
010

CAMECO CORPORATION

RIDOUT PROJECT

1993 REPORT OF WORK

Doug Panagapko Project Geologist 2.4722 (Quel.

June 30, 1994

......

SUMMARY

The Ridout property consists of two claims comprising 19 claim units that are located 195 kilometres northwest of Sudbury, Ontario. The claims are 100% held by Cameco Corporation. The claims are situated in the north central part of Greenlaw Township.

During 1993, a 39 kilometre grid was cut, magnetic and VLF-EM geophysical surveys were completed and a program of geological mapping and sampling was conducted.

The geological mapping has delineated a sheared carbonate alteration zone within mafic to felsic volcanic flows and pyroclastics that ranges in width from 80 to 140 metres and has a strike length of over two kilometres. Ankerite, sericite, fuchsite and quartz are the most common alteration minerals observed. Quartz stockworks and fuchsite (green carbonate) have been mapped in several localities.

The rock units have a distinct east-west magnetic signature, and the magnetic data suggests the presence of narrow iron formation units within the volcanics. North-south diabase dikes are also observed and interpreted. Semi-continuous VLF-EM conductors are closely associated with the zone of alteration and shearing.

No significant gold occurrences were located as a result of the current program.

Although the property has not yielded any significant gold values to date, the intense carbonate alteration along with the development of fuchsite and sericite in both mafic and felsic volcanics demonstrates the existence of a gold depositional environment. Structural/chemical traps along this alteration zone would be the most likely areas to investigate further.

TABLE OF

010C

. .

	Page						
1.0	Introduction1						
2.0	Property Location and Access1						
3.0	Land Status						
4.0	Topography and Vegetation						
5.0	Regional Geology3						
6.0	Previous Exploration7						
7.0	1993 Exploration Program						
	7.1 Linecutting						
	7.2 Magnetic and VLF-EM Surveys						
	7.3 Geological Mapping11						
	7.3.1 Introduction11						
	7.3.2 Lithologies12						
	7.3.3 Structure and Alteration14						
	7.3.4 Mineralization15						
8.0	Conclusions15						
9.0	Recommendations16						
10.0	References18						
	APPENDIX A Claim Records						
	APPENDIX B Magnetic and VLF-EM Survey Report						
	APPENDIX C Analytical Results						

LIST OF FIGURES

Figure 1	Property Location Map	2
Figure 2	Claim Map	4
Figure 3	Regional Geology	6
Figure 4	Grid Layout	9
Figure 5	Geophysical Interpretation Map	back pocket
Figure 6	Total Field Mag and Fraser-filtered VLF	10
Figure 7	Bedrock Geology	back pocket

Page

1.0 Introduction

The Ridout property consists of two claims comprising 19 claim units and is located in northcentral Greenlaw Township about 195 kilometres northwest of Sudbury, Ontario. The property was acquired by Cameco in August 1992 by staking open ground.


The property is situated along a zone of intense carbonate alteration within a complex sequence of mafic to felsic tuffs, and mafic to possibly ultramafic flows. Gabbro and diabase intrude the volcanic stratigraphy. The alteration zone has also been subjected to high strain as the rocks within the alteration zone are strongly foliated to sheared.

This report covers exploration work done on the Ridout property by Cameco personnel during the period February 15 - July 31, 1993. This work included linecutting, ground geophysical surveys and a mapping and sampling program. The field work was completed by contractors and by Doug Panagapko and Kyle Watson of Cameco.

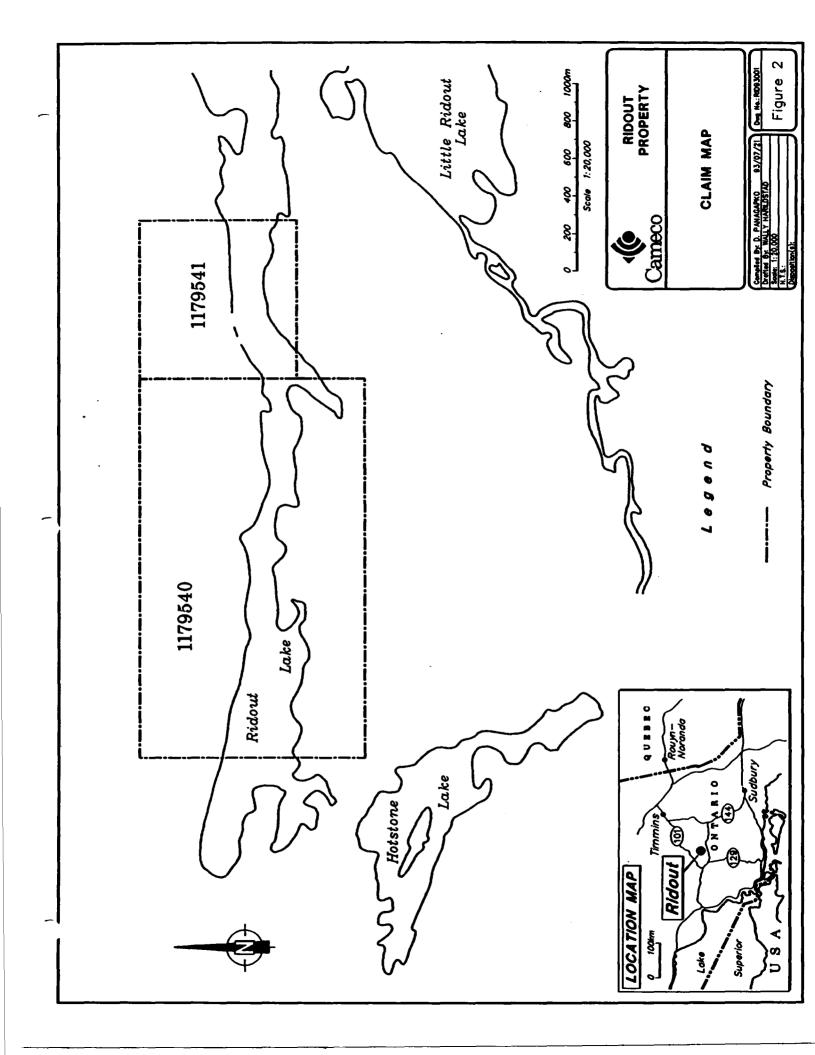
2.0 Property Location and Access

The Ridout property consists of two claims comprising 19 claim units, located in the northcentral part of Greenlaw Township, about 135 kilometres southwest of Timmins and 195 kilometres northwest of Sudbury, Ontario (see Figure 1). The property is centred on Ridout Lake, an east-west oriented lake which forms part of the Wakami River.

