleted, CO_{2} enriched rock
- in thin section, a strongly schistose, very fine-grained sericite-chlorite-quartzo-feldspathic rock with abundant fine opaques; numerous tiny laths are plagioclase microlites; carbonate occurs in schistosity-parallel laminae.

The key conclusion to be derived from this work is that the deepest samples seem to be the most intensely altered. This, combined with greatly increased $\mathrm{Cu} / \mathrm{Cu}+\mathrm{Zn}$ ratios in hole 82e may be suggestive of increased proximity to an exhalative source in the down-dip basinal direction west of hole 82 e.

7.0 SAMPLING RESULTS

7.1 Historical Drill Core

Detailed examination of the core showed a surprising amount of unsampled, albeit primarily low-grade mineralization. Much of the past sampling was very obviously high-grade specific, with no thought given to the bulk mineability of much of the material. Our sampling was directed towards increasing the length of old intersections with wing and intermediate samples. As well, as a better understanding of the geological picture emerged, it became quite clear that, often, mineralized horizons had been ignored by past workers simply because they did not understand the relative position of these units within the drill hole. This was particilarily true in the South Zone, where a large amount of mineralization, primarily breccia type but also some massive $\mathrm{Cu}-\mathrm{Zn}$, was left unsampled in several of the holes.

Table 3 presents the results of the sampling to date, together with comments on the accomplishments of the particular hole. It became increasingly obvious during this work that the vast majority of the holes in the Main Zone were poorly directed. Core from the 1981 drill campaign has not, as yet been reexamined but the logs suggest a considerable amount of mineralization was left in these holes as well. Re-sampling generally returned assays within the same order-of-magnitude as the originals, and the results in Table 3 represent an averaging of the two values, where applicable, for that sample.

A significant amount of lead was observed in the core, which, for the most part, was never assayed for in the past. Our sampling suggests that this metal as well as silver will form a significant component of any ore that is developed in the Shunsby deposits. Our sampling failed to turn up more than trace amounts of gold from any but the most Cu -rich samples, and has down-graded the gold potential of any polymetallic ore scenario from the known deposits. Minor amounts of cobalt and cadmium were noted within massive mineralization, however the economic manifestations of their presence are not known at this point.

Weight averaging of all of the historical Shunsby drill core intersections plus our additional sampling gave an average value of $0.79 \% \mathrm{Cu}$ and $1.99 \% \mathrm{Zn}$ over an average core length of 6.79 m , as well as $1.86 \% \mathrm{~Pb}$ over 5.32 m . Highergrade sections averaged $1.30 \% \mathrm{Cu}$ and $2.21 \% \mathrm{Zn}$ over an average core length of 5.61 m with $0.96 \% \mathrm{~Pb}$ over 2.83 m .

7.2 Stripping and Trenching

Stripping was primarily limited to portions of the Upper Chert stratigraphy, as the high chert component to these sediments has resulted in this unit weathering - quite high. Both the Variolitic Basalt and the Lower Cherts have weathered substantially lower.

								E 3			DRIL INT TION
W0us	1803-70	Cosigia	C0(i)	2 W	$\mathrm{PB}(\mathrm{l})$	Incloping	CORLGTA	co(\%)	31(4)	PB(\%)	counevis
\$5-43	1.43-10.34	1.81	1.17	1.31	-	1.64-10.24	2.60	2.59	2.12	-	Dona-dip beneath Copper Breccia Shoniar (C - -8x)
55-01	3.56-9.15	5.19	0.53	1.39	0.87	-	-	-	-	-	Dova-dip from laia lose (12), sissed sost lorer Chert (LC) aiseraliastion
S6-05	25.21-29.07	3.83	2.51	0.14	-	26.18-29.07	2.59	3.38	0.14	-	Steeger done-dig fron sate set-up as ti; caugh apper LC Alacralization
	50.69-52.30	1.61	2.50	0.08	-	-	-	-	-	-	
56-06	14.63-18.64	4.01	1.31	0.33	-	14.63-16.90	2.27	2.59	0.81	-	Sectios fros sase stt-up as 14,07; caugt losersost UC niserallsed horison
36-08	0.91-7.82	6.11	0.63	6.09	-	-	-	-	-	-	Dopa-dip at 4t25: of 81; caught only appernost LC miserallation
36-09	12.00-15.06	2.26	1.33	1.08	-	-	-	-	-	-	
56-11	40.5t-42.67	2.13	1.02	0.11	-	\cdots	\bullet	-	-	\bullet	
$56-12$	4.21-10.67	6.10	0.05	1.21	-	1.62-9.14	1.52	0.20	2.32	-	dloat strite mider Cu-by
	12.29-13.89	1.60	0.91	0.01	-	-	-	-	-	-	
56-11	1.22-12.19	10.91	2.12	1.00	-	2.74-12.19	0.15	3.14	1.02	-	Hloag strite uader $\mathrm{Cu}-\mathrm{Bz}$
	-	-	-	-		7.32-10.36	3.04	5.11	*. 51	-	
36-15	11.28-12.19	0.91	1.40	0.70	-	-	-	-	-	-	Hene strike nader $\mathrm{Cu}-\mathrm{Bz}$
56-16	14.13-19.18	4.13	1.58	0.32	-	14.73-11.65	2.82	2.10	0.29	-	llons strite nader Cu-bz
36-19	17.22-23.11	\$.95	0.11	2.35	-	-	-	-	-	\bullet	Down-dip at 24301\% of 12, Elesed losermost le alaeralisation
	\$1.39-10.54	9.15	1.89	0.14	-	-	-	-	-	-	
	14.96-46.02	1.06	3.31	0.08	-	\bullet	-	-	-	-	
	50.12-51.07	3.35	1.87	0.30	-	-	\bullet	\bullet	\bullet	-	
56-20	24.04-26.06	1.22	1.11	1.82	-	-	-	\bullet	-	-	Down-dip obliguely from sane set-up as 17, caught loner LC sineralizstion
	31.75-38.01	1. 26	2.33	0.81	-	-	-	-	-	-	
	41.19-17.35	3.26	0.86	1.53	-	-	-	-	-	-	
56-21	10.67-56.39	45.12	0.96	1.05	-	10.67-18.08	1.41	1.23	0.83	-	Doun-dip fros sase sel-ap as $\mathbf{1 1 , 2 0}$; caught loser miatralized horlzons
	-	-	-	-		25.76-56.39	30.63	1.03	1.26	-	
56-22	9.93-14.48	6.55	0.16	0.87	-	- 10	-	-	-	-	Dono-dig fron sate set-ap as $11,24,21$; caught loser siserallied horizoas
	33.99-10.12	6.13	2.11	0.19	-	36.21-40.42	4.15	3.01	0.01	-	
	61.36-88.28	0.22	0.35	2.04	-	-	-	-	-	-	
36-25	13.16-64.52	21.46	0.11	1.06	-	52.43-33.95	1.52	1.19	3.67	-	Sectios at 2+591 of ys, caugt all lC simeralized lorisons
	-	-	-	-		61.21-62.34	1.67	2.15	0.89	-	
56-26	13.19-39.62	21.43	1.58	0.59	-	12.19-21.64	9.15	1.13	0.72	-	Dove-dip at 3t00I of EL, alssed lonersost LC inemalisation
	-	-	-	-		26.65-39.62	10.97	2.63	0.64	-	
	-	-	-	-		28.65-30.78	2.13	3.14	0.21	-	
	-	-	-	\cdots		28,65-33.53	4.88	-	-	\bullet	
36-21	12.50-17.07	4.57	0.61	1.80	-	.		-	-	-	Sectiod at 7400 A , cagat Ppper Chert (OC) $\mathrm{Cu}-\mathrm{Bx}$ aldersliation
	39.19-43.53	8.40	4.52	1,18	-	-	-	-	-	-	
	46.11-55.78	1.01	1.05	0.61	-	48.17-52.12	3.35	1.63	0.81	-	
96-2t	57.30-66. 15	9.13	0.33	0.64	-	-	-	-	-	-	Section at 2+D0n, DC Cu-bs ilocralizatios in Joubin lault sose?
$56-31$	6.10-9.14	J. 04	0.22	1.29	-	-	-	-	\bullet	-	
56-32	11.02-73.76	2.14	0.13	4.19	-	-	-	-	-	-	Sectlon at 1+25\% of TC, bole stopped short of varlolitic basslt
$56-33$	6.10-25.91	19.81	1.63	1.58	-	,	,	-	-	-	Section at $3+25 \mathrm{f}$ of LL , alssed uppernost LC aineralization
55-35	J.35-24.99	21.61	1.02	1.28		3.75-9.15	8.10	2.36	1.58	-	
	-	-	-	-		18.90-21.35	3.05	4.46	3.81	-	
56-36	3.96-13.41	4.45	1.65	1.87	-	-	-	-	-	-	Down-dip at 3t251 of 4t, caught onls uppersost LC siseralizatios
36-37	90.53-42.31	2.28	0.36	2.17	-	-	\bullet	\bullet	-	-	Section at $1+751$, cavgat oaly OC alaeralization juat abore rariolitic bas.
$56-38$	19.20-20.13	1.53	0.50	2.85	.	-	-	-	-	-	Section at bit5l. caugh sia. Io both cherts but did not reach If diorite
	64.17-68.58	3.81	0.93	1.58	-	\bullet	-	-	-	-	
56-39	51.62-53.65	1.83	0.41	3.11	-	-	-	-	-	-	Dosa-dip at 31 bol of 36, carght only uppersost LC aiperalization
$56-41$	21.34-29.81	8.53	4.57	0.36	-	25.30-27.13	2.11	1.02	0.30	-	Hoas strite acrose doubia fanlt, caught part of aC Cu-Bx diearalisation
\$6-47	6.18-21.43	21.03	0.19	2.00	-	6. $40-21.31$	11.93	0.61	2.38	-	Orilled southesterly just sonth of doubia faylt, caugt of miserallation
	10.84-17.55	6.11	0.35	3.95	.	16.15-21.33	5.18	1.16	3.12	-	
\$8-48	3.49-11.02	8.53	0.14	2.25	.	5.19-11.28	5.79	0.21	2.12	-	Section at 215N of 1\%, caught all ineralized LC. Dorisona
	32.44-32.92	4.88	0.67	0.13	-	28.44-30.18	2.14	1.01	1.16	-	
36-51	18.59-11.15	22.58	1.81	1.27	-	18.59-21.03	2.14	1.31	6.27	-	Tertical at 24508 of 12, caught all afaralized LC horizons
	- 118	-	-	-		21.71-41.15	13.11	2.21	1.80	-	
56-52	63.09-71.62	8.53	0.14	1.14	-	63.09-66.44	3.35	0.82	1.26	-	Tertical at 1+738, canght oc alaeralisation jast above rariolitic basalt
56-33	65.66-87.11	1.51	1.10	4.14	-	-	-	-	-	-	
58.56	19.23-95.16	16.93	0.11	0.88	-	85.66-87. 17	1.81	0.65	1.63	-	Vertical at tisil, casat loy-grade alaeralization in boti cherts
	145.38-149.66	1.21	0.56	1.58	-	-	-	-	-	-	
\$0-51	1.15-35.05	25.60	0.08	2.33	-	21.13-35.03	1.92	0.21	4.16	-	Tertical at of50S of South Zone (St), caugat aiseralintion in boti cherts
	12.15-52.07	10.01	0.06	1.93	-	-	-	-	-	-	
	122.23-125.58	3.35	D.08	2.08	-	122.23-121.05	51.82	0.09	2.33	0.80	

56-60	13.87-39.32	25.45	0.74	2.51		13.87-33.83	13.96	0.92	2.54		Tertical at 3 boil of at, canght all siberalized LC horizons lertical at 0t7SS of St, caught niserallation in both cherts
66-61e	2.13-40.23	38.10	0.01	2.95		17.36-31.19	19.83	0.01	4.45	-	
	97.66-105.12	1.46	0.22	1.99		97.86-100.11	J.03	0.31	3.31	1.50	
	116.4-126.11	10.27	0.17	2.11		- -	-	-			
60-62e	2.13-15.09	12.96	0.01	1.31		- ${ }^{-1}$				-	Section at otiss of St, cuaght sieerallation la boll cherts
	20.87-41.85	26.96	0.03	3.85		31.10-37.20	6.10	0.02	8.01	-	
	90.03-113.65	23.62	0.11	2.23		-					
56-63	5.61-31. 55	25.94	0.03	1.11		17.06-18.90	1.04	0.18	3.28	-	Pertical at $1+255$ of 52 , atopped in urfolitic basalt Pertical at 1+30S, walues foond only above rarlolitic basalt in ic lertical at or25s, bole atopped in matiolitic besilt
56-64	40.22-12.45	2.23	0.04	3.58		-	-	-	-	-	
56.65	29.81-32.00	2.19	0.09	7.02	0.51	-		-	-	-	
36-67	124.25-134.35	6.10	0.04	2.19	-	-			-	-	Tertical at lasos, walueí found only is lC
	131.17-112.03	4.86	0.17	2.11	-	137.17-138.52	1.35	0.59	8.83	-	Pertical at litss, mines found onis in IC Pertical at $2+255$, nilues found only in aC Pertical at lades in 5l, ralues in ic
57.68	50.00-55.94	4.94	0.05	2.59		50.00-53.05	3.05	4.10	1.95	-	
${ }^{55} 50 \mathrm{e}$	39.01-48.19	9.78	0.00	1.81					-		
6s-71e	118.51-120.41	1.81	0.36	1.62	0.21	-	-	-	-	-	
	126.18-128.02	1,84	0.21	2.23	0.36	-	\cdot	\cdot	\bullet	-	
	140.11-145.70		0.29	1.23	-	142.36-145.70	3.34	0.38	4.17	-	
65-12e	112.91-184.25	11.28	0.37	2.03	-	-	-	-	-	\bullet	Pertical at 3ftor of Wh, valuet la le
	193.10-195.21	1.51	0.11	2.18		-	-	-	-	-	
37-14	96.00-97.54	1.54	0.13	2.41	1.51	-	-	-	-	\bullet	Pertical at $3+751$ of Lt, whes in boticlerts
	133.90-157.51	3.81	1.61	0.70	-	155.68-157.51	1.83	2.18	0.59	-	
	175.89-180.45	4.56	0.18	2.55	-		-	-	-		
54-6	12.82-73.03	0.21	0.10	8.20	1.20	-	-	-	-	-	Section at $1+505$ of St, values la LC, core unavilable lertical at $2+401$ of Bl, caught nost nineralized horizons
60-15	30.18-32.00	1.52	0.13	4.78	-					-	
	38.86-53.34	14.48	0.49	2.81	-	41.30-51.51	10.21	0.68	3.61		
60-16	14.84-11.98	3.84	0.08	2.04	4.18	21.95-24.32	2.31	0.11	2.15	-	
	23.95-19.53	37.58	0.34	1.03		30.14-35.75	5.81	0.31	1.73	-	
	-	-	-	-		39.93-49.53	9.60	1.13	1.26	-	
	- 11115	-	-	;		42.98-19.53	6.35	1.09	1.42	-	
60-91	10.21-14.45	4.24	0.90	3.59	-					-	
	23.60-35.97	10.31	4.56	1.21	-	31.70-35.91	1.21	1.38	1.85		
50-19	9.15-30.79	21.04	0.66	1.81	-	12.80-16.19	3.69	1.13	2.95		Section at 2475 ll of llt, cought all ajaeralized horizors
						28.44-30.19	2.35	1.01	5.32		
60-80	8.05-9.54	1.49	0.12	4.16	-	-					
	14.63-15.14	30.51	0.87	1.06	-	31.36-44.14	12.18	1.76	1.88	-	
61-31	115.67-111.87	3.28	0.51	2.17	-	-	-	-	-	\bullet	horizons 150 dona-dip
	128.93-317.43	8.50	0.33	1.73	-	-	\cdot	-	-	\bullet	
	112.19-148.93	8.11	0.38	1.12	-	-	\cdots	-	-	-	
	159.26-199.89	30.63	1.14	1.56	-	159.26-176.39	11.13	1.87	1.33	-	
	-	-	-	-	-	182.03-189.89	1.86	0.24	2.33	-	
4-82e	192.33-193.12	0.79	2.25	0.00	0.10	-	-	-	-	-	Pertical deep ha hole at $3+001$, counat all wichatralised horizons at depth
	211.84-214.00	2.16	0.79	0.11	-	-	-	-	-	-	
	235.24-236.51	1.21	1.55	0.00	-	-	-	\bullet	-	-	
	313.60-241.85	1.25	4.20	0.00		-	\cdot	-	-		
	249.06-251. 52	1.66	1.30	0.35	-	-	\cdot	-		-	
61.83	121.62-112.25	20.63	0.40	0.96	-	131.98-142.25	10.31	0.64	1.14	\cdot	Pertical 12 hole at 3+014, cought all lC aineralized borizons at depth of 1502, 2001 donin-dip
	-	-	-	-	-	144.12-139.60	5.18	1.03	1.46		
11-63	68.88-96.01	7.93	0.58	1.51	-	13.76-76.81	3.05	1.11	2.16	-	Tertical at $2+1$ in of ut, caught le alocraliation isa dona-dip
61-1]	1.79-6.86	2.01	1.30	0.27	-	-	-	-	-	-	
	14.13-81.17	3.04	0.96	1.79		\cdot	-	-	\bullet		
81-88	1.86-1.32	2.14	2.31	0.33	-	-	-	-	-	-	Dovi-dip at 3+25l, caught losernost IC an well as all upper iC alaeralized Dorizons 125a dons-dip
	18.19-92.66	13.17	0.16	1.45		-	-	-	-	-	
	111.86-115.82	3.96	2.59	1.33	-	-	\cdot	-	-		
	132.28-163.31	31.09	0.18	0.88	-	111.12-183. 17	32.25	1.00	1.04		
	-	-	-	-	-	141.12-147. 52	6.10	1.20	1.14	-	
	-	-	-	-	-	159.11-163.31	4.26	2.12	1.43	-	
(1-19	103.33-116.13	12.81	0.54	1.35	-	106.99-113.88	6.99	0.10	2.13	-	
[1-91	99.67-114.39	11.63	1.22	1.80	-	112.47-114.30	1.83	0.16	1.21	2.41	Tertical it hole at 24951, cuagh all bC alseralized horizons at depth of 150n, 2001 dopa-dip
	125.39-299.85	9.58	2.22	3.4	-		-		-		
	11340.149 as	915	, 14	0 Qn		198 6.169	: ${ }^{\text {n }}$	9 El	0×0		

3051	120\%-90	C08LGTB		21(\%)	P8(x)	IICloding	corlcir	CO(\%)			cosusits
51-92	13.33-14.86	1.53	0.18	1.35	1.08				-		Tertical at 2+15l, in dyte through a0st of LC
	120.70-125.58	4.88	0.06	1.26	0.35				-		
65-83	1.17-12.01	3.20	0.08	2.89	- -				-		Section at $2+$ (10) of yb, appareatly caught only upper and lonernost horizons
	30.68-32.67	1.98	0.23	2.81	-						
65-91	102.35-106.17	1.12	0.10	1.60	0.29	105.19-106.11	1.58	0.13	3.00	1.80	Pertical at 2+25i, walues io le 150 dona-dip Section at $3+501$ of IL, in dyke through soct of LC fection at stish of El, hit dyet for sost of upper lC Pertleal at $2+251$, whees ia oc
65-95	36.05-89.09	3.04	0.47	0.98	0.30			-	-		
55-98	30.12-11. 19	0.11	1.11	2.96	-		-				
55-102	59.31-60.81	1.53	0.20	2.56	1,85						
	96.07-97. 17	1.10	-		10.12 -				-		
85-103	129.78-133.59	3.81	0.30	2.18	- -	-					
65-101	238.12-240.55	1.83	1.47						-		
	253.04-255.19		1.13								
68-108	216.41-227.08	10.61	0.98	1.42	- 2	218.24-223.12	5.18	1.39	1.91		Pertical ut bole at stoon, bole in dipe for such of LC Tertical at 0.501, when is LC
66-110	158.53-160.20	1.67		3.98	0.60				-		
6-112	110.19-112.62 2	2.13	0.86	0.16				-	-		
$86-1$	18.17-50.29	1.52	1.60	1.89							Pertical at hoon, matea la both IC ad ic
	149.86-151.28	1.62	0.10	2.00		155.45-151.28	1.83	0.01	3.21		
$58-1$	31.30-66.75	9.45	0.24	3.44	0.56	80.35-64.92	4.51	0.29	1.49	0.50	
68-6	11.69-89.31	1.62	0.05	3.38				-	-		
$68-10$	18.61-82.30	3.66	0.04	2.80	0.28	19.86-82.30	2.4	0.11	3.34	0.28	Steep section at $1+$ OHI, nilues is $i c$ Fertical hole al $2+2 \mathrm{sin}, \mathrm{Cu}-\mathrm{Br}$ sing. sear surface, deeper vilues in le
56-11	21.61-25.31	4.21	1.19	0.17	- ${ }^{2}$	21.64-23.47	1.83	2.16	1.70		
	10.55-81.38	1.83	0.22	1.33	0.51	-		-	-		Pertical hole at $2+25 \mathrm{H}, \mathrm{Cu}-\mathrm{Br}$ sin. sear surface, deeper wiues in lC
	91.71-94.18	2.11	0.08	2.54	0.68				-		Fortical hole at labil, niges ia le
68-12	69.49-91.93	2.14	0.15	2.16	0.25	-					
[8-16	37.84-100.58	2.14	0.12	1.33							
	106.68-110.34	3.66	0.12	1.75	-	-		-	-		
	115.82-121.11	5.95	2.11	3.05		-			-		
58-18	5.18-6.53	J.35	1.62	4.12	-					-	Tertical St hole at thiss, values la DC sear-surfice and LC TSo dova-dip
	15.12-52.13	1.01	0.10	1.11	-	45.12-51.31	5.19	0.09	1.90		
	64.31-65.99	1.68	0.58	1.06	0.05	.	-	-	-		
68-19	18.59-23.16	4.57	0.11	2.12	-	-	-	-		-	Pertical bole at Dtoon, maues in both oc and le
	99.06-102.11	3.05	0.20	1.93	-	-	-	-	-		
68-20	1.32-11.58	1.26	0.68	5.25	-	-	-	-	-	-	Sectioe at dits of St, paloes in BC aear-surface and lC 50a doundip
	4.20-55.17	10.97	0.18	2.62	-	-	-	-	-	-	
	14.92-63.19	1.21	0.40	3.33	-	-	-	-		-	
14-1	3.66-9.15	6.09	0.99	0.63	-	-	-	-	-	-	
	24.99-23.01	3.05	0.45	1.96	-	-	-	;	-	-	
14.5	6.40-10.06	3.66	1.09	0.64	-	8.84-10.06	1.22	3.10	0.55	-	
11-6	40.18-45.12	4.58	0.80	2.07	-	-	.	-	-	-	Spparent ME Dole at 2t501, PROBBHI MISLOCATBD
11.9	2.14-6.11	4.27	0.19	2.63	-	-	-	-	-	-	
14-8	4.59-6.71	2.11	1.01	1.35			-	-	;	-	LPpareat la Loje at j+25l, caught only lonernost LC Lorizoo
11.9	60.35-66.45	6.10	0.09	1.51	0.27	63.40-65.23	1.63	1.09	3.36	0.20	lpparent 5 st lole at disos, hole in dite througl anct of LC Southeaterly lit section at $2+154$, apparently caugat all ineralization
11-10	51.23-73.18	19.51	0.13	1.68	-	-	-	-	-	-	
	54.25-78.94	24.69	0.73	1.36		21.90 .15 .97	in 81	in	,		
11-11	18.90-35.97	17.07	0.10	2.15	0.59	24.99-35.97	10.98	0.10	2.91	-	Southeaterly 52 section at orls, mlues in both ic and lC
	18.02-56.69	10.67	0.19	1.65	0.37		-	-	-	.	
	171.62-129.24	1.62	0.45	3.14		-	-	-	-		
	143.26-199.96	8.70	0.12	2.56							
14-12	50.90-81.57	10.67	0.52	1.09		60.05-51.51	1.52	1.23	0.02		Spparest yat bole at dant, bole in diphe throust part of ic Southeasterly 52 section at dibls, nites in boti IC and LC, Dole stopped short of III
11-13	14.63-18.89	4.26	0.06	2.99	0.21		.		-	-	
	21.98-17.15	22.86	0.91	2.15	10.10		-			-	
	100.89-111.35	16.16	0.82	5.50	1.01	100.85-107.59	6.70	1.55	11.69	2.48	
14-11	8.40-10.67	4.21	0.02	1.19	0.59	9.15-10.67	1.22	0.01	1.98	1.70	soted ia lC but no sseass, core donped and alasiag
	17,31-39.32	21.95	0.16	1.13	0.02	11.37-19.51	2.14	0.31	2.16	1.10	
	-	-	-		-	25,60-29.57	3.97	0.41	2.36	0.10	
	-	\cdots	-		-	36.56-39.32	2.4	1.36	3.12	1.10	
14-15	172.52-175.51	3.05	0.01	2.10	0.31	-	.				Southeaterly st hole at 1\%00s, whites in ic Southeasterly st mole at 2i5se, whes in LC Southeasterly si mole at biriss, manes la bota oc and ic
H1-16	165.62-191.72	6.10	0.21	1.16	6.98		-			-	
14-11	\$.11-28.96	22.25	0.55	4.17			-	-	-	-	

1048	1804-90	corlera		LH(1) P	P8(\%)	IMCLDDIYG	conct	$\mathrm{CO}(\mathrm{t})$			COMELIITS
14-18	18.59-25.30	6.71	0.15	3.300	0.12	-	-				Southeasterly St bole at lioos, maus in boll oc and LC, sood sha, in dusped core
	11.18-71.31	2.59	2.65	15.24 -		-	-				
11-20	28.96-33.22	4.26	0.10	3.69	0.02	-	-			-	Sootheasterly St mole at 0isos, ralues in both OC and le
	11.12-63.09	5.67	0.25	1.85	0.33	-		-		-	
14-21	26.06-30.63	1.57	0.38	4.38	0.23	-	-	-		-	Southerly St hole at drsis, maues in both oc and lC
	68.28-12.54	4.26	0.11	2.34	0.83	-		-			
	102.41-103.18	1.17	0.29	1.11	0.13	-	-	-			
11.1	10.97-12.80	1.83	0.39	3.08		-	-	-		-	3t at $2+1011$, saspled all bortzons
	18.59-21.03	2.44	1.05	1.11	-	-	-	\bullet	-	-	
	36.37-36.42	10.05	2.54	0.89		-	-	-			
11.2	20.13-28.35	1.62	1.42	2.88	-	-	-	\bullet	-	-	
	34.90-39.01	4.11	1.53	1.05		\bullet		-	-	-	
11.3	23.16-28.19	5.03	1.56	0.53		-	-	-	-	-	
	31.33-32.31	0.32	1.18	0.12		- 11.18		-		-	
11-5	11.31-22.40	5.03	1.11	1.25	-	17.37-18.41	1.01	4.99	0.29	-	U6 at $2+601$, caught sll shenalised borisons, Alfathy doridip
	5.49-8.23	2.14	0.08	2.11	-	-	-	-	-	-	
	26.02-21.13	0.61	0.41	2.59	-	-	-	-	-	-	
	32.92-41.00	8.08	1.08	0.64	-	-	-	-	-	-	
11-6	41.85.52.88	5.03	2.95	2.85	.	-	-	-	-	-	12 at $2+301$, hole asinly in mariolitic basilt, caught only lonernost sia.
${ }^{11}-1$	13.28-47.09	3.81	1.80	0.18	\cdot	-	-	-	-	-	vi at $2+301$, tole many ia rariolitic basalt, nisted all apper ala.
${ }^{11-8}$	51.32-62.19	10.97	1.68	1.82	-	-	-	\bullet	-	-	Hit at $2+301$, caught all siaerilization doni-dip of 12 "pod"
81-10	2.11-6.71	3.97	1.11	0.25	-	-	-	-	-	-	It at $3+181$, alsted uppernost niaeralization
	15.85-17.22	1.31	4.32	0.48	-	-	-	-	-		
\|1-11	8.69-12.60	1.11	1.08	2.15	-	-	-	-	-	-	
11-12	5.18-12.80	9.62	1.58	1.81	-	-	\bullet	-	-	-	H1 at 3+111, alssed auch alierallation due to dphes
	25.06-26.97	0.91	2.11	0.19	-	\bullet	-	-	-	-	
11.13	16.00-11.69	2.69	7.32	1.99	-	-	-	-	-	-	U1 at 3+301, ilased upper aineralised horizoss
11-1/a	29.11-29.57	0.46	4.10	0.06	-	-	-	-	-	-	It at 3ion, caubit only loversost nimeralisation
	33.63-36.12	2.29	1.63	8.01	-	-	-	-	-	-	
11-15	7.92-9.20	1.28	6.54	0.12	-	-	-	-	-	-	
11-16	9.62-12.19	1.57	0.62	1.08	-	-	-	\bullet	\bullet	-	It at it25i, bole in dite through auch of li, stopped sbort of ill
11-18	2.44-6.10	3. 66	0.03	3.21	-	-	-	-	-	-	It at $4+251$, Dole in dje through aect of lic
	24.89-26.21	1.22	0.15	3.91	-	-	\bullet	-	-	-	
11-19	1.68-4.27	2.59	0.41	3.05	-	-	\cdot	-	-	-	LOMABOST HILHLIED EOH1201
	7.16-9.45	2.29	1.12	4.30	-	-	-	-	-	-	
	9.18-12.34	5.18	1.04	2.09	-	-	\bullet	-	-	-	
	22.11-22.36	0.15	0.89	6. 13	-	-	-	-	-	-	
11.20	6.40-15.29	1.99	0.39	2.52	-	-	-	-	-	-	
11.21	20.12-23.17	3.65	0.69	0.05	-	\cdot	-	-	-	-	31 at 3 bill, nased all apper sinerallation due to dyle
${ }^{11} 12$	3.66-6.40	2.11	0.39	2.85		-	-	-	-	-	u2 at $3+101$, caught only loveriost giseralization
11-23	25.76-26.21	0.15	0.98	1.87		-	-		-	-	32 at 313n, caught only loversoit alserallzation
11-21	6.10-8.14	2.11	0.32	5.11	-	-	\bullet	-	-	-	
	13.11-14.94	1.53	0.32	2.10	-	-	-	-	-	-	
	20.93-23.47	2.11	0.55	2.06	-	-	-	-	-	-	
	26.21-26.41	0.16	1.62	1.37	-	-	-	-	-	-	
	29.41-31.90	2.29	1.47	1.11	-	-	\cdot	-	-	-	
11-25	18.29-22.10	3.11	0.01	5.12	-	- 10 17	-	;		-	12 at 3+431, probably cangt all sameralised horizons
	33.28-49.53	16.25	2.81	0.90	-	33.28-37.03	3.15	3.91	1.50	-	
	-	-	-	-	-	38.86-11.16	2.90	4.04	0.40	-	
	- 10	-	-	-	\cdot	43.83-44.96	1.01	10.10	2.31	-	
11-30	4.88-10.36	5.18	0.16	3.12	-	-	-	-	-	-	13 at 2+901, probably casght all sineralized borizons
	18.98-20.12	1.22	0.18	J. 15	-	-	-	-	-	-	
	21.95-35.66	13.11	1.16	1.26	-	-	-	-	-	-	
11-31	17.32-18.59	1.31	0.21	2.16	-	-	-	-	-	-	(4.81-10.36)
	25.91-28.65	2.14	1.11	1.03	-	-	-	-	-	-	
\$1-101	15.54-16.46	1.72	1.38	3.19	-	-	-	-	-	-	St at 0650S, sissed uppernost LC stratigruph
	17.01-19.20	2.13	1.08	1.69	-	-	-	-	-	-	
2-3\%	3.98-5.18	1.22	0.58	1.61	-	-	-	-	-	-	St at orsos, wives in lorernost oc
	13.11-15.24	2.13	004	105							

Stripping operations were concentrated in the following areas:

AREA	LINE	FROM	TO
"A"	$0+50 \mathrm{~S}$	$0+25 \mathrm{E}$	$0+75 \mathrm{E}$
"A"	$1+00 \mathrm{~S}$	$0+00$	$3+00 \mathrm{E}$
"A"	$1+00 \mathrm{~S}$	$5+00 \mathrm{E}$	$5+25 \mathrm{E}$
"B"	$3+00 \mathrm{~S}$	$0+50 \mathrm{~W}$	$2+25 \mathrm{E}$
"C"	$1+00 \mathrm{~N}$	$1+00 \mathrm{E}$	$1+50 \mathrm{~W}$
"MZ"	$3+00 \mathrm{~N}$	$0+75 \mathrm{~W}$	$2+25 \mathrm{~W}$

Also, an extensive portion of the Lower Cherts in the Main Zone between about $2+75 \mathrm{~N}$ to $4+00 \mathrm{~N}$ was stripped and washed. Additional, unsuccessful attempts were made to reach bedrock in the area of $1+20 \mathrm{~N}, 3+40 \mathrm{E}$ (conductor 40 b (1 d), Trench "D") and $3+00 \mathrm{~N}, 0+60 \mathrm{E}$ (conductor $42 \mathrm{a}(12)$, Trench " E ").

An initial round of channel sampling was performed on the "A" stripped area utilizing a rock saw which helped to ascertain mineralization distribution. This was followed by rock trenching and chip sampling where possible. Analytical results for this work are presented in Appendix 2. The following table summarizes the trench sampling results. Some of the trenches, eg "C" Area, were of a purely exploratory nature and the generally low values were not unexpected. Also, considerable difficulty was encountered in getting into fresh rock in a number of cases such that some of the following values are biased on the low side. A further round of deeper blasting and sampling would be required for definitive sampling.

TRENCH	MIDPOINT LOCATION	LENGTH (m)	Cu\%	Pb\%	Zn\%	Cd\%	Ag 02/ton
A-00-A	0+96S, $1+94 \mathrm{E}$	2.0	0.007	0.10	0.24	-..-	---
A-00-B	$0+96 \mathrm{~S}, 1+90 \mathrm{E}$	3.5	0.13	0.67	2.25	0.01	---
A-01-A/B/C	$0+95 \mathrm{~S}, 1+17 \mathrm{E}$	12.0	0.08	2.22	3.39	${ }^{0} 0.01$	**0.06
A-02	1+00S, $1+11 \mathrm{E}$	3.5	0.05	0.16	1.15	--.	...
A-03	0+76S,1+15E	15.0	0.03	0.10	1.21	\cdots	\cdots
A-03-B	0+80S, $1+05 \mathrm{E}$	1.0	0.07	0.94	10.58	0.03	0.08
A-04-A	$0+64 \mathrm{~S}, 0+66 \mathrm{E}$	5.0	0.04	0.60	1.66	-.-	0.06
A-04-B	$0+64 \mathrm{~S}, 0+61 \mathrm{E}$	1.5	0.005	0.01	0.03	---	---
A-04-C	$0+67 \mathrm{~S}, 0+57 \mathrm{E}$	2.5	0.02	0.08	0.39	---	---
A-04-D	$0+71 \mathrm{~S}, 0+46 \mathrm{E}$	4.5	0.03	0.16	0.70	..-	.--
A-04-E	0+71S, $0+39 \mathrm{E}$	1.5	0.08	0.44	6.04	0.02	---
MZ-01	$3+12 \mathrm{~N}, 2+25 \mathrm{~W}$	11.0	0.005	0.04	0.07	---	---
MZ-O2-A/B/C	$3+14 \mathrm{~N}, 2+11 \mathrm{~W}$	5.0	0.03	0.13	0.34	---	---
MZ-O2D	$3+14 \mathrm{~N}, 2+08 \mathrm{~W}$	0.5	3.89	1.27	5.68	0.02	0.50
MZ-03-A/B/C	$3+14 \mathrm{~N}, 2+03 \mathrm{~W}$	6.5	0.21	0.26	1.21	---	---
MZ-04	$3+15 \mathrm{~N}, 1+94 \mathrm{~W}$	0.5	0.04	0.01	0.17	---	---
C-01	$1+03 \mathrm{~N}, 1+24 \mathrm{~W}$	2.5	0.02	0.005	0.07	-*-	---
C-02	$0+95 \mathrm{~N}, 1+02 \mathrm{~W}$	5.0	0.01	0.005	0.06	---	.-.
C-03	$0+93 \mathrm{~N}, 0+91 \mathrm{~W}$	1.0	0.05	7.58	0.13	---	---

Results of the above work suggest that:

1) The ore-making potential of the Upper Cherts has been considerately upgraded. For example, the stripping and trenching has revealed the presence of a thin bed or beds of virtually massive sphalerite + chalcopyrite, galena in the area of $1+00 \mathrm{~S} 1+00 \mathrm{E}$. Similar high grade mineralization in the area of $3+00 \mathrm{~N}, 2+00 \mathrm{~W}$ is virtually certainly a continuation of the same material.
2) There is a great deal more galena then previous work suggests. Much of this is in local veins and pods, most of which crosscut stratigraphy, and were missed by previous drilling.
3) There is east-west cross-faulting in the mineralized stratigraphy although this is not as extensive as originally suspected. Also, re-mobilization of mineralization along later dykes, which occupy some of these east-west structures, is not as extensive as originally suspected. It is clear however that some of the mineralization, particularly the galena with minor sphalerite, is occurring in eastwest structures. It is further clear that much or most of the old drilling, which was vertical or easterly directed, would have been relatively ineffective in locating this sort of mineralization.
4) Some known breccia-style copper + zinc mineralization in the area of $2+50 \mathrm{~N}$, $2+25 \mathrm{~W}$ (Copper Breccia Showing) was thoroughly stripped and washed in the course of the present work. This zone looks quite spectacular at surface with previous sampling results indicating an average grade of $1-2 \%$ copper over widths of $9-12 \mathrm{~m}$. This mineralization would tentatively appear to be correlative with the "Copper Knob" high-grade showing.
5) The stratiform nature of the copper-rich mineralization in the Lower Cherts of the Main Zone has been clearly revealed. Very detailed mapping here has again revealed the presence of a number of east-west fault zones although of generally insignificant displacement. Previous drill hole 81-03 was drilled directly down one of these faults and encountered considerable difficulty although it did intersect high grade $\mathrm{Cu}+\mathrm{Zn}$ mineralization at depth.
6) Conductors $1 \mathrm{~d}(40 \mathrm{~b})$ and $12(42 \mathrm{a})$ may well represent additional zones of copperrich mineralization. Attempts to trench these zones proved unsuccessful due to thicker overburden than anticipated. Copper-rich debris from the overburden trench "D" on conductor 1 d assayed $11.13 \% \mathrm{Cu}$ along with $3.56 \% \mathrm{Zn}$. Similar material from trench " E " on conductor 12 assayed $3.60 \% \mathrm{Cu}$.

8.0 MINERAL INVENTORY

8.1 Past Reserve Estimates

Reserve estimates by past operators were all hampered by several factors including variety of azimuths of the various drill campaigns, uncertainty regarding collar locations, and less than comprehensive sampling. In spite of these, the various groups have calculated reserves as per Table 4, below:

TABLE 4 - PAST RESERVE ESTIMATES

Operator	Year	Ore Zone Estimated	Tons	$\mathrm{Cu}(\%)$	$\mathrm{Zn}(\%)$	
Teck Explorations	1957	Main Zone - Basal Chert	152,000	1.35	1.22	
FRJ Prospecting Syndicate (Joubin)	1966	Main Zone + South Zone Basal Cherts	500,000	1.20	1.40	
UMEX (Potapoff)		Main Zone + South Zone Basal and Middle Cherts	2,614,000	0.47	-	1.84\% $\mathrm{Zn}+\mathrm{Pb}, 0.2502 / \mathrm{Ag}$
Grandora Explorations (Holcapek)	1975	Main Zone - Basal Chert (indicated) (possible)	$\begin{array}{r} 416,160 \\ -112,000 \\ \hline 528,160 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	1.2	
		- Middle Chert	350,000	1.0	1.5	
		South Zone - Basal Chert	320,000	0.58	2.48	
		- Middle Chert	400,900	0.27	3.17	
Placer Development	1980	Main Zone + South Zone Basal and Middle Cherts	2,400,000	0.40	2.40	
MW Resources	1982	Main Zone - Basal Chert	50,000	3.2	3.1	+0.750z/t Ag, 0.02oz/4u
(Fairbairn)		(high grade zone) South Zone	970,000	1.2	5.0	
B. Wilson \& Associates (Wilson)		Main + South Zones	1,000,000	1.0	1.5	

A conversation with Placer personnel this past autumn confirmed that their figure was strictly a "back of the envelope" calculation. It is felt that most of the other calculations were likely of similar quality, if only because of the thenperceived complexity of the data.

Fairbairns' attempt at outlining a high-grade pod within the Main Zone lower cherts was assessed independently by Hill, Goettler and de Laporte Ltd. in 1983 who noted, "the continuity of mineralization depicted in cross-sections by Fairbairn (1982) is not substantiated by the data in detail and that therefore there may be considerable doubt that a reserve of the size Fairbairn had estimated, exists. It is felt that some of the data may have made to fit a model of
continuity, where continuity should not be expected geologically."
Continuity does exist, and if anything, is simpler than his portrayal. He, as well as others have needed numerous faults, both lateral and thrust, to explain the relative position of equivalent horizons within individual drill holes. Our work suggests that past discrepancies were caused by lack of accurate collar coordinates and elevations, and the almost complete absence of down-hole directional testing. This is especially critical in light of the variety of azimuths and dips used, and the differing hardnesses of rock units, which undoubtably resulted in significant deviations.

It is our opinion that the mineralization is predominately stratiform and continuity of individual horizons is essentially uninterrupted save for sparse dykes and low-order displacement by faulting and/or drag-folding.

State-of-the-art computer technology has allowed us to rationalize all of the previous drill results and calculate for the first time a realistic geologic mineral inventory. This exercise along with generation of the sections in Appendix I represents several man-months of work inclusive of the field drill collar location program, rationalization of geological nomenclature, re-logging, re-sampling and actual computer time.

8.2 Geological Mineral Inventory

The sections presented in Appendix 1 show "reserve" blocks with grade and tonnage figures assigned to each. The various blocks are designated as follows:

> UC1, 2, 3 Upper Chert blocks corresponding to the three mineralized horizons between the Variolitic Basalt and the Digestive Diorite (Main Zone) or Chert slump breccia (South Zone)

NS, 1, 2, 3 Lower Chert Near Surface blocks

LCUG Lower Chert Down-dip blocks
These are "first-pass" computer calculated approximations only, which simply average the values found within the block outlines, without weighting or the use of geostatistics. Block outlines themselves are geologically inferred based on knowledge of the deposits, and are not in any way meant to reflect mineable blocks, or mineability scenarios.

Mineral inventory calculations are presented in Table 5 and are summarized following:

Main Zone: Lower Cherts Near Surface $\quad 464,460$ tonnes grading $1.14 \% \mathrm{Cu}$,

TABLE 5 - MTNERAL INVENTORY

SECTIOH CODE AREA

AIN ZONE: UPPER CHERTS

VOLIME TONRES

30000.00	90000.0
67875.00	203625.0
4325.00	12975.0

$\begin{array}{ll}4325.00 & 12975.0\end{array}$ 22400.0067200 .0 24576.50
$35175.00 \quad 105525.0$ $37850.00 \quad 113550.0$ $101225.0 \quad 303675.0$ $105200.0 \quad 315600.0$ 105200.0 40462.50 $\begin{array}{ll}42400.00 & \frac{258900,0}{1,218,637.5} \\ 127200.0\end{array}$ $28400.00 \quad 85200.0$ $28300.00 \quad 86400.0$ $4378.00 \quad 13134.0$ $1068.75 \quad 3206.3$ $14250.00 \quad 42750.0$ $\begin{array}{ll}9325.00 & 27975.0\end{array}$ $\begin{array}{ll}1275.00 & 3825.0 \\ 9647.75 & 28943.3\end{array}$ $1350.00 \quad 4050.0$ $\begin{array}{ll}1550.00 & 4650.0 \\ 5875.00 & 176250\end{array}$ $\begin{array}{ll}2850.00 & 8550.0\end{array}$ 2850.00
3650.50

$94725.00 \quad 284175.0$

 $\begin{array}{ll}13125.00 & 39375.0 \\ 49200.00 & 147600.0\end{array}$ $\begin{array}{ll}49200.00 & 147600.0 \\ 7875.00 & 23625.0\end{array}$ $\begin{array}{ll}7875.00 & 23625.0 \\ 25575.00 & 76725.0\end{array}$ $25200.00 \quad 75600.0$ $27125.00 \quad 81375.0$ $93675.00 \quad 281025.0$ $\begin{array}{ll}93675.00 & 281025.0 \\ 23925.00 & 71775.0\end{array}$ $\begin{array}{ll}23925.00 & 71775.0 \\ 32062.50 & 96187.5\end{array}$ $43125.00 \quad 129375.0$ $\frac{67500.0}{1,374,337.5}$
$8450.00 \quad 85350.0$

 $6250.00 \quad 78750.0$ $9000.00 \quad \frac{27000.0}{191.000 .0}$$9325.00-29475.0$
$19106.25 \quad 57318.8$
$3712.50 \quad 11137.5$
$1275.00 \quad 3825.0$
$\begin{array}{ll}4425.00 & 41343.8 \\ 4275.0\end{array}$
$2625.00 \quad 78750$
$2625.00 \quad 7875.0$ $\begin{array}{ll}925.00 & 2775.0 \\ 3125.00 & 9375.0\end{array}$ $3850.00 \quad 11550.0$ $725.00 \quad 2175.0$ $1325.00 \quad 3975.0$ 2421.25 28.50

85.5 .8
$201,449.0$

CU(\%) $2 N(\%) W T \%$ CU WT\% ZN

1.11	1.43	99900.00	128700.00	
1.14	1.04	232132.50	211770.00	
1.15	1.76	14921.25	22836.00	
0.61	2.16	40992.00	145152,00	
1.42	2.17	104695.89	15,9993.02	
		492,641.64	668,451.02	$=1.10 \% \mathrm{Cu}, 1.497 \mathrm{Zn}$
0.07	1.66	7386.75	175171.50	
1.54	9.49	174867.00	1077589.50	
0.68	3.66	206499.00	1111450.50	
0.43	2.10	135708.00	662760.00	
0.22	1.67	26705.25	202717.13	
0.82	2.36	212298.00	611004 00	
		763,464.0	3,840,692.63	$=0.63 \% \mathrm{Cu}, 3.15 \% \mathrm{zn}$
1.11	1.17	141192.00	148824.00	
1.44	1.35	122688.00	115020.00	
0.90	1.27	77760.00	109728.00	
0.98	5.33	12871.32	70004.22	
1.63	0.81	5226.27	2597.10	
1.48	2.49	63270.00	106447.50	
1.58	0.79	44200.50	22100.25	
1.20	0.06	4590.00	229.50	
0.71	2.06	20549.74	59623.20	
0.61	1.44	2470.50	5832.00	
0.32	1.65	1488.00	7672.50	
0.91	1.60	16038.75	28200.00	
1.36	1.98	11628.00	16929.00	
0.70	2.70	7666. 05	29569, 05	
		531,639,13	722,776.32	- 1.148Cu, 1.562 zn
0.33	2.77	93777.75	787164.75	
0.06	3.75	2362.50	147656.25	
0.16	1.40	23616.00	206640.00	
0.24	2.91	5670.00	68748.75	
0.01	1.24	767.25	95139.00	
0.18	2.06	13608.00	155736.00	
0.07	2.49	5696.25	202623.75	
0.33	2.77	92738.25	778439.25	
0.16	4.70	11484.00	337342.50	
0.12	3.19	11542.50	306838.13	
0.12	2.56	15525.00	331200.00	
0.40	3.65	27000.00	246375.00	
		303,787.50	3,663,903,38	$=0.227 \mathrm{Cu}, 2.67 \% \mathrm{zn}$
0.06	4.42	5121.00	377247.00	
0.17	2.60	13387.50	204750.00	
1.10	4.74	29700.00	127980.00	
		48,208.50	709.977	$=0.257 \mathrm{Cu}, 3.72 \mathrm{za}$
0.30	3.26	8842.50	96088.50	
0.55	2.11	31525.34	120942.67	
0.73	4.57	8130.38	50898.38	
1.02	0.30	3901.50	1147.50	
0.53	1.75	21812.21	72351.65	
1.57	0.89	20841.75	11814.75	
0.99	0.46	7796.25	3622.50	
0.87	0.98	2414.25	2719.50	
0.87	0.62	8156.25	5812.50	
2.78	0.83	32109.00	9586.50	
0.20	2.82	435.00	6133.50	
1.84	0.30	7314.00	1192.50	
1.33	1.08	9660.85	7844.90	
		163,039.28	390,155.35	$=0.818 \mathrm{Cu}, 1.94 \% \mathrm{zn}$

Main Zone: Upper Cherts

South Zone: Lower Cherts Near Surface

South Zone: Upper Cherts

TOTAL POTENTIALLY OPEN PITTABLE

Main Zone: Lower Cherts Down-Dip

TOTAL MINERAL INVENTORY

201,449 tonnes grading $0.81 \% \mathrm{Cu}$, $1.94 \% \mathrm{Zn}$
$1,218,638$ tonnes grading $0.63 \% \mathrm{Cu}$, $3.15 \% \mathrm{Zn}$
$1,374,338 \%$ tonnes grading $0.22 \% \mathrm{Cu}$, $2.67 \% \mathrm{Zn}$
$3,258,855$ tonnes grading $0.54 \% \mathrm{Cu}$, 447,526 tonnes grading $1.10 \% \mathrm{Cu}$, $1.49 \% \mathrm{Zn}$
$\sim 4,000,000$
$2.56 \% \mathrm{Zn}$ tonnes grading $0.59 \% \mathrm{Cu}$,

It is believed that economically significant amounts of $\mathrm{Pb}, \mathrm{Ag} \pm \mathrm{Cd}$ will be added to the above numbers.

9.0 GEOPHYSICAL SURVEYING

9.1 General

The October 1990 geophysical surveying was carried out on the Shunsby property to supplement exploration surveying conducted earlier and reported on in "Report on the Shunsby Copper Zinc Property of Kirkton Resources Corporation, Cunningham Township, Porcupine Mining Division, Ontario. February 1990" by Riddell et al. Section 10.0 of the 1989 report which outlined the geophysical results and interpretation is attached as Appendix 3 and provides a base for the additional detailed geophysical information presented following.

9.2 Total Field Magnetics

The total field magnetic survey conducted in the detailed grid area did not significantly add to the original interpretation. The area surveyed during the present program included the Main and South Zones of the Shunsby property. The very high gradients and short strike length of the magnetic features observed, is believed to reflect, to some degree, metallic surface debris from previous drill programmes.

From these observations it is believed that whilst the total field magnetic response can be broadly divided into three major magnetic domains, no individual magnetic signatures can be associated with particular stratigraphic units (Appendix 3). The complex structural picture portrayed on the earlier version of property-wide magnetics was not substantiated by the geological field work and additional geophysical surveying. Formerly, truncations and offsets of conductors and magnetic domains was interpreted to be due to extensive faulting. It is now felt that local folding and/or facies changes, and not the strike-slip component of faulting are the causes of the above.

The revised magnetic interpretation is presented on Maps 4 a and b (1:2500) and Map 7 (1:000).

9.3 Horizontal Loop Electromagnetic

The known multiplicity of conductive zones in the deposits area and the relatively shallow overburden indicated from the previous survey dictated that a shorter (50 metre) cable separation be utilized during the present surveying. This has the advantage of increased resolution while not compromising adequate depth of investigation.

Interpretation of the 50 metre cable information has been superimposed on and integrated with the 100 metre data. Although largely similar to the 100 meter data, the 50 metre data has repositioned several conductive axes and has, in some cases, resolved multiple anomalies; an example being anomaly 13a which has been resolved as anomalies 43 and 44 on line $2+50 \mathrm{~N}$.

To maintain integrity of the data set, the present detailed survey area has been reinterpreted and all of the conductors re-labelled as anomalies 40 through 53. Where the detailed HLEM anomaly is obviously reflecting a conductive body previously labelled and interpreted, its present label maintains the previous designation; example anomaly $47(6)$ is described as anomaly 47 in the present text and is cross-referenced as anomaly 6 in the previous report (Appendix 3).

Thirteen conductors were outlined from the detailed survey. Of these thirteen conductors, three (40, 41 and 42) have been subdivided for ease of interpretation.

Anomaly 40

From the present surveying, anomaly 40 extends from 300 N at approximately 350 E to 400 S at approximately 450 E (Map 8). The anomaly is bounded at its northern extent by a regional east-west fault (Main/Joubin Fault) and may continue south of 400 S as anomaly 2 a (100 metre data, Map 5 a).

From the 50 metre data, Anomaly 40 is subdivided as $40 \mathrm{a}(2 \mathrm{c})$ and $40 \mathrm{~b}(1 \mathrm{~d} ?)$.
Anomaly 40a(2c) extends from 450E, line 400S to 350E on line 150S. The conductor pinches and swells along its strike length and appears to be relatively wide on lines $400 \mathrm{~S}, 200 \mathrm{~S}$ and 150 S . The data indicate an apparent westward dip of 30° and a relatively shallow depth of $10-20$ meters, with moderate conductivity thickness of 15 mhos.

Anomaly $40 \mathrm{a}(2 \mathrm{c})$ is hosted by epiclastic and chemical metasediments which have been labelled as the "Lower Cherts" and has been intersected in a number of drill holes, with the best intersection being on section 150S (hole 56-57).

It should be noted that this horizon has only been tested at depths well in excess of the depth of investigation of the HLEM survey. Thus the near surface conductivity reflected in the HLEM data is untested.

Anomaly $40 \mathrm{~b}(1 \mathrm{~d}$?) extends from approximately 325 E on line 100 S to 362 E on line 300 N at the Joubin Fault. The anomaly is outlined as a reasonably well defined conductive zone although the observed signature at its southern extent is somewhat obscured by mutual interference from anomaly 41 (2d) immediately to the west. The anomaly is best defined on lines $100 \mathrm{~N}, 150 \mathrm{~N}$ and 200 N (map 8).

The data indicate a westward dip varying from 30° to 60° with a depth to the top of the conductive axis of 15 to 20 meters. Conductivity thickness products for this anomaly vary from 15 to 70 mhos at 444 Hz (Map 7).

The zone is interpreted to be located within a relatively discrete cherty horizon containing graphitic argillite. This horizon may possibly be reflecting the

Shunsby Lower Cherts (map 2) although it is more probable that it actually reflects a new underlying zone.

This zone has not been previously tested by diamond drilling.
Anomaly 41(2d) extends from approximately 225E on line 050S to approximately 150 E on line 250 N where it is truncated by the Main (Joubin) fault. The anomaly may extend southward from 050S to 100 S where it would coalesce with anomaly 40 . Although it appears to be of relatively large amplitude with a high inphase-quadrature ratio near its northern extent, no definitive anomaly parameters can be interpreted for anomaly 41 (2d) due to mutual interference from anomalies 40 at its southern extent and 49 at its northern extent.

Anomaly 41 (2d) has been sporadically tested by diamond drilling and is known to be reflecting the surface expression of the Lower Cherts to the south of the Joubin Fault.

Anomaly 42 has been subdivided into $42 \mathrm{a}(12)$ and $42 \mathrm{~b}(13 \mathrm{~b})$. The anomaly as $42 \mathrm{a}(12)$ extends from approximately 050 E on line 250 N , where it is truncated by the Main (Joubin) Fault, to approximately 025 E on line 450 N . Although appearing as a northerly continuation of $42 \mathrm{a}(12)$, to approximately 050 E on line 700 N , the northern extent is designated as $42 \mathrm{~b}(13 \mathrm{~b})$ since it is apparent (map 8) that the conductor shows characteristics which suggest that it may very possibly be a northern extension of anomaly 43(13a).

Anomaly $42 \mathrm{a}(12)$ is outlined as a strong conductive zone with an inphase-out of phase ratio of approximately $4: 1$. The electromagnetic response is affected by adjacent conductive responses such that a normal interpretation of the curves would indicate an eastward dip while geological information indicates a westward dip of approximately 30°. Given this constraint, a depth to the body of approximately 15 m and a conductivity thickness of 30 mhos can be interpreted.

From compilation of the historical drilling data it appears that anomaly $42 \mathrm{a}(12)$ has not been tested. It is felt that anomaly $42 \mathrm{a}(12)$ is the northern extent of 40b(1d?) across the Joubin Fault.

Anomaly $\mathbf{4 2 b}(13 \mathrm{~b})$ is interpreted as the northern continuation of $42 \mathrm{a}(12)$ with generally a lower amplitude and a lower inphase-out of phase ratio than $42 \mathrm{a}(12)$.

Interpretation of the observed signatures indicates that anomaly $42 \mathrm{~b}(13 \mathrm{~b})$ is dipping approximately 30° to the west with a depth to the conductive source ranging from $10-15$ meters. Conductivity thickness is interpreted as 350 mhos on line 500 N .

Anomaly $42 \mathrm{~b}(13 \mathrm{~b})$ does not appear to have been adequately tested and may be a northern extension of anomaly $43 \mathrm{a}(13 \mathrm{a})$ which is, in turn, reflecting the Main Zone Lower Cherts.

Anomaly 43(13a) extends from 075W on lines 300N to 075 W on line 450 N and represents the surface expression of the Lower Cherts within the Main Zone Anomaly 43(13a) includes the largest amplitudes recorded during the electromagnetic survey and the inphase-out of phase ratio observed is approximately $2: 1$ which indicates a moderate conductive body.

Interpretation of the electromagnetic response indicates that the zone is subvertical to steeply the east dipping, although interference from the adjacent feature is not conducive to a definitive interpretation. Width values range up to $15-20 \mathrm{~m}$ and the depth to the anomaly is interpreted as $5-10$ meters with conductively thickness values up to 80 mhos.

The north portion of anomaly 43 (13a) appears to coalesce with anomaly 42 a (12) at 012 E between line 450 N and 500 N . The joint anomaly continues to the north as anomaly $42 \mathrm{~b}(13 \mathrm{~b})$ as discussed earlier.

Anomaly 44 has been outlined on lines 250 N and 300 N at approximately 075W and 100 W respectively, approximately 25 meters due west of anomaly 43(13a). Anomaly 44 was not resolved by the original 100 meter cable electromagnetic surveying.

No anomaly parameters can be interpreted from the data due to mutual interference. On line 300 N the anomaly is adjacent to high grade surface copper mineralization hosted by graphitic argillite.

The anomaly appears to be truncated by a diorite dyke to the north and by the main Joubin Fault at its southern extent. Anomaly 44 has been tested by previous diamond drilling.

Extending from 125 W on line 200 N to 175 W on line 050 N , Anomaly 45 is a low amplitude, poorly conducting zone which was not outlined during the previous survey. This, coupled with the ill-defined response observed with the low frequency 50 m cable, indicates a poorly conductive zone.

Anomaly 46(8) exhibits a good response only on line 100 N although it extends from 050 N to 200 N , straddling the baseline. The northern extent of the feature is truncated by the Main (Joubin) Fault whilst the southern extent appears to be truncated by an east-west trending porphyry dyke.

The anomaly is interpreted to be dipping westward at 60° at a depth of 12 meters, with a conductivity thickness of 110 mhos. The zone has been tested
by previous diamond drilling and no further work is recommended at this time.
Anomaly 47(6) is a weakly conductive zone extending from 175E on line 200S to and 150 E line and is truncated at its north extent by a porphyry dyke.

Anomaly 48(14a) is interpreted to extend from line 450 N to 650 N at approximately 260 W . With an inphase-out of phase ratio approaching 4:1, anomaly $48(14 a)$ is a strongly conductive zone which displays its largest amplitudes on lines 500 N and 550 N . Fifty m to the west, Anomaly 55 subparallels anomaly 48(14a) and, although a much weaker zone, produces mutual interference such that definitive interpretation of the anomaly parameters for either feature are not possible.

Neither of the two features have been extensively tested save for holes 110,109 and possibly 108 at depth. Anomaly $48(14 a)$ is by far the strongest of the two features and from geologic mapping appears to be reflecting a Zn -beariing graphitic unit within argillites of the Upper Cherts.

Anomaly 49 extends from line 250 N to line 050 N and is parallel to, and located approximately $25-50 \mathrm{~m}$ due west of, anomaly $41(2 \mathrm{~d})$. Due to mutual interference it is not possible to interpret anomaly parameters.

The anomaly is believed to reflect a more conductive zone near the top of the Lower Chert horizon which also hosts anomaly 41 (2d), and is in all probability mapping a graphitic or sulphide-rich section within argillite.

Anomaly 50 is located at 050 E and extends from line 050 N to 200 N . This feature is bounded at both ends with its northern extent truncated by the Main (Joubin) Fault and its south end abutting an east-west striking porphyry dyke. Geologic information indicates that this feature is located at the base of the Upper Chert unit and is reflecting a graphitic argillite.

Anomalies 51(7) and 52 are subparallel zones extending from lines $150 S$ to 350S. The northern extent of both features abuts an east-west striking porphyry dyke. Anomaly 51(7) displays the more pronounced response but the presence of the second feature induces a high degree of mutual interference such that it is not possible to calculate anomaly parameters for either. Neither appears to have been extensively drill tested although hole $57-64$ would appear to have encountered graphitic units within metasediments which in all probability explains the conductive responses.

Anomaly 53 is a short strike length zone located parallel to and, approximately 50 meters west of, anomaly $42 \mathrm{a}(2 \mathrm{c})$, extending from line 300 S to 200 S . Anomaly 53 is a weakly conductive zone whose signature is overwhelmed by anomaly $40 \mathrm{a}(2 \mathrm{c})$ such that no anomaly parameters can be interpreted.

Anomaly 54(14b) is a short strike length feature observed on lines 650 N and 600 N at approximately 137 W . A low amplitude zone which was not amenable to detailed interpretation, anomaly 54(14b) correlates with a magnetic feature and is interpreted to reflect discrete sulphide mineralization and/or graphitic argillite within cherts. The more conductive portions are possibly reflecting local increases in sulphide mineralization. Anomaly 54(14b) does not appear to have been previously tested.

A number of short strike length conductive features are located in the northwest corner of the detailed survey area (map 8). These features were not resolved by the 50 m cable survey, and beyond the location of their axis, cannot be interpreted to provide anomaly parameters.

10.0 DISCUSSION

The known geological and mineralogical characteristics of the Shunsby deposits are suggestive of both sedimentary exhalative (sedex) and volcanogenic massive sulphide (VMS) mineralization styles. As a continuum likely exists between the two styles, the Shunsby deposits are herein interpreted as hybrid distal volcanogenic types.

The sediments hosting the base metal mineralization are deep water, quiescent facies. To the south, the base metal content dies out in the area of $2+50 \mathrm{~S}$ even though the associated graphitic/pyrite conductive zones continue. Concomitant with the disappearance of base metals, the lithologies exhibit a facies change to shallower water arenites and volcaniclastic units. These same sorts of relationships are inferred to the north in the area of $9+00 \mathrm{~N}$ although our database is less complete in this area. The inference to be drawn from these observations is that the base metal mineralization is hosted within a distinct shale basin floored by a mafic volcanic/intrusive complex. This basin lies immediately off a volcanic centre located directly to the south of the property. It is further interesting to note that the variolitic basalt marker unit on the property seems largely restricted to the shale basin.

Mineralization is almost exclusively hosted by argillaceous to graphitic sediments and is predominately in the form of disseminations, fracture-fillings and matrix material; all sedex characteristics. The gross geologic setting, eg on the township scale is, however, distinctly volcanic. Metal zoning patterns are consistent with both styles of deposits.

The widespread footwall alteration indicated to be present and the specific mineralogical assemblage seen point to hydrothermal fluids as the source of the metals at Shunsby. Deposition appears to have occurred at the sediment-water interface within porous, organic material allowing reduction to occur. It is also apparent that at least four, and probably several more, "pulses" of mineralizing fluids have occurred.

To this point, little is known about the lowermost sediments marked by conductors 42a (12) and $40 \mathrm{~b}(1 \mathrm{~d})$, however all indications thus far are that Main Zone-like, but possibly more copper-rich units are present here. The sediments are indicated to be much more steeply dipping, with at least 100 m (at surface) of intervening mafic flows and coarsegrained rocks between these and the Lower Cherts.

The presence of the cherty slump breccia within the upper cherts may be significant in that it, as well as a variety of soft sediment deformation features seen in the Upper Cherts, suggests extensive gravity-induced flowage. In some VMS settings, Cu-rich massive sulphides will be found on paleotopographic high areas near discharge conduits, and Cu -poor deposits downslope. In this regard, the relative location and direction of this slumpage on the Shunsby property becomes critical.

The presence of massive sulphide mineralization, and its apparent continuity and increase in grade at depth (ie Section $3+00 \mathrm{~N}$, Appendix 1) is considered to be highly
significant. As well, the strong alteration seen beneath the mineralization within hole $64-82 \mathrm{e}$, and the increased amount of intercalated volcanics within the Lower Cherts here, all suggest increasing proximity to a major volcanic vent and/or exhalative centre. This has the implication of pointing to what may be significant down-dip potential for larger, more massive (and higher grade) deposits.

11.0 CONCLUSIONS AND RECOMMENDATIONS

The results of all work on the Shunsby property to date have demonstrated considerable potential for the definition of an economic base metal deposit. In particular we conclude that:
(a) EM conductors $40 \mathrm{~b}(1 \mathrm{~d})$ and $42 \mathrm{a}(12)$ located peripheral to and stratigraphically beneath the known deposits seem with certainty to be the source of the Cu-rich glacial dispersion train in the eastern portion of the property. Values to $7.04 \% \mathrm{Cu}$ and $4.15 \% \mathrm{Zn}$ were obtained from overburden trenches at 5+00S in 1989 while trenching efforts over the above conductors this past summer obtained values to $11.13 \% \mathrm{Cu}$ and $3.56 \% \mathrm{Zn}$ from highly mineralized argillaceous chert debris at the bottom of the trenches. It is felt that we were extremely close to bedrock with these trenches. There are also short-strike length conductive features 16 and 28 to be tested as well in this portion of the property.
(b) There would appear to be sufficient room to substantially expand the known reserves in the up-dip, near surface portion of the Lower Cherts south of the Joubin Fault and both the Lower and Upper Cherts north of the fault such that, in conjunction with (a) an open pit operation might be viable. Conductors $48(14 a)$ and $42 b(13 b) / 56(13 c)$ would appear to be mapping the mineralized Upper and Lower Chert stratigraphy respectively.
(c) The down-dip potential for a large massive sulphide deposit of VMS character within the known mineralized stratigraphy is perhaps the most intriguing aspect of the property. Chemical and petrological work suggest intense hydrothermal alteration of a style similar to that at Mattabi in the footwall rocks beneath the deepest, and in the most copper-rich hole on the property, no. $64-82 \mathrm{e}$. Metal ratios as well as significantly greater volcanic content within the Lower Cherts, imply closer proximity to a volcanic vent and/or exhalative centre with increasing depth.
(d) The western sedimentary units, which host two small $\mathrm{Zn}-\mathrm{Cu}-\mathrm{Pb}$ deposits on adjoining properties, are known to be base metal-bearing on the present property and have only been superficially tested. This stratigraphic package includes several strong EM conductors not previously tested ($18 \mathrm{c}, 19 \mathrm{~b}, 20$) as well as a major oxide iron formation unit. We recognize that the shallow west dips quickly take these units off the property but the intent again would be to establish open pit potential.

Geologically, our detailed work has demonstrated the stratiform, relatively continuous nature of the mineralization, and the simplicity of the gross stratigraphic picture. All indications are that neither cross-structures nor the "Digestive Diorite" are serious
disruptive features.
It is recommended that a program of diamond drilling plus surface stripping be instigated to continue the comprehensive evaluation of the Shunsby property

The surface work should be a continuation of that carried out in 1990 with efforts concentrated in the following areas:
(a) south of the existing stripping on line $1+00 S$ in the South Zone to try and extend the known mineralization here to the south
(b) on either side and to the west of the present trench on line $1+00 \mathrm{~N}$ to try and locate at surface the mineralization known to be in this area from drill results
(c) on the extensive swarm of geophysical conductors including 48(14a), $54(14 \mathrm{~b}), 55$ and 56 in the upper cherts of the Main Zone. This area is known to be Zn -bearing but has only been superficially investigated
(d) in the west portion of the property on conductor $18 \mathrm{c}, 19 \mathrm{~b}, 20$ etc.

Also, the existing trenches in the area of line $1+00 \mathrm{~S}$ and line $3+00 \mathrm{~N}$ should be properly blasted and re-sampled in the course of the above.

This first phase of diamond drilling should be directed towards the following targets:
(a) testing of the up-dip portion of the lower cherts in the Main Zone as marked by EM conductors $40 \mathrm{a}(2 \mathrm{c}), 41(2 \mathrm{~d})$ and 49 from the Joubin Fault to line $3+00 S$ (1500 m of drilling)
(b) testing of EM targets $40 \mathrm{~b}(1 \mathrm{~d}), 42 \mathrm{a}(12), 28,16,42 \mathrm{~b}(13 \mathrm{~b}), 13 \mathrm{c}$ and 14 d (1000 m of drilling)
(c) deep drill testing of the area down-dip from the Main and South Zones; four 400 m holes should be drilled on lines $5+00 \mathrm{~N}, 3+00 \mathrm{~N}, 1+00 \mathrm{~N}$ and $1+00 \mathrm{~S}$ at $7+00 \mathrm{~W}$. A contingency allowance of an additional 1400 m should be made available for two more deeper tests based on the results of the foregoing for a total of 3000 m .

This work is budgeted as follows:
Diamond Drilling - BQ 5500 m @ \$75/m all inclusive \$412,500

Stripping, trenching sampling

Reporting, drafting, re-calculation of mineral inventories, engineering

$$
\frac{\$ 25.000}{\$ 537.500}
$$

$\begin{array}{ll}\text { Contingency @ } 15 \% & 80,000\end{array}$
GRAND TOTAL APPROXIMATELY
This phase of exploration is highly critical, and will determine whether further expenditures are warranted on the Shunsby Property.

P.A. Sobie, B.Sc.

MPH CONSULTING LIMITED

REFERENCES

Atkin, W.F., 1968, Exploration Report on Cunningham Township Property of Consolidated Shunsby Mines Ltd., Qualifying Report for Public Underwriting.

Fairburn, D., 1981, Preliminary Evaluation, MW Resources Ltd., Cu-Zn-Ag-Au Property, Cunningham Township, Ontario. Company Report.

Fairburn, D., 1982, Report on the Diamond Drilling Exploration Program 1981 and prior to 1981, MW Resources Ltd., Cunningham Township, Ontario North Zone. Company Report.

Franklin, J.M., Kasarda, J. and K.H. Poulson, 1975, Petrology and Chemistry of the Alteration Zone of the Mattabi Massive Sulphide Deposit. Econ. Geol., Vol. 70, pp. 63-79.

Franklin, J.M., Lydon, J.W. and D.F. Sangster, 1981, Volcanic-Associated Massive Sulphide Deposits. Econ. Geol., 75th Anniversary Volume, p. 485-627.

Goldsmith, L.B., 1981, Review of 1981 Diamond Drilling Programme, $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Au}$ Property, Cunningham Township, Ontario, Prepared for MW Resources Ltd., Report by: Arctex Engineering Services.

Gustafson, L.B., and Neil Williams, 1981, Sediment-Hosted Stratiform Deposits of Copper, Lead and Zinc. Econ. Geol., 75th Anniversary Volume, p. 139-178.

Hodgson, D.J., and J.W. Lydon, 1977, Geological Setting of VMS Deposits and Active Hydrothermal Systems: Some Implications for Exploration. CIMM Bulletin, V.70, p. 95106.

Holcapek, F., 1975, Summary Report on the Shunsby Property, Cunningham Township for Grandora Explorations Ltd., Report by Agilis Engineering Ltd.

Hough, A.J., 1969, A Report on the Potential of the Cunningham Deposit, In-House, to Umex, Ltd., October 22, 1969.

Joubin, F., Various dates, Progress Reports to the Jouban Prospecting Syndicate and Con. Shunsby Mines Ltd. MW Resources Company files.

Meen, V.B., 1942, The Geology of the Cunningham-Garnet Area, O.D.M.
MPH Consulting Limited, 1989, Report on The Shunsby Copper-Zinc Property of Kirkton Resources Corporation, Cunningham Township, Porcupine Mining Division, Ontario.

Mudford, R.K., 1956, Report on Shunsby Mines, Cunningham Township Property for Shunsby Gold Mines Ltd.

OGS, 1982, Airborne Electromagnetic and Total Intensity Magnetic Survey, Swayze Area, Isaiah Lake Sheet, District of Sudbury; by Questor Surveys Limited for the Ontario Geological Survey, Map 80546 Geophysical/Geochemical Series, Scale 1:20,000. Survey and Compilation December, 1980 to February, 1981.

Placer Developments Ltd., 1980, Three reports covering Geophysics and Geochemistry, Geophysics and Diamond Drilling, February, 1980; July, 1980; November 1980.

Potapoff, P., 1969, Property Examination and Examination of Maps, Sections and Reports of Shunsby Mines Ltd., to UMEX Mining and Exploration Ltd.

Potapoff, P., 1969, A Summary Report Covering the Cunningham Deposit, In-House, to Umex Ltd., December 4, 1969.

Rye, A.R., 1984, Geology of the Cunningham 42 Base Metals Prospect, Kidd Creek Mines Ltd., B.Sc. Thesis, Univ. of Waterloo, Ontario.

Siragusa, G.M., 1980, Cunningham Township Area, District of Sudbury; Ontario Geological Survey Preliminary Map P2339 Geological Series, Scale $1: 15840$ or 1 inch to $1 / 4$ mile. Geology 1978 map.

Siragusa, G.M., 1987, Geology of the Garnet Lake Area, District of Sudbury. O.G.S. Report 248,81p. Accompanied by Maps 2503 and 2504, Scale 1:31680.