The property can be accessed via the Kormack road which leaves Highway 667 about 19 kilometres west of Sultan, Ontario. The driveable portion of the Kormack road ends at Sylvanite Creek, about 30 kilometres north of the highway. The road is washed out at the creek and an ATV is required beyond this point. For extended programs, access is provided via floatplane (Chapleau Air Services) and a cabin is available on Ridout Lake (owned by Peter Clement, Kormack).

3.0 Land Status

The layout of the claim group is given in Figure 2. The property was acquired by staking in August 1992 and the claims were recorded September 14, 1992. A total of \$7,600 in assessment work must be filed by September 14, 1994 to keep the claims in good standing. The records of the claims may be found in Appendix A.

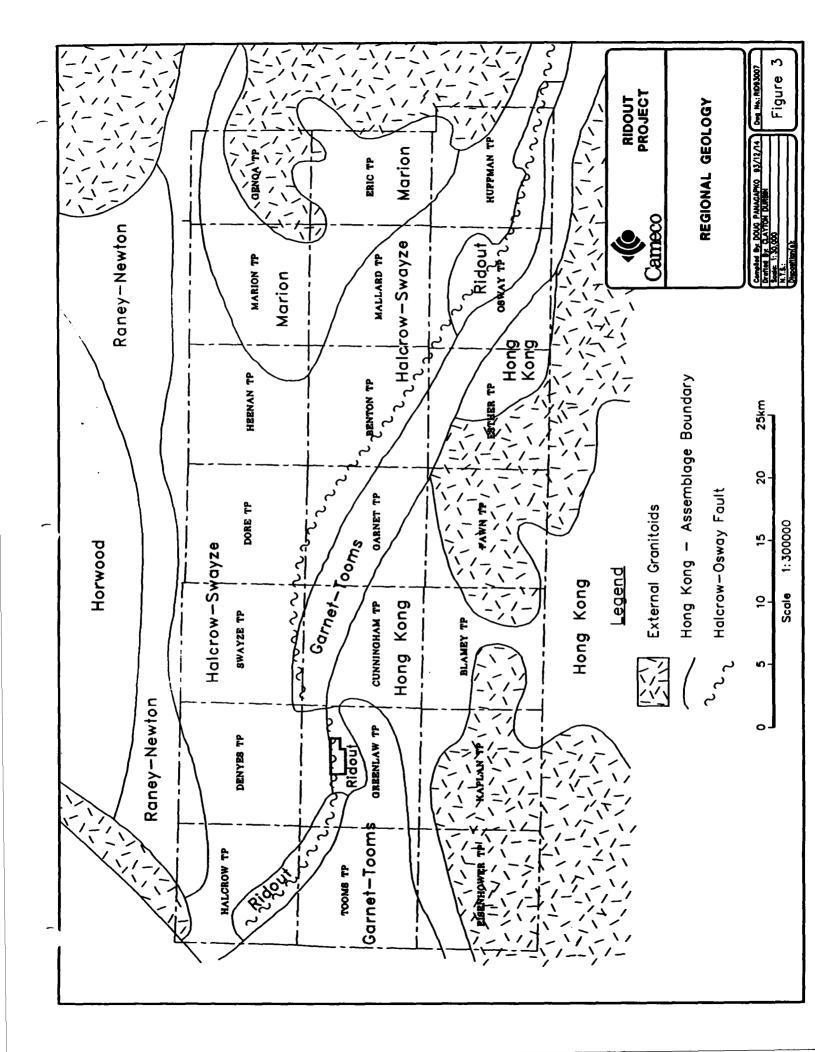

4.0 Topography and Vegetation

The property lies within the Hudson Bay watershed, about 35 kilometres north of the divide between the Great Lakes and Arctic watersheds. Ridout Lake drains north into the Wakami-Woman river system. The property is largely covered by bouldery till deposits and minor cedar swamps. North of Ridout Lake, the outcrops are more scattered than south of the lake.

Vegetation consists of poplar, birch and white spruce on the upland areas, and black spruce and cedar in the lower, wet areas. Numerous red pine occur along the north shore of Ridout Lake.

5.0 <u>Regional Geology</u>

The Ridout property is located within the Abitibi Subprovince of the Precambrian Shield, specifically in the southwesternmost part of this extensive greenstone belt. The supracrustal sequence is bounded to the east by the Kenogamissi Batholith, to the south by the Ramsay-Algoma gneissic complex and to the west by the Kapuskasing granulite terrain. It is referred to as the Swayze greenstone belt.



The Southern part of the Swayze greenstone belt, south of Coppell, Newton and Dale townships, can be broadly subdivided into five main assemblages (after Jackson and Fyon, 1991). These assemblages are: Garnet-Tooms, Hong Kong, Marion, Halcrow-Swayze and Ridout. Of regional significance to the Ridout property are the Garnet-Tooms, Halcrow-Swayze and Ridout assemblages (see Figure 3).

The Garnet-Tooms assemblage underlies much of Tooms and southern Greenlaw townships. It lies between the Ridout assemblage to the north and a unit of oxide facies iron formation which forms the top of the Hong Kong assemblage to the south. The main rock units which make up this assemblage are tholeiitic basalt, intermediate to felsic calc-alkalic flows and komatiitic flows with minor oxide facies iron formation. The basaltic rocks are cut by coarser grained dioritic to gabbroic phases which may be intrusions or coarse flows. Generally, the massive to pillowed tholeiitic basalts form the base of the assemblage and the upper part consists of calc-alkalic feldspar porphyritic basalts and andesites.

Rocks which comprise the Ridout assemblage consist of turbidites, arkose and conglomerate with minor interbedded units of metavolcanics and iron formation. The conglomerate contains pebbles of chert, vein quartz, basalt, andesite, porphyritic rhyolite and jasper fragments. The Ridout assemblage underlies part of Tooms, Greenlaw and Garnet townships in the western part of the south Swayze greenstone belt. It is thought that the Ridout assemblage is temporally and tectonically related to the Temiskaming assemblage in the Kirkland Lake area.

The Halcrow-Swayze assemblage is the most regionally extensive group of lithologies in the southern Swayze belt, underlying the southern parts of Halcrow, Denyes, Swayze, Dore and Heenan townships and much of Garnet and Benton townships. The primary lithologies which make up the assemblage are komatilitic flows, tholeilitic basalt and intermediate to felsic calc-alkalic volcanics interlayered with oxide facies iron formation. The komatilitic to

tholeiitic phases tend to occur along the margins of the assemblage with the intermediate to felsic rocks occupying the core (ie. in Denyes and Swayze townships).

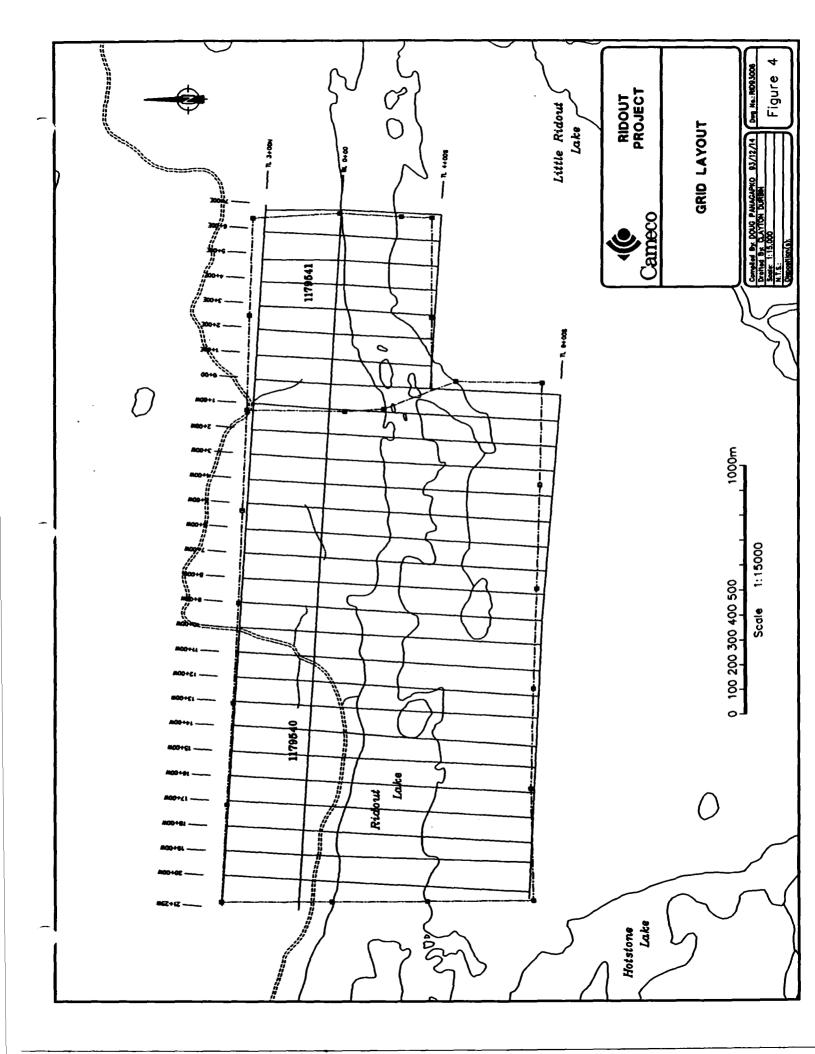
The Ridout property lies within the Halcrow-Swayze assemblage, just north of the Ridout series of sedimentary rocks. The area covering Greenlaw Township was mapped by Donovan in 1965 and this is the only available government mapping for the Ridout property (Donovan, 1968).