Strangway, D.W., Electromagnetic parameters of some sulphide orebodies; Mining Geophysics, Vol. 1, SEG, 1966.

Thurston, P.C., Siragusa, G.M. and R.P. Sage, 1977, Geology of the Cahpeau Area, District of Algoma, Sudbury and Cochrane. O.D.M. Geoscience Report 157, p. 234-291.

Wilson, Bryan, January 1989, Compilation of Exploration Data on the Shunsby Property, Cunningham Township, Porcupine Mining Division, Ontario, Prepared for MW Resources Ltd.

14 7aniables

1028	C	8	
ABPLSC 11			
hov	*		2
10	*	8	
HIDTH	V	6	
c01:	\|	δ	
24(x)	1	6	
PB(${ }^{\text {a }}$)	1	6	

$\sin \operatorname{co}(*) \| 2$
(1) ant 1192

SG(PEV) 82
$\triangle(P P B): 83$
(RITCO (1882
$\cos 24(4) 822$
$\begin{array}{ll}55-03 & \\ 55-03 & 55-03-01 \\ 55-03 & \\ 55-03 & 55-03-02 \\ 55-03 & 55-03-02 \\ 55-03 & 55-03-03 \\ 55-03 & \\ 55-03 & 55-03-05 \\ 55-03 & \\ 55-03 & 55-03-04 \\ 55-03 & \\ 55 & \\ 55-03 & 55-03-06 \\ 55-03 & 55-03-06\end{array}$

0.00	2.43	2.43	0.00	0.00
2.43	5.09	2.66	0.90	1.18
5.09	7.64	2.55	0.08	0.00
7.64	10.24	2.60	2.59	2.72
10.24	11.75	1.49	0.10	0.66
11.75	14.63	2.90	0.10	0.20
14.63	33.99	19.36	0.00	0.00
33.99	35.10	1.11	1.00	0.52
35.10	38.71	3.61	0.00	0.00
38.71	40.35	1.64	0.21	0.85
40.35	46.33	5.98	0.00	0.00
46.33	48.13	1.80	0.01	0.19
43.13	19.97	1.86	0.01	0.47
49.97	67.03	17.07	0.00	0.00
0.00	3.67	3.66	0.00	0.00

		1.99	26.000		
1.04	1.75	1.10	7.000	0.40	1.53
1.04	1.75	1.10	7.000	0.40	1.53
		0.30	115		
		3.60	115	0.74	0.55
		1.20	114	0.15	0.65
0.01	0.27	0.20	3.000	tr	0.21
0.01	0.27	0.20	3.000	tr	0.21

55-04-01
3.67

1

56-05	55-05-09	50.26	50.69	0.430 .31	0.09	0.80	0.09	1.10	21.000	0.48	0.09
56-05	55-05-89	50.69	52.30	1.612 .50	0.09	0.80	0.09	1.10	21.000	0.48	0.09
56-05	55-05-09	52.30	54.13	1.880 .12	0.09	0.80	0.09	1.10	21.000	0.48	0.09
5		54.13	62.17	8.020 .00	0.00						
$50.0{ }^{\circ}$		0.00	3.05	3.050 .00	0.00						
56-06	55-06-01	3.05	9.15	6.090 .05	0.79			0.60	3.000		
56-08	55-06-02	9.15	14.63	5.490 .04	0.17			0.30	HIL		
56-06	55-06-03	14.63	16.90	2.272 .59	0.21	0.97	0.31	3.20	64.000	0.99	0.21
56-06	55-06-03	16.90	18.64	1.740 .11	0.94	0.97	0.31	3.20	64.000	0.99	0.21
56-06	55-06-03	18.64	21.00	2.360 .00	0.21	0.97	0.31	3.20	64.000	0.99	0.21
56-06		21.00	36.75	15.760 .00	0.00						
56-06		36.75	38.32	1.560 .00	0.01						
56-06		38.32	59.42	21.120 .00	0.00						
56.07		0.00	50.18	50.160 .00	0.00						
$56-07$		50.18	52.76	$2.60 \quad 0.01$	0.00						
56-07		52.76	99.64	46.910 .00	0.00						
56-08		0.00	0.92	0.910 .00	0.00						
56-08	56-08-01	0.92	3.54	$2.63 \quad 0.16$	3.52						
56-08	56-08-01	3.54	6.36	2.820 .51	3.60						
56-08	56-08-01	6.36	7.61	1.261 .87	17.01						
$56-08$		7.61	129.20	121.609 .00	0.00						
56-09		0.00	1.84	1.830 .00	0.00						
56-09	56-09-01	1.84	5.48	$3.66 \quad 0.13$	0.25			0.90	14.000		
56-69	56-09-02	5.48	9.74	4.260 .03	0.05			0.30	HL		
$56-89$		9.74	12.80	3.050 .00	0.06						
$56-09$	56-09-04	12.80	15.06	2.261 .33	1.08						
56-09		15.05	17.98	$2.92 \quad 0.00$	0.00						
$56-09$	56-09-05	17.98	19.82	1.840 .05	0.66	0.04	0.83	0.60	3.000	0.02	0.60
56-09		19.82	24.31	4.490 .00	0.00						
56-09	56-09-06	24.31	27.30	$3.00 \quad 0.61$	0.04						
56.09		27.30	45.73	18.420 .00	0.00						
56-09	56-09-07	45.73	48.13	$2.40 \quad 0.10$	0.00						
56-09		48.15	88.19	38.090 .00	0.00						
56-09	56-09-08	86.13	88.39	$2.17 \quad 0.46$	0.28						
56-09		88.39	129.20	40.850 .00	0.00						
56-10		0.00	48.16	48.160 .00	0.00						
56-11		0.00	17.68	17.880 .00	0.00						
$56-11$	56-11-01	17.68	20.11	2.440 .01	0.01			0.10	NIL		
56-11	56-11-02	20.11	21.62	1.520 .30	0.52						
56-11		21.62	22.54	0.910 .60	0.00						
56-11	56-11-03	22.54	25.59	3.050 .08	0.47				20.000		
56-11	56-11-03	25.59	28.35	2.750 .08	0.28				20.000		
56-11		28.35	29.86	$1.52 \quad 0.00$	0.00						
56-11	56-11-04	29.86	32.32	2.440 .05	1.50						
56-11	56-11-05	32.32	35.66	3.350 .02	0.22			0.40	7.000		
56-11	56-11-06	35.66	39.01	3.35 tr	0.05			0.20	H16		
56-11		39.01	40.52	1.530 .00	0.00						
56-11	56-11-07	40.52	42.65	2.131 .02	0.14						
56-11	56-11-07	42.65	45.70	3.050 .23	0.28						
56-11	56-11-0?	45.70	47.54	$1.83 \quad 0.08$	0.33						
56-11		47.54	58.20	10.670 .00	0.00						
56-12		0.00	4.27	4.270 .00	0.00						
56-12	56-12-01	4.27	6.10	1.830 .01	0.99						
56-12	56-12-01	6.10	7.61	1.520 .01	0.19						
56-12	56-12-01	7.61	9.15	1.520 .20	2.32						
56-12	56-12-01	9.15	10.66	1.530 .01	1.12						
56-12	56-12-01	10.66	13.71	3.050 .00	0.01						
56-12	56-12-02	13.71	17.06	3.350 .01	0.08			0.30	HIL		
56-12	56-12-03	17.06	20.11	3.050 .05	0.51			1.40	30.000		
56-12	56-12-04	20.11	23.16	3.040 .01	0.05			0.10	1.000		

56-12	56-12-05	23.16	25.89	2.750 .01	0.01	0.10	HIL
56-12	56-12-06	25.89	28.64	2.740 .01	0.01	0.10	HIL
56-12	56-12-07	28.64	31.36	2.740 .01	0.06	0.10	7.000
4	56-12-08	31.36	34.12	2.750 .03	0.11	0.20	HIL
Suld	56-12-09	34.12	37.17	3.050 .02	0.07	0.10	HIL
56-12	56-12-10	37.17	40.22	3.040 .15	0.11	0.90	7.000
56-12	56-12-11	40.22	42.29	2.060 .10	0.73	0.60	NIL
56-12	56-12-12	42.29	43.86	1.600 .91	0.01		
56-12		43.86	56.07	12.190 .00	0.00		
56-13		0.00	3.64	3.650 .00	0.00		
56-13	56-13-01	3.64	6.00	2.360 .10	0.85	1.20	Hil
56-13	56-13-02	6.00	9.15	3.130 .01	0.32	0.50	VIL
56-13	56-13-03	9.15	12.20	3.050 .02	0.34	0.40	MIL
56-13	56-13-04	12.20	14.93	$2.75 \quad 0.06$	0.19	1.20	12.000
58-13		14.93	26.30	11.880 .00	0.00		
56-14		0.00	1.21	1.220 .00	0.00		
$58-14$	56-14-01	1.21	2.76	$1.52 \quad 0.15$	0.84		
56-14	56-14-01	2.76	4.30	$1.56 \quad 3.92$	1.78		
56-14	56-14-01	4.30	5.77	1.491 .99	0.66		
56-14	56-14-01	5.71	7.32	1.531 .53	1.83		
56-11	56-14-91	7.32	8.83	$1.52 \quad 1.28$	0.80		
56-14	56-14-01	8.83	10.37	$1.52 \quad 6.53$	0.28		
56-14	56-14-01	10.37	11.29	0.920 .87	0.04		
56-14	56-14-01	11.29	12.20	$0.91 \quad 1.27$	1.55		
56-14	56-34-02	12.20	16.14	3.960 .06	0.07	0.40	HIL
56-14	56-14-03	16.14	19.19	$3.05 \quad 0.16$	0.32	0.90	HIL
56-14	56-14-94	19.19	22.24	3.050 .09	0.06	0.40	HIL
56-14	56-14-05	22.24	25.30	3.050 .05	0.21	0.30	HIL
56-14	56-14-06	25.30	28.35	3.050 .06	0.30	0.30	3.000
56-14	56-14-07	28.35	32.32	3.960 .11	0.03	0.60	H14
56-15		0.00	0.62	0.610 .00	0.00		
56-15	56-15-01	0.62	4.49	3.900 .08	0.10	0.40	7.000
56-15		4.49	11.29	6.710 .00	0.00		
56-15	56-15-02	11.29	12.20	0.917 .40	0.70		
56-15	56-15-02	12.20	14.68	2.44	0.50		
58-15		14.63	19.19	4.570 .00	0.00		
56-16		0.00	0.85	0.850 .00	0.00		
56-16	56-16-01	0.85	3.05	2.200 .01	0.03	0.10	NH
56-16	56-16-02	3.05	6.10	3.050 .01	0.19	0.20	Hil
58-10	56-16-43	6.10	3.15	3.040 .01	0.17	0.50	H1:
56-16	56-16-04	9.15	12.20	3.050 .02	0.10	0.20	3.000
56-16	56-16-85	12.20	14.73	2.540 .08	0.27	0.30	HIL
$56-16$	56-16-06	14.73	16.14	1.413 .28	0.01		
56-16	56-16-06	16.14	17.65	1.511 .02	0.56		
56-16	56-16-06	17.65	19.16	1.510 .56	0.38		
56-16	56-16-07	19.16	21.75	2.590 .06	0.06	0.30	HIL
56-16	56-16-08	21.75	24.21	2.460 .25	0.19		
56-16	56-16-09	24.21	26.71	$2.52 \quad 0.05$	0.21	0.30	H14
56-16		26.71	37.47	10.760 .00	0.00		
56-17		0.00	3.72	17.220 .00	0.00		
56-17	56-17-01	3.72	6.10				
56-17	56-17-02	6.10	9.14				
56-17	56-17-03	9.14	12.19				
56-17	56-17.04	12.19	15.24				
56-17	56-17-05	15.24	17.22				
56-17	56-17-06	17.22	19.03	$1.83 \quad 0.35$	1.50		
56-17	56-17-06	19.03	21.95	$2.90 \quad 0.31$	2.73		
56-17	56-17-06	21.95	23.16	$1.22 \quad 0.76$	2.73		
56-17	56-17-06	23.16	24.34	1.180 .05	0.38		
56-17	56-17-07	24.34	29.86	5.520 .00	0.00		

56-21	56-21-01	44.88	47.90	3.010 .02	$1.17 \quad 0.14$	0.30	10.000
56-21	56-21-13	47.30	48.65	0.172 .40	6.45		
$5{ }^{51}$	56-21-14	48.65	50.13	1.460 .20	0.47		
	56-21-14	50.13	51.80	1.681 .58	1.25		
56-21	56-21-15	51.80	54.86	3.041 .17	0.65		
56-21	56-21-15	54.86	56.36	$1.53 \quad 1.22$	0.56		
56-21	56-21-02	56.36	58.50	2.130 .30	0.22	0.40	7.000
56-21		58.50	63.09	4.570 .00	0.00		
56-22		0.00	7.94	7.930 .00	0.00		
56-22		7.94	10.96	3.040 .10	0.89		
56-22		10.96	12.20	1.220 .25	1.32		
55-22		12.20	13.42	1.220 .00	0.00		
56-22	56-22-01	13.42	14.47	1.070 .41	1.30		
56-22		14.47	16.60	2.130 .00	0.00		
56-22	56-22-82	16.60	18.77	2.140 .05	0.00		
56-22	56-22-12	18.77	21.16	2.130 .02	1.93		
56-22		21.16	27.12	$6.56 \quad 0.00$	0.00		
56-22	56-22-03	27.12	30.89	2.340 .20	0.91		
56-22	56-22-03	30.09	31.69	$1.62 \quad 0.02$	0.01		
56-22	56-22-04	31.69	33.99	2.290 .07	0.01		
56-22	56-22-04	33.99	35.66	$1.67 \quad 0.46$	0.71		
$56-2 \%$	56-22-04	35.66	36.25	$0.61 \quad 0.46$	0.00		
56-22	56-22-05	36.25	37.17	$0.92 \quad 2.85$	0.01		
56-22	56-22-05	37.17	38.45	1.280 .07	0.01		
56-22	56-22-06	39.45	39.60	1.151 .28	0.01		
56-22	56-22-07	39.68	40.42	$0.80 \quad 10.40$	0.01		
56-22		40.42	51.97	11.550 .00	0.00		
$56-22$		51.97	52.56	0.610 .05	0.00		
56-22		52.56	55.81	3.050 .00	0.00		
58-22		55.61	56.23	$0.81 \quad 0.15$	0.00		
56-22		56.23	62.76	6.550 .00	0.00		
56-22	56-22-08	62.76	63.98	1.220 .30	1.17		
50-22	56-22-09	63.88	65.22	1.220 .02	0.25		
56-22	56-22-09	65.22	67.36	2.130 .03	0.25		
$56-22$	56-22-10	87.36	68.27	0.920 .35	2.04		
$55-2 \%$	56-22-11	68.27	70.08	1.820 .05	0.28		
56-22		70.08	73.13	$3.36 \quad 0.02$	0.15		
55-22		73.13	124.34	50.900 .00	0.00		
56-23		0.00	22.57	22.560 .00	0.00		
$56-23$	56-23-01	22.57	24.38	$1.82 \quad 1.05$	0.00		
56-23		24.38	85.33	60.960 .00	0.09		
56-24		0.00	55.15	55.170 .00	0.00		
56-25		0.00	40.81	40.340 .00	0.00		
56-25	012-168	40.81	43.14	2.320 .03	0.17	1.00	22.000
56-25	56-25-01	43.14	44.65	1.490 .71	0.66		
56-25	56-25-01	44.65	46.42	1.770 .41	1.58		
56-25	56-25-01	46.42	49.05	2.650 .51	0.17		
58-25	56-25-02	49.05	50.59	1.530 .92	0.51		
56-25	56-25-02	50.59	52.43	1.830 .20	0.05		
56-25	56-25-03	52.43	53.94	1.521 .89	3.67		
56-25	56-25-04	53.94	55.71	$1.83 \quad 0.46$	0.05		
56-25	56-25-04	55.17	57.28	$1.52 \quad 0.77$	1.02		
56-25	56-25-04	57.28	57.87	0.610 .20	0.07		
56-25	56-25-05	57.87	59.12	1.220 .26	1.27		
56-25	56-25-05	59.12	61.25	2.140 .46	1.53		
56-25	56-25-06	61.25	62.93	1.672 .75	0.89		
56-25	56-25-07	62.93	64.60	1.68 0.41	1.48		
56-25		64.60	94.46	29.870 .00	0.00		
56-26		0.00	12.20	12.190 .00	0.00		
56-26	56-26-01	12.20	14.34	2.141 .43	0.51		

56-26	56-26-01	14.34	16.47	$2.13 \quad 2.09$	0.30		
56-26	56-26-01	16.47	18.60	2.151 .53	0.91		
54.26	56-28-02	18.60	20.11	1.530 .46	1.22		
6	56-26-02	20.11	21.62	$1.52 \quad 1.32$	0.86		
56-20	56-26-03	21.62	24.97	3.350 .05	0.15		
56-26	56-26-03	24.97	28.64	3.660 .25	0.46		
58-26	56-26-04	28.64	30.71	$2.13 \quad 10.45$	0.51		
56-26	56-26-04	30.17	33.53	2.751 .02	0.10		
56-26	56-26-05	33.53	36.58	3.050 .45	0.40		
56-26	56-26-05	11.15	12.07	$3.04 \quad 0.81$	1.47		
56-26		12.07	17.83	18.900 .00	0.00		
56-26		17.83	18.63	2.740 .09	0.00		
56-26		18.57	23.96	17.380 .00	0.00		
56-27		0.00	0.85	2.740 .00	0.00		
56-27	56-27-01	0.84	1.77	3.050 .06	0.44	0.50	M15
56-27	56-27-02	1.76	2.68	3.050 .02	0.18	0.20	HiL
56-27	56-27-03	2.69	3.81	3.660 .01	0.02	0.20	Hil
56-27	58-27-04	3.81	4.27	1.520 .61	3.11		
56-27	56-27-05	4.27	4.72	1.530 .82	1.02		
50-27	56-27-05	4.74	5.21	1.520 .11	1.27		
56-27		5.20	11.34	20.120 .00	0.00		
56-27	56-27-05	11.33	11.80	1.520 .71	3.26		
56-27	56-27-07	11.80	12.74	3.050 .15	0.41		
56-27	56-27-07	12.73	13.29	$1.83 \quad 0.92$	0.66		
56-27		13.28	14.84	5.180 .00	0.08		
56-27	56-27-08	14.88	15.88	3.351 .03	0.81		
56-27	56-27-09	15.88	17.01	3.660 .51	0.55		
56-27		17.00	24.14	23.470 .00	0.00		
56-28		0.00	16.61	54.550 .00	0.00		
56-28	56-28-01	16.62	17.47	2.750 .08	0.30	1.20	48.000
56-28	56-28-02	17.46	18.38	3.050 .21	0.76		
56-28	56-28-02	18.39	19.32	3.050 .46	0.61		
56-28	56-28-03	19.32	20.24	3.050 .31	0.50		
56-28	56-28-03	20.25	21.18	3.040 .20	0.15		
56-28	56-28-04	21.17	22.10	3.050 .10	0.00		
56-28		22.10	28.41	20.730 .00	0.00		
56-29		0.00	1.49	4.880 .00	0.00		
56-29		1.49	2.13	2.130 .05	0.01		
56-29		2.14	4.94	9.140 .00	0.00		
56-29		4.92	5.39	1.530 .02	0.0i		
56-29		5.39	22.37	55.770 .00	0.00		
56-29		22.38	22.77	1.230 .04	0.01		
56-29		22.76	24.35	5.180 .00	0.00		
56-29		24.34	24.72	1.220 .01	0.86		
56-29		24.71	27.13	7.920 .00	0.00		
56-30		0.00	16.73	54.860 .00	0.00		
56-31		0.00	0.73	2.440 .00	0.00		
56-31	56-31-01	0.74	1.40	2.130 .09	0.71	0.50	236.000
56-31		1.39	1.86	1.530 .00	0.00		
56-31	56-31-02	1.86	2.77	$3.04 \quad 0.22$	1.29	1.50	27.000
56-31	56-31-03	2.79	3.54	2.440 .01	0.04	0.10	3.000
56-31		3.53	6.95	11.280 .00	0.00		
56-31	56-31-04	6.96	7.89	3.050 .01	0.48		
56-31		7.89	13.84	19.510 .50	0.00		
56-32		0.00	10.88	35.660 .00	0.00		
56-32	56-32-01	10.87	11.52	$2.14 \quad 0.10$	0.92		
56-32		11.52	20.91	30.780 .00	0.00		
56-32	56-32-02	20.90	21.64	2.44 tr	0.41		
56-32	56-32-03	21.64	22.49	$2.74 \quad 0.13$	4.49		
56-32		22.48	23.41	3.05			

56-38		19.60	19.75	0.460 .00	0.00		
56-38	56-38-04	19.74	20.42	$2.29 \quad 1.07$	1.58		
55-28	56-38-04	20.43	20.91	$1.52 \quad 0.71$	1.58		
		20.90	21.82	$3.05 \quad 0.07$	0.00		
56-38		21.83	26.46	15.240 .00	0.00		
56-39		0.00	15.79	51.820 .00	0.00		
56-39	56-39-01	15.79	16.34	1.830 .41	3.41		
56-39		16.35	17.28	3.040 .00	0.00		
56-40		0.00	4.54	14.940 .00	0.00		
56-40	50-40-03	4.55	5.49	3.040 .05	1.48		
56-40	58-40-01	5.48	8.40	3.050 .01	$0.38 \quad 0.13$	0.50	\$16
56-40	56-40-02	6.41	7.35	3.050 .01	0.610 .26	1.20	48.000
56-40		7.34	10.88	11.580 .00	0.00		
56-41		0.00	18.73	54.860 .00	0.00		
$56-42$		0.00	4.94	16.150 .00	0.00		
56-42	50-42-01	4.92	5.85	3.050 .02	0.24	0.60	14:000
56-42	56-42-42	5.85	6.89	3.350 .02	1.12		
56.42		6.88	13.47	21.640 .00	0.00		
56-43		0.00	3.12	15.240 .00	0.00		
56-43	012-151	3.72	4.66				
56-43	112-152	4.65	5.58	$3.05 \quad 0.35$	0.78	1.60	10.000
56-43	D12-153	5.57	6.49	3.050 .04	0.07	0.30	S14
$56-43$		6.50	6.92	1.370 .81	0.76		
56-43	012-154	6.92	7.71	2.590 .02	0.20	0.30	Mil
56-43	56-43-01	7.71	8.35	2.131 .02	0.30		
56.43	56-43-01	8.36	9.11	2.440 .61	0.35		
56-43		9.10	15.97	22.560 .00	0.00		
56-44		0.00	18.38	60.350 .00	0.00		
56-44	56-44-01	18.39	19.32	$3.05 \quad 0.35$	0.61		
56-44		19.32	26.67	24.080 .00	0.00		
56-45		0.00	17.65	57.910 .00	0.00		
68-46e		0.00	22.37	73.460 .00	0.00		
68-46e		22.38	22.80	$1.52 \quad 0.02$	0.05		
68-40e		22.85	33.89	36.270 .00	0.00		
68-46e		33.90	34.33	$1.53 \quad 0.03$	0.50		
63-46e		34.37	40.33	19.500 .00	0.00		
63-46e		40.31	41.24	3.050 .05	0.21		
68-46e		41.24	62.88	71.020 .00	0.00		
56-47		0.00	1.95	$6.40 \quad 0.00$	0.00		
56-47	56-47-01	1.95	2.59	2.138 .92	1.17		
56-47	D12-155	2.80	3.90	$4.27 \quad 0.14$	2.32	1.40	17.000
56-47	D12-156	3.90	4.54	2.140 .10	2.53	5.10	255.000
56-47	56-17-02	4.55	4.94	$1.21 \quad 0.15$	1.27		
56-47	56-47-02	4.92	5.58	$2.14 \quad 1.99$	4.79		
56-47	56-47-02	5.57	6.49	3.040 .92	1.94		
56-47	012-157	6.50	7.14	3.050 .01	$0.07 \quad 0.19$	0.30	3.000
56-47	012-158	7.43	8.35	3.050 .12	2.050 .37	1.60	HL
56-47		8.36	11.80	11.280 .00	0.00		
56-47	D12-159	11.80	12.44	2.130 .01	0.22	0.40	27.000
56-47	D12-160	12.44	12.88	$1.83 \quad 0.12$	4.69	2.30	21.000
56-47	56-47-03	13.00	13.47	$1.53 \quad 0.30$	4.69		
56-47	56-47-03	13.47	13.93	1.520 .92	4.94		
56-47	56-47-03	13.93	14.48	$1.83 \quad 0.15$	1.78		
56-47		14.49	18.47	13.110 .00	0.00		
56-43		0.00	1.68	5.490 .00	0.00		
56-48	012-161	1.67	2.68	$3.35 \quad 0.13$	$2.61 \quad 0.76$	2.00	28.000
56.48	56-48-01	2.69	3.14	$2.44 \quad 0.33$	3.11		10.000
56-48	012-162	3.44	4.27	$2.14 \quad 0.11$	$1.04 \quad 0.34$	1.30	
56-48		4.27	7.16	9.450 .00	0.00		
56-48		7.15	7.53	1.220 .10	0.66		

N

56-56	56-56-86	23.31	24.14	2.72 tr	0.01 tr		
56-56	012-169	24.14	25.18	$3.37 \quad 0.10$	0.60	1.00	NIL
56-56	112-170	25.17	26.09	3.060 .04	0.20	0.30	WIL
(0	56-56-91	26.10	26.64	$1.81 \quad 0.65$	1.63		
50-56	012-171	26.65	27.58	3.060 .05	1.04	0.40	MIL
56-56	012-172	27.59	28.83	4.120 .01	0.69	0.50	NIL
56-56	56-56-02	28.84	29.29	1.510 .01	2.14		
56-56		29.30	44.29	49.230 .00	0.00		
56-56	56-56-03	44.30	44.65	1.220 .60	1.02		
56-56	56-56-03	44.67	45.60	3.050 .55	1.80		
56-56	012-173	45.50	46.54	3.050 .07	0.02	0.50	VIL
56-56	56-56-08	46.53	47.55	$3.35 \quad 0.02$	$0.40 \quad 0.15$		
56.56	56-56-09	47.55	48.59	3.350 .01	0.270 .09		
56-56	56-56-10	48.58	49.59	3.350 .01	$0.26 \quad 0.06$		
56-56		49.60	53.31	12.200 .03	0.90		
56-57		0.00	2.04	$6.71: 0.00$	0.00		
56-57	D12-285	2.05	2.87	2.740 .04	$0.53 \quad 0.12$		
56-57	D12-174	2.88	3.81	3.050 .05	1.51	1.05	NIL
56-57	012-175	3.81	4.94	3.650 .04	3.040 .62	1.80	SIL
56-57		4.92	5.79	2.900 .00	0.03		
56-57	012-284	5.80	6.49	$2.29 \quad 0.02$	$1.47 \quad 0.20$		
56-57	D12-176	6.50	7.44	3.040 .01	1.11	0.80	114
56-57	012-177	7.45	8.25	2.750 .01	1.52	0.70	12.000
58-57	56-57-01	8.27	8.94	1.840 .90	9.08		
56-57	56-57-02	8.83	9.75	3.020 .00	0.30		
56-57	56-57-03	9.75	10.70	3.060 .01	5.00		
56-57		10.68	12.83	7.010 .00	0.00		
56-57	56-57-04	12.82	13.56	2.430 .01	5.61		
56-57	56-57-04	13.56	14.20	2.130 .00	5.81		
56-57	56-57-05	14.21	14.97	$2.46 \quad 0.61$	2.75		
56-57	56-57-08	14.98	15.88	2.990 .20	5.56		
56-57		15.87	29.99	46.390 .00	0.00		
56-57	$5 \hat{6}-5 \hat{i}-\mathrm{j} 7$	30.00	30.94	3.040 .13	1.080		
56-57	56-57-0才7	36.95	31.67	$2.44 \quad 0.07$	0.280 .09		
$56-57$	56-57-03	31.67	32.19	2.740 .08	$0.24 \quad 0.02$		
56-57	50-57-03	32.51	33.53	3.350 .02	$0.48 \quad 0.13$		
56-57		33.53	34.47	3.050 .00	0.00		
56-57	56-57-10	34.46	35.39	3.050 .12	$0.36 \quad 0.03$		
56-57	56-57-11	35.39	36.30	3.050 .08	0.480 .12		
56-5?	50-57-12	35.32	37.25	3.050 .14	0.350 .05		
56-57	56-57-13	37.25	37.80	1.820 .09	$2.93 \quad 0.83$		
56-57	56-57-14	37.80	38.25	1.530 .06	$1.06 \quad 0.17$		
56-57		38.27	40.20	$6.40 \quad 0.00$	0.08		
56-5?	50-57-15	40.22	41.06	2.740 .02	$0.33 \quad 0.05$		
56-57		41.05	43.01	$6.40 \quad 0.00$	0.00		
56-57	56-57-16	43.00	43.65	2.140 .03	0.080 .01		
56-57		43.65	49.98	20.720 .00	0.00		
65-58e		0.00	29.41	96.520 .00	0.00		
65-58e	65-58e-01	29.41	30.05	$2.10 \quad 0.04$	0.71		
65-58e		30.05	36.03	19.6 ± 0.00	0.00		
56-59		0.00	18.56	60.960 .00	0.00		
56-60		0.00	3.54	11.580 .00	0.00		
56-60	D12-178	3.53	4.24	2.290 .01	0.16	0.40	3.000
56-60	56-60-01	4.23	5.15	3.050 .50	4.95		
56.60	56-60-01	5.16	6.10	3.040 .94	4.43		
56-60	56-60-02	6.08	7.01	3.050 .30	0.10		
56-60	56-60-03	7.01	7.96	3.050 .98	4.04		
56-60	56-50-04	7.94	8.87	3.050 .83	1.92		
56-60	56-60.05	8.87	9.81	3.051 .00	0.78		
56-60	56-60-05	9.80	10.30	$1.67 \quad 1.82$	0.75		

56-60		10.31	10.88	1.83	0.00	0.00							
58-60	D12-179	10.87	11.98	3.68	0.08	1.31				0.80	78.000		
$56-60$		11.98	19.69	25.30	0.00	0.00							
66-61e		0.00	0.64	2.13	0.00	0.00							
6-6le	56-61-01	0.65	1.58	3.05	0.14	1.30							
-68-6le	56-61-01	1.58	2.50	3.05	0.09	1.42							
66-6le	D12-180	2.51	3.90	4.57	0.02	0.17				0.40	NIL		
6ô-bile	56-81-02	3.90	4.82	3.00	0.10	3.29							
66-61e		4.81	5.30	1.56	0.00	0.00							
66-6ie	58-61-03	5.29	6.22	3.06	0.11	4.03							
66-61t	012-181	6.22	6.68	1.53	0.03	0.96				0.60	\$14		
66-61e	56-61-04	6.69	1.62	3.04	0.08	3.82							
66-61e	56-61-04	7.61	8.53	3.05	0.00	3.11							
66-61e	56-61-05	8.54	9.48	3.05	0.06	3.45							
66-61e	56-61-06	9.47	10.39	3.05	0.17	8.30							
66-61e	56-61-07	10.10	11.34	3.05	0.05	5.75							
6ô-6le	56-61-98	11.33	12.25	3.04	0.00	1.65							
66-61e	D12-182	12.26	12.95	2.29	ir	0.05				0.20	10.000		
66-61e	D1\%-183	12.96	13.66	2.29	$t r$	0.36				0.10	\$16		
65-6ie	56-61-09	13.66	11.57	3.04	0.09	1.65							
66-61e	[12-184	14.58	15.24	2.14	0.02	0.12				1.20	HLL		
$65-51 t$	012-185	15.23	16.22	3.20	tr	0.01				0.20	HIL		
65-61e		16.21	29.75	44.47	0.00	0.00							
66-51e	60-61e-01	29.76	30.69	3.05	0.31	3.34	0.52				160.000		
66-61e	66-61e-02	30.69	31.30	1.98	0.12	1.02	0.20						
65-61e	D12-197	31.25	32.03	2.43	0.18	1.08							
66-6ile	D12-195	32.03	32.95	3.05	0.04	0.54							
66-61e	012-193	32.96	33.89	3.05	0.10	0.82							
66-61e	D12-199	33.89	34.31	3.05	0.08	0.32							
66-61e	012-199	34.82	35.48	2.17	0.08	0.43							
66-61e	66-61e-03	35.48	35.94	1.51	1.32	0.85							
66-61e	D12-195	35.94	36.88	3.06	0.09	0.49							
66-6le	012-196	36.87	37.83	3.10	0.87	2.11							
66-61e	6j-3̂le-04	37.82	38.62	2.60	0.65	6.05	0.56						
66-61e		38.61	43.46	15.92	0.00	0.85							
66-62e		0.00	0.64	2.13	0.00	0.00							
66-62e	56-62-01	0.65	1.58	3.05	0.08	1.29							
66-62e	56-62-01	1.58	2.50	3.05	0.14	1.22							
86-62e	56-82-02	2.51	3.44	3.05	0.04	1.19							
66-62e	012-188	3.44	4.50	3.31	0.02	1.5!				1.15	WIL		
66-82e		4.60	8.37	5.78	0.00	0.00							
66-62e	56-62-03	6.36	6.83	1.54	0.05	7.23							
66-62e	012-231	6.83	7.62	2.58	0.02	1.58	0.30						
66-62e	012-238	7.61	8.53	3.05	0.04	2.63	0.71			2.06			
66-62e	012-187	8.54	9.48	3.06	0.02	3.43	0.39			1.50	NH		
66-62e	56-62-04	0.48	10.39	3.05	0.03	7.96							
66-62e	56-62-35	10.11	11.34	3.05	0.01	8.17							
65-6ie	56-62-06	11.34	12.25	3.02	0.03	2.93							
66-62e	56-6\%-07	12.26	13.20	3.05	0.01	0.14							
66-6ie	56-62-08	13.19	14.11	3.06	0.01	2.13							
68-82e	50-02-08	14.12	14.57	1.50	0.15	2.10							
66-52e		14.58	27.43	42.20	0.00	0.00							
66-62e	66-62e-01	27.14	28.01	1.93	0.50	3.43	0.30						
66-62e	66-62e-02	28.02	28.44	1.38	0.50	6.26	0.90	0.63	6.38			0.76	5.50
60.-62e		28.14	29.54	3.58	0.00	0.00							
68-62e		29.54	29.99	1.51	0.71	5.89	18 C						
66-62e		29.99	30.51	1.67	3.72	1.09	1 NO						
66-62e	66-62e-03	30.50	31.33	2.75	0.18	2.38	$1{ }^{1} \mathrm{C}$						
66-62e	66-62e-04	31.34	32.37	3.34	0.34	1.24	0.06	0.39	1.08			0.14	0.93
66-62e	66-62e-05	32.36	33.38	3.36	0.19	1.30	0.02	0.19	1.18			0.19	1.05

66-62e	66-62e-06	33.38	33.83	1.51	0.18	4.00	0.00
66-62e	86-62e-07	33.84	34.63	2.59	2.56	2.13	0.00
66-62e	D12-200	34.63	35.17	1.78	0.04	0.04	
		35.17	35.45	0.94	0.00	0.00	
$66-62 \mathrm{e}$	D12-201	35.46	36.24	2.58	0.04	0.05	
66-62e		36.24	37.00	2.53	0.00	0.00	
66-62e	012-202	37.01	38.31	4.21	0.08	0.11	
66-62e		38.30	40.20	6.31	0.00	0.00	
56-63		0.00	1.71	5.61	0.00	0.00	
56-63	012-239	1.71	2.04	1.12	tr	1.12	0.46
56-63	56-63-01	2.05	2.99	3.01	0.00	1.41	
56-63	56-63-01	2.97	3.87	3.00	0.00	1.45	
56-63	D12-240	3.88	4.36	1.53	tr	0.38	0.11
56-83	56-63-02	4.35	4.82	1.51	0.00	1.95	
56-63	D12-241	4.81	5.21	1.28	tr	0.29	0.10
56-63	56-63-03	5.20	5.49	0.92	0.00	1.68	
56-83	56-63-03	5.48	5.76	0.92	0.36	4.89	
56-63	012-242	5.76	7.07	4.26	tr	0.02	0.01
56-63	56-63-04	7.08	7.96	2.93	0.06	1.17	
56-63		7.95	9.24	4.24			
56-63	D12-243	9.24	9.60	1.22	0.09	1.19	0.38
56-63		9.61	12.04	7.95	0.00	0.00	
56-63	D12-244	12.04	12.92	2.87	tr	0.02	tr
56-63	D12-245	12.91	13.78	2.83	tr	0.04	0.01
56-63	56-63-85	13.77	14.54	2.53	0.00	1.22	
56-53		14.55	19.23	15.36	0.00	0.00	
56-84		0.00	0.85	2.74	0.00	0.09	
56-64	D12-247	0.84	1.77	3.05	0.02	0.15	0.02
56-64	D12-248	1.76	2.68	3.05	0.01	0.10	0.01
56-64	D12-249	2.69	3.63	3.05	0.01	0.04	tz
56-64	D12-250	3.62	4.54	3.05	0.03	0.13	0.04
56-64	012-251	4.55	5.58	3.35	0.01	0.03	tr
56-64	D12-252	5.57	6.40	2.74	0.05	0.73	0.14
56-64	D12-253	8.41	1.10	2.29	0.02	0.63	0.19
56-64	D12-254	7.10	7.80	2.28	0.02	0.02	tr
56-54	012-188	7.80	8.26	1.53	0.03	0.39	
56-64	D12-255	8.27	9.20	3.05	tr	0.13	0.01
56-64	D12-256	9.20	10.12	3.04	0.06	0.71	0.13
56-64	D12-257	10.12	11.03	3.05	tr	0.19	tr
$50-64$	D12-258	11.05	12.07	3.35	tr	0.01	
56-64	D12-259	12.07	12.25	0.60	0.01	0.04	0.02
58-64	56-64-01	12.26	12.65	1.32	0.00	2.86	
56-64	56-64-01	12.66	12.95	0.91	0.11	1.63	
56-64		12.94	32.83	65.29	0.00	0.00	
56-64	56-64-02	32.83	33.25	1.38	0.10	0.83	
56-64	56-64-02	33.25	33.53	0.92	0.00	0.10	
56-64	56-64-02	33.53	33.99	1.51	0.02	0.61	
56-64	56-64-03	33.98	34.32	1.08	0.07	0.92	
56-64	56-64-03	34.32	34.78	1.51	0.00	0.30	
56-64	56-64-03	34.78	35.23	1.54	0.00	0.35	
56-64		35.25	37.25	6.53	0.00	0.00	
56-64	56-64-04	37.24	37.67	1.38	0.00	0.16	
56-64		37.66	39.29	5.34	0.00	0.00	
56-65		0.00	1.95	6.40	0.05	0.00	
56-65	56-65-94	1.95	3.35	4.57	ir	0.01	t
56-65	56-65-05	3.34	4.54	3.97	0.01	0.18	0.08
36-65		4.55	5.58	3.35	0.00	0.00	
56-65	56-65-06	5.57	6.95	4.57	0.02	0.52	0.14
56-65		6.96	7.99	3.35	0.00	0.00	
56-65	56-65-02	7.99	9.08	3.60	0.04	0.13	0.03

60-75	60-75-04	13.89	14.34	3.20	0.18	1.48			
60-75	60-75-05	14.88	15.70	2.74	0.74	2.35		0.27	0.060
60-75	60-75-06	15.70	16.25	1.83	0.02	1.40			
6p-15	012-210	16.25	16.73	1.52	0.01	0.08			
6.		16.72	19.95	10.67	0.00	0.00			
60-76		0.00	4.54	14.94	0.00	0.00			
60-76	D12-211	4.55	5.49	3.04	0.08	2.04	0.78	1.03	
$60-76$		5.48	6.68	3.97	0.00	0.00			
$60-76$	60-76-01	6.69	7.07	1.25	0.18	3.57			
$60-76$	D12-212	7.07	7.41	1.12	0.04	1.83	0.53		
$60-76$		7.41	9.17	5.82	0.08	0.00			
$60-76$	60-76-02	9.18	9.75	1.88	0.24	3.82			
60-76		9.75	10.18	1.44	0.00	0.00			
60-76	60-76-03	10.19	10.88	2.31	0.71	1.12			
60-76		10.89	12.16	4.18	0.00	0.60			
60-76	D12-213	12.17	12.11	3.05	tr	0.94			
60-76	60-76-04	13.10	13.17	1.22	0.02	2.94			
60-76	60-76-04	13.47	13.99	1.57	0.77	0.83			
60-76	60-76-95	13.98	14.45	1.53	1.10	1.24			
60-76	60-76-05	14.44	14.81	1.22	2.84	1.40		0.79	0.020
$60-76$	60-76-05	14.82	15.09	0.91	0.64	0.76		0.68	0.010
60.76		15.09	21.37	29.57	0.00	0.00			
$60-77$		0.00	3.11	10.21	0.00	0.90			
60-77		3.11	3.69	1.89	0.40	2.74			
60-77		3.69	4.33	2.35	1.30	4.28		1.06	0.005
60-77		4.40	7.80	11.15	0.00	0.00			
60-71		7.80	8.05	0.83	1.18	0.38			
60.77		8.05	8.20	0.44	0.00	0.00			
60-77		8.19	8.53	1.11	10.44	1.29			
60-77		8.53	9.05	1.74	0.23	0.28			
60-77		9.06	9.66	1.98	1.45	1.53			
60-77		9.65	10.09	1.37	3.58	1.94			
60.75		10.08	10.45	1.19	0.00	0.00			
60-77		10.44	10.97	1.71	15.55	3.06		0.88	0.020
60-77	60-77-01	10.88	11.89	3.04	0.21	0.34			
60-77		11.89	15.79	12.81	0.00	0.00			
60-78		0.00	13.68	44.81	0.00	0.00			
80.79		0.00	2.99	9.75	0.00	0.00			
60-79	D12-214	2.97	3.90	3.05	0.87	2.22			
60.79	60-73-41	3.90	4.35	1.37	1.33	5.17			
60.79	012-215	4.32	4.65	1.07	0.13	0.82			
60-79	60-79-02	4.65	5.03	1.25	1.64	2.34			
60-79	012-215	5.03	5.15	0.43	0.19	0.8 ?			
60-79	60-79-03	5.16	5.88	2.37	0.96	1.46			
60-79	012-216	5.88	6.80	3.05	0.16	0.68	0.03		
60-79	D12-217	6.81	7.86	3.45	0.35	0.64	0.02		
60-73	60-79-04	7.86	8.05	0.64	1.93	1.67			0.015
60-79		8.05	8.66	2.01	0.00	0.00			
60-79	60-79-05	8.87	9.39	2.35	1.01	5.32		0.55	
60-79	D12-218	9.38	9.94	1.82	0.04	0.16	0.03		
60-79		9.94	14.20	14.02	0.00	0.00			
60-80		0.00	2.44	8.05	0.00	0.00			
$60-80$	60-80-01	2.45	2.90	1.49	0.12	4.76			
60-80		2.91	4.45	5.09	0.00	0.00			
60-80	D12-226	4.46	5.49	3.35	0.07	1.29	0.31		
$60-80$	D12-227	5.48	6.49	3.36	0.13	0.92	0.25		
$60-80$	D12-219	6.50	7.16	2.13	0.20	0.66	0.08		
$60-80$	D12-220	7.15	7.62	1.52	0.05	1.74	0.21		
$60-80$	D12-221	7.61	8.08	1.53	0.23	1.94	0.13		
60.80	D12-222	8.08	8.93	2.74	0.18	0.84	0.24		

60-80	012-223	8.92	9.30	1.220 .19	0.95	0.21		
60-80	60-80-02	9.29	9.57	$0.88 \quad 1.17$	0.39			
60-80	D12-224	9.56	10.30	2.470 .33	1.40	0.15		
gomo	D12-225	10.31	11.06	$2.50 \quad 0.09$	0.94	0.19		
00	60-80-03	11.07	11.86	$2.53 \quad 4.79$	2.18		0.48	
$60-80$		11.84	11.95	0.340 .00	0.00			
80-80	60-80-04	11.95	12.31	$1.19 \quad 1.99$	0.70			
60-80	60-80-05	12.31	12.98	$2.28 \quad 0.16$	0.44			
60-80	60-80-06	13.00	13.44	1.474 .48	0.44			
60.80	60-80-07	13.45	13.75	$1.00 \quad 0.74$	0.22			
80-80	60-80-07	13.76	14.23	$1.53 \quad 0.42$	0.08			0.030
60-80		14.22	70.77	185.500.00	0.00			
61-81		0.00	35.23	115.600.00	0.00			
61.81	61-91-01	35.25	36.21	$3.20 \quad 0.51$	2.17		0.68	0.010
61-81		36.22	39.29	10.050 .00	0.00			
61-31	81-81-02	39.29	40.02	$2.38 \quad 0.51$	1.87			
$61-81$	61-81-03	40.01	40.51	1.580 .00	0.00			
61-8!	61-81-03	40.50	41.08	$1.83 \quad 0.44$	1.29			
61-81	61-81-03	41.05	11.48	1.370 .24	0.90			
$61.8 i$	61-81-03	41.4?	41.80	$1.34 \quad 0.34$	1.81			
$81-81$	61-81-038	41.68	42.37	0.00	0.00			
$81-81$		42.38	43.43					
61-2:	61-81-04	43.42	44.14	2.410 .74	0.94		0.56	0.095
61-31		44.15	44.41	0.860 .00	0.08			
61-3i	61-81-048	44.42	45.38	$3.17 \quad 0.21$	2.18			
81-81		45.33	48.52	10.330 .00	0.30			
61-8!	61-81-05	48.53	49.35	2.682 .25	0.60			
61-81	61-81-05	49.35	50.29	3.074 .00	1.59		0.58	0.015
61-81	61-81-05	50.28	50.90	$2.05 \quad 2.44$	0.30		0.62	0.015
61-8!	61-81-08	50.91	51.79	$2.90 \quad 0.29$	0.68			
61-81	61-81-07	51.79	52.21	$1.34 \quad 3.44$	0.61			
61.81		52.20	52.61	1.370 .00	0.00			
61-3!	61-81-03	52.62	52.79	0.613 .73	1.13			
81-8!		52.80	53.25	1.430 .00	0.00			
61.81	61-91-09	53.24	53.71	1.68 0.57	7.26			
61-81	61-81-10	53.75	54.53	$2.58 \quad 0.17$	1.56			
61-81	61-81-10	54.54	55.20	3.050 .17	0.84			
61.81	61-81-11	55.18	56.48	$3.29 \quad 0.27$	2.70			
61-81	61-81-12	56.47	57.85	$4.57 \quad 0.21$	2.07			
51-9i	012-229	57.88	59.64	$3.84 \quad 0.35$	0.1%			
61-81		59.03	89.88	81.500 .00	0.00			
64-82e		0.00	7.71	53.950 .00	0.00			
64-82e	61-82-01	7.76	9.30					
64-82e		9.31	16.43	0.00	0.06			
64-82e	61-82-04	16.44	17.37	$3.05 \quad 0.02$	tr	tr		
64-82e		17.37	18.96	$5.18 \quad 0.00$	0.00			
64-82e	61-82-05	18.95	20.24	4.270 .02	0.20	0.04		
64-82e		20.25	22.59	$7.62 \quad 0.00$	0.00			
64-82e	61-82-06	22.57	23.32	2.440 .04	0.10	0.02		
64-82e	61-82-07	23.31	23.90	$1.88 \quad 0.34$	0.05	tr		
64-82e	012-230	23.89	24,35	$1.53 \quad 0.04$	0.75			
64-82e	61-82-02	24.35	24.31	1.520 .04	0.15	0.01		
64-82e	D12-231	24.82	25.73	2.990 .06	0.19			
64-82e		25.73	26.18	$1.52 \quad 0.00$	0.00			
64-82e	D12-229	26.19	26.70	$1.68 \quad 0.06$	0.56			
64-82e	61-82-03	26.70	27.34	$2.13 \quad 0.08$	0.25	0.03		
64-82e		27.35	58.61	102.500.00	0.00			
64-82e		58.61	58.86	$0.79 \quad 2.25$	-	0.70	0.71	
64-82e		58.85	59.80	3.080 .00	0.00			
64-82e		59.79	60.20	$1.37 \quad 0.22$	0.10	0.32		

64-82e		60.20	64.56	14.270 .00	0.00							
64-82e		64.55	64.80	$0.76 \quad 2.15$	-	-						
64-82e		64.79	65.14	$1.10 \quad 0.00$	0.00							
$63-24$		65.12	65.20	$0.30 \quad 0.25$	5.10	0.00			0.13			
6.2		65.21	68.12	3.930 .00	0.00							
64-82e		56.41	67.12	2.350 .08	0.28	0.33			0.03	0.010		
64-82e		67.12	70.81	12.040 .00	0.00							
64-82e		70.79	71.26	$1.52 \quad 0.30$	0.15	0.00						
64-32e		71.28	71.54	0.850 .55	-	0.00						
64-82e		71.52	71.69	0.550 .00	0.00							
64-828		71.68	71.78	$0.28 \quad 1.90$	-							
64-828		71.77	72.09	0.391 .45	-				0.16			
64-82e		72.07	73.18	$3.64 \quad 0.00$	0.00							
64-92e		73.18	73.61	$1.40 \quad 0.55$	-							
64-82e		73.51	74.22	2.050 .00	0.04							
64-32e	:	74.23	74.62	$1.25 \quad 4.20$	-	0.00						
64-82e		74.61	76.14	5.010 .00	0.00							
64-32e		76.14	76.66	1.664 .30	0.55	0.00						
64-82t		76.65	77.63	3.290 .00	0.08							
61-83		0.00	12.92	42.370 .00	0.00							
61-83	61-83-01	12.91	13.56	2.130 .03	0.01							
61-83	$61-83-01$	13.56	14.20	2.290 .03	0.07							
$61-82$	61-83-01	14.25	15.18	3.040 .03	0.16							
61.89	61-83-02	15.19	15.85	2.140 .02	0.04				0.20			
61-83	61-83-02	15.84	16.58	$2.44 \quad 0.10$	0.15							
61.83		16.58	29.72	43.130 .00	0.00							
61-83	61-83-03	29.72	30.60	3.040 .04	0.12							
61.83		30.65	36.36	18.750 .00	0.00							
61-83	51-83-04	36.35	37.06	2.290 .03	0.29							
61-83	61-93-05	37.06	37.70	$2.13 \quad 0.13$	1.35	0.57	0.12	1.34		0.020	0.10	1.32
61-83		37.71	38.0 ?	1.220 .00	0.00							
61-83	61-83-06	38.08	38.55	$1.52 \quad 0.50$	1.61	0.29	0.50	1.84			0.50	2.06
61- 0 ¢	61-33-87	38.55	39.29	2.440 .15	0.26	0.09	0.11	0.48			0.10	0.17
61-8 ${ }^{\text {a }}$	61-83-07	39.20	10.20	3.050 .10	0.68	0.09	0.11	0.48			0.10	0.47
$61-33$	61-8i-33	40.22	40.97	$2.44 \quad 0.25$	0.35	0.05	0.73	0.41			0.58	0.33
61-85	61-83-03	40.90	41.61	2.131 .60	0.78	0.03	0.73	0.44			0.58	0.35
$61-83$	61-83-09	41.6!	42.55	3.050 .63	1.93	0.47	0.45	1.54			0.45	1.40
61-83	61-83-09	42.54	43.31	2.650 .24	1.22	0.47	0.45	1.54			0.45	1.48
61-83	01-83-10	43.35	$44.9 \hat{}$	5.270 .15	0.13							
$61 \cdot 83$	61-83-11	44.55	46.53	8.200 .07	0.44	0.12						
61-83		46.81	48.49	5.190 .00	0.00							
61-84		0.00	28.22	92.650 .00	0.00							
$61-85$		0.09	21.03	68.830 .00	0.00							
61-85	61-85-01	20.99	21.82	2.750 .29	0.80							
61.85		21.83	22.01	0.610 .00	0.00							
$61-85$	61-25-02	22.01	22.23	0.910 .29	1.15							
61.85		22.29	22.43	0.610 .00	0.00							
61.85	61-85-03	22.48	22.86	$1.22 \quad 2.04$	2.87							
61.85	61-85-03	22.85	23.41	1.830 .49	2.69							
61.35		23.41	29.44	19.8 ± 0.00	0.00		-					
61-86		0.00	19.05	62.480 .00	0.00		-					
61-86	61-86-01	19.04	19.96	3.050 .12	1.24							
61-86	D12-232	19.97	20.63	2.140 .01	0.32	0.09						
$61-86$		20.62	22.19	6.090 .00	0.00							
61-86	61-86-02	22.48	23.11	3.050 .00	0.00							
61-86		23.41	26.00	8.530 .00	0.30							
61-87		0.00	1.46	4.790 .00	0.00							
61.87	61-87-01	1.46	2.10	2.071 .30	0.27							
61-87	012-374	2.09	2.93	$2.74 \quad 0.25$	0.84	0.26						
61-87	D12-375	2.93	3.84	3.050 .50	0.75	0.14						

65-93	65-93-02	1.96	2.71	2.440 .06	0.27
65-93	65-93-03	2.70	3.69	3.200 .08	2.89
65-93	65-93-04	3.68	4.82	3.780 .10	0.65
8 cos	65-93-05	4.83	5.76	3.050 .02	0.35
	85-93-06	5.76	6.68	3.050 .06	0.71
65-93	65-93-07	6.69	7.62	3.040 .19	0.16
65-93	65-93-08	7.61	8.53	3.050 .01	0.08
85-93	85-93-09	8.54	9.38	2.650 .02	0.44
65-93	65-93-10	9.35	9.94	1.980 .23	2.84
055-33	65-93-11	9.95	10.76	2.630 .06	0.71
65-93	65-93-12	10.76	11.49	2.430 .08	0.38
65-93	65-93-13	11.50	12.44	3.080 .05	0.44
65-93		12.44	15.06	8.570 .00	0.00
65-94		0.00	31.18	102.309 .00	0.00
65-94	65-94-01	31.19	32.06	2.840 .08	0.82
65-94	65-94-02	32.05	32.52	1.58: 0.13	$3.00 \quad 0.81$
65-34	65-94-03	32.53	33.47	3.050 .04	0.22
65-94		33.48	34.50	3.350 .00	0.00
65-94	65-94-04	34.49	35.48	3.290 .08	0.71
65-94		35.49	43.28	25.580 .00	0.00
65-35		0.00	6.74	22.100 .00	0.00
65-95	65-95-01	7.39	9.27	0.09	-
65-95		9.25	26.21	57.300 .00	0.00
65-95	65-95-02	26.22	27.10	$3.04 \quad 0.47$	$0.98 \quad 0.30$
65-95	65-95-02	27.15	27.74	1.920 .29	0.38
65-95	65-95-03	27.73	28.35	1.950 .18	-
65-95	65-95-83	28.33	29.26	3.050 .31	-
85-95		29.25	32.03	9.150 .00	0.00
65-97		0.00	0.98	3.200 .00	0.00
65-97	65-97-01	0.98	1.25	0.950 .51	0.30
65-97		1.28	19.14	58.670 .00	0.00
65-97	65-97-02	19.14	20.89	$3.11 \quad 0.22$	0.20
65-9?		20.69	33.04	42.580 .00	0.00
65-98		0.00	5.73	18.750 .00	0.09
65.98	65-38-01	5.12	6.83	3.650 .26	0.68
65-98		6.82	9.36	8.320 .00	0.00
65-98	65-98-02	9.36	9.60	$0.71 \quad 1.71$	2.96
65-98		9.60	10.49	2.950 .00	0.00
65.98	012-233	10.49	11.03	1.830 .02	0.210 .10
65-98		11.05	14.78	12.190 .00	0.00
65-99		0.00	27.68	90.830 .00	0.00
65-100		0.00	1.98	6.460 .00	0.00
65-100	65-100-01	3.76	4.79	3.350 .07	$1.50 \quad 0.35$
65-100		2.99	23.13	66.090 .00	0.00
65-101		0.00	17.31	56.810.00	0.00
65-101	65-101-01	17.31	18.23	3.05	$0.50 \quad 0.20$
65-101	65-101-01	18.24	18.96	2.32	0.330 .33
65-101		18.95	21.79	9.330 .00	0.00
65-101	65-101-02	21.79	22.22	1.37	0.10
65-10!		22.21	22.77	1.860 .00	0.09
65-101	65-101-03	22.71	23.90	3.65	0.10
65-101		23.89	41.61	58.160 .00	0.00
65-102		0.00	5.03	16.460 .00	0.00
65-102	65-102-01	5.02	5.58	1.83	0.22
65-102		5.57	9.81	13.870 .00	0.00
65-102	65-102-02	9.80	10.30	$1.67 \quad 0.11$	0.66
65-102		10.31	18.07	25.480 .00	0.00
65-102	65-102-03	18.07	18.53	$1.53 \quad 0.20$	$2.56 \quad 4.85$
65-102	D12-234	18.54	19.02	1.550 .03	$0.15 \quad 0.06$
65-102		19.01	19.32	$1.00 \quad 0.00$	0.00

65-102	D12-235	19.32	19.90	$1.90 \quad 0.07$	0.80	0.33
65-102	D12-236	19.89	20.82	3.05 tr	0.10	0.04
65-102		20.82	29.29	27.730 .00	0.00	
85-102	65-102-04	29.28	29.60	1.100 .00	0.00	10.12
- 02		29.61	59.95	89.580 .00	0.00	
65-103		0.00	39.38	129.200.00	0.00	
65-103	012-309	39.38	39.56	0.540 .05	0.01	
65-103	65-103-01	39.55	40.42	2.90	2.00	
65-103	65-103-02	40.43	40.72	$0.91 \quad 0.12$	4.00	
65-103	012-310	40.71	40.97	0.830 .01	0.11	
65-103	65-103-03	40.96	41.79	2.74	1.73	
65-103	D12-311	41.79	42.43	$2.10 \quad 0.01$	0.03	
65-103	65-103-04	12.43	42.76	1.07	1.77	
65-103		42.76	42.92	0.00	0.00	
65-103	D12-312	42.91	43.49	0.01	0.03	
65-103		42.75	46.39	11.920 .00	0.00	
65-104		0.00	72.27	237.100.00	0.00	
65-104	65-104-01	12.26	22.76	$1.59 \quad 0.12$	-	
65-104	65-104-02	12.74	73.30	1.831 .47	-	
65-104	65-104-03	73.35	73.82	$1.67 \quad 0.15$	-	
65-104		73.81	74.43	1.990 .00	0.00	
65-104	65-104-04	74.12	74.92	$1.67 \quad 0.12$	-	
65-104	65-104-05	74.93	75.85	3.050 .08	-	
65-104		75.86	77.11	4.11000	0.00	
65-104		77.11	77.94	2.751 .13	-	
65-104		17.94	84.34	20.970 .00	0.00	
65-105		0.00	30.08	98.760 .00	0.00	
85-106		0.00	11.67	38.340 .00	0.00	
65-106	65-106-01	11.68	12.22	1.740 .07	0.10	
65-106		12.21	13.84	5.340 .00	0.00	
66-107		0.00	7.25	37.801 .00	0.00	
66-107	65-107-01	7.25	7.71			
66-107		7.71	11.5?			
66-107	112-35\%	11.52	11.98	1.580 .01	0.17	0.11
60-107		11.98	16.06	13.390 .00	0.00	
60-107	65-107-02	16.06	17.13	3.510 .02	-	
66-107	65-107-02	17.13	17.71	1.920 .06	-	
66-107		17.71	34.66	55.590 .00	0.00	
66-107	65-107-03	34.65	35.36	$2.29 \quad 0.12$	0.44	
65-10?	012-353	35.35	36.61	4.110 .04	0.31	0.05
66-107		36.60	41.67	16.580 .00	0.00	
66-107	65-107-04	41.66	42.09	1.440 .14	-	
66-107		42.09	43.62	5.020 .00	0.00	
66-107	85-107-05	43.62	44.56	3.050 .07	-	
66-107		44.55	49.68	16.860 .00	0.00	
66-108		0.00	0.73	2.440 .00	0.00	
66-108	80-108-01	0.74	1.62	2.890 .07	-	
66-108	80-108-01	1.62	2.56	3.050 .03	-	
66-108		2.55	6.92	14.330 .00	0.00	
66-108	D12-354	6.92	7.86	3.050 .04	0.01	t
66-103	66-108-02	7.85	8.60	$2.43 \quad 0.17$	-	
66-108	66-108-03	8.59	9.60	3.360 .04	-	
66-108	66-108-03	9.61	10.73	3.650 .06	-	
66-108	66-108-04	10.73	11.86	3.660 .05	-	
66-188	66-108-058	11.84	12.71	3.050 .07	-	
66-108	66-108-05d	12.77	13.47	2.290 .07	-	
66-108	66-108-05	13.47	14.57	$3.65 \quad 0.07$	-	
66-108		14.58	25.66	36.340 .00	0.00	
66-108	D12-355	25.66	26.55	2.98 tr	0.17	tr
66-108		26.56	30.11	11.710 .00	0.00	

66-108	66-108-06	30.13	30.60	1.52	0.44	-
66-108		30.59	45.78	49.870 .00	0.00	
56-108	66-108-07	45.79	46.24	1.520 .00	0.00	0.09
66-108		46.25	54.80	28.040 .00	0.00	
8	66-108-08	54.80	55.99	$3.96 \quad 0.07$	-	
66-108	66-108-08	56.00	56.57	1.830 .12	-	
66-108		56.56	85.20	28.350 .00	0.00	
66-108	66-108-09	85.20	65.93	2.440 .07	0.98	
66-108	66-108-10	65.94	66.51	1.830 .67	1.09	
65-108	66-108-10	66.50	67.15	2.131 .68	3.24	0.29
66-108	65-108-11	67.15	68.09	3.051 .16	1.09	0.07
66-108	66-108-11	68.08	68.73	2.130 .32	0.60	
66-108	86-108-11	68.73	69.19	1.530 .95	1.07	
66-108	66-108-11	69.20	70.13	3.040 .18	0.11	
66-108		70.12	72.36	7.320 .00	0.00	
66-109		0.00	15.27	206.500.00	0.00	
66-109	66-109-01	15.28	16.22			
66-109		16.20	18.87	0.00	0.00	
86-109	60-109-02	18.83	19.32			
66-109		19.32	62.94	0.00	0.00	
66-109	D12-356	62.93	83.86	3.05 tr	0.03	0.04
66-109	66-109-03	63.86	64.31	1.520 .08	0.39	3.16
66-109	D12-357	64.32	64.85	1.830 .01	0.12	0.05
66-109		64.87	65.96	3.570 .00	0.00	
66-109	D12-358	65.96	67.03	3.440 .01	0.46	0.15
B6-109	80-109-04	67.01	67.57	$1.83 \quad 0.21$	0.11	1.42
66-109	66-109-04	67.59	68.03	1.530 .04	0.14	1.36
66-109	012-359	68.03	68.92	2.890 .03	0.25	0.04
66-109		68.92	74.68	18.900 .00	0.00	
66-110		0.00	14.87	118.200 .00	0.00	
56-110	66-110-01	14.88	15.88			
66-110		15.88	32.46	0.00	0.80	
$88-110$	66-110-62	32.47	34.29			
85-110		34.28	36.03	0.00	0.05	
$65-110$	012-300	36.04	36.97	3.05 tz	0.01	$t r$
66-110	D12-361	36.97	37.89	3.050 .01	0.27	0.04
66-110		37.90	40.08	7.160 .00	0.00	
66-110	D12-362	40.08	41.00	3.050 .06	0.41	0.01
66-110	60-110-03	41.01	41.54			
66-110		41.54	43.31	23.980 .00	0.00	
66-110	66-110-04	48.31	48.83	1.67	3.98	0.60
66-110		48.82	61.60	45.240 .00	0.00	
66-110	66-110-05	61.60	62.61			
66-110	66-110-05	62.60	63.06	1.520 .06	1.91	0.33
66-110	66-110-07	63.07	63.83			
66-110		63.82	66.78	12.190 .00	0.00	
66-111		0.00	7.35	24.170 .00	0.00	
66-111	66-111-01	7.36	8.53	3.870 .01	0.08	0.01
66-111	66-111-02	8.54	9.66	3.630 .03	0.36	0.05
66-111		9.65	11.16	4.910 .00	0.00	
66-111	66-111-03	11.15	12.53	4.57 tr	0.13	0.02
66-111	66-111-04	12.54	14.17	5.39 tr	0.06	0.02
66-111		14.18	22.34	26.760 .00	0.00	
66-111	66-111-05	22.34	23.10	$2.50 \quad 0.09$	1.12	0.16
66-111		23.10	36.61	44.290 .00	0.00	
66-111	66-111-06	36.59	36.97	1.220 .14	0.54	
66-111		36.97	38.56	5.180 .00	0.00	
66-111	66-111-07	38.55	39.01	1.530 .06	0.21	
66-111		39.01	41.67	8.680 .00	0.00	
66-112		0.00	10.76	35.360 .00	0.00	

66-112	012-363	10.77	11.40	2.01 tr						
66-112	012-364	11.39	12.22	2.710 .01	0.06					
66-112	66-112-01	12.21	13.08	59.16						
66-112		13.08	30.24	0.00	0.00					
${ }^{12}$	66-112-02	30.24	30.66	1.340 .02	0.09	tr				
66-112	66-112-03	30.65	31.21	$1.83 \quad 0.17$	0.76					
66-112	D12-365	31.21	32.43	3.970 .05	0.08	0.02				
66-112	66-112-04	32.42	33.04	2.130 .15	1.40					
66-112	66-112-05	33.06	33.68	1.980 .08	0.10					
66-112	66-112-06	33.67	34.32	2.130 .86	0.76					
66-112	66-112-06	34.32	34.84	$1.68 \quad 0.33$	0.54					
66-112	D12-366	34.83	35.30	1.520 .00	0.00					
66-112	D12-366	35.29	36.21	3.050 .20	0.49					
66-112		36.22	38.07	$6.10 \quad 0.00$	0.00					
66-113		0.00	4.27	38.250 .00	0.00					
66-113	D12-369	4.27	5.67							
66-113		5.67	11.67	0.00	0.00					
66-114		0.00	2.13	7.010 .00	0.00					
65-114	012-367	2.14	4.27	6.95 tr	0.01	tr				
66-114	D12-363	4.26	5.58	4.39 tr	0.01	tr				
66-114		5.59	14.48	29.200 .00	0.00					
66-115		0.00	44.23	145.000.00	0.00					
66-116		0.00	13.90	45.570 .00	0.00					
66-116	65-116-01	13.83	15.82	6.55 tr	0.01	tr				
66-115		15.88	29.90	45.020 .00	0.00					
JIU-1		0.00	7.99	29.230 .00	0.00					
JIH-1	314-01-01	7.99	8.90							
JIH-1	JIa-01-02	8.91	10.03	3.660 .00	0.10					
JIL-1	J14-01-03	10.02	10.82							
JIH-1		10.82	19.05	29.590 .00	0.00					
JIH-1	012-402	19.04	19.84	2.63 tr	0.10	0.01				
JIt-1	JIM-01-04	19.84	20.67	2.680 .00	0.54	0.22	0.60	NIL	0.01	0.66
Jin-	J11-01-05	20.36	21.58	3.050 .00	1.35	0.20	1.58	HIL	0.04	1.47
JIL-1	314-01-05	21.59	22.52	3.040 .00	2.05	0.20	1.58	NIL	0.04	1.47
$\mathrm{H} \mathrm{H}-1$	012-403	22.5:	23.32	2.620 .31	0.09	tr				
314-1		23.31	38.07	48.470 .09	0.00					
JIL-2		0.00	14.98	48.920 .00	0.09					
314-2	JIH-02-01	14.91	15.36	1.520 .09	0.46					
JIE-2		15.37	23.50	26.670 .00	0.00					
JIM-2	112-404	23.50	24.30	3.668 .02	0.10	tr				
JIU-2		24.61	38.25	44.810 .00	0.00					
S8-1		0.00	5.55	18.200 .00	0.00					
S3-1	S8-91-0!	5.55	6.04	1.610 .09	0.44	0.020 .07	0.41		0.05	0.38
S8-1		6.04	6.95	3.020 .00	0.00					
58-1	SE-81-02	6.96	7.41	1.490 .08	0.28	0.01				
S8-1		7.11	13.93	21.400 .00	0.00					
58-1	SE-01-03	13.93	14.84	3.050 .04	0.19	0.010 .02	0.23		0.01	0.27
SB-1	S8-01-03	14.86	15.79	3.050 .03	0.15	0.03				
S8-1		15.79	23.23	24.380 .00	0.00					
SB-2		0.00	16.85	55.200 .00	0.05					
St-2	S8-02-04	16.85	17.40	1.710 .06	0.20	0.01				
S8-2	S8-02-05	17.39	18.56	3.90 tr	0.10	0.03				
S3-2	S8-02-06	18.57	19.69	3.66 tr	tr	tr				
SB-2		19.69	22.16	11.120 .00	0.00					
Sb-2	012-405	22.16	23.07	0.01	0.33	0.13				
SE-2	S8-02-02	23.08	24.02	3.050 .01	0.07	0.03				
S8-2	S8-02-03	24.01	24.78	2.53 tr	0.03	0.01				
S8-2		24.78	26.12	$4.39 \quad 0.00$	0.00					
S8-2	S8-02-01	26.12	26.97	2.830 .07	0.22					
S8-2	S8-02-01	26.98	21.74	2.440 .09	0.63	0.11				

Si-2		27.72	34.08	20.880 .00	0.00					
St-3		0.00	8.32	39.010 .00	0.00					
S8.3	S8-03-01	8.33	10.12							
$5{ }^{5}$		10.12	11.89	0.00	0.00					
		0.00	16.28	109.700 .00	0.00					
5R-4	D12-406	16.29	17.40	0.02	0.02					
S8-4		17.40	18.59	0.00	0.00					
S8-4	012-407	18.58	19.14	0.01	0.01					
S8-4		19.14	26.94	0.00	0.00					
S8-4	212-408	26.94	28.62	0.01	0.02					
S8-4		28.63	33.14	0.00	0.00					
68-1		0.00	5.76	18.890 .00	0.00					
68-1	68-01-01	5.76	6.68	3.08 tr	tr tr					
68-1	68-01-02	6.69	7.16	1.520 .02	0.24 tr					
68-1		7.15	10.24	10.210 .00	0.00					
68-1	68-01-03	10.26	11.67	$4.57 \quad 0.04$	0.13 tr					
68-1		11.66	14.84	10.520 .00	0.00					
68-1	68-01-04	14.85	15.33	1.521 .60	4.89					
68-1		15.33	24.50	30.480 .00	0.00					
68-1	63-01-10	24.61	25.63	3.35 tr	0.090 .01					
$68-1$	68-01-11	25.63	26.49							
$68-1$		26.48	42.82	56.390 .09	0.09					
68-1	69-01-05	42.82	43.19	1.220 .01	0.03 tr					
68-1	68-01-06	43.19	43.74	1.830 .22	0.85					
63-1	68-01-07	43.74	44.50	$2.44 \quad 0.16$	$0.72 \quad 0.14$					
68-1		44.49	44.87	1.220 .00	0.00					
$63-1$	012-372	44.86	45.60	2.440 .05	0.370 .11					
$68-1$	68-01-08	45.60	46.89	$1.52 \quad 0.14$	1.75					
$68-1$	D12-373	46.07	47.37	$4.27 \quad 0.10$	1.570 .15					
68-1	68-01-09	47.37	47.91	1.830 .07	3.21					
68-1		47.93	51.08	10.360 .00	0.00					
68-2		0.00	16.89	35.470 .00	0.00					
$83-2$		16.94	17.56	$2.14 \quad 0.15$	0.57					
68-2		17.56	30.75	43.280 .00	0.09					
68-3		0.00	2.50	$8.23 \quad 0.00$	0.08					
68-3		2.51	2.83	$1.07 \quad 0.01$	0.01					
68-3		2.83	8.23	17.670 .00	0.00					
68-3		8.22	8.63	1.280 .01	0.01					
$68-3$		8.61	11.40	$8.18 \quad 0.00$	0.00					
88-3		11.41	11.70	$0.97 \quad 0.01$	0.03					
68.3		11.70	18.99	23.930 .00	0.00					
68-3		18.99	19.48	$1.53 \quad 0.06$	0.25					
68-3		19.46	19.90	$1.52 \quad 0.40$	5.05					
68-3		19.92	20.39	$1.52 \quad 0.23$	0.36					
68-3		20.39	20.85	$1.53 \quad 0.12$	0.28					
68 -3		20.85	29.17	27.280 .00	0.00					
68-4		0.00	7.99	26.210 .00	0.10					
68-4	68-04-01	7.99	9.05	$3.57 \quad 0.01$	$0.10 \quad 0.04$					
68-4		9.07	14.48	17.770 .00	0.00					
68-4	68-04-02	14.49	15.33	2.74 tr	tr tr					
68-4		15.33	16.79	$4.88 \quad 0.00$	0.00					
68-1	68-04-03	16.81	17.47	2.13 tr	0.050 .03					
68-4	68-04-04	17.46	17.92	$1.53 \quad 0.20$	2.540 .80	0.18	2.10	2.06	0.12	2.86
$68-4$	68-04-05	17.93	18.38	$\begin{array}{lll}1.52 & 0.18\end{array}$	3.160 .82					
68-4	68-04-05	18.39	18.84	$1.52 \quad 0.22$	6.03. 0.39					
68-4	68-04-06	18.85	19.32	$1.53 \quad 0.20$	2.540 .27	0.14	2.40	1.71	0.09	2.27
$68-4$	68-04-07	19.32	19.78	$1.52 \quad 0.46$	4.920 .90					
68-4	68-04-08	19.78	20.33	$1.83 \quad 0.17$	1.780 .25	0.10	1.50		0.04	1.21
68-4	68-04-09	20.34	22.59	7.320 .01	0.100 .02					
68-4	68-04-10	22.57	23.13	$1.83 \quad 0.21$	$1.51 \quad 0.21$	0.16	1.36		0.11	1.21