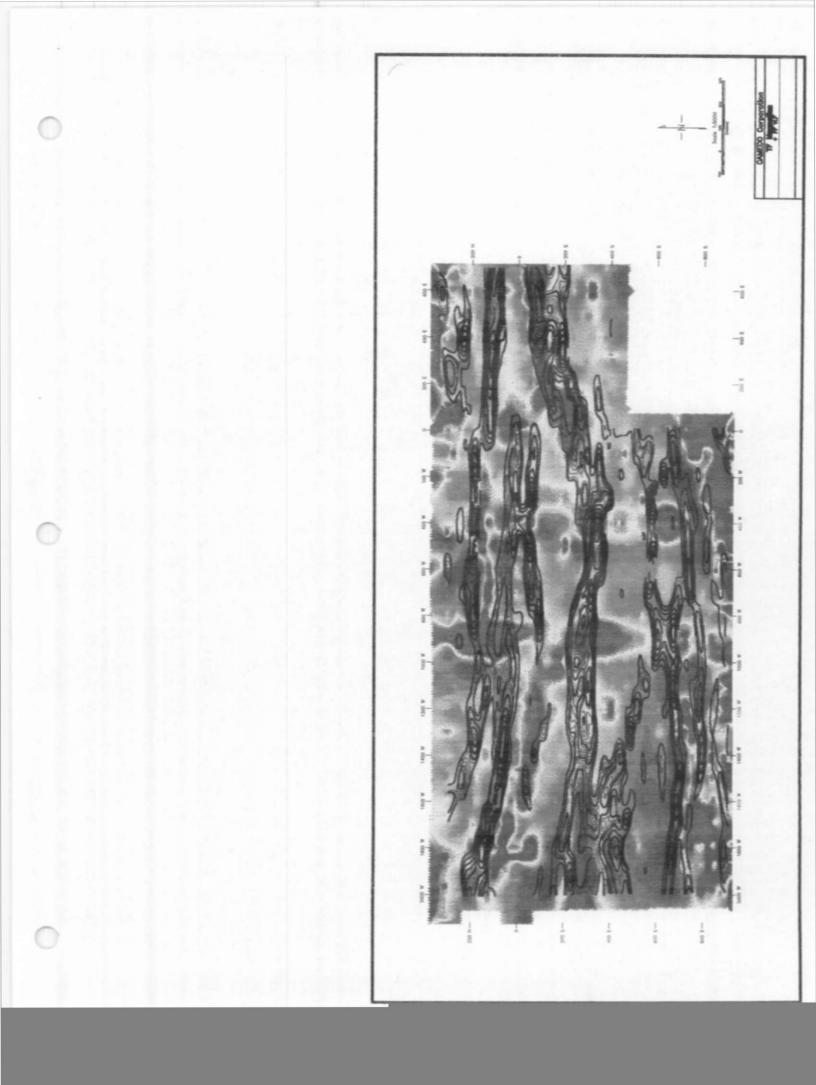
6.0 <u>Previous Exploration</u>

Very little exploration work has been completed on the Ridout claim group. A minor amount of blasting appears to have been done at the showings near lines 8+00W and 0+00. No record of this work could be found in the assessment files. Granges conducted an exploration program to the west of Ridout Lake in 1980. The assessment files show that B-horizon soil samples were collected and seven holes were drilled, on geophysical targets. None of the holes returned any significant gold. These holes were drilled about 1.5 kilometres west of Ridout Lake.

In 1983, Noranda Exploration drilled two holes about two kilometres west of the lake. Sericite-carbonate schist, graphitic and cherty argillites and tuffaceous sediments were intersected. No assays were reported. Noranda also held a very large block of claims which covered much of the eastern half of Greenlaw Township, in 1984. The only reported work near the present claim group was VLF and magnetic surveying. No drilling is believed to have been completed on the claim group.

7.0 1993 Exploration Program


<u>7.1</u> <u>Linecutting</u>


During the period February 15 to 28, a cut line grid was completed over the Ridout claims. The work was contracted out to Houle, Patenaude and Assoc. of Rouyn-Noranda, Quebec. A total of 39.5 kilometres of baselines, tie-lines and grid lines were completed. The baseline, oriented east-west, was cut about 300 metres south of the northern property boundary. Two tie-lines, one at 3+00N and the other at 9+00S were cut to provide control for survey work. Grid lines at 100 metre intervals were cut from 7+00E to 20+00W. Figure 4 shows the grid layout.

7.2 Magnetic and VLF-EM Surveys

During the period March 11 to 14, 1993, magnetic and VLF-EM surveys were conducted on the newly cut grid lines. The work was contracted to Val d'Or Geophysics. An EDA Omni-Plus magnetometer/VLF receiver was utilized. Readings of magnetic total field and VLF (NAA-Cutler, Maine) were taken at 12.5 metre stations on 100 metre spaced lines. A total of 39.3 kilometres of lines were surveyed. The data has been plotted at 1:5000 scale on three plans (Magnetic total field contours, magnetic total field profiles and VLF NAA profiles) which can be found in Appendix B of this report. The reader is referred to Figure 5 for a geophysical interpretation of the Ridout claims, based on the ground geophysics completed. A page sized reduction of the colour total field magnetics and Fraser-filtered VLF is given as Figure 6.

The majority of the grid is characterized by east-west trending curvilinear magnetic trends.

These trends are disrupted in several locations, indicating the presence of NS to NNW trending crossfaults. Two north-south trending diabase dikes cross the property, as interpreted from the magnetics, one in the vicinity of 9+00W, the other near 4+00W. The pattern near 4+00W indicates that the diabase may be offset by later east-west movements (shearing). The east-west magnetic signature may be caused by thin iron formation units or by magnetic volcanic units, or both.

The interpreted VLF NAA axes also have a predominant east-west trend and three major VLF axes are noted. A series of disrupted axes are associated with the magnetic contact along the southern edge of the grid. A central, more conductive zone is associated with Ridout Lake and a third series of trends crosses the north part of the grid. The central strong VLF trend often has a direct magnetic association and is interpreted to represent a major east-west structural zone. All three VLF trends are disrupted by NS to NNW oriented cross structures. These interpreted cross structures cross the baseline at 19+00W, 17+50W and 0+00.

7.3 Geological Mapping

7.3.1 Introduction

All grid lines as well as the shoreline of Ridout Lake were geologically mapped and sampled during the period July 6 to 14. A camp was established using an old trapper's cabin, located on the south shore of Ridout Lake, about 600 metres east of the grid. As the grid was cut during the winter, all pickets were re-established during the mapping program. All lines were walked and bedrock exposures were located. In areas of geological interest, bedrock between lines was also examined. General limits of areas covered by boulders and swamps were mapped out. Figure 7 gives the bedrock and surficial geology of the Ridout property

at a scale of 1:5000. Gold assay results, whole rock oxide data and a Jensen Cation Plot may be found in Appendix C.