68-1	68-04-11	23.13	24.35	3.960.	0.03	0.21	0.03				
68-4	68-04-12	24.34	25.63	4.26 tr	tr	0.04	0.01				
58.4	68-04-13	25.63	25.91	0.920.	0.07	1.13	0.02	0.04	1.16	0.02	1.20
$\mathrm{S}^{2} 1$	68-04-14	25.91	27.86	6.400.	0.01	0.08	0.01				
	68-04-15	27.86	28.35	1.520.	0.29	1.30	0.08	0.17	0.52	0.14	0.32
$68-4$	68-04-15	28.33	28.90	1.830.	0.12	0.23	0.08	0.17	0.52	0.14	0.32
68-4	68-04-16	28.89	29.72		0.01	0.02	0.01				
68-4		29.73	48.59	64.620.	0.00	0.00					
68-5		0.00	12.34	40.540.	0.00	0.00					
68-5	68-05-02	12.35	13.11	2.440.	0.01	0.04	0.01	0.02	0.22	0.01	0.04
68-5	68-05-02	13.10	13.75	2.130.	0.04	0.54	0.01	0.02	0.22	0.01	0.04
68-5	68-05-02	13.75	14.48	2.440.	0.03	0.16	0.01	0.02	0.22	0.01	0.04
68-5	68-05-02	14.49	14.69	0.610.	0.01	0.04	0.01	0.02	0.22	0.01	0.04
68-5		14.68	16.43	5.790.	0.00	0.00					
68-5	68-05-01	16.44	16.64	0.010.	0.03	0.11	tr	0.04	0.18	0.03	0.11
68-5	38-05-01	$16.6{ }^{\text {i }}$	17.19	1.830	0.05	0.43	$t r$	0.04	0.18	0.03	0.11
68-5	68-05-01	17.18	17.65	1.520.	0.10	0.13	tr	0.04	0.18	0.03	0.11
68-5	68-05-01	17.64	18.75	3.560	0.03	0.11				0.03	0.11
68-5		18.76	18.96	0.610.	0.00	0.00					
68-5		18.95	19.69	2.440	0.03	0.15					
63.5		19.69	24.51	15.854.	0.00	0.00					
68-5		24.52	24.99	1.520.	0.02	0.14					
68-5		24.98	25.73	2.440.	0.04	0.23					
68-5	68-05-03	25.73	27.22	4.88 tr	tr	0.65	0.01				
68-5		27.22	57.49	98.360.	0.00	0.00					
68-0.		0.00	6.13	20.120	0.00	0.00					
68-6		6.13	6.68	1.830.	0.02	0.11					
68-6		6.69	7.44	2.430.	0.00	0.00					
68-5		7.43	8.08	2.140.	0.04	0.44					
68-6		8.08	8.93	2.740.	0.00	0.00					
68-6		8.92	9.30	1.220.	0.07	0.57					
68-6		9.29	9.48	0.610.	0.00	0.00					
68-5		9.47	9.94	1.520	0.96	0.55					
68-6		9.94	10.39	1.530	0.04	0.84					
68-5		10.40	11.89	4.870.	0.09	0.00					
68-6		11.89	12.53	2.140	0.03	0.49					
68-6		12.54	20.54	26.210	0.00	0.00					
68-6	68-06-01	20.53	21.18	2.130	0.04	0.84	0.10	0.02	0.48	tr	0.40
68-6	68-06-01	21.17	21.55	1.220	0.03	0.05	0.10	0.02	0.48	tr	0.40
$65 \cdot 5$		21.55	22.10		0.00	0.00					
68-6	68-06-02	22.11	24.44	9.45							
68-6	68-06-03	24.43	24.90	1.530.	0.02	0.11	0.05	0.04	4.18	0.02	3.86
68-8	68-06-03	24.89	25.36	1.520	0.03	4.00	0.05	0.04	4.18	0.02	3.86
68-6	63-06-03	25.36	25.82	1.520	0.04	4.27	0.05	0.04	4.18	0.02	3.86
68-6	68-06-03	25.82	25.30	1.530	0.09	7.32	0.05	0.04	4.18	0.02	3.86
63-6	68-06-03	26.29	26.76	1.52	0.08	8.12	0.05	0.04	4.18	0.02	3.86
68-6	63-06-03	26.75	27.22	1.530.	0.05	3.21	0.05	0.04	4.18	0.32	3.86
63-6	68-06-04	27.22	28.59	4.570.	0.01	0.57	0.01				
68-0̂	68-06-05	28.61	29.17	1.830	0.01	0.74	0.05			0.01	0.42
68-6	68-06-05	29.17	29.72	1.830	0.01	0.82	0.11			0.01	0.42
68-6		29.12	38.47	28.650	0.00	0.00					
68-6		38.45	38.74	0.910	0.06	0.05					
68-6	68-06-06	38.73	39.56	2.75 tr	tr	0.01	tr				
68-6		39.57	42.28	8.830	0.00	0.00					
68-6		42.26	42.70	1.530	0.12	0.29					
68-6		42.72	43.50	2.740	0.62	0.07					
88-6		43.56	44.04	1.530.	0.22	0.74					
68-8		44.03	46.18	7.010	0.00	0.00					
68-6		46.16	46.63	1.520	0.10	0.56					
68-6		46.63	53.71	23.470	0.00	0.00					

68-10		0.00	4.72	15.540 .00	0.00					
68-10		4.74	5.39	$2.14 \quad 0.01$	0.01	-				
68-10		5.39	7.35	$6.40 \quad 0.00$	0.00					
6		7.34	8.35	3.350 .08	0.69	-				
ba, ${ }^{\text {d }}$		8.36	23.96	51.210 .00	0.00					
68-10	68-10-01	23.98	24.35	1.220 .03	0.70	0.28	0.06	2.63	0.04	2.80
68-10	68-10-01	24.34	25.09	2.440 .11	3.34	0.28			0.04	2.80
68-10		25.08	37.34	40.230 .00	0.00					
68-10	68-10-02	37.34	38.16	2.740 .15	0.48	0.09				
68-10		38.17	39.38	3.970 .06	0.80	0.10				
68-10	68-10-03	39.38	41.33	6.400 .01	0.39	0.13				
68-10		41.33	41.70	1.220 .04	0.64	0.16				
68-10		41.70	42.15	$1.52 \quad 0.04$	0.62	0.13				
68-10		42.17	42.64	1.520 .06	0.04	0.15				
68-10		42.63	46.18	11.590 .00	0.00					
68-11		0.00	2.50	8.230 .00	0.00					
68-11	012-409	2.51	3.44	3.050 .02	0.15	0.03				
68-11	68-11-0i	3.44	3.99	1.830 .11	1.22					
68-11	D12-410	4.00	4.54	1.330 .02	0.29	0.05				
68-11	68-11-02	4.55	5.30	2.430 .07	0.69					
68-11	012-411	5.29	6.58	4.270 .04	0.13	tr				
68-11	68-11-03	6.59	7.16	$1.33 \quad 2.15$	1.70					
68-11	68-11-93	7.15	7.89	2.440 .98	0.08					
68-11		7.89	23.87	52.420 .00	0.00					
68-1!	D12-412	23.8?	24.23	1.220 .01	0.05	ir				
68-11	68-11-04	24.24	24.81	$1.83 \quad 0.22$	1.33	0.54				
68-11	68-11-04	24.80	25.27	1.530 .05	0.29	0.15				
68-11	D12-413	25.26	26.55	4.26 tr	0.02	0.02				
68-11	D12-414	26.56	27.95	4.57 tr	0.08	0.04				
68-11	68-11-05	27.96	28.71	$2.44 \quad 0.08$	2.54	0.68				
68-11	68-11-05	28.70	29.08	$1.22 \quad 0.04$	0.84	0.27				
68-11	68-11-06	29.07	30.66	$5.18 \quad 0.05$	0.42	0.02				
68-11	D12-415	30.85	32.16	$4.88 \quad 0.02$	0.25	0.04				
68-11		32.14	38.25	20.120 .00	0.00					
66-12		0.00	0.91	3.050 .00	0.00					
68-12	63-12-01	0.93	2.32	4.570 .01	0.05	tr				
68-12		2.32	20.24	58.830 .00	0.00					
68-12	68-12-02	20.25	21.18	3.040 .03	0.27	0.25	0.12	1.01	0.14	0.86
63-12	68-12-02	21.17	21.92	$2.44 \quad 0.15$	2.46	0.25	0.12	1.01	0.14	0.86
680.2	68-12-02	21.92	22.28	$1.22 \quad 0.24$	0.82	0.25	0.12	1.01	0.18	1.86
68-12	68-12-03	22.29	23.68	4.57 tr	0.19	0.09				
68-12		23.68	25.63	6.410 .00	0.00					
63-12	68-12-04	25.64	26.55	3.04 tr	0.01	tr				
68-12		26.56	32.61	19.810 .00	0.03					
68-13		0.00	1.31	4.270 .00	0.00					
68-13		1.30	1.58	0.910 .04	0.16					
68-13		1.58	18.11	54.260 .00	0.00					
68-13	68-13-01	18.11	19.42	$4.26 \quad 0.04$	0.18	0.06				
68-13	68-13-02	19.41	19.87	$1.53 \quad 0.05$	1.48	0.07	0.04	1.28	0.03	1.08
68-13	68-13-04	19.38	20.82	3.05 tr	0.18	0.03				
68-13		20.81	22.59	5.790 .00	0.00					
68-13	68-13-05	22.57	23.50	3.04 tr	tr	$t r$				
68-13		23.50	24.14	2.140 .00	0.00					
68-13	68-13-03	24.15	25.27	3.660 .01	0.06	0.02				
68-13		25.25	39.11	45.410 .00	0.00					
68-14		0.00	6.28	20.570 .00	0.00					
68-14	012-416	6.27	7.19	3.050 .01	0.09	tr				
68-14		7.20	10.19	10.820 .00	0.00					
68-14	68-14-01	10.49	11.03	1.830 .02	0.21					
68-14		11.05	12.65	5.180 .00	0.00					

68-14	68-14-03	12.63	13.58	3.050.	0.04	0.21	tr				
68-14		13.56	16.06	3.230.	0.00	0.00					
68-14	68-14-02	16.07	17.28	3.960.	0.02	0.05	0.01				
$6{ }^{5}$	D12-417	17.27	18.11	2.750	0.05	0.22	0.06				
6.		18.11	47.27	95.700	0.00	0.00					
68-54e		22.85	33.71	35.660.	0.00	0.00					
68-54e	68-15-01	33.71	34.08	1.220.	0.01	0.08	0.03				
68-54e	68-15-02	34.09	34.56	1.530.	0.11	0.93	0.30				
68-54e	68-15-02	34.55	35.48	3.040.	0.07	0.83	0.26				
68-54e	68-15-03	35.48	36.12	3.050.	0.02	0.42	0.08				
68-54e	68-15-03	36.41	36.88	1.530.	0.10	0.11	0.03				
68-54e		36.87	60.75	18.330.	0.00	0.00					
68-16		0.00	12.07	39.620.	0.00	0.00					
68-16	68-16-01	12.07	12.25	0.550.	0.12	0.95					
68-16		12.24	28.22	52.490	0.00	0.00					
68-16	012-395	28.23	29.26	3.350.	0.01	0.11	0.01				
68-16	68-16-02	29.25	29.81	1.830	0.04	0.21					
68-16	68-16-03	29.82	30.21	1.220	0.38	1.40					
68-16	68-16-03	30.19	30.66	1.520	0.51	1.27					
68-18	D12-396	30.65	31.58	3.050.	0.01	0.01	0.04				
68-16	D12-397	31.58	32.49	3.050.	0.04	0.2!	0.05				
68-16	68-16-04	32.51	33.62	3.660.	0.32	1.75					
6id-16	D12-398	33.62	35.30	5.480	0.03	0.13	0.03				
68-16	68-16-05	35.23	35.57	0.920.	0.78	1.62					
68-16	68-16-05	35.57	36.12	2.740	0.52	0.95					
63-16	63-16-06	35.41	37.05	2.29	. 54	6.31					
68-16	68-16-07	37.11	37.61	1.670.	0.25	0.17					
68-16	63-16-07	37.62	38.56	3.050.	0.39	0.42					
68-16	68-16-08	38.55	39.47	3.050	0.17	1.09					
68-16	68-16-08	39.47	40.11	2.130	0.19	0.37					
68-16		40.12	43.01	9.450	0.00	0.00					
68-17		0.00	23.11	76.810	0.00	0.00					
68-17		23.41	23.68	0.910.	0.10	0.27					
68-17		23.68	38.07	47.250.	0.00	0.00					
68-17		38.03	38.56	1.520.	0.03	0.19					
68-17		38.55	40.02	4.880	0.00	0.00					
68-18		0.00	1.58	5.180.	0.00	0.80					
68-18		1.58	2.15	1.830	0.12	4.00					
68-18		2.14	2.59	1.523.	3.42	4.27					
688-10		2.60	12.53	32.620	0.00	0.00					
68-18	68-18-02	12.54	13.47	3.050.	0.02	1.69	0.23				
68-18	68-18-02	13.47	13.84	1.220	0.06	0.90	0.13				
68-18	68-18-02	13.84	14.17	1.060.	0.20	4.27	1.30				
68-18	68-18-01	14.16	15.61	4.730.	0.07	1.37	0.19				
68-18		15.61	15.97	1.220	0.14	1.00	0.23				
68-18		15.98	19.60	11.880.	0.00	0.80					
68-18		19.60	20.12	1.680	0.58	1.0 ô	0.05				
68-18		20.11	20.42	1.070.	0.00	0.00					
68-18	68-18-03	20.43	22.80	7.920	0.05	0.30	0.05				
68-18		22.85	24.14	4.270.	0.00	0.00					
69-18	68-18-01	24.15	24.72	1.830	0.12	1.58	0.21	0.10	1.12	0.08	0.65
68-18		24.71	28.04	10.970.	. 00	0.00					
68-19		0.00	5.12	16.760	0.00	0.00					
68-19	68-19-04	5.11	5.57	1.830.	0.20	0.85	0.36	0.13	1.79	0.12	1.82
68-19	68-19-04	5.67	6.13	1.530	0.19	1.80	0.36	0.13	1.79	0.12	1.82
68-19	68-19-04	6.13	6.58	1.520.	0.04	1.43	0.36	0.13	1.79	0.12	1.82
68-19	63-19-04	6.59	7.07	1.520	. 10	3.12	0.36	0.13	1.79	0.12	1.32
68-19		7.06	9.30	7.320	0.00	0.00					
68-19	68-19-03	9.29	10.21	3.050.	0.01	0.01					
68-19	68-19-07	10.22	11.43	3.960	0.05	0.03	0.06				

68-19		11.42	22.86	37.490 .00	0.00						
68-19	68-19-12	22.85	23.32	1.520 .04	0.31						
68-19	68-19-02	23.31	23.68	1.220 .25	0.95						
Cor 9	68-19-02	23.68	24.14	1.530 .18	0.70						
O. 9		24.15	27.95	12.490 .00	0.00						
68-19	68-19-06	27.96	28.99	3.36 ts	0.02	0.01					
68-19		28.98	30.21	3.980 .00	0.00						
68-19	68-19-01	30.19	30.66	1.520 .32	2.28	0.22					
68-19	68-19-01	30.65	31.12	1.530 .08	1.59	0.50					
68-19	68-19-01	31.11	31.19	1.220 .06	0.42	-					
68-19		31.49	32.16	2.130 .00	0.00						
68-19		32.14	32.61	1.520 .02	0.16						
68-19	68-19-05	32.60	33.53	3.050 .03	0.17	0.03					
68-19		33.53	36.70	10.370 .00	0.00						
68-20		0.00	2.23	7.320 .00	0.00						
68-20	63-20-01	2.23	2.97	2.430 .23	7.10	0.02	0.62	4.75	1.71	0.56	4.25
68-20	68-20-0!	2.97	3.54	1.831 .22	2.79	0.02	0.52	4.75		0.58	4.25
$68-20$		3.53	12.98	31.090 .00	0.00						
68.20	68-20-02	13.00	13.47	1.530 .04	0.08	0.03					
68-20	68-20-03	13.47	14.02	1.820 .42	7.10	1.14					
68-20	63-20-03	14.02	14.57	$1.83 \quad 0.14$	2.17	0.41					
68-20	68-20-04	14.58	15.70	3.660 .08	1.23	0.35					
68-20	68-20-05	15.70	16.43	$2.44 \quad 0.13$	2.12	0.24					
68-20		16.44	16.79	$1.22 \quad 0.31$	1.74	0.18					
68-20	68-20-06	16.81	18.20	4.570 .05	0.33	0.02					
88-20	68-20-87	18.21	19.78	5.180 .02	0.36	0.02					
68-20	68-20-08	19.78	20.24	1.530 .32	3.30	0.12					
68-20	68-20-08	20.25	21.09	2.740 .44	3.34	0.11					
68-20		21.08	21.55	1.520 .00	0.00						
68-20		21.55	23.23	5.190 .12	1.06	0.14					
68-20		23.22	24.72	$4.88 \quad 0.00$	0.00						
68.20		24.71	26.76	$6.70 \quad 0.16$	0.56	-					
83-20		26.75	27.77	3.350 .34	0.21	-					
68-20		27.17	29.54	5.190 .05	0.00						
63-21		0.08	2.99	9.750 .03	0.10						
68-21	012-370	2.97	3.90	3.05 tr	0.30	0.10					
68-21		3.90	10.88	22.860 .00	0.00						
68-21	D12-371	10.87	11.80	$3.05 \quad 0.01$	0.02	tr					
68.21		11.80	29.63	58.520 .00	0.00						
63-2:	63-21-01	29.63	30.08	$1.53 \quad 0.04$	0.55	0.98					
68-21	$68-21-01$	30.09	30.54	1.520 .05	$0.4!$						
68-21	68-21-01	30.55	31.03	1.520 .06	0.29						
68-21		31.02	33.80	9.150 .00	0.00						
74-1		0.00	1.13	$3.60 \quad 0.00$	0.00						
14-1		1.12	1.58	$1.52 \quad 1.70$	0.37						
14-1		1.58	2.04	1.530 .31	0.38						
74-1		2.05	2.50	$1.52 \quad 1.03$	1.02						
74-1		2.51	2.99	$1.52 \quad 0.91$	0.76						
14-1		2.97	3.44	1.530 .09	0.43						
74-1		3.44	4.39	3.050 .00	0.00						
7-1		4.37	4.82	$1.52 \quad 0.07$	0.11						
14-1		4.83	5.30	$1.52 \quad 0.12$	0.05						
74-1		5.29	5.76	1.530 .10	0.01						
74-1		5.76	6.22	1.520 .02	0.02						
74-1		6.22	6.68	1.530 .04	0.23						
74-1		6.69	7.16	1.520 .06	0.19						
74-1		7.15	7.62	$1.52 \quad 0.10$	0.03						
74-1		7.61	8.08	1.530 .33	1.21						
14-1		8.08	8.53	$1.52 \quad 0.57$	2.72						
74-1		8.54	9.02	$1.53 \quad 0.54$	0.06						

为

74-15	74-15-09	8.50	7.80	4.26 tr	0.01	tr						
74-15		7.80	8.44	2.140 .00	0.00							
74-15	74-15-10	8.45	9.94	4.870 .02	0.49	-						
7-5		9.94	15.79	19.210 .00	0.00							
Mas	74-15-11	15.79	17.47	5.480 .01	0.04	tr						
74-15	74-15-12	17.46	18.75	4.270 .01	0.27	tr						
74-15	74-15-13	18.76	19.69	3.05 tr	0.07	tr						
74-15	74-15-14	19.69	20.63	3.05 tr	tr	tr						
74-15		20.62	25.63	16.460 .00	0.00							
14-15	74-15-15	25.64	26.55	3.04 tr	0.01	tr						
74-15	74-15-06	26.56	27.68	3.660 .01	0.22	0.09						
74-15		27.68	48.13	67.060 .05	0.00							
74-15	74-15-05	48.11	19.59	4.870 .01	0.06	tr						
74-15	74-15-04	49.60	50.90	4.270 .05	1.10	0.15						
74-15	74-15-03	50.90	51.54	2.130 .03	0.71	0.03						
74-15		51.55	52.58	3.30000	0.00				;			
74-15	74-15-02	52.57	53.49	3.050 .07	2.10	0.31						
74-15	74-15-01	53.50	56.57	10.050 .05	0.42	0.09						
74-15		56.56	58.34	5.790 .00	0.00							
74-16		0.00	23.23	76.200 .00	0.00							
74-16	74-16-06	23.22	25.09	$6.10 \quad 0.02$	0.13				0.90	HiL		
74-16		25.08	27.31	3.310 .00	0.00							
74-15	74-16-05	27.31	28.93	5.490 .01	0.10				1.20	31.000		
74-16		28.98	52.36	76.810.00	0.00							
74-15	74-16-04	52.38	52.85	$1.52 \quad 0.09$	1.10				1.89	38.000		
14-16		52.85	55.53	8.840 .00	0.00							
74-16	74-16-03	55.54	56.57	3.350 .21	0.62	0.09			1.40	HIL		
74-16	74-16-02	56.56	57.49	3.050 .27	1.16	8.98	0.22	1.12	1.40	24.000	0.17	1.32
74-16	74-16-01	57.49	58.43	3.050 .27	1.16	6.98	0.22	1.12	1.40	3.000	0.18	0.84
14-16		58.42	60.68	7.310 .00	0.00							
74-16	74-16-07	60.65	61.30	2.140 .02	0.17				0.30	50.000		
74-16		61.30	62.97	5.480 .00	0.00							
74-17		0.00	2.04	6.710 .00	0.00							
74-17	74-17-01	2.05	3.72	$5.48 \quad 0.55$	4.17							
14-17	74-17-02	3.72	5.49	5.790 .55	4.17							
74-17	74-17-03	5.48	7.25	$5.79 \quad 0.55$	4.17							
14-17	74-17-04	7.25	8.84	5.190 .55	4.17							
74-17		8.32	26.40	57.910 .00	0.00							
74-17		26.47	29.12	10.670 .78	1.48							
74-17		29.72	32.37	8.710 .78	1.48							
74-17		32.38	38.83	21.160 .00	0.00							
74-18		0.00	1.13	3.660 .00	0.00							
74-18	74-18-01	1.12	1.77	2.130 .02	1.18	0.15	0.02	1.32			0.02	1.18
74-13	74-18-01	1.76	2.41	2.130 .02	1.74	0.15	0.02	1.32			0.02	1.18
74.18		2.41	5.67	10.670 .00	0.00							
74-18	74-18-02	5.67	6.37	2.320 .14	1.70	0.12	0.14	3.58			0.14	3.85
74-18	74-18-02	6.37	6.92	1.800 .31	1.12	0.12	0.14	3.58			0.14	3.85
74-18	74-18-02	6.92	7.71	2.590 .04	6.26	0.12	0.14	3.58			0.14	3.85
74-18		7.71	21.85	16.480 .00	0.00							
74-18	74-18-13	21.87	22.65	2.592 .65	15.24				0.46	219.000		16.36
74-18		22.66	35.97	13.590 .00	0.00							
74-18	74-18-04	35.95	37.25	4.270 .04	0.32	0.01						
74-18		37.25	39.65	7.920 .00	0.00							
74-19		0.00	5.67	18.590 .00	0.00							
74-19	14-19-02	5.67	6.22	$1.83 \quad 0.17$	1.35	0.53						
74-19		6.22	13.20	22.860 .00	0.00							
74-19	74-19-03	13.19	14.30	3.660 .01	0.06	0.01						
74-19		14.30	23.98	31.690 .00	0.00							
14-19	14-19-04	23.96	24.90	3.050 .01	0.22	0.08						
14-19		24.89	31.21	20.730 .00	0.00							

74-19	74-19-01	31.21	32.40	3.98	0.02	0.32	0.08						
74-19		32.41	39.93	24.69	0.00	0.00							
74-20		0.00	0.85	2.14	0.00	0.00							
740	74-20-08	0.84	2.65	5.98	0.02	0.20	0.03						
1903	74-20-07	2.66	3.35	2.25	tr	tr	tr						
74-20	74-20-06	3.34	4.27	3.05	tr	0.05	tr						
74-20	74-20-01	4.27	5.61	4.12	0.02	0.73	0.06						
14-20	34-20-05	5.62	3.07	4.73	0.01	1.52	0.02						
74-20	74-20-04	7.06	7.89	2.74	tr	1.21	tr						
14-20	74-20-03	7.89	8.84	3.05	0.03	0.52	0.05						
14-20	74-20-02	8.82	9.94	3.65	0.05	2.62	0.02						
14-20		9.94	10.12	0.61	0.37	10.08							
74-20		10.12	22.35	12.07	0.00	0.00							
14-20	74-20-10	22.94	23.59	2.13	0.02	0.08	0.02						
74-20	74-20-09	23.59	25.33	5.67	0.25	1.85	0.33	0.11	1.70			0.11	1.54
74-20		25.32	31.30	19.63	0.00	0.60							
74-21		0.00	1.96	26.06	0.00	0.00							
74-21	74-21-01	7.94	8.41	1.52	0.13	5.83	0.23	0.21	3.24			0.04	2.11
74-21	74-21-01	8.40	9.33	3.05	0.50	3.75	0.23	0.21	3.24			0.04	2.11
74-21		9.33	20.82	37.65	0.00	0.00							
74-21	74-21-02	20.81	22.10	4.25	0.17	2.34	0.83			4.46			
74-21	74-21-07	22.10	23.04	3.05	0.04	0.26	0.11						
74-21	74-21-06	23.03	24.14	3.65	0.05	0.51	0.11						
74-21		24.15	26.76	8.54	0.00	0.00							
14-21	74-21-05	26.75	28.13	4.57	0.31	1.78	0.14						
74-21		28.14	28.59	1.53	0.00	0.00							
74-21	14-21-04	28.61	29.90	4.27	0.07	0.18	0.11						
74-21		29.91	31.21	4.26	0.00	0.00							
74-21	74-21-03	31.21	31.64	1.37	0.29	1.77	0.43						
74-21		31.62	33.35	5.64	0.00	0.00							
81-1		0.00	1.49	4.88	0.00	0.00							
81-1		1.49	1.95	1.52	0.02	0.07	-			nil	ail		
81-1		1.95	2.13	0.61	0.08	0.00							
81-1		2.14	2.59	1.52	0.08	1.00	0.27			0.02	0.002		
81-1		2.60	3.35	2.44	0.07	1.33	0.42			0.03	0.002		
$81-1$		3.34	3.90	1.83	0.39	3.08	-			-	-		
$81-1$		3.90	5.67	5.79	0.00	0.00							
81-1		5.67	6.04	1.22	0.25	2.85	-			-	-		
81-1		6.04	6.40	1.22	1.84	12.59	0.16			0.16	0.902		
81-1		6.11	6.80	1.22	0.00	0.21	. 18			0.10	. 0		
81.1		6.78	7.44	2.13	0.00	1.86	-			-	-		
81-1		7.43	8.05	1.99	0.17	0.88	-			-	-		
81-1		8.03	8.44	1.37	1.11	0.44	-			-	-		
81-1		8.45	9.05	1.98	0.03	2.24	-			-	-		
81-1		9.06	9.30	0.76	3.65	4.78	-			0.39	ail		
$81-1$		9.29	9.57	0.91	0.00	0.00							
81-1		9.58	10.12	1.83	1.81	0.05	-			-	-		
81-1		10.12	10.58	1.53	1.32	0.03	-			-	-		
$81-1$		10.59	10.91	1.06	3.15	0.05	-			0.28	0.002		
81-1		10.91	11.09	0.61	19.38	0.07	.			1.32	0.005		
81-1		11.10	11.43	1.07	0.55	0.02	-			0.04	ail		
81-1		11.42	11.98	1.83	0.00	0.00							
81-2		0.00	6.31	20.73	0.00	0.00							
81-2		6.32	6.80	1.52	0.83	1.29	0.27			0.08	Dil		
81-2		6.78	7.25	1.52	1.20	2.30	0.39			0.13	0.002		
81-2		7.25	7.71	1.53	2.00	2.96	0.71			0.16	ail		
81-2		7.71	8.17	1.52	1.72	3.00	0.49			0.12	ail		
81-2		8.17	8.63	1.53	1.34	4.86	0.92			0.10	0.005		
81-2		8.64	10.21	5.18	0.00	0.00							
81-2		10.22	10.49	0.91	1.29	0.12				0.05	0.002		

81-2	10.49	10.64	0.46	0.00	0.00		
81-2	10.63	10.97	1.07	2.80	0.12	0.09	0.002
81-2	10.96	11.09	0.45	0.00	0.00		
1	11.10	11.52	1.38	1.99	1.28	0.07	0.002
8.4	11.52	11.89	1.21	0.45	2.00	0.02	0.002
81-2	11.89	12.44	1.83	0.00	0.00		
81-3	0.00	6.58	21.64	0.00	0.00		
$81-3$	6.59	7.07	1.52	0.56	0.00		
$81-3$	7.06	7.35	0.92	2.04	1.96		
$81-3$	7.34	1.53	0.61	0.00	0.00		
81.3	7.5%	7.96	1.37	2.98	0.54	0.21	0.002
81-3	7.94	8.53	1.98	0.00	0.00		
81-3	8.54	8.60	0.15	12.56	0.85		
81-3	8.59	9.57	3.20	0.00	0.00		
$81-3$	9.58	8.85	0.92	1.19	0.12	0.07	0.002
$81-3$	9.85	10.39	$1.8 \hat{i}$	0.00	0.00 !		
$81-3$	10.40	10.82	1.37	0.38	0.84		
81-3	10.32	11.25	1.37	0.19	0.11	0.43	0.002
81-3	11.24	12.16	3.05	0.00	0.00		
81.5	0.00	1.31	4.27	0.00	0.00		
$81-5$	1.30	1.68	1.22	0.04	1.05		
81.5	1.67	2.01	1.08	0.07	3.37		
81-5	2.00	2.50	1.68	0.08	2.29		
81.5	2.51	5.30	9.14	0.00	0.00		
81.5	5.29	5.61	1.07	4.99	0.29		
81.5	5.62	5.94	1.07	0.00	0.00		
81.5	5.94	6.64	2.28	0.02	2.29		
81-5	6.64	6.83	0.61	0.85	1.28		
$81-5$	6.82	1.35	1.68	0.00	0.00		
81-5	7.34	7.74	1.37	0.11	1.48		
81.5	7.75	8.17	1.31	0.00	0.00		
81-5	8.17	8.35	0.61	0.84	2.57		
81.5	8.36	10.03	5.49	0.00	0.00		
81-5	10.03	10.45	1.37	0.87	2.70		
81.5	10.45	10.82	1.22	0.08	0.00		
81-5	10.82	10.97	0.46	4.91	0.16		
81-5	10.98	11.03	0.30	0.00	0.00		
81.5	11.05	11.43	1.22	1.87	0.14		
81-5	11.42	11.89	1.52	0.07	0.03		
81-5	11.89	12.50	1.99	1.44	0.58		
$81-5$	12.49	13.47	3.20	0.00	0.00		
81.6	0.00	14.02	46.02	0.00	0.00		
81-6	14.02	14.5?	1.33	1.37	0.27	0.09	0.005
81-6	14.58	15.06	1.53	2.17	2.69	0.13	0.010
81-6	15.05	15.70	2.13	1.30	0.64	0.09	0.005
81-6	15.70	16.12	1.37	6.37	6.15	0.33	0.024
81-6	16.11	18.38	7.47	0.00	0.00		
81-7	0.00	11.16	36.58	0.00	0.00		
81-7	11.15	11.70	1.82	0.18	0.00		
$81-7$	11.70	12.34	2.14	0.68	0.44		
81-7	12.35	13.20	2.74	0.00	0.00		
81-7	13.19	13.75	1.83	2.93	1.00	0.22	0.002
81-7	13.75	14.36	1.98	0.75	0.54	0.06	0.002
$81-7$	14.35	19.05	15.39	0.00	0.00		
81-8	0.00	15.19	51.82	0.00	0.00		
$81-8$	15.79	16.73	3.04	3.57	7.68	0.27	0.002
81.8	16.72	17.28	1.83	1.89	2.99	-	-
81-8	17.27	17.65	1.22	1.23	1.63	-	-
B1-8	17.64	17.92	0.92	0.08	0.37	-	-
81-8	17.93	18.68	2.43	0.38	6.51	0.06	0.010

18.67	19.14	1.530	0.89	3.85	0.07	0.020
19.13	19.32	0.610	0.19	1.24	-	
19.32	20.91	5.180	0.00	0.00		
0.00	0.85	2.740	0.00	0.00		
0.84	1.31	1.530	0.97	0.12		
1.30	1.77	1.521	1.27	0.06		
1.78	2.04	0.921	1.32	0.76		
2.05	2.13	0.300	0.00	0.00		
2.14	2.59	1.52	0.51	0.69		
2.60	3.08	1.530	0.53	0.92		
3.07	3.20	0.460	0.00	0.00		
3.21	3.47	0.910	0.55	1.70		
3.48	3.90	1.370	0.11	0.29		
3.90	4.39	1.53	0.54	0.78		
4.37	4.82	1.520	0.51	0.19		
4.83	4.94	0.379	9.82	0.16	0.71	0.020
4.94	5.12	0.540	0.00	0.00		
5.11	5.24	0.484	4.69	1.25		
5.25	5.49	0.760	0.00	0.00		
5.48	6.13	2.140	0.06	0.02		
6.13	1.16	3.350	0.01	0.40		
7.15	8.08	3.050	0.09	0.00		
0.00	2.23	7.320	0.60	0.00		
2.23	2.65	1.370	0.69	0.04		
2.65	2.83	0.614	4.31	0.20		
2.83	3.08	0.760	0.36	2.30		
3.07	3.44	1.22	0.83	3.84	0.06	nil
3.44	3.90	1.520	0.35	3.37	0.04	0.002
3.90	4.39	1.530	0.11	1.36		
4.37	4.88	1.670	0.04	0.50		
4.88	8.88	10.520	0.00	0.00		
0.00	1.58	5.180	0.00	0.00		
1.58	2.01	1.373	3.28	1.71		
2.00	2.87	2.90	0.33	1.52		
2.88	3.17	0.910	0.84	5.26	0.12	0.002
3.16	3.38	0.716	6.15	1.95	0.56	0.002
3.39	3.14	0.150	0.00	0.00		
3.44	3.90	1.520	0.60	0.30		
3.90	7.35	11.280	0.00	0.00		
7.34	7.80	1.520	0.14	0.48		
7.80	7.96	0.460	0.10	0.00		
7.94	8.23	0.912	2.11	0.19	0.14	0.002
8.22	9.94	5.640	0.00	0.00		
0.00	4.88	16.000	0.00	0.00		
4.88	5.67	2.590	0.33	2.07	0.07	0.002
5.67	6.13	1.530	0.00	0.00		
6.13	6.19	1.220	0.01	0.06	0.01	0.002
6.50	9.39	9.440	0.00	0.00		
0.00	8.81	29.110	0.00	0.00		
8.87	9.02	0.46	4.10	0.06		
9.01	9.33	1.06	0.00	0.00		
9.33	9.66	1.070	0.06	0.04		
9.66	10.30	2.13	0.33	0.08		
10.31	11.00	2.291	1.83	0.01		
11.01	11.28	0.910	0.38	0.02		
11.28	11.52	0.710	0.38	0.01		
11.52	11.89	1.210	0.00	0.00		
0.00	2.04	6.710	0.00	0.00		
2.05	2.59	1.82	0.06	0.02		
2.60	3.20	1.990	0.00	0.00		

81-14	3.21	3.66	1.520 .18	$0.18 \quad 0.35$		
81-14	3.67	6.10	7.920 .0	$0.00 \quad 0.00$		
81-14	6.08	6.68	1.990 .0	$0.09 \quad 0.66$		
8	6.69	6.89	0.610 .0	$0.00 \quad 0.00$		
8)-14	6.88	7.53	2.130 .2	$0.24 \quad 0.42$		
81-15	0.00	1.22	3.960 .0	$0.00 \quad 0.00$		
81-15	1.21	1.95	2.440 .1	$0.41 \quad 0.36$		
81-15	1.95	2.41	1.520 .0	0.000 .00		
81-15	2.41	2.80	1.286 .5	$6.54 \quad 0.82$	0.38	0.005
81-15	2.80	3.90	3.600 .1	$0.14 \quad 0.18$		
81-15	3.90	9.02	16.770 .0	0.000 .00		
B1-16	0.00	2.32	7.620 .0	0.000 .00		
81-16	2.32	2.44	0.375 .5	$5.53 \quad 15.39$	0.51	0.002
$81-16$	2.44	3.38	3.140 .0	$0.00 \quad 0.00$		
81-16	3.39	3.72	1.060 .13	$0.73 \quad 2.40$	0.09	nil
81-15	3.72	4.33	1.980 .02	$0.02 \quad 0.13$		
$81-16$	4.32	4.45	0.460 .0	$0.00 \quad 0.00$		
81-17	0.00	4.12	15.540 .0	0.000 .00		
81-18	0.00	0.73	2.440 .0	$0.00 \quad 0.00$		
81-18	0.74	1.40	2.130 .0	0.034 .50	0.05	0.002
81-18	1.39	1.86	1.530 .0	0.031 .56		
81-18	1.86	2.59	2.430 .05	0.050 .92		
81-18	2.60	3.08	1.530 .14	0.141 .14		
81.18	3.07	5.34	9.450 .0	$0.00 \quad 0.00$		
8:-13	5.94	6.37	1.370 .0	0.010 .80		
81.18	6.36	7.62	4.110 .0	$0.00 \quad 0.80$		
81-18	7.61	7.99	1.220 .15	$0.15 \quad 3.94$	0.07	nil
81-13	7.99	8.44	1.530 .0	$0.00 \quad 0.00$		
81-19	0.00	0.52	1.68			
81-19	0.51	1.31	2.590 .4	0.473 .05	0.07	0.002
81-19	1.30	1.80	1.670 .05	0.051 .09		
81-19	1.81	2.19	1.220 .0	$0.33 \quad 0.16$		
81-19	2.18	2.50	1.070 .6	0.698 .12	0.14	nil
8!-19	2.51	2.87	1.222 .6	$2.62 \quad 0.95$	0.28	0.002
91-19	2.88	3.75	2.890 .5	$0.51 \quad 0.33$		
81-19	3.76	4.88	1.380.	$0.36 \quad 1.64$		
81-19	4.18	6.92	8.990 .0	$0.00 \quad 0.00$		
81-19	6.92	6.95	0.150 .8	$0.88 \quad 6.43$	0.14	9.002
81-20	0.00	1.40	4.57			
81-20	1.39	1.95	1.830.	0.080 .58		
81-20	1.95	2.38	1.370.	0.491 .47		
81-20	2.37	2.17	1.370.	0.462 .47		
81-20	2.79	3.20	1.380.	$0.12 \quad 3.69$		
81-20	3.21	3.63	1.370.	0.542 .36	0.09	ail
$81-20$	3.62	4.08	1.520.	$\begin{array}{lll}0.06 & 0.31\end{array}$		
81-20	4.09	4.45	1.220.	$0.50 \quad 3.74$		
81-20	4.46	4.69	0.760.	0.554 .02	0.08	0.002
81-20	4.69	5.39	2.290.	$0.00 \quad 0.00$		
81-21	0.00	6.13	20.12			
81-21	6.13	6.80	2.130	$0.88 \quad 0.06$		
81-21	6.78	7.16	1.220.	$0.00 \quad 0.00$		
81-21	7.15	7.25	0.302.	2.150 .20	0.13	ail
81-21	7.25	9.11	6.100.	$0.00 \quad 0.00$		
81-22	0.00	1.13	3.660	$0.00 \quad 0.00$		
81-22	1.12	1.49	1.220.	0.704 .17		
81-22	1.49	1.58	0.300	$0.00 \quad 0.00$		
81-22	1.58	1.95	1.220.	$0.17 \quad 1.62$		
81-22	1.95	3.02	3.510.	$0.05 \quad 0.68$		
81-22	3.02	7.07	13.250.	$0.00 \quad 0.00$		
81-23	0.00	7.86	25.760	$0.00 \quad 0.00$		

81-30	7.43	7.99	1.830 .51	2.29	0.06	nil
81-30	7.99	8.44	1.530 .75	0.53		
$81-20$	8.45	8.87	1.371 .33	1.00		
	8.87	9.30	1.370 .86	2.25		
81-30	9.29	9.66	$1.22 \quad 1.75$	1.65		
81-30	9.66	9.81	0.460 .00	0.00		
81-30	9.80	10.21	1.371 .14	0.54	0.06	0.002
81-30	10.22	10.39	0.611 .00	0.24	0.05	0.002
81-30	10.40	10.88	1.528 .76	0.11	0.29	0.002
81-30	10.87	12.07	3.960 .00	0.00		
81-31	0.00	3.75	12.340 .00	0.00		
81-31	3.76	4.15	1.220 .66	0.71		
81-31	4.13	5.24	3.660 .00	0.00		
81-31	5.25	5.67	1.370 .27	2.76		
81-31	5.67	6.92	4.120 .00	0.00		
81-31	6.92	7.62	2.280 .28	0.85		
81-31	7.61	7.89	0.920 .00	0.00		
81-31	7.89	8.05	0.461 .36	1.27		
81-31	8.03	8.29	0.910 .00	0.00		
81-31	8.31	8.75	1.371 .76	1.61	0.15	ail
81-31	8.73	9.20	$1.53 \quad 0.51$	0.23	0.05	nil
81-31	9.20	11.34	7.010 .00	0.00		
81-101	0.00	4.27	14.020 .00	0.00		
81-101	4.27	4.72	1.520 .13	0.69		
81-101	4.74	5.03	$0.92 \quad 0.38$	3.39		
81-101	5.02	5.21	0.610 .00	0.00		
81-101	5.20	5.85	2.131 .08	1.69		
81-101	5.85	6.22	1.220 .28	0.31		
81-101	6.22	8.08	6.100 .00	0.00		
81-101	8.08	8.63	1.830 .23	1.17	0.05	0.002
81-101	8.64	13.93	17.370 .00	0.00		
81-101	13.93	14.39	1.520 .04	0.17	0.02	0.002
81-101	14.40	15.06	$2.14 \quad 0.03$	0.06		
81-101	15.05	15.33	0.910 .05	0.06		
81-101	15.33	17.47	1.010 .00	0.00		
81-164	0.00	1.22	3.960 .00	0.00		
81-104	1.21	1.58	1.220 .52	1.64	0.05	ail
81-104	1.58	3.60	6.550 .00	0.00		
81-104	3.58	3.99	$1.38 \quad 0.07$	1.04	-	-
81-104	4.00	4.54	$1.83 \quad 0.02$	2.80	-	-
81-104	4.55	4.68	$0.30 \quad 0.13$	11.68	0.11	0.002
6x-80-1	0.00	8.93	29.280 .00	0.00		
新-80-1	8.92	9.39	1.530 .02	0.02		0.005
81-80-1	9.38	9.85	$1.52 \quad 0.07$	0.24		0.005
80-80-1	9.85	23.32	44.200 .00	0.03		
(${ }^{\text {H }}$-80-2	0.00	39.17	129.500 .00	0.00		
(14-80-2	39.47	39.65	0.610 .00	0.00		0.005
4n-80-2	39.66	41.24	5.180 .00	0.00		
8in-80-2	41.24	41.33	0.310 .00	0.00		0.005
64-80-2	41.33	46.36	16.460 .00	0.00		

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 1 of 3
0W-0736-RG1
Company: M.P.H. CONSULTING
Date: JUN-07-90
Project:
Attn:
MR. BILL BRERETON
Copy 1. TORONTO, ALSO FAX 416-365-1830
2. HOLD COPY

We hereby certify the following Geochemical Analysis of 73 WHOLE CORE
samples submitted JUN-04-90 by DOUG CROFT.

Sample Number	$\underset{\mathrm{ppb}}{\mathrm{Au}}$	Au check ppb	$\begin{gathered} \mathbf{A g}_{\mathrm{Ag}}^{\mathrm{ppm}} \end{gathered}$	$\mathrm{Cu}_{\%}$	$\begin{gathered} \mathrm{Pb} \\ \% \end{gathered}$	$\underset{\substack{\mathrm{Zn}}}{\substack{ \\\hline}}$
55-03-01	31	21	1.9	0.9		1.18
55-03-02	7		1.1	0.4		1.53
55-03-03	Nil		0.3	0.1		0.20
55-03-04	Ni		1.2	0.15		0.65
55-03-05	Ni 1		3.6	0.74		0.55
55-03-06	3		0.2	0.005		0.21
55-04-01	31	24	2.7	0.25	1.23	3.17
55-04-02	7		1.5	0.14	0.34	1.66
55-04-03	7		0.4	0.03	0.03	0.09
55-04-04	24		0.6	0.07	0.02	0.13
55-04-06	14		0.7	0.06	0.41	1.30
55-05-02	10	7	0.8	0.04		1.22
55-05-03	27		0.2	0.02		0.39
55-05-04	17		0.5	0.07		0.97
55-05-05	Nil		0.2	0.01		0.23
55-05-06	Nil		0.5	0.13		0.35
55-05-07	14		1.3	1.13		0.14
55-05-08	7		0.7	0.22		0.01
55-05-09	21		1.1	0.48		0.09
55-06-01	3		0.6	0.05		0.79
56-05-01	Ni		0.5	0.03		0.25
56-06-02	Ni 1		0.3	0.04		0.17
56-06-03	58	69	3.2	0.99		0.21
56-09-01	14		0.9	0.13		0.25
56-09-02	Ni 1		0.3	0.03		0.05
56-09-05	3		0.6	0.02		0.60
56-10-01	Nil		0.1	0.01		0.01
56-10-05	7		0.4	0.02		0.22
56-10-06	Ni		0.2	0.005		0.05
56-12-02	Ni 1		. 0.3	0.01		0.08

P.O. Box 10, Swastika, Ontario P0K 1T0

Established 1928

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: M.P.H. CONSULTING

Project:
Attn:

MR. BILL BRERETON

Date: JUN-07-90
Copy 1. TORONTO, ALSO FAX 416-365-1830
2. HOLD COPY

We hereby certify the following Geochemical Analysis of 73 WHOLE CORE samples submitted JUN-04-90 by DOUG CROFT.

Sample	Au	Au.check	Ag	Cu	Pb	Zn
Number	ppb	ppb	ppm	\%	\%	\%
56-12-03	34	27	1.4	0.05		0.51
56-12-04	7		0.1	0.01		0.05
56-12-05	Nil		0.1	0.005		0.01
56-12-06	Ni 1		0.1	0.005		0.01
56-12-07	7		0.1	0.01		0.06
56-12-08	NiI		0.2	0.03		0.11
56-12-09	Nil		0.1	0.02		0.07
56-12-10	7		0.9	0.15		0.11
56-12-11	Nil		0.6	0.10		0.73
56-13-01	Ni 1		1.2	0.10		0.85
56-13-02	Nil		0.5	0.01		0.32
56-13-03	$\mathrm{Ni}]$		0.4	0.02		0.34
56-13-04	14	10	1.2	0.06		0.19
56-14-02	Nil		0.4	0.06		0.07
56-14-03	Ni 1		0.9	0.16		0.32
56-14-04	Ni		0.4	0.09		0.06
56-14-05	Nil		0.3	0.05		0.21
56-14-06	3		0.3	0.06		0.30
56-14-07	Nil		0.6	0.11		0.03
56-15-01	7		0.4	0.06		0.70
56-16-01	Ni!		0.1	0.005		0.03
56-16-02	Nil		0.2	0.01		0.19
56-16-03	Nil		0.5	0.01		0.17
56-16-04	3		0.2	0.02		0.10
56-16-05	Ni 1		0.3	0.06		0.27
56-16-07	Nil		0.3	0.06		0.06
56-16-09	Ni		0.3	0.05		0.21
56-18-01	41	41	0.4	0.02		0.12
56-18-02	Ni 1		0.2	0.01		0.18
56-20-01	Nil		0.3	0.03		0.11

Swastika Laboratories
A Division of Assayers Corporation Lid.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 3 of 3
0W-0736-RG1
Company: M.P.H. CONSULTING
Project:
Atn: MR. BILL BRERETON

Date: JUN-07-90
Copy 1. TORONTO, ALSO FAX 416-365-1830
2. HOLD COPY

We hereby certify the following Geochemical Analysis of 73 WHOLE CORE samples submitted JUN-04-90 by DOUG CROFT.

Sample Number	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	Au check ppb	$\begin{array}{r} \text { Ag } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \% \end{gathered}$
56-21-01	10		0.3	0.02	0.14	1.17
56-21-02	7		0.4	0.30		0.22
56-27-01	Nil		0.5	0.06		0.44
56-27-02	Ni 1		0.2	0.02		0.18
56-27-03	Nil		0.2	0.005		0.02
56-28-01	48		1.2	0.08		0.30
56-31-01	245	226	0.5	0.09		0.71
56-31-02	27		1.5	0.22		1.29
56-31-03	3		- 0.1	0.005		0.04
56-35-01	3		2.0	0.51		0.47
56-35-02	Ni1		0.9	0.18		0.75
56-35-03	14		0.4	0.08		0.28
74-18-03	219	219	13.8	1.96		16.36

P.O. Box 10, Swastika, Ontario P0K 1T0

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate
0W-0775-RG1
Company: MPH CONSULTING LTD.

Project:
Atu:

C-1302
MR. BILL BRERETON

Date: JUN-14-90
Copy 1. 2406-120 ADELAIDE ST.W.TOR.ONT. MSH ITI
2. FAX TO 416-365-1830
3. HOLD COPY FOR MR. P. SOBIE

We hereby certify the following Geochemical Analysis of 27 CORE samples submitted JUN-11-90 by MR. P. SOBIE.

Sample	Au	Au check	Ag	Cu	Pb	Zn
Number	ppb	.ppb	ppm	\%	\%	\%
56-37-01	Nil		0.4	0.005		0.01
56-37-02	10		1.8	0.10		0.28
56-37-03	Nil		0.3	0.005		0.01
56-37-04	3		0.1	0.005		0.12
56-37-05	14		0.5	0.02		0.10
56-38-01	Nil		0.6	0.01	0.26	0.93
56-38-02	24		1.0	0.11	0.24	0.64
56-40-01	Ni 1		0.6	0.01	0.13	0.38
56-40-02	38	58	1.2	0.01	0.26	0.61
56-42-01	14		0.6	0.02		0.24
D12-152	10		1.6	0.35		0.76
D12-153	Nil		0.3	0.04		0.07
D12-154	Nil		0.3	0.02		0.20
D12-155	17		1.4	0.14		2.32
D12-156	267	243	5.4	0.10		2.53
D12-157	3		0.3	0.01	0.19	0.07
D12-158	Nil		1.6	0.12	0.37	2.05
D12-159	27		0.4	0.01		0.22
D12-160	21		2.8	0.12		4.69
D12-161	31	24	2.0	0.13	0.76	2.61
D12-162	10		1.3	0.11	0.34	1.04
D12-163	17		0.3	0.01		0.08
D12-164	21		0.7	0.03		0.18
D12-165	48		1.8	0.12		0.52
D12-166	58		2.4	0.06		0.84
D12-167	21		0.6	0.03		0.10
D12-168	27	17	1.0	0.03		0.17

P.O. Box 10, Swastika, Ontario P0K 1 TO

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

0T-0308-RG1

Company: MPH CONSULTING LTD.
Project: C-1302
Atn: BILL BRERETON

Date: JUN-18-90
Copy 1. 2406-120 ADELAIDE ST.W.TORONTO, ONT.
2. MSH IT1 FAX TO 416-365-1830 3. HOLD COPY AND ALSO FAX TIMMINS LAB

We hereby certify the following Geochemical Analysis of 27 CORE samples submitted JUN-13-90 by P. SOBIE.

P.O. Box 10, Swastika, Ontario P0K 1T0

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

0T-0320-RA1
Company: MPH CONSULTING LTD.
Project:
C-1302
Attn:
B. BRERETON

Date: JUN-22-90
Copy 1. TORONTO
2. FAX TO TORONTO AND SWASTIKA LABS 3. HOLD FOR P. SOBIE

We hereby certify the following Assay of 20 ROCK AND CORE samples
submitted JUN-18-90 by .

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244, FAX (705)642-3300

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

Company: MPH CONSULTING LTD.
Project:
Attn:

C-1302
B. BRERETON/P.SOBIE

Page 1 of 3
0T-0328-RA1
Date: JUN-26-90
Copy 1. 2406-120 ADELAIDE ST.W.TORONTO,M5H ITI

We hereby certify the following Assay of 62 CORE samples submitted JUN-21-90 by PAUL SOBIE.

Certified by

G. Lebel / Manager
P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories
A Division of Assayers Corporation Lid.
Assaying - Consulting - Representation

Assay Certificate

Company: MPH CONSULTING LTD.
Project:
Attn:
C-1302

We hereby certify the following Assay of 62 CORE samples submitted JUN-21-90 by PAUL SOBIE.

Cerrified by

P.O. Box 10, Swastika, Ontario P0K 1T0

Swastika Laboratories

A Division of Assayers Corporation Led.
Assaying - Consulting - Representation

Assay Certificate

Company: MPH CONSULTING LTD.
Project
C-1302
Atr: \quad B. BRERETON/P.SOBIE

Page 3 of 3

Date: JUN-26-90
Copy 1. 2406-120 ADELAIDE ST.W.TORONTO,MSH ITI

We hereby certify the following Assay of 62 CORE samples submitted JUN-21-90 by PAUL SOBIE.

Sample	Cu	Pb
Number	\%	Zn
D12-230	0.04	
D12-231	0.06	

P.O. Box 10, Swastika, Ontario P0K 1 T0

Swastika Laboratories

A Division of Assayers Corporation Led.
Assaying - Consulting - Representation
Page 1 of 2

Assay Certificate

0T-0335-RA1

Company: MPH CONSULTING LTD.
Project: C-1302
Aun: W. Brereton / P. Sobie

Date: AUG-02-90
Copy 1. 2406-120 ADELAIDE ST.W.,TORONTO, ONT
2. FAX TO 416-365-1830
3. FAX TO SWASTIKA LAB TDMMINS

We hereby certify the following Assay of 55 ROCK/CORE samples submitted JUN-25-90 by P. SOBIE.

Sample
Number
A90-11
A90-12
A90-13
A90-14
A90-15 ... 005
A $90-16$
A90-18
A90-19
A90-20
Au
g/tonne
---.-.----------

A90-21

G. Lebel / Manager
P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705)642-3300

Assay Certificate
Company: MPH CONSULTING LTD.
Project: C-1302
Atn: \quad W. Brereton / P. Sobie

Page 2 of 2
OT-0335-RA1
Date: AUG-02-90
Copy 1. 2406-120 ADELAIDE ST.W.,TORONTO, ONT
2. FAX TO $416-365-1830$
3. FAX TO SWASTIKA LAB TIMMINS

We hereby certify the following Assay of 55 ROCK/CORE samples submitted JUN-25-90 by P. SOBIE.

Sample Number	$\begin{array}{rr} \mathrm{Au} & \mathrm{Cu} \\ \mathrm{~g} / \text { tonne } & \% \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \boldsymbol{\%} \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \% \end{gathered}$
D12-253	0.02	0.19	0.63
D12-254	0.02	0.005	0.02
D12-255	0.005	0.01	0.13
D12-256	0.06	0.13	0.71
D12-257	0.005	0.005	0.19
D12-258	0.005	0.005	0.01
D12-259	0.01	0.02	0.04
D12-260	0.02	0.005	0.005
D12-261	0.03	0.005	0.07
D12-262	0.005	0.005	0.02
D12-263	0.02	0.005	0.04
D12-264	0.02	0.005	0.01
D12-265	0.05	0.01	0.08
D12-268	0.02	0.01	0.08
D12-269	0.01	0.005	0.05
D12-270	0.01	0.05	0.23
D12-271	0.01	0.01	0.02
D12-272	0.005	0.005	0.03
D12-273	0.01	0.01	0.06
D12-283	Nil 0.02	0.005	0.14
D12-284	0.02	0.20	1.47
D12-285	0.04	0.12	0.53
D12-286	0.01	0.005	0.05
D12-287	0.01	0.005	0.01
D12-288	0.02	0.005	0.02

Certified by

P.O. Box 10, Swastika, Ontario P0K 1 T0

Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

Company: MPH CONSULTING LTD.
Project:
Attn:

C-1302
W.Brereton / P. Sobie

Page 1 of 2
0T-0336-RA1
Date: JUL-03-90
Copy 1. TORONTO, ONT. MHS IT1

We hereby certify the following Assay of 36 CORE samples submitted JUN-26-90 by P. SOBIE.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1 T0

Telephone (705) 642-3244. FAX (705)642-3300

tablished 1928

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation
Page 2 of 2
0T-0336-RA1

Company: MPH CONSULTING LTD.
Date: JUL-03-90
Project:
C-1302

Copy 1. TORONTO, ONT. MHS IT1
Aun: \quad W.Brereton / P. Sobie
We hereby certify the following Assay of 36 CORE samples submitted JUN-26-90 by P. SOBIE.

Sample	Cu	Pb	Zn
Number	\%	\%	\%
74-20-03	0.03	0.05	0.52
74-20-04	0.005	0.005	1.24
74-20-05	0.01	0.02	1.52
74-20-06	0.005	0.005	0.05
74-20-07	0.005	0.005	0.005
74-20-08	0.02	0.03	0.20

Certified by \qquad

G. Lebel / Manager
P.O. Box 10, Swastika, Ontario P0K 1T0

tablished 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

Page 1 of 2
0T-0350-RA1

Company: MPH CONSULTING LTD.
Project:
Atto:
P.SOBIE/W.BRERETON

Date: JUL-10-90
Copy 1. MPH, TORONTO,FAX
2. COPY TO TMMMINS FOR P.SOBIE, FAX

We hereby certify the following Assay of 52 CORE samples submitted JUL-05-90 by .

P.O. Box 10, Swastika, Ontario P0K 1T0

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying-Consulting-Representation

Assay Certificate

Page 2 of 2
0T-0350-RA1
Company: MPH CONSULTING LTD.
Project:
Atn: P.SOBIE/W.BRERETON

Date: JUL-10-90
Copy 1. MPR,TORONTO,FAX
2. COPY TO TIMMINS FOR P.SOBIE, FAX

We hereby certify the following Assay of 52 CORE samples submitted JUL-05-90 by .

Sample	Cu	Pb	Zn
Number	\%	\%	\%
68-18-03	0.05	0.05	0.30
68-18-04	0.08	0.21	0.65
68-19-03	0.01	0.005	0.01
68-19-04	0.12	0.36	1.82
68-20-01	0.56	0.02	4.25
68-20-04	0.08	0.35	1.23
68-20-06	0.05	0.02	0.33
68-20-07	0.02	0.02	0.36
79-09-01	0.13	0.27	1.12
79-09-02	0.01	0.005	0.06
79-09-03	0.09	0.16	0.77
79-09-04	0.005	0.005	0.20
79-09-05	0.02	0.005	0.42
74-13-A	0.03	0.13	0.59
D12-309	0.05		0.01
D12-310	0.01		0.11
D12-311	0.02		0.13
D12-312	0.01		0.03
D12-313	0.01	0.02	0.02
D12-314	0.02	0.19	0.48
D12-315	0.12	0.20	0.51
D12-316	0.11	0.18	0.61

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

Company: M.P.H. CONSULTING LIMITED
Project:
Aun: P.SOBIE/W.BRERETON

Page 1 of 2
0T-0351-RA1
Date: JUL-09-90
Copy 1. MPH TORONTO FAX
2. COPY TO TIMMINS FOR P.SOBIE,FAX

We hereby certify the following Assay of 52 CORE samples submitted JUL-05-90 by .

P.O. Box 10, Swastika, Ontario P0K 1T0

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

Page 2 of 2
0T-0351-RA1

Company:
Project:
Attn:
M.P.H. CONSULTING LIMITED
P.SOBIE/W.BRERETON

Date: JUL-09-90
Copy 1. MPH TORONTO FAX
2. COPY TO TIMMINS FOR P.SOBIE,FAX

We hereby certify the following Assay of 52 CORE samples submitted JUL-05-90 by .

Sample	Cu	Pb	Zn
Number	\%	\%	\%
D12-350	0.29	0.11	1.03
D12-351	0.02	0.20	0.61
D12-352	0.01	0.11	0.17
D12-353	0.04	0.05	0.31
D12-354	0.04	0.005	0.01
D12-355	0.005	0.005	0.17
D12-356	0.005	0.04	0.03
D12-357	0.01	0.05	0.12
D12-358	0.01	0.15	0.46
D12-359	0.03	0.04	0.25
D12-360	0.005	0.005	0.01
D12-361	0.01	0.04	0.27
D12-362	0.06	0.01	0.41
D12-363	0.005		0.005
D12-364	0.01		0.06
D12-365	0.05	0.02	0.08
D12-366	0.17	0.05	0.05
D12-367	0.005	0.005	0.01
D12-368	0.005	0.005	0.01
SE1-01	0.05	0.02	0.38
SE1-02	0.08	0.01	0.28
SE1-03	0.01	0.01	0.27

Certified by

G. Lebel / Manager
P.O. Box 10, Swastika, Ontario P0K 1 T0

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying-Consulting - Representation

Assay Certificate

Page 1 of 3
0T-0379-RA1
Company: M.P.H. CONSULTING
Project:
Atn: W. BRERETON
We hereby certify the following Assay of 62 CORE samples submitted JUL-23-90 by .

P.O. Box 10, Swastika, Ontario P0K 1 T0

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying-Consulting - Representation

Assay Certificate

Page 2 of 3
0T-0379-RA1
Company: M.P.H. CONSULTING
Project:
Atn: W. BRERETON

Date: JUL-25-90
Copy 1. FAX 416-365-1830

We hereby certify the following Assay of 62 CORE samples submitted JUL-23-90 by .

Certified by

P.O. Box 10, Swastika, Ontario P0K 1 T0

Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories
 A Division of Assayers Corporation Lid.
 Assaying - Consulting - Representation

Assay Certificate

Page 3 of 3

Company: M.P.H. CONSULTING
Project:
Atn: W. BRERETON
We hereby certify the following Assay of 62 CORE samples submitted JUL-23-90 by .

Sample	Cu	Pb	Zn
Number	\%	\%	\%
JM-01-04	0.01	0.22	0.66
J IM-01-05	0.04	0.20	1.47

P.O. Box 10, Swastika, Ontario P0K 1TO

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

Company: MPH CONSULTING
Project: C-1302
Atta: BILL BRERETON

0W-1070-PA1
Date: JUL-31-90
Copy 1. TORONTO, ONTARIO MSH ITI
2. FAX TO 416-365-1830

We hereby certify the following Assay of 11 PULP samples submitted JUL-27-90 by B. BRERETON.

Sample	Ag	Cd
Number	02/ton	\%
74-13-07	0.05	0.019
74-13-10	0.06	0.013
56-65-01	0.04	0.015
74-13-03	0.24	0.041
74-13-04	0.22	0.005
74-21-02	0.13	0.009
D12-211	0.03	0.008
D12-238	0.06	0.010
68-20-01	0.05	0.014
68-04-04	0.06	0.011
68-04-06	0.05	0.008

Swastika Laboratories

A Division of Assayers Corporation Lid.
Assaying - Consulting - Representation

Assay Certificate

Company: MPH CONSULTING
Project:
Attn:

Page 1 of 2
0T-0401-RA1

Datc: AUG-03-90
Copy 1. TORONTO,ONTARIO MSH ITI

We hereby certify the following Assay of 60 CORE samples submitted JUL-31-90 by .

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

Page 2 of 2
0T-0401-RA1

Company:
Project:
Attn:

MPH CONSULTING
C-1302
P.SOBIE/W.BRERETON

Dato: AUG-03-90
Copy 1. TORONTO,ONTARIO MSH ITI

We hereby certify the following Assay of 60 CORE samples submitted JUL-31-90 by .

Sample	Au Au check	Cu	Pb	Zn	
Number	g/tonne g/tonne	\%	\%	\%	
57-68-15		0.01	0.02	0.12	
57-68-16		0.01	0.01	0.01	
57-69-04		0.01	0.005	0.13	
57-69-05		0.01	0.01	0.04	
57-69-06	0.04	0.02	0.01	0.06	
57-69-07	0.04	0.07	0.09	0.24	
57-69-08		0.01	0.005	0.04	
57-71-02	Nil				
57-71-03		0.01	0.02	0.90	
57-71-04		0.01	0.005	0.17	
61-82-04		0.02	0.005	0.005	
61-82-05		0.02	0.04	0.20	
61-82-06		0.04	0.02	0.10	
61-82-07		0.04	0.005	0.06	
61-83-05		0.10	0.57	1.32	
61-83-06		0.50	0.29	2.06	
61-83-07		0.10	0.09	0.47	
61-83-08		0.58	0.03	0.33	
61-83-09		0.45	0.47	1.48	
61-83-11		0.07	0.12	0.44	
61-88.09		0.07	0.09	0.19	
61-88-10		0.07	0.38	1.17	
61-88-11		0.05	0.12	0.18	
61-89-05A		0.02	0.02	0.05	
61-89-08		0.03	0.06	0.49	
66-61e-01	$0.16 \quad 0.16$				
66-111-01		0.01	0.01	0.08	
66-111-02		0.03	0.05	0.36	
66-111-03		0.005	0.02	0.13	
66-111-04		0.005	0.02	0.06	

P.O. Box 10, Swastika, Ontario POK 1 T0

Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation
Page 1 of 2

Assay Certificate

Company: MPH CONSULTING
Project
Atn: P.SOBIE/W.BRERETON

0T-0402-RA1
Date: AUG-02-90
Copy 1. TORONTO, ONTARIO MSH ITI

We hereby certify the following Assay of 56 CORE samples submitted JUL-31-90 by .

Sample	Au Au check $\quad \mathrm{Cu}$	Pb	Zn	
Number	g/tonne g/tonne \%	\%	\%	
66-111-05	0.09	0.16	1.12	
66-112-02	0.02	0.005	0.09	
68-01-05	0.01	0.005	0.03	
68-01-07	0.16	0.14	0.72	
68-01-10	0.005	0.01	0.09	
68-04-16	0.01	0.01	0.02	
68-05-03	0.005	0.01	0.05	
68-06-06	0.005	0.005	0.01	
68-10-02	0.15	0.09	0.48	
68-10-03	0.01	0.13	0.39	
68-12-03	0.005	0.09	0.19	
68-12-04	0.005	0.005	0.01	
68-13-04	0.005	0.03	0.18	
68-13-05	0.005	0.005	0.005	
68-14-02	0.02	0.01	0.05	
68-14-03	0.04	0.005	0.21	
68-19-05	0.03	0.03	0.17	
68-19-06	0.005	0.01	0.02	
68-19-07	0.05	0.03	0.06	
74-11-12	0.005	0.01	0.16	
74-11-13	0.01	0.08	0.20	
74-13-11	0.07	0.005	0.29	
74-13-12	0.10	0.01	0.15	
74-18-01	0.02	0.15	1.18	
74-18-02	0.14	0.12	3.85	
74-18-04	0.04	0.01	0.32	
74-19-04	0.01	0.08	0.22	
74-20-09	0.11	0.33	1.54	
74-20-10	0.02	0.02	0.08	
74-21-04	0.07	0.11	0.49	

P.O. Box 10, Swastika, Ontario P0K 1T0

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation
Page 2 of 2

Assay Certificate

0T-0402-RA1

Company: MPH CONSULTING
Project
Atn:

C-1302
P.SOBIE/W.BRERETON

Date: AUG-02-90
Copy 1. TORONTO, ONTARIO MSH ITI

We hereby certify the following Assay of 56 CORE samples submitted JUL-31-90 by .

Sample	Au	Au check	Cu	Pb	Zn	
Number	g/tonne	g/tonne	\%	\%	\%	\%
74-21-05			0.31	0.14	1.78	
74-21-06			0.05	0.11	0.51	
74-21-07			0.04	0.11	0.26	
D-12-266	0.03	0.03				
D-12-267	0.03					
D-12-274			0.02	0.01	0.06	
D-12-275			0.02	0.08	0.26	
D-12-276			0.03	0.06	0.34	
D-12-277			0.02	0.05	0.21	
D-12-289	0.01					
D-12-290	0.02					
D-12-291	Nil					
D-12-292	0.01	0.01				
D-12-304	0.01		0.02	0.01	0.08	
D-12-305	0.02		0.01	0.01	0.08	
D-12-306	Nil		0.01	0.03	0.12	
D-12-307	0.01		0.02	0.17	0.53	
D-12-308			0.02	0.005	0.02	
D-12-395			0.01	0.01	0.11	
D-12-396			0.01	0.01	0.04	
D-12-401			0.01	0.02	0.12	
SE-02-02			0.01	0.03	0.07	
SE-02-03			0.005	0.01	0.03	
SE-02-04			0.06	0.01	0.20	
SE-02-05			0.005	0.03	0.10	
SE-02-06			0.005	0.005	0.005	

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

OW-1195-RA1

$\begin{array}{ll}\text { Company: } & \text { MPH CONSULTING LTD } \\ \text { Project: } & \text { C-1302 }\end{array}$
Atu: W. BRERETON

We hereby certify the following Assay of 31 ROCK samples submitted AUG-17-90 by P. SOBIE.

Swastika Laboratories
 A Division of Assayers Corporation Lid.
 Assaying-Consulting - Representation

Assay Certificate

Company: MPH CONSULTING LTD.
Project:
Attn: MR. W. BRERETON

Date: AUG-24-90
Copy 1. 2406-120 ADELAIDE ST.W.TORONTO,ONT
2. MSH ITI FAX TO 416-365-1830

We hereby certify the following Assay of 1 ROCK samples submitted AUG-21-90 by MR. BRERETON.

Sample	Au	Ag	Cd	Cu	Pb	Zn
Number	g/tonne	0z/ton	\%	$\%$		\%
D-90-01	0.11	0.38	0.012		. 05	. 56

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying-Consulting - Representation

Assay Certificate

Company: M.P.H. CONSULTING LTD.
Project:
Atn: W. BRERETON

Date: AUG-31-90
Copy 1. 2406-120 ADELAIDE ST. W. TORONTO
2. fax to toronto

We hereby certify the following Assay of 1 ROCK samples submitted AUG-29-90 by P. SOBIE.

Sample	Au	Ag	Cd	Co	Cu	Pb	Zn
Number	g/tonne	oz/ton	\%	\%	\%	\%	\%
E-90-01	0.04	0.35	0.001	0.005	3.60	0.02	. 46

P.O. Box 10, Swastika, Ontario P0K 1 T0

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

Company: MPH CONSULTING LTD
Project:
Attn:

Date: OCT-02-90
Copy 1. 2406-120 ADELAIDE ST.W.TORONTO, ONT
2. MSH IT1 FAX TO 416-365-1830

We hereby certify the following Assay of 1 ROCK samples submitted SEP-28-90 by P. SOBIE.

\qquad

CERTIFICATE OF ANALYSIS

SAMPLES) FROM	MPH Consulting Ltd.
	120 Adelaide St. West
	Suite 2406
	Toronto, Ontario
	MS H 1 Tl

REPORT NO.
W4 965

SAMPLES) OF CORE
INVOICE : 4990
P.O.: C-1302

William Brereton
Shunsby

CO 2
Percent

SE-1-FW	5.78
SE-2-FW	8.60
SE-3-FW	8.05
SE-4-FW	8.16
$56-27-F W$	0.55
$56-37-F W$	0.97
$56-44-F W$	7.05
$56-49-F W$	7.91
$56-52-F W$	5.82
$56-69-F W$	0.51
$56-61-V B$	3.67
$56-62-V B$	0.79
$56-64-V B$	0.77
$56-69-V B$	6.22
$57-70-V B$	7.03
$60-76-F W$	0.48
$60-79-F W$	0.23
$61-91-F W$	9.30
$61-91-V B$	9.08
$65-70 E-F W A$	8.02

```
COPIES TO: Toronto
INVOICE TO: Toronto
```

Nov 29/90

For enquiries on this report, please contact Customer Service Department.
 Samples, Pulps and Rejects discarded two months from the date of this report.

2031 RIVERSIDE DRIVE, UNIT \#2
TIMMINS, ONTARIO
PAN 7C3
(705) 268-4441 FAX: (705) 268-4420

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM MPH Consulting Ltd. 120 Adelaide St. West Suite 2406 Toronto, Ontario MS 1 Tl

REPORT NO.
W4 965

INVOICE *: 4990
SAMPLE(S) OEO
PRO.: C-1302

William Brereton Shunsby

CO
Percent

$65-70 \mathrm{E}-\mathrm{FWB}$	1.46
$65-72 \mathrm{E}-\mathrm{FW}$	6.77
$65-94-\mathrm{FW}$	5.93
$65-101-F W$	7.36
$66-108-F W$	5.27
$66-110-F W$	5.09
$66-108-V B$	4.43
$68-6-\mathrm{VB}$	4.58
$68-13-\mathrm{VB}$	5.45
$68-16-\mathrm{VB}$	7.80
$68-20-\mathrm{VB}$	
$68-6-F W$	1.68
$68-13-F W$	2.53
$68-16-F W$	7.77
$68-17-F W$	3.36
$68-20-F W$	6.99
$64-82 \mathrm{e}-\mathrm{FW}$	0.95

COPIES TO: Toronto
INVOICE TO: Toronto
Nov 29/90
SIGNED
For enquiries on this report, please contact Customer Service Department.
 Samples, Pulps and Rejects discarded two months from the date of this report.

Laboratories iofuf
2031 riverside drive, unit 2. timins, ontario pan 703
TELEFYONE \#: 705) 26E-4441
FAR : (705) 268-4420
I.C.A.F. WHOLE ROCK ANALYSISHOFHP

Lithiua hetaBorate Fusion

phiconsultime

To fdelaide 5t. W.
Toronts. Intario
T.S.L. REPORT NO. : W4965
T.S.L. File No. : M8486
T.S.L. Invesce No. : 4990

TSL LAGGRATOFIES WUFHF
2031 riversion orive, unit 2, TIMMINS, omiario pan 7 C3 TELEPHONE *: (705) 268-444! FAK \#: (705) 268-\$420

1.G.A.P. HHOLE ROCK ANALYSISWOFHF

Litniue Aetasorate Fusion
T.s.L. REPORT MO. : W49as
i.S.L. File No. : Mg4ab
T.S.i. Invoice Ne. : 4990
heperence - \&.0. C-1302 - Froject Shunsby

ISL Labogatories hofhf
2031 RIVERSIDE brive, unit 2: timilns, ontario pan 76
TEEEPHINE *: $17050260-4441$
FAI 4: (7005) 20 - 4420
I.C.A.F. ANMLYSIGUOFHE

Minor Eleaents by Fusion
T.S.L. REPGRT Hi. : W4965
T.j.L. File No. : Madgs
T.E.6. lnvoice ho. : 4990

ALL RESULTA FAR

signed

ZOSI RJVERSIUE GRINE, unIT 2, immins, owtario pan ics
TELEPHORE H: 1705 j 268-4441
Fal :
(705) $268-4420$
i.C.A.F. HALYS!SWOFHP

Minop Elements by Fusion
MPh IUNSULTING
T.S.L. REFORT No. : W4905
T.S.L. File No. : Me486
T.S.L, Invoice ho. : 4990

ALL RESULTS PPY

I
I
I
I I I I I I

20:I riversige dilve, linit 2, timims, ontario pan 7C3
TELEPHONE \#: 7005i 268-444!
FAX $3: \quad$ (705) 268-4420

S.C.A.P. WHOLE ROCKWOFHP
dithium hetagjoate fusion
h congiliting
o Adelaide Et. W. Toronte, Dntario
Whe seference - P.0. i-13iz - broject shunsoy

T.S.L. REFOAT No. : 44965
i.s.l. File No. : Matas
T.5.6. Invoice ho. : 4730
hill RESULIS fFi
sine: Ahiene blucilasuen 1 :i
for Evely, White

 TELEPHONE \#: (705) 268-4441
FAR \ddagger : 1705) 288-4420
S.E.A.F. WHOLE ROCKWOFHP
lJIHIUA METAGQRATE FUSIOM

T.S.L. REPDRT NO. : H496E
T.S.L. File No. : Na48o
T.S.L. Invoice No. : 4990

ALL RESULTS PPK

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying-Consulting - Representation

© $\operatorname{Crrtiftratr}$ of Analygia

Certificate No \qquad 76773

Date_Nov 8, 1989 Rock Samples

Submitted by_MPH Consulting Ltd., Toronto, Ontario.

> Job \#1251 ATT'N: P. Sobie

SAMPLE NO.	GOLD	SILVER	COPRER	LEAD	LINC
	OZ/ton	Oz/ton	$\%$	$\%$	$\%$
KRS-01	0.004	0.07	0.04	0.03	0.07
02	0.002	0.07	0.04	0.005	0.08
03	Nil	0.01	0.005	0.005	None
04	$0.006 / 0.004$	0.02	0.05	None	0.25
05	Nil	0.59	6.04	0.04	0.28
06	Nil	0.54	3.60	0.01	1.56
07	0.002	0.01	0.02	None	0.01
08	0.002	0.12	2.88	0.005	0.02
09	Nil	0.01	0.02	0.005	0.02
10	Nil	Nil	0.01	None	0.02
11	Nil	0.01	0.79	0.08	2.05
12	0.002	0.04	0.05	1.10	2.87
13	Nil	0.51	3.63	0.24	2.13
14	Nil/0.002	0.43	2.35	2.48	15.38
15	0.002	Trace	0.02	0.02	0.05
16	Nil	0.04	0.04	0.02	0.92
17	Nil	0.02	0.01	0.26	1.51
18	Nil	Trace	0.02	None	0.02
19	Nil	0.01	0.005	0.09	0.25

ASSAYERS ONTARIO LABORATORIES

A DIVISION OF ASSAYERS CORPORATION LTD.
33 CHAUNCEY AVENUE, TORONTO, ONTARIO M8Z 222 • TELEPHONE (416) 239-3527
FAX (416) 239-4012

Certificate of Analysis

Certificate No. \qquad MPH-36 Date: November 21, 1989

Received \qquad 8 \qquad Samples of Rock \qquad
Submitted by MPH Consulting Limited
Att'n: Mr. Paul Scobie

PROJECT: C 1251

Samp	Le No.	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
BSH	89-1	65	9.3	7.04\%	366	4.15\%
	89-2	- 105	5.3	5.93	112	1457
BSH	89-3		5.8	. 86%	204%	6.55%
KRS	20	751	1.3	609	2001	4172
	21	39	.3	102	143	202
	22	42	1.8	277	5782	8049
	23	55	. 3	117	582	1443
KRS	24	53	.6	110	1120	2185

APPENDIX 3-1989 MPH COMPILATION REPORT SECTION 10.0-GEOPHYSICAL RESULTS AND INTERPRETATION

10.0 GEOPHYSICAL RESULTS AND INTERPRETATION

10.1 General Comments and Exploration Models

The interpretation has been divided into several sections in order to present a logical progression in the interpretation of the reuslts of the various surveys and the incorporation of the known geological information.

First, the generalized interpretation of structural events crosscutting and conformable to the underlying lithologies on the property is presented with reference to the geophysical surveys and geological results.

The magnetic results are then interpreted and discussed with reference to HLEM conductors when the trend of individual magnetic units is in question.

The various HLEM conductors are subsequently presented in tabular form with their respective trend, strike extent, quality rating and structural and geophysical correlations. The various MaxMin conductors are described individually and rated as to quality.

Throughout, an attempt is made to draw overall conclusions from the results of both surveys with respect to the geophysical signatures of known mineralized occurrences on the property and in terms of the geological information currently available from previous exploration.

This information is integrated with, and utilized to identify possible causal sources of, the various geophysical responses currently untested.

Five distinct types of mineralization have been identified in the area and all are associated with the brecciated chert horizon, argillaceous tuffs or argillites (see Section 7.1). The exploration models for these targets are as follows:

1. Bedded massive sulphides (cp., sph. $+c p .$, sph. $+p y$. or $p y .+$ po.) with some crosscutting sulphide veinlets.

Moderate to high conductance with a higher percentage sphalerite content reducing the overall conductance. Pyrrhotite concentrations will give discrete magnetic signatures.
2. Disseminated and fracture fillings in chert breccia (cp., py., sph.).

Weak to moderate conductance, the higher conductances associated with chalcopyrite and pyrite.
3. Pyrite andlor pyrrhotite chert breccia in argillite near faults and shear zones (5-50\% sulphides).

Moderate to high conductance with pyrrhotite concentrations having discrete magnetic signatures.
4. Quartz-carbonate veinlets carrying minor galena and sphalerite.

Weak to moderate (?) conductance.
5. Sulphide breccia consisting of chalcopyrite \pm sphalerite fragments in an argillite matrix.

Moderate to strong conductance.

10.2 Structure: Faults

Inspection of government regional airborne EM and magnetic data and the datasets from the current ground geophysical surveys resulted in the interpretation of twenty (20) faults, labelled f_{1} to f_{20}. Two of these faults, f_{3} and f_{7}, have been further subdivided for ease of reference and interpretation. Elements of the four fault systems described in Section 6.2 .3 can be identified on the property. In addition, a regional east-west fault, f_{2} is inferred to cross the grid at its southern extent, an interpretation supported by airbome magnetic results. A single northeast trending fault, f_{20}, is more tentatively interpreted and is in the northern quarter of the grid, being subparallel to lineament/fault (?) L1 (see section 10.3). All those faults/lineaments which have been interpreted and are supported by the geophysical and geological datasets are identified on all geophysical maps.

The parameters of the twenty faults and their relationship with the interpreted geophysical results are presented in Table 4.

The structural interpretation confirms, and is consistent with, the structural regime described in Section 6.2.3. The N60E to N80E family of faults appears to be regional in nature with lateral displacement, mainly left-handed, noted about the plane of some faults. The N to N 20 W and N to N 30 E trending faults, more difficult to interpret confidently as they are generally oblique or conformable to the lithologic trend, are apparently more local in nature and, in most cases, their location and extent have been only tentatively identified.

The structural regime on the property is too complex to be more fully interpreted with the current data available. However, both horizontal and vertical displacement of lithologic units has been noted in the field, locally up to 250 m , creating possible horst and graben effects of varying scales in some areas.

A number of the faults/lineaments warrant further discussion as follows:

1. N-N20W set

Faults f_{13} and f_{18} are tentatively interpreted from the magnetic response pattern and are supported in part by the EM dataset. Both are inferred to have north orientations within the lithologies underlying magnetic subdomain

TAGLE A - IMTERPREYED EAULTE AND GEOPHYEICAL CORRELATIOM AMD SUPPORT

Fault	Rating (1)	Fault set (2)	Extent (3)	HLEM (1)					Comment ${ }^{\text {a }}$
				$\begin{gathered} \text { Correlating } \\ \text { (a) } \end{gathered}$	$\begin{gathered} \text { Crosscutting } \\ (\mathrm{b}) \end{gathered}$	Bounded (c)	Horizontally Displaced (d)	lace of	
11	$?$	3	R		23.3	$\begin{gathered} 24,3,37 \\ 4 a, 32,333 \end{gathered}$.		
52	D	6	R			402			
13	D	3	R			3, 4b, 5a	$\begin{array}{ll} 1 \mathrm{a}, & 2 b_{0} \\ 2 a_{n} & 2{ }_{c} \end{array}$	$\begin{aligned} & \mathbf{L} \\ & \mathbf{L} \end{aligned}$	Abrupt change in lithologies acros: fault
j3a	3	3	L			5. 5a			
44	D	3	R			5. 6, 7, 117	$\begin{aligned} & 1 b_{1}-1 c \\ & 2 b_{1}-2 c \end{aligned}$	$\begin{aligned} & \mathbf{L} \\ & \mathbf{L} \end{aligned}$	
15	P	3	6		67, 117	7, 117			
16	P	3	R		298	$\begin{aligned} & 6 ; 10 \\ & 127 ; 297 \end{aligned}$	$\begin{aligned} & 1 c_{p} \\ & 2 c_{;} \\ & 2 d \end{aligned}$	\mathbf{L}	
17	D	3	R					L	Morizontal displacementa of between 150 and 250 m reported locelly at Main lone General lithologic trend changes acroas this fault from minw to the south to N-NNE to the north
17a	7	3	L			10			
f7b	3	3	L		178		${ }^{172} 18 \mathrm{a}, 10 \mathrm{~b}$	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~L} 2 \end{aligned}$	
4	D	3	L		257	$\begin{gathered} 13 \mathrm{a}, ~ 23 \mathrm{~b}, ~ 23 \mathrm{c}, \\ 14 \mathrm{a}, \\ 14 \mathrm{~b}, 14 \mathrm{c}, \\ 16 \end{gathered}$			shear in Cherts mapped at baseline
19	$?$	3	1		10 bl		10a, 19b	7	
810	P	3	L				$\begin{aligned} & 10 \mathrm{~b}, 1 \mathrm{c} \\ & 10 \mathrm{c}, ~ 18 \mathrm{c} \end{aligned}$	$\begin{aligned} & R \\ & R \end{aligned}$	
111	$?$	3	R	$27 ?$	273	13c, 14b, 14c, 14dz, 18c, 19e, 20, 21	1007. 18d?	L	
112	7	1 or 27	L.		207	3	- -		
113	7	1	L/R?	1 d ?	277				
114	P	2	L			107. 12, 13at			Bounde southern extent of Main zonez
115	P	2	R	157					
116	P	2	1			106?	18c7. 18d	L	
817	D	1	R	173	278				
819	3	1	L	237, 257	237	- -			
119	0	4	R	26		277			Graphite schist in volcanica?
120	$?$	5	L	27	$\begin{aligned} & 13 \mathrm{c} ? \\ & 14 \mathrm{~b} 7 \end{aligned}$	$\begin{gathered} 13 \mathrm{~b}, 13 \mathrm{c} ? \\ 267 \end{gathered}$	13b2, 13c3	17	

Confidence rating in interpretation of some extent of falt with reference to geological data:

D	$=$	Definite
P	$=$	Probable
?	$=$	Possible

(2) Fault sets identified:

1	$=$	N-N20W
2	$=$	N-N30E
3	$=$	N60E-N80E
4	$=$	N30W-N50W
5	$=$	-NE
6	$=$	$\sim E$

(3) Interpreted nature of fault (extent)

\mathbf{R}	$=$	Regional
\mathbf{L}	$=$	Local

(4) Relationship with HLEM conductors
(a) Those conductors which correlate with and support the interpretation of a fault
(b) Those conductors crosscut by the faule
(c) Those conductors bounded by the fault
(d) Those conductors horizontally displaced about the plane of the fault with inferred handedness of displacement

III and may extend southwards into subdomain I_{A} and further to the lithologies hosting the known mineralization on the property (see Section 10.4).

Fault f_{13} is semi-coincident with conductor 1d and adjacent to conductor 28 along part of its length.

Fault f_{18} is described, in part, by weak responses from which no geometrical parameters can be calculated and may be related to conductors 23 and 25.

Fault f_{17} is the only regional fault in this set which can be interpreted with confidence. The basis of interpretation of this feature is primarily from geological information immediately west of the grid. Fault f_{17} is centred near $15+00 \mathrm{~W}$ and is closely related to conductor 17 , believed to reflect magnetite-rich iron formation (see Section 10.5).
2. N-N30E set

Fault f_{14} is clearly indicated by the magnetic response pattern and is interpreted to reflect the structural regime bounding the southern extent of the Main Zone mineralization. Vertical displacement associated with this fault direction has been reported from previous work (Section 7.2).

Fault f_{14} is inferred to have an approximate 500 m strike extent and may extend over a greater distance but this is not evident from the current geophysical datasets.

Fault $f_{1 s}$ is tentatively interpreted about $5+00 \mathrm{~W}$ to explain magnetic response variations and describes the general western limit of conductivity associated with the main body of cherts hosting the Shunsby deposits. The fault is also supported by topography, being coincident with the southern arm of Hiram Lake. While interpreted to be a regional feature, the continuity of fault f_{15} north of $8+00 \mathrm{~N}$ is not immediately apparent. It is possible that fault f_{18} is the northern expression of fault $f_{1 s}$.
3. N60E - N80E set

Fault f_{3} marks a distinct change in lithologies near $5+00 \mathrm{~S}$ with apparent leftlateral displacement about the plane of the fault. South of this fault two discrete units of chert are known to exist. One has an associated discrete magnetic signature (subdomain I_{c}) indicating concentrations of pyrrhotite mineralization. North of fault f_{3}, however, while cherts are known to be more extensive, there is little evidence of concentrations of pyrrhotite in the immediate area. This suggests that fault f_{3} is closely related to the mineralized horizons in this sector where high-grade copper-zinc float has been found.

Fault f, is the other major family of faults within this fault set. Located near the centre of the grid, fault f_{7} marks the abrupt change from NNW-N
trending conductors, magnetic features and lithologies(?) to the south from an overall N-NNE trend of conductors and possibly magnetic features and lithologies to the north.

Fault f_{7} is well-defined by drilling as separating the Main and South Zones of the Shunsby deposit and has been referred to as the Joubin Fault in past reports. Left-lateral displacement of $150-250 \mathrm{~m}$ is reported (see Section 6.4), similar in magnitude to the apparent displacement about the plane of the fault between conductors 13a and 2d. These conductors are interpreted to be the surface expressions of the Main and South Zones, respectively (see Section 10.5).

Fault f_{7} is interpreted to be regional in extent. The degree and orientation of heave along its length appears to vary, particularly in areas where the geological control is limited. The structure described by fault f_{7} is, in all probability, not linear and can be expected to deviate north and south. Two subfaults have been interpreted on the basis of this inference.

Fault f_{7}, the more important of the two, is about 100 m south of fault f_{7} and extends from $7+00 \mathrm{~W}$ to the Main Zone at $2+00 \mathrm{~W}$. Fault f_{7} is at an oblique angle to fault f_{7} and may reflect a splay to the southwest. Fault f_{7} is interpreted primarily from the magnetic dataset.

Fault f_{s}, interpreted partly from the geophysical datasets, reflects a shear zone in the cherts near $6+25 \mathrm{~N}$ on the baseline.

4. N30W-N50W Set

Fault f_{19} is a known regional fault crossing the northeast corner of the grid at Edward's Lake. HLEM conductor 26 (see Section 10.5) correlates with this fault. In 1954 Cominco tested this feature with drillhole D and intersected graphitic schist in volcanics.

10.3 Structure: Lineaments

Two regional lineaments/faults(?) have been interpreted on the basis of the airbome and ground geophysical results. There is currently limited geological evidence for the existence of local faults or shear zones with similar orientations and at these locations on the property. However, these lineaments are considered significant as they define the apparent limits of the surface expression of the mineralized chert horizons hosting the Shunsby deposit.

Lineament L_{1} has a northeasterly trend across the property from $15+50 \mathrm{~W}, 4+00 \mathrm{~S}$ to $7+00 \mathrm{E}, 17+00 \mathrm{~N}$. There is strong supporting evidence for this lineament in the airborne magnetic response pattern (OGS, 1982). This pattern is confirmed on a local scale on the ground survey grid. Lineament L_{1} bounds the north and western extent of the majority of the interpreted conductive features and the more intense magnetic activity within domain I - the exception is the magnetite iron formation at the western extent of the grid.

There is evidence for lineaments with this orientation in the known regional geology especially to the south and west of the grid. Support for this interpretation is also provided by fault f_{20} and HLEM conductor 28 in the northeast comer of the grid.

The majority of the diamond drilling completed to date has been collared south and east of this structure. The core from drill holes 103 and 106(?) may contain evidence as to the causal source of lineament L_{1}.

Lineament L2 has a northwesterly orientation similar to regional fault f_{19} at Edwards Lake and extends from $7+00 \mathrm{E}, 15+00 \mathrm{~S}$ to $9+50 \mathrm{~W}, 8+00 \mathrm{~N}$. Lineament L2, interpreted purely on the basis of the geophysical signatures recorded, defines the western extent of the multiple discrete conductors delineated on the known chert horizons in the vicinity of the Shunsby deposit.
10.4 Total Field Magnetics (Maps 2a, 2b, 5a and 5b)

The corrected total field data present a complex structural picture which indicates five to, possibly, seven directions of faulting. The data are presented in colour contour format in Figure 8 as an overview and for ease of reference for the descriptions below. A certain degree of regional folding is hinted at. Folding on a scale smaller than detectable with the 100 m line spacing may possibly be present but cannot be interpreted.

The measured total field magnetic amplitudes range from 54370 to 70927 nT with the majority of the readings being in the range of 58000 to 63000 nT . The contouring intervals have served to highlight the more subtle features without distorting the more readily identifiable responses. The higher amplitude responses are generally recorded in the southern and western quarters of the property where ultramafic rocks and magnetite iron formation, respectively, are prevalent.

A number of discrete high amplitude, short wavelength features, believed to reflect diamond drill collars, were manually removed from the dataset. As many of the collar coordinates were not surveyed in, several suspect responses semi-coincident with indicated drill hole locations were manually suppressed.

Depths to magnetic features are generally shallow, in the range of 10 m or less.
Where average dips can be ascertained, the underlying lithologies appear to generally have a shallow dip to the west.

The first step in the interpretation was to outline the causative bodies and classify them into three major categories:
(i) broad, high susceptibility features;
(ii) broad, moderate to low susceptibility features; and (iii) narrow, linear features.

Several faults and/or magnetic lineaments are discemable from truncations of and/or disruption to magnetic features. These have had the effect of dividing the property into a combination of linear and arcuate horizons and areas of different magnetic background amplitudes. The subareas defined by the structural analysis were subsequently employed in determining subareas of similar magnetic character.

It is not possible to differentiate separate and distinct magnetic response signatures for the epiclastic and chemical metasediments, "iron formation", mafic, intermediate or felsic metavolcanics, mafic-to-intermediate intrusives and feldspar intrusions underlying the majority of the grid. Rather the magnetic dataset appears to reflect stratiform and/or stratabound concentrations of magnetic sulphide mineralization, particularly in the vicinity of the known copper-zinc mineralization. It may be possible to determine physical signatures for individual lithologic units in a given area with good geological control.

Given the current uncertainty as to the actual lithologic and structural regime under the majority of the property, the magnetic responses currently interpreted have been divided into three magnetic domains, labelled I to III. Domains I and II have been further subdivided due to the complexity of the results and for ease of reference and interpretation.

Domain I encompasses the western, central and southern two-thirds of the grid, hosting all the more conductive horizons as well as the Shunsby deposit and other known mineralization. Individual magnetic trends of north-northwest, north, northnortheast and northeast are noted throughout the domain. The magnetic response pattern and the correlating conductive horizons present a complex geological picture such that domain I has been subdivided into ten subdomains labelled I_{A} to I_{J}. The background amplitudes in domain I are in the order of 58200 nT and amplitudes are recorded in the range 54370 to 70244 nT . Domain I is in contact with magnetic domain III to the northeast and, domain II to the south in the vicinity of $12+00 \mathrm{~S}$.

Subdomains I_{A} and I_{B} describe the generally quiescent magnetic background observed throughout 50 percent of domain I. The lithologies underlying the various elements of subdomains I_{A} and I_{B} are inferred, from mapping and diamond drilling results, to include mafic intrusives, mafic to intermediate metavolcanics, some felsic metavolcanics, metasediments and some elements of felsic intrusives. The amplitudes recorded within subdomains I_{A} and I_{B} generally vary over a 200 nT range about the background of 58200 nT . Isolated weak to moderate, sometimes highly, magnetic features are noted within subdomains I_{A} and I_{B} and are interpreted to reflect more mafic intrusive or volcanic components and/or concentrations of magnetic sulphide mineralization. However, it is clear that in general no magnetic distinction can be made in this region between the various lithologic units known to exist.

The elements of subdomain I_{A} form a 200 to 400 m wide band across the grid at the northeastern limits of magnetic domain I where it is in contact with domain III. The location of the contact between domains I and III is only tentatively interpreted
as there is almost no geological information for this specific area. While the lithologies underlying domain III are believed to have a shallow dip to the west, conformable to those mapped elsewhere on the grid, it is also possible that an additional discrete lithologic package of different overall magnetic signature to domain III and subdomain I_{B} underlies the elements of subdomain I_{A}.

Subdomain I_{c} is a linear horizon with a north-northwest trend and widths varying from 75 to 130 m . The subdomain describes an area of generally elevated magnetic signature with amplitudes up to 800 nT above background and a certain degree of structural displacement and truncation is indicated by faults f_{1} and f_{12}. Depths to the magnetic features increase slightly from south to north where subdomain I_{c} is bounded to the north by fault f_{3} at $5+00 S$. At this point an abrupt change in lithologies is noted from the mapping and diamond drill results and any continuity of subdomain I_{c} to the north is uncertain.

Subdomain I_{c} has a correlating HLEM feature, conductor 3, and is coincident with a unit of metasediments (cherts). Testing by diamond drill holes MW-80-1 and 54305 indicates that the causal source of the magnetic feature is pyrrhotite mineralization within cherts.

The main element of subdomain I_{D} is subparallel and 200 m southwest of subdomain I_{c}. This element of subdomain I_{D} is bounded to the north by fault f_{3} in a similar manner to subdomain I_{c} but additional elements of subdomain I_{D} are interpreted further to the northwest as far as $2+00 S$ and apparently displaced some 200 m west.

While the elements of subdomain I_{D} have similar magnetic amplitudes to those recorded within subdomain I_{c}, there are no correlating conductive features. Mapping and drill results in the region indicate that subdomain I_{D} is underlain by cherts, mafic to intermediate metavolcanics and mafic intrusives. Subdomain I_{D} is therefore interpreted to reflect more mafic elements of these lithologies.

The interpreted elements of subdomain I_{E} are confined to an area between $2+00 \mathrm{~S}$, $9+00 \mathrm{~N}$ and $3+50 \mathrm{E}, 3+00 \mathrm{~W}$. Individual elements vary in width from 125 to 200 m and contain multiple moderate and strongly magnetic features of strike extents varying from less than 50 to 200 m . Magnetic amplitudes of these features are commonly 1000 to 2000 nT above background and are known, from extensive diamond drilling results, to reflect pyrrhotite mineralization within the metasediments and cherts.

The elements of subdomain I_{E} are concentrated in two areas centred approximately 300 and 250 m west of the conductors interpreted to reflect the Main and South Zones, respectively, of the Shunsby deposit. These two areas with elements of subdomain I_{g} also exhibit an apparent horizontal left lateral displacement in the order of 300 m about the plane of faults f_{7} and f_{7} and a change in orientation from north-northwest to north-northeast, south and north of these structures. The structural scenario is somewhat complex but the general character of the elements of
subdomain I_{g} and the semi-coincident electromagnetic activity support the interpretation of similar causal sources - possibly multiple pyrrhotite-rich zones.

Subdomain I_{F} is centred about $7+00 \mathrm{~W}$ between lines $4+00 \mathrm{~S}$ and $1+00 \mathrm{~N}$, where it is bounded by fault f_{7}, but may continue further north where the character of the magnetic response pattern and the lack of correlating conductivity indicate a probably complex collection of elements of subdomains I_{B} and I_{p}. Subdomain I_{F} is characterized by multiple horizons and similar magnetic amplitudes to subdomain $I_{\mathbb{E}}$ although a greater degree of continuity from line to line is apparent. There is limited geological information as the bulk of the diamond drilling completed to date is immediately north of this area. Subdomain I_{F} is interpreted to reflect mafic intrusives and/or more mafic volcanic units in the lithologic package.

Subdomain I_{G} is characterized by narrow highly magnetic units with amplitudes up to 2400 nT above background in individual elements varying in width from 40 to 90 m . Three elements of subdomain I_{0} are interpreted and extend from $11+00 \mathrm{~W}$ on line $4+00 \mathrm{~S}$, where the subdomain is open to the south, to $9+50 \mathrm{~W}$ on line $1+00 \mathrm{~N}$ where lineament L1 bounds the northern extent of this horizon. The individual magnetic features within these elements exhibit primarily north to slightly east of north orientations and the individual elements appear to be displaced horizontally in a left-handed manner about faults f_{6} and f_{7}. There is little geological information in this area, and the character of subdomain I_{0} is indicative of a gabbroic intrusive. This interpretation is supported by the lack of any correlating conductive horizon.

Subdomain \mathbf{I}_{B} is a gently arcuate horizon up to 100 m wide, extending from $11+75 \mathrm{~W}$ on line $0+00$ to $10+50 \mathrm{~W}$ on line $2+50 \mathrm{~N}$ and continuing with a more northeasterly trend to $8+75 \mathrm{~W}$ on line $4+00 \mathrm{~N}$. The anomalous magnetic amplitudes vary from 100 to 800 nT above background and describe short strike length, broad, moderately to strongly magnetic features of uncertain orientation individually. However, the presence of a continuous broadly magnetic arcuate feature cannot be ruled out and might be confirmed by surveying at a closer line spacing.

Isolated weak to moderately conductive features are interpreted coincident with the more magnetic features suggesting a local increase in pyrrhotite mineralization as a possible causal source. The current interpretation of the lithologies underlying this sector of the grid is an assemblage of mafic intrusives and mafic to intermediate volcanics. There is limited geological information in the vicinity of subdomain I_{H} and it is therefore possible that the subdomain reflects, at least in part, a chert horizon with variable concentration of pyrrhotite mineralization.

Subdomains I_{3} and I_{3} are situated at the extreme western edge of the grid and remain open to the west and north, being truncated to the south by regional fault f_{7}. Subdomain I_{I} is characterized by moderate to strongly magnetic linear features, both narrow and broad, with amplitudes up to 2100 nT above background. Semicoincident and coincident conductive horizons are interpreted along the length of all elements of subdomain $I_{\text {. }}$. Both the geophysical datasets indicate fairly extensive horizontal lateral displacement. Subdomain I_{I} and its associated conductivity has
been tested by diamond drill holes JM 1 and JIM 2 and is interpreted to reflect magnetite-rich iron formation and graphitic/sulphidic argillites.

The elements of subdomain I_{y} are only partially surveyed at the extreme western limit of the grid but contain some of the highest amplitudes recorded within magnetic domain I , being up to 11750 nT above background. The magnetic response pattern indicates multiple, narrow highly magnetic features with a general northerly orientation and correlating strongly conductive features. North to northnorthwest trending regional fault f_{17} (see Section 10.2) is known to be semicoincident with subdomain I_{J} which is interpreted to reflect very much higher concentrations of magnetic sulphide (magnetite \pm pyrrhotite?) mineralization associated with iron formation. In other words, subdomain I_{3} is interpreted to reflect a sulphide enriched element of the iron formation underlying subdomain I_{1}.

Domain II is situated wholly south of line $11+00 S$ and is bounded to the north by east-west regional fault f_{2}. The domain has been subdivided into two subdomains based primarily upon the distribution of total field magnetic amplitudes but is believed to collectively reflect an ultramafic intrusive body.

Subdomain $\mathrm{II}_{\text {A }}$ contains the highest amplitudes in domain II with values ranging up to 70927 nT . The subdomain is characterized by highly magnetic narrow and broadly magnetic features with apparent northerly orientations extending over two or more lines. This orientation of individual magnetic features is supported by semicoincident, weakly conductive horizons interpreted from the HLEM datasets. The response character of subdomain II_{A} is entirely consistent with ultramafic intrusives. Subdomain II_{A} adjoins subdomain II_{B} to the northwest across tentatively interpreted fault f_{1} which has a N60E orientation.

Subdomain II_{B} covers an area approximately $200 \times 150 \mathrm{~m}$, is open to the west and has similar characteristics to subdomain Π_{λ}. However, the magnetic amplitudes are very much lower, generally extending up to 60200 nT , with higher amplitudes in the order of 61200 nT at its western extent. The response character is more characteristic of a mafic to ultramafic intrusive and the apparent lack of a correlating conductive horizons suggests a possible different causal source to that underlying subdomain I_{A}.

Domain III covers the entire northeastern quarter to one-third of the grid and has a fairly uniform magnetic signature with the majority of amplitudes ranging from 58300 nT to 58500 nT as can be seen from Figure 8. Several isolated discrete magnetic features with higher and lower magnetic amplitudes are recorded and are interpreted to reflect slightly more mafic volcanic units and possible structural features, respectively. An example is the interpretation of north trending fault f_{13} which is semi-coincident with a narrow low magnetic feature with amplitudes down to 57750 nT at about $3+00 \mathrm{E}$ between lines $5+00 \mathrm{~N}$ and $10+00 \mathrm{~N}$.

The magnetic response pattern of domain III is characteristic of mafic to intermediate volcanics with narrow and broad moderately magnetic features of uncertain strike extent and orientation uniformly distributed throughout the domain. Domain III clearly reflects a different lithologic package to those underlying domains I and II to the south. This information was not previously known and will warrant limited geological mapping at some future date. Extensive follow-up investigation is not recommended at this time as very few conductors are interpreted within domain III and those identified are of moderate to weak conductance and are generally believed to reflect mineralized faults and/or shear zones as suggested by the results of drilling HLEM conductor 26 (see Table 5).

As noted in the discussion of subdomain I_{Λ}, the lithologies underlying domain III in all probability have a shallow dip to the west, conforming to the stratigraphic dip in this area, but it is uncertain whether there is a discrete or transitional change in lithologies so that the contact with magnetic domain I to the south and west is only tentatively interpreted.

10.5 Horizontal Loop EM Survey (Maps 3a, 3b, 4a, 5b, 5a, 5b)

The MaxMin II survey delineated 33 conductive horizons, labelled 1 to 33 , the majority of which are delineated at both transmitting frequencies. Nine of the conductors have been further subdivided: Conductors $1,2,4,5,13,14,18,19$ and 30.

The parameters of these conductive horizons and their relationship with the magnetic results and structural interpretation are presented in Table 5. The probable geologic host and whether the conductor would have been tested by previous drilling and/or trenching are also indicated.

The dominant conductor trends are NNW to N and N to NNE in the southern and northem halves of the grid, respectively. The trends listed in Table 5 and referenced in the text below are relative to grid north. The individual horizons have strike extents ranging from 50 to 1400 m .

The anomalous zones have been interpreted as either strong, moderate, weak or questionable bedrock conductors. Any uncertainty in conductor continuity is indicated by question marks. In places reference was made to the magnetic data when conductor continuity and/or trend was in question.

As the conductors are often closely-spaced with respect to the coil separation used, their dips cannot always be estimated due to mutual interference between adjacent responses. However, the lithologies hosting the known mineralization on the property have an average dip of 30° to the west and the sulphide mineralization conforms to the stratigraphy. Therefore, except where near vertical dips to mineralized horizons are suspected, all parameters have been derived from Strangway's nomogram for thin sheets dipping at 30° (Mining Geophysics, Vol. I).

TABLE 5: INTERPRETED HLEM CONDUCTORS WITH GEOPHYSICAL, STRUCTURAL AND GEOLOGICAL CORRELATIONS

HLEM				Magnotics (2)					Structure (3)				$\begin{aligned} & \text { AEM } \\ & \text { (1) } \end{aligned}$	Drilled(5)	Geology (6)
Conductor	$\begin{aligned} & \text { Rat ing } \\ & \text { (1) } \end{aligned}$	Trend	Extent (m)	c		F	N	Env.	Fault	Trend	c	B			
12	$s-v s$	N15w	$400+$				x	14	13	3		N	6	-	Mafic to Intermediate Volcanica and/or Chemical Sediments
1 b	vs	H10W	150-200				x	14	$\begin{aligned} & 63 \\ & 54 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\stackrel{s}{\mathbf{n}}$	6	-	Mafic to Intermediate Volcanica and/or Chamical Sediments
1 c	vs	N10w	350		x			I2/III	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		\$	4-6	-	Mafic to Intermediate Volcanic: and/or Chemical Sediments
1d	M-S	N	125				*	14	$\begin{aligned} & 15 \\ & 113 \end{aligned}$	$\underset{2 / 2}{3}$	c	*	7	-	Mafic to Intermediate Volcanics and/or Chemical Sedimenta
2a	M	$\begin{aligned} & \text { N20W- } \\ & \text { N25W } \end{aligned}$	600		.		x	14	$\begin{aligned} & 11 \\ & \mathrm{~J} 3 \\ & \mathrm{~J} 12 \end{aligned}$	$\begin{gathered} 3 \\ 3 \\ 1 / 2 \end{gathered}$	$x 7$	$\underset{\mathbf{N}}{\mathbf{s}}$	6	$\begin{gathered} 1138 \\ 1147 \\ 54-305 \end{gathered}$	sediments
2b	M-S	N254	$\begin{aligned} & 200 \\ & -250 \end{aligned}$		x			IA/IC	$\begin{aligned} & \text { j3 } \\ & j 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\stackrel{8}{\mathbf{n}}$	6	SE4?	Sedimanta, Basal Chert?
2 c	M-S	N10W	300		x			IN/IE	$\begin{aligned} & f 4 \\ & j 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathbf{s} \\ & \mathbf{n} \end{aligned}$	6	$\begin{gathered} \text { SE17 } \\ \text { C7. }{ }^{\text {SE27 }} \\ 68-207 \end{gathered}$	Bazal Chert
2d	s	N20H	$\begin{aligned} & 200 \\ & -250 \end{aligned}$	x				IN/IB	$\begin{aligned} & f 6 \\ & f 7 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		\mathbf{s}	6	SE1; 19 60-13	South Zone, Basal Chert
3	0-W	N25W	$\begin{aligned} & 500 \\ & -600 \end{aligned}$	x				IC	${ }_{33}$	$\begin{gathered} 1 / 2 \\ \mathbf{3} \end{gathered}$		$\begin{aligned} & 8 \\ & 3 \end{aligned}$	67	$\begin{array}{r} M W-80-1 \\ 54-305 \end{array}$	Sediments
4.	0-4	N35w	400		*			IB/ID	11	3		-	67	-	Mafic to Intermediate Volcanics
4 b	0	N15 ${ }^{\text {W }}$	150?				x	IB	13	3		N2	-	-	Mafic to Intermediate Volcanics
5	W-M	7	1			*		18/IC	$\begin{aligned} & \text { J3a } \\ & \text { a } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\begin{gathered} s \\ \mathbf{N} \end{gathered}$	67	A\%	sediments
54	0	$?$	7				*	18/IC	$\begin{aligned} & \mathbf{f 3} \\ & \mathbf{j a n} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathbf{s} \\ & \mathbf{N} \end{aligned}$	-	$\begin{gathered} 60-177 \\ 1157 \end{gathered}$	```Sediment: Tr. Sample: 01, 09, BSH-1. Samples 10 to South Samplea 02, 08, 24, BSH-2 and copper-zinc float to north```
6	W	H5E	350				*	18	$\begin{aligned} & f 4 \\ & f 6 \\ & f 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$x 7$	$\stackrel{\$}{\mathbf{N}}$	-	$\begin{gathered} \text { A? } \\ 79-10 ? \\ \text { +others } \end{gathered}$	Middle Chert
7	H-M	N10w	150		3		7	18	$\begin{aligned} & f 4 \\ & f 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathbf{s} \\ & \mathbf{N} \end{aligned}$	63	$\begin{aligned} & 1874-187 \\ & 74-14,68 ? \\ & 708 \text { tothers } \end{aligned}$	Sediment:
8	W-M	NSW	$\begin{aligned} & 150 \\ & -200 \end{aligned}$?		?		IE	$\begin{aligned} & f 6 \\ & 87 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		\mathbf{N}	62	$\begin{gathered} 567 \\ 111,{ }^{58-6} \\ 68-10, \quad 68-14 \end{gathered}$	Middle Chert (2)/Sediments
9	W-M	N15E	$\begin{aligned} & 150 \\ & -200 \end{aligned}$			x		18	57	3		*	43	$\begin{array}{cc} 32, & 37 \\ 68-3, & 68-4 \end{array}$	Sediment:
10	0-W	N10W	150		x			IB	$\begin{aligned} & 16 \\ & 77 \mathrm{a} \\ & 114 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \end{aligned}$	x ?	$\underset{\mathbf{N}}{\mathbf{s}}$		68-15?	Sediments?/Maflc intruaive:

HLEM				Magnatica (2)					Structure (3)				AEM(4)	$\begin{gathered} \text { Drilled } \\ (3) \end{gathered}$	Geology (6)
Conductor	$\begin{aligned} & \text { Rating } \\ & \text { (1) } \end{aligned}$	Trend	Extent (m)				N	Env.	Fault	Trend	${ }^{\text {c }}$	B			
11	0	N15w	$\begin{gathered} 50 \\ -250 \end{gathered}$				x	18	$\begin{aligned} & \text { i4 } \\ & \text { is } \\ & 16 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	57	53 87 4	27	-	Sediments?
12	M	N15w	150				x	IA/IB	$\begin{aligned} & f 7 \\ & 514 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$		$\begin{aligned} & \mathbf{s} \\ & \mathbf{W} \end{aligned}$	6	-	Mafic Intrusives/Volcanics?
13a	vs	H2OE	400				x	IA/I8	$\begin{aligned} & \text { f7 } \\ & \text { fe } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\mathbf{5}$	6	mitiple holea	Main 2one, Basal Chert Tr. Samplea 11, 13, 14, 15, 16, BSH-3, KRS-20
13b	O-W	N10E	$\begin{aligned} & 150 \\ & -200 \end{aligned}$				*	IR/I8	$\begin{aligned} & f 20 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$:	57	-	Hafic Intrusives/Volcanics andor Basalt Chert?
13 c	H-vs	N104	$\begin{aligned} & 125 \\ & -225 \end{aligned}$				\mathbf{x}	IA/IB	$\begin{aligned} & 58 \\ & 521 \\ & 520 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 5 \end{aligned}$	$x 1$	$\begin{aligned} & s 2 \\ & \mathbf{M} \\ & s, \end{aligned}$	6	-	Masal (7) Chert
14a	s-vs	N15E	$\begin{aligned} & 150 \\ & -200 \end{aligned}$		\mathbf{x}			IB/IE	$f 0$	3		-	6	$\text { 108, }{ }_{120}^{1097}$	7r. Sample 21
14b	M	N108	250	*				18	$\begin{aligned} & f 6 \\ & f 11 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		8	6	-	sedimenta
14 c	W-s	$\begin{array}{r} \text { N5E } \\ -10 \varepsilon \end{array}$	$\begin{aligned} & 250 \\ & -300 \end{aligned}$		*			18	${ }^{18}$	3		$\begin{aligned} & \mathrm{B} \\ & \mathbf{n} \end{aligned}$	3	-	sedimenta
14d	0-43	$\mathrm{N}_{20 \mathrm{E}}^{\mathrm{TO}}$	$\begin{gathered} 50 \\ -150 \end{gathered}$				*	12/IB?	111	3		37	$?$	-	Sediments
15	W-vs3	$\underset{-N 15 E}{\text { MSE }}$	$\begin{aligned} & 150 \\ & -500 \end{aligned}$		x	x		IB/IE	17 78 115	$\begin{aligned} & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & x 7 \\ & c \end{aligned}$	${ }^{\mathbf{w}}$	6	103, 106	Sedimenta \pm Mafic Volcanics
16	0-W	N10w	150				*	IA	10	3		*	2	-	Matic Volcanlcs/Intruaives?
17	vs	N25w?	$200+$	*				II/IJ	$\begin{aligned} & f 7 \\ & f 7 b \\ & f 17 \end{aligned}$	$\begin{gathered} 3 \\ 3 \\ 1 / 22 \end{gathered}$	${ }_{c}^{x 2}$	3	6	-	Magnetite Iron Formation Tr. Samples KRS-17, KRS-19 Sample kRS-07?
18:	M	$?$	$\begin{gathered} 50 \\ -100 ? \end{gathered}$				*	18	$\begin{aligned} & f 7 \\ & \text { f7b } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		w	-	31m 27	Sedimenta/Magnatite Iron Formations
18b	vs	$\begin{aligned} & \text { N10W } \\ & - \text { N15E } \end{aligned}$	$\begin{aligned} & 550 \\ & -600 \end{aligned}$	x ?	3			IB/II	$\begin{aligned} & \text { f7b } \\ & \text { f9 } \\ & \text { f10 } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$x ?$	$\$$ x	6	$\operatorname{jim} \frac{1}{2}$	Magnetite Iron Formation Tr. 7 sample KRS-02
18 c	vs	n10E	$\begin{aligned} & 150 \\ & -200 \end{aligned}$			x		183/11	$\begin{aligned} & f 10 \\ & 111 \end{aligned}$	$\begin{aligned} & 3 / 6 \end{aligned}$		$\frac{s}{\mathbf{n}}$	6	-	Magnetite Iron Formation?
18d	vs	7	$50+$	*				II	116	2		3	6	-	Hagnetite Iron Formation
19.	M	7	$\begin{gathered} 50 \\ -1002 \end{gathered}$				*	IB	$f 9$	3		M	-	-	Sediment*
19b	s	N208	300		x	$?$		18	$\begin{aligned} & 19 \\ & 510 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\stackrel{s}{\mathbf{N}}$	32	*	sedimenta
19c	O-W	W5E	150				*	IB	$\begin{aligned} & f 10 \\ & f 11 \end{aligned}$	$\stackrel{3}{3 / 6}$		$\stackrel{5}{\mathbf{N}}$	37	-	Matic Volcanics/Intrusives?
20	vs	7	$50+$				*	18	111	3/6		s	$6 ?$	-	Sedimenta?

HLEM				Magnetic: (2)					Structure 313				$\begin{aligned} & \text { AEM } \\ & (4) \end{aligned}$	$\underset{\|5\|}{\substack{\text { Drilled }}}$	Geology (6)
Conductor	$\begin{aligned} & R+\ln g \\ & (1) \end{aligned}$	Trand	Extent (m)	c				Env.	Fault	Frend	c	B			
21	n	3	$50+$	3			K	I8	111	$3 / 6$		\%	-	-	Mafic Volcenics/Intruaive:
22	W-M	$?$	7	x				IH					1	-	Porphyry Dyke/Mafte Volcanica?
23	W-M	N25W				7	3	111	118	1/2	x ${ }^{\text {a }}$		4-5	-	Mafic Volcanics \pm Intrusives
24	W-M	n10w?		x				III					5	-	Mafic Volcanica \pm Intrusives
25	W-n	7	$?$				x	III	118	1/2	c7		4-5	-	Matic Volcanice \pm Intrusives
26	W-M	NW	500+?				x	III	$\begin{aligned} & \mathbf{J 1 9} \\ & \mathrm{J} 20 \end{aligned}$	5	c	33	4-5	$\begin{gathered} \text { Cominco } \\ D-1954 \end{gathered}$	Mafic Volcanics + Intrusives Roflects major regional fault through Edwards Lake? Graphite schist in volcanica
27	O-W	$\begin{gathered} \text { N55W } \\ -\mathrm{N} 35 \mathrm{~W} \end{gathered}$	650				*	111	$\begin{gathered} 19 \\ f 20 \end{gathered}$	5	c	\%	-	-	Mafic Volcanics \pm Intrusives
20	W-M	$?$	$?$				x	III	$\begin{aligned} & f 7 \\ & J 13 \end{aligned}$	$\begin{gathered} 3 \\ 1 / 2 \end{gathered}$	c?	8	6	-	Mafic Volcanics \pm Intrusives
29	*	N20W?	$\begin{aligned} & 150 \\ & -200+7 \end{aligned}$				*	111	$\begin{aligned} & 16 \\ & j 7 \end{aligned}$	3	$x 1$	$\begin{aligned} & 87 \\ & 8 \end{aligned}$	37	-	Mafic Volcanica \pm Intzuaivea
30	0-1	NSE	$350+$	y		x		IIA					2	-	Ultramifice Sample KRS-01
31	--4	H108	250	k				IIA					2	-	0itcamatica
32	O-W	n108	$\begin{aligned} & 200 \\ & -250 \end{aligned}$		x			IIA	11	3		42	-	-	Oltramatica
33	W	7	7		x	*		IIA					41	-	Ditramatics

Range of ratings of conductive horizon based upon in phase/quadrature ratios at lowest interpretable frequency:

$$
\begin{array}{lll}
\mathrm{Q} & = & \text { weak, quadrature only } \\
\mathrm{W} & = & \text { weak } \\
\mathrm{M} & = & \text { moderate } \\
\mathrm{S} & = & \text { strong } \\
\text { VS } & = & \text { very strong }
\end{array}
$$

The trends of the conductors are given relative to grid north only.
(2)

Relationship of magnetic features and conductive horizons:

C	$=$	Coincident
PC	$=$	Partially coincident
F	$=$	Flanking
N	$=$	No coincidence
Env.	$=$	Subdomain

(3)

Structural features interpreted from both geophysical datasets and the available geologic information. Relationship to conductive horizon:

$$
\begin{array}{lll}
\text { C } & = & \text { Crosscutting }(x) \text { or coincident or partially coincident } \\
\text { B } & = & \text { subparallel (c) } \\
\text { N } & = & \text { Northern extent of horizon } \\
\text { S } & = & \text { Southern extent of horizon } \\
\text { Trend } & = & 1 \text { for N-N20W set } \\
& = & 2 \text { for N-N30E set } \\
& = & 3 \text { for N60E-N80E set } \\
& = & 4 \text { for N30W-N50W set } \\
& = & 5 \text { for } \sim \text { NE set } \\
& = & 6 \text { for } \sim \text { set }
\end{array}
$$

(4) Indication of whether conductive horizon tested by any of diamond drill holes identified in report or on previous geological maps.

Tr. Sample $\quad=\quad$ rock sample from trench
Sample $=$ grab sample from outcrop
(5) Correlating airborne electromagnetic features from OGS 1982 (see References).
(6) Possible causal source(s) of anomalous response are derived from drill logs and/or mapping.

As the causal sources are also often at or near surface the HLEM responses obtained using the relatively large 100 m coil separation are often distorted so that true inphase and quadrature amplitudes cannot be obtained to plot on the nomograms used. In addition, the short strike lengths of individual elements of a conductive horizon relative to the coil separation used have also given rise to distorted responses. Those results which are most in question are indicated by question marks on Maps 3a, 3b, 4a and 4 b .

The estimated parameters should therefore be viewed as illustrating relative conductances between horizons rather than definitive geometric and physical parameters.

Depths to the conductors are generally shallow, 10 m or less. Where the depth estimate is $<10 \mathrm{~m}$ for the 100 m cable separation data the conductor could be at surface or at any depth up to 10 m .

Conductor quality varies from very weak to strong with estimated conductances ranging from 7 to 315 mhos in the 444 Hz dataset and 1.5 to 155 mhos in the 1777 Hz dataset.

While sulphide mineralization is thought to be a primary factor giving rise to the conductive responses, graphite is also a causal source as the higher concentrations of sulphides are commonly hosted in finely interbedded cherts and argillites.

The majority of the interpreted conductors and certainly those with conductances strongly indicative of massive sulphides, are located within magntic domain I. The more significant of these are described below.

Conductive horizon 1 exhibits trends varying from N15W to north along its length from approximately $7+50 \mathrm{E}$ on line $8+00 \mathrm{~S}$ to $3+35 \mathrm{E}$ on line $2+00 \mathrm{~N}$. The horizon has been divided into four individual conductors, each displaying apparent left lateral displacement with respect to each other about faults with inferred orientations of N60E to N80E. The horizon is situated almost entirely in magnetic subdomain I_{A} where metasediments and mafic to intermediate metavolcanics are inferred to predominate. No mapping, trenching or diamond drill testing of conductor 1 is reported.

Conductor 1a, the southernmost component of horizon 1 as surveyed on the property, extends from line $5+00 \mathrm{~S}$ to $8+00 \mathrm{~S}$ where it is open to the southeast. The conductor is only partially surveyed on most lines due to the proximity of the property boundary but on line $5+00 \mathrm{~S}$ a conductance of 70 to 85 mhos and depth to the source of less than 10 m were calculated. Conductor 1 a is 25 m wide and has no correlating magnetic features and is therefore interpreted to reflect graphite mineralization and/or non-magnetic sulphides, possibly hosted by cherts.

Conductor 1b describes the northward continuation of horizon 1 to line $3+00 S$ with an orientation N10W. Conductor 1 lb exhibits the same geophysical characteristics as
conductor la with the exception that the causal source is narrower, less than 10 m wide, and appears to be more conductive. A conductance of 230 mhos is estimated on line $3+00 S$.

The interpretation of conductor 1 b is identical to that for conductor 1 a .
Conductor $1 \mathbf{c}$ is bounded to the south and north by faults f_{4} and f_{6}, respectively, and describes that portion of conductor 1 between lines $2+00 \mathrm{~S}$ and $1+00 \mathrm{~N}$. Conductor widths are 10 m or less at the transmitting frequency of 444 Hz and the causal source is estimated to be at a depth of 10 m below surface and have conductances varying from 55 to 170 mhos. Semi-coincident, moderately magnetic features are interpreted on lines $0+00$ and $1+00 S$ indicating a possible increase in magnetic sulphide (pyrrhotite?) mineralization on these lines. In all other respects the interpretation of conductor 1 c is identical to that for conductor 1 a .

Conductor 1 d ? is interpreted to extend due north from $3+35 \mathrm{E}$ on line $1+00 \mathrm{~N}$ to line $2+00 \mathrm{~N}$ where conductive horizon 1 appears to be bounded by the lithologies underlying magnetic domain III and possibly a structural event related to regional fault f_{7}. Conductor $1 d$, the weakest section of horizon 1 , is a weak to moderate conductor possibly reflecting or related to mineralization associated with a north trending fault/shear zone, f_{13}, interpreted primarily from the magnetics (see Section 9.2).

Conductive horizon 2, subparallel to and between 150 and 200 m west of horizon 1 , extends from line $10+00 \mathrm{~S}$, where it is bounded to the south by fault f_{1}, to line $2+00 N$. At this location horizon 2 is bounded by regional fault f_{7} and any continuity of the conductive horizon to the north cannot be interpreted with certainty due to the apparent horizontal displacements of up to 300 m in a left lateral sense about the plane of f_{7}. Horizon 2 has been tested by diamond drilling as the basal chert horizon of the South Zone, more intensely at its northern limit, and is interpreted to reflect sulphide mineralization often associated with graphite in the chert iron formation.

The conductances calculated for horizon 2 are generally lower than those estimated for horizon 1 indicating that the sulphide and/or graphite mineralization is present in lower concentrations along horizon 2 than that associated with horizon 1.

Conductor 2 a is a generally narrow, moderately conductive feature at depths in the order of 10 m or less below surface. Conductor 2 a has a N20W to N25W orientation from the southern extent of horizon 2 to $5+00 \mathrm{E}$ on line $5+00 \mathrm{~S}$. Located wholly within subdomain I_{A}, conductor 2 a has no correlating magnetic features and has probably been tested by drill hole $54-305$ which intersected non-magnetic sulphides in a chert-argillite matrix.

There is an apparent left lateral displacement in the order of 50 m between conductors $2 a$ and $2 b$ about the plane of fault f_{3} with conductor $2 b$ continuing with an N25W orientation to line $3+00 \mathrm{~S}$. The calculated physical parameters are similar
to those obtained for conductor 2 a and the interpretation of conductor 2 b is therefore the same. Hole SE-4 may have tested conductor 2 b .

Conductor 2c has slightly different characteristics to those associated with conductors 2 a and 2 b to the south. The main difference is the apparent increasing width of the conductor to the north and the semi-coincidence of moderately magnetic features at line $0+00$, the northern extent of the conductor. The conductances calculated for conductor 2 c are generally 50 percent higher, ranging from 30 to 40 mhos, than those estimated for conductors 2 a and 2 b . The response of conductor 2 c on line $0+00$ indicates a 50 m wide causal source in the 1777 Hz dataset whereas the 444 Hz dataset hints at possibly two narrow causal sources 35 m apart.

The causal source of conductor $2 c$ is interpreted to be at or near surface with depths computed as less than 10 and up to 13 m and is believed to be sulphide mineralization and/or graphite in the sediments and argillites of the Basal Chert. At least four diamond drill holes appear to have tested the conductor 2c (see Table 5) and on closer examination will possibly indicate a higher pyrrhotite content on line $0+00$.

Conductor 2d reflects the northern extent of horizon 2 being interpreted as a N20W oriented conductor on lines $1+00 \mathrm{~N}$ and $2+00 \mathrm{~N}$. The overall extent of this conductor is 200 to 250 m and it is known to reflect the surface expression of the South Zone of the Shunsby deposit. A narrow, moderately magnetic linear feature is coincident with conductor 2 d along its length indicating magnetic sulphide mineral content. The host unit of the conductor is known to be the Basal Chert. The calculated conductances, in the order of 50 mhos, indicate that conductor 2 d probably reflects the highest sulphide mineral content along horizon 2.

Conductor 3 is a narrow, weakly conductive horizon subparallel to and 75 to 100 m west of conductor 2 a . Conductor 3 is situated in the centre of magnetic subdomain I_{c} and is bounded in a similar fashion to the north by fault f_{3}. Diamond drill holes MW-80-1 and 54-305 have tested this conductive horizon and found pyrrhotite and pyrite mineralization in cherts to be the causal source.

Conductor 4 a is best defined in the 1777 Hz dataset where the response is primarily quadrature in nature except for that on line $11+00 \mathrm{~S}$ where moderate inphase and quadrature responses are recorded. Conductor 4 a is situated west of conductor 3 and has a N35W trend from 5+25E on $11+00$ S to line $8+00$ S where the causal source appears to pinch out or is truncated by a structural event which has not been interpreted or identified at this time. No physical parameters could be estimated for this conductor due to the low amplitude and poor character of the responses. Conductor $4 a$ is situated within an element of subdomain I_{B} and on the eastern flank of subdomain I_{D}. Conductor $4 a$ is interpreted to reflect weak sulphide mineralization in the mafic to intermediate volcanics with possible graphite mineralization if chert iron formation is the host lithology. No diamond drilling of this conductor is recorded and none is recommended at this time.

Conductor $\mathbf{4 b}$ is a possible northward continuation of conductor 4 a to line $6+00 \mathrm{~S}$ with a probable right handed displacement of horizon 4 in the vicinity of $7+50 \mathrm{~S}$. Conductor 4 b is tentatively interpreted on the 1777 Hz data only and has a similar interpretation to conductor 4 a .

Conductor 5 is a moderate 15 mho conductor interpreted at $1+75 \mathrm{E}$ on line $4+00 \mathrm{~S}$. The conductor may have a strike length of up to 100 m but is bounded north and south by faults f_{4} and f_{30}, respectively. The causal source is interpreted as being 30 m wide in the 1777 Hz data but as possibly two narrow, moderately conductive features in the 444 Hz dataset. Conductor 5 lies on the western flank of a moderately magnetic feature bounded by the same structures within magnetic subdomain $\mathrm{I}_{\mathrm{B}} / \mathrm{I}_{\mathrm{c}}$?. Conductor 5 is interpreted to reflect weak sulphide and/or graphite mineralization associated with chert iron formation and may have been tested by diamond drill hole A. Due to its proximity to the copper-zinc float found near low $5+00 \mathrm{~S}$, conductor 5 is considered a priority target. The angular nature of this float suggests that it is of quite local origin.

Conductor 5 a is a very weak conductive source southeast of conductor 5 on line $5+00 \mathrm{~S}$. A conductance of only 3 mhos has been calculated from the 1777 Hz data with the causal source being at or near surface. Conductor $5 a$ has probably been tested in the trenches indicated in this area and possibly by diamond drill holes 6817 and 115. Conductor 5 a is tentatively interpreted as being associated with conductor 5 due to their relative orientation being similar to that of conductive horizons in the immediate area.

Conductor 6 is a weakly conductive horizon with an average north trend from $1+50 \mathrm{E}$ on line $3+00 \mathrm{~S}$ to line $0+00$ where it is bounded by fault f_{6}. Situated wholly within an element of magnetic subdomain I_{B}, conductor 6 is interpreted geologically to be situated within metasediments and close to the southern margin of what is believed to be the Middle Chert. Conductor 6 would have been investigated by numerous drill holes in previous programs and no further evaluation is recommended at this time.

Conductor 7 is a moderately conductive horizon subparallel to and about 50 m west of conductor 6 on lines $3+00 S$ and $2+00 S$. The magnetic setting of conductor 7 is similar to that for conductor 6 and it is also believed to be hosted within metasediments. The causal source is therefore interpreted to be non-magnetic sulphide and/or graphite mineralization which would have been tested by numerous drill holes (see Table 5).

Conductors 8 and 9 have approximate north orientations. They are 50 to 75 m apart and within an element of magnetic subdomain I_{B} immediately west of the baseline on lines $1+00 \mathrm{~N}$ and $2+00 \mathrm{~N}$. Both conductors are bounded north and south by regional faults f_{7} and f_{6}, respectively. No parameters could be estimated from the responses recorded and detailed surveying with a 50 m cable would be required to present a more confident interpretation. However, both conductors appear to be
of weak to moderate conductance and overall strike length of 150 to 200 m . Conductors 8 and 9 are inferred to be hosted by cherts of the metasedimentary sequence and possibly, in part, reflect local increases in pyrrhotite mineralization as indicated by discrete correlating magnetic features. Both conductors have been tested by numerous drill holes in the course of evaluation of the South Zone.

Conductor 12 is bounded to the south by regional fault f_{7} but extends with a N15W orientation from $0+60 \mathrm{E}$ on line $3+00 \mathrm{~N}$ to line $4+00 \mathrm{~N}$ where it is bounded by fault f_{14}. Conductor 12 is situated within magnetic subdomain I_{A} and/or I_{B} and has no correlating discrete magnetic signature. A conductance in the order of 20 mhos and a depth to the causal source of about 20 m are calculated from both datasets assuming the causal source has a dip of about 30W. Given the proximity of conductor 12 to both the Main and South Zones (conductors 13a and 2d, respectively) conductor 12 is interpreted to reflect non-magnetic sulphides and/or graphite mineralization associated with the main chert iron formation horizon. It is uncertain whether any of the drill holes completed in previous programs would have been extended far enough to adequately test conductor 12 but a more riguous examination of the available data may identify the causal source.

The surface expression of the Main Zone is traced by conductor 13a which has an orientation of N 20 E from $0+75 \mathrm{~W}$ on line $3+00 \mathrm{~N}$ to line $6+00 \mathrm{~N}$ where it is bounded by fault f_{8}, interpreted and mapped as a shear within the cherts. This region is known to be structurally very complex with the southern extent of the Main Zone bounded by an ENE regional fault f_{7} with left lateral displacement and a more local NNE fault, f_{14}, with possible associated vertical displacement.

The causal source of conductor 13 a is interpreted in general to be narrow, 15 m or less in width, at depths in the order of 10 m or less on all lines except for line $6+00 \mathrm{~N}$ where a depth of 20 m is computed. Calculated conductances range from 30 to 230 mhos, the higher conductances being considered more diagnostic given the distorted nature of several of the responses. An apparent conductance of 4 mhos, computed from the 1777 Hz data on line $6+00 \mathrm{~N}$ may reflect either a pinching out of the Main Zone or an increase in sphalerite mineralization at the north end of the Main Zone. Geological information about the Main Zone is extensive and will not be repeated here. The lack of any coincident magnetic feature is consistent with the conclusion that there is little or no pyrrhotite associated with the Main Zone.

The Main Zone horizon is interpreted to continue northwards as conductors 13b and 13 c in an area of apparent structural complexity. Conductor 13b is described on lines $7+00 \mathrm{~N}$ and $8+00 \mathrm{~N}$ by very low amplitude responses of poor character from which no physical parameters can be calculated. This conductor is only tentatively inferred and no further interpretation or evaluation is considered warranted at this time. Conductor 13c, however, is a strongly conductive feature with an orientation of N10W from $0+25 \mathrm{~W}$ on line $8+00 \mathrm{~N}$ to line $9+00 \mathrm{~N}$. The conductor is bounded north and south by tentatively interpreted faults f_{11} and f_{20}, respectively, and also to the north by lineament L1 (see Section 10.3). The best response is recorded on line
$9+00 \mathrm{~N}$ where a 25 m wide causal source is interpreted to have a conductance in excess of 100 mhos and be at or near surface. The conductive horizon appears to plunge to the south where a conductance in the order of 40 mhos is interpreted at a depth of about 20 m below surface. Conductor 13c has no correlating magnetic features and is situated within what are believed to be cherts, possibly the Basal Chert, underlying this element of subdomain I_{A}. Conductor 13 c does not appear to have been tested previously by diamond drilling and is considered a priority target for future evaluation.

Horizon 14 exhibits variable conductance and continuity along its length between lines $4+00 \mathrm{~N}$ and $10+00 \mathrm{~N}$ with gradually decreasing conductance from south to north. Horizon 14 is situated within an element of magnetic subdomain I_{B} along much of its length with the northemmost element, conductor 14d, being wholly situated within an element of magnetic subdomain I_{A}.

Conductor 14a is interpreted to extend in a N10E direction from $2+60 \mathrm{~W}$ on line $4+00 \mathrm{~N}$ to $5+00 \mathrm{~N}$ where it is bounded by fault f_{8}. Conductor 14 a contains the strongest conductance as calculated along horizon 14 with the depth to the causal source being estimated at 15 m or so below surface. The responses associated with conductor 14 a exhibit mutual interference with those of conductor 15 immediately to the west and also indicate a much shallower causal source, the estimated depth probably being in error due to distorted responses. Conductor 14 a , located at the eastern margin of an element of magnetic subdomain I_{B}, exhibits no correlating magnetic features and is interpreted to reflect non-magnetic sulphide and/or graphite mineralization associated with chert.

Conductors 14 b and 14 c are approximately 60 m apart and exhibit an average N10E orientation from $1+75 \mathrm{~W}$ on line $6+00 \mathrm{~N}$ to line $8+00 \mathrm{~N}$ where lineament Ll and fault f_{11} bound both horizons. The conductors appear to be similar in nature in that they are both of variable character and conductance along their lengths with the more conductive responses correlating with highly magnetic features within subdomain I_{g}. Conductors 14 b and 14 c are interpreted to reflect discrete sulphide and/or graphite mineralization in what are believed to be cherts underlying subdomain I_{E} with the more conductive portions, with conductances in the order of 15 to 20 mhos, reflecting local increases in pyrrhotite mineralization. Neither conductor appears to have been tested by previous diamond drilling.

Conductor 14 d is the northernmost expression of horizon 14 being best defined on line $10+00 \mathrm{~N}$ where the response character for both transmitting frequencies indicates a conductor over 30 m wide and at or extremely close to surface at $1+50 \mathrm{~W}$. No physical parameters could therefore be calculated. The conductor has no correlating magnetic features and is believed to reflect non-magnetic sulphide and/or graphite mineralization within cherts or possibly associated with a fault/shear zone in mafic volcanics. If not actually at surface, conductor 14 d could probably be investigated by trenching.

Conductor 15, a broad conductive horizon with an orientation slightly east of north, is situated at the west margin of an element of magnetic subdomain I_{E} on lines $2+00 \mathrm{~N}$ to $6+00 \mathrm{~N}$. The conductor is coincident with the northern arm of Hiram Lake and is semi-coincident with moderate to strongly magnetic features within subdomain I_{R}. The HLEM survey results indicate a shallow or near surface conductor of good conductance but, due to the distorted responses, no confident estimate of parameters could be made. Conductor 15 is interpreted to reflect sulphide and/or graphite mineralization in cherts and/or mafic volcanics with local increases in pyrrhotite mineralization indicated by the magnetic results. Conductor 15, if it has a dip of 30 W conformable to the stratigraphy, would have been tested by holes 103 and 106 both of which indicate extensive pyrrhotite mineralization in a chert unit.

Conductor 17 is situated at approximately $15+00 \mathrm{~W}$ on lines $1+00 \mathrm{~S}$ and $0+00$ where it is open to the north due to the proximity of the property boundary. The responses are complex, indicating a broad conductive source which may possibly be resolved into multiple horizons if a shorter coil separation is employed. The conductances calculated from the 444 Hz data are in the order of 300 mhos and the conductor is believed to be at or near surface. This interpretation is supported by the magnetic results with coincident highly magnetic features within subdomain $\mathrm{I}_{\Omega} \mathrm{I}_{\mathrm{J}}$ reflecting the magnetite iron formation known to exist at this location.

Conductor 17 does not continue south of line $1+00 \mathrm{~S}$ and is believed to be bounded by a major regional structural feature indicated by fault f_{7}. The edge of conductor 17 may have been tested near surface by drill hole S-57-3, completed with a packsack drill, and identified in trenches at its eastern margin on line $1+00 \mathrm{~S}$ but the main body of the conductor remains to be properly investigated.

Horizon 18, situated on the eastern margin of the magnetite-rich iron formation described with conductor 17 above, is interpreted to have four separate components, two of which have been tested by diamond drilling. The results obtained in the current geophysical program, acknowledging that the line spacing is relatively coarse with respect to the geology, indicate a degree of crossfaulting and right handed displacement about east-northeast trending faults. This sense of displacement is contrary to the left lateral displacement inferred elsewhere on the property but must be considered a possibility given both the known structural complexity to the north and the proximity of the major felsic intrusive immediately west of the grid. This sense of right lateral displacement is also supported by displacement of elements of conductive horizon 19 (see below).

Conductor 18 a is a single line response interpreted at $13+40 \mathrm{~W}$ on line $1+00 \mathrm{~S}$ being bounded to the south and north by faults f_{7} and f_{70}, respectively. The causal source is interpreted to be at a depth of up to 30 m below surface and have a conductance in the order of 50 mhos. Conductor 18a is situated on the east flank of a broad moderately magnetic feature which may reflect a component of the magnetite iron formation or a locally more mafic element of the volcanic package. Conductor 18a is therefore interpreted to reflect sulphide and/or graphite mineralization probably
associated with chert and is believed to have been tested by drill hole JM1.
Conductor 18b has an average northerly trend from $14+00 \mathrm{~W}$ on line $0+00$ to $5+00 \mathrm{~N}$ where it is bounded by fault f_{20}. The conductor is only partially surveyed on most lines due to the proximity of the property boundary but is fully surveyed on line $0+00$ where a conductance of 300 mhos and a depth of less than 10 m to the causal source were interpreted from the 444 Hz dataset. Conductor 18 b is coincident with magnetic features along its entire length, the features being moderately magnetic in comparison to the features associated with conductor 17 immediately to the west. However, conductor 18 b is also believed to reflect primarily magnetite-rich iron formation with associated sulphide minerals and graphite. Hole JM 2 tested conductor 18 b in the vicinity of $4+00 \mathrm{~N}$.

Conductor $18 b$ appears to be displaced horizontally in a left-lateral sense by about 50 m from conductor 18 a to the south. In contrast, right lateral displacement in the order of 100 m is inferred about the plane of fault f_{10} at $5+50 \mathrm{~N}$ between conductors 18 b and 18 c . Conductor 18 c is a highly conductive, discrete feature which may be locally confined or have a strike extent up to 250 m . This uncertainty in the strike extent of conductor 18 c is due to the deviation of the survey lines from an idealized grid at this location. The conductances and magnetic setting of conductor 18 c are identical to those for conductor 18 b but a slightly greater depth to the causal source of 15 m is calculated. The interpretation of conductor 18 c is identical to that for conductor 18 b .

Conductor 18 d is only partially defined on line $8+00 \mathrm{~N}$ at the western extent of the grid but indicates a highly magnetic and conductive feature of similar quality to conductors 18 b and 18 c .

Conductive horizon 19 is 150 to 200 m east of and subparallel to horizon 18 and has been dividied into three conductive elements. The horizon as a whole is interpreted to reflect a narrow, moderately conductive feature which is situated wholly within an element of subdomain I_{B}. Horizon 19 is interpreted to reflect nonmagnetic sulphide and/or graphite mineralization in cherts or possibly mafic to intermediate volcanics with local concentrations of magnetic (pyrrhotite?) mineralization where semi-coincident isolated, moderately magnetic features are recorded. Horizon 19 does not appear to have been tested by either diamond drilling or surface mapping and trenching.

Horizon 19 extends from line $2+00 \mathrm{~N}$ to $7+00 \mathrm{~N}$ where it is bounded by fault f_{11} and may continue further north but this cannot be interpreted with certainty at this time. The strongest portion of horizon 19 is conductor 19 b which has an orientation of N 20 E from $12+50 \mathrm{~W}$ on line $3+00 \mathrm{~N}$ to $5+00 \mathrm{~N}$ with conductances of up to 40 mhos recorded in the 444 Hz dataset. Depths to the causal source are in the order of 15 to 20 m and the conductance of conductor 19 b appears to decrease in a south to north direction with a conductance of only 8.5 mhos being calculated on line $5+00 \mathrm{~N}$.

Parameters could not be calculated for the other elements of horizon 19.
Conductor 20 is a very strong, single line conductor open to the north and interpreted to be centred at $10+60 \mathrm{~W}$ on line $8+00 \mathrm{~N}$. The response recorded in the 1777 Hz dataset is distorted due to mutual interference with the response of weak conductor 21 some 90 m to the east but it was possible to estimate a conductance of 230 mhos from the 444 Hz dataset (see Maps 3a and 4a). The causal source is estimated to be in the order of 10 m below surface and is situated within an element of magnetic subdomain I_{B} with no correlating magnetic features. Conductor 20, while exhibiting similar conductance to horizon 18 immediately to the west and southwest, is interpreted to reflect a totally different mineralized horizon. Conductor 20 most probably reflects non-magnetic sulphide and/or graphite mineralization associated with cherts and remains untested at this time.

Conductor 22 is interpreted to reflect two narrow, weakly conductive features centred about $10+00 \mathrm{~W}$ on line $3+00 \mathrm{~N}$. No physical parameters could be estimated for these features which are considered to be of some interest as they correlate with the broad highly magnetic feature within magnetic subdomain I_{H}. At present mafic intrusives and/or mafic to intermediate volcanics are believed to underlie this sector of the property but no detailed mapping is recorded in this area. It is therefore possibly that conductor 22 reflects weak sulphide mineralization associated with cherts but is not considered a priority target at this time.

There are several conductors within magnetic domain III, some of which may warrant further investigation. The mafic to intermediate volcanics inferred to underlie domain III are interpreted to belong to a different lithologic package than that underlying domain I . The orientation and strike extent of individual features cannot be defined with confidence.

The first of these is conductor 23 which has an orientation of N 25 W from approximately $2+00 \mathrm{~W}$ on line $15+00 \mathrm{~N}$ to line $16+00 \mathrm{~N}$ where the conductive horizon pinches out or is bounded by a structural feature. Conductor 23 is of moderate conductance on line $16+00 \mathrm{~N}$ and is interpreted to have an approximate dip of 60 W and be at a depth of 10 to 15 m below surface. The conductor has no persistent correlating magnetic feature but is either crosscut by or coincident with fault f_{18} which is tentatively interpreted from both the magnetic and HLEM datasets. Conductor 23 is therefore interpreted to reflect non-magnetic sulphide and/or graphite(?) mineralization possibly associated with a fault/shear zone within mafic to intermediate metavolcanics and/or mafic intrusives. No further interpretation can be made at this time.

Conductor 24 is situated on the west end of a lake, immediately southeast of conductor 23 , on lines $14+00 \mathrm{~N}$ and $13+00 \mathrm{~N}$. A conductance of 8.5 mhos and a depth to the causal source of 30 m were computed from the 1777 Hz data on line $14+00 \mathrm{~N}$. These results illustrate the generally low amplitudes and somewhat nebulous response character associated with conductor 24 . The interpretation of conductor 24 is similar to that of conductor 23 although the presence of a
correlating fault/shear zone is much less certain.
Conductor 25 is a single line response at $2+75 \mathrm{~W}$ on line $13+00 \mathrm{~N}$ of similar character and magnetic correlation to conductor 24 . No physical parameters can be calculated from the response which indicates low conductivity. However, conductor 25 is of some interest as it is semi-coincident with fault f_{13} and extremely weak, possible bedrock conductors are tentatively identified by question marks immediately to the north and south. The causal source of conductor 25 is interpreted to be weak sulphide mineralization associated with a fault or shear zone in mafic to intermediate volcanics.