7.3.2 Lithologies

The property is underlain by an east-west striking, vertical to steep north-dipping sequence of mafic to intermediate volcanic rocks, felsic tuffs and mafic intrusive rocks. The most abundant lithology present on the property is massive, fine-grained mafic volcanic flows, which form two distinct units, one lying south of the lake, the other along the northern limit of the claim group. These rocks are massive to weakly foliated, fine-grained, non-magnetic calc-alkalic basalts and andesites. They are generally unaltered to weakly carbonatized and contain only trace amounts of fine-grained pyrite. Four samples of this lithology were submitted for whole rock analysis (#'s 9, 12, 18, 22, 33). Samples 9 and 22 plot in the Fetholeiite field on the Jensen plot.

The next most abundant rock type on the property is an intermediate pyroclastic unit which outcrops along the south shore of Ridout Lake an on some islands in the lake near line 0+00. Another thin unit of intermediate tuff lies parallel to the 9+00S tie-line from 0+00 to 10+00W. The unit is medium to dark green, foliated to sheared and contains abundant tuff to lapilli-sized fragments of intermediate composition. Feldspar phenocrysts are locally abundant. The tuffs are well bedded, and a good exposure of this unit may be found along the lakeshore at line 7+00W. Alteration in this rock type is confined to some local silicification and chloritization. No sulphide concentrations were observed in the intermediate tuffs. Samples 93-19, 20 and 23 were collected for whole rock analysis. These rocks are calc-alkalic basalts and andesites, according to the Jensen plot.

The area north of Ridout Lake and south of the main unit of massive mafic volcanics is underlain by two highly deformed and altered units. The main unit from a potential economic standpoint is a strongly carbonatized mafic to ultramafic volcanic tuff/flow. This unit persists from line 14+00W to line 3+00E and occurs just north of Ridout Lake. Texturally, the unit is fine to coarse-grained, and locally displays a pyroclastic (lapilli tuff) texture. It is pervasively sheared. In most cases, it has been so strongly carbonatized that the original provenance of the rock is unknown. Common alteration minerals include ankerite, fuchsite and sericite.

Several good exposures of this rock unit are worthy of note. A couple of old trenches are located near the shore at 8+40W. The carbonatized volcanic is well exposed and contains abundant quartz stringers. A narrow silicified and pyritic zone is located here as well. Outcrops of the strongly carbonatized volcanic, with quartz veins may also be found at 13W/1+60S and at 0+50E/1+00S. The most intense fuchsite/quartz alteration, resembling Kerr Addison 'green carbonate' ore occurs at the west end of a small island at line 0+00.

The strongly carbonatized mafic/ultramafic volcanic is conspicuously low in its overall gold content. Detailed sampling of several showings in 1992 and some further sampling in 1993 returned a best assay of 123 ppb gold. The alteration, not the gold content is the significant feature of this area.

Intimately associated with the carbonatized volcanic is a relatively continuous unit of felsic tuff. This unit predominantly occurs south of the main carbonate horizon although, in the vicinity of lines 8+00W and 1+00W, the felsic unit is sandwiched between carbonatized units. The felsic tuff is creme to pale red in colour, fine to medium-grained and is well foliated to sheared. It contains abundant quartz phenocrysts and has been strongly sericitized. Locally, it can contain 1-2% fine-grained pyrite. Samples collected for whole rock analysis are 93-01 and 28.

A thin unit of mafic tuff occurs to the south of the felsic tuff unit, along the north shore of

Ridout Lake, between 18+00W and 5+00W. The tuff is fine-grained, dark green and is well foliated. Two samples were collected for whole rock analysis (93-03, 14) and one sample contains 16.7% MgO and only 31.8% SiO2, indicating a possible ultramafic origin. The sample is also highly altered (27% LOI).

Massive, medium-grained gabbro intrudes the volcanic stratigraphy in two areas, along the north property boundary east of line 0+00, and in the southeast corner of claim 1179540, between lines 4+00W and 1+00W. The gabbro is unaltered and unsheared and is interpreted to have a general east-west strike, possibly indicating sill-like bodies.

The latest rock unit in the area is a series of north trending diabase dikes. Several outcrops in the vicinity of lines 3+00W to 5+00W could actually be part of the same dike which has been offset by east-west shearing. Another dike is interpreted to underlie the north-south trending swamp on line 9+00W, north of the baseline. The diabase is massive, fine-grained, magnetic and displays a typical rusty brown weathered surface. The dikes average 20 metres in width

7.3.3 Structure and Alteration

The most important feature of the Ridout property is the presence of a zone of intense shearing and alteration which crosses the entire property just north of the lake. Rocks within this zone have been extensively carbonatized and in some cases the original lithology has been obscured. Fuchsite, sericite and silica are also abundant within this zone. The alteration zone has an average exposed width of 80 metres, but locally is up to 140 metres wide.

The rocks are strongly sheared and in some cases are largely unconsolidated. The shearing parallels the regional east-west foliation direction. Minor shearing is also noted within

basalts between 12+00W and 13+00W near the south end of the property. Several northwest trending cross faults offset the shear/alteration zone in the eastern and western parts of the grid. Within the alteration zone, some areas have been cut by a quartz stockwork made up of en-echelon veins and veinlets. One northwest trending fault lies immediately east of a quartz stockwork zone, which may have been emplaced during the fault activity.

7.3.4 Mineralization

Sulphide mineralization is restricted to narrow bands within altered mafic volcanic rocks where 3-5% fine-grained pyrite is concentrated, for example at 12+50W/0+90S and 8+35W/1+70S. The pyrite is often associated with silicification of the host rock. No significant gold mineralization was located during the mapping program. Pyrite is also found as disseminations within the mafic tuff and basaltic units, although amounts rarely exceed 2%.