Conductor 26 is coincident with Edwards Lake on line $14+00 \mathrm{~N}$ to the northern property boundary at $17+00 \mathrm{~N}$. The orientation of conductor 26 , which is approximately NW, is coincident with a major regional fault. The conductor is of variable quality along its length, the strongest responses being recorded on lines $15+00 \mathrm{~N}$ and $16+00 \mathrm{~N}$. A conductance of 5.5 mhos and a depth to the target of 10 m were estimated on the latter line from the 1777 Hz dataset. It is at this location that conductor 26 was tested by Cominco hole D in 1954 which intersected graphite schist in volcanics. No further investigation of this conductor is recommended at this time.

Conductor 27 is of more immediate interest in the current exploration program given its approximate northeast orientation and proximity to lineament Ll which is discussed in Section 9.3. Weak responses, primarily quadrature in nature, are recorded from $1+00 \mathrm{E}$ on line $9+00 \mathrm{~N}$ to $5+75 \mathrm{E}$ on line $13+00 \mathrm{~N}$ where the conductor is bounded by regional fault f_{19}. Conductor 27 is coincident with a creek from Edwards Lake along the majority of its length and, while there is definitely a topographic component to the response, is tentatively interpreted to reflect weak mineralization associated with a northeast fault or shear zone. The best response is recorded on line $12+00 \mathrm{~N}$ where a conductance of 25 mhos and depth to the target of 30 m were computed from the 444 Hz dataset.

Conductor 28 is a single line response at $3+75 E$ on line $4+00 \mathrm{~N}$ which may be related to horizon 1. This inference is only tentative as conductor 28 is situated wholly within magnetic domain III but is not far displaced from fault f_{13} which is interpreted to correlate with conductor 1d to the south. Conductor 28 is estimated to have a moderate to strong conductance, in the order of 75 mhos , and be at a depth of about 30 m below surface as computed from the 1777 Hz dataset. The causal source is interpreted to be near vertical but the profiles from both datasets suggest a possible easterly dip to the conductor. The parameters estimated from the 444 Hz dataset are in general agreement from those from the 1777 Hz data but, due to the distorted response, are not felt to reflect representative amplitudes.

Conductor 28 does not have any correlating magnetic features and is interpreted to reflect non-magnetic sulphide and/or graphite mineralization possibly associated with a fault or shear zone in mafic to intermediate volcanics, mafic intrusives or in cherts. As it is known that it is not possible to delineate these different lithologies
from the dataset in its current form and given the available geological information, the interpretation of the causal source of conductor 28 must remain tentative at this time.

Magnetic domain II is characterized by narrow, weakly conductive horizons of a north to slightly east of north orientation conforming to that described by the ultramafics underlying this domain.

Conductors $30,30 \mathrm{a}, 31,32$ and 33 generally have correlating magnetic features and are interpreted to reflect weak sulphide mineralization possibly associated with sheared volcanic/sedimentary units in the ultramafics. Parameters can only be calculated from the higher transmitting frequency results. Conductances range from 5.5 to 15 mhos and depths are highly variable, being estimated at less than 10 m and up to 40 m below surface. No further interpretation of these conductors can be made at this time.

APPENDIX 4 - LITHOGEOCHEMICAL PROCESSING TECHNIQUE

METHODS OF MICROCOMPUTER-BASED DATA PROCESSING APPLIED TO THE LITHOGEOCHEMICAL EXPLORATIUN FOR VOLCANOGENIC MINERALIZATION

John M. Siriunas, P.Eng. MPH Consulting Limited Toronto, ontario

Paper prepared for the Computer Applications in Mineral Exploration 1984, ConEerence and Exhibition, Toronto, January, 1984

GENERAL OVERVIEW

In their 1979 review of the subject, Govett and Nichol (1979, p. 339) defined lithogeochemistry as "the determination of the chemical composition of bedrock material with the objective of detecting distribution patterns of elements that are spatially related to mineralization". Within the framework of this definition, lithogeochemical techniques can be used at a variety of scales or levels, all of which can aid the explorationist in pinpointing a possible mineral deposit. From the most regional or megascopic scale to the most detailed or macroscopic these approaches (Figure 1) include:

1) the resolution of metallogenic provinces and/or rock type classifications and studies (100-1000 km scale)
2) the identification of mineralized volcano-sedimentary belts or mineralized intrusives ($10-100 \mathrm{~km}$ scale)
3) the identification of alteration trends, primary dispersion halos and favourable stratigraphic horizons (0.1-10 km scale) 4) ore deposit evaluation (including classical assaying)

At MPH Consulting Limited, microcomputer-based data processing methods are applied to lithogeochemical studies used on a variety

USES OF LITHOGEOCHEMICAL STUDIES

Figure 1.
of these exploration levels, particularly in association with programmes of exploration for volcanogenic base metal and gold deposits. These methods are routinely utilized to aid concurrent geological mapping and sampling or alternatively they can be undertaken as independent study projects.

CONCEPTUAL MODEL

Base and precious metal mineral deposits occur under special geological conditions where the commodities sought after occur in concentrations on the order of 500 to 5,000 times background crustal abundances and may therefore be exploited at a profit.

To realize these geological concentrations, metals must be extracted or leached from a relatively diffuse environment and transported to a locus where conditions are favourable for their deposition. The hydrodynamic systems which are generated around thermal anomalies in the crust (e.g. volcanic centres) are the principal method to achieve this end. Heat conduction and fluid convection through the surrounding rocks are integral factors of the processes that control the geochemical environment for the dissolution and precipitation of metallic and other components (see Figure 2).

Consistent and distinctive patterns of elemental or oxide enrichment or depletion are documented to occur within the rocks in the vicinity of felsic volcanic centres where solfataric activity is known to have taken place; of course, it is those patterns which were developed concomitant with the significant enrichment of base and precious metals which are the ones that the explorationist wishes to study. Briefly, the element and oxide patterns of major importance to the study include the enrichment of magnesia, total iron, silica, carbon dioxide, with or without potash, and the depletion of soda and lime for magnesia around gold deposits).

The close spatial and time relationship between chemical sediments and syngenetic ore in many Archean base metal and gold deposits intimates that these sediments may be used as indicators of possible stratigraphic zones in which economic stratabound sulphide mineral accumulations may be located. Primary dispersion from a volcanic centre as exemplified by trace element data can be used to identify or map mineralized horizons or to define multielement haloes around mineralized zones (Scott et al, 1982). These types of studies can be greatly enhanced by the examination of only specific mineral fractions (e.g:, sulphides or chlorites). Some enrichment of the trace elements may also be identified in the host rocks immediately stratigraphically below an ore deposit.

The principles of the mineralization process are universal. It requires only that the proper pathfinders be employed in the exploration effort.

MICROCOMPUTER UTILIZATION

In conjunction with a geological survey, the geochemical analysis of rock and drill core or cutting samples for the major and minor rock-forming oxides and/or trace elements can be used to help characterize rock types or to aid in identifying unusual chemical features or elemental distributions which may be present due to some mineralizing process. These features may be recognized on both a regional or local scale. At MPH, specialized microcomputer software has been assembled, which in combination with a variety of standard in-house petrographic and mineralogical investigations is used to evaluate lithogeochemical data for the purposes of volcanic rock classification and the identification of specific geochemical conditions that may be the result of volcanogenic mineralization processes in Archean rocks.

The main microcomputer hardware used at MPH is comprised of a $2-80$ microprocessor with 64 K bytes of RAM and dual 390 K byte floppy disks. This is teamed with an intelligent terminal, a long-axis bi-directional plotter/printer and a modem to allow for a variety of input and output versatilities. Smaller field portable
microcomputers are routinely interfaced with the system, especially for the handing of geophysical data.

The data base used for the archiving of geochemical data allows Eor the storage of 32 major and minor oxide and trace element components as well as latitude, departure, subsetting qualifiers and the field description of each sample. Data is generally input Erom the keyboard, though it is possible to accept the data from remote sources using the modem.

STATISTICAL METHODS

A number of statistical methods are used for the preliminary interactive study of lithogeochemical data in conjuntion with volcanogenic mineral exploration. Many univariate statistical methods are found to be useful in the study and interpretation of various types of geochemical media and are exemplified by the examination of computer-generated histograms, their logtransformed equivalents and derived probability plots (Figure 3).

Multivariate techniques are used to carry out correlations and to evaluate the presence or extent of various geochemical anomalies. An extremely useful multivariate technique which is employed is the examination of bivariate (scatter) plots for a variety of data variables (Figure 4). These plots are particularly useful when

Figure ${ }^{3}$: Basic statistical manipulations utilizing log transformed data and corresponding probability plot.

Figure 4: Bivariate (scatter) plot with best-fit straight line
and correlation coefficient (r)
making chemo-stratigraphic correlations, when studying alteration patterns on a local scale or when examining other alteration phenomena.

Factor analysis was originally developed for use in experimental psychology but has been extensively applied to geology and geochemistry. The main use of factor analysis is to combine a group of intercorrelated data and plot a representation of the combined element variation so that a better exploration halo than could be recognized by any single element analysis can be defined. As an example of this, the observed distribution of $z i n c$ values in the favourable horizon surrounding an Archean stratabound ore body (Willroy No. 4 Zone, Manitouwadge) can be compared with factor scores for the model employing zinc-antimony-arsenic and tin components. A larger detectable halo is observed to be present using the factor model (Figure 5).

However, the main emphasis of the MPH approach to lithogeochemical exploration is by way of what is termed the volcanogenic evaluation. The key to this method is the examination of the alteration components that might affect the classification of rock type or be closely related to the processes of proximal volcanogenic mineralization.

Figure 5: Comparison of zn distribution and factor scores for the model employing $\mathrm{Zn}-\mathrm{Sb}-\mathrm{As}-\mathrm{Sn}$ (Sulphide Factor 2) at Willroy No. 4 ore zone.

GEOCHEMICAL ROCK CLASSIFICATIONS

One of the main pitfalls in classifying rocks geochemically is the sensitivity of the main classifying components (e.g., $\mathrm{K}_{2} \mathrm{O}$, $\mathrm{Na}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MgO}$ to alteration processes. Also, one system of classification may identify a particular rock differently from some other method of classification, especially when the rock has been severely altered. However, if we recognize that this may be the case, this circumstance can be used to our advantage when attempting to identify alteration patterns in volcanic rocks. If a number of classification methods including mineralogical or petrographic methods are utilized, any major discrepancy can be assumed to be associated with some style of geochemical abnormality that may be worthy of further investigation.

The classification schemes used by $M P H$ include the Jensen Cation Plot (Jensen, 1976; Grunsky, 1981) and the method described by Irvine and Baragar (1971). The Jensen scheme is based strictly on the chemistry of the (subalkaline) volcanic rock while the Irvine and Baragar method is based in part on the normative mineral percentages calculated from the major rock forming components and on an AFM ternary plot. In addition to these two schemes, rocks are classified based on their silica and titania content. These latter methods, though not nearly as complex, are less sensitive (especially titania) to alteration processes (Spitz and Darling,
1975). Since all these classification schemes are designed to be used exclusively on volcanic rocks, all terminology contained therein for the classification of non-extrusive volcanic rock types is in terms of chemo-volcanic equivalents.

In addition to the major classifications that are performed, minor features such as high values for loss on ignition or potash to soda ratios are noted for the information of the interpreter. All computer classifications are performed using arithmetic algorithms so that plotting is not inherently necessary, however, it is the option of the user to have ternary plots made by the online plotter (Figure 6).

ALTERATION FEATURES

Alteration components that might affect the classification of rock type or be closely related to volcanogenic mineralization are examined within the computer programme. These are divided into those inherently associated with base metal mineralization and those closely allied to mafic-hosted gold mineralization.

Volcanogenic Base Metals Evaluation

The key to this evaluation method is the identification of depletion or enrichment trends in total iron, the alkali oxides and alkali earth oxides within felsic volcanic rocks. These

Figure 6: Ternary plots for rock classification
trends as were examined earlier, are recognized to form integral parts of the overall ore-forming process in mineralized Archean systems.: These features are examined by a number of methods. Qualitative enrichment or depletion trends or "residuals" are calculated by a comparison of observed versus "average" ratios of alkali or iron to silica as observed in suites of rock studied in a number of published and unpublished studies (Descarreux, 1973; Lavin, 1976; McConnel1, 1976; Sopuck, 1977). An indication of the residual silica content is derived from a comparison with the alumina content of the rock. Suites of rocks from the Abitibi orogenic belt form a large portion of this "average" population.

A more quantitative evaluation is provided by calculating what is herein designated as the "total alkali alteration score" or TAAS. This alteration score is derived from the ratio of those oxides expected to be enriched due to alteration with respect to the total alkali content (i.e. $\left(\mathrm{MgO}+\mathrm{K}_{2} \mathrm{O}\right) /\left(\mathrm{CaO}+\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}+\mathrm{MgO}\right) \mathrm{x}$ 100, after Hashimoto, 1977). As the magnesia and potash contents of a volcanic rock increase with respect to the total alkali content, the TAAS approaches 100. Average values for subalkaline mafic to felsic volcanics lie between 35 and 50 . Subalkaline komatiites and alkaline volcanics will typically exhibit alteration scores greater than 70 due to their inherently high magnesia and potash contents respectively. Highly altered felsic volcanic rocks will have values in excess of 80 or 90.

Discriminant analysis is a statistical technique that can be used to help "discriminate" between different populations (for example a background and anomalous population) within a larger population of multivariate data. Based on known data, an equation with varying proportions or weightings of the component elements is generated, When the equation is solved with the various data from a sample point, the magnitude of the scalar product sum is used to classify that particular sample as "background" or "anomalous". As with most populations there is some overlap, but the equation is selected so as to minimize the overlap between the two populations. It is anticipated that more subtle geochemical alteration features may be indicated by this technique and hence increase the areal extent over which an alteration halo can be observed.

Within the $M P H$ computer programme, five discriminant functions with varying components are used to classify the samples; the higher the discriminant score the more anomalous the sample. A table of the components of these functions is presented in Table 1. These particular discriminant functions were derived from published and unpublished studies of felsic volcanic rocks in the Abitibi, Wabigoon and Uchi belts of the Superior Province. Questions have been raised as to the universality of discriminant functions; contentions are that they are valid only for their
specific test populations. For this reason the five discriminant Eunctions are utilized so that the responses that work in different geological settings may be compared.

TABLE 1
DISCRIMINANT EUNCTIONS

Equation
DF1
DF2
DF3
DE4 DF5

Components*
$\mathrm{TiO}_{2},-\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO},-\mathrm{CaO},-\mathrm{Fe}_{\mathrm{T}}$
$\mathrm{Fe}_{\mathrm{T}}, \mathrm{Zn}$
$\mathrm{Fe}_{\mathrm{T}}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{Zn}$
$\mathrm{Fe}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO},-\mathrm{CaO}$
$\mathrm{MgO}, \mathrm{Fe}_{\mathrm{T}}, \mathrm{Mn}$
$\frac{\text { Source }}{(1)}$
(2)
(3)
(4)
(2)
(1) Marcotte and David, 1981 (See also Valiquette et al, 1980)
(2) Sopuck, 1977

* Components for DF2 through DFS are all residual values.

Volcanogenic Gold Evaluation
Analogous to the evaluation for base metal potential, there are geochemical features that can allude to the presence of syngenetic gold mineralization in mafic Archean terrains. Just as felsic volcanic environments are important to the prospects of base metal mineralization, the presence of magnesium-rich tholeiites or komatiitic rocks is recognized to be important to the prospects of syngenetic gold mineralization (Eyon and Crocket, 1981). Though minor felsic volcanics are occasionally present, the largest proportion of wall rock is expected to be the komatiites and/or tholeiites supposedly as a source rock for much of the gold. The
primary distinction in evaluating a suite of mafic volcanic rocks for gold is, therefore, made by determining its rock classification.

The most obvious alteration patterns associated with gold mineralization tend to be related to the development of carbonate minerals (especially magnesium-bearing carbonates) (Fyon and Crocket, 1981; Whitehead et al, 1981). Carbonatization can be recognized by a ratio of weight percent carbon dioxide to lime, a ratio greater than 1.5 being considered significant. In that typically only LOI analyses will be available for most whole rock analyses, carbon dioxide content can be conservatively approximated by a portion of the LOI content. Alteration mineral assemblages in komatiitic rocks and high magnesium tholeiites can also be estimated from LOI analyses and are included as a measure of the degree of alteration (i.e., carbonatization).

Anomalies in the peraluminosity index $\left(\mathrm{Al}_{2} \mathrm{O}_{3} /\left(\mathrm{CaO}+\mathrm{K}_{2} \mathrm{O}+\right.\right.$ $\left.\mathrm{Na}_{2} \mathrm{O}\right) \times 100$) of volcanic rocks are reported to surround the producing mines in the Red Lake mining camp (MacGeehan and Hodgson, 1981). This relative entichment in alumina is primarily due to the local depletion of soda near the deposits.

The old adage that "gold is the best indicator of gold" is still one of the most important factors when engaged in the search for
gold mineralization. High gold contents in volcanic rocks and chemical sediments are cited as good indicators of gold mineralization by many investigators. Good success in discriminating between volcanic rocks associated with gold mineralization from those which are not is also reported by the use of the absolute potash and arsenic contents of those rocks (Whitehead et al, 1981).

PRESENTATION OF RESULTS

Results of the volcanogenic evaluation are available to the user in a number of formats. A data set can be quickly and interactively reviewed on the terminal. Information displayed includes rock type designations, residual, discriminant function and ratio calculations and the original data can be accessed for interpretive comparison. The evaluation portion has been separated into those features which, as discussed, are intrinsically associated with base metal deposits and those which are associated with gold mineralization. Anomalous or favourable results of the evaluations are flagged and highlighted.

Hard copy output are available for each sample (Figure 7) or summaries of the anomalous quantities for each sample may be tabulated.

JEHSEH CLASSIFICATIOH: Sulie and rock iype (1)
IRVIHE/BARAGAR CLASSIFICATIOM: Sulte, roct iype and oivision (2)
SIO2 CLASSIFICATIOM, Rock lype (3)
TIO2 CLASSIfICATIDM, Roct*iype (3)
mammin <- Flag classifleatlon discrepancy
Rock ls hlghly aliered (carbonate ete) (- Flag high Lol content Rock ls poiast- or soda-rich <- (4)
 [Highlight heading if favourable rock iype, underdine if numerous anomalies $]$ EEXARHINGYEM SIO2 content TOO LOW for occepled volcanogenic siudies men * Flag samples with <602 SiO2 -*

[Highlight heading if fovouroble rock iype, underiline if numerous anomalies J Eni Fevourable wall rock is present EnE

- Flog Mg-tholeilites and komatilites (Jensen ejassification) -a

Carbonatealteration assemblage present (14)

Original Data							
5102	A 1203	Fe203	FeO	CaO	MgO	Ha 2 S	K20
T102	Mno	P205	101	$\mathrm{CO2}$	Crio3	$2 r$	Sr
Rb	8a	W	U	Th	Cu	Zn	Pb
H1	Au	Ag	5	As	Sb	${ }^{1} 1$	$\times 2$

References and explanations:

1) Jensen, 1976; Grunsky, 1981
2) Irvine and Baragar, 19.71
3) Spliz and Darling, 1975
4) Brooker, 1979
5) Sopuck, 1977
6) from Al203(R); Sopuct, 1977
J) Total Alkali Alteration Score*, after Hashimoto. 1977 in Brooter, 1979
7) MgO, CaO, Me 20 , Fe203 Jimdte from MeConnell. 19% K20, Sio2 11mits from Descarrcoux, 197J
8) Marcilie and David, 1981
9) Sopuck, 1977
10) Peralumlnosity Index
11) Whitehead et al, 1981

1J) MacGechan and Hodgson, 2981
14) Fyon and Crockei, 1981

Figure 7: Presentation format of evaluation output

Figure 8: $X-Y$ plot (TAAS values posted)

Where spatial information is available for the data, small scale plots may be generated on the plotter (Figure 8). Alternatively, the data may be transferred to a remote facility for the plotting and contouring of large scale plots. The evaluation features of the output may furthermore be presented in vector-style histograms for easier visual examination (see Figure 9). Favourable results are plotted in the upper halves of the circles. Full height of each histogram is approximately equal to the corresponding 3 s level or equivalent. If "favourable" rock types are not present for a particular evaluation (e.g. less than $60 \% \mathrm{SiO}_{2}$ for the base metals evaluation, or no Jensen-classified komatiites or Mg-tholeiites for the gold evaluation), the histogram lines are drawn in a dashed fashion. If half the evaluation factors have been identified as being anomalous, a heavy ring is drawn near the centre of the diagram indicating such.

THE APPLICATION OF LITHOGEOCHEMISTRY

The acceptance of lithogeochemistry as an exploration tool is not prevalent in the exploration community. In fact, in Canada yeochemical techniques in general have had their credibility questioned over the past several years. Part of the reason for this lack of accreditation may arise from the fact that univariate statistics are believed to be as sophisticated a level as one needs to attain to explain most geochemical data. To a degree this is understandable; the extreme tenor of alteration that is present in a particular volcanic rock sample, while accurately

Figure 9 : Evaluation results for bedrock pillowed volcanic samples from Amulet Upper 'A' deposit (Geology and analytical data from Hall, 1982)
portrayed in the chemistry of the rock, was known weeks (or months) previous by the mere examination of the sample in hand specimen or outcrop. But today, now that rapid and inexpensive, reproducable geochemical analyses are available for a great number of elements or oxides and now that a variety of research and/or case history studies are generally available, many new opportunities may be presented and applied to mineral exploration.

The effectiveness in lithogeochemistry lies in the ability of the explorationist to rapidly and cost-effectively, through the use of microcomputers, examine data, within the context of favourable geologic environments, and to select subtle or multivariate trends which may occur even within areas which are intensely and apparently uniformly altered. These trends, whether determined by discriminant analysis, factor analysis, residual mapping or some other technique can ideally "vector" an exploration effort towards mineralized volcano-sedimentary rocks and/or towards locales of syngenetic mineral accumulation.

The lack of outcrop in many areas of Archean bedrock (especially in Canada) or deep (i.e. expensive) diamond drill holes raises some questions about how to accumulate a statistically significant sample population. With the adoption of the results of regional or "universal" studies (as have been incorporated in the
procedures at MPH), information from small sets of data can be comparatively examined with some degree of confidence.

Lithogeochemistry is not to be promoted as the ultimate solution to volcanogenic mineral exploration but neither is it merely a superfluous distraction. When utilized in intimate conjunction with proper geological information or assisted by geophysical methods and data processing techniques, lithogeochemical methods can be employed to yield information that will be of prime importance to exploration strategy and decisions.

REFERENCES

Beswick, A.E., 1981, Regional alteration in Archean greenstone belts of the Superior Province: applications to exploration for massive Cu-zn sulphide deposits: Ont. Geol. Survey, OFR 5367, 18 p.

Brooker, E.J., 1979, Lithogeochemistiry as an exploration technique: Paper presented at Prospector's and Developer's Association, 47th Annual Meeting, 1979, Toronto.

David, J.C., 1973, Statistics and Data Analysis in Geology. John Wily and Sons Inc., New York, 550 P

Descarreaux, J., 1973, A petrochemical study of the Abitibi volcanic belt and its bearing on the occurrences of massive sulphide ores: CIMM Bull. v. 66, no. 730, pp. 61-69.

Fyon, J.A. and Crocket, J.H., 1981, Volcanic environment and carbonate alteration and stratiform gold mineralization, Timmins Area, pp. 47-58 in Genesis of Archean volcanic-hosted gold deposits,, Symposium held at the University of Waterloo, March 7, 1980: Ont. Geol. Survey, MP97, 175 p.

Goodwin, A.M., 1977, Archean volcanism in Superior Province, Canadian Shield: Geol. Assoc. Canada, Spec. Paper 16, pp. 205-241.

Govett, G.J.S. and Nichol, I., 1979, Lithogeochemistry in mineral exploration, pp. 339-362 in Geophysics and Geochemistry in the Search of Metallic Ores, Geol. Survey Canada, Econ. Geol. Report 31, 811 p :

Hall, B.V., 1982, Geochemistry of the alteration pipe at the Amulet Upper A deposit, Noranda, Quebec: Can. Jour. Earth Sci., v. 19, pp. 2060-2084.
ashimoto, K., 1977, The Kuroko deposits of Japan - geology and exploration strategies: Assoc. Ing. Min. Metal. Geol. Mexico, Mem. Tec. XII, pp. 25-88.

Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Can. Jour. Earth Sci. v. 8, pp. 523-548.

Jensen, L.S., 1976, A new cation plot for classifying subalkalic volcanic rocks: Ont. Geol. Survey, MP66, 22 p .

Lavin, O.P. 1976, Lithogeochemical discrimination between mineralized and unmineralized cycles of volcanism in the Sturgeon Lake and Ben Nevis areas of the Canadian Shield: Unpublished M.Sc. thesis, Queen's Univ., 249 p.

Marcotte, D. and David, M., 1981, Target-definition of Kuroko-type deposits in Abitibi by discriminant analysis of geochemical data: CIMM Bull., v. 74,, no. 828, pp. 102-108.

MacGeehan, P.J. and Hodgson, C.J., 1981, The relationship of gold mineralization to volcanic and alteration features in the area of the Campbell Red Lake and Dickenson Mines, Red Lake Area, Northwestern Ontario, pp. 94-1l0 in Genesis of Archean volcanic-hosted gold deposits, Symposium held at the University of Waterloo, March 7, 1980: Ont. Geol. Survey, MP97, 175 p.

McConnell, J.W., 1976, Geochemical dispersion in wall-rocks of Archean massive sulphide deposits: Unpublished M.Sc., thesis, Queen's Univ., 230 p.

Saager, R., Meyer, M. and Muff, R., 1982, Gold distribution in supracrustal rocks from Archean greenstone belts of Southern Africa and from paleozoic ultramafic complexes of the European Alps: metallogenic and geochemical implications: Econ. Geol.. v. 77, Pp. 1-24.
ott, S.D., Kalogeropoulos, S.I., Shegelski, R.J. and Siriunas, J.M., 1982, Tuffaceous exhalites as exploration guides for volcanogenic massive sulphide deposits: 9th Int. Geochem. Explor. Symposium, May 12-14, l982, Saskatoon, Program with abstracts, pp. 55-57 (abstract).

Sopuck, V.J., 1977, A lithogeochemical approach in the search for areas of felsic volcanic rocks associated with mineralization in the Canadian Shield: Unpublished Ph. D. Thesis, Queen's Univ.

Spitz, G. and Darling, R., 1975, The petrochemistry of altered volcanic rocks surrounding the Louvem copper deposit, Val d'Or, Quebec: Can. Jour. Earth Sci., v. 12, pp. 1820-1849.

Thomson, I., 1982, Accomplishments in exploration geochemistry: a Canadian perspective: Can. Mining Jour., v, 103, no. 4, pp. 78-81.

Valiquette, G., Mellinger, M. and Gagnon, Y., 1980, Lithogeochimie des roches volcaniques de la region Normetal (Cantons de Desmeloizes, Perron et Clermont): Ministere de l'Energie et des Ressources du Quebec, DPB-710, 90 p.

Whitehead, R.E.S., Davies, J. F., Cameron, R.A. and Duff, D., 1981, Carbonate, alkali and arsenic anomalies associated with gold mineralization, Timmins Areas, pp. 318-333 in Geoscience Research Grant Program, Summary of Research 1980-1981, edited by E.G. Pye: Ont. Geol. Survey, MP98, 340 p.
cott, S.D., Kalogeropoulos, S.I., Shegelski, R.J. and Siriunas, J.M., 1982, Tuffaceous exhalites as exploration guides for volcanogenic massive sulphide deposits: 9th Int. Geochem. Explor. Symposium, May 12-14, 1982, Saskatoon, Program with abstracts, pp. 55-57 (abstract).

Sopuck, V.J., 1977, A lithogeochemical approach in the search for areas of felsic volcanic rocks associated with mineralization in the Canadian Shield: Unpublished Ph.D. Thesis, Queen's Univ.

Spitz, G. and Darling, R., 1975, The petrochemistry of altered volcanic rocks surrounding the Louvem copper deposit, Val dor, Quebec: Can. Jour. Earth Sci., v. 12, pp. 1820-1849.

Thomson, I., 1982, Accomplishments in exploration geochemistry: a Canadian perspective: Can. Mining Jour., v. 103 , no. 4, pp. 78-81.

Valiquette, G., Mellinger, M. and Gagnon, Y., 1980, Lithogeochimie des roches volcaniques de la region Normetal (Cantons de Desmeloizes, Perron et Clermont): Ministere de l'Energie et des Ressources du Quebec, DPB-710, 90 p.

Whitehead, R.E.S., Davies, J.F., Cameron, R.A. and Duff, D. , 1981, Carbonate, alkali and arsenic anomalies associated with gold mineralization, Timmins Areas, pp. 318-333 in Geoscience Research Grant Program, Summary of Research 1980-1981, edited by E.G. Pye: Ont. Geol. Survey, MP98, 340 p.

APPENDIX 5 - EQUIPMENT SPECIFICATIONS

Description

he "OMNI PLUS" geophysical Istem combines the OMNIIV "Tie-Line" magnetometer and gradiometer together with a VLF heasurement capability. The OMNI PLUS VLF/Magnetometer System has been developd in co-operation with Geohysical Surveys Inc. Of Quebec, Canada.
his brochure concentrates on he VLF magnetic and electric field parameters measured and recorded by the OMNI PLUS. More hformation on the OMNI PLUS nagnetometer system and tieline capabillty is available in the QMNI IV brochure.

Features

ach OMNI PLUS incorporates the following features:

Measurement and recording in memory of the following VLF data for each field reading: - total field strength,

- total dip,
- vertical quadrature or, alternately, horizontal amplitude,
- apparent resistivity,
- phase angle,
- time,
- grid co-ordinates,
- direction of travel along grid lines, and
- natural and cultural features.

Complete data protection for
a number of years by an
internal lithium backup battery.
"Tie-Line" or "Looping" algorithm, unique only to EOA'S OMNI IV and OMNI PLUS Series, for the self-correction of atmospheric variations and variations in the primary field from the VLF transmitter.

- Measurement of up to three VLF transmitting stations to provide complete coverage of an anomaly regardless of the orientation of the survey grid or of the anomaly itself.
- Display descriptors to monitor the quality of the VLF signal being measured.
- Choice of three data storage modes:
- spot record, for readings without grid co-ordinates
- multi record, for multiple readings at one station
- auto record, for automatic update of station number
- Output of grid co-ordinates with the designated compass bearing, using $\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$ descriptors.

Major Benefits

- Combined VLF/Magnetometer/Gradiometer System
The OMNI PLUS Incorporates the capabilities of the OMNI IV "TieLine" Magnetometer and Gradiometer System with the ablity to measure the VLF magnetic and electric fields.
Only one OMNI PLUS is needed to record all of the following geophysical parameters:

1. The total magnetic field
2. The simultaneous gradient of the total magnetic field
3. The VLF magnetic field, including:

- the total dip
- the total field strength of the VLF magnetic field
- the vertical quadrature, or alternately, the horizontal amplitude

4. The VLF electric field,
including:

- the phase angle
- apparent resistivity As an example, at each location the OMNI PLUS can calculate and
record in a matter of seconds, three VLF magnetic field and two VLF electric field parameters from two different transmitters, a magnetic total field reading and a simultaneous magnetic gradient reading.

- No Orientation Required

The OMNI PLUS requires no orientation, by the operator, of the sensor head toward the transmitter station. This simplifies field procedures as well as saving considerable survey time. When two VLF transmitters are measured, the benefits of this time-saving feature are automatically doubled. There is no requirement for the operator to orient himself and the sensor head toward the first selected transmitting station and then reorient towards the second transmitting station.
Consistent high quality data is achieved in the OMNI PLUS due to the utilization of three orthogonal sensor coils rather than two sensor coils used in conventional systems. The quality of data is not then dependent on the operator's ability to correctly orient the sensor head for optimum coupling with the transmitting station.
The OMNI PLUS compensates automatically for the direction of travel along the grid lines as well as for the angle of the sensors from the vertical plane through the use of tiltmeters.

- Three VLF Magnetic

 Parameters RecordedThe OMNI PLUS calculates and records in memory the:

- total dip
- total field strength
- vertical quadrature

The operator has the option to substitute the horizontal amplitude for the vertical
quadrature. The OMNI PLUS calculates each of these parameters from the In-phase and quadrature measurements of all three components.

Automatic Calculation of Fraser Filter
The OMNI PLUS automatically calculates the Fraser Filter, from the dip angle data, regardless of the interval between the stations along the grid lines. The operator no longer has to manually perform this mathematical calculation thereby reducing the possibllity of human error. The Fraser filter algorithm follows established conventions.
The operator can choose to output either the total dip or the Fraser filtered data, or both.

Calculation of Ellipticity The OMNI PLUS calculates the true. ellipticity of the VLF magnetic field from the measurement of the in-phase and quadrature of all three components. The ellipticity provides more Interpretative information about the anomaly than the dip angle and is less influenced by overburden shielding.

Automatic Correction of Primary Field Variations
The OMNI PLUS can be used as a base station to monitor primary field changes from up to three VLF transmitters as well as alternately measuring the variations in the magnitude of the earth's magnetic field. Only one OMNI PLUS is needed to perform both functions.
The OMNI PLUS base station can then automatically correct, by linear interpolation, the field units for these drift variations in the primary VLF and total magnetic fields.

- Measurement of VLF Electric Field

The OMNI PLUS calculates and records the apparent resistivity and phase angle from the measurement of the VLF electric field. This VLF electric field measurement can be accomplished by using capacitively or resistively coupled electrodes at spacings of 5,10 or 20 meters.

Other Benefits

- Automatic Tuning

The OMNI PLUS automatically tunes up to three VLF transmitters within a frequency range of 15 to 30 kHz , once the operator has programmed in the specific frequencies.

- Base Station Synchronization
The OMNI PLUS has a unique "count-down" feature which can be activated in the field unit upon synchronization with the base station. The field unit then displays and decrements the remaining time, in seconds, until the base station is scheduled to take a measurement. The operator can obtain a field reading at exactly the same time as the base station. The simultaneous field and base station measurements significantly improve the automatic correction accuracy.
- Automatic "Tie-Line" correction
The OMNI PLUS can automatically correct by ltself the VLF field data for atmospheric variations and changes in the primary field originating from the VLF transmitter. By tleing-back into one or several tiepoints on the grid, the OMNI PLUS will
automatically calculate and apply the drift measured to the field data previousiy recorded in memory. More information on this unique "tie-line" method can be obtained from page 3 of the OMNI IV brochure.
- Notation of Natural and Cultural Features
The OMNI PLUS can record natural and cultural features unique to each grid location. This capability eliminates the need for a field notebook and provides additional information that can assist in interpreting recorded data.

- Analogue Output

Since VLF as well as magnetic data Is often easier to interpret as a profile plot, data collected by the OMNI PLUS can be represented in analogue format at a vertical scale best suited for data presentation. The operator can selectively output in analogue and/or digital format, up to 10 of the following parameters:

- total dip
- Fraser filtered data
- ellipticity
- VLF total field strength
- vertical quadrature
- horizontal amplitude
- apparent resistivity
- phase angle
- magnetic total field strength
- magnetic vertical gradient
- Computer Interface

The OMNI PLUS can transfer uncorrected, corrected or filtered data to most computers with a RS232C port. In some cases, a DCA-100 Data Communications Adaptor may be required. Computers with collection packages including either " X -ON, X-OFF" or "ENQ/ACK"
communications protocol formats are also compatible.

2 Five frequencies: 22ᄅ, 444, 888,1777 and 3555 Hz .
3 Maximum coupled $\mathbf{C h o r i z o n t a l - l o o p j ~ o p e r a t i o n ~ w i t h ~}$ reference cable.

J Minimum coupled operation with reference cable.
J Vertical-loop operation without reference cable.

- Coil separations: 25, 50, 100, 150, 200 and 250 m (with cable J or 100, 200,300,400,600 and 800 ft.
] Reliable data from depths of up to 180 m (GODfu.
] Built-in voice communication circuitry with cable.
a Tilt meters to control coil orientation.

SPEㄷFICATIDNS:

020

REPORT ON

1991 EXPLORATION PROGRAM

 ON THE SWAYZE GREENSTONE BELT, ONTARIOFOR KIRKTON RESOURCES CORP.

November, 1991
Toronto, Ontario
om90-28
W.E. Brereton, P.Eng.
P.A. Sobie, B.Sc.

SUMMARY

A major exploration program has been completed on the Shunsby base metals property during 1991 on behalf of Kirkton Resources Corp. by MPH Consulting Limited of Toronto.

Located in the south portion of the Swayze greenstone belt some 130 km southwest of Timmins, Ontario, the Shunsby property has a history of exploration dating back to the early 1900's when the area was examined for its iron potential. In excess of 200 diamond drill holes have been completed on the property to date. This work has been focused on two small copper-zinc \pm lead, silver, cadmium) deposits, the so-called "Main" and "South" zones.

Significantly, good quality logging roads into the property area have recently been established. Kirkton's original interest in the property focused on the potential to develop an open pittable $\mathrm{Cu}-\mathrm{Zn}$ reserve relative to previous operators who mostly seemed to be trying to delineate a higher grade, underground mine. It was recognized by Kirkton that the greatly improved access into the area would play a significant role in the economics of the property and might permit the mining of lower grades.

The 1991 program has completed the surface exploration and computer-aided drillhole compilation work at Shunsby which commenced in 1989 with an extensive linecutting and ground geophysical program. This was followed in 1990 with a program focused primarily on a large stripping and trenching exercise aimed at locating some of the drill-indicated mineralization at surface. The 1991 program again had a large stripping, trenching and sampling component in follow-up to work commenced last year, but also included comprehensive geological mapping both on a property-wide scale and of a very detailed nature in the area of the deposits. Extensive petrographic and computer-supported lithogeochemical processing work was also carried out this year to assist in the classification of the various lithologies in the deposits area and the identification of hydrothermal alteration signatures associated with mineralization.

The results of the 1991 program, in concert with all of the previous work, allow a comprehensive understanding of the Shunsby property in terms of both geology and mineralization.

Geologically, it now appears incontrovertible that the entire sequence at Shunsby is overturned to the west such that true stratigraphic tops are, in fact, to the east. This has some critical, and previously unrecognized, exploration implications.

Three generalized geologic domains can be recognized from west to east, ie. oldest to youngest, on the Shunsby property namely a mafic volcanic-gabbro-iron formation domain exposed in the extreme west-central portion, a major pyroclastic-chemical sedimentary - clastic sedimentary domain with minor basalt which underlies the central and southwest portion of the property and an easterly/northeasterly mafic (basalt-gabbro) domain. This geological picture has been greatly complicated by folding, faulting and intrusive activity. The central domain is the most economically significant in that the Shunsby $\mathrm{Cu}-\mathrm{Zn}$ deposits occur near its stratigraphic top in a distinctive chert/argillite sequence.

Structurally, there do not appear to be any major fold closures on the property although considerable drag-folding, quite large scale in some cases and often related to east-west shearing, has been identified in a number of areas.

Evaluation of all of the exploration results to date suggests that the Shunsby mineralization consists of a large, structurally-controlled stringer system(s) centred on a thick, grossly pod-like or lensoid unit of predominantly cherty chemical sediments and their brecciated equivalents. This chert accumulation represents chemical sedimentation in a quiescent basinal environment on the flank of a major felsic-intermediate pyroclastic eruptive centre located to the south and west. Lithogeochemical processing as well as field and thin-section observations indicate a large-scale hydrothermal alteration system accompanies the mineralization.

Individual mineralized structures trend 120° on average and dip vertically. Very little of the mineralization is stratiform, ie $\mathrm{N}-\mathrm{S}$ striking and $30^{\circ}-50^{\circ} \mathrm{W}$ dipping. With virtually all of the old work predicated on a statiform model, it is now easy to understand why few of the old intersections "line-up" in a bedding-plane sense and hence the property's reputation as "erratic" or "difficult". This further has the ramification that the old drilling is virtually useless from an ore reserve standpoint and all of the previous ore reserve calculations, MPH's included, should be discarded. It is felt that at least seven individual structures are present within the overall stringer system with definite evidence in float of at least one more copper-bearing structure to the north of any presently known mineralization. The central structures appear to be the most copper rich. Those on the peripheries both to the north and south are more $\mathrm{Zn}-\mathrm{Pb}$ rich. There is also a great deal more Pb on the property than previously recognized with much of this in very late E-W fractures.

The stripping and trenching work, in 1991 particularly, indicates some attractive copper (\pm zinc) grades and widths associated with the known structurally-controlled mineralization and suggests that this material has ore-making potential if sufficient of it can be outlined. A trench across a portion of the Copper Breccia showing, for example, averaged 3.53% Cu over 5.0 m . Similarly, a 3.0 m sample across the Copper Knob structure averaged $2.59 \% \mathrm{Cu}$. A trench across the South Zone structure in the area of line 100 S averaged $10.77 \% \mathrm{Zn}, 2.75 \% \mathrm{~Pb}$ and $0.75 \% \mathrm{Cu}$ over 4.8 m .

Depending on the timing of the mineralizing hydrothermal event relative to volcanism, the entire system may have vented at the sea floor at the top of the Shunsby sedimentary sequence. Now that top directions are known, this venting, if it occurred, would have taken place along the string of strong, generally untested EM conductors to the east of the surface showings. Present (and previous) work has disclosed the presence of a mineralized glacial dispersion train along this corridor with some quite high grade samples pointing to the presence of some form of undiscovered mineralization here. Individual samples have returned up to $11 \% \mathrm{Cu}$.

It is concluded that a diamond drilling campaign is strongly warranted based on results to date and should proceed. An initial 10,000 feet of drilling should be allocated at a budget of $\$ 300,000.00$. This work should focus on an evaluation of the ore-making potential of the known stringer mineralization along with testing of key EM targets at the top of the Shunsby sedimentary sequence. All holes should be drilled on a northeasterly azimuth at - 45°. The stringer zones should be investigated by a number of continuous cross-sectional profiles with the EM targets being tested by a number of conductor-specific holes.

$020 c$
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 1
2.0 LOCATION ACCESS AND INFRASTRUCTURE 2
3.0 PROPERTY AND LEGAL 4
4.0 PREVIOUS WORK 7
5.0 EXPLORATION PROGRAM - OPERATIONS 15
5.1 General 15
5.2 Stripping and Trenching 15
5.3 Geological Mapping 17
5.4 Geochemistry and Petrography 17
5.5 Historical Drillhole Compilation 17
6.0 REGIONAL GEOLOGY AND MINERALIZATION 19
7.0 EXPLORATION RESULTS - 1991 PROGRAM• 24
7.1 Property Geology 24
7.1.1 General 24
7.1.2 Lithologies and Stratigraphy 25
7.1.3 Structure 30
7.2 Deposits Area Detailed Geology 32
7.2.1 General 32
7.2.2 Lithologies and Stratigraphy 32
7.2.3 Structure 39
7.2.4 Alteration and Mineralization 41
7.3. Lithogeochemistry and Petrography 44
7.4 Historical Drillcore 65
7.5 Stripping and Trenching 65
7.6 Geophysics 77
7.6.1 Magnetics 77
7.6.2 Electromagnetics 79
8.0 DISCUSSION 81
9.0 CONCLUSIONS AND RECOMMENDATIONS 84
REFERENCES

LIST OF TABLES

Page
Table 1 Exploration History 7
Table 2 Lithogeochemical Summary 45
Table 3 Historical Drill Core Intersections 66
Table 4 Surface Sampling Results 70
LIST OF FIGURES
Figure 1 Location Map 3
Figure 2 Property Map 5
Figure 3 General Geology 20
Figure 4 Local Geology 22
Figure 5a-k Lithogeochemical Contour Plans 51
Figure 6a Schematic "Main Zone Structure" Vertical Longitudinal Section 74
Figure 6b Schematic "Copper Breccia Structure" Vertical Longitudinal Section 75
Figure 6c Schematic "South Zone Structure" Vertical Longitudinal Section 76
Figure 7 Schematic Property Longitudinal Section 82
LIST OF APPENDICES
APPENDIX 1 Analytical Results
APPENDIX 2 Lithogeochemical Processing TechniqueAPPENDIX 3 Petrographical Descriptions
LIST OF MAPS

Map 1	1:2500	Property Geology
Map 2	1:500	Deposits Area Detailed Geology
Map 3	1:500	Deposits Area Surface \& Drillhole Assay Plan
Map 4	1:2500	Property Geophysical Compilation

1.0 INTRODUCTION

The Shunsby property, located southwest of Timmins, contains two historic copper-zinc deposits which are, by far, the most significant concentrations of base metals within the Swayze greenstone belt. The Swayze represents the westward continuation of the prolific Abitibi greenstone belt which hosts the gold-base metal camps of Timmins-Porcupine, Noranda-Val d'Or and Chibougamau.

Extensive exploration efforts on the present property between 1954 and 1981 by several groups included 67,000 feet of drilling in 225 holes, the majority of which were concentrated in the known areas of mineralization. This work was constantly hampered by poor access and technical problems, but was successful in delineating two small deposits of reportedly distal volcanogenic character. Relatively low grades deterred these previous operators who, for the most part, were attempting to establish an underground mining operation. Kirkton's initial interest revolved around the potential for establishing an open-pit operation on the property supplemented by selective underground mining of some higher grade zones. As well, the property as a whole was felt to be highly pregnant base metal ground which had never been thoroughly explored.

Initial work by Kirkton on the property during the 1989/90 fall and winter consisted of extensive data compilation combined with linecutting, preliminary geological investigations and blanket geophysical surveying (magnetics and horizontal loop EM).

Work during 1990 included a large stripping/trenching program, careful relogging and resampling of the old core as well as an attempt at accurate location of these holes relative to the grid system, along with some geological mapping. As well, additional detailed linecutting and geophysics were carried out over the area hosting the Main and South deposits. The new geophysical data were integrated with the previous survey results and the entire geophysical picture re-interpreted. The aim of all this work was to better understand the nature and distribution of the mineralization, and to correlate the copper and zinc values in drill core with known surface mineralization and the various geophysical zones. As well, a number of samples of the volcanic/intrusive assemblage were collected to help characterize any hydrothermal alteration associated with mineralization on the property. And finally, a computer-aided mineral inventory was calculated for the two deposits.

The 1991 program was essentially a continuation of the surface work begun in 1990 and was designed to:
a) further evaluate by stripping and trenching mineralized showings discovered during 1990
b) investigate, by stripping and trenching, geophysical targets identified by the reinterpreted geophysical database
c) comprehensively map the property as a whole, and the stripped areas in detail to come to as full an understanding as possible of the Shunsby geology and mineralization
d) augment the existing geochemical/petrographic database through further sampling and petrographic work

2.0 LOCATION, ACCESS AND INFRASTRUCTURE

The Shunsby property is located in the central portion of Cunningham Township, approximately 50 kilometres south of Foleyet and 60 kilometres east of Chapleau (Figure 1). The large mining centres of Timmins and Sudbury are approximately 130 and 180 kilometres to the northeast and southeast, respectively. The property is centred at $47^{\circ} 43^{\prime} \mathrm{N}$ latitude and $82^{\circ} 39^{\prime} 30^{\prime \prime} \mathrm{W}$ longitude, within NTS area $410 / 10$.

An existing network of gravel logging roads established by E.B. Eddy Forest Products Ltd. off the Timmins-Sudbury highway, no. 144, provides easy truck access to the south and central portions of the property. To reach the property, it is necessary to follow the Ramsey-Sultan road west from highway 144 thence north along the Cunningham Township spur of the Blamey Road to the property. It is approximately 90 km from highway 144 to the property. The Cunningham Township road in turn connects with a number of old drill roads and trails which provide access to the balance of the claims. Alternatively, the Dore Road of Foleyet Timber Limited can be followed south from Highway 101 just east of the town of Foleyet to the Ramsey-Sultan Road. A wagon trail/drill road connects the Shunsby property to the Dore Road at Garnet Lake, just south of the Wakami River crossing. Up-grading of this road would cut the road distance to Timmins to approximately 130 kilometres.

The E.B. Eddy logging operations have currently covered the three southernmost claims and much of the western portion of the property.

The property is well located in terms of exploration and mining supplies, services, etc., being approximately equidistant from Marathon/Manitouwadge/Wawa, Timmins and Sudbury. There is a large and relatively stable work force in the region from which to draw miners for any new mining operation.

The CPR main line passes through the small railhead of Sultan, approximately 30 kilometres by road to the southwest of the property. E.B. Eddy maintains a large camp at Ramsay, approximately 65 km by road to the southeast, also on the CPR line.

The original drill camp on the property at Hiram Lake still includes one cabin in fair condition as well as all of the core racks. There is an old MNR forestry tower camp, which includes two winterized cabins in excellent condition, approximately 1.5 kilometres to the northwest.

Abundant fresh water is available on the property from Edwards Lake. The nearest hydro-electric power is at Sultan, 16 km across country to the south-southwest. There is also an old telegraph line and right-of-way which extends from Sultan to the forestry tower.

3.0 PROPERTY AND LEGAL

The Shunsby property is within the Porcupine Mining Division of Ontario and consists of 20 patented mining claims and 10 mining leases (Figure 2) more properly described as follows:

Under the new Mining Act in Ontario, leases are still granted on mining claims following completion of required dollar amounts of assessment work for an initial 21 year term. This is now renewable only at the discretion of the Minister.

Where both surface and mining rights are leased, an annual rental payment to the Crown of $\$ 5.00$ per hectare is now required. For mining rights only the annual rental is $\$ 3.00$ per hectare.

For all of the Shunsby patented claims, a mining land tax is payable to the Crown each year according to the following schedule:
(a) $\$ 1.2356$ per hectare for 1991 ;
(b) $\$ 2$ per hectare for 1992 and 1993;
(c) $\$ 4$ per hectare for 1994 and 1995; and
(d) $\$ 8$ per hectare for 1996 and each subsequent year.

Kirkton Resources Corporation may earn a 100% undivided interest in the property, subject to a $12-1 / 2 \%$ net profits royalty, by carrying out exploration totalling $\$ 2,750,000$ and making cash payments totalling $\$ 250,000$ to MW• Resources Ltd., Toronto and Chelsea Resources Ltd., Vancouver by four years after the date that the Ontario Securities Commission issues a receipt

for a final prospectus regarding an initial public financing for the company. Kirkton may eam a 20% undivided interest after exploration expenditures of $\$ 750,000$ and option payments of $\$ 50,000$, after which the interest of the company shall be calculated by the lesser of either:
(a) percentage amount of exploration expenditures in relation to $\$ 2,750,000$; or
(b) percentage amount of option payments in relation to $\$ 250,000$.

In the event that Kirkton does not acquire 100% of the property, the option agreement calls for the formation of a joint venture to further explore the claims.

To the end of 1991 , Kirkton will have spent in excess of $\$ 750,000.00$ on the property and will have made option payments totalling $\$ 50,000.00$, thereby earning a 20% interest.

4.0 PREVIOUS WORK

The property has been the subject of extensive exploration dating back to the turn of the century when the iron formation in central Cummingham Township was first staked for its iron content. Table 1 summarizes the exploration history of the Shunsby property.

TABLE 1 - EXPLORATION HISTORY

Date	Company	Interest	$\begin{aligned} & \text { Diamond } \\ & \text { Drill Holes } \end{aligned}$	$\begin{aligned} & \text { Drilling } \\ & \text { Footage } \end{aligned}$	Claims Worked	Work
1904-07	Ridout Mining	Iron	-	-	-	Staking
1927-29	Ridout Cunningham	Zn, Pb	some	?	$\begin{aligned} & 34944 \\ & \text { to } 47 \end{aligned}$	Trenching Drilling
1954	Am Metal Co.	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	1	560	121596, 597	Drilling
1954	Cominco	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	4	1,500	57539, 57543	Drilling
1955-57	Shunsby	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	74	20,336	34947	Geology, Trenching
	Gold Mines, Teck etc. Syndicate				etc.	Drilling
1957	Martin Shunsby	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	3	200	90415	Packsack Drilling
1960-61	Shunsby	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	9	3,605		
	Mines		9	4,110	34947	EM, Geology, Drilling
1965-66	FRJ Prospecting Syndicate	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	41	14,279	$\begin{aligned} & 34944 \\ & \text { to } 47 \end{aligned}$	EM, Geology Drilling
1968-69	Con. Shunsby Mines Ltd.	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	23	9,091	$\begin{gathered} 34945 \\ 46,47 \\ 57539 \end{gathered}$	Geology, Drilling
1969-70	Umex	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	Nil	Nil	-	Geology
1974-75	Grandora	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$	21	7,444	57539	Trenching, Drilling
	Explorations				34947	Geochemical
1978	MW Resources	$\begin{aligned} & \mathrm{Zn}, \mathrm{Cu}, \mathrm{~Pb} \\ & \mathrm{Ag}, \mathrm{Au} \end{aligned}$	5	1,237	Tower Group	Geology, Drilling
1979-80	Placer	$\mathrm{Zn}, \mathrm{Cu}, \mathrm{Pb}$				
	Development	Ag, Au	4	1,250	Southern Ext.	EM, Geochemistry Mag Drilling
1981	MW Resources	$\begin{aligned} & \mathrm{Zn}, \mathrm{Cu}, \\ & \mathrm{Ag}, \mathrm{Au} \end{aligned}$	30	3,474	$\begin{aligned} & 34947 \\ & 57539 \end{aligned}$	Map, Drilling
			$224+$	$67,000+$		

Initial interest in the iron ore possibilities of the property by Ridout Mining quickly waned when it was determined that the iron content of the chert formations was non-economic. Subsequent discoveries of lead and zinc-bearing veins(?) within the iron formation prompted a 1927 exploration campaign over the entire strike length of the iron formation under the merged Ridout Cunningham Mines, Limited. While no record of this work remains, Meen (1942) reports that, "systematic prospecting of the many claims along with some diamond drilling was undertaken in 1928-29, but no body of economic importance was discovered and no further work has been carried out". He reports on the discovery of some base metal showings however, and it seems probable that this work first identified what would become the Texas Gulf deposit located 3 km to the northwest and the Shunsby deposit, the latter named after prospector Martin Shunsby.

The present property was staked in central Cunningham Township by Earle Sootheran and Hiram Paul. In 1954 it was optioned to Cominco Ltd. who drilled 1499 feet in 4 holes designated A through D. Three of these were in the area of the present South Zone and one was drilled in the northeast corner near Edwards Lake. The southern drilling encountered several narrow, zinc \pm lead-bearing horizons, while the northern hole encountered felsic volcaniclastics and graphitic sediments.

Also in 1954, American Metal Company drilled a single, 559.5 ft hole in the area of present line 900 S at 500 E . No assays are reported but the section from 29 to 30.1 feet is described as "tuffaceous material ... heavily mineralized by pyrrhotite with pyrite, chalcopyrite and sphalerite". The section from 192.6 to 195.6 feet is described as "highly altered rock ... pyrrhotite, chalcopyrite and sphalerite disseminated throughout ...".

In 1955 Nipiron Mines, Ltd., who optioned the property from Shunsby Gold Mines Ltd., funded and directed the drilling of 57 diamond drill holes mostly in the so-called Main Zone area. Much of this work was rather poorly directed and W.S. Savage (1956), the Department of Mines resident geologist at that time, noted: "It is obvious that some of the long sulphide-bearing intersections in the diamond drill holes resulted from inadvertently drilling down the dip of a mineralized bed". Nipiron reportedly defined 100,000 tons of 1% copper mineralization from their drilling, but negotiated a termination to their option agreement in the summer of 1956.

A syndicate consisting of Teck Explorations, Cochenour-Willans Mines, Northern Canada Mines, Nipiron Mines and Shunsby Mines was subsequently formed to further explore the property. This group drilled a further 17 holes during the fall of 1956 and winter of 1957. Three holes were drilled into the Main Zone deposit, with most of the others directed towards the South Zone. As well, deep holes 72 and 74 were drilled in the vicinity of the Hiram Lake camp to test for down-dip extensions of the Main Zone. Copper-zinc mineralization was encountered and this became known as the West Zone. Virtually all of the Syndicate holes encountered encouraging to potentially economic mineralization, however, falling base metal prices forced a halt to the program during March of 1957. Teck Explorations calculated an ore reserve for the Main Zone of 152,000 tons grading $1.35 \% \mathrm{Cu}$ and $1.22 \% \mathrm{Zn}$ at this time. Also during this period, the eastwest access road linking the property to the Sultan-Kenty Mine road was cut. Shunsby Mines Ltd. also completed the purchase of the optioned Southeran-Paul property. In addition, flotation
tests were run on lead-zinc and copper ore samples by the metallurgical division of the Department of Mines, indicating that there would be no apparent difficulty in producing commercial grade concentrates.

Nipiron Mines Ltd. under an option agreement with Shunsby Mines undertook further exploration in the winter of 1960 . Nine holes (75-83) were completed during December and January totalling 3,605 feet. These were again directed towards the Main and West Zones, apparently to replace/legitimize much of the earlier, down-dip intersections. Geological mapping as well as EM and magnetic surveys were reported as being completed during this campaign. A further nine diamond drill holes totalling 4,110 feet were completed the following summer. This consisted of several holes ($85,90,91$ and 92) drilled vertically. These successfully intersected the down-dip projection of the Main Zone, between the camp and the main showings to the east. Significantly, the other five holes were again drilled down-dip in this same area, possibly to avoid a topographic rise represented by a large diorite intrusive.

During the summer of 1964, Nipiron extended hole 82 from 503 feet to 836 feet and encountered the down-dip projection of the Main Zone, i.e. the West Zone. This is the most westerly hole drilled in this portion of the deposit to date. This hole encountered some significant copper values including $4.2 \% \mathrm{Cu}$ over 4.1 ft and $4.3 \% \mathrm{Cu}$ over 5.5 ft . The mineralization is completely open in the down-dip direction beyond this hole.

The F.R. Joubin Prospecting Syndicate became involved with the property in 1965, with Joubin becoming president of the reorganized/refinanced Consolidated Shunsby Mines Ltd. in 1966 following the death of Martin Shunsby. The syndicate itself consisted of personnel from mining organizations including Leitch Gold Mines Ltd., Noranda Explorations, Ltd. and WrightHargreaves Mines Ltd.

Joubin instigated an aggressive exploration campaign which included much staking of surrounding ground followed by geochemical, magnetometer and Turam EM surveying, step-out drilling along strike both to the north of the Main Zone and the south of the South Zone, as well as limited drilling and trenching in the western property area. The two holes drilled by Joubin on the western property showings both intersected an "upper" low grade zinc-mineralized chert horizon but were felt to be of insufficient length to test the "Basal Chert" he thought to be present here. This latter unit hosts much of the potentially economic base metal mineralization in the Main, South and West Zones. Stratigraphy here was thought to correspond to the western limb of a major syncline which transects the property. No field or geophysical evidence has been found to confirm the existence of such a structure, therefore Joubin was drilling stratigraphy correlative with the Texas Gulf and Tower Group iron formation.

Joubin's work on the South Zone was designed to better understand stratigraphy as well as confirm a number of previous, high-grade intersections. The program, which included lengthening several holes to the "footwall diorite", was felt to indicate that an upper (middle?) chert horizon hosted high grade copper-zinc mineralization here, while the "basal" chert intersections were of lower grade.

The Syndicate's work to the north consisted of several in-fill holes within the Main Zone, as well as holes designed to:
(a) further define the down-dip extension (West Zone);
(b) extend the Main-West zones to the north; and
(c) explore the area in between the Main and South Zones.

In general, results indicated that:
(a) significant mineralization in the West Zone persists to a vertical depth of at least 840 feet;
(b) significant copper \pm zinc, lead mineralization within the chert extends at least 1,200 feet to the north of the Main Zone but is offset; and
(c) the intermediate area between the Main and South Zones is of high potential but is complicated by a fault.

Within the Main Zone, Joubin calculated an average grade of 1.2% copper and 1.28% zinc over a true width of 26 to 27 feet. He recommended shallow underground investigations and states (1966):
"There is sound reason to believe that this drill-indicated average grade will be raised by bulk sampling. This is because the copper values appear to be controlled by both disseminations in the Basal Chert and also as narrow chalcopyrite-filled fractures. It is improbable that the several vertical drill holes have intersected a representative amount of the vertical fracture mineralization.

I concur with and endorse the opinion of other geologists that the Main Zone section justifies shallow level underground exploration intended to check on (a) grade, (b) mineral distribution characteristics, (c) the attitude of cross and strike fracturing and relationship to mineralization, (d) the attitude and relationship (if any) to the post-mineral "D" dyke, and (e) general rock characteristics as these would relate to possible underground mining and/or some limited open-pit extraction."

A qualifying report written by W.F. Atkins, P.Eng. in 1968 raised $\$ 100,000$ for Consolidated Shunsby Mines Ltd. through a public underwriting which was used to finance a 1968 drill program of 23 holes. The majority of this work was directed towards the South Zone and the intermediate area, with several holes (68-7, 8 and 9) spotted to test a showing within granitic(?) rocks to the west of the present property. This campaign allowed for a calculation of geologic reserves for both the South and Main zones.

Joubin then brought the property to the attention of Union Miniere Explorations and Mining Corporation Limited (UMEX) in March of 1969. Their examinations and compilations allowed for reserve calculations by P. Potapoff of:

UPPER CHERT ZONE -
(middle chert, South and Main Zones)

LOWER CHERT ZONE -
(middle chert, South and Main Zones)

929,000 tons averaging $0.24 \% \mathrm{Cu}, 2.25 \%$
$\mathrm{Zn}+\mathrm{Pb}$ from surface to -300 feet over 2,700 foot strike extent.
$1,684,000$ tons averaging $0.59 \% \mathrm{Cu}, 1.6 \%$ $\mathrm{Cu}+\mathrm{Pb}$ from surface to -900 feet over 2,400 foot strike length.

Potapoff notes that some of the mineralized zones form discontinuous blocks due to faulting, and some of the better intersections appear isolated. However, A.J. Hough of UMEX notes that reported collar elevations and locations at that time were suspect. This, of course, can have a major bearing on the inferred continuity of mineralized zones. Potapoff concluded that the chances were good of firming up a large tonnage ($\sim 10,000,000$ tons), low grade $(0.5 \% \mathrm{Cu}, 2.0 \%$ $\mathrm{Zn}+\mathrm{Pb}, 0.25 \mathrm{oz} /$ ton Ag) deposit. He recommended a program of deep drilling for down-dip extensions as well as comprehensive property-wide follow-up drilling of old Turam anomalies and surface showings which had not been drilled and were located in otherwise geologically favourable areas. It appears that UMEX subsequently returned the property to Consolidated Shunsby Mines without doing any further work and it sat idle until 1974.

In 1973, B.D. Weaver, a consulting geologist, reviewed the historical data on the Shunsby property. He concluded that all drilling thus far was of little value and that the Main Zone should be drilled off vertically on 100 foot centres.

Grandora Explorations Ltd. in the fall of 1974 optioned the property from Consolidated Shunsby Mines and instigated a program of geochemical sampling, bulldozer trenching and 7,444 feet of diamond drilling in 21 holes. During the initial phase of the drill program, 10 holes were targeted on the Main Zone, to extend and delimit the eastern extent of the mineralization. Holcapek (1975) states that the boundaries of the "possible open pit ore zone" are marked by two northerly trending fault zones.

Grandora drilled 11 holes in the South Zone spaced at approximately 200 feet centres to extend the known mineralization and clarify the structural setting. Inexplicably, most of these holes were stopped before reaching the basal chert and footwall diorite. Holcapek states, however:
"The results of this drill program showed that the best mineralized sections are located within the argillites or along the argillite-chert contact, localized along the crestal region of tight, low amplitude folds. Anticlinal folds appear to be more favourable for localizing mineralization because of greater thickening of the sedimentary units and more intense brecciation, but in the vicinity of the fault zones, strong brecciation of the synclinal crestal region can carry good widths of ore grade mineralization as is evident in the eastern part of the Main Zone.

Further, the bedded mineralization suggests that the original sulphides are syngenetic in origin and have been partially remobilized from the limbs of the fold structures into the crestal regions. More work will be necessary to definitely confirm this model."

Holcapek calculated geologic, drill indicated reserves totalling some 1.6 million tons as follows:

Main Zone-Basal Cherts
Main Zone-Middle Cherts
South Zone-Basal Cherts
South Zone-Middle Cherts

528,160 tons grading $1.0 \% \mathrm{Cu}$ and $1.2 \% \mathrm{Zn}$
350,000 tons grading $1.0 \% \mathrm{Cu}$ and $1.5 \% \mathrm{Zn}$
400,900 tons grading $0.27 \% \mathrm{Cu}$ and $2.48 \% \mathrm{Zn}$
320,000 tons grading $0.58 \% \mathrm{Cu}$ and $2.48 \% \mathrm{Zn}$

He further concluded that approximately 1.16 million tons of this material was mineable by open pit. Holcapek recommended linecutting along with detailed lithologic/structural mapping of the whole property and magnetic and EM surveying, to be followed by deep drilling of the down-dip extensions of the known mineralized zones.

In 1978, the renamed MW Resources drilled five holes in the vicinity of the Forestry Tower, then part of the Shunsby property, with little success.

Placer Development Limited optioned the property from MW Resources Ltd. in 1980 and completed geochemical and EM-17 surveying. Placer then drilled four holes, all in the southern portion of the property as it existed at that time. Two holes were drilled on what is now Cominco ground to the southwest of the present Shunsby property. The holes intersected massive pyrite horizons in explanation of the EM conductivity. Placer calculated their own ore reserve figure for the Shunsby deposit, arriving at 2.4 million tons grading $0.4 \% \mathrm{Cu}$ and $2.4 \% \mathrm{Zn}$.

The final phase of exploration was conducted by MW Resources in 1981 and was directed towards delineating a small, high-grade pod within the Main Zone which could be extracted to generate cash-flow. To this end, D. Fairbairn, P.Eng., President of MW Resources Ltd., reviewed all past data and identified a "flat-lying ore zone" of dimensions 1,000 feet long by 130 feet wide by 7 feet thick. This was estimated to contain some 80,000 tons of material grading $3.9 \% \mathrm{Cu}$, $6.2 \% \mathrm{Zn}, 1.2 \mathrm{oz} /$ ton Ag and $0.03 \mathrm{oz} / \mathrm{t} \mathrm{Au}$. He proposed mining this zone by room-and-pillar methods using a decline from surface, with the ore to be milled at Manitouwadge (Geco). In order to prove up this reserve, Fairbairn proposed a program of short vertical holes as well as stripping and trenching in the Basal Chert horizon of the Main Zone. He was also encouraged by the work to date on the South Zone basal chert, and the middle chert horizons of both zones. Fairbairn calculated reserves of 970,000 tons grading $1.2 \% \mathrm{Cu}$ and $5.0 \% \mathrm{Zn}$ for the South Zone, and notes that no assays for Au or Ag were performed.

In the interim, L.B. Goldsmith, P.Eng. reviewed the Placer geophysics and concluded that Placer had not comprehensively compiled known geology with respect to their EM-17 results. He
recommended that an EM-17 survey be run over the North (Main) Zone and the results used to re-interpret the Placer results.

A 1981 drill program initiated by Fairbairn for MW Resources consisted of 30 vertical or near vertical holes in the Main Zone. These he concluded were successful in proving up 50,000 tons of material grading 5.2% equivalent copper ($3.2 \% \mathrm{Cu}+3.1 \% \mathrm{Zn}$ along with $0.02 \mathrm{oz} / \mathrm{ton} \mathrm{Au}$ and $0.75 \mathrm{oz} /$ ton Ag) over approximately half of the inferred 1,000 foot strike length of the zone. Fairbairn recommended another 2,000 feet of drilling to evaluate the northern and southern quarters of this shallow, high grade zone, and postulated that the base metal enrichment was the result of post-depositional sedimentary dewatering, and as such, more high grade pods could be expected. He further recommended that a program of thorough geological mapping, geophysical surveying and diamond drilling be initiated to locate more zones before any production attempts. The suggestion was also made that MW might entice a major mining company, via a suitable option agreement, to get involved in the project.

In 1982, a lake sediment and water sampling program was performed in the vicinity of Tower, Mink and Edwards lakes by The Environmental Applications Group Ltd. (EAG) for MW Resources. The lake sediment survey, although encompassing a very small number of samples, suggested that a high metal background was present, with possible bedrock related responses noted in the area of Beavertail Lake, Tower Lake and downstream of Edwards Lake. Water at all sites did not reflect these concentrations and was deemed of excellent quality for both potable and mill uses.

In 1983, a fully independent review and assessment of all previous exploration work was performed by Hill, Goettler, De Laporte Ltd. of Toronto for MW Resources. Significantly, they conclude that "sufficient uncertainties with respect to the results and interpretations of both the Placer and recent MW work on the property cast doubts upon the conclusions of the previous work and the reserves supposedly established. Despite extensive drilling in the North and South Zones of the property, therefore, it is H.G.D.'s opinion that the property has not been fully tested... There is enough information presently available in core and reports to enable a thorough assessment to be made and an attractive exploration programme to be outlined by MW preparatory to seeking such a partner".

To this end, Brian Wilson and Associates Ltd., was contracted in 1989 to compile the exploration data and recommend an integrated exploration plan. Wilson's work arrived at a geological reserve figure of approximately 1.0 million tonnes grading $1.0 \% \mathrm{Cu}$ and $1.5 \% \mathrm{Zn}$. He further noted that the two mineralized horizons are open to depth and, in part, along strike. He also concluded that Fairbairn's calculation of 80,000 tons at $3.9 \% \mathrm{Cu}, 6.2 \% \mathrm{Zn}$ and $1.2 \mathrm{oz} /$ ton Ag for the high grade pod was reasonable, but that extraction of this ore would break even at best. Wilson recommended a one million dollar, two-phase exploration program to consist of:

Phase One - Re-establish access road.

- \quad Re-logging/re-sampling old core.
- Linecutting.
- Geological mapping.
- HLEM and gradient magnetic surveying.
- Detailed levelling survey to locate old drill collars.

Phase Two - 10,000 feet of anomaly drilling.

- 25,000 feet of detailed drilling.

Most of Wilson's Phase 1 recommendations have been carried out in the course of the work reported upon herein.

5.0 EXPLORATION PROGRAM - OPERATIONS

5.1 General

MPH personnel utilized a permanent 10 man tent camp established in May, 1990 at the end of the logging road, just west of \#4 post, claim S-147118 in the southern property area. This was used to accommodate and feed all company and contract personnel for the duration of the field season, and has been left intact for future work.

The field project consisted essentially of two phases: an initial heavy equipment-intensive stripping and washing program during which extensive trenching and sampling of priority mineralization was carried out and a subsequent mapping program through August and September. The report writing and map preparation phase was completed from October to December during which time extensive petrographic work, computer processing of geochemical data and geophysical re-interpretation were also carried out. Considerable time was also spent in digitizing all of the geological, sampling and assay data in the key mineralized area such that computer-generated maps of all or any part of the mineralized area at any scale for a large number of parameters such as copper : zinc ratios, individual mineralized intercepts, etc. can be readily produced. As well as various plan presentations, vertical sections at any azimuth can also now be produced. This computer database will be a tremendous asset once diamond drilling commences in terms of both spotting holes and instantly relating new information to all of the existing drill, assay and geological data.

MPH personnel involved with the project consisted of :

W.E. Brereton, P.Eng	Consultant
P. Sobie, B.Sc.	Project Manager
A. Kamo, B.Sc.	Field Geologist
D. Brunne	Geological Technician
R. Chasse	Geological Technician

In-house computer and drafting personnel were utilized as needed.

5.2 Stripping and Trenching

The mechanical stripping and washing was sub-contracted to D.P. Larche Mining Exploration Ltd. of Timmins, Ontario. Equipment supplied (with rates) included:

Caterpillar D-7 Bulldozer John Deere 690B Excavator Timberjack-mounted Backhoe Wajax high-pressure pump + hoses Honda Four-trax utility vehicle
($\$ 100 / \mathrm{hr}$)
(\$90/hr)
(\$50/hr)
(\$120/day)
(\$ 65/day)

Along with the above, Larche supplied three operators and fuel, supplies etc. for the equipment.

The general methodology involved clearing a swath of ground to be stripped with the bulldozer and pushing as much overburden to the sides as possible. This was followed by major overburden removal with the excavator after which the Timberjack backhoe did the final clean-up of remaining overburden.

All bedrock exposed by the stripping operations was thoroughly washed with the Wajax high pressure pump by MPH personnel. The newly exposed rock was then examined and various mineralized areas were selected for trenching and sampling. The trenching was carried out by drilling short blast holes with a gasoline plugger followed by loading and blasting with stick powder.

Operations this year were carried out to close up the spacing between areas stripped last year, and as well to investigate the area north and west of the Main Zone. Specifically, stripping was carried out in the following areas:

LINE/AREA	FROM	TO
$6+25 N$	$3+00 \mathrm{~W}$	$0+50 \mathrm{~W}$
$5+00 \mathrm{~N}$	$5+50 \mathrm{~W}$	$1+25 \mathrm{~W}$
$5+00 \mathrm{~N}$	$0+75 \mathrm{~W}$	$0+00$
$4+50 \mathrm{~N}$	$1+25 \mathrm{~W}$	$0+25 \mathrm{~W}$
$4+00 \mathrm{~N}$	$1+60 \mathrm{~W}$	$0+50 \mathrm{~W}$
$3+00 \mathrm{~N}^{1}$	$2+50 \mathrm{~W}$	$1+50 \mathrm{~W}$
$3+00 \mathrm{~N}^{2}$	$0+50 \mathrm{E}$	$0+75 \mathrm{E}$
$2+75 \mathrm{~N}$	$2+60 \mathrm{~W}$	$1+50 \mathrm{~W}$
$2+50 \mathrm{~N}^{3}$	$2+40 \mathrm{~W}$	$2+00 \mathrm{~W}$
$1+75 \mathrm{~N} / 1+50 \mathrm{~N}$	$2+00 \mathrm{~W}$	$2+00 \mathrm{E}$
$1+00 \mathrm{~N}^{4}$	$3+00 \mathrm{E}$	$3+50 \mathrm{E}$
$0+50 \mathrm{~N}$	$1+25 \mathrm{~W}$	$0+25 \mathrm{E}$
$0+50 \mathrm{~N}$	$1+50 \mathrm{E}$	$2+75 \mathrm{E}$
$0+00$	$1+00 \mathrm{~W}$	$2+00 \mathrm{E}$
$0+50 \mathrm{~S}^{5}$	$0+25 \mathrm{E}$	$1+25 \mathrm{e}$
$1+00 \mathrm{~S}^{6}$	$0+75 \mathrm{E}$	$1+25 \mathrm{E}$
$1+75 S$	$0+40 \mathrm{E}$	$2+25 \mathrm{E}$

[^0]As well, a N-S exposure was stripped from 500 N to 625 N at approximately 275 W .
This large amount of work was made possible by the excellent performance of all equipment and personnel and by the positioning of the trench areas themselves which were virtually all in shallow overburden so as to lessen wasteful searching for bedrock.

5.3 Geological Mapping

Comprehensive property-wide mapping at a scale of 1:2500 was completed following reestablishment of grid lines through the western property area which has been logged off by E.B. Eddy. In addition to providing road access to the centre of the property, their operations exposed a great deal of outcrop and rubble which proved invaluable for mapping and prospecting purposes. Property geology, as well as results of mapping to the south and west by Cominco and Grand American Metals respectively, is presented on Maps 1a and 1 b (East and West Sheets) at the back of this report.

Detailed 1:500 mapping was carried out covering all of the stripped areas and cut lines between lines 750N and 350S and is presented as Map 2 (North and South Sheets).

5.4. Geochemistry and Petrography

A total of eighty samples from surface and drill core have now been collected and analyzed for major and trace elements. Most of these have also been examined in thin section. These comprise a comprehensive sampling of the variolitic basalt and hanging wall "Footwall Diorite" volcanic units, with several samples also of the footwall intermediate-felsic volcaniclastic package. These samples were run through an in-house lithogeochemical processing program which helps to chemically characterize hydrothermal alteration trends. Sixty-eight samples collected by Siragusa in 1979 for the O.G.S. throughout Cunningham Township in rocks thought to be generally correlative with the Shunsby hangingwall volcanics served as background for this study. Results of this work are presented in section 7.3 and figures 5 a to k.

5.5 Historical Drillhole Compilation

Much of the historical drillcore was again re-examined as required to sort out geological ambiguities, although it was decided to curtail any re-sampling not completed in 1990 because of uncertainties regarding the locations of the 1974 (Grandora) and 1981 (MW Resources) holes.

Revised geological sections were again plotted at 1:500 to aid in preparing the Deposits Area geological plan, although these have not been included in the report. The sections are available for viewing at the offices of MPH Consulting Limited, 150 York Street, Toronto.

Downhole as well as surface assay results in the deposits area have been compiled and presented in plan form at a scale of 1:500 on Maps 3 a and 3 b at rear as well as in Tables 3 and 4, sections 7.4 and 7.5 respectively.

6.0 REGIONAL GEOLOGY AND MINERALIZATION

The Shunsby property lies within the Swayze greenstone belt. This is considered to be the southwest extension of the Abitibi belt which hosts the Timmins, Kirkland Lake, Noranda-Val d'Or, Mattagami and Chibougamau mining camps. North to northwest striking faults and granodiorite/monzonite batholiths partially disconnect the Swayze from the Abitibi belt (Figure 3).

The Swayze can be thought of as an arcuate volcano-sedimentary belt, convex to the west, extending from Sewell Township in the northeast, through Swayze Township in the central region, to Groves Township in the southeast. The volcanics consist primarily of mafic rocks which floor some substantial intermediate-felsic eruptive centres. Clastic and chemical sedimentary rocks, including major banded iron formations, are intercalated with the volcanics. Younger, probably Temiskaming-equivalent, clastic sediments unconformably overlie the older rocks. A variety of synvolcanic to post-volcanic intrusions have invaded the supracrustal rocks. The Swayze belt is truncated to the west by the fault-bounded, north-northeast trending Kapuskasing Structural Zone, which contains high grade metamorphic rocks and associated carbonatite intrusive complexes.

A number of major regional east-west alteration/deformation zones are present in particularly the north and south Swayze. It is felt that these represent extensions of, or analogies to, some of the major "Breaks" of the central Abitibi belt.

No base metal deposits have been mined in the Swayze to date although the proper geological conditions for such deposits would appear to be present. Gold production has been limited to approximately $1,000,000$ tons of ore from seven rather small-scale producers. By far the largest known base metal concentration in the belt is on the present Shunsby property with the Texas Gulf deposit immediately to the northwest reportedly containing 100,000 tons of drill indicated material grading 3% zinc, 1% lead and 0.5% copper to a depth of 100 ft (Rye, 1984). The base metal sulphides in this latter deposit occur in a sequence of mafic tuffs, chert breccias and sulphide facies iron formation.

The geology of Cunningham Township has been described by Siragusa (1978) as follows; and is presented in Figure 4:
> "Metamorphosed volcanic flows interpreted as high-magnesium tholeiitic basalt are predominant in the northern half of Cunningham Township and over most of Garnet Township. The metavolcanics trend east-southeast, are locally pillowed, vesicular or amygdaloidal and rarely variolitic, have undergone metamorphism which seldom exceeds greenschist rank, and evidence of primary features, notably selvage margins of pillows, may be found even in foliated or sheared flows. The pillows tend to have lobate or irregular outlines which may locally reflect conditions of near parallelism between the depositional plane of the flows and the present erosional surface, and, at any rate, rarely permit top determinations.

Determinations made at a few localities suggest that tops face north. Thin layers of dacitic crystal tuff occur in the upper section of the (assumedly) north-facing series, but owing to scanty outcrop distribution these units, which otherwise would be excellent marker horizons, cannot be traced laterally for significant distances.

Cycles of chemical and clastic sedimentation occurred during development of the basaltic series and resulted in the deposition of chert iron formation, and epiclastic rocks in the middle and upper section of the series. The chert units consist mostly of laminated to medium-bedded, barren to ferruginous chert which is commonly interbedded with iron-rich layers containing an estimated 20 to 60 percent magnetite, and which is locally the host of sulphide mineralization. Deformation and fracturing of chert has resulted in conspicuous development of chert breccia in some of these units.

The main chert units are in Cunningham Township and stratigraphically are in the middle section of the basaltic sequence of the map-area. The largest chert body is located about 1600 m south of Mink Lake, has an unusual broadly triangular outline, and has a planimetric area of about $2 \mathrm{~km}^{2}$. The strike of the chert varies from west-northwest on the west side of the body to north-northeast on the east side of it. This change, as well as the unusual shape of the body itself, are the effects of displacement in the west side of the body (i.e. Isaiah Creek Fault), and folding in the east. A displaced western lobe of this body presently found about 2000 m south of the latter in the Peter Lake area, trends east-northeast and is about 1800 m long and 700 m wide. Another significant chert unit trending northnortheast to south-southeast occurs eastward of a small lake located at the very centre of Cunningham Township (Hiram Lake). Most of the drilling conducted by Consolidated Shunsby Mines Limited prior to 1970 and which indicated a 1.1 million ton copper-zinc deposit was concentrated on one claim (S34947) within this chert unit.

Closely associated (spatially) with the main chert units of Cunningham Township are relatively small bodies of feldspar porphyry with aphanitic matrix and feldspar crystals that are mostly 2 to 3 mm in size. The porphyry, which is thought to be a subjacent felsic volcanic rock, is well exposed along the northern shore of the tiny lake about 350 m southwest of the fire tower, at the very core of the folded eastern tip of the Mink Lake chert deposit. A prominent, although rather heavily forested, ridge of this rock is also found about 3.4 km north and 2.3 km west of the southeastern corner of Cunningham Township.

Interbedded with the metavolcanics in the upper and central sections of the basaltic sequence are bands of epiclastic metasediments trending east-northeast, northwest and west, occurring in northwestern Cunningham Township, and northeastem and west-central Garnet Township, respectively. These metasediments include dominant matrix-supported polymictic conglomerate, and subordinate arkosic arenite and minor slate which are of only local occurrence.

The coarse fraction of the conglomerate consists largely of variably deformed pebbles and boulders of chert, felsic metavolcanics, and minor granitic rocks. The latter are thought to represent early granitic rocks which pre-date the quartz monzonite underlying southwestern Cunningham Township.

Mafic intrusive rocks in bodies of irregular shape and variable size are commonly found spatially associated with the metavolcanics, and are particularly frequent in southern Cunningham Township and northeastern Garnet Township. These rocks have composition varying from diorite to gabbro, the latter being dominant, and are massive although commonly affected by variably well developed jointing. In general they have medium-grained diabasic texture which locally gives way to a very coarse knotty pyroxenite where hornblende may be pseudomorphed after brown pryoxene.

Porphyritic varieties with tabular plagioclase phenocrysts up to 4 cm in size are also present in a few localities. Basaltic and chert xenoliths are occasionally found within these rocks and where these occur the rock's intrusive nature is clearly indicated.

Gabbro is affected by retrograde metamorphism along a north-northeast-trending shear zone extending eastward of Isaiah Lake (Cunningham Township). This zone is thought to post-date regional metamorphism and to be a local feature related to the emplacement of quartz monzonite west of Isaiah Lake.

Discrete intrusions of peridotite occur in a few localities of southern Cunningham Township. Peridotite is massive, serpertinized to variable extent, and is locally much more magnetic than interbedded chert-magnetite. Although in some areas exposures of peridotite and gabbro occur only a few metres apart, exposed contacts between these rocks were never found. No peridotite was found in Garnet Township but a large outcrop was found in the northwestern corner of Benton Township, approximately 700 m east of the present map area.

A small pluton of massive porphyritic quartz monzonite of about $13 \mathrm{~km}^{2}$ underlies parts of western and southwestern Cunningham Township. The pluton is poorly exposed and is bisected by the Isaiah Creek Fault so that the western half of the pluton is displaced about 2000 m south of the eastern half of it. Two small peridotite bodies are in contact with the northern and southern tips of the eastern half of the pluton adjacent to the trace of the fault plane.

Lamprophyre is of rare occurrence and consists of minette dikelets 2 m or less in thickness, cutting metavolcanics or gabbro at a few localities. A dike about 4 m thick of hornblende syenite was found to intrude sheared basalt at one locality along the shear zone east of Isaiah Lake. Both the lamprophyre and syenite dikelets are thought to have about the same age as the quartz monzonite. Only one diabase cutting quartz monzonite was found and this is thought to be the youngest rock in the map-area."

7.0 EXPLORATION RESULTS - 1991 PROGRAM

7.1 Property Geology

7.1.1 General

Property mapping and working in the area for two field seasons have shown that a great deal more volcanics are present in the area than indicated by Siragusa. In particular, much of the area mapped as diorite/gabbro through the centre and to the south of the Shunsby property, is in fact mafic to felsic metavolcanics. As well, a large felsic pyroclastic centre would appear to occupy the area just south of the property, approximately due south of Hiram Lake. This is evidenced by extensive coarse pyroclastic breccia outcrops throughout that region. Sulphide clasts are present in some of these breccias. Much of the rock mapped as feldspar porphyry by previous workers in the area is in fact quartz or feldspar-phyric intermediate to felsic metavolcanics and pyroclastics. Such rocks occur within the Shunsby sedimentary-volcanic stratigraphy in the $\mathrm{Cu}-\mathrm{Zn}$ deposits area.

Three generalized geologic domains can be recognized on the Shunsby property namely an easterly/northeasterly mafic (basalt-gabbro) domain, a pyroclasticchemical sedimentary - clastic sedimentary domain with minor basalt which underlies the central and southwest portions of the property and a mafic volcanic-gabbro-iron formation domain exposed in the extreme west-central portion of the property. This geological picture has been greatly complicated by folding, faulting and intrusive activity. The central domain is the most economically significant in that the Shunsby $\mathrm{Cu}-\mathrm{Zn}$ deposits occur near its stratigraphic top in a distinctive chert/argillite sequence.

Structurally, there do not appear to be any major fold closures on the property although considerable drag-folding, quite large scale in some cases and often related to east-west shearing, has been identified in a number of areas.

The most visible direction of shearing and faulting is approximately east-west with the most notable example being the Joubin Fault. This deformation event was relatively late and may have been the last major event in the region. Considerable strike-parallel shearing is also suggested by the highly sheared nature of various interflow graphite units. Another significant direction of faulting and fracturing is approximately south-southeast. This direction hosts the known stringer-type base metal mineralization in the Shunsby chert/argillite sequence.

Rock units trend in a general northerly direction across the property with shallow to moderate west dips. As will be discussed in more detail in subsequent sections, the entire sequence appears to be overturned such that stratigraphic tops are to the east. This has profound implications for further exploration on the property.
east. This has profound implications for further exploration on the property.

7.1.2 Lithologies and Stratigraphy

a) West-Central Mafic Volcanic-Gabbro-Iron Formation Domain

These are the oldest rocks on the property and occupy the three westernmost claims in the central portion of the property. The banded iron formations here comprise both chert-magnetite and chert-sulphide varieties. These have marked magnetic and electromagnetic signatures respectively.

Where observed, the cherts of the oxide facies iron formation occur as layers, often rusty and of up to 30 cm or more separated by 1 to 5 cm magnetite bands. Strongly chloritic or amphibolitic magnetite-bearing bands may be present. Two main oxide facies units would appear to be present separated by mafic breccias and sulphide iron formation.

The sulphide iron formations are very poorly exposed on the property although their character is inferred from abundant float, two drill holes and from descriptions on adjoining properties (eg Rye, 1984). The sulphide facies consists of finely laminated black pyritic and pyrrhotitic shales, individual beds being up to 1.5 metres thick and containing up to 80% sulphides. The shales are interbedded with chert and chert breccia units up to 2 metres thick. Fine-grained bedded and laminated pyrite is the most common sulphide, with varying amounts of pyrrhotite, chalcopyrite, sphalerite and galena. Although the sulphides are frequently bedded, disseminated, massive and stringer textures are also present. Graphite layers, ranging in thickness from paper thin to several millimetres, are common in the sulphide facies. Where graphite occurs, there are indicated to be corresponding increases in metal content.

At least three $\mathrm{Cu}+/-\mathrm{Zn}$ occurrences are known or can be inferred to be associated with these west iron formations on the present property. These include previous drill hole Jim 1 at the extreme southern end of the assemblage which returned $1.69 \% \mathrm{Zn}$ over 28.8 ft , the presence of minor sphalerite-chalcopyrite in outcrop at 14 W on line 0 and the discovery of massive pyrite float with $3-5 \%$ chalcopyrite at 1060 W on line 2 N .

A very distinctive mafic fragmental rock is interbedded with and contained within the oxide facies iron formation units. This is best displayed in the area of 1150 W on line 8 N . The rock here has an agglomeratic character and consists of clasts of chert, mafic volcanics and dacitic (?) volcanics in a variolitic basalt matrix. Additional, quite distinctive coarse mafic pillow breccias and flow breccias are exposed in the area between lines 2 N and 3 N at about 1125 W associated with iron formation.

The balance of this assemblage is composed of relatively fine-grained mafic flows intruded by quite irregular to more regular, sill-like gabbro bodies. Some of these gabbros here, and in the rest of the area in general, probably represent feeders to overlying flows. Much of the gabbro in this older assemblage displays a marked glomeroporphyritic nature (rock type 5c) in which the rock contains whitish feldspar crystals or crystal aggregates to 2 cm or more. This is particularly well displayed in the area between 10 W to 12 W on line 4 N , an area that in turn seems to represent the centre of the gabbro body.

Meen (1942, p. 9-10) describes a similar rock in adjoining Garnet Township. He reached the conclusion that this "leopard rock" was in fact a basalt porphyrite flow. This possibility should therefore be borne in mind for the present 5c classification. Meen goes on to describe similar occurrences in Cunningham Township - possibly including these on the present property (?) - which he describes as being rather striking in appearance. In this case however, he is unsure as to whether or not the rock is of intrusive or extrusive origin.

More typical massive, medium to locally coarse-grained gabbro composed of dark green-black mafic crystals in a whitish feldspathic groundmass is well exposed, for example, in an outcrop surrounded by dense cedar bush on the 10W tie-line just north of line 6 N .

This entire assemblage is strongly disrupted by an east-west fault in the area of line 0 . It is then truncated against a large gabbro intrusive in the extreme southwest corner of the property. To the north, the iron formation units warp around the Isaiah Creek stock and continue onto adjoining properties, where they host additional base metal mineralization.
b) Central-Southeast Pyroclastic-Chemical and Clastic Sedimentary Domain The Shunsby volcano-sedimentary sequence dominates the central portion of the property and is the key rock assemblage on the claims in terms of known base metal mineralization.

The bottom of the sequence is marked by a major pyroclastic accumulation of mainly coarse feldspar porphyritic tuff breccia and lesser lapilli tuff and ash tuff in the area west and southwest of Hiram Lake. These pyroclastics are heterolithic and are generally characterized by an aphyric matrix. The matrix is generally relatively felsic but is markedly chloritic in some cases as in the outcrop area on the east side of Hiram Lake at the creek outlet. The coarse feldspar porphyritic tuff breccias along the west end of line 0 also have a notably chloritic ash tuff matrix. Individual clasts range up to 0.5 m in greatest dimension although they are typically much less than this. The clast population includes plagioclase $+/-$ quartz phyric intermediate to felsic volcanics, massive and flow-banded rhyolite and fine-
grained mafic volcanics. Overall this rock is probably of intermediate composition although some phases are very siliceous. Notable in this regard are some of the pyroclastics along the south part of the 10 W tie-line which are locally very siliceous and contain disseminated pyrrhotite and pyrite.

There are also some true mafic pyroclastic tuff breccias, consisting of angular mafic clasts in a mafic matrix, as along the east side of Hiram Lake.

There is a lithologically and structurally complex unit(s) of coarse mafic to intermediate pyroclastics and mafic volcanic fragmentals along and to the north and west of the west arm of Hiram Lake. This includes chloritic versions of the " 2 b " rock type, some mafic pyroclastics with variolitic matrix, mafic pillow breccia and an outcrop, at $\mathrm{L} 6 \mathrm{~N} / 5 \mathrm{~W}$, of chloritic volcanics containing small chert breccia fragments.

The coarse tuff breccias in general appear to form thick massive units in which bedding is not obvious. Bedding is only discernible where laminated ash tuff or lapilli tuff units are interbedded with the coarser material with some of the best examples found in the extreme southwest portion of the property.

Although there are considerable variations in clast size and type and matrix composition, these pyroclastics all seem to be variations on a common theme and appear to have been derived largely or wholly from a volcanic centre located immediately south of the present property.

These pyroclastics are also considerably invaded and broken up by and/or interbedded with gabbro. For example, a thick unit(s) of coarse pyroclastics has been impressively invaded and broken up and individual blocks displaced by gabbro in the area of $7 \mathrm{~W}-10 \mathrm{~W}$ on line 4 S . Likewise, these coarse pyroclastic rocks have been strongly invaded by gabbro in the area south/southeast of Hiram Lake where a particularly large gabbro unit is present. In some cases, blocks of coarse intermediate-felsic pyroclastics can be seen at the outcrop scale as large xenoliths in gabbro as in the area of L1S/4W.

An area of intriguing lithologies and alteration is present near the north end of the coarse pyroclastic unit west of Hiram Lake in the area of L3N/10W. Here what appears to be a feldspar porphyritic/dioritic phase of the gabbro is in gradational contact with feldspar porphyritic tuff breccias with a thin argillaceous unit immediately to the west. There are local feldspar porphyry fragments within the "diorite" such that this unit may be a subvolcanic porphyry or may be in part pyroclastic. The intrusive nature of this body is confirmed by the observation that it engulfs and truncates the north end of the weakly conductive argillite unit at the stripping at 10 W on L3N. A number of the outcrops of this material, particularly along the road, show considerable sericitization and chloritization. Strong chloritic
shearing is also present. The weight of evidence suggests that there may be a local volcanic edifice in this area immediately west of Hiram Lake.

The coarse pyroclastics are overlain by a thick and lithologically complex sequence comprising finer grained feldspar porphyritic pyroclastics (ash and lapilli tuffs), fine to coarse clastic and epiclastic sediments (argillites, greywackes, arenites, conglomerates) with a thick accumulation of chemical sediments (chert, oxide and sulphide iron formation, argillaceous chert) in the area east of Hiram Lake. The fine clastic sediments may be variably graphitic and sulphidic and typically have pronounced electromagnetic signatures. Two units of chloritic oxide iron formation in the southeast portion of the property have prominent magnetic expressions. A distinctive variolitic basalt unit divides the chert sequence east of Hiram Lake into Upper and Lower members.

In terms of specific rock types, white weathering, thinly bedded feldspar porphyritic crystal lithic tuff is well exposed in a trench at about 075E on line 3S. Scattered pyrite clots are present here and elsewhere in this unit. There is a thick accumulation of this material towards the west ends of lines $8 \mathrm{~N}-9 \mathrm{~N}$ with considerable east-west shearing in some of these outcrops with attendant sericitization and pyritization. Another quite distinctive rock type found in this sequence consists of chloritic conglomerate, rock type 7b. This consists of fragments of chert, chert-magnetite iron formation, mafic volcanics and feldspar porphyry in a chloritic matrix. The fragments range up to 3 cm or more and are generally variably angular. A unit of this material appears to be the facies equivalent of chloritic oxide iron formation in the area of 2 E on line 6 S . The key chert/argillite lithologies which host the historic Main and South Zone deposits and the specific volcanic and intrusive units found in this immediate area are discussed in detail in section 6.3.

The top of the central Shunsby volcano-sedimentary assemblage is marked by a series of graphitic/sulphidic argillite units with strong electromagnetic responses represented by conductors 14d, 56 (13c), 42b (13b), 42a (12), 40b (2d), 40a (2c) and 2a (Map 4a).

To the north, this assemblage both pinches out and truncates against gabbro such that a maximum extent to the stratigraphy on the property is approximately 2.2 km . The main chert unit in particular seems to thin out very rapidly to the north. To the south, there is a major facies change within the upper portion, as the thick chert accumulation east of Hiram Lake thins rather abruptly and grades into a complex sequence of arenites with some pyroclastic members which contain thin chert interbeds (eg <1 m). This transition seems to be concentrated in the area around lines $5 S-6 S$. The marker variolitic basalt unit also appears to pinch out to the south or is truncated by a local fault in the area of line $5 \mathrm{~S}-6 \mathrm{~S}$.

The clastic sediments as exposed along the east end of line 11 S comprise a
diverse assemblage of greywacke/argillite, quartzite/arkose and fine-grained conglomerate and conglomeratic greywacke with subordinate cherty beds. There is also a unit of rusty weathering, siliceous carbonate sediment containing disseminated pyrite and pyrrhotite (rock type 6f). The pyroclastic outcrop at about 6 E on line 10 S shows a sharp bedding contact with intermediate crystal tuff to the east and intermediate ash and lapilli tuff to the west.

To the southeast, this volcano-sedimentary assemblage truncates against, and partially warps around, a large gabbro body which in turn has been intruded by a central peridotite mass. This latter rock is distinguished by its magnetite content, serpentinized nature and characteristic jointing and weathering pattern. This peridotite is indicated by airborne magnetics to be related to other peridotite exposures to the west along line 4 S . The strongly magnetic ultramafics are indicated to continue for several kilometres to the southwest of the present property.

The large gabbro mass in contact with sediments east of the MPH camp displays an ill defined, often quite chloritic, notably leucocratic feldspar porphyritic/dioritic border phase which looks very similar in many cases to some of the massive feldspar porphyritic pyroclastics. The "feldspar porphyry" designation in some previous drill holes, eg Placer hole MW-80-2, almost certainly refers to this rock. This rock can be virtually indistinguishable in the field from massive feldspar porphyritic pyroclastics as in the area of 5E on line 11 S . Petrographically, its igneous nature is quite obvious.

A sample (SH-WR-20) of massive, medium-grained leucocratic feldspar porphyry/diorite from 7S, 2W was studied in thin section. Mineralogically, the rock is quite simple consisting essentially of plagioclase feldspar, quartz and chlorite. The rock is not a true porphyry in the sense of having well defined phenocrysts in a fine-grained matrix, rather it is an interlocking aggregate of unoriented plagioclase crystals with a "crystal mush" aspect in which a few of the crystals are somewhat larger than the rest. The crystals are rarely euhedral and are distinctly anhedral in most cases. There has been considerable mutual interference during plagioclase crystallization resulting in complexly interlocking grain boundaries. Perhaps most striking, a great deal of the interstitial material consists of granophyric quartz-feldspar intergrowths, often with distinctly radiating, "starburst" patterns. This granophyric material seems to radiate from or replace (?) plagioclase crystals in some cases. The balance of the rock consists of $5-7 \%$ of scattered irregular chlorite aggregates. These are often distinctly elongate being controlled by microfractures in the rock. Small opaque saussurite clusters are typically closely associated with chlorite as is a very minor calcite content. There is a minor content of very fine, light-greenish rod-like or needlelike apatite crystals in the rock.

Granophyric intergrowths as observed in this rock indicate rapid and simultaneous crystallization of the quartz and feldspar, ie a quench phenomenon, in a relatively near surface environment. This dioritic rock is therefore interpreted to represent a late, granophyric border phase of the main gabbro body with the actual quenching probably related to some form of tectonic activity.
c) Easterly/Northeasterly Mafic (Basalt-Gabbro) Domain

A thick, monotonous mafic unit comprising both volcanics and gabbro intrusives overlies the foregoing volcano-sedimentary assemblage. Previous (1989) processing of the MPH ground magnetic data shows this domain to be of distinctly different magnetic character from the rest of the property; namely being characterized by generally low magnetic amplitudes and little magnetic relief.

The mafic volcanics are of both green and grey colouration and comprise a diverse assemblage of fine to somewhat coarser flows, pillowed and variolitic flows and flow breccias. The gabbros form thick, fairly regular sills to the south. To the north, in addition to some small sills, there appears to be a large, irregular body centred southeast of the small pond. The portrayal of the gabbros as abruptly cutting across stratigraphy as in the area just north of 450 E , on L 5 N appears to be valid as this sort of behaviour can be observed at the outcrop scale.

A number of thin, variably graphitic argillite $+/-$ chert units are present in this sequence. A thin, fine-grained conglomeratic unit is present in the conductive chert/graphitic argillite unit at the north end of Edwards Lake drilled by Cominco in 1954.

7.1.3 Structure

Rock units on the property generally strike in a northerly direction varying from north-northwest in the east through to northerly to north-northeasterly in the west. Bedding dips are generally $30^{\circ}-50^{\circ}$ to the west. One notable exception to this is in the area immediately west of Hiram Lake where dips in coarse pyroclastics and argillite are vertical to subvertical.

The Joubin Fault, the major structural feature, trends east-west, dips $55^{\circ}-60^{\circ}$ south and has left-lateral displacement in the Shunsby cherts east of Hiram Lake of 225 m . It can be traced with some confidence from the east property boundary through to the west side of Hiram Lake, as indicated on Map 1a, by mappable displacements of diagnostic rock units, displacement and truncation of geophysical trends, and a marked topographic expression in the form of creek valleys along much of its length. The fault cannot be traced with any confidence west of Hiram Lake although it is felt that the Joubin Fault re-appears to the west in the form of a strong, south-dipping east-west fault along the west end of line 0 . This structure
can be clearly observed at the bend in the road in the area of 14 W , line 0 , where it offsets iron formation units by 50 m or so.

A number of other east-west faults were identified by the geological mapping and inspection of geophysical results. A major fault is present in the area of 7 N at, and to the west of, the baseline. An EM conductive unit here is offset about 25 m left-laterally with clearly discernible drag along the fault. One or more strong east-west faults and/or shear zones are present in the area of 100S to 150S in the area of the baseline. A prominent east-west fault valley is present to the west of the baseline in the area of 050S that may relate to the foregoing structure. It is also possible that these structures in the area of $1 S$ in the east part of the property are related to the strong, Joubin-extension (?) fault along line 0 . They may well be conjugate splays off the primary feature.

It became evident during the mapping that the pyroclastic rocks, particularly the finer varieties, and sediments in the central portion of the property east and north of Hiram Lake have been mildly to strongly affected by east-west shearing and are noticeably more schistose than the flanking mafic terrains.

The area of most intense schistosity, which is seen in all rocks of the central pyroclastic-sedimentary domain, extends from the ash tuff accumulation along the west end of line 9 N to about line 5S-6S. This east-west schistosity is so intense in many areas as to completely obliterate primary north-south bedding features, a good example being in the outcrop area along the 2 W tieline between 050 S to 1 S . This schistosity is concentrated in the more ductile rock types while the less ductile cherts generally yield by brittle fracturing. The shearing becomes so concentrated in some areas as to form intense east-west shear zones up to 3 m across. Considerable drag has taken place along some of these zones producing folding on a number of different scales.

This deformation was of sufficient intensity as to affect the gabbros along the south arm of Hiram Lake such that they are now moderately to locally strongly schistose and display variable carbonatization. Local occurrences of sheared, carbonatized gabbro to the west along line 1 S probably mark a westward continuation of this alteration/deformation corridor. The gabbro units elsewhere are typically massive and featureless. A foliation is sometimes present in the intervening mafic volcanics but is usually very weak. One exception to this is the presence of a strong, east-southeasterly trending shear with associated pyritization and carbonatization on the pond at line 13 N .

There appears to be an arcuate fault/shear zone along the creek network which crosses the southeast part of the property. A number of units seem to be disrupted, change magnetic character or terminate, in this area between lines 5 S and 6 S . The prominent flexure in the EM conductor in the area of $5 \mathrm{~W}, 5 \mathrm{~S}$ may
reflect displacement along this structure. The fault would not appear to have penetrated the flanking gabbro sill as the EM conductor on the east side of the intrusive has not been affected. This structure is interpreted by workers on the adjoining ground (Smith, 1989) to continue along the same watercourse in a southerly direction.

Northerly trending faulting and shearing is well known in this area with the major Isaiah Creek fault to the west of the property being a good example. Perhaps the best example of this set on the present property was exposed by stripping on a weak EM zone in peridotite on line 14 S .

It also appears that there has been considerable bedding plane shear involving particularly the graphitic units. In many cases, intervening mafic sill/flow complexes seem to have behaved as relatively rigid blocks during deformation with the bulk of the strain taken up by the flanking graphitic units.

There do not appear to be any major fold closures on the property such that the rocks are on the overturned east limb of a regional anticline (or west limb of a regional syncline). The disposition of ultramafic units to the south may be indicative of a gentle anticlinal warping here. The north strikes on the Shunsby property are anomalous with respect to the belt as a whole and seem to be due to warping about the Isaiah Creek pluton.

7.2 Deposits Area Detailed Geology

7.2.1 General

This section describes the geological relationships in the area of the Main and South Zone $\mathrm{Cu}-\mathrm{Zn}$ deposits. As noted in the previous section, the Shunsby deposits area is interpreted to be floored by proximal to vent facies intermediate-to-felsic tuffs and tuff breccias. These are overlain by a considerable thickness of chert believed to be phreaticly brecciated. The cherts host thin massive pyritepyrrhotite horizons and a relatively thin variolitic and pillowed basaltic unit which is traceable over a kilometre or more. The variolitic basalt horizon has served as a stratigraphic marker for past workers, allowing a division into structurally "Upper" and "Lower" chert units. Various argillite and graphitic argillite units are present throughout and at the top of the chert sequence.

7.2.2 Lithologies and Stratigraphy

a) Footwall Intermediate to Felsic Volcanics and Pyroclastics

Past workers have made numerous references to quartz and feldspar porphyritic rocks to the west of the chert deposits, but only recently have
these been recognized as extensive units of feldspar phyric ash and lapilli tuffs and tuff breccias as well as quartz-eye ash tuffs. Subordinate to the above within the sequence are felsic flows and thin graphitic argillite units. As the chert contact is approached an exotic volcanic sediment is encountered which consists of rectangular chert blocks aligned parallel to stratigraphy hosted by a chloritic tuffaceous matrix.

The basal pyroclastic unit shows extensive chloritization and sericitization as exposed at the west end of the L 500 N stripping where clast margins are, in some cases, nearly obliterated by black chlorite-pyrrhotite systems working through the matrix. Sericite-chlorite alteration is observed peripheral to the more intensive systems and generally does not affect the clasts as markedly. Petrographically, sample SH-WR-01 from the west end of the 500 N stripping, shows grains and fragments of quartz and partially resorbed lithic fragments surrounded by an anhedral assemblage of quartzo-feldspathic material, chlorite, sericite, carbonate and saussurite per Appendix 3.

The breccia unit is overlain by up to 200 m of quartz and feldspar phyric lapilli tuffs. Alteration has been observed changing these hard, grey to pink-white, blocky weathering outcrops with bedding quite often clearly visible (ie. samples WR-09, L625N/400W and WR-11, L300S) to soft, black chlorite-quartz eye rocks with abundant coarse, euhedral pyrite (SH-WR-05). Sample SH-WR-11 of rather pristine crystal tuff shows siliceous fragments consisting of very fine-grained anhedral sericitic quartzofeldspathic material interspersed with quartz and feldspar crystals and grains, chloritic patches and carbonate. At the other end of the alteration spectrum, sample SH-WR-05 petrographically shows scattered quartz crystals and crystal fragments in a very fine-grained schistose matrix of anhedral quartzo-feldspathic material and chlorite, all overprinted by carbonate. The carbonization and chloritization appear to be later than the schistosity and associated quartz-pyrite veining.

Graded bedding on the scale of individual beds and entire units (ie pyroturbidite sequences) predominately indicate tops down, ie eastward. Especially good examples of this are found in the new exposures at the west end of the L500N stripping where several thin laminated ash tuff horizons are also present as indicators and point to tops being to the east.

The tuffs grade with proximity to the chert contact into $30-40 \mathrm{~m}$ of cherty ash tuffs and the exotic chert breccia-tuff unit mentioned above. Seen at the L625N stripped area and in talus below the Joubin Fault at $200 \mathrm{~N} / 200 \mathrm{~W}$, it appears to consist of clast-supported brecciated chert horizons with an ash tuff matrix that is heavily chloritized. A very similar
rock has been found along strike in the south property area which appears to be a conglomeratic facies equivalent.

The footwall package is capped by a complex assemblage of tuffs, argillite and chert that appears to have a true thickness of $40-50 \mathrm{~m}$ and includes graphitic horizons and thin massive pyrite beds.

This complex pyroclastic/sedimentary assemblage is overlain by a thick, predominantly chemical sedimentary assemblage known as the "Upper" and "Lower" cherts with the separation between the two defined by the variolitic basalt marker unit. Note that the "Upper" cherts are structurally above the "Lower" cherts but are now indicated to be stratigraphically beneath them.
b) "Upper" Chert Complex

Within the deposits area this unit attains a maximum thickness of 200 m in the Main Zone, and now with abundant exposure, can be seen to be a grossly predictable exhalative/chemical sedimentary sequence. In general, the sequence consists of $100-150 \mathrm{~m}$ of monolithic chert breccia overlain by a thin ($10-15 \mathrm{~m}$) massive sulphide-argillite-argillaceous chert package, in turn overlain by $20-25 \mathrm{~m}$ of clean bedded and brecciated cherts with subordinate argillite interbeds, and a capping $2-3 \mathrm{~m}$ graphitic argilliteargillaceous chert unit.

The chert breccia unit, previously called a slump breccia, is composed of clean chert cobbles and pebbles in a matrix of iron carbonate, chert and pyrrhotite. A typical sample, Miron-08, is composed of $81.50 \% \mathrm{SiO}_{2}$, $5.41 \% \mathrm{Fe}_{\mathrm{T}}, 4.25 \% \mathrm{CaO}, 1.75 \% \mathrm{Mg} 0,5.40 \% \mathrm{CO}_{2}$ with 4.81% LOI. Weathering of surface exposures and drill core gives the impression that the clasts are rounded because of the rusty pyrrhotite and carbonate, but closer examination shows them to be jagged and angular as well as commonly brecciated individually. The rock as a whole is clast-supported and chaotic, showing no evidence of sorting. Individual massive chert blocks up to several metres surrounded by matrix and breccia have been noted. It is now felt that the above characteristics are phreatic phenomena.

The breccia unit grades after approximately 100 m into massive and banded clean chert units although these show local, later brecciation related to faulting. Thin interbeds of argillite and pyrrhotite are present but sparse.

The massive and banded chert unit grades into a banded chert-massive sulphide-argillite unit of approximately $15-20 \mathrm{~m}$ true thickness with the massive sulphides attaining a maximum exposed thickness of $3-4 \mathrm{~m}$ on lines $500 \mathrm{~N}, 325 \mathrm{~N}$ and 275 N . The sulphides are laminated, very fine-
grained and dominated by pyrite in the Main Zone exposures and pyrrhotite to the north (L500N) and south (L100S). Finely laminated cherty sulphidic tuffs underlie the massive sulphides and chloritic argillites, chert, iron-formation and banded cherts occur above. The massive sulphides appear to wane between the Main and South Zones as sulphide iron-formation or sulphidic argillite is exposed on lines $175 \mathrm{~N}, 100 \mathrm{~N}$ and 000 N . Chalcopyrite, sphalerite and galena locally are present but appear to be secondary replacement features as opposed to primary syngenetic sulphides, possibly with the exception of a minor portion of the sphalerite.

Stratigraphically higher is a $25-30 \mathrm{~m}$ thickness of cherts with subordinate argillite interbeds that consists of: 1) approximately 10 m of extremely angular chert breccia which contains occasional chloritic argillite clasts; 2) approximately 15 m of banded clean cherts with chloritic ($+/-$ sulphidic) argillite interbeds and; 3) an argillaceous chert-laminated ash tuff-chloritic magnetite IF-argillite unit which exhibits pronounced soft sediment deformation features. Within these units, half-filled amygdules show an upper half of iron-carbonate-pyrrhotite matrix material and lower half of calcite (or vacant) in confirmation that the rocks are overturned and tops are to the east. Capping the "Upper Chert" unit is a $3-5 \mathrm{~m}$ graphitic argillite and argillaceous chert unit that is geophysically traceable into the southem property area.

A sample of clean, massive chert, Miron-07, returned oxide values of $88.30 \% \mathrm{SiO}_{2}, 2.44 \% \mathrm{Fe}_{2}, 2.52 \% \mathrm{CaO}, 1.19 \% \mathrm{MgO}, 3.32 \% \mathrm{CO}_{2}$ and 3.10% LOI. Alteration and mineralization is locally present in all of the units described above, manifested by "corridors" of gossanous sulphidic chlorite breccia which will be described more fully in section 7.2.4.

c) Variolitic Basalt

Ranging in thickness from approximately 30 to perhaps 75 m , the variolitic basalt marker horizon includes massive flows, flow-top breccias, hyaloclastite units and pillowed flows in which variolites are sporadically present. Variolites appear to be concentrated in the pillowed flows and hyaloclastite material on the basis of stripping along L050N and L175N. Disposition of variolites within the lower half of individual pillows adjacent to the central pillow void suggests that tops are to the east. Nipples within the stacking pattern are difficult to discern but vaguely suggest that tops are again to the east. Several samples examined petrographically (ie $61-91-\mathrm{VB} 1,56-64-\mathrm{VB}$, etc) suggest that tuffaceous mafic units are also present.

The upper $5-10 \mathrm{~m}$ of the basalt unit is a complex breccia which includes angular chert clasts in a mafic matrix, rather similar to the contact rock at
the Upper Cherts described earlier though clast orientation is much more chaotic. Chloritization, sericitization and carbonatization have been variously noted within the variolitic basalt unit and appear to be most intense near the Lower Chert contact. As well, the rock is highly schistose, sericitized and carbonatized in the "Joubin" and "1S" fault zones.

Sample $66-62 \mathrm{e}-\mathrm{VB2} 2$, taken from roughly midway through the unit may be considered as "typical" Shunsby variolitic basalt. In thin section, individual variolites are seen to be dense, semi-opaque ultrafine aggregates of mainly quartzo-feldspathic material, chlorite and carbonate with a very distinct feathery, outward radiating pattern. These are set in a very finegrain groundmass of chlorite, quartzo-feldspathic material and sericite with accessory opaques.

d) "Lower" Chert Complex

Far more argillaceous than the "Upper" Cherts, the "Lower" Chert package appears to have a true thickness of approximately $35-50 \mathrm{~m}$, and consists, on surface in the Main Zone, of: 1) the contact volcanic-chert breccia noted above; 2) $10-20 \mathrm{~m}$ of argillaceous chert, graphitic argillite, and laminated tuff; 3) $7-10 \mathrm{~m}$ of clean banded chert with subordinate argillaceous interbeds; 4) 10 m of argillaceous chert, chert and mafic flows; and 5) approximately 10 m of schistose argillite, graphitic argillite with subordinate chert locally referred to as the "Basement Fault".

The surface stripping in the Main Zone area has emphasized the sulphide iron formation aspect of the argillites, which in most cases are mineralized with massive coarse-grained euhedral pyrite + /- chalcopyrite and sphalerite. The argillaceous chert units also are mineralized with pyrite +/chalcopyrite and sphalerite, but in the form of matrix-fillings, disseminations and fracture-fillings. Chert units are generally unmineralized save for late cross-cutting quartz-carbonate veins, but locally are altered to sugary, calcitic chert and quartz and carry sulphides

A stripped section of presumed "Lower Chert" on L050N is markedly different than the assemblage described above. Here the graphitic argillite component is much less, a semi-conformable 5 metre wide quartz-feldspar porphyry dike/sill is present in the structural upper portion of the stratigraphy, and the banded and massive cherts have a re-crystallized, sheared texture. It appears that this area of the "Lower Cherts" between the Main and South Zones is influenced by the quartz-feldspar porphyry dike, which experience on the property has shown to occupy shear zones. It is possible that an unknown shear is present in the area, which is quite close to the junction of the "Lower" cherts and the inferred copper bearing higher argillite-chert package marked by overburden trenches "D" and "E".

Most drill logs in the area similarly report one or more quartz-feldspar porphyry intersections in the "Lower Cherts", suggesting that a sill-like body(ies) has intruded the stratigraphy, presumably along the basement fault/shear zone. This may be related to the quartz-feldspar porphyry dikes mapped on L100S.

e) Hangingwall Volcanics

These rocks are known locally as "Footwall Diorite" and have been shown to be an extensive mafic flow/gabbro regime which covers most of eastern and northern Cunningham Township. Chemically these rocks are generally basaltic in composition and tholeiitic in classification, although altered appreciably in many cases which might account for the intermediate intrusive field terminology. Mafic flows vary from fine-grained aphanitic to medium-to-coarse-grained porphyritic types, whereas the gabbros show true intrusive contact relationships with a dioritic border phase and there should have been little confusion differentiating in the past between the two.

That the "FW diorites" include both fine and coarse-grained mafic rocks is well-illustrated by samples $65-70-\mathrm{FWa}$ and b which grades from a finegrained schistose (related to "Basement Fault"?) sericitized and chloritized mafic volcanic to a medium-grained actinolite-plagioclase rock, similarly altered (Appendix 3).

A wedge of volcanics lying between the Main Zone "Lower" cherts and the upper sedimentary package marked by conductor 42a (12) north of the Joubin Fault, and 40b (12) south of the fault is thought to consist of several coarse-grained flows separated by $100-200$ feet of mafic flow units and in one case, an 85 ft "gray lava" zone with a graphitic shear. It is not known at this stage whether these "wedge" rocks represent an intrusive complex that split the "Lower" cherts, or a local extrusive accumulation with later sedimentary deposition. A very high degree of hydrothermal alteration would appear to be a common characteristic of these rocks though, given the geochemical results to date.

Attempts to trench conductors 42a (12) and 40b (1d) with overburden trenches "E" and "D", respectively, the past two summers were unsuccessful in reaching bedrock, but did encounter large angular boulders of chert, argillaceous chert, chloritic argillite and graphitic argillite. Mineralization and lithologies encountered are markedly similar to the "Lower" cherts, although geophysical dip estimates are much steeper. It is unclear at this point whether these two sedimentary packages are related.

f) "Digestive Diorite"

This intrusive gabbro appears to exist in the form of narrow dikes and sills throughout the deposits area stratigraphy, and blossoms out to a larger, laccolith type structure in the Main Zone area. To the north it appears to be sill-like and conformable but within the deposits area to be fault controlled. Digestive diorite has been noted in NW (120°) vertical structures as dikes, as the laccolith which is apparently bounded by NNE striking, easterly dipping shears, and as conformable thin sills.

Chert xenoliths and the presence of greyish-whitish-purple leucoxene crystals and a petrographically-determined, very high degree of alteration clearly distinguish this gabbroic rock from the regional gabbros seen elsewhere on the property.

A sample of digestive diorite (SH-WR-19) from L450N/125W was studied in thin section. Megascopically, this is a dark, mottled green-black, generally medium-grained rock which contains irregular 1-2 mm grains of a diagnostic greyish-white mineral with a slight purplish tinge. In thin section, the most notable feature of this rock is the complete and total alteration of whatever primary minerals were present to an alteration/hydrothermal assemblage of chlorite, epidote-saussurite, kaolin, abundant carbonate, sericite, leucoxene and hematite. Some shattered quartz grains may be primary. Remnants of original feldspar (plagioclase?) crystals can be discerned in a few instances. The diagnostic purplish mineral can be identified as leucoxene, pseudomorphous after illmenite.

The pervasive alteration noted, and the surprising number of samples previously called either "Variolitic Basalt" or "Footwall Diorite" but positively identified as "Digestive Diorite" by the petrographic work is critically important. These observations suggest that while the dike swarm certainly intruded the entire central pyroclastic-sedimentary stratigraphy in the deposits area, this occurred before the mineralization event. All chemical, mineralogical and structural manifestations of the hydrothermal systems appear to be present in the "Digestive Diorite" rocks, and therefore past references to mineralization being "digested" are likely misinterpretations. Rather, it would appear the dikes were an integral part of the Shunsby deposits assemblage, and were "stewed" by the same hydrothermal event as the other lithologies.
g) Intrusives Dikes
"Basic", "trap" and "intermediate" dikes as well as ambiguously logged
"feldspar porphyry", "feldspar-andesite porphyry" and "quartz-feldspar
porphyry" are common in the historical work giving one the sense that the
property is inundated with quartz-feldspar porphyry and lamprophyre dike swarms. The extensive stripping operations have shown this not to be the case, with in fact, only a few late quartz-feldspar porphyry and lamprophyre dikes present in the deposits area. Virtually all references to feldspar porphyries have now been correlated with feldspar phyric intermediate to felsic pyroclastics, while basic dikes etc. are generally mafic flows.

With the exception of the laccolith, lamprophyre as well as "Digestive Diorite" dikes preferentially occupy late NW (120°) structures. Quartzfeldspar porphyry dikes have been noted in later EW (090°) structures only, and as mentioned earlier, as local sill-like bodies roughly concordant with stratigraphy.

7.2.3 Structure

The additional stripping through the deposits area has further clarified the structural picture and shown small scale folding to be far more common than previously thought. The stripping has also served to further refine the fault/shear zone picture in the deposits area, particularly to emphasize the pervasive nature of NW-SE trending structural zones and the E-W, southerly dipping shearing. While in general rock units do trend slightly west of north, left-lateral shear related drag-folding in the South Zone at 100S moves units further eastward and results in local east-west strikes and flatter dips from approximately LOOO southward. Drag-folding has also been exposed in the Joubin Fault zone on L250N and is again left-lateral in orientation with Main Zone "Lower" chert argillites rotated into the plane of the fault. A major fold has also been located in the north Main Zone area which warps stratigraphy around north-eastwardly before swinging back and trending towards the northwest in the north property area.

a) E-W Faulting/Structural Trend

All observations suggest that E-W faulting and shearing and related dragfolding was a very late event, post-dating all other folding, faulting and mineralization events and overprinting original textures with a pervasive foliation in many areas. This grades to intense schistosity in the fault/shear zones themselves. While the Joubin Fault is regional in extent, two other faults, at 700 N and 100 S , appear to terminate against the gabbro regime to the east. A quartz-feldspar porphyry dike system occupies the core of the 100 S shear which is apparently sub-vertical, while the Joubin Fault dips southerly at approximately 60° A possibly related trend is the 100° microfracture system seen in some of the brittle lithologies such as the chert breccia and massive cherts.
b) NW-SE Hydrothermal Breccia/Fault Zones

Pervasive 120° jointing as well as dikes and faults in this orientation had been noted in the Main Zone "Lower" cherts previously. Subsequent stripping further to the west and north has allowed several individual "zones" to be mapped for several hundred metres through the "Upper" cherts and into the footwall pyroclastics. The structures trend 120° on average, and manifest themselves as steeply dipping shear/alteration zones (chlorite-pyrrhotite) in the Footwall Pyroclastics; as brecciated and microjointed chlorite-pyrrhotite $+/$ - pyrite, chalcopyrite, sphalerite zones within the chert breccia lithology; as purple, densely carbonatized to calcitic massive and banded chert lithologies with chloritic seams and chloritic argillite interbeds (often base metal mineralized); as chlorite-chalcopyrite-sphalerite-pyrite microjoint systems through the argillaceous chert-argillite $+/-$ massive sulphide-iron formation assemblages in the "Upper" and "Lower" cherts; and as chloritized, fractured-mineralized zones in the variolitic basalt and hangingwall volcanic units.

In several locations, particularly along the L300N stripping, a breccia zone shows true left-lateral displacement and would appear to represent later reactivation of a pre-existing mineralized structure on the basis of boudinaged mineralized clasts within the fault gouge. Where this zone cuts the thin massive sulphide horizon, the copper and zinc content of this unit is enriched considerably by 1) chalcopyrite $+/$ sphalerite replacing pyrite-pyrrhotite and 2) chalcopyrite-sphalerite-galena in microfractures.

It is difficult to ascertain exactly how many structures are present and at what density. It would appear that through the Main Zone area they are virtually adjacent to one another although barren intervals, and less mineralized zones within individual structures certainly exist. At only one locale, the Copper Knob and L400N area, have outside limits to an individual structure been established, giving it a width in the order of 5060 m . High-grade mineralization is present to the north at the L425-450N area, and in many drillholes to the south extending to deep hole 64-82e, suggesting that the distance between structures is not great. The stripping to the north and west, and as well in the South Zone area suggests that density of mineralized structures is decreasing to the north and south. It is apparent that only by drilling several fences of northeasterly trending holes through the entire Shunsby basin, will one positively ascertain number and density of structures that constitute the system.

As mentioned previously, folding has also been observed about a 120° axis including drag-folding along small-scale shears, and also a major fold which affects the Main Zone area. In addition, tiny sulphide veinlets, fracture sets and a pervasive crenulation cleavage in the massive sulphide
horizon exposed on lines 325 N and 275 N are oriented at 120°.
c) NNE (030°) Shear Zones/Structural Trend

Shears of this orientation are known only at the contact of the "Digestive Diorite" bodies in the L300N and L625N stripped areas. These particular structures have an anomalous eastward dip of $50-55^{\circ}$. This shearing would appear to be controlling the east margin of the laccolith, and based on drill records may not extend to depth in any significant fashion. There is some evidence that there has been movement along this structure, in the order of $25-50 \mathrm{~m}$ in a left-lateral sense. It is also possible that vertical movement along this shear has had some influence on the shape (and mineralization ?) within the Main Zone near-surface "bulge" in the "Lower" cherts. (ie. dips steepen considerably here to near vertical).

Occasional outcrops show a 030° joint set, particularly incompetent, brittle lithologies such as the massive cherts. Where observed, these are seen to be cutting all other trends, including E-W joints.
d) Bedding Parallel Trend

Manifested primarily by the sheared upper contacts of the two chert packages, this trend is cut by all others and would therefore appear to be the oldest. The so-called "Basement Fault" is a highly strained, boudinaged melange of graphitic argillite, argillite and chert units at the "Lower" chert "FW Diorite" contact which appear to be draped over the overlying volcanics, suggesting that movement was primarily in a reverse dip-slip, ie thrust, sense.

A similar sheared graphitic argillite package is found at the "Upper" Chert/ variolitic basalt contact exposed on the L175N, L000 and L100S stripped areas.

Graphitic argillite units are also known to exist along the pyroclastic "Upper" chert contact, and as well in the overlying volcanic flow/sill regime (trenched at L100S, 500E). Additional thrust-type movements may also have taken place along these units during regional folding, to result in the rather exotic subvolcanic environment now exposed at surface.

7.2.4 Alteration and Mineralization

The extensive additional stripping during the current program has shown that most of the mineralization present on the property is not stratiform or even stratabound, but is in fact hosted by late hydrothermal breccia/fault zones which trend 120° on average and dip vertically. Confusion has resulted in the past because most of the
previous work, including the 1990 MPH work, was predicated on a stratiform model based on the identification of some stratiform/stratabound mineralization in the argillaceous horizons.

True primary stratiform/stratabound sulphide mineralization has been found in two distinct styles:

1) Banded massive pyrite-pyrrhotite $+/-$ sphalerite in the "Upper" cherts associated with chert-magnetite iron formation (ie L500N, L325N, L275N)
2) Sedimentary-exhalative style disseminated to semi-massive sphalerite $+/-$ pyrite within an argillaceous chert horizon near the base of the "Lower" cherts (ie L425N, L400N, etc.)

All other mineralization has a distinct structurally controlled aspect and, save for very late E-W quartz-carbonate-galena $+/$-sphalerite, chalcopyrite veins, would appear to be associated with the 120° breccia/fault zones. These include:
3) Chlorite-chert-chalcopyrite-pyrite $+/$ sphalerite, galena breccia zones within the "Upper" cherts (ie Cu-Knob and Cu-Breccia showings, L075S South Zone "Upper" cherts)
4) Chloritic volcanic/chloritic argillite-sulphide breccia zones with pervasive joint systems carrying chalcopyrite, sphalerite, galena (ie L425N, L400N and L300N Main Zone "Lower" cherts, L325N "Upper" cherts cutting massive sulphide stratigraphy and L100S South Zone "Upper" cherts where Zn predominates)
5) Chloritic argillite-pyrite horizons with chalcopyrite, sphalerite preferentially replacing iron sulphides for short strike extents (ubiquitous)

Variably tectonized versions of the above styles have also been observed, particularly in the vicinity of the L325N stripping where a fault zone cuts through the "Upper" cherts, and also in float from the eastern overburden trenches. Virtually all of the mineralization styles described above have been found in coarse angular rubble in these trenches, including high-grade tectonized chalcopyrite-pyrite ($+/$ bornite) sulphide clasts.

Within the footwall pyroclastics and lower portion of the "Upper" cherts, pyrrhotite is the predominant sulphide at the expense of pyrite and the base metals although all of mineralization styles 3,4 and 5 are present. Crude grading of Fe to Zn to $\mathrm{Cu}(+\mathrm{Ag})$ (repeated in "Lower" cherts) appears to be present as one works upwards in the stratigraphy, and as well as one moves from the peripheries to structures in the Main Zone area. Several holes illustrate the base metal zoning
relationship extremely well, particularly hole 81-24 (Table 3), where $\mathrm{Cu}: \mathrm{Zn}$ ratios steadily increase from 0.063 to 1.324 over 5 mineralized intervals through the "Lower" cherts. Pb appears in dominantly $\mathrm{E}-\mathrm{W}$, late veins, and seems to be more common on the peripheries (ie L625N, L100S and a massive galena intersection in hole 74-16 at approximately L300S) than in the Main Zone area.

Alteration occurs in several forms because of the variety of host rocks but is thought to be primarily of hydrothermal origin related to the structurally-controlled stringer-type mineralization discussed above. A possible exception is the impressive amount of iron carbonate on the property which is found in E-W shear zones and quartz-carbonate veins and as a major component of the matrix of the "Upper" chert breccia. As well most of the volcanics analyzed have high CO_{2} contents suggestive of a rather widespread "dolomitic" background chemistry in the deposits area such that much of this material may be of primary origin. Some of the low rank alteration minerals in these rocks, eg chlorite, sericite, are also undoubtedly a product of regional metamorphism. Leucoxene pseudomorphic after illmenite is common in all volcanic lithologies but especially seems to be prevalent in the "Digestive Diorite" dikes.

The footwall pyroclastic assemblage shows intense chloritization and sericitization within structures in the Main Zone area while peripheries show less intensive chloritization and more sericitization. Intense pyrrhotite-chlorite-iron carbonate gossanous mineralization is common within these rocks with some impressive Pb , $\mathrm{Zn}+\mathrm{Cu}$ credits (L625N).

Structures passing through the chert breccia unit appear to re-brecciate the unit and alter the chert clasts to a carbonate or calcitic chert with some free quartz. Again gossanous mineralization is encountered which is primarily pyrrhotite-chlorite- Fe carbonate but higher $\mathrm{Zn}-\mathrm{Cu}-\mathrm{Pb}-\mathrm{Ag}$ values are present and a pervasive microjoint system is generally discemable (L625N, N-S stripping at L550N, LOOO).

Massive and banded chert lithologies are generally altered to a purplish (hematitic?) colour and sugary texture with chlorite seams transgressing stratigraphy within the structures, but are unmineralized with the exception of the argillite interbeds (type 5 mineralization, eg L500N, L325N etc).

Where structures pass through the banded chert-massive sulphide-argillite complex of the "Upper" cherts, and the entire "Lower" chert assemblage, alteration and mineralization is intensive. Chloritization of argillite beds is pervasive, and type 3,4 and 5 mineralization is present in all suitable host lithologies.

Several exposures of the variolitic basalt-"Lower" chert contact area and numerous
references in drill logs suggest that typical VMS stringer-type mineralization is present, within these structures, both stratigraphically below and above the "Lower" cherts. Where exposed on surface in the Main Zone (L425N, L400N, L300N), chloritization and silicification virtually obliterate primary textures in the variolitic basalt and rich type 4 mineralization is present.

7.3 Lithogeochemistry and Petrography

Petrographic examinations on the Shunsby samples collected thus far have found that the suite includes 27 "FW Diorites" of which all but two are from drillcore, 5 surface samples of the footwall pyroclastic suite, 8 surface samples and 3 from core of dike rocks and "Digestive Diorite", 33 variolitic basalt samples of which 7 are from surface, and two surface chert samples. As well, for control purposes, 69 regional samples collected by the OGS (Siragusa, 1987) in Cunningham Township have been included in the database. These rocks are interpreted to be equivalent to the Shunsby "FW Diorite" stratigraphy. All of this data is presented in worksheet form in Table 2, and the 28 surface samples (designated SH-WR- and Miron-) are plotted on Map 2.

The total of 11 "Digestive Diorite" samples includes rocks collected from all of the Shunsby stratigraphic members, and the identification of these as dike rocks came as quite a surprise in some cases.

Average raw analytical and lithogeochemical processed results are as follows:

Raw Analytical Data

Cunningham Twp.Basalts
Shunsby Hangingwall "FW Diorites"
Shunsby Variolitic Basalts
Shunsby Footwall Pyroclastics
Shunsby "Digestive Diorite" Intrusives

Cunningham Twp. Basalts
Shunsby Hangingwall "FW Diorites"
Shunsby Variolitic Basalts
Shunsby Footwall Pyroclastics
Shunsby "Digestive Diorite" Intrusives

SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Fe_{T}	CaO	MgO	$\mathrm{Na}_{2} \mathrm{O}$
48.46	15.20	11.50	9.46	6.46	2.34
46.54	15.14	12.38	7.09	6.10	0.97
51.18	16.57	11.79	4.42	4.87	1.06
61.58	13.80	10.71	2.06	2.22	1.21
47.77	14.41	11.42	6.67	7.47	1.43
$\mathrm{~K}_{2} \mathrm{O}$	TiO_{2}	$\mathrm{P}_{2} \mathrm{O}_{5}$	MnO	LOI	CO_{2}
0.27	0.93	0.08	0.21	3.05	1.41
0.91	0.85	0.08	0.17	9.30	5.44
1.04	0.90	0.10	0.19	7.08	3.45
1.94	0.33	0.08	0.41	4.89	3.30
0.68	0.77	0.10	0.18	8.39	4.47

	LOCATIOI section	P80\%	To nite	cussiricitions JB4SEI	tirilia			CaO	$\mathrm{Mg}^{\text {O}}$	Na20	120	fi02	P20S	Ho O LOI	c02		$\begin{aligned} & \text { BESIDOLL } \\ & \text { E20 } \end{aligned}$	ouss ${ }^{18203}$	1820	C10		discrian $\mathrm{B}-\mathrm{D}$ SC	$\operatorname{MinaIf}_{\text {DF2 }}$	perctios		Drs	Thas	prasl		Zn Ca:Za CIPY Iory	Courbirs
57-70-78	$2+005$	52.13	52.4419	$\mathrm{C}-\mathrm{A}$ basalt	dacite	45.6814 .5611 .46		10.07	4.20	0.53	0.82	0.78	0.05	0.3610 .61	7.03	-3.56	0.64	-2.52	-2.51	-0.35	1.17	-1.06	-4.56	-5.12	-3.59	-1.29	32.12	1.33	10	120	just belor sig. zm min
57-69-18	1+50s	72.56	12.87 lq	$C-8$ bealt	dacite	44.4016 .4111 .82		8.50	5.34	0.40	1.86	0.99	0.06	0.1710 .69	6.22	-2.13	1.85	-2.70	2.41	-2.68	-0.95	0.03	-5.06	-5.61	-3.25	-3.47	4.78	1.58	55	850.65	just belor dyte a oc, no sig nola
57-64-7B	$1+505$	42.68	12.9919	C-1 andesite	dacite	$58.5319 .75{ }^{8.53}$		2.01	3.50	0.82	1.82	1.10	0.10	0.114 .61	0.71	-1.12	1.08	-0.03	-3.17	-4.31	-4.86	2.02	-2.00	-2.64	0.44	0.89	65.26	2.83	100	2250.44 norn c 11.58	jast belor sig oc 2 n anla
81801-03	$1+005$	${ }^{\circ}$	0.19 9, 8er	Thol basalt	dacite	51.20814 .0010 .50 1.5150		5.59	6.88	3.02	0.18	0.78	0.19	$0.18 \quad 6.19$	3.08	1.45	-0.33	-0.93	-0.39	-3.03	1.58	-0.14			0.13	2.75	45.06	1.37			altered rar. basalt
56-61-7B	0775s	64.33	$64.6314 / 58(\mathrm{dig})$) Thol basalt	dacite	51.7515 .7613 .20		3.32	5.33	0.36	1.32	0.87	0.08	0.197 .4	3.67	-0.06	0.86	2.25	-3.35	-4.17	-0.31	1.12	14.68	13.98	3.19	3.50	61.42	2.87	15	9850.08 mora 06.18	nid 19, poss 5 (dig), good maly in oc d
66-628-781	$0+755$	49.38	49.68 lq	Thol basalt	dacite	43.1916 .5016 .94		0.38	11.72	0.17	0.65	0.90	0.06	0.097 .20	0.49	3.94	0.56	2.43	-2.46	-12.34	-1.01	3.67	2.03	1.60	5.55	5.97	95.73	12.38	15	$180 \quad 0.08$ nora c 16.0\%	just belon OC 2 A mals
56-62-78?	0+75s	51.86	55.1619	thol beealt	dacite	48.5617 .8311 .27		1.08	8.40	0.27	0.74	0.93	0.14	0.135 .87	0.79	2.24	0.39	2.01	-3.10	-9.02	-2.53	2.85	11.53	10.89	4.06	4.69	87.13	7.99	85	9900.11 bore c 15.5\%	apper lq
66-621-782	0+75s	65.08	65.3819	C-A andesite	dacite	$52.0917 .822^{6.49}$		4.31	3.98	4.07	1.52	0.92	0.12	$0.10{ }^{6.35}$	3.92	-1.43	1.09	4.95	0.68	-4.14	-2.69	-0.38	-0.91	-0.87	4.68	-4.27	39.63	1.46	120	5200.23 monc c 0.44	id lq
66-628-183	0775s	89.61	89.9219	Thol basalt	andesit	41.8719 .7218 .83		0.66	9.03	0.43	0.92	1.11	0.08	0.176 .12	0.71	0.36	0.89	3.79	-1.88	-12.37	4.51	2.47	3.37	3.11	6.11	1.23	90.17	8.571	1200	1607.50 mora c 17.64	just above LC Cn- la mala
68-20-78	0775	14.63	14.9419	C-1 basalt	dacite	$58.3616 .17 \quad 7.49$		1.43	6.41	0.80	1.58	0.91	0.06	0.065 .19	1.68	2.97	0.86	-1.22	-3.29	-5.12	-1.14	3.05	-2.03	-2.14	-0.34	2.68	78.20	3.75	5	3000.02 norn c 9.78	just belor oc za mola
68-01-78	0+001	132.59	132.89 lq	Thol lieh-Fe bac.	dacite	50.3016 .7520 .43		0.59	3.04	0.30	0.880	0.88	0.02	0.251 .61	0.62	-3.03	0.38	9.50	-3.26	-8.84	-1.40	-08	5.34	1.95	11.88	6.05	81.20	${ }^{8.88}$	50	301.61	jost above LC $\mathrm{zan}_{\mathrm{n}} \mathrm{mln}$
68-16-781	0+00\%	51.21	51.51 19	Thol dacite	dacite	59.6619 .0110 .98		4.49	3.35	0.96	0.72	8.39	0.08	0.146 .16	3.29	-2.60	0.29	-0.66	-2.61	-4.49	-3.92	0.51	-3.26	-3.99	-0.55	-2.10	42.18	2.95	50	1300.38	just belor oc, no 2 La
68-16-78	0+00\%	68.06	60.3719	$\mathrm{C}-\mathrm{A}$ basalt	dacite	45.3615 .2610 .79		10.55	3.94	0.75	1.00	0.87	0.08	0.2811 .55	7.80	-3.96	0.86	-3.42	-2.20	0.04	0.31	-1.12	-5. 30	-5. 82	-4.11	-3.53	30.46	1.28	100	${ }^{125} 0.80$	iid 19
68-16-782	0+0018	89.61	89.9119	Thol andesite	dacite	64.1810 .8610 .14		3.67	2.04	0.4	0.60	0.53	0.06	0.245 .84	6.73	- 0.47	0.46	3.83	-3.80	-1.17	4.17	0.12	-1.82	-2.4t	4.28	5.41	39.18	2.31	35	850.41	just abole LC, sie Co-la m
68-6-18	$1+801$	98.48	98.78 lp	Thol high Pe ba	dacitt	45.4015 .1917 .81		6.20	5.06	0.21	0.48	0.84	0.08	0.2988	4.58	-2.62	0.25	4.46	-2.76	-4.71	0.43	0.55	32.65	32.05	5.52	3.39	46.35	2.34	100	18150.06 aorn c 3.08	sid Iq , sig In min abore in oc
68-13-78	$1+0011$	6.11	$2.01 \mathrm{Iq}_{9}$	Thol ligh Pe bas	dacite	45.2614 .2318 .54		5.99	5.00	0.24	0.36	0.78	0.08	$0.35 \quad 6.87$	5.45	-2.79	0.01	5.26	-2.73	-5.11	1.52	0.78	5.83	5.41	6.51	4.69	45.98	2.31	370	2551.45 norn c 3.88	shallor, jost belou DC. no sich anh
56-37-18?	1+871	99.09	99.391	goe bas konatiite	dacite	46.8614 .2217 .35		1.3612	12.21	0.12	0.10	0.14	0.36	$0.10 \quad 7.15$	0.97	5.17	-0.23	4.56	-3.01	-9. 32	1.46	3.21	2.84	2.36	7.15	9.76	89.27	9.23	140	${ }^{135} 1.04$ morn c ${ }^{13.38}$	just belor oc 2 zan ma
61-91-7B	$2+751$	11.95	$92.261 \mathrm{p} / 19$	Thol basalt	dacite	45.1612 .0310 .64		11.23	5.52	0.28	0.36	${ }^{0.61}$	0.06	0.3512 .84	9.08	-2.32	0.14	-3.41	-2.78	0.75	4.16	-0.93	-5.69	-6.35	-5.15	-0.92	33.19	1.09	15	$130 \quad 0.12$	jost belor VC, no sig
61-91--882	$2+511$	97.54	97.84 1p/19	Thol high-Fe bs	dacite	67.8910 .2712 .93		0.72	2.64	0.24	0.18	0.52	0.04	0.153 .83	1.35	1.80	1.05	1.91	-3.82	-3. 47	4.33	0.74	15.95	15.33	9.11	8.47	14.69	8.33	208	8800.23 nora c 8.85	jost above sig LC Cu-ha min
S1-11-07	$3+0011$		$0.1 \mathrm{hq}, \mathrm{cl1}$	C-1 dacite	andesit	57.2822 .498 .52		1.01	2.37	1.32	2.26	1.21	0.12	0.124 .24	0.68	${ }^{1.63}$	1.53	-0.55	-2.58	-5.73	-7.62	1.81	-3.25	-3.17	-0.05	-0.81	66.28	4.11	30	1780.18 nora c 14.68	bighly altered rar. basalt near LC ct
${ }^{65-104-131}$	$3+5011$	147.83	148.13 19	Thol andesite	adesite	48.2120 .5815 .36		3.15	4.19	0.58	0.42	1.12	0.10	$0.25 \quad 5.57$	1.20	-2.46	0.06	3.00	-2.67	-6.11	-5.44	0.78	0.44	0.00	4.17	2.01	55.22	4. 82	160	$100 \quad 1.60$ mora c 14.34	just belon OC, no sig molo
65-184-182	3+5011	199.03	199.33 lq	Thol andesite	dacite	4.5217 .3112 .86		6.00	4.22	2.09	1.56	0.94	0.06	0.228 .22	4.94	-3.95	1.52	-1.48	-1.54	-5.45	-1.96	0.84	-3.68	-3.78	-1.08	-3.14	41.68	1.64	118	951.16	
U1801-96	$3+5011$	-	0.119	C-A rapolite	andesite	60.99 21.504 .28		1.69	1.39	1.31	2.32	1.23	0.31	$0.06{ }^{3.63}$	0.03	-1.80	1.52	-3.63	-2.15	-4.04	-6.91	2.16			-4.06	-3.95	55.37	3.66			sid lg abore sie lc Ca
HiPO-05	34501		0.119	$\mathrm{C}-\mathrm{s}$ basalt	dacite	50.6015 .0010 .30		6.65	4.76	0.28	1.74	0.76	0.19	0.178 .90	5.06	-1.07	1.42	-1.45	-3.39	-2.15	0.52	0.55			-1.82	-0.50	48.40	1.79			lover 19 abore sig LC C
SI-II-13	$4+0011$		0.1 1q.chl	$\mathrm{C}-\mathrm{s}$ dacite	dacite	57.5821 .185 .42		0.91	3.10	6.86	1.41	1.14	0.12	0.052 .83	0.42	-0.76	1.01	-3.57	3.12	-5.61	-6.09	-0.70	-9.00	-8.33	-2.07	-3.05	38.39	1.51	15	151.00 morn c 4.88	highly altered rar. basalt Ca-Kaob struc
65-109-78a?	42511	226.47	226.17 19?	Thol basalt	dacite	4.9713 .7311 .72		9.11	5.57	0.85	0.76	0.78	0.04	0.1711 .50	8.27	-2.28	0.60	-2.59	-2.04	-1.10	2.13	-0.75	-6.10	-6.55	-3.21	-2.91	37.51	1.24	140	304.67	
65-109-78b?	$4+251$	24.81	24.14 lg ?	Thol basalt	dacite	45.6112 .5412 .26		8.29	6.93	1.54	0.08	0.87	0.06	0.1710 .42	6.88	- 8.47	-0.21	-1.64	-1.36	-2.13	3.49	-0.27	-5. 27	-5.54	-1.39	-0.29	41.62	1.23	80	302.67	poss 19, just belon OC Pb nola
65-108-78	$4+2511$	136.89	137.219	Thol higit fe ba	dacite	4.5317 .7518 .86		7.18	5.64	0.4	0.36	1.11	0.18	0.39 9.10	4.43	-4.04	0.28	1.00	-1.11	-8.01	-2.42	-0.33	12.48	12.11	1.64	0.38	13.96	2.36	55	825 0.07 nors c 4.15	poss ind i9, bole aever reached m
66-108-192	4+251	178.92	179.22 la	Tlol riyolite	dacite	$60.9421 .37 \quad 6.81$		0.37	1.32	1.29	2.26	1.11	1.12	0.103 .42	0.25	-1.86	1.38	-0.95	-2.16	-5.39	-6.76	1.85	-6. 19	-6.75	-0.66	-1.4	68.11	4.12	150	652.31 norn c 14.88	just belon DC, no sie maln
SI-H2-14	4225I		0.1 1q, chl	Thol dacite	dacite	58.7418 .2210 .96		0.48	2.45	0.98	1.62	0.98	1.88	0.193 .71	0.17	-1.20	0.88	2.63	-3.17	-5.96	-3.34	1.37	-1.15	-1.69	3.71	2.71	${ }^{13} 61$	4.80	20	$130 \quad 0.15$ morn c 13.28	altered 19, 425s, just belor sig LC Ln-C
68-465-71	$5+001$	109.73	110.0319	C-A Andesite	dacite	54.5715 .718 .45		6.91	3.41	0.60	0.60	0.32	0.10	0.248 .19	5.64	-1.30 -0	-0.03	-1.51	-3.36	-0.41	-0.44	0.31	-6.81	-1.52	-2.49	0.18	34.33	1.98	130	304.35 aera c 1.28	jast above LC, no sig nald
65-101-18?	6+501	109.16	10.061	Thol basalt	dacite	43.0112 .7510 .13		10.54	7.01	1.20	0.24	1.64	1.4	0.1811 .65	7.36	-1.48	0.10	-5.19	-1.33	-1.07	3.35	- 0.76	-6.17	-7.15	-5.98	-3.73	38.18	1.08		1250.16	stallor hole, barren, mach dyle
51-17-08	$7+8011$		0.1 19?	Thol ribolite	decite	64.7920 .39 5.59		0.20	8.14	1.13	2.68	1.11	0.12	0.113 .04	0.32	-1.68	1.10	-0.89	-2.98	-4.51	-5.95	2.02	6.50	-7.08	-8.13	-1.07	72.01	4.12		750.60 nore c 13	sheared variolitic basalt at 71?
					average	51.1816 .5711 .79		4.42	4.87	1.06	1.4	3.9	0.10	0.197 .08	3.45	-1.03	0.60	0.26	-2.31	-4.58	-1.26	0.67	0.73	0.27	0.98	0.96				2881.07	
					axima	67.8922 .4920 .43		11.2312	12.21	6.86	2.68	1.23	0.36	0.3912 .84	9.08	5.17	1.85	9.51	3.12	0.15	4.33	3.67	32.65	32.05	11.98	9.16	95.13	12.38	12001	18159.50	
						40.5310 .274 .28		0.20	0.74	0.12	0.08	- 2.5	0.02	1.052 .83	0.03	-4.04-1	-1.05	-5.19	-3.82 -12	-12.31	-7.62	-1.12	-9.00	-8.33	-5.98	-4.27	30.46	1.03	5	150.00	
					std.	$1.33 \quad 3.164 .14$		3.56	2.64			0.18		0.092 .19	2.83	2.25	0.69	3.56	1.31	3.18	3.14	1.39	8.89	8.83	1.52	3.15	19.19	2.98		3911.61	
					158	Ifs drorite																									
SIIPLI	Lochitiol section	8801	90 PILLD	Cussinicurions		$\text { Si02 A1203 } \mathrm{Be} 203$	dits					Ti02	P20S	HoO Lor	C02	${ }_{860}{ }^{\text {日B }}$	besidoal I20	${ }_{\text {P1203 }}$	122	cto		discriun H-D SC	${ }_{\text {DPa }}{ }^{\text {P/ }}$	pouction	$1{ }^{1}$	DP5	tus	PEBLL		2 cm Cu: 2 ac cipr	
SI-R17-10	1+50s		0.1 2a?	Thol basalt	dacite	50.6714 .2711 .25		8.29	7.87	1.64	0.84	0.69	0.06	$0.20 \quad 3.24$	0.76	2.29	0.10	-0. 34	${ }_{-1} 117$	- 0.27	1.26	0.06	-4.65	-4.98	0.17	4.19	16.74	1.28	80	204.00	${ }_{\text {onaltered }}$ int. lithic tuff
68-01-P4	$0+0018$	166.73	66.93 1/5a	Thol basalt	dacite	4.1913 .4911 .02		10.08	6.62	0.68	0.60	0.72	0.04	0.1612 .10	8.56	-1.41	0.46	-3.80	-2.12	-1.03	2.43	-0.36	-7.21	-1.12	-4.53	${ }^{-3.00}$	10.15	1.24	160	$30 \quad 5.33$	just belor ic $z_{\text {a }}$ min
SH-HR-16	$0 \cdot 008$	1	$0.12 \mathrm{a} / 5 \mathrm{~s}$ (dit)	thiol Ig basalt	dacite	46.0115 .7911 .58		4.24	9.37	2.05	0.88	0.58	0.04	0.188 .64	3.66	2.42	0.67	-2.16	-0.81	-6.10	-8. 24	1.13	1.53	1.28	-0.67	2.63	62.00	1.93	110	7800.14 nonc c 3.28	dite/2a exposed in 0 on on LO
SR-MR-17	$1+0011$	1	0.15 sa dite	fhol lig basalt	dacite	47.6614 .6414 .32			10.12	1.43	0.24	0.78	0.06	$0.16 \quad 7.19$	1.53	3.85	0.11	1.67	-1.13	-8.69	1.01	2.24	1.72	1.43	4.22	6.65	76.19	3.4	S	$250 \quad 0.36$ norte 9.6%	strange dylye/flor in DC on lis
SA-MR-15	$1+7511$	0	0.12 a ?	$\mathrm{C}-\mathrm{A}$ Basalt	dacite	$54.4314 .10 \quad 7.72$		4.76	5.52	3.72	1.16	0.62	0.24	0. 106.60	3.88	0.96	0.58	-2.51	0.09	-2.80	1.32	-0.48	-0.83	-0.85	-1.82	0.06	44.06	1.21	110	4100.27	2a nit just belor OC contact
HiP0I-04	${ }^{3+0018}$	0	0.15 Fa (dig)	Thol basalt	dacite	46.4015 .1013 .10		5.26	7.55	1.72	0.85	0.69	0.18	0.197 .68	3.35	0.53	0.63	-0.29	-1.24	-5.38	0.52	0.31			0.90	2.07	54.62	1.17		nors c 1.	Dig. diorite. above 栖Ca-zamin
SH-MiP-02	5400\%	0	0.12 2, ser	Thol Ag -rich bas.	dacite	48.1112 .669 .25		8.23	8.54	0.99	0.24	0.69	0.08	0.2510 .93	7.03	$2.31-0$	-0.14	-3.82	-2.33	-1.39	3.26	0.99	-5.94	-6.49	-3.92	2.51	48.71	1.35	190	1400.11	interzediate? flon pithin 2 a sequence
Sf-MR-03	$5+0011$	0	0.12 a ?	Thal basalt	dacite	52.0814 .189 .16		9.45	6.97	0.97	0.12	0.75	0.08	0.197 .05	3.95	1.80	-0.43	-1.98	-2.66	1.47	1.32	0.31	-5.04	5.62	-2.37	2.46	40.19	1.38	95	1100.86	interrediate? tuff vithin 2a zequence
SH-M1-04	5+001	0	0.1 2a?	Thol basalt	dacite	46.4513 .8311 .93		8.81	6.17	0.29	0.81	0.97	0.06	0.1910 .95	1.28	-0.99	0.57	-1.59	-2.81	-1.4	1.96	0.39	-4.01	-4.68	-1.95	-0.48	43.36	1.48	65	1000.65	feloic? toff rithin 2 a segance
St-7n-18	$5+008$		$0.11 / 5 \mathrm{a}$ dike	Plol andesite	andesite	$45.780^{20.6818 .30}$		1.06	3.91	0.56	2.06	1.43	0.08	0.225 .59	0.92	-3.68	1.95	5.01	-2.24-1	-10.06	-5.52	1.13	3.27	2.91	1.01	1.54	77.62	4.83	150	1201.25 norn c 14.58	
68-488-81\%	$5+008$	205.4	205.141	Tbol basalt	dacite	12.8012 .6911 .93		9.15	7.34	1.45	0.22	0.73	0.04	0.1911 .05	1.58	-1.18	0.09	-3.51	-1.00	-2.80	3.41	-0.54	-6.71	-6.96	-3.58	-2.12	41.66	1.16	100	$30 \quad 3.33$	belor
66-110-78?	$5+0011$	189.94	190.241	Lon Bas Sonatiite	dacite	$48.6811 .42 \quad 7.43$		8.88	9.60	. 50	0.16	0.51	0.24	0.139 .63	5.09	3.72 -0	-0.26	-5.63	-1.83	-0.45	4.66	1.01	-9.82	-10.31	-5.85	1.09	48.51	1.07	60	302.00	deep bole, in dyte for nock of lc

siUISBI POOTMALL PYKOCLASFIC as58xBLAGE

Classitichitions
$\mathrm{C}-\mathrm{A}$ basalt
$C-1$
$C-1$
based
andesite
C-A rhyolite
ithol high le buc
thol andesite