8.0 <u>Conclusions</u>

Geological mapping of the Ridout property has resulted in the delineation of several lithologies, including: mafic volcanic flows and tuffs, intermediate tuff/lapilli tuff, felsic tuff, altered ultramafic/mafic volcanic, gabbro and diabase. These rock units strike east-west and dips range from vertical to steep south. A zone of pervasive shearing and carbonate alteration ranging from 80 to 140 metres in width has been found to cross the property, immediately north of Ridout Lake.

Alteration minerals include ankerite, sericite, fuchsite and silica, both as veins and pervasive silicification. The zone, however, does not appear to be anomalous in gold. The alteration

is identical to that which is found to be intimately associated with other gold deposits, such as Kerr Addison, Buffalo Ankerite, etc., and therefore should be viewed as a possible indicator of gold forming processes being active in the area.

The ground geophysical surveys indicate that the property is underlain by rocks of contrasting magnetic affinities that trend in an overall east-west direction. North-south trending diabase dikes disrupt the stratigraphy in several locations. Several northwest trending cross-faults are interpreted from both the ground magnetics and field geological observations. Several semi-continuous VLF-EM conductors cross the property. The strongest is associated with the zone of alteration and deformation, north of Ridout Lake. The VLF conductors tend to coincide with or be slightly flanking to the magnetic highs.

Although no significant gold values have so far been returned from samples collected at Ridout Lake, the host rock lithologies and alteration assemblages present are very encouraging with respect to current gold deposi: models. The intensity of the alteration observed indicates that hydrothermal fluids have been very abundant and have found pathways within the deformed tuffaceous and flow units, probably following along rock contacts. Gold is hosted by both quartz veins and pyritic iron formation in the immediate vicinity of the property.

9.0 <u>Recommendations</u>

The following work is recommended for the 1994 exploration season:

1) Induced polarization/resistivity surveys should be completed over selected areas on the property, to aid in the interpretation of geophysical data already collected and to locate areas that potentially contain disseminated sulphides. 2) A limited program of diamond drilling should be completed during the winter in order to test geological and geophysical targets developed during previous programs. Known zones of pyrite mineralization, quartz carbonate alteration and coincident magnetic-VLF anomalies could be potential targets, along with IP anomalies detected. At least one drill hole should test the carbonate alteration zone at a depth of about 150 metres vertical, as these alteration systems often become more auriferous with depth (Kerr Addison).

3) Additional field surveys, both geological and geophysical could be completed, depending on the results of 1) and 2) above.

10.0 References

Jackson, S.L. and The Western Abitibi Subprovince in Ontario,

Fyon, J.A., 1991 in: Geology of Ontario, Ont. Geol. Survey Special Volume 4, Part 1, pp 405-484.

Donovan, J.F., 1968 Geology of Halcrow-Ridout Lakes Area; Ont. Dept. of Mines Geological Report No. 63, 45p.

CERTIFICATE

I, Douglas Allan Panagapko, of 1064 Moss Street, Sudbury, Ontario, P3A 2H8, do hereby certify that:

I am currently employed as a Project Geologist by Cameco Corporation, 1349 Kelly Lake Road, Unit #6, Sudbury, Ontario, P3E 5P5

I graduated from Carleton University in 1976 with a Bachelor of Science degree (Honours) in Geology, and have been practicing my profession continuously since graduation.

I am a member in good standing of the Prospectors and Developers Association of Canada.

I am directly responsible for the work outlined in this report and was present on the property when the work was being carried out.

Signed at Sudbury, Ontario, this 30th day of June, 1994

Dorglas A. Parageste

Douglas A. Panagapko Project Geologist

APPENDIX A

.

CLAIM RECORDS

92/OCT/2 CLM-21	26 10:39	MINISTRY	OF NORTHERN Porcu Full Ab	PINE Stract	Page: 1
~			Claim No: Status:	P 1179540 Active	
	e: 94/SEP/1 puired:			Recorded: 92-SEP-14 Staked: 92-AUG-20 11:	00
Total Wo Total Re Work Ass Claim Ba	eserve: signment:	0	0 0	Description of Claim: GREENLAW (008690) Claim Units: 15 Multiple Township: N	
Percenta 100.00	11482	0		ATION/CORPORATION CAMECO	
			Descript RECORDED BY (P11229)	PANAGAPKO DOUGLAS ALLAN	R9260.00809
STAKER .	92/SEP/14		RECORDS 100.	UGLAS ALLAN (179234) 00 in the NAME of Cameco Corporation Cameco (114820)	R9260.00812
servat 01 02 03 04 05 06	400' su Sand an Peat re Other re	d gravel served eservation ng land un	reserved	on around all lakes and rive Mining Act may apply	 r s

Recor	bstract is a copy of the entries in the d Book and is not to be that discrete as ance of the validity of the chaim
	001 : 2 6 1992
	Slut
P	Mining Rozarta ORCUPINE MININT, DARRIN

Status of claim is based on information currently on record.

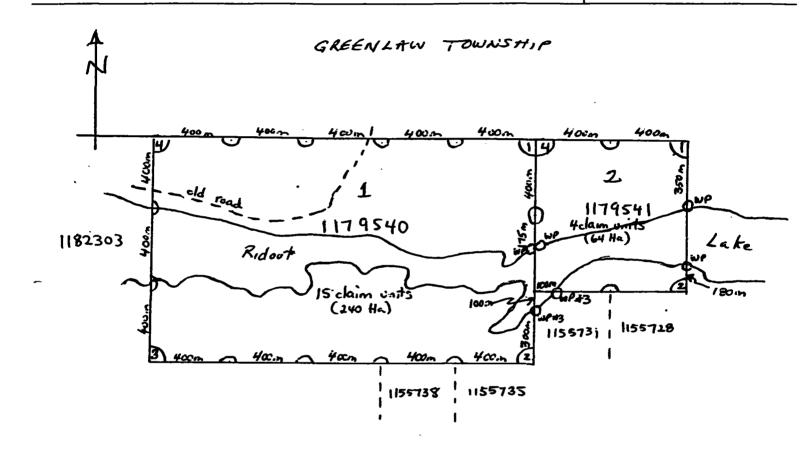
.