BAS Dith

roite 3.18	dacite	64.80	16.73	2.85
diyolite	41.84	8.14	29.54	

$\begin{array}{lllllllllllllllll}0.47 & 2.04 & 0.20 & 0.56 & 0.35 & 0.06 & 0.29 & 3.08 & 0.53 & -0.10 & -0.56 & 6.42 & -3.83 & -3.99 & -0.66 & 0.54 & 0.82 \\ 0.23 & 1.88\end{array}$

$\begin{array}{lllllll}1.48 & 52.01 & 1.85 & 102 & 184 & 1.58\end{array}$ $\begin{array}{llllll}6.65 & 77.62 & 4.83 & 160 & 180 & 5.33 \\ 3.00 & 40.15 & 1.07 & 60 & 38\end{array}$ $\begin{array}{lllllll}-3.50 & 1.53 \\ 2.53 & 12.63 & 1.09 & 30 & 319 & 1.6\end{array}$
$\begin{array}{rrrrrr}6.11 & 61.56 & 4.10 & 32 & 12 & 0.56 \\ 27.17 & 79.35 & 11.07 & 90 & 180 & .29\end{array}$ $\begin{array}{cccccc}27.77 & 79.35 & 11.07 & 90 & 130 & 1.29 \\ -3.25 & 31.42 & 1.50 & 10 & 20 & 1.12\end{array}$ $\begin{array}{llllll}-3.25 & 31.42 & 1.50 & 10 & 20 & 0.12 \\ 11.29 & 17.50 & 3.57 & 30 & 36 & 0.44\end{array}$
$\begin{array}{llll}1.93 & -1.97 & 31.92 & 1.33\end{array}$

CLassificitions
Jilisir
Thol Baealt
Thol Basalt
Thol Basalt
Thol Basalt
Thol Basalt
Thol Basalt
 \qquad

 thol Basalt thol basalt Thol basalt
Thol basalt Thol baselt Thol basalt Thol basalt
thol basalt Thol basalt
Thol Dacite Thol Dacite
Thol Basalt Thol Basalt flol Adesite Thol Basalt Thol Andesite Ron Bas Ronati Thol Basalt Thol Dacite

Fhol Dacite Thol Dacite Thol basalt Thol Dasalt | | .41 | 6.51 | 0.31 | 1.41 | 0.74 | 0.06 | 0.16 | 12.18 | 8.16 | -2.61 | 1.53 | -4.82 | -2.15 | -1.83 | 2.17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llll}\text { acite } & 60.41 & 11.13 & 12.40 \\ \text { arite } & 41.93 & 12.35 & 10.91\end{array}$

 $\begin{array}{lllll}\text { dacite } & 41.20 & 14.56 & 11.95 \\ \text { acite } & 14.16 & 13.60 & 11.26\end{array}$ \begin{tabular}{lll}
dacite \& 41.75 \& 13.60

\& 41.20 \& 11.02

\& \& 1.01

\hline

dacite \& 61.011

dacite \& 8.14

\hline
\end{tabular} $\begin{array}{llllll}\text { dacite } & 48.91 & 16.24 & 11.38 \\ \text { acite } & 45.58 & 14.32 & 11.35\end{array}$ dacite $\quad 45.5814 .3211 .35$ $\begin{array}{llll}\text { dacite } & \text { 43.81 } & 15.23 & 14.13 \\ \text { andeaite } & 47.04 & 24.38 \\ \text { 13.76 }\end{array}$ lacite $43.59 \quad 13.4711 .22$ dacite 44.5513 .4012 .12 adesite 43.2521 .3618 .13 lacite 44.0412 .0810 .98 andesite 53.1918 .9015 .90 $\begin{array}{llll}\text { dacite } & 39.33 & 17.88 & 18.32 \\ \text { dacite } & 44.92 & 13.04 & 11.85\end{array}$ $\begin{array}{llll}\text { dacite } & 41.92 & 13.04 & 11.85 \\ \text { andesite } & 45.00 & 25.50 & 16.70\end{array}$ $\begin{array}{lll}\text { lacite } \\ 65.40 & 14.60 & 9.16\end{array}$ dacte 46.4316 .7510 .77 dacite $\quad 43.6813 .0012 .27$ cite $\quad 43.1214 .0911 .08$

Salplt	locition ssctiol	H20H	10 HIELD	Classifichitions
68-17-54	$4+005$	130.79	$131.1 \mathrm{lp} / 5 \mathrm{~s}$	Phol Basalt
St-3-fl	3+505	33.99	34.3 lp	Thol Basalt
St-4-7t	$3+005$	98.48	98.78 la	flol Basalt
$65-70 \mathrm{~F}$ - Fl	$2+095$	152.44	152.14 la	Thol Busalt
$65-7 \mathrm{te}-\mathrm{Flb}$	$2+805$	163.41	163.72 1p/5b	Thol Basalt
57-69-7\%	1+505	187.5	187.8 1p/5a	Thol Asdesite
St-2-fI	1+25S	103.66	$103.961 / 5 \mathrm{Sa}$, sch	flol Basalt
66-622-ft	0+15S	131.37	131.67 1,5a	thol basalt
68-21-517	0+75s	96.95	97.26 1p/5a	Thol basalt
68-16-74	$0+001$	136.28	136.59 Ip	fhol basalt
St-1-FI	0,5015	52.4	52.14 p	thol basalt
63-6-77	${ }^{1+001}$	155.18	$155.49 \mathrm{lc}, \mathrm{sch}$	thol basalt
${ }^{68-13-11}$	$1+001$	86.28	86.59 la, sch	thol basalt
56-52--18?	$1+871$	72.56	12.871	Phol basalt
56-21-189?	$2+0011$	62.1	63.111	Phol Dacite
56-49-711	${ }^{2+10011}$	65.85	66.16 Ic	flol Basalt
65-94-71	2+258	122.56	122.87 la	Thol Basalt
60-76-71	2+251	55.18	$55.49 \mathrm{la}, \mathrm{chl}$	flol andesite
61-91-81	2+751	152.44	152.4 la/5a	fthol Basalt
60-79-71	2+751	35.98	36.28 la	fhol Andesite
64-82e-P1	$3+6011$	252.13	252.44 la, sch	Son Bas Konati
65-72e-FY	$3+5018$	251.22	251.52 la?	Thol Basalt
Hi801-02	$3+501$	0	0.1 1p.chl	Thol Dacite
HIPO1-01	$4+001$		0.1 lp,ch1	Thol Dacite
66-108-81	4+2511	235.37	235.67 la	C-A Basalt
68-461-8\%	$5+0011$	175.87	116.17 Ir	Thol basalt
56-41-PI	$5+801$	17.13	77.41	thol Basalt

$\begin{array}{lllllllllllllllll}2.52 & 1.19 & 0.01 & 0.07 & 0.03 & 0.21 & 0.14 & 3.10 & 3.32 & 0.32 & -2.04 & 2.10 & -1.48 & 0.43 & 12.04 & 1.11\end{array}$
$\begin{array}{lllll}4.25 & 7.47 & 30.02 & 0.05\end{array}$
norn 9 87.72
nore
9
nova 70 assive chert
$\begin{array}{llllllllllllllllllllllllllllll}9.95 & 5.25 & 1.59 & 0.62 & 0.65 & 0.04 & 0.18 & 11.05 & 8.05 & -3.24 & 0.51 & -3.10 & -0.96 & -1.46 & 1.81 & -1.68 & -5.94 & -6.17 & -3.64 & -4.18 & 33.72 & 1.14 & 110 & 55 & 2.00\end{array}$ \qquad
besidoles fhol basalt thol basalt thol basait thol basslt Thol basalt -A basslt hol basalt thol basalt Thol basalt hol basalt Thol basalt
thol basalt
thol basalt
lol basalt
lol basalt
thol thigh fe bae
Thol high fe bas.
hol basalt
bol basalt
ol basalt
thol basalt
nol basalt
thol basalt
-1 basalt
tol high Ie bas. thol high fe bas
hol high fe bas. hol thigh Fe
lol bassal
thol basalt
nol basal
Thol basalt
tol basalt
thol basa
thal basalt

- 1 basalt
thol basal

Titi

$$
\begin{array}{ll}
8.55 \\
8.80 & 3.30 \\
8.41
\end{array}
$$

$$
\begin{array}{llll}
50 & 12200 & \text { 120 } \\
30 & 1.48 \\
41 & 2.66 & 0.38
\end{array}
$$

$$
\begin{array}{lllllllllllllll}
\hline & 14.30 & 16.20 & 2.00 & 10.80 & 8.55 & 9.30 & 1.49 & 0.38 & 1.02 & 0.07 & 0.22 & 4.44 & 0.22 & 1.59 \\
\hline
\end{array}
$$ $\begin{array}{cccccccccccccccccccc}50.10 & 15.10 & 1.76 & 8.77 & 8.80 & 6.41 & 2.66 & 0.32 & 0.91 & 0.06 & 0.20 & 2.78 & 0.48 & 0.56 & -0.13 & -0.32 & -0.63 & 0.05 & 0.4 & -0.86 \\ 17.00 & 15.20 & 2.16 & 9.34 & 9.90 & 7.74 & 2.22 & 0.24 & 0.90 & 0.07 & 0.20 & 3.03 & 0.16 & 0.92 & -0.08 & -0.65 & -0.72 & 0.02 & 0.37 & -0.68\end{array}$

 \begin{tabular}{lllllllllllllllll}
49.00 \& 14.48

40.90 \& 11.30 \& 10.20 \& 6.71 \& 2.53 \& 0.01 \& 0.85 \& 0.07 \& 0.23 \& 2.49 \& 0.42 \& 0.37 \& -0.32 \& 1.41 \& -0.14 \& 0.34 \& 0.58

\hline

47.80 \& 14.70 \& 1.00 \& 11.20 \& 10.50 \& 6.61 \& 2.21 \& 0.08 \& 0.87 \& 0.06 \& 0.22 \& 2.85 \& 0.92 \& 0.01 \& -0.29 \& 0.72 \& -0.84 \& 0.97

\hline
\end{tabular}

 lacite 48.1015 .500 .7010 .6010 .20 6.19 2.85 0.08 0.84 andesite | site e | 46.80 | 155070 | 1.41 | 11.40 | 11.10 | 4.52 | 0.94 | 0.08 | 1.15 | 0.11 | 0.29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| s.te 45.66 | 1.96 | | | | | | | | | | |

$$
\begin{aligned}
& -2.50-0 \\
& -4.18-0 \\
& 1.91
\end{aligned}
$$

 17.2015 .00
47.7015 .30 $\begin{array}{lllll}47.60 & 14.10 & 2.20 & 9.10 & 11.00 \\ 50 & 90 & 10.40 & 9\end{array}$
\qquad

48.20	11.00	2.40	11.70	9.56	4.52	2.14	0.26	0.82	0.05	0.27

 $\begin{array}{lllllllllll}47.70 & 14.60 & 2.30 & 12.60 & 8.71 & 4.24 & 2.65 & 0.22 & 1.09 & 0.09 & 0.25 \\ 45.77 & 1.44 \\ 45.40 & 16.60 & 2.40 & 10.40 & 8.41 & 7.21 & 2.35 & 0.20 & 0.92 & 0.06 & 0.25 \\ 4.19 & 1.64\end{array}$ $\begin{array}{llllllllllll}45.40 & 16.60 & 2.46 & 10.40 & 8.44 & 7.21 & 2.35 & 0.20 & 0.92 & 0.06 & 0.25 & 1.19 \\ 1.64 \\ 4.50 & 14.80 & 1.66 & 9.34 & 9.70 & 8.40 \\ 2.86 & 0.34 \\ & 0.73 & 0.05 & 0.21 & 1.62 & 0.18\end{array}$ 99.5014 .80
49.5014 .70

 | dacite | 49.30 | 16.30 | 1.60 | 9.98 | 9.20 | 6.33 | 2.85 | 0.03 | 0.97 | 0.08 | 0.19 | 2.55 | 0.28 | 0.22 | -0.39 | 0.58 | -0.34 | 0.17 | -0.82 |
| :--- | $\begin{array}{llllllllllllllllllll}\text { dacite } & 47.00 & 14.90 & 2.40 & 9.58 & 12.30 & 5.82 & 1.47 & 0.10 & 0.88 & 0.07 & 0.22 & 2.46 & 0.96 & -1.11 & -0.22 & -0.06 & -1.52 & 2.56 & 0.69 \\ \text { decite } & 47.40 & 15.10 & 2.80 & 10.90 & 9.78 & 6.69 & 3.10 & 0.16 & 0.91 & 0.88 & 0.22 & 2.34 & 0.40 & -0.05 & -0.18 & 1.23 & 0.15 & 0.05 & 0.47 \\ \text { d }\end{array}$

dacite	66.80	16.10	0.85	8.69	9.06	4.26	2.86	0.65	0.97	0.07	0.19	3.19	5.12	-2.95	0.38	-2.96	-0.02	-0.99	-0.59
dacite	47.40	15.40	2.86	8.86	10.30	5.01	1.86	0.15	0.91	0.08	0.22	3.14	1.96	-1.86	-0.2	-0.24	-1.18	0.62	0.16

orccoixivim facctions

	dis	Tas	
0.65	3.43	49.11	
0.13	2.3	37.11	
0.22	2.4	39.11	
1.15		40.3	
0.64	2.78	11.34	
1.14	0.45	33.02	
2.46	-0.89	27.16	
1.98	0.94	44.01	
-3.87	-0.98	28.8	
0.73	2.67	35.46	
1.58	3.43	38.1	
08	3.59	36.85	
1.81	3.13	34.5	
1.01	2.62	34.4	
0.16	0.73	37.13	
1.32	3.88	36.31	1.23
2.31	4.64	41.78	1.3
15	1.65	32.4	
0.55		27.68	
4.09	0.81	23.88	
0.54	J	41.82	1.2
0.9	2.4	34.35	1.12
0.39	0.82	40.39	
0.26	3.5	4.27	1.2
0.41	2.56	36.36	1.0
0.71	2.56	36.98	1.1
0.43	1.35	26.3	
3.51	2.61	29.03	1.12
3.89	2.58	31.23	1.19
4.62	2.35	28.14	117
1.03	2.4	40.9	,
0.69	4.6	41.03	1.07
0.13	4.51	39.84	1.14
0.42	4.22	41.79	1.1
1.87	2.49	34.53	1.2
1.19	2.4	34.56	1.25
-0. 48	0.84	30.08	1.9
2.06	2.9	34.72	1.06
1	0.91	43.19	1.3
-3.21	-3.47	29.19	1.1

Lithogeochemical Processed Data

$$
\begin{array}{llllll}
\mathrm{RMg} 0 & \mathrm{RK}_{2} \mathrm{O} & \mathrm{RFe}_{2} \mathrm{O}_{3} & \mathrm{RNa}_{2} \mathrm{O} & \mathrm{RCaO} & \mathrm{RSiO}_{2}
\end{array}
$$

Cunningham Twp. Basalts
Shunsby Hangingwall "FW Diorites"
Shunsby Varioiitic Basalts
Shunsby Footwall Pyroclastics
Shunsby "Digestive Diorite" Intrusives

.01	-0.11	0.06	-0.73	0.07	0.34
-1.26	0.70	-1.24	-1.94	-3.44	0.49
-1.03	0.60	0.26	-2.31	-4.58	-1.26
-1.46	1.08	3.37	-2.42	-4.24	1.22
0.89	0.39	-1.58	-1.71	-3.30	1.28

M-D Sc. DFs TAAS Peral $\mathrm{Cu} \mathrm{Zn} \quad \mathrm{Cu}-\mathrm{Zn}$

Cunningham Twp. Basalts
Shunsby Hangingwall "FW Diorites"
Shunsby Variolitic Basalts
Shunsby Footwall Pyroclastics
Shunsby "Digestive Diorite" Intrusives

-1.01	2.14	36.12	1.20	-	-	$(-)$
0.12	-0.77	50.73	2.65	114	350	(1.07)
0.67	0.96	55.70	3.68	127	288	(1.07)
0.31	6.71	61.56	4.10	32	72	(0.56)
0.52	1.48	52.01	1.85	102	184	1.58

Note: RMg 0 etc. denotes residual oxide values expressed as ratios to silica, or silica to alumina M-D Sc. denotes Marcotte-David Score ($\mathrm{TiO}_{2},-\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO},-\mathrm{CaO},-\mathrm{Fe}_{\mathrm{T}}$) DF_{5} denotes discriminant function 5 (residual $\mathrm{MgO}^{2} \mathrm{Fe}_{\mathrm{T}}, \mathrm{MnO}$) TAAS denotes $\left(\mathrm{Mg} 0+\mathrm{K}_{2} \mathrm{O}\right) /\left(\mathrm{CaO}+\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}+\mathrm{Mg} 0\right) \times 100$ ie. influx of Mg, K at expense of alkalis
Peral denotes $\left[\mathrm{Al}_{2} \mathrm{O}_{3} /\left(\mathrm{CaO}+\mathrm{K}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{O}\right) \times 100\right]$ ie alumina enrichment at expense of alkalis.
(See Appendix 2 for details)
While the pyroclastics have been insufficiently sampled thus far to reliably discern any trends and the intrusive dikes are still somewhat of an unknown, a general comparison of the basic groups is possible.

Raw chemistry suggests that:

1) the Shunsby rocks are strongly depleted in $\mathrm{Na}_{2} \mathrm{O}$ and CaO with the " FW diorites" more so
2) the Shunsby rocks are strongly enriched in $\mathrm{K}_{2} \mathrm{O}$ with the "Variolitic Basalts" more so
3) the Shunsby rocks are strongly enriched in volatiles on the basis of high LOI and CO_{2} values, with the " FW diorites" significantly higher in both
4) the Shunsby "Variolitic Basalts" appear to be enriched in alumina and magnesiumdepleted with respect to the other groups

In terms of the lithogeochemical processing one can discern:

1) moderate residual Mg 0 depletion at Shunsby
2) moderate residual $\mathrm{K}_{2} \mathrm{O}$ enrichment at Shunsby
3) moderate to strong residual $\mathrm{Fe}_{2} \mathrm{O}_{3}$ depletion amongst the " FW diorites" at Shunsby
4) strong residual $\mathrm{Na}_{2} \mathrm{O}$ depletion at Shunsby
5) very strong residual CaO depletion at Shunsby (strongest in "Variolitic Basalt")
6) slight residual SiO_{2} enrichment in "FW diorites", depletion in "Variolitic Basalts"
7) anomalous average discriminant function scores at Shunsby including:
a) M-D Sc of 0.67 for "Variolitic Basalts"
b) TAAS values for both Shunsby basaltic groups (especially "Variolitic Basalt")
c) Peral values for both Shunsby basaltic groups (especially "Variolitic Basalt")
d) markedly lower DF_{5} values (especially "FW diorites")

Together the above observations suggest that the Shunsby rocks have been significantly hydrothermally altered relative to the background Cunningham Township rocks. Whereas samples last year were principally taken structurally just below mineralization, sampling this year was done representatively through the "Variolitic Basalt" and as far into the "FW diorites" as possible. In several cases sampling through the "Variolitic Basalt" has yielded results suggesting that alteration and mineralization are increasing as one approaches the "Lower" chert contact. With this methodology in mind it is important to note that alteration trends are as prevalent, and in some cases more so, in the hangingwall "FW diorites" relative to the "Variolitic Basalts". It is believed that comprehensive sampling through the "FW diorites" may well yield similar, more intensive alteration patterns as one approaches the uppermost chert-argillite package marked by conductors 42a (12) and 40b (1d).

As has been expressed earlier, mineralization and alteration are felt to be primarily controlled by subvertical 120° structural zones. Plots of contoured lithogeochemical data as well as base metal values have therefore been prepared as plans, with all data points projected to surface. No directional bias was forced on the contouring program.

Figure 5a presents contoured $\mathrm{Cu}: \mathrm{Zn}$ data for all assayed drillhole (projected to surface) and surface samples, excluding the lithogeochemical samples. This plot, interestingly, confirms the mapped 120° trends, and as well suggests (albeit partly on the basis of float) that a more northerly copper-bearing structure is present north of the Main Zone. As well, copper:zinc ratios can be seen increasing eastwardly, suggesting that increasing primary precipitation occurred in this direction. This figure also emphasizes the "copper core" aspect to the Main Zone mineralization with peripheral, more $\mathrm{Zn}(+/-\mathrm{Pb})$-rich

mineralization to the south in the South Zone and to the north as exposed in the stripping along line 625 N . A prominent east-west trend in the LO-LIS area is likely reflecting the shear zone and associated drag-folding mapped here.

Figure 5b presents contoured TAAS values from the 78 non-chert lithogeochemical samples, which approximate chlorite and sericite development along with alkali depletion. The highest values are found adjacent to structurally-controlled mineralization and argillites in accord with the known chloritic association. A discrete zone of high values is found in the South Zone including samples in holes 66-61E, 66-62E, 68-20 and 56-64 with additional anomalous values to the northwest in sample 68-01-VB. Interestingly, a spot high to the southwest of the South Zone has shown up in sample 57-69-FW. The Main Zone "Lower" cherts contain a discrete anomalous zone represented by samples 56-37-VB?, 56-27-VB?, 60-76-FW, 60-79-FW, SH-WR-07(VB), Miron-02 (FW), Miron-01 (FW) and SH-WR-14(VB). In the "Upper" cherts of the Main Zone, a subtle spot high is seen near the Cu Breccia showing in sample $61-91-\mathrm{VB} 2$, along with a pronounced high to the west in hole 64-82E, as well as in sericitic felsic tuff- breccia sample SH-WR01 to the northwest. To the north, samples SH-WR-05 and 06, in a mapped chlorite alteration zone, sample SH-WR-18 of highly altered "Digestive Diorite" and variolitic sample SH-WR-08 at the baseline form spot TAAS anomalies.

Figure 5c presents MacGeehan and Hodgson's (1981) peraluminosity index which approximates alumina development at the expense of the alkalis. While normally a gold indicator, it is a useful discriminant function here as the Shunsby alteration shows marked similarities to that at the Mattabi area, where andalusite is a prominent alteration mineral (although no andalusite has been observed here). This diagram perhaps best illustrates the pronounced NW-SE trend with the South and Main Zones clearly outlined. Anomalous samples not previously mentioned include those in the variolitic basalt of hole 108 and in hole $68-13$ at $100 \mathrm{~N} / 100 \mathrm{E}$ which suggests a mapped structure here showing similar chemical alteration.

Figure 5d is of Marcotte-David scores which ranks scores of greater than 1.5 as 80% probably mineralized and scores between 0.5 and 1.5 as being in the overlap of mineralized and unmineralized populations. High M-D scores include unmineralized, but highly altered, samples SH-WR-01 at the west end of L500N, 56-37-VB? at 175N/025W and many anomalous samples previously mentioned. The plot again suggests a NW-SE orientation to the anomalous values.

Figure 5 e presents contoured CO_{2} data which have been observed to diminish to practically zero from a high property background in the most altered samples. This figure clearly shows relative lows in the vicinity of the South Zone (57-64-VB, 66-62E-VB1, VB, VB3, 68-01-VB, 68-20-VB, FW), a separate zone to the south west (SH-WR-10, $57-$ $69-\mathrm{FW}$), the hole $64-82 \mathrm{e}$ and $\mathrm{L} 500 \mathrm{~N} / 500 \mathrm{~W}$ areas (SH-WR-01), the immediate Copper Knob-Main Zone "Lower" chert area (60-76-FW, 60-79-FW, SH-WR-07, Miron-06 (VB),

Miron-02(FW), SH-WR-13, Miron-01(FW), and as well in the northem property area at 650N/250W (SH-WR-06) and 650N/0W (SH-WR-08).

Figure 5f plots the raw sodium values of the samples and illustrates the near ubiquitous, intense soda depletion in the deposits area, and the apparent structural control.

Figure 5 g plots raw potassium content of the Shunsby samples. High values are concentrated around the footwall pyroclastics, the Main Zone/Copper Knob area and in a somewhat east-west area through the South Zone. Spot highs between the Main Zone and the pyroclastics, in holes $65-104$ and $66-108$ and sample SH-WR018, give some suggestion of NW-SE structural control to the data north of the Joubin Fault. To the south of the fault, a pronounced break along LOO0 exists which conforms to known, late E-W drag-fold/shear zone structures which appear to have skewed the data here. High potassium contents reappear south of the South Zone and extend off the plot on the basis of high values in several samples (SH-WR-11, SE-4-FW, 65-70-FWa, 57-69-VB), which along with the northeastern sample SH-WR-08 and northwestern sample SH-WR-09, is perhaps emphasizing the peripheral nature of the sericitization.

Figure 5 h presents raw calcium contents and principally re-emphasizes the structural control and mineralization specific aspect to depletion trends as outlined previously by several of the plots (ie. peraluminosity, TAAS, $\mathrm{Na}_{2} \mathrm{O}$).

Figure 5i presents residual magnesium contents (used rather than raw values because of the greatly different lithologies involved, and their respective Mg0 contents) which can be seen to be extremely localized in terms of enriched areas. Pronounced lows through most of the Main Zone and South Zone areas suggests that the megascopically and petrographically observed chloritization is principally due to an iron chlorite. Local exceptions include samples $66-110-\mathrm{VB}, 64-82 \mathrm{e}-\mathrm{FW}, 56-37-\mathrm{VB}$? and the hole $66-62 \mathrm{E}$ samples. Mildly anomalous residual values were returned by several of the pyroclastic samples (ie SH-WR-01, 02, 10).

Figure 5 j presents residual $\mathrm{Fe}_{2} \mathrm{O}_{3}$ contents and appears to confirm the ferrous nature of the chlorite seen in altered samples (ie SH-WR-05, 06 area to the NW, Main Zone area and South Zone area)

Figure 5 k presents the contoured residual silica data which shows an interesting pattern consisting of dominantly depleted areas around the two deposits, and dominantly enrichment elsewhere. In detail it can be seen that virtually all of the samples proximal to surface Main Zone "Lower" chert mineralization, regardless of whether footwall (ie "Variolitic Basalt") or hangingwall ("FW Diorite") are strongly depleted. This appears to be the case to the north as well where sample SH-WR-08 has resulted in a similar anomaly. To the west, depleted zones are centred around well-mineralized holes 82E, 104 and 108 with spot lows to the northwest in samples SH-WR-18, 09 and 06. In the South Zone area, an interesting silica depleted zone has been outlined consisting of highly mineralized holes $66-61 \mathrm{E}, 66-62 \mathrm{E}, 68-20-\mathrm{VB}, 68-16,68-01$ and as well 57-69-VB and

MICRNINE PROJECT : c-1362 Version 6.41 april 1991 bata FILE : IIthog1 PARAMETER FILE : CDISP kirkton/shunsby PIC FILE = CDISP7
Tu Dec 10 18:16
COMTOUR DISPLAY Figure 5y - Raw X20 contents

MICRONINE PROJECT : c-1302 Version 6.41 April 1991 DATA FILE : litho91
PARAMETER FILE : CDISP kirkton/shunsby PIC FILE : CDISP8
TuN ec 10 18:19
COMTOUR DISPLAY Fisure 5 h - Raw Ca_{20} contents

NICXNINE PROJECT : c-1322 Uersion 6.41 April 1991 BATA FILE : litho91 PARAMETER FILE : CDISP kirkton/shunsby PIC FILE : CDISP11

 T. Dec 10 18:32 Contaun display Figure 5k - Residual Si02 values
sample SH-WR-11. Silica is not a major constituent of these highly altered, apparently mineralized samples, as confirmed by petrographic work, despite chemical classifications that range from calc-alkaline rhyolite (SH-WR-09) to komatiitic basaltic komatiite (64-82E).

The mapped structural orientation of alteration and mineralization appear to be confirmed by the lithogeochemical work carried out thus far. The deposits area as a whole would appear to be $\mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{MgO}$ and Fe_{T} depleted and enriched in $\mathrm{CO}_{2}, \mathrm{~K}_{2} \mathrm{O}$ and SiO_{2}. Samples lying within or proximal to known hydrothermal breccia structures appear to show intense depletion in $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}$ and SiO_{2} and preferential enrichment in $\mathrm{K}_{2} \mathrm{O}$, Mg 0 and/or $\mathrm{Fe}_{\mathrm{T}}, \mathrm{Cu}$ and/or $\mathrm{Zn}, \mathrm{Cu}: \mathrm{Zn}$, as well as relative $\mathrm{Al}_{2} \mathrm{O}_{3}$. Of the common discriminant functions used as alteration indices/mineralization indicators, the Peraluminosity Index of MacGeehan and Hodgson is perhaps most effective for mapping mineralization/alteration trends although TAAS, the Marcotte-David score and DF ${ }_{5}$ work quite well.

In addition to the petrographic descriptions related in the geology section of the report, examinations of the chemically altered/mineralized samples mentioned above is also illuminating. The work was particularly effective in differentiating between dike rocks and volcanics, and as well characterizing the alteration assemblages of the various lithologies. Complete descriptions are presented in Appendix 3.

Amongst the Footwall Pyroclastics, sample SH-WR-01 well illustrates a " 2 b " tuff-breccia rock immediately adjacent to a hydrothermal breccia structure as a schistose, chloritized and sericitized fragmental. Similarly, sample SH-WR-05 is known from mapping to be a highly altered " 2 a " quartz-eye lithic tuff in the heart of a structure further north and shows intensive chloritization and carbonatization overprinting schistosity-parallel quartz microveinlets. Sample SH-WR-06, located on the periphery of the same structure shows ubiquitous sericite stringers in a more recognizable, but still chloritic, pyroclastic. Sample SH-WR-11, located south of any known mineralization or alteration systems, would appear to be our best sample of pristine footwall lithic tuff, showing only mild sericitization.

Highly altered Variolitic Basalt samples known to lie within hydrothermal breccia structure have been found to include: 1) Samples $6-62 \mathrm{e}-\mathrm{VB} 1$ to 3 and $68-01$ from the South Zone structure; 2) Samples 61-91-VB1 and 2 and $65-104-\mathrm{VB} 1$ and 2 from the Copper Breccia structure; 3) Sample SH-WR-13 from the Copper Knob structure; and 4) SH-WR-14 from the 425 N mineralized structure.

These samples for the most part show intense chloritization, sericitization and saussuritization with carbonate, opaque sulphides and leucoxene common accessories. Quartz-veining, chlorite ($+/$ graphite) seams and shearing are also common within these rocks.

Of the "FW Diorites" samples 68-06-FW (South Zone), 61-91-FW (Copper Breccia), 64$82 \mathrm{e}-\mathrm{FW}$ (possible unmapped structure), 65-72e-FW (between structures) and 68-46e-FWa (Copper Knob structure?) are felt to be proximal to or within mineralized structures. In general these rocks are schistose, pervasively chloritized and carbonatized with accessory biotite, leucoxene and sulphides. Chlorite-graphite microshears and fracture- fillings are noted in several of the samples, consistent with the chlorite-breccia aspect of these structures mapped at surface.

The pervasive alteration seen in the "Digestive Diorites", and its similarity to that described above in the mafic volcanics was perhaps the greatest revelation of the petrographic work. There is little doubt now that this dike system was an integral part of the Shunsby stratigraphy prior to the onset of the hydrothermal alteration/mineralization event.

7.4 Historical Drill Core

No further sampling was carried out on the historical core because of considerable doubts in many cases about hole locations and downhole deviations. Also, the past drilling was for the most part designed to test stratigraphy and was therefore completely ineffective in evaluating the hydrothermal stringer systems oriented at 120°. Many or most of the old drill results must be disregarded other than as indicators of the presence or absence and possible grade of mineralization. Still, it is possible given the known collar locations, to estimate whether individual holes intersected known structures, and Map 3 attempts to discern these relationships. Table 3 presents the results of all sampling of Shunsby drill core organized chronologically from the 1955 drill campaign through to 1981. All lengths are in meters.

7.5 Stripping and Trenching

In addition to those specific zones described above, geochemical and mapping evidence, as well as mineralized float, suggest that at least one other structure exists north of the " 425 N " structure. To the south, several significant intersections (holes 74-15, 56-67, $56-63,56-68,56-64,65-70 \mathrm{e}$ and $74-16$) suggest that one or two peripheral zinc-rich structures are present.

Extensive areas of the "Upper" cherts and footwall pyroclastics were exposed, and a substantial number of mineralized zones blasted and representatively sampled. This included re-blasting and sampling of some of the surface exposures initially worked last summer. As well, a number of grab samples of in-situ mineralization not amenable to representative chip sampling were taken from freshly blasted material. Table 4 presents the significant results of this work, as well as that of past field seasons, together with comments as to location and relative significance. Some of the trenches sampled in 1990 have misleadingly low values as the drilling and blasting was insufficient to reach fresh rock.

HOL	coscas 12.	019	[RON-:0	LGTR	co(${ }^{\text {P }}$	PB(${ }^{\text {(})}$	24(1)	co: 311	Inctionag	LG7	C01()		(8)
55-03	Y/1+714 316	-20	2.43-10.24	1.81	1.17	-	1.31	0.89	1.64-10.24	2.60	2.59	-	2.12
$55-04$	$3+52 \mathrm{k} / 0+9041316$	-25	3.66-9.45	5.19	0.53	0.87	4.39	0.12		.			
56-05	$3+314 / 0+894316$	-60	25.24-29.07	3.83	2.57	-	. 0.14	18.36	26.48-29.07	2.59	3.38	-	0.14
			50.69-52.30	1.61	2.50	-	0.09	27.78					
56-06	$3+334 / 0+892136$	-68	14.63-18.64	4.01	1.51	-	0.53	2.85	14.63-16.90	2.27	2.59	.	0.21
56-08	4+22:/0+50\% 316	-54	0.31-7.62	6.11	0.63	-	6.09	0.10			.		
$56-29$	$3+338 / 1+624104$	-45	12.80-15.06	2.26	1.33	-	1.08	1.23	-	-	-	-	
			24.31-27.31	3.00	0.61	-	0.04	15.25			-	-	
			86.22-88.39	2.17	0.46	-	0.26	1.71					
56-11	3+73y/l+104 136	-45	10.54-42.67	2.13	1.02		0.14	7.29					
56-12	2+911/2+26 176	- 45	4.27-10.67	6.40	0.06	-	1.27	0.05	1.62-9.14	1.52	0.20	-	2.82
			42.29-13.89	1.60	0.91		0.01	21.00			-		
56-14	$2+424 / 2+34 \% 29$	- 30	1.22-12.19	10.97	2.72	-	1.00	2.12	2.14-12.19	9.45	3.14		1.02
						-			1.32-10.36	3.04	5.41		0.54
56-15	$2+413 / 2+34729$	-60	11.28-12.19	0.91	1.40	-	0.70	10.57	-		-		
56-16	2+21N/2+12 358	-45	14.73-19.16	4.13	1.58	-	0.32	4.94	14.73-17.65	2.92	2.10	-	0.29
56-17	$2+574 / 0+8841271$	-45	17.22-23.17	5.95	0.41	-	2.35	0.17	\cdots	.	.		.
			31.39-40.54	9.15	1.83	-	0.74	2.55	-				
			44.95-48.02	1.06	3.31	-	0.03	41.38					
			50.72-54.07	3.35	1.87	-	0.30	6.23		-	-	-	
56-20	$2+57 \mathrm{M} / 0+88 \mathrm{~K} 332$	-45	24.84-26.06	1.22	1.17	-	1.82	0.64					
			34.75-38.01	3.26	2.33	-	0.81	2.88	-				
			44.19-47.55	3.26	0.86	-	7.53	0.11					
56-21	$2+57 \mathrm{M} / 0+384301$	-45	10.67-56.39	45.72	0.98	-	1.05	0.91	10.67-18.08	1.41	1.23		0.83
						-			25.76-56.39	30.63	1.09		1.26
56-22	2+57\%/0+83\% 301	-60	7.93-14.43	6.55	0.18	-	0.87	0.18	--		-		
			33.99-40.42	6.43	2.11	-	0.19	11.11	36.27-40.42	4.15	3.01	-	0.01
			67.36-58.28	0.92	0.35	-	2.04	0.17	-		-		
56-25	$2+437 / 1+44796$	-55	43.16-64.62	21.46	0.77	-	1.06	0.73	52.43-53.95	1.52	1.89		3.67
					-	-			61.27-62.94	1.69	2.15		0.89
56-2ì	$3+024 / 0+883315$	-45	12.19-39.62	27.42	1.58	-	0.59	2.68	12.19-21.64	9.45	1.43	-	0.12
			-	-	-	-	-	-	28.65-39.62	10.97	2.63		0.64
			.	-	.				28.85-30.78	2.13	5.14		0.28
			-	-	-				28.65-33.53	4.88	-	-	-
56-27	$2+153 / 1+334101$	-45	12.50-17.07	4.57	0.61	-	1.80	0.34		-	-	-	
			37.19-43.59	6.40	0.52	.	1.16	0.45	-	-	-	-	
			48.77-55.78	1.01	1.05		0.67 .	1.57	18.77-52.12	3.35	1.63	-	0.81
$56-28$	$2+198 / 1+574101$	- 45	57.30-66.45	9.15	0.33		0.64	0.52			-		
56-31	$4+204 / 0+328$ 281	-45	6.10-9.14	3.04	0.22	-	1.29	0.17		-	-	-	
56-32	1+2iv/1+23\% 91	-45	71.02-13.76	2.14	0.13	-	4.49	0.03	-	-	-	-	
56-13	$3+154 / 0+94{ }^{\text {d }} 138$	-50	6.10-25.91	19.81	1.63		1.56	1.05					
56-35	$3+154 / 0+94713 \hat{0}$	-80	3.35-24.93	21.54	1.02		1.28	0.80	3.35-9.45	6.10	2.86	-	1.58
			- 1	-.		-	-	-	18.90-21.95	3.05	0.46		3.87
56-36	$3+137 / 0+324316$	-45	3.98-13.41	9.45	1.65		4.87	0.34	-	.	.		
	1+794/0+954 91	-45	90.53-92.81	2.28	0.36	-	2.17	0.17		-			-
56.38	5+52.4/1+00\% 136	-45	19.20-20.73	1.53	0.50		2.85	0.18	.	-	-	-	-
			64.71-63.58	3.81	0.93	-	1.58	0.59	-		-	-	
56-39	2+088/0+774 231	-45	51.82-53.85	1.83	0.41	-	3.41	0.12	-	-	-	-	
56-43	2+18N/2+123 171	- 45	21.34-22.71	1.37	0.81	-	0.76	1.07				-	
			25.30/29.87	4.57	0.80	-	0.33	2.12	25.30-27.13	2.13	1.02	-	0.30
56-47	2+015/1+82 141	- 15	6.40-27.43	21.03	0.49	-	2.00	0.25	6.40-21.33	14.93	0.67	-	2.38
			40.84-17.55	6.71	0.35	-	3.95	0.09	16.15-21.33	5.18	1.36	-	3.12
56-48	$2+944 / 1+041123$	-45	$5.49-11.02$	8.53	0.18	-	2.25	0.08	5.19-11.28	3.19	0.21	-	2.82
			$23.04-32.92$	4.88	0.67	-	0.73	0.92	28.04-30.18	2.14	1.07		0.76
56-5!	$2+628 / 1+14 \% 270$	-90	18.59-41.15	22.56	1.61	-	1.27	1.27	18.59-21.03	2.14	1.31	-	6.27
			-	-	-	'	-	-	27.74-41.15	13.11	2.27	-	0.80
56-52	1+799/1+28 270	. 90	63.09-71.62	8.53	0.74	-	1.74	0.13	63.99-68. 41	3.35	0.82	.	4.86
56-5.3	1+46. $/ 1+45 \mathrm{~K} 270$	-90	85.66-87.17	1.51	1.10		4.74	0.23	-	-	-	\cdot	
56-56	$0+699 / 0+50 \% 270$	-90	79.23-96.16	18.93	0.11	-	0.88	0.13	85.69-67. 17	1.81	0.65	-	1.63
			$115.39-149.66$	4.2?	0.56	.	1.58	0.35		-	.		

56-57 75/0+373 $270-90$

9 \begin{tabular}{ll}
9.4

\& 12

\& 12

\& 13

2

\& 21

\& 97

\& 11

270 \& -45

\hline

$9.45-35.05$ \& 25.60 \& 0.08 \& -

$42.06-52.07$ \& 10.01 \& 0.06 \& -

$122.23-125.58$ \& 35 \& 0.08 \& -

$13.97-33.32$ \& 25.45 \& 0.14 \& -

$2.13-10.23$ \& 38.10 \& 0.07 \& -

$97.66-105.12$ \& 7.46 \& 0.22 \& -

$116.44-126.71$ \& 10.27 \& 0.17 \& -

$2.13-15.09$ \& 12.96 \& 0.07 \& -

$20.87-17.83$ \& 26.96 \& 0.03 \& -

$90.03-113.65$ \& 23.62 \& 0.77 \& -

\hline. \& \& \&
\end{tabular}

56-53 $\quad 1+305 / 0+252270 \quad-90$
$\begin{array}{llll}56-64 & 1+535 / 0+628 & 270 & -90\end{array}$ 5.61-31.55 $25.94 \quad 0.03$
$\begin{array}{llll}56-55 & 0+215 / 0+318 & 270 & -90\end{array}$
$\begin{array}{lllll}56-67 & 1+10 S / 0+141270 & -90\end{array}$
57-68 1+80S/0+288 $270-90$ 65-70e $2+165 / 0+398270-90$
68-7le 0+35S/0i093 $270-90$
$\begin{array}{lll}0.22-42.45 & 2.23 & 0.04\end{array}$
$\begin{array}{llll}29.81-32.01 & 2.19 & 0.09 & 0.51\end{array}$
128.25-134.35 $8.10 \quad 0.04 \quad 2.49 \quad 0.02$
137.17-142.03 $4.86 \quad 0.17 \quad 2.74 \quad 0.06$
$\begin{array}{llll}50.00-55.94 & 5.94 & 0.05\end{array}$ 39.01-48.13 $\quad 9.78$ 118.57-120.411.84 126.18-123.02 1.84 $\quad 0$.
$65-72 e 3+60 N / 2+947270-90$ 140.81-145.70 4.89 $\begin{array}{lllll}172.97-184.25 & 11.28 & 0.37 & - & 2.03 \\ 0.18\end{array}$ 193.70-195.21 $1.51 \quad 0.31-2.18 \quad 0.14$ $\begin{array}{lllllllllll}57-74 & 2+85 y / 3+177 & 270 & -97 & 96.00-97.54 & 1.54 & 0.73 & 1.57 & 2.44 & 0.30\end{array}$ 153.90-157.51 3.61 1.64 - $0.70 \quad 2.34$ 175.89-180.45 4.56 $0.48 \quad-\quad 2.55 \quad 0.19$ $\begin{array}{lllllllll}54-6 & 1+615 / 2+298 & 55 & -47 & 72.82-73.03 & 0.21 & 0.10 & 1.20 & 6.20 \\ 0.02\end{array}$ $60-75 \quad 2+335 / 1+191 / 270$-90 $30.13-32.00 \quad 1.52 \quad 0.13-1.78 \quad 1.03$ 38.86-53.34 $14.48 \quad 0.19 \quad 2.84 \quad 0.17$ 60-76 $\quad 2+253 / 1+25498 \quad-65$ 21.35-49.53 $21.95-49.53$

$27.13-35.05$	7.92	0.21	-	4.16
$122.23-124.05$	-	-	-	-
$13.82-33.83$	19.96	0.09	0.80	2.93
$17.36-37.19$	19.83	0.07	-	2.54
$97.66-100.71$				
-		3.05	0.31	0.50
		-	-	-

HOLB	COLLAS 12.	DIP	P20:-10	LGTI	co(\%)	$\mathrm{PB}(\mathrm{x})$	3Y(\%)	co: 21	IMCLSDIMG	L6\%	CO(4)		Ex(
			71.78-74.37	2.59	2.65	-	15.24	0.17	-	-	-	-	-
14-20	0+415/0+758 124	-60	28.96-33.22	4.28	0.10	0.02	3.69	0.03	-	-	-	-	-
74-21			71.42-83.03	5.67	0.25	0.33	1.85	0.14		-	-	-	
	$0+385 / 1+118149$	-60	26.06-30.63	4.57	0.38	0.23	4.38	0.09	-	-	-	-	-
			68.28-72.54	4.26	0.17	0.83	2.34	0.07		-	-	-	-
			87.75-92.35	4.57	0.31	0.14	1.78	-		-	-		
			102.41-103.78	1.37	0.29	0.43	1.77	0.16		-	-	-	-
81-1	2+801/14083 270	-90	10.97-12.80	1.83	0.39	-	3.08	0.13	-	-	-	-	-
			18.59-21.03	2.44	1.05	-	1.11	0.14	-	-	-	.	-
			26.37-36.42	10.05	2.54	-	0.89	2.85	-	-	-	-	-
$81-2$	2+82X/1+20\% 270	-90	20.73-28.35	7.62	1.12	-	2.88	0.49	-	-	-	-	-
			34.90-39.01	4.11	1.53	-	1.05	1.46	-	-	-	-	
$81-3$	2+835/0+92\% 270	-90	23.16-28.19	5.03	1.56		0.53	2.94	-	-	-	-	-
			31.39-32.31	0.92	1.19	-	0.12	9.92	-	-	-	-	-
81-5	2+599/0+99\% 288	-80	17.37-22.40	5.03	1.17		1.25	0.94	17.37-18.44	1.07	4.99	-	0.29
			5.49-8.23	2.14	0.08	-	2.71	0.03	-	-	-	-	-
			26.82-27.43	0.61	0.84	-	2.57	0.33	.	-	-	-	-
			32.92-41.00	8.08	1.08	-	0.64	1.69	-	-	-	-	-
81-5	2+333/1+25H 270	-90	47.85-52.83	5.03	2.95		2.85	1.04	-	-	-	-	-
81-7	2+344/1+24 103	-73	43.28-17.69	3.81	1.80	-	0.76	2.37	-	-	-	-	-
81-8	2+32N/1+254 198	-80	51.82-52.79	10.97	1.66	-	4.82	0.34	-	-	-	-	-
81-10	3+124/0+924 270	-90	2.74-6.71	3.97	1.17		0.25	4.68	-	-	-	-	-
			15.85-17.22	1.37	4.32	-	0.46	9.33	-	-	-	-	-
81-11	3+105/0+834 270	-90	8.69-12.80	4.11	1.08	-	2.85	0.38	-	-	-	-	-
81-12	3+14N/1i80N 270	-90	5.18-12.80	7.62	1.58	-	1.81	0.87	-	-	-	-	-
			26.06-26.97	0.91	2.11	-	0.19	11.11	-	-	-	-	-
81-13	3+308/0+867270	-90	16.00-18.69	2.69	0.32	-	1.99	0.18	-	-	-	-	-
81-143	3+311/0+97x 270	. 90	29.11-29.57	0.46	4.10	-	0.06	68.33	-	-	-	-	-
			33.83-36.12	2.29	1.83	-	0.01	183.00	-	-	-	-	-
81-15	$3+351 / 0+724270$	-90	7.92-9.20	1.28	6.54	-	0.82	1.98	-	-	-	-	-
81-16	4+219/0+774 93	-70	7.62-12.19	4.57	0.62	-	1.08	0.57	-	-	-	-	-
31-13	4+229/6+65 38	-30	2.44-6.10	3.66	0.03	-	3.29	0.01	-	-	-	-	-
			24.99-26.21	1.22	0.15	-	3.94	0.04	-	-	-	-	-
81-19	$3+313 / 0+774176$	-60	1.63-4.27	2.59	0.47	-	3.05	0.15	-	-	-	-	\bullet
			7.16-12.34	5.18	1.04	-	2.09	0.50	7.16-9.45	2.29	1.12	-	4.30
			22.71-22.86	0.15	0.88	-	6.43	0.14	-	-	-	-	-
81-20	3+813/0+77\% 98	-90	6.40-15.29	8.99	0.37	-	2.52	0.15	-	-	-	-	-
81-21	3+54. $/ 5+814270$	-90	20.12-23.17	3.65	1.04	-	0.08	13.00	-	-	-	-	-
81-22	3+401/0+73< 270	-90	3.66-6.40	2.74	0.39	-	2.85	0.14	-	-	-	-	-
81-23	$3+438 / 0+70 x=? 0$	-90	25.76-26.21	0.45	0.98	-	1.87	0.13	-	-	-	-	-
8:-24	$2+963 / 10+971 / 275$	-90	6.10-8.84	2.75	0.32	-	5.11	0.96	-	-	-	-	-
			13.41-14.94	1.53	0.32	-	2.10	0.15	-	-	-	-	-
			20.73-23.47	2.74	0.55	-	2.05	0.27	-	-	-	-	-
			26.21-26.97	0.75	1.62	-	1.37	1.18	-	-	-	-	-
			29.11-31.70	2.29	1.47	-	1.11	1.32	-	-	-	-	-
81-25	$2+434 / 1+147278$	-80	18.29-22.10	3.81	0.87	-	5.72	0.15	-	-	-	-	\cdots
			33.28-49.53	16.25	2.87	-	0.90	3.19	33.28-37.03	3.75	3.97	-	1.50
			-	-	-	-	-	-	18.85-41.76	2.90	4.06	-	0.40
			-	-	-	-	-	-	43.89-41.96	1.07	10.10	-	2.31
81.30	2+914/1+054 98	-75	4.88-10.36	5.48	0.76	-	3.72	0.20	18	-	-	-	
			18.90-35.66	16.76	1.93	-	1.68	1.15	18.90-20.12	1.22	0.48	-	3.45
			-	-	-	-	-	-	21.95-35.66	13.11	2.08	-	1.26
31-31	2+918/1+05* 98	. 80	17.22-18.59	1.37	0.21	-	2.76	0.10	-	-	-	-	-
			25.91-28.65	2.14	1.11.	-	1.03	1.88	-	-	-	-	-
81-101	0+50S/2+168 270	-90	15.54-16.46	0.92	0.38	-	3.39	0.11	-	-	-	-	-
			17.07-19.20	2.13	1.03	-	1.69	0.64	-	-	-	-	-
81-104	0+558/2+362 270	-90	3.96-5.13	1.22	0.52	-	1.64	0.32	-	-	-	-	-
			13.11-15.24	2.13	0.04	.	4.05	0.01	-	-	-	-	-

ThEHCH/SAM LOCATION LENGTH AZImUTh CU(\%) PD(\%) $2 N(\%)$ ag(OZ/T) COMhEhts

SII-91-54	7+05 $/$ /2+25 ${ }^{\text {W }}$	erab	-	. 02	2.68	9.00	20
SII-91-10	$6+61 \mathrm{H} / 2+91 \mathrm{~W}$	grab		. 02	. 76	2.25	. 06
SH-91-11	$6+36 \mathrm{H} / 2+54 \mathrm{~W}$	grab		-	3.34	12.08	. 18
SH-91-53	$6+36 \mathrm{~K} / 1+85 \mathrm{~W}$	grab		. 13	. 21	2.84	05
SH-91-12	$\mathrm{G}+34 \mathrm{H} / 2+29 \mathrm{H}$	grab		31	. 21	77	05
SH-91-52	$6+34 \mathrm{~N} / 2+46 \mathrm{~W}$	grab		. 81	1.61	1.04	. 36
SH-91-13	$6+14 \mathrm{~N} / 2+\mathrm{BBH}$	grab		14	51	2.12	, 08
SH-91-01	$1+97 \mathrm{~N} / 0+15 \mathrm{H}$	float?		1.00		15	
SH-91-01C	$4+92 \mathrm{~N} / 0+\mathrm{S} 2 \mathrm{~W}$	float?		-	. 63	1.70	. 06
El1-91-01A	$4+89 \mathrm{~N} / 0+69 \mathrm{~W}$	float?	-	. 43	. 08	. 28	-
SH-91-06	$1+56 \mathrm{~N} / 0+31 \mathrm{~W}$	grab	-	. 15	1.71	5.31	. 08
Tr425ll	$4+241 / 0+42 \mathrm{~W}$	8.0	322	. 67	1.15	4.30	. 12
Cuknet	1+10 $/ 1+20 \mathrm{~W}$	3.0	172	2.59	. 02	. 32	. 11
Tr40011	$3+63 \mathrm{~K} / 0+72 \mathrm{~W}$	7.1	039	2.87	. 78	2.97	. 38
Tr300N	$3+13 \mathrm{H} / 2+01 \mathrm{~W}$	7.5	319	. 20	. 26	1.17	. 14
E-90-01	$3+20 \mathrm{~N} / 0+60 \mathrm{E}$	rubtle		3.60	. 02	. 16	. 35
TV27514	$2+81 \mathrm{~N} / 2+25 \mathrm{~W}$	1.0	112	. 15	. 05	. 69	. 07
Tr275lib	$2+78 \mathrm{~N} / 1+99 \mathrm{~W}$	1.0	030	. 69	1.30	5.97	. 20
CuBx	$2+39 \mathrm{H} / 2+29 \mathrm{~W}$	5.0	030	3.53	. 02	52	. 51
Tri7sll	1+69 $1 / 0+32 \mathrm{E}$	5.0	041	. 16	. 35	2.34	. 18
D-90-01	1+23N/3+33E	rubble		11.13	. 05	3.56	. 38
Tr07511b	0+75110+07E	2.0	080	. 06	. 17	2.09	. 16
SH-91-05	$0+73110+098$	grab	-	. 48		. 98	
SH-91-40	0+591/11+15 W	grab	-	. 08	.01	1.18	. 05
SH-91-55	$0+135 / 0+90 \mathrm{~W}$	grab	-	3.71	2.75	5.30	1,16
SH-91-27	$0+135 / 0+85 \mathrm{H}$	grab		4.17	1.38	5.34	1.27
TrA-04-A(1990)	$0+575 / 0+66 \mathrm{E}$	5.0	062	. 04	. 60	1.66	. 06
Tro7ssa	$0+63 \mathrm{~S} / 0+39 \mathrm{E}$	7.0	112	. 42	.40	8, 10	. 12
Tro7ssb	$0+65 S / 0+41 E$	5.0	082	. 53	. 52	3.37	. 12
TrA-03-A(1990)	$0+80 S / 1+08 \mathrm{E}$	15.0	062	. 03	. 10	1.31	-
TrA-03-B(1990)	$0+62 S / 1+02 \mathrm{E}$	1.0	062	. 07	. 81	10.58	. 08
SH-91-36	$0+93 S / 1+19 \varepsilon$	grab	-	. 66	3.24	13.96	. 05
TrA-00-B(1990)	$0+97 \mathrm{~S} / 1+89 \mathrm{E}$	3.5	072	. 13	. 67	2.25	-
Tri00S	$0+98 S / 1+10 E$	1.8	052	. 75	2.78	10.77	35
Tra-02	1+03S/1+12E	3.5	062	. 05	. 16	1.12	
A-90-01	1+00S/2+85E	fleat?		0.00	. 04	1.84	. 32
K.RS-08	1+80S/2+90E	float	-	2.88	. 05	02	. 12
BSH-O1	1+80S/2+60E	float	-	7.01	tr	4.15	. 27
BSII-02	4+B0S/2+90E	float	-	5.93	tr	. 15	. 16

eujphide vein material north of any known mineralization lge blaeted grat of ESE irieralization on N-S stripping lae blacted grab of ESE treriding wineralization on 625 N lge blabted grab of $\mathrm{Cu}-\mathrm{Zn}$ material at highgrade Pbs ahouing Ige blaeted grab of ESE trending mineralization on 625μ lge blaeted grab of ESE trending mineralization on 625 H E-W ahear hostod (.5m) macsivo eulphides at $2 \mathrm{a}^{-2} U C^{\prime \prime}$ contact lge blacky flost from east end of 500 N ob trench lge blocky float from west end of 500 N ob trench lge blacky float from weet end of 500 N ob trenoh prob Main Zone "Lower Chert" etratiform 2n hren at 4+50N etratigriphic "LC" 2n hrzn aample uithin ESE etruct on 125 N portion of ESE fitructure bt CuKriob, taken acroca etructure portion of Cuknots etructure tut in"LC". campled acrocs compofite ntratigraphic cample of "UC" meenive aulphidec acimpoeite blacky rubbla from ob trarich ovar conductor 12 (42s) stratiguraphic fimple of "DC" mateiva eulphidee on 275 F sorcee portion of ESE etructure ori 275 N acrons portion of CuBx etructure on 250 N acraze pertion of ESE etiuoture on 175 H
lge blooky rubble from ob trench over conductor id(40b) 2n-rioh "UC" horison, pese along atrike from "UC" YMS coppor-pyrite within "uC" argillitos adjacent to Tro75Nb uest ond of OSON etripping. vague ESE etructure
high-grads ESE chowing ot weet end of 000 N etripping high-grade ESE Ehouing at woat orid of DOON atripping etratigraphio campla at ehet end of 075S in "UC" ar'gillitea etratigraphic eample at weet end of 0755 in 52 cht bx etratigraphic cample at utet arid of $075 S$ in 52 cht tx poorly blaated S2. gescan
S2 ins-rich argililitoa in ESE drag-fold
adjacerit to main $\$ 2$, traniched area
adjabarit to main $\$ 2$, trariched
graphitic areililitise at $\$ 2$ "UC"-variolitic bacalt contact acrose portion of SZ ESE atructure
poorly biaeted aoroes portion of SZ ESE atructure
lag blooky tloat from ob tranch ovar SZ "Louer Chiorta"
ige blooky iloat from hiatorioal ob tienches on Listo0s
lge blocky float from hictorioal ob trenchaa on Litoos
lge blooky floht from hietorioal ob trenches on Lftoos

These results have been included on Map 3, the assay plan, as well.
It is believed that the hydrothermal breccia zones are relatively closely spaced through the Shunsby deposits area although they appear to be less dense peripherally. Through the Main Zone/South Zone area it is thought that the following seven mineralized structures are present.

STRUCTURE

"425 North"
"Copper Knob"
"Main Zone" (Figure 6a)

APPROXIMATE EXTENT

- extends from strongly altered/mineralized FW pyroclastics at $625 \mathrm{~N} / 300 \mathrm{~W}$ through to $\operatorname{Tr} 425 \mathrm{~N}$ area and possibly to conductor $40 \mathrm{a}(12)-\mathrm{Ob}$ trench " E ". area
- extends from ch1-po gossan in "Upper" chert at 550N/275W through to Copper Knob - Tr 400N area into "Lower" cherts and possibly to Joubin Fault
- primarily inferred from drill intersections and topography; may well be several individual structures
- appears to extend from at least L550N/400W in FW pyroclastics through to $\operatorname{Tr} 300 \mathrm{~N}$ area of the "Upper" cherts and down through "Variolitic Basalt" into "Lower" cherts in vicinity of the L250N stripping

SIGNIFICANT SAMPLING

- Samples SH-91-10, 11, 12, 13, $52 \pm 53,54$ in pyroclastics - "Upper" chert contact area DDH 5640 in "Upper" chert
- DDH's 56-08, 56-31, 81-16, 17, 18, Tr 425N, grab SH-91-06 in "Variolitic Basalt" - "Lower" chert area
- possibly holes 65-110, 68-46e in "Upper" cherts
- hole 56-09, Tr Cu Knob near "Variolitic Basalt"-
"Upper" chert contact
- Tr 400N, holes 81-10, 11, 13, 14a, 15, 19, 20, 21, 22,23 plus $56-06,11,26,33,35,36$ and $55-04,05$ through Main Zone "Lower" chert area
- sampled in "Upper" cherts by holes 65-103, upper intersections in 61-87 and 88 and by $\operatorname{Tr} 300 \mathrm{~N}$
- sampled in "Lower" cherts by at least holes 65 -$108,56-17,19,20,21,22,23,48,51,60,74,80$, 75,76 \& 93, 74-06, 07, 10 and 81-01, 02, 03, 05, $06,07,25$ and 26
- as well, holes 56-27, 28 and 39 intersected Main Zone "Lower" cherts in the footwall of the Joubin Fault

STRUCTURE
"Copper Breccia"
(Figure 6b)
"Hole 82e"?
"100 North"
"South Zone"
(Figure 6c)

APPROXIMATE EXTENT

- probably extends from the altered FW pyroclastics at $\mathrm{L} 500 \mathrm{~N} / 500 \mathrm{~W}$ through the CuBx Showing and on to the Joubin Fault
- across the fault, the extension to this structure is believed to run along a prominent topographic ridge to the area of Ob Trench " D " - conductor 40 b (1d)
- possibly related to Copper Breccia structure above although a distinct structure has been mapped south of the Joubin Fault which appears to line up with alteration mapped in vicinity of hole 64-82e
- no known corollary to the north of Joubin Fault (would lie under Hiram Lake)
- extends from approximately L200N/150W through "Upper" cherts at L100N/0W and on towards hole 81-101 and into "Lower" cherts in area of sample A-90-01
- probably exists as several en echelon zones due to offsets resulting from late E-W faulting and dragfolding
- believed to extend from prominent NW-SE topographic low at L100N/200W through South Zone "Lower" cherts to hole 54-C area

SIGNIFICANT SAMPLING

- holes 56-14, 15, 16, 43 and 47, 64-82e(?), 65-104, 69-11, 74-5(?) and Tr CuBx in "Upper" cherts
- holes 65-104, 64-82(e)?, 57-74, 61-91, 61-80, 81,87, 65-94, 68-11, and 56-52 and 53 in "Lower" cherts
- holes 64-82e and 65-102 north of fault
- holes 68-12 plus Tr175N south of the fault
- probably includes holes $56-37,68-06,10,19$ and $\mathbf{2 0}, \mathrm{Tr} \mathbf{0 7 5 N}, 71-09$, and 81-101
- thought to include surface samples SH-91-27,36, $40,55, \operatorname{Tr} 075 \mathrm{Sa} \& \mathrm{~b}, \mathrm{Tr}$ A-04-A, Tr A-03a \& b, Tr 100S, Tr A-02 and Tr A-00B as well as SH-91-36
- "Upper" chert sampled by holes $56-57,65,68-1$, 16,18 and $20,74-11,13,17,18,19,20$ and 21 , and 81-104
- most of above holes passed through "Variolitic Basalt" to "Lower" chert as well
- hole 54-C represents easternmost test

Results of the surface work and drillhole compilation suggest:

1) The highest grade mineralization is hosted by ESE-trending zones which have not been evaluated by the past work, although numerous drillholes have undoubtedly cut portions of these zones.
2) Only drillholes and trenches trending north-easterly can comprehensively sample these zones.
3) The thin massive sulphide horizon found in the "Upper" cherts has no economic potential in itself.
4) The stratiform Zn -rich horizon within the "Lower" cherts appears to be continuous and relatively consistent in grade ($4-5 \% \mathrm{Zn} / 5 \mathrm{~m}$?) over a short strike length to the Main Fault. This same horizon is indicated by drilling to be present in the South Zone "Lower" cherts.
5) More galena is present in the ESE stringer systems than previously thought, and is commonly also found in very late cross-cutting E-W quartz-carbonate vein systems.
6) Silver values to $0.5 \mathrm{oz} /$ ton are common, usually closely associated with copper.
7) Cadmium values to $0.05-0.06 \%$ are common, closely associated with zinc.
8) No nickel (or platinum) is associated with the pyrrhotite-rich stringer systems lower in the stratigraphy.
9) No gold values of any significance have been found associated with the known mineralization.

7.6 Geophysics

Results of the extensive stripping and mapping completed in 1990 and 1991 have necessitated numerous revisions to the ground geophysical interpretation with the geophysical picture as presently accepted portrayed on Maps 4a and 4b.

7.6.1 Mapnetics

The overall magnetic picture as described in previous reports has not changed although a number of modifications have been made. A number of spot highs and lows in the area of the Main and South Zones which were determined to be due to cultural effects, eg drill rods etc, have been removed. A number of other suspicious-looking, highly localized magnetic highs and lows for which there is no obvious cultural explanation have been left in the dataset. The best example
of this is probably along line 1 S just east of the baseline when there is absolutely no geological rationale for the intense low here. Similarly, a weak high under the south arm of Hiram Lake does not relate to the pyrrhotite/magnetite-bearing cherts north and east of the lake as the contouring infers. The cause of the high is unknown but may reflect a large iron formation boulder(s) or metal objects left by previous operators.

The overall contouring program has also been modified to more appropriately contour the various ranges present in the data.

There are also now geological explanations for virtually all of the magnetic anomalies. The elongate north-northwest magnetic highs between lines 6 S to 11 S east of the baseline, for example, represent magnetite-bearing chlorite iron formation. The magnetically-indicated flatter west dip of the westernmost unit and steeper dip of the east unit were confirmed by field measurements. The west dipping magnetic feature in the area of line $4 S$ at the baseline, previously thought to represent gabbro, is now known to represent the continuation of the iron formation unit from the south-southeast.

The intense magnetic activity in the extreme southeast portion of the grid reflects magnetite-bearing peridotite as previously suspected. The arcuate magnetic high in the area of 7 W , lines 1 S to 4 S reflects identical peridotitic intrusive rocks. Line 4 S does not extend far enough to the west for the magnetics to properly reflect the peridotite here.

The intense, relatively erratic, often highly localized magnetic activity in the South and Main Zones reflects a variably magnetite/pyrrhotite content in the underlying cherts. There still may be some cultural noise as noted. Much of the high gradient activity in the magnetic pattern is due to the presence of highly magnetic material under thin to virtually nil overburden. It is difficult to discern individual magnetic units in these areas. One exception is the string of magnetic highs associated with conductor 48 (14a) and 54 (14b) which the stripping has shown to represent a massive pyrrhotite-pyrite unit. The north end of the area of magnetic activity associated with the Main Zone, ie in the area of $9 \mathrm{~N}, 175 \mathrm{~W}$, corresponds closely with the mapped north end of the chert/argillite sequence. Likewise, to the south, the chert/argillite sequence has lost most of its magnetic character by about line 2 S . This reflects increasing overburden cover in part but also reflects a fundamental facies change to the south wherein magnetite-pyrrhotite content rapidly dies out and the chert sequence itself is rapidly thinning.

The indicated north magnetic trends in the magnetically bland, northeast portion of the grid are somewhat misleading as bedrock strikes here are northwest to north-northwest as evidenced by conductor 26. This discrepancy is a function of the right angle, line-to-line computer contouring.

Exactly the same phenomenon was encountered at the extreme west ends of lines 5 N to 8 N . The iron formation units here trend northeasterly, not northnorthwesterly as suggested by the magnetics.