92/OCT/26 10:39 CLM-21	F	RTHERN DEVELOPMENT AND MINES PORCUPINE PULL ABSTRACT	Page: 1
~		m No: P 1179541 Status: Active	
Due Date: 94/SEP/ Work Required:		Recorded: 92-SEP-14 Staked: 92-AUG-20 1	5:30
Total Work: Total Reserve: Work Assignment: Claim Bank:	0 0 0 0 0	Description of Claim: GREENLAW (008690) Claim Units: 4 Multiple Township: N	
Claim Ownership Percentage Clie 100.00 1148	nt # Recorde 20 CAMECO	d Holder(s) CORPORATION/CORPORATION CAMECO	
Type Date	Dollars De	scription	
STAKER 92/SEP/1	4 RECORD (P1122	DED BY PANAGAPKO DOUGLAS ALLAN (9)	R9260.00809
STAKER 92/SEP/1	RECORD	APKO DOUGLAS ALLAN (179234) OS 100.00 IN THE NAME OF CAMECO ATION/CORPORATION CAMECO (114820))
02Sand at03Peat r04Other	nd gravel reserve eserved	er the Mining Act may apply	vers

This Action to many of the entries in the Record Bork - 12 relie to considered as assurance of the valid by of the cialm.	
CCI 23 1992	
Mining Recorder PORCUPINE MINING DIVISION	

Status of claim is based on information currently on record.

									A
Ontario	Ministry of Northern Deve and Mines	lopment	Application Staked Mir Mini	Received to	ECE	NING DIVISION			
rected	used to maintain I to the Provincia	a record and I Manager, I	s form is obtained under the auth will be used for serving notices. C Mining Lands, Ministry of Northerr E 6A5, telephone (705) 670-7264.	Duestions abou	t this collection s	hould be	11	SEP 14	1992
Please	Print Using In	k or Type					R12:00	4.01	ti
Name o	Applicant DOUG	LAS	A. PANAGAPK	FOOCUM	ENT No.	1	Transaction	No.	234
Address	Street, City/Town	Willage, Prov	A. PANAGAPK nince, Postal Code ORT COJ2T	R 92	60. 008	09	Licence No.	112	29
<u></u>			ONTARIO P				Telephone I 56	No. 0 -7	508
Name a			io: (Required if Applicant Resides O						
			·····						
Same	Recorded Holder: as above or:	CAM	ECO CORPORATIO		one No. 23-455	5	Client No.	114 8	320
Address:	Street, City/Town 134		ELLY LAKE ROA	0,02	T # 6	DOCU	MENTN	0.	
	SU	OBURY	, ONTARIO	rse s	re5		260. (-	2
Name an	d Address for Ser	vice in Ontari	o: (Required if Recorded Holder Re:	sides Outside o	f Ontario)				
Mining D		CUPIN	E	Townsh	iip(s) or Area(s) (Si られとE N A		0.) テック.		
roup Jaim Number	Tag Number	No. of 16 Ha. Units Per Claim	Description if Staking in Subdivid (Lot No., Concession No., Sec		Post No.	Staki	ng Date	Time	Office Use
i	1174540	15			Commenced 2 Completed		s 19/92 526/92		
		+	<u>.</u>		Commenced 4				
2	1179541	4			Completed 3	- An	620/92 620/92	1230A	5
			······		Commenced		• ~ / / ~	13° M	
	_				Completed	<u>I</u>		L	
+				·	Commenced	·		L	
			RECORDED		Completed	<u></u>		L	
+		$\left\{ - \right\}$	SEP 1 4 1992		Commenced	<u></u>		L	
			Receipt	1	Completed	<u></u>		L	
		$\left\{ \begin{array}{c} \\ \end{array} \right\}$		<u> </u>	Commenced	<u> </u>		<u> </u>	
					Completed				
					<u> </u>				


.ice Use Only:

n Latte ser

190.00

:

	Magnetic Declination Used.	9°w
	Scale: 1:20,000	-
Group Sketch of claims listed on Part A.		
Sketch or plan of the mining claim(s) must show the corner posts, witness posts, and		
\mathbf{a} posts and the distances between the posts in metres.		
Include topographic features such as lakes, rivers, creeks, ponds, etc. and		
developments such as hydro lines, highways, railways, pipelines, buildings, etc.		
Refer to sample sketch on Part C.		
· .		

Part D

APPENDIX B

.

MAGNETIC AND VLF-EM SURVEY REPORT

LOGISTICS REPORTS

CAMECO CORPORATION

CIE NAME:

PROJECT: RIDOUT

TOWNSHIPS: Greenlaw

TYPE OF SURVEY: MAGNETIC AND EM-VLF

LINE KMS SURVEYED: 39.3 km

SURVEY PERIOD: March 11 to 14, 1993

SURVEY SPECIFICATION:

Line spacing - 100 metres Reading spacing - 12.5 metres VLF station: NAA Cutler (Cross line) NSS Annapolis (B.L. - T.L.) MAG: Total field

INSTRUMENT:

EDA PPM-400 (Mag. base station) EDA OMNI-PLUS (Field instrument) ACCURACY: MAG 0.1 nT VLF 1%

SURVEY PERSONEL:

Eric Dufour, Val d'Or, Quebec

COMMENTS:____

Introduction

Magnetometer and VLF-EM coverage was obtained over the Ridout Lake project area between March 11 and 14, 1993, by Val D'Or Geophysique under contract number 351. This program was carried out to assist in helping to define the geological and structural setting of the area and assist with the summer mapping program. The surveys were also carried out to delineate areas for further work and locate potential target areas for gold mineralization.