The indicated abnormal steep to vertical dips suggested by the weak magnetic anomaly associated with conductor 22 were confirmed by field measurements. The magnetic response here is due to a modest pyrrhotite $+/-$ magnetite content in an argillitic iron formation unit.

The north-south, elongate magnetic high along the south part of the 10 W tie-line and the feature in the area of 8 W , lines $1 \mathrm{~N}-2 \mathrm{~N}$ appear to relate to a disseminated pyrrhotite content in pyroclastic rocks. These particular rocks were notably siliceous in some cases.

7.6.2 Electromagnetics

Considerable revisions have been made to the previous EM interpretations with the new conductor axes superimposed in the magnetics on Maps 4 a and 4 b . Previous conductor designations have been retained wherever possible.

In the north, the south end of conductor 24 coincides with a small pond in an area of considerable relief and it is uncertain if it (and conductor 25?) represent discrete bedrock sources. These may be conductive overburden/topographic responses. There are some definite bedrock conductive features in the immediate area however based on the discovery of pyrite/graphite-bearing chert float in the area of $12 \mathrm{~N}, 1 \mathrm{~W}$.

In the southeast, conductor 41 (2d), 40a (2c) and 2 a are now interpreted to form a stratigraphically continuous unit with a possible slight fault offset in the area between lines 4 S and 5 S . Conductor 40 b (1d) represents a distinct unit to the east which extends from the Joubin Fault south to line 050S. Likewise, the offset continuations of these features north of the Fault have been re-interpreted such that previous conductors 43 (13a), 42 b (13b), 56 (13c) and 14 d represent the same conductive unit with a local fault offset in the area of 7 N . Conductor 42a (12) represents the north continuation across the Joubin Fault of conductor 40b (1d). These two untested conductors are considered the most significant on the property in light of the high grade copper $+/-$ zinc, lead, silver rubble uncovered by backhoe trenching in overburden immediately above them (Ob trenches "E" and "D").

The most changes to the EM interpretation have been made in the area to the west of the Main Zone northeast of Hiram Lake. Previous conductors 40 (14a) and 54 (14b) are now indicated to represent the same unit. This in turn is known to be a massive pyrite-pyrrhotite unit. Conductor 55 as previously portrayed does not
exist. Previous conductor swarm 56 has been replaced with two conductors as indicated. The westermmost of these represents a well defined sulphidic argillite unit tested by previous hole $65-103$. The effects of strong cross folding can be seen in this immediate area.

Also in the east, previous conductors 51 (7), 52 and 5 a are now felt to represent a single graphitic unit which was drill tested by Cominco hole A in 1954.

In the west, previous, seemingly isolated EM responses are now known to form continuous units, notably EM zones $18 \mathrm{~b}, 18 \mathrm{c}$ and 20 and a unit represented by conductors 19b, 19c and 21. Conductors 17 and 18a are known to be offset slightly from the main units to the north.

8.0 DISCUSSION

Evaluation of all of the exploration results to date suggests that the Shunsby Main and South Zones represent part of a large, structurally-controlled stringer system(s) centred on a thick, grossly pod-like or lensoid unit of predominantly cherty chemical sediments and their brecciated equivalents. This chert accumulation represents chemical sedimentation in a quiescent basinal environment on the flank of a major felsic-intermediate pyroclastic eruptive centre located to the south and west. Base metal mineralization at Shunsby is restricted to the thickest portion of the chert assemblage, representing the deepest portion of the basin. Figure 7 presents a schematic vertical stratigraphic section which attempts to summarize the relationship of the known mineralization to the Shunsby lithologies displayed in their proper stratigraphic position using the top of the Shunsby pyroclastic-sedimentary assemblage as the datum plane.

Chemically and petrographically, some of the classic hydrothermal alteration patterns associated with Archean VMS deposits seem to be present in the volcanic portion of the stratigraphy.

In terms of number and density of mineralized structures, it would appear that a dense "core" of relatively closely-spaced systems underlies the Main Zone "Lower" cherts. Mineralized structures become more widely-spaced laterally towards the north and to the south where the South Zone area would appear to mark the southern periphery of the system.

One important question is the timing of the event that created the mineralization relative to the volcanic history of the area. That is, was this event broadly synchronous with volcanism such that the system may have vented at the seafloor or superimposed on the rock assemblage long after the overlying rocks had been laid down with the mineralizing event triggered by subsequent tectonism, igneous intrusive activity, etc. This is a critical consideration in that if the system did vent at the seafloor, large massive sulphide deposits may have formed given the relatively large scale of the stringer system. Whether or not this happened, it is certainly clear that the $\mathrm{Cu}-\mathrm{Zn}$ host fracture systems did not penetrate into the overlying mafic terrain.

Another topic of interest is the source of the metals. Were these introduced from the substrate or were they derived from primary syngenetic mineralization in the chert basin and simply remobilized and re-distributed during a subsequent tectonic/intrusive event?

The recognition that tops are to the east clearly defines the string of largely untested EM conductors at the top of the central pyroclastic-sedimentary assemblage as being the obvious targets for more massive deposits. The existence of a mineralized glacial dispersion train along this EM trend with some quite high grade individual samples is well documented.

The results in previous hole 64-82e are intriguing. This hole contained some of the best copper grades in all of the drilling on the property and is also one of the deepest/most westerly tests of the cherts. There was indicated to be more volcanic material in this hole at the expense of chert

such that the "Lower" chert may be undergoing a facies change in the present down-dip direction into a more volcanic-dominated environment. Again, there may be very real potential for copperrich, more massive deposits in this direction. Lithogeochemical results tentatively suggest that alteration intensity is increasing in the down-dip direction.

Possibilities for classical VMS deposits notwithstanding, the economic possibilities of the known, structurally-controlled mineralization should not be overlooked. Some of the trenching results during the current program clearly indicate that the stringer mineralization is of ore grade and potentially open pittable, if sufficient material can be outlined. It is critical that holes be drilled northeasterly in evaluating these structures, and therefore virtually all past work is useless in this regard.

It has become obvious that all previous mineral inventory calculations, including the ' 1990 MPH figure, can be discarded given the direction of drilling relative to the attitude of mineralized structures. Whilst it is certain that some stratiform mineralization is present in especially the argillites, the strike extent and continuity is very limited, making any section to section correlation invalid. It is perhaps enlightening to recall the assessment of consulting mining engineers Hill, Goether and de Laporte Ltd. in 1983 who, in assessing the "Lower" cherts near surface inventory, noted "the continuity of mineralization depicted in cross-sections by Fairbairm (1982) is not substantiated by the data in detail and that therefore there may be considerable doubt that a reserve of the size Fairbairn had estimated, exists. It is felt that some of the data may have been made to fit a model of continuity, where continuity should not be expected geologically".

9.0 CONCLUSIONS AND RECOMMENDATIONS

The geology and nature of the mineralization on the Shunsby property is finally understood to the extent that an effective drill campaign can be mounted and it is concluded that such a campaign is strongly warranted based on results to date and should proceed.

The drilling overall should focus on three aspects:
(a) drill testing of priority, near surface EM zones along the top of the central volcanosedimentary unit for VMS deposits.
(b) systematic evaluation of the ore potential of the known, stringer-type mineralization
(c) "wildcat" testing of other concepts such as the down-dip extension of the cherts, several short strike length EM features, and the western IF domain.

A minimum of 10,000 feet of drilling budgeted at an all-inclusive cost of $\$ 300,000$ should be carried out with the initial emphasis on a) and b) above. The drilling to evaluate the known mineralized systems should be carried out on cross-sectional profiles as indicated on Map 3 with holes drilled in a northeasterly direction at -45° and terminating in the "Footwall Diorite" complex. Specific tests of conductors 40 b (1d) with -45°, northeasterly directed holes should also be made on lines $050 \mathrm{~N}, 100 \mathrm{~N}, 150 \mathrm{~N}, 200 \mathrm{~N}$ and 250 N . Conductor 42 a (12) should likewise be tested on lines 300 N and 350 N . These conductor-specific holes would be relatively short tests ($50-75 \mathrm{~m}$) terminating in the overlying gabbroic rocks.

Further drilling would be based on the above relative to our exploration models for the property.

Respectfully submitted,

REFERENCES

Atkin, W.F., 1968, Exploration Report on Cunningham Township Property of Consolidated Shunsby Mines Ltd., Qualifying Report for Public Underwriting.

Fairburn, D., 1981, Preliminary Evaluation, MW Resources Ltd., Cu-Zn-Ag-Au Property, Cunningham Township, Ontario. Company Report.

Fairburn, D., 1982, Report on the Diamond Drilling Exploration Program 1981 and prior to 1981, MW Resources Ltd., Cunningham Township, Ontario North Zone. Company Report.

Franklin, J.M., Kasarda, J. and K.H. Poulson, 1975, Petrology and Chemistry of the Alteration Zone of the Mattabi Massive Sulphide Deposit. Econ. Geol., Vol. 70, pp. 63-79.

Franklin, J.M., Lydon, J.W. and D.F. Sangster, 1981, Volcanic-Associated Massive Sulphide Deposits. Econ. Geol., 75th Anniversary Volume, p. 485-627.

Goldsmith, L.B., 1981, Review of 1981 Diamond Drilling Programme, Cu-Zn-Ag-Au Property, Cunningham Township, Ontario, Prepared for MW Resources Ltd., Report by: Arctex Engineering Services.

Gustafson, L.B., and Neil Williams, 1981, Sediment-Hosted Stratiform Deposits of Copper, Lead and Zinc. Econ. Geol., 75th Anniversary Volume, p. 139-178.

Hodgson, D.J., and J.W. Lydon, 1977, Geological Setting of VMS Deposits and Active Hydrothermal Systems: Some Implications for Exploration. CIMM Bulletin, V.70, p. 95-106.

Holcapek, F., 1975, Summary Report on the Shunsby Property, Cunningham Township for Grandora Explorations Ltd., Report by Agilis Engineering Ltd.

Hough, A.J., 1969, A Report on the Potential of the Cunningham Deposit, In-House, to Umex, Ltd., October 22, 1969.

Joubin, F., Various dates, Progress Reports to the Jouban Prospecting Syndicate and Con. Shunsby Mines Ltd. MW Resources Company files.

Meen, V.B., 1942, The Geology of the Cunningham-Garnet Area, O.D.M.
MPH Consulting Limited, 1989, Report on The Shunsby Copper-Zinc Property of Kirkton Resources Corporation, Cunningham Township, Porcupine Mining Division, Ontario.

MPH Consulting Limited, 1990, Report on Phase 1a Exploration Program on the Shunsby Property, Cunningham Township of Kirton Resources Corp.

Mudford, R.K., 1956, Report on Shunsby Mines, Cunningham Township Property for Shunsby Gold Mines Ltd.

OGS, 1982, Airborne Electromagnetic and Total Intensity Magnetic Survey, Swayze Area, Isaiah Lake Sheet, District of Sudbury; by Questor Surveys Limited for the Ontario Geological Survey, Map 80546 Geophysical/Geochemical Series, Scale 1:20,000. Survey and Compilation December, 1980 to February, 1981.

Placer Developments Ltd., 1980, Three reports covering Geophysics and Geochemistry, Geophysics and Diamond Drilling, February, 1980; July, 1980; November 1980.

Potapoff, P., 1969, Property Examination and Examination of Maps, Sections and Reports of Shunsby Mines Ltd., to UMEX Mining and Exploration Ltd.

Potapoff, P., 1969, A Summary Report Covering the Cunningham Deposit, In-House, to Umex Ltd., December 4, 1969.

Rye, A.R., 1984, Geology of the Cunningham 42 Base Metals Prospect, Kidd Creek Mines Ltd., B.Sc. Thesis, Univ. of Waterloo, Ontario.

Siragusa, G.M., 1980, Cunningham Township Area, District of Sudbury; Ontario Geological Survey Preliminary Map P2339 Geological Series, Scale $1: 15840$ or 1 inch to $1 / 4$ mile. Geology 1978 map.

Siragusa, G.M., 1987, Geology of the Garnet Lake Area, District of Sudbury. O.G.S. Report 248,81p. Accompanied by Maps 2503 and 2504, Scale 1:31680.

Strangway, D.W., Electromagnetic parameters of some sulphide orebodies; Mining Geophysics, Vol. 1, SEG, 1966.

Thurston, P.C., Siragusa, G.M. and R.P. Sage, 1977, Geology of the Cahpeau Area, District of Algoma, Sudbury and Cochrane. O.D.M. Geoscience Report 157, p. 234-291.

Wilson, Bryan, January 1989, Compilation of Exploration Data on the Shunsby Property, Cunningham Township, Porcupine Mining Division, Ontario, Prepared for MW Resources Ltd.

APPENDIX 1 - ANALYTICAL RESULTS

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate
Company: MPH CONSULTING LTD.
Date: JUN-21-91
Project:
MR. W. BRERETON
Copy 1. 2406-120 ADELAIDE ST.W.TORONTO,ONT
Attn:
2. MSH 1TI
3. FAX TO 416-365-1830

We hereby certify the following Geochemical Analysis of 4 ORE samples submitted JUN-17-91 by .

Sample	Au	Cu	Zn
Number	pub	$\%$	$\%$
SH-91-01	24	i .00	0.15
SW -91-01	Nil		
SW -91-02	Nil		
SW -91-03	$55 / 41$		

Certified by

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: MPH CONSULTING LIMITED
Project:
Attn:
C-1302

We hereby certify the following Geochemical Analysis of 61 ROCK samples submitted JUL-11-91 by .

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Page 2 of 2

Company: MPH CONSULTING LIMITED
1W-3405-RG1

Project: C-1302
Attn:

We hereby certify the following Geochemical Analysis of 61 ROCK samples submitted JUL-11-91 by .

Certified by

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Assay Certificate

1W-3945-RA1
Company: M.P.H. CONSULTING LTD.
Date: SEP-16-91
Project:
Attn:
C-1302
W. BRERETON

We hereby certify the following Assay of 4 ROCK samples submitted SEP-11-91 by .

APPENDIX 2 - LITHOGEOCHEMICAL PROCESSING TECHNIQUE

METHODS OF MICROCOMPUTER-BASED
DATA PROCESSING APPLIED TO THE
LITHOGEOCHEMICAL EXPLORATIUN FOR
VOLCANOGENIC MINERALIZATION

John M. Siriunas, P.Eng. MPH Consulting Limited Toronto, Ontario

I
I
Paper prepared Eor the Computer Applications in Mineral Exploration 1984, Conference and Exhibition, Toronto, January, 1984

GENERAL OVERVIEW

In their 1979 review of the subject, Govett and Nichol (1979, p. 339) defined lithogeochemistry as "the determination of the chemical composition of bedrock material with the objective of detecting distribution patterns of elements that are spatially related to mineralization". Within the framework of this definition, lithogeochemical techniques can be used at a variety of scales or levels, all of which can aid the explorationist in pinpointing a possible mineral deposit. From the most regional or megascopic scale to the most detailed or macroscopic these approaches (Figure 1) include:

1) the resolution of metallogenic provinces and/or rock type classifications and studies (100-1000 km scale)
2) the identification of mineralized volcano-sedimentary belts or mineralized intrusives ($10-100 \mathrm{~km}$ scale)
3) the identification of alteration trends, primary dispersion halos and favourable stratigraphic horizons ($0.1-10 \mathrm{~km}$ scale) 4) ore deposit evaluation (including classical assaying)

At MPH Consulting Limited, microcomputer-based data processing methods are applied to lithogeochemical studies used on a variety

USES OF LITHOGEOCHEMICAL STUDIES

Figure 1.
of these exploration levels, particularly in association with programmes of exploration for volcanogenic base metal and gold deposits. These methods are routinely utilized to aid concurrent geological mapping and sampling or alternatively they can be undertaken as independent study projects.

CONCEPTUAL MODEL

Base and precious metal mineral deposits occur under special geological conditions where the commodities sought after occur in concentrations on the order of 500 to 5,000 times background crustal abundances and may therefore be exploited at a profit.

To realize these geological concentrations, metals must be extracted or leached from a relatively diffuse environment and transported to a locus where conditions are favourable for their deposition. The hydrodynamic systems which are generated around thermal anomalies in the crust (e.g. volcanic centres) are the principal method to achieve this end. Heat conduction and fluid convection through the surrounding rocks are integral factors of the processes that control the geochemical enviconment for the dissolution and precipitation of metallic and other components (see Figure 2).

\checkmark	mafic to intermedate volcanics
. ${ }^{\circ}$	felsic volcanics
	felsic ruffs ano SEDIMENTS

Tr	surphides
$4{ }^{4}$	subvolcanic intrusives
[衷造	intense alteration
	halo alteration

Figure 2: Conceptual model for the generation and disposition of alteration patterns related to volcanogenic mineralization.

Consistent and distinctive patterns of elemental or oxide enrichment or depletion are documented to occur within the rocks in the vicinity of felsic volcanic centres where solfataric activity is known to have taken place; of course, it is those patterns which were developed concomitant with the significant enrichment of base and precious metals which are the ones that the explorationist wishes to study. Briefly, the element and oxide patterns of major importance to the study include the enrichment of magnesia, total iron, silica, carbon dioxide, with or without potash, and the depletion of soda and lime (or magnesia around gold deposits).

The close spatial and time relationship between chemical sediments and syngenetic ore in many Archean base metal and gold deposits intimates that these sediments may be used as indicators of possible stratigraphic zones in which economic stratabound sulphide mineral accumulations may be located. Primary dispersion from a volcanic centre as exemplified by trace element data can be used to identify or map mineralized horizons or to define multielement haloes around mineralized zones (Scott et al, 1982). These types of studies can be greatly enhanced by the examination of only specific mineral fractions (e.g., sulphides or chlorites). Some enrichment of the trace elements may also be identified in the host rocks immediately stratigraphically below an ore deposit.

The principles of the mineralization process are universal. It requires only that the proper pathfinders be employed in the exploration effort.

MICROCOMPUTER UTILIZATION

In conjunction with a geological survey, the geochemical analysis of rock and drill core or cutting samples for the major and minor rock-forming oxides and/or trace elements can be used to help characterize rock types or to aid in identifying unusual chemical features or elemental distributions which may be present due to some mineralizing process. These features may be recognized on both a regional or local scale. At MPH, specialized microcomputer software has been assembled, which in combination with a variety of standard in-house petrographic and mineralogical investigations is used to evaluate lithogeochemical data for the purposes of volcanic rock classification and the identification of specific geochemical conditions that may be the result of volcanogenic mineralization processes in Archean rocks.

The main microcomputer hardware used at MPH is comprised of a $2-80$ microprocessor with 64 K bytes of RAM and dual 390 K byte floppy disks. This is teamed with an intelligent terminal, a long-axis bi-directional plotter/printer and a modem to allow for a variety of input and output versatilities. Smaller field portable
microcomputers are routinely interfaced with the system, especially for the handing of geophysical data.

The data base used for the archiving of geochemical data allows for the storage of 32 major and minor oxide and trace element components as well as latitude, departure, subsetting qualifiers and the field description of each sample. Data is generally input from the keyboard, though it is possible to accept the data from remote sources using the modem.

STATISTICAL METHODS
A number of statistical methods are used for the preliminary interactive study of lithogeochemical data in conjuntion with volcanogenic mineral exploration. Many univariate statistical methods are found to be useful in the study and interpretation of various types of geochemical media and are exemplified by the examination of computer-generated histograms, their logtransformed equivalents and derived probability plots (Figure 3).

Multivariate techniques are used to carry out correlations and to evaluate the presence or extent of various geochemical anomalies. An extremely useful multivariate technique which is employed is the examination of bivariate (scatter) plots for a variety of data variables (Figure 4). These plots are particularly useful when

Figure 3 : Basic statistical manipulations utilizing $\log _{1}$ transformed data and corresponding probability plot.

Figure 4: Bivariate (scater) plot with best-fit straight line and correlation coefficient (r)
making chemo-stratigraphic correlations, when studying alteration patterns on a local scale or when examining other alteration phenomena.

Factor analysis was originally developed for use in experimental psychology but has been extensively applied to geology and geochemistry. The main use of factor analysis is to combine a group of intercorrelated data and plot a representation of the combined element variation so that a better exploration halo than could be recognized by any single element analysis can be defined. As an example of this, the observed distribution of z inc values in the favourable horizon surrounding an Archean stratabound ore body (Willroy No, 4 Zone, Manitouwadge) can be compared with factor scores for the model employing zinc-antimony-arsenic and tin components. A larger detectable halo is observed to be present using the factor model (Figure 5).

However, the main emphasis of the MPH approach to lithogeochemical explocation is by way of what is termed the volcanogenic evaluation. The key to this method is the examination of the alteration components that might affect the classification of rock type or be closely related to the processes of proximal volcanogenic mineralization.

Figure 5: Comparison of Zn distribution and factor scores for the model employing $\mathrm{Zn}-\mathrm{Sb}-\mathrm{As}-\mathrm{Sn}$ (Sulphide Factor 2) at Willroy No. 4 ore zone.

GEOCHEMICAL ROCK CLASSIFICATIONS

One of the main pitfalls in classifying rocks geochemically is the sensitivity of the main classifying components (e.g., $\mathrm{K}_{2} \mathrm{O}$, $\mathrm{Na}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MgO}$) to alteration processes. Also, one system of classification may identify a particular rock differently from some other method of classification, especially when the rock has been severely altered. However, if we recognize that this may be the case, this circumstance can be used to our advantage when attempting to identify alteration patterns in volcanic rocks. If a number of classification methods including mineralogical or petrographic methods are utilized, any major discrepancy can be assumed to be associated with some style of geochemical abnormality that may be worthy of further investigation.

The classification schemes used by MPH include the Jensen Cation Plot (Jensen, 1976; Grunsky, 1981) and the method described by Irvine and Baragar (1971). The Jensen scheme is based strictly on the chemistry of the (subalkaline) volcanic rock while the Irvine and Baragar method is based in part on the normative mineral percentages calculated from the major rock forming components and on an AFM ternary plot. In addition to these two schemes, rocks are classified based on their silica and titania content. These latter methods, though not nearly as complex, are less sensitive (especially titania) to alteration processes (Spitz and Darling,
1975). Since all these classification schemes are designed to be used exclusively on volcanic rocks, all terminology contained therein for the classification of non-extrusive volcanic rock types is in terms of chemo-volcanic equivalents.

In addition to the major classifications that are performed, minor features such as high values for loss on ignition or potash to soda ratios are noted for the information of the interpreter. All computer classifications are performed using arithmetic algorithms so that plotting is not inherently necessary, however, it is the option of the user to have ternary plots made by the online plotter (Figure 6).

ALTERATION FEATURES

Alteration components that might affect the classification of rock type or be closely related to volcanogenic mineralization are examined within the computer programme. These are divided into those inherently associated with base metal mineralization and those closely allied to mafic-hosted gold mineralization.

Volcanogenic Base Metals Evaluation
The key to this evaluation method is the identification of depletion or enrichment trends in total iron, the alkali oxides and alkali earth oxides within felsic volcanic rocks. These

Figure 6: Ternary plots for rock classification
trends as were examined earlier, are recognized to form integral parts of the overall ore-forming process in mineralized Archean
 Qualitative enrichment or depletion trends or "residuals" are calculated by a comparison of observed versus "average" ratios of alkali or iron to silica as observed in suites of rock studied in a number of published and unpublished studies (Descarreux, 1973; Lavin, 1976; McConnell, 1976; Sopuck, 1977). An indication of the residual silica content is derived from a comparison with the alumina content of the rock. Suites of rocks from the Abitibi orogenic belt form a large portion of this "average" population.

A more quantitative evaluation is provided by calculating what is herein designated as the "total alkali alteration score" or TAAS. This alteration score is derived from the ratio of those oxides expected to be enriched due to alteration with respect to the total alkali content (i.e. $\left(\mathrm{MgO}_{\mathrm{K}} \mathrm{K}_{2} \mathrm{O}\right) /\left(\mathrm{CaO}+\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}+\mathrm{MgO}\right) \times$ 100, after Hashimoto, 1977). As the magnesia and potash contents of a volcanic rock increase with respect to the total alkali content, the TAAS approaches 100. Average values for subalkaline mafic to felsic volcanics lie between 35 and 50 . Subalkaline komatiites and alkaline volcanics will typically exhibit alteration scores greater than 70 due to their inherently high magnesia and potash contents respectively. Highly altered felsic volcanic rocks will have values in excess of 80 or 90.

Discriminant analysis is a statistical technique that can be used to help "discriminate" between different populations (for example a background and anomalous population) within a larger population of multivariate data. Based on known data, an equation with varying proportions or weightings of the component elements is generated. When the equation is solved with the various data from a sample point, the magnitude of the scalar product sum is used to classify that particular sample as "background" or "anomalous". As with most populations there is some overlap, but the equation is selected so as to minimize the overlap between the two populations. It is anticipated that more subtle geochemical alteration features may be indicated by this technique and hence increase the areal extent over which an alteration halo can be observed.

Within the MPH computer programme, five discriminant functions with varying components are used to classify the samples; the higher the discriminant score the more anomalous the sample. A table of the components of these functions is presented in Table 1. These particular discriminant functions were derived from published and unpublished studies of felsic volcanic rocks in the Abitibi, Wabigoon and Uchi belts of the Superior Province. Questions have been raised as to the universality of discriminant functions; contentions are that they are valid only for their
specific test populations. For this reason the five discriminant functions are utilized so that the responses that work in different geological settings may be compared.

Volcanogenic Gold Evaluation

Analogous to the evaluation for base metal potential, there are geochemical features that can allude to the presence of syngenetic gold mineralization in mafic Archean terrains. Just as felsic volcanic environments are important to the prospects of base metal mineralization, the presence of magnesium-rich tholeittes or komatiitic rocks is recognized to be important to the prospects of syngenetic gold mineralization (Fyon and Crocket, 1981). Though minor felsic volcanics are occasionally present, the largest proportion of wall rock is expected to be the komatiites and/or tholeiites supposedly as a source rock for much of the gold. The
primary distinction in evaluating a suite of mafic volcanic rocks for gold is, therefore, made by determining its rock classification.

The most obvious alteration patterns associated with gold mineralization tend to be related to the development of carbonate minerals (especially magnesium-bearing carbonates) (Fyon and Crocket, 1981; Whitehead et al, 1981). Carbonatization can be recognized by a ratio of weight percent carbon dioxide to lime, a ratio greater than 1.5 being considered significant. In that typically only LOI analyses will be available for most whole rock analyses, carbon dioxide content can be conservatively approximated by a portion of the LOI content. Alteration mineral assemblages in komatiitic rocks and high magnesium tholeites can also be estimated from LOI analyses and are included as a neasure of the degree of alteration (i.e., carbonatization).

Anomalies in the peraluminosity index $\left(\mathrm{Al}_{2} \mathrm{O}_{3} /\left(\mathrm{CaO}+\mathrm{K}_{2} \mathrm{O}+\right.\right.$ $\left.\mathrm{Na}_{2} \mathrm{O}\right) \times 100$) of volcanic rocks are reported to surround the producing mines in the Red Lake mining camp (MacGeehan and Hodgson, 1981). This relative encichment in alumina is primarily due to the local depletion of soda near the deposits.

The old adage that "gold is the best indicator of gold" is still one of the most important factors when engaged in the search for
gold mineralization. High gold contents in volcanic rocks and chemical sediments are cited as good indicators of gold mineralization by many investigators. Good success in discriminating between volcanic rocks associated with gold mineralization from those which are not is also reported by the use of the absolute potash and arsenic contents of those rocks (Whitehead et al, 1981).

PRESENTATION OF RESULTS
Results of the volcanogenic evaluation are available to the user in a number of formats. A data set can be quickly and interactively reviewed on the terminal. Information displayed includes rock type designations, residual, discriminant function and ratio calculations and the original data can be accessed for interpretive comparison. The evaluation portion has been separated into those features which, as discussed, are intrinsically associated with base metal deposits and those which are associated with gold mineralization. Anomalous or favourable results of the evaluations are flagged and highlighted.

Hard copy output are available for each sample (Eigure 7) or summaries of the anomalous quantities for each sample may be tabulated.

JEHSEK CLASSIFICATION: Sudite and roct type (1)
IRVIHE/BARAGAR CLASSIFICATION: Sulite, roct type and division (2)
5102 CLASSIFICATIOH, ROCk type (3)
TIO2 CLASSIFICATIOH, Rock'lype (3)
manmimi <-Flog classificailon discreponcy
Rock is highly altered (carbonate ele) (- Flog high Loi consent
Rock ls polash- or aoda-rich <- (4)

(Highlight heading if favourable rock type, underline if numerous anomalles $\}$ EKXWARHINGEE 5102 content TOO LOW for occepted volcanogenic siudies men - Flag samples with < 60x 5102-a

$\begin{aligned} & M g O \\ & (5) \end{aligned}$	$\begin{aligned} & K 20 \\ & (5) \end{aligned}$
miximex	mentix

CaO	
(5)	
<-F1	

(5)

Fe203
(5)
S102
TAAS

Discriminont Funcilonsi

$D F 1$	DF2	DF3	DF4	DFS
(9)	(10)	(10)	(10)	(10)

minExE <-Flag anomalous discriminant functions
[Highllghi heading lf favourable roct type, underline if numerous anomaldesj win favourable wali roct ls present men
A- Flog Mg-tholetites and komatilites (Jensen elassification) -a

Carbonate -alieration assemblage present (14)

Subset--Roct Original Data							
S102	A1203	Fe203	Feo	Ca	MgO	Na 26	K20
T102	MnO	P205	LOI	CO2	Cr203	Zr	Sr
Rb	Bat	W	U	Th	Cu	2n	Fb
H1	Au	$\mathrm{Ag}^{\text {g }}$	5	As	Sb	$\times 1$	$\times 2$

References and explanations:

1) Jensen, 1976; Grunsky, 1981
2) Irvine and Baragar, 1971
3) Spliz and Darling. 1975
4) Brooker, 1979
5) Sopuck, 1977
6) from Al203(R), Sopuck, 1977
7) 'Tolal Alkali Alieration Score", after Hashimoto. 1977 in Brooler, 1979
8) MgO, Coí, Na20, Fe203 11m1ts from MaConnell, 19/6

K20. Sio2 limits from Descarreaux, 1973
9) Marcotie and David, 1981
10) Sopuck, 1977
11) Perolumlnosity Index
12) Whitehead et al, 1981
13) MacGechan and Hodgson, 1981
14) Fyon and Crocket, 1981

Figure 7: Presentation format of evaluation output

Figure 8: $X-Y$ plot (TAAS values posted)

Where spatial information is available for the data, small scale plots may be generated on the plotter (Figure 8). Alternatively, the data may be transferred to a remote facility for the plotting and contouring of large scale plots. The evaluation features of the output may furthermore be presented in vector-style histograms for easier visual examination (see Figure 9). Favourable results are plotted in the upper halves of the circles. Full height of each histogram is approximately equal to the corresponding 3 s level or equivalent. If "favourable" rock types are not present for a particular evaluation (e.g. less than $608 \mathrm{SiO}_{2}$ for the base metals evaluation, or no Jensen-classified komatiites or Mg-tholeiites for the gold evaluation), the histogram lines are drawn in a dashed fashion. If half the evaluation factors have been identified as being anomalous, a heavy ring is drawn near the centre of the diagram indicating such.

THE APPLICATION OF LITHOGEOCHEMISTRY

The acceptance of lithogeochemistry as an exploration tool is not prevalent in the exploration community. In fact, in Canada yeochemical techniques in general have had their credibility questioned over the past several years. Part of the reason for this lack of accreditation may arise from the fact that univariate statistics are believed to be as sophisticated a level as one needs to attain to explain most geochemical data. To a degree this is understandable; the extreme tenor of alteration that is present in a particular volcanic rock sample, while accurately

portrayed in the chemistry of the rock, was known weeks (or months) previous by the mere examination of the sample in hand specimen or outcrop. But today, now that rapid and inexpensive, reproducable geochemical analyses are available for a great number of elements or oxides and now that a variety of research and/or case history studies are generally available, many new opportunities may be presented and applied to mineral exploration.

The effectiveness in lithogeochemistry lies in the ability of the explorationist to rapidly and cost-effectively, through the use of microcomputers, examine data, within the context of favourable geologic environments, and to select subtle or multivariate trends which may occur even within areas which are intensely and apparently uniformly altered. These trends, whether determined by discriminant analysis, factor analysis, residual mapping or some other technique can ideally "vector" an exploration effort towards mineralized volcano-sedimentary rocks and/or towards locales of syngenetic mineral accumulation.

The lack of outcrop in many areas of Archean bedrock (especially in Canada) or deep (i.e. expensive) diamond drill holes raises some questions about how to accumulate a statistically significant sample population. With the adoption of the results of regional or "universal" studies (as have been incorporated in the

- 25 -
procedures at $M P H$), information from small sets of data can be comparatively examined with some degree of confidence.

Lithogeochemistry is not to be promoted as the ultimate solution to volcanogenic mineral exploration but neither is it merely a superfluous distraction. When utilized in intimate conjunction with proper geological information or assisted by geophysical methods and data processing techniques, lithogeochemical methods can be employed to yield information that will be of prime importance to exploration strategy and decisions.

Beswick, A.E., 1981, Regional alteration in Archean greenstone belts of the Superior Province: applications to exploration for massive Cu-zn sulphide deposits: Ont. Geol. Survey, OFR 5367, 18 p.

Brooker, E.J., 1979, Lithogeochemistiry as an exploration technique: Paper presented at Prospector's and Developer's Association, 47 th Annual Meeting, 1979, Toronto.

David, J.C., 1973, Statistics and Data Analysis in Geology. John Wily and Sons Inc., New York, 550 p

Descarreaux, J., 1973, A petrochemical study of the Abitibi volcanic belt and its bearing on the occurrences of massive sulphide ores: CIMM Bull. v. 66, no. 730, pp. 61-69.

Fyon, J.A. and Crocket, J.H., 1981, Volcanic environment and carbonate alteration and stratiform gold mineralization, Timmins Area, pp. 47-58 in Genesis of Archean volcanic-hosted gold deposits,, Symposium held at the University of Waterloo, March 7, 1980: Ont. Geol. Survey, MP97, 175 p.

Goodwin, A.M., 1977, Archean volcanism in Superior Province, Canadian Shield: Geol. Assoc. Canada, Spec. Paper l6, pp. 205-241.

Govett, G.J.S. and Nichol, I., 1979, Lithogeochemistry in mineral exploration, pp. 339-362 in Geophysics and Geochemistry in the Search of Metallic Ores, Geol. Survey Canada, Econ. Geol. Report 31, 811 p :

Hall, B.V., 1982, Geochemistry of the alteration pipe at the Amulet Upper A deposit, Noranda, Quebec: Can. Jour. Earth Sci., v. 19, pp. 2060-2084.

Washimoto, K., l977, The Kuroko deposits of Japan - geology and exploration strategies: Assoc. Ing. Min. Metal. Geol. Mexico, Mem. Tec. XII, Pp. 25-88.

Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Can. Jour. Earth Sci. v. 8, pp. 523-548.

Jensen, L.S., 1976, A new cation plot for classifying subalkalic volcanic rocks: Ont. Geol. Survey, MP66, 22 p.

Lavin, O.P. 1976, Lithogeochemical discrimination between mineralized and unmineralized cycles of volcanism in the Sturgeon Lake and Ben Nevis areas of the Canadian Shield: Unpublished M.Sc. thesis, Queen's Univ., 249 p.

Marcotte, D. and David, M., 1981, Target-definition of Kuroko-type deposits in Abitibi by discriminant analysis of geochemical data: CIMM Bull., v. 74,, no. 828, pp. 102-108.

MacGeehan, P.J. and Hodgson, C.J., 1981, The relationship of gold mineralization to volcanic and alteration features in the area of the Campbell Red Lake and Dickenson Mines, Red Lake Area, Northwestern Ontario, pp. 94-110 in Genesis of Archean volcanic-hosted gold deposits, Symposium held at the University of Waterloo, March 7, 1980: Ont. Geol. Survey, MP97, 175 p.

McConnell, J.W., 1976, Geochemical dispersion in wall-rocks of Archean massive sulphide deposits: Unpublished M.Sc., thesis, Queen's Univ., 230 p.

Saager, R., Meyer, M. and Muff, R., 1982, Gold distribution in supracrustal rocks from Archean greenstone belts of Southern Africa and from Paleozoic ultramafic complexes of the European Alps: metallogenic and geochemical implications: Econ. Geol., v. 77, pp. 1-24.
cott, S.D., Kalogeropoulos, S.I., Shegelski, R.J. and Siriunas, J.M., 1982, Tuffaceous exhalites as exploration guides for volcanogenic massive sulphide deposits: $9 t h$ Int. Geochem. Explor. Symposium, May 12-14, 1982, Saskatoon, Program with abstracts, pp. 55-57 (abstract).

Sopuck, V.J., 1977, A lithogeochemical approach in the search for areas of felsic volcanic rocks associated with mineralization in the Canadian Shield: Unpublished Ph.D. Thesis, Queen's Univ.

Spitz, G. and Darling, R., 1975, The petrochemistry of altered volcanic rocks surcounding the Louvem copper deposit, Val d'or, Quebec: Can. Jour. Earth Sci., v. 12, pp. 1820-1849.

Thomson, I., 1982, Accomplishments in exploration geochemistry: a Canadian perspective: Can. Mining Jour., v. 103, no. 4, pp. 78-81.

Valiquette, G., Mellinger, M. and Gagnon, Y., 1980, Lithogéochimie des roches volcaniques de la région Normétal (Cantons de Desméloizes, Perron et Clermont): Ministere de l'Energie et des Ressources du Quebec, $D P B-710,90 \mathrm{p}$.

Whitehead, R.E.S., Davies, J.F., Cameron, R.A. and Duff, D., 1981, Carbonate, alkali and arsenic anomalies associated with gold mineralization, Timmins Areas, pp. 318-333 in Geoscience Research Grant Program, Summary of Research 1980-1981, edited by E.G. Pye: Ont. Geol. Survey, MP98, 340 p.
cott, S.D., Kalogeropoulos, S.I., Shegelski, R.J. and Siriunas, J.M., 1982, Tuffaceous exhalites as exploration guides for volcanogenic massive sulphide deposits: 9th Int. Geochem. Explor. Symposium, May 12-14, 1982, Saskatoon, Program with abstracts, pp. 55-57 (abstract).

Sopuck, V.J., 1977, A lithogeochemical approach in the search for areas of felsic volcanic rocks associated with mineralization in the Canadian Shield: Unpublished Ph.D. Thesis, Queen's Univ.

Spitz, G. and Darling, R., 1975, The petrochemistry of altered volcanic rocks surrounding the Louvem copper deposit, Val d'or, Quebec: Can. Jour. Earth Sci., v. 12, pp. 1820-1849.

Thomson, I., 1982, Accomplishments in exploration geochemistry: a Canadian perspective: Can. Mining Jour., v. 103 , no. 4, pp. 78-81.

Valiquette, G., Mellinger, M. and Gagnon, Y., 1980, Lithogeochimie des roches volcaniques de la region Normetal (Cantons de Desmeloizes, Perron et Clermont): Ministere de l'Energie et des Ressources du Quebec, DPB-710, 90 p.

Whitehead, R.E.S., Davies, J.E., Cameron, R.A. and Duff, D., 1981, Carbonate, alkali and arsenic anomalies associated with gold mineralization, Timmins Areas, pp. 318-333 in Geoscience Research Grant Program, Summary of Research 1980-1981, edited by E.G. Pye: Ont. Geol. Survey, MP98, 340 p.

APPENDIX 3-PETROGRAPHICAL DESCRIPTIONS

SH-WR-11 - ash/crystal tuff from L3+00S

- megascopically a distinctly fragmental pyroclastic rock with predominantly aphantic whitish siliceous clasts to 1 cm by $1-2 \mathrm{~mm}$ in a darker matrix. chemically $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2}+\mathrm{CO}_{2}$ depleted; $\mathrm{K}_{2} \mathrm{O}$ enriched; $\mathrm{Cu}: \mathrm{Zn}$ $=0.75$
fragmental nature of rock is highly evident in thin section; can see that siliceous fragments are of rhyolitic composition consisting of very fine, anhedral sericitic quartzo-feldspathic material interspersed with quartz and feldspar crystals and grains, chloritic patches and carbonate. Rock is a crystal lithic tuff of intermediate-felsic composition.

SH-WR-01 - westernmost sample of footwall tuff-breccia (2 b unit) adjacent to mineralized structure at L500N/550W,

- megascopically a mottled green-black rock with waxy green sericitic shear surfaces and recognizable lithic fragments to 5 mm .
- chemically $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}$ and CaO depleted; $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; high TAAS and M-D score; classified as rhyolite.
in thin section, a markedly schistose felsic pyroclastic rock with grains and fragments of mainly quartz to $1 \mathrm{~mm} \pm$ along with large, partially resorbed lithic fragments (occuring as patches of ultrafine grained chlorite and sericitic siliceous material) surrounded by an anhedral assemblage of quartzo-feldspathic material, chlorite, sericite, carbonate and saussurite.

SH-WR-09 - Footwall pyroclastic (2a) from $625 \mathrm{~N} / 4+00 \mathrm{~W}$

- megascopically, a greenish-grey, generally fine-grained, distinctly fragmental tuff with both lithic fragments and scattered crystals to 5 mm + -.
- chemically $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and SiO_{2} depleted; CO_{2}, slightly $\mathrm{K}_{2} \mathrm{O}$ enriched; classified as rhyolite
- Petrographically, larger crystals and crystal fragments of mainly feldspar in an extremely fine-grained quartzo-feldspathic groundmass. The rock is schistose and is highly altered with abundant fine disseminated carbonate in the matrix along with considerable very fine sericite $+/$ minor very fine chlorite(?). Some of the larger feldspar grains are variably saussuritized. This is a highly altered lithic crystal tuff and an excellent example of the " 2 a " unit.

SH-WR-05 - highly altered footwall pyroclastic at $600 \mathrm{~N} / 300 \mathrm{~W}$

- megascopically a schistose, green-black, fine-grained rock with fine black quartz eyes, quartz veined and well mineralized with coarse pyrite.
- chemically $\mathrm{Mg} 0, \mathrm{Na}_{2} \mathrm{O}$ and CaO depleted; $\mathrm{CO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ enriched with moderatley high Peral, TAAS, very high DF_{5} classified as rhyolite
petrographically consists of scattered quartz crystals and crystal fragments and patches of very fine-grained quartz in a matrix of very fine-grained anhedral quartzo-feldspathic material and chlorite. There is abundant fine carbonate in the matrix and as larger crystals and crystal aggregates along with fine-grained anhedral quartz. A minor amount of chlorite is altered to brownish biotite. The rock is notably schistose and the slide is traversed by thin schistosity-parallel veinlets of ultrafine anhedral quartz with some associated very coarse pyrite. The carbonatization and chloritization were later events relative to the quartz veining in that tiny veinlets of these former minerals traverse the latter. This rock would appear to be an altered intermediate crystal tuff.

SH-WR-06 - northern sample of footwall pyroclastics at $625 \mathrm{~N} / 250 \mathrm{~W}$

- megascopically a mottled grey fine-grained rock with occasional whitish crystals or crystal fragments
- chemically $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}$ and CaO depleted; $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched with high TAAS, Peral, DF_{5}, classified as rhyolite
- Petrographically a quite featureless rock consisting of dark irregular chlorite-epidote-saussurite patches and aggregates in an anhedral quartzofeldspathic matrix of variable but often ultrafine grain size. There is one larger (1 mm) quartz grain and a clastic or fragmental aspect to both the mafic and felsic components in some cases. Wispy sericite stringers occur throughout the rock. Twinned plagioclase constitutes $5-7 \%$ of the rock and occur as lathy crystals. This rock would appear to be an altered felsic pyroclastic.

"Digestive Diorites" and Other Intrusive Rocks

SH-WR-10 - from L1+50S/2+00W

- megascopically a relatively even, medium-grained dioritic-looking rock with abundant amphibole needles and fine leucoxene. chemically, $\mathrm{CO}_{2}+\mathrm{Na}_{2} \mathrm{O}$ depleted; $\mathrm{MgO}+\mathrm{SiO}_{2}$ enriched; $\mathrm{Cu}: \mathrm{Zn}=4.00$
- in thin section a massive dioritic intrusive rock composed essentially of saussuritized and sericitized plagioclase, actinolite and quartz with scattered leucoxene crystals and grains; this is an altered version of the dioritic border phase of a large gabbro intrusive.

68-01-FW - below "LC" Zn mineralization

- megascopically a fine-grained, greenish mafic rock with some coarser light speckling
- chemically $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$ depleted; $\mathrm{CO}_{2}, \mathrm{SiO}_{2}, \mathrm{Cu}$ enriched; $\mathrm{Cu}: \mathrm{Zn}=5.33$
- in thin section, the prominent speckling is seen to be due to abundant leucoxene crystals to 1 mm or more. These, along with a few fractured quartz grains are set in a strongly schistose mass of alteration products dominated by chlorite, carbonate and sericite. Occasional vague plagioclase crystal outlines are visible. This is a sample of highly altered, finer grained, digestive diorite.

SH-WR-16 - "Digestive Diorite" dike (?) on L0

- megascopically a medium-grained, mottled greenish-greyish, massive dioritic rock with abundant fine leucoxene chemically depleted in $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Ca} 0+\mathrm{Na}_{2} \mathrm{O} ; \mathrm{MgO}, \mathrm{Cu}, \mathrm{Zn}+\mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; \bmod TAAS, Peral, DF 5 , M-D Score
in thin section, the characteristic "digestive diorite" rock is seen with highly altered plagioclase crystals (sericite, kaolin, chlorite) and chloritic aggregates with $5-7 \%$ carbonate and distinctive black skeletal leucoxene crystals

SH-WR-17 - strange dike (?) on L1+00N, extremely chloritic

- megascopically a mottled greenish grey microfractured rock
- chemically $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}$ and CaO depleted; $\mathrm{Mg} 0, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; good TAAS, Peral, M-D score and DF $_{5}$
in thin section, a dense fine-grained mass of chlorite and anhedral quartzofeldspathic material containing a few scattered, tiny quartz-chlorite-feldspar pseudomorphous after original plagioclase. Some of the chlorite is altered to fine biotite. The rock is weakly carbonatized and contains abundant tiny saussurite clusters. It is not clear whether this is a highly altered flow or an intrusive rock.

SH-WR-15 - Ash tuff(?) near "UC" contact on L175N

- megascopically a strange-looking, greyish/brownish/greenish mediumgrained rock with books of black chlorite to 2 mm
- no chemical alteration of note other than weak $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaO}$ depletion
- in thin section see larger aggregates of chlorite ($+/$ carbonate, quartzfeldspar, sericite) which have square or rectangular outlines in many cases and are clearly pseudomorphous alter an original mineral (plagioclase??) These are set in a finer anhedral interlocking igneous matrix of quartz and twinned feldspar and considerable secondary carbonate and scattered high relief apatite grains. Some of the chlorite is altered to fine biotite. In total this rock is a highly altered dioritic intrusive

SH-WR-02,03,04 - originally thought to be altered flows/tuffs within 2a unit at L500N/500W megascopically, sample 02 contains $30-40 \%$ of $1-2 \mathrm{~mm}$ whitish aggregates in a light greyish matrix with abundant finely disseminated leucoxene; sample 03 is a distinctive greyish green, relatively fine rock with a 5 mm , light coloured weathering rind and finely disseminated leucoxene; sample 04 is a slightly more greyish, mottled version of 03
petrographically, sample 02 is a highly altered rock consisting of clear quartz grains, larger, completely re-crystallized feldspar crystals and 3-4\% leucoxene crystals in a groundmass of carbonate, ultrafine siliceous material, sericite and chlorite (?). The original feldspar crystals have been replaced by very fine anhedral quartzo-feldspathic material, sericite and carbonate. Sample 03 is a slightly coarser, more medium-grained rock relative to 02 . In addition, it contains 10% saussurite/epidote mostly pseudomorphous after plagioclase in some cases. There are also some granophyric-like textures in some larger quartzo-feldspathic aggregates. Sample 04 likewise consists of relict plagioclase crystals, quartz grains and fairly abundant leucoxene in a carbonate-quartzo-feldspathic-sericite-chlorite-saussurite groundmass. These three rocks appear to represent very highly altered versions of the digestive diorite, with this degree of alteration amongst the highest observed on the property.

SH-WR-18
dyke rock on L500N/375W thought to be a feeder to Digestive Diorite megascopically a relatively fine, greenish rock with abundant finely disseminated leucoxene as above
chemically $\mathrm{CO}_{2}, \mathrm{Mg} 0, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}$ and SiO_{2} depleted; $\mathrm{K}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and TiO_{2} enriched; high TAAS, Peral, classified as andesite
In thin section see $5-7 \%$ small clear quartz grains and fine leucoxene grains and patches in a matrix of chlorite and sericitized, very fine-grained quartzo-feldspathic material. This rock has a finely fragmental almost tuffaceous-like aspect although its intrusive nature is unequivocal.
megascopically a fine-grained greyish/greenish, moderately schistose, volcanic-like rock with considerable finely desseminated, purplish leucoxene.
chemically $\mathrm{Mg} 0, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Ca} 0$ depleted; $\mathrm{CO}_{2}, \mathrm{SiO}_{2}$ enriched; $\mathrm{Cu}: \mathrm{Zn}=3.33$
petrographically, rock has a finely fragmented aspect with highly fractured and altered plagioclase crystals and crystal remnants and clear quartz grains surrounded by very fine siliceous material, schistose chlorite and considerable carbonate. The abundant leucoxene occurs as skeletal, diamond shaped crystal remnants in some cases. This is a highly altered, relatively fine dioritic intrusive and is virtually identical to samples SH-WR-02, 03, 04.

66-110-VB - deep hole on L500N/275W reportedly in much dyke material while drilling through variolitic basalt/LC

- chemically $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ depleted; $\mathrm{CO}_{2}, \mathrm{MgO}, \mathrm{SiO}_{2}$ enriched; $\mathrm{Cu}: \mathrm{Zn}=2.00$ - petrographically a coarser, massive dioritic intrusive rock with crystals of actinolite and highly altered plagioclase (sericitized, saussuritized) laths in a quartzo-feldspathic groundmass with minor carbonate

SH-WR-19 - A sample of digestive diorite from L4+50N/1+25W was studied in thin section. Megascopically, this is a dark mottled green-black, generally medium-grained rock which contains irregular $1-2 \mathrm{~mm}$ grains of a diagnostic greyish-white mineral with a slight purplish tinge. In thin section, the most notable feature of this rock is the complete and total alteration of whatever primary minerals were present to an alteration/hydrothermal assemblage of chlorite, epidote-saussurite, kaolin, abundant carbonate, sericite, leucoxene and hematite. Some shattered quartz grains may be primary. Remnants of original feldspar (plagioclase?) crystals can be discerned in a few instances.

In one case, a feldspar crystal has been virtually completely altered to kaolin, epidote-saussurite, carbonate and chlorite. In another case, what appears to have been a plagioclase crystal is now virtually completely replaced by sericite.

Weakly foliated chlorite-sericite-epidote-saussurite material with associated ultrafine quartzo-feldspathic material constitutes approximately 40% of the rock with fine-grained auhedral carbonate constituting a like amount. Larger grains of quartz, remnant plagioclase and leucoxene constitute the bulk of the remainder. The leucoxene is pseudomorphous after illmenite and forms distinct skeletal crystals along with smaller distinctly rhombohedral grains. A minor hematite content was identified by its deep ruby red colour in thin section. A few scattered apatite crystals were also noted.

A sample of massive, medium-grained leucocratic feldspar porphyry/diorite from 7S, 2W was studied in thin section. Mineralogically, the rock is quite simple consisting essentially of plagioclase feldspar, quartz and chlorite. The rock is not a true porphyry in the sense of having well defined phenocrysts in a fine-grained matrix, rather it is an interlocking aggregate of unoriented plagioclase crystals with a "crystal mush" aspect in which a few of the crystals are somewhat larger than the rest. Maximum crystal size observed was approximately 3 mm . Plagioclase crystals constitute $50-65 \%$ or more of the rock. The plagioclase crystals are typically twinned and generally have a pervasive speckling or dusting of very fine sericite shreds and kaolin. A unique determination could not be made on the plagioclase but this would appear to be relatively albitic, possibly $\mathrm{Ab} 70-90$. The crystals are rarely euhedral being distinctly euhedral in most cases. There has been considerable mutual interference during plagioclase crystallization resulting in complexly interlocking grain boundaries. Perhaps most striking, a great deal of the interstitial material consists of granophyric quartz-feldspar intergrowths, often with distinctly radiating, "starburst" patterns. This granophyric material seems to radiate from or replace (?) plagioclase crystals in some cases.

The balance of the rock consists of $5-7 \%$ of scattered irregular chlorite aggregates. These are often distinctly elongate being controlled by microfractures in the rock. Small opaque saussurite clusters are typically closely associated with chlorite as is a very minor calcite content. There is a minor content of very fine, light-greenish rod-like or needle-like apatite crystals in the rock. These are segmented in some cases.

Granophyric intergrowths as observed in this rock indicate rapid and simultaneous crystallization of the quartz and feldspar, ie a quench phenomenon, in a relatively near surface environment. This dioritic rock is therefore interpreted to represent a late, granophyric border phase of the main gabbro body with the actual quenching probably related to some form of tectonic activity.

Variolitic Basalts

57-64-VB - near "UC" contact just below significant Zn mineralization on $\mathrm{L} 1+50 \mathrm{~S} / 0+50 \mathrm{E}$
megascopically a very fine-grained, greenish, vaguely variolitic (?) mafic volcanic
chemically, $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}$ and SiO_{2} depleted; $\mathrm{K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Cu}, \mathrm{Zn}$ enriched; moderately high TAAS, Peral, M-D score; $\mathrm{Cu}: \mathrm{Zn}=0.44$
in thin section an ultrafine-grained, vaguely fragmental, highly altered mafic volcanic with scattered tiny plagioclase laths or crystallites in a densely chloritic matrix interspersed with some lighter, finely anhedral quartz-chlorite material.

66-62E-VB1 - near "UC" contact below significant South Zone Zn mineralization - megascopically a very fine-grained, moderately schistose, greenish mafic volcanic.
chemically, $\mathrm{CO}_{2}, \mathrm{Na} 2 \mathrm{O}, \mathrm{CaO},+\mathrm{SiO}_{2}$ depleted; $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; very high TAAS, Peral, M-D score, DF_{5} values; $\mathrm{Cu}: \mathrm{Zn}=0.08$ in thin section, a few tiny skeletal remnant plagioclase laths, often arranged in a distinctly radiating pattern, in a very fine, strongly chloritic, quartzo-feldspathic groundmass with some very fine sericite and scattered, very small sometimes rounded aggregates of finely anhedral quartz.

66-62E-VB2 - roughly mid-variolitic basalt unit

- megascopically a distinctly variolitic mafic volcanic with variolites to 1 mm separated by clear material.
chemically, $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{SiO}_{2}$ depleted; $\mathrm{CO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Cu}, \mathrm{Zn},+\mathrm{Na}_{2} \mathrm{O}$ enriched; $\mathrm{Cu}: \mathrm{Zn}=0.23$
in thin section, individual variolites are seen to be dense, semi-opaque ultrafine aggregates of mainly quartzo-feldspathic material, chlorite and carbonate with a very distinct feathery, outward radiating pattern in a number of cases. There is also a very distinct zonation in some cases with radiating quartzo-feldspathic cores surrounded by a carbonate-rich zone and finally a chloritic rim; intervening clear material is composed of quartz, carbonate and chlorite.

66-62E-VB3 - near "LC" contact just above significant $\mathrm{Cu}-\mathrm{Zn}$ mineralization.

- megascopically, a fine-grained greenish amygdular (?) mafic volcanic in contact with a coarser green-black rock
chemically, $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2}$ depleted; $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Cu}+\mathrm{K}_{2} \mathrm{O}$ enriched; very high TAAS, Peral, M-D score, DF_{5} values; $\mathrm{Cu}: \mathrm{Zn}=7.50$
in thin section see $5-10 \%$ tiny remnant, skeletal, highly altered plagioclase laths in a sericitic quartzo-feldspathic groundmass with considerable very fine opaques; "amygdules" seen in hand specimen are strongly chloritic and also contain tiny plagioclase crystals and may be fragments rather than
in-fillings of gas bubbles. Darker material in hand specimen is strongly chloritic with some black graphite (?) fragments and overall has a finely fragmental aspect. This rock overall appearst to be a fine mafic fragmental.

68-01-VB - near "LC" contact, above "LC" Zn mineralization to NW of South Zone megascopically a very fine-grained distinctly foliated mafic volcanic

- chemically $\mathrm{CO}_{2}, \mathrm{Mg} 0, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}+\mathrm{SiO}_{2}$ depleted; $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched with high TAAS, Peral, $\mathrm{DF}_{5} ; \mathrm{Cu}: \mathrm{Zn}=1.67$
- in thin section, see tiny plagioclase laths and altered skeletal plagioclase (?) remnants in a predominantly fine chloritic groundmass along with minor but pervasive fine carbonate and $1-3 \%$ fine opaques. A few, somewhat larger sericite-chlorite aggregates also appear to be pseudomorphous after plagioclase

68-06-VB - near "UC" contact at $100 \mathrm{~N} / 50 \mathrm{~W}$, below significant Zn mineralization

- megascopically a very fine-grained mafic fragmental
- chemically $\mathrm{Mg} 0, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}$ depleted; $\mathrm{CO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Zn}+\mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; moderate Peral, DF_{5} values
- petrographically iron enrichment is seen to be due to prominent "Berlinblue" Fe-chlorite occurring in microveinlets in a generally very finegrained, moderately schistose sericite-chlorite-quartzo-feldspathic aggregate; some biotite may be present in a section of the slide rich in fine fre-oxides.

56-37-VB(?) - probable altered variolitic basalt in hangwall of Joubin Fault

- megascopically a dark green, slightly coarser mafic volcanic or intrusive
- chemically $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}$ and CaO depleted; $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; very high TAAS, Peral, M-D score, $\mathrm{DF}_{5} ; \mathrm{Cu}: \mathrm{Zn}=1.04$
thin section a schistose, overwhelmingly chloritic rock with scattered grains and aggregates of quartz and wispy carbonate along foliation planes; abundant semi-opaque saussuritic (?) patches and "trains" may be pseudomorphous after plagioclase. In all this rock appears to be an intensely chloritized, ie Mg-metasomatized, mafic volcanic

61-91-VB1 - near "UC" contact, proximal to Copper Breccia structure? megascopically a greenish, fine-grained mafic fragmental with considerable carbonate veining chemically $\mathrm{Mg} 0, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{O}$ depleted; $\mathrm{CO}_{2}, \mathrm{SiO}_{2}$ enriched
in thin section, a highly altered mafic fragmental/aquagene tuff? now composed of fine anhedral quartzo-feldspathic material, chlorite, sericite and carbonate. There is a considerable amount of late quartz-carbonate $+/-$ pyrite vein material in the slide. The rock is variably schistose and portions contain abundant fine opaque.
near "LC" contact, just above significant $\mathrm{Cu}-\mathrm{Zn}$ mineralization megascopically a greenish-grey, fine volcanic with abundant <lmm whitish blebs or crystals
chemically $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}$ and CaO depleted; $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{MgO}$ enriched; high TAAS, Peral, $\mathrm{DF}_{5}, \mathrm{Cu}, \mathrm{Zn} ; \mathrm{Cu}: \mathrm{Zn}=0.23$
in thin section rock is composed of $10-15 \%$ tiny, highly saussuritized plagioclase laths and clusters of laths in an anhedral matrix of sericitic quartzo-feldspathic material. Numerous rounded to ellipsoidal quartzofeidspathic aggregates are present which may represent altered spherulites or variolites. The mafic volcanic material is in microfault contact in the slide with variably banded argillitic(?) sediment composed of fine anhedral quartz aggregates, chlorite, some sericite and abundant black graphite.

SH-WR-07 - altered variolitic basalt near LC contact on L300N

- megascopically a very fine-grained, medium grey mafic volcanic
- chemically $\mathrm{CO}_{2}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2}$ depleted; $\mathrm{K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; high TAAS, M-D score, Peral
- in thin section a very fine, moderately schistose rock with abundant tiny, variably saussuritized plagioclase crystals in a groundmass of quartzofeldspathic material, sericite and chlorite with $3-5 \%$ finely disseminated opaques.

65-104-VB1
near "UC" contact in hole at $350 \mathrm{~N} / 350 \mathrm{~W}$, proximal to Copper Breccia structure.

- megascopically an ultrafine grained, greenish mafic volcanic
- chemically $\mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2},+\mathrm{CO}_{2}$ depleted; $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; high Peral, $\mathrm{Cu}: \mathrm{Zn}=1.60$
- petrographically a very fine, dense aggregate of carbonate, chlorite anhedral quartzo-feldspathic material, sericite, saussurite and fine opaques; tiny remnant plagioclose laths are visible now completely replaced by carbonate, quartz, etc.

65-104-VB2

- near "LC" contact above significant "LC" Cu mineralization - megascopically a very fine-grained, hyaloclastitic mafic volcanic
- chemically, $\mathrm{MgO}, \mathrm{CaO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ depleted; $\mathrm{CO}_{2}, \mathrm{~K}_{2} \mathrm{O}$ enriched; $\mathrm{Cu}: \mathrm{Zn}$ $=1.16$
petrographically, an altered mafic aquagene tuff (or hyaloclastite) consisting of vesicular/spherulitic basaltic glass material now altered to fine sericite/chlorite and extremely fine-grained anhedral quartzofeldspathic material. There is also a great deal of carbonate in the rock. Finely botryoidal, semi-opaque saussurite clusters are scattered throughout the rock along with generally fine, completely opaque leucoxene. This section shows the characteristic, swirly, plastic-like outlines of individual glass fragments.
altered variolitic basalt in Copper Knob structure at 400N
- megascopically see very fine dark blebs in an ultrafine greenish, sericiticlooking volcanic.
chemically $\mathrm{CO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{SiO}_{2} \pm \mathrm{MgO}$ depleted; $\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched
- In thin section, rock is seen to be a very distinctive, highly anomalous specimen. It consists essentially of an interlocking mat of radiating columnar laths to fibrous to feathery to sheaf-like plagioclase (?) (albite?) material with considerable amounts of very fine, chlorite (?) trains which define individual members of the plagioclase aggregates. Sericite is present as an extremely fine speckling in the rock and also occurs along microshears. Abundant ($10-15 \%$) finely disseminated saussurite is also present, typically with a finely botryoidal character. This rock appears to be a spilitic basalt.

66-108-VB1 - near "UC" contact, deep hole at 425N/275W

- megascopically a strongly schistose, ultra fine-grained greenish-greyish mafic volcanic.
- chemically $\mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}$, depleted, $\mathrm{CO}_{2}, \mathrm{Zn}$ enriched
- in thin section, a strongly foliated aggregate of tiny plagioclase crystals, sericite and chlorite in an indistinct quartzo-feldspathic matrix with abundant (10 - 12\%) fine, variably opaque leucoxene. A prominent microshear filled with quartz and carbonate itself cut by numerous chloritic shear planes crosses the slide. This is a highly altered, strongly sheared fine-grained mafic volcanic

66-108-VB2

- near "LC" contact above good $\mathrm{Cu}: \mathrm{Zn}$ mineralization
- megascopically a greyish, vaguely mottled, clearly highly altered mafic volcanic, not noteably shistose.
chemically $\mathrm{CO}_{2}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2} \pm \mathrm{Fe}_{2} \mathrm{O}_{3}$ depleted; $\mathrm{K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$, enriched; high TAAS, Peral and M-D score, $\mathrm{Cu}: \mathrm{Zn}=2.31$
In thin section, see basically an assemblage of alteration products, with 10 - 20% tiny saussuritic plagioclase crystals (a la SH-WR-14) in a very fine groundmass of shreddy sericite, chlorite and quartzo-feldspathic material. Numerous tiny amygdular-like quartz-sericite blebs are present. There are also some epidote-sericite aggregates with a radiating, variolitic-like aspect.

SH-WR-14 - indicated to be an altered basalt within the 425 N mineralized structure megascopically, a very fine-grained, creamy greenish/greyish, siliceous looking, obviously highly altered rock with some vague stretched variolites.
chemically, $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2} \pm \mathrm{MgO}$ depleted; $\mathrm{K}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Al}_{2} \mathrm{O}_{5}$ enriched; high TAAS, Peral
in thin section, see $10-15 \%$ of very small, subhedral to euhedral, plagioclase crystals now largely altered to saussurite in most cases. These are set in a very fine-grained mass of shreddy sericite and quartzo-
feldspathic material with some chlorite patches. A prominent chloritic microshear band crosses the slide. This is a fairly typical example of altered mafic volcanics on the property.
hole in vicinity of Copper Knob structure, no economic mineralization intersected
megascopically a very-fine grained, creamy greyish, silicified-looking volcanic

- chemically $\mathrm{Mg} 0, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$ depleted; CO_{2} enriched; $\mathrm{Cu}: \mathrm{Zn}=4.33$
- petrographically, scattered patches of very-fine grained quartzo-feldspathic material in a pervasively carbonatized ultrafine chloritic siliceous matrix containing considerable fine disseminated opaques (leucoxene?). Some of the above patches have crystal or crystal remnant outlines. Rock looks like a fine, highly altered intermediate to mafic volcanic.

SH-WR-08 - northernmost sample of variolitic basalt at 700N/25E

- megascopically a buff, blotchy rock with very fine grained matrix and vague, light green to buff variolites (?)
- chemically $\mathrm{CO}_{2}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2}$ depleted; $\mathrm{K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched with high TAAS, Peral, M-D score petrographically consists of tabular, elongate pseudo-radiating, twinned crystals of saussuritic feldspar in a schistose matrix of quartzo-feldspathic material and chlorite, Occasional chlorite-quartzo-feldspathic aggregates with sericite boundaries represent variolites. Accessory opaques form a very small constituent of the rock.

65-70e-FWa

- SW of South Zone on L200S, just below barren "LC".
- megascopically a very fine-grained, moderately schistose mafic volcanic
- chemically depleted in $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$; enriched in $\mathrm{CO}_{2}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{SiO}_{2}$; $\mathrm{Cu}: \mathrm{Zn}=0.32$
- petrographically a fine-grained, slightly schistose mafic volcanic showing extensive sericitization, chloritization and carbonatization. Much of the carbonate (\pm quartz) occurs in distinct microveinlets while ragged green chlorite masses are typiclly opaque under crossed micols.
$65-70 \mathrm{e}-\mathrm{FWb}$ - just below sample FWa, above
- megascopically a massive, medium-grained dioritic rock, greenish in colour, with dissemminated leucoxene.
chemically depleted in $\mathrm{CO}_{2}+\mathrm{Na}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaO}$; modestly enriched in $\mathrm{MgO}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{SiO}_{2} ; \mathrm{Cu}: \mathrm{Zn}=1.83$
petrographically a massive medium-grained dioritic rock with large ragged actinolite grains enclosing and intermixed with sericitized, kaolinized often lathy plagioclase. Assessories include minor carbonate, patches of high relief epidote and skeletal leucoxene crystals

66-62E-FW - just below significant $\mathrm{Cu}-\mathrm{Zn}$ mineralization.

- megascopically, a fine-grained greenish, mafic volcanic (?)
- chemically, shows modest $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}$ depletion and $\mathrm{CO}_{2}, \mathrm{MgO}$, $\mathrm{K}_{2} \mathrm{O}$ and SiO_{2} enrichment; $\mathrm{Cu}: \mathrm{Zn}=5.0$
in thin section a few twinned plagioclase laths and scattered quartz grains and fragments in a schistose alteration assemblage of chlorite, carbonate, quartzo-feldspathic material and black leucoxene. This rock has a finely intrusive aspect and may be a fine version of the "digestive diorite" or a coarse flow.

SE-1-FW - in "FW Diorite" complex beneath barren schistose chert on L0+50N

- megascopically a fine grained, greenish, distinctly schistose, vaguely compositionally banded mafic volcanic
- chemically Na_{2} depleted; $\mathrm{CO}_{2}, \mathrm{CaO}, \mathrm{SiO}_{2}, \mathrm{Cu}, \mathrm{Zn}$ enriched; $\mathrm{Cu}: \mathrm{Zn}=0.19$
- petrographically a moderately schistose, fine-grained mosaic of interlocking quartz $+/$ feldspar anhedra and carbonate. Abundant fine sericite $+/-$ chlorite defines schistosity. Occasionally tiny, highly saussuritized plagioclase crystals are present along with minor leucoxene

68-06-FW - below "LC", no significant mineralization

- chemically $\mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}+\mathrm{SiO}_{2}, \mathrm{CO}_{2}$ depleted; $\mathrm{Mg} 0, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Zn}$ enriched, good TAAS, Peral, M-D score, DFs
- petrographically, a fine-grained, distinctly schistose mafic volcanic with abundant sericite-chlorite in anhedral quartzo-feldspathic groundmass. A few larger quartz grains and minor carbonate veining. High Fe explained by considerable opaque Fe -oxides
in footwall of Joubin Fault at $175 \mathrm{~N} / 125 \mathrm{~W}$ below good $\mathrm{Cu}-\mathrm{Zn}$ mnln megascopically a very fine-grained greenish mafic volcanic chemically $\mathrm{Mg} 0, \mathrm{Na}_{2} \mathrm{O}$ and Ca 0 depleted; $\mathrm{CO}_{2}, \mathrm{~K}_{2} \mathrm{O}$ enriched petrographically an ultrafine anhedral mosaic of quartzo-feldspathic material, sericite, chlorite and epidote (?) with tiny skeletal remnant plagioclase crystals
56-27-VB(?) - in footwall of Joubin Fault, below good $\mathrm{Cu}-\mathrm{Zn}$ mineralization - megascopically a fine-grained greenish volcanic
- chemically $\mathrm{CO}_{2}, \mathrm{Mg} 0, \mathrm{Na} 2 \mathrm{O}, \mathrm{CaO}$ and SiO_{2} depleted; $\mathrm{K}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}_{2} \mathrm{O}_{3}$ enriched; high TAAS, Peral, M-D score, $\mathrm{Cu}, \mathrm{Zn} ; \mathrm{Cu}-\mathrm{Zn}=0.16$
- petrographically $10-20 \%$ tiny, variably to highly saussuritized plagioclase laths in an ultrafine, variably sericitic and chloritic anhedral quartzofeldspathic groundmass with considerably skeletal, black leucoxene crystals.
61-91-FW - below significant $\mathrm{Cu}-\mathrm{Zn}$ mineralization
- megascopically a fine-grained greenish mafic volcanic
- chemically $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$ depleted; $\mathrm{CO}_{2}, \mathrm{SiO}_{2}+\mathrm{CaO}$ enriched
- petrographically abundant fine, highly altered plagioclase crystals in mass of carbonate, quartzo-feldspathic material and chlorite; some prominent microshear bands filled with carbonate, quartz and chlorite cut the slide.
64-82e-FW - deep Main Zone hole, possible unmapped structure?, below significant Cu Zn mineralization
- megascopically a fine-grained, moderably schistose mafic volcanic
- chemically $\mathrm{CO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2}$ depleted; $\mathrm{Mg} 0, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ enriched; very high TAAS, Peral, M-D score, $\mathrm{DF}_{5} ; \mathrm{Cu}-\mathrm{Zn}=3.35$ petrographically a brecciated rock with extensive fine chlorite superimposed on a very fine anhedral quartzo-feldspathic groundmass; outlines of original plagioclase laths still visible-now altered to chlorite +/quartz, biotite; coarser quartz and carbonate occur in fractures.
65-72e-FW - deep Main Zone hole at 350N/300W, sample just below decent "LC", Zn +Cu values
megascopically a fairly typical, very fine-grained greenish mafic volcanic, considerable microveining
chemically weakly depleted in $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$; enriched in $\mathrm{CO}_{2}, \mathrm{SiO}_{2}$; $\mathrm{Cu}: \mathrm{Zn}=0.88$
petrographically a strongly chloritic rock with chlorite superimposed on a fine, anhedral quartzo-feldspathic groundmass with some relict twinned plagioclose still visible. Much carbonate occurs in east-west microfractures and disseminated throughout groundmass along with abundant fine leucoxene.
chemically $\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{SiO}_{2}$ depleted; weak $\mathrm{K}_{2} \mathrm{O}, \mathrm{CO}_{2}$, enrichment.
- petrographically $5-7 \%$ clear quartz grains and angular fragments and a like amount of prominent black leucoxene in a mass of carbonate, quartzofeldspathic material, sericite and chlorite. Chlorite/sericite microshears traverse the slide. The amount of carbonate alteration is impressive. This appears to be one of the "digestive diorite" rocks.

68-46e-FWa - hole in vicinity of Copper Knob structure, no economic mineralization intersected

- megascopically a very-fine grained, creamy greyish, silicified-looking volcanic
- chemically $\mathrm{Mg} 0, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$ depleted; CO_{2} enriched; $\mathrm{Cu}: \mathrm{Zn}=4.33$
- petrographically, scattered patches of very-fine grained quartzo-feldspathic material in a pervasively carbonatized ultrafine chloritic siliceous matrix containing considerable fine disseminated opaques (leucoxene?). Some of the above patches have crystal or crystal remnant outlines. Rock looks like a fine, highly altered intermediate to mafic volcanic.

[^0]: ${ }^{1}$ widening of former "Main Zone" trench
 ${ }^{2}$ another attempt at overburden trench " E " which contains high grade $\mathrm{Cu}+\mathrm{Zn}$ rubble
 ${ }^{3}$ additional exposure of Copper Breccia showing
 ${ }^{4}$ another attempt at previous trench " D " which contains high grade $\mathrm{Cu}+\mathrm{Zn}$ rubble
 ${ }^{5}$ includes additional exposure of 1990 trench at $0+75 S$
 ${ }^{6}$ more exposure of 1990 trench "A" in South Zone high grade zinc area