Regional Setting

The project area falls within the Swayze belt and is located in Greenlaw township. The area was covered by an extensive aeomagnetic and INPUT survey flown by Questor Surveys for the Ontario Gelogical Survey in 1981.

The project area itself is devoid of any airborne EM responses and is located on the northern flank of a magnetic unit, associated with a major northeast oriented structural disruption. This break also appears to disrupt the WNW trending Swayze belt, located to the east. To the west the magnetic signature changes to reflect a series of alternating curvilinear metasedimentary and metavolcanic units. The area is also cross-cut by a sequence of more recent NNW trending dikes as well as a number of well defined structural breaks.

In the immediate vicinity of the Ridout project a major fault is interpreted immediately west of the property boundary (Wakami River fault). A diabase dike is also indicated traversing across the centre of the project area.

Present Program

Magnetometer and VLF readings for station NAA were obtained every 12.5 m on north-south lines spaced 100 m apart. VLF station NSS was used for the tie lines and the base line. The data was obtained using an Omni Plus field instrument and the magnetic data was diurnally corrected using an EDA PPM-400 base station. In total 39.5 km of total field magnetic and VLF coverage was completed. Profile maps and a contoured magnetic map at a scale of 1:5000 are included in the back pocket.

Discussion of Results

The interpreted VLF and magnetic trends are presented in Figure 5. The magnetic pattern is dominated by two diabase dikes traversing north-south across the centre of the grid. A more magnetic unit is indicated south of Ridout Lake corresponding to a mapped intermediate tuff unit. The cross-cutting dikes contribute to the disrupted character of the magnetic signature in this area.

A number of curvilinear east-west, more discrete magnetic trends (IF?) are delineated traversing the central portion of the grid. These trends are disrupted in a number of areas indicating the presence of north-south to north-northwest cross-structures. Higher total field magnetic values are also noted along the extreme northern edge of the grid corresponding to a mapped gabbro unit.

The VLF data was Fraser filtered to assist in defining the EM trends. The interpreted axes have a predominat east-west orientation. Three major trends are indicated and these appear to be related to geological contacts: a series of disrupted axes is noted associated with the magnetic contact along the southern edge of the grid, a central more conductive zone associated with Ridout lake itself is delineated and a third sequence of trends is indicared in the northern part of the grid. The central strong VLF trend has a more direct magnetic association and is interpreted to represent an east-west oriented

structural zone.

In the western part of the grid a more WNW oriented VLF trend (contact related?) is defined. The presence of cross-cutting breaks is also indicated by disruptions in the VLF axes and is supported by the VLF profiles on the base line and tie lines using station NSS (cf the VLF profile map). The strong response on tie line 3+00N/9+00W corresponds to the main dike trend. The dikes are also represented on the base line and there is also strong evidence for cross-structure e.g. the western end of tie line 3+00N and the western edge of tie line 4+00S.

Conclusions and Recommendations

The magnetic and VLF results have assisted with our geological understanding of the Ridout project area. A number of target areas are indicated (Figure 5). Targets A1 to D1 all fall within Ridout Lake itself and are associated with the interpreted central structural zone. This zone is characterised by a well defined VLF axis and a more direct magnetic association. These locations are based on the intersection of the zone with the diabase dikes and NNW cross-strucures. Target area A1 is also associated with the WNW oriented VLF trend. Potential target areas are also indicated in the northern part of the grid - A2 to D2 plus location E. These areas are again characterised by the intersection of the dikes and cross-structures with discrete magnetic units and VLF trends. The VLF trends have a more disrupted pattern obtained in this portion of the grid. If encouragement is indicated by the mapping and lithogeochemistry these target areas should be considered for drill testing.

APPENDIX C

.

ANALYTICAL RESULTS

Certificat/Certificate

2R-1373-RG2

Comp: CAMECO CORPORATION SUDBURY Proi: 5794

Date: AOUT/AUG-21-92

Proj: 5794 Atta: DOUG PANAGAPKO

Nombre D'Echantillons/No. of Samples: Soumis le/Submitted: AOUT/AUG-18-92

No. D'Echantillon Sample Number	au PPB	AU CH'KS PPB	AU CH'KS PPB	AU G/TONNE	AU CH'KS G/TONNE	AU CH'KS G/TONNE	
SWA-92-55	209				0,1010		
SWA-92-56	207			50.23	50.12	50.33	
SWA-92-61	48			00.20	50.15	50.55	
CGN-92-62	180	176	184				
QQN-92-64	31	30	32				
CGN-92-66	26			********			
BLA-92-67	34						
BLA-92-69	158						
BLA-92-70	72						
CGN-92-72	27						
CCN-92-73	29						
CGN-92-74	6						
CGN-92-76	11					•	
CGN-92-78	5						
CGN-92-79	9						
CGN-92-80	25						**
CGN-92-82	13						
- GRE-92-86				1.27			
GRE-92-92	76						
- GRE-92-93	24		:				
- GRE-92-95	72						

Certifie par/Certified by

"AU SERVICE DE L'INDUSTRIE DEPUIS PLUS DE 50 ANS" "SERVING INDUSTRY FOR OVER 50 YEARS"

Certificat/Certificate

2R-1373-RG3

Comp: CAMECO CORPORATION SUDBURY

Proj: 5794 Attn: DOUG PANAGAPKO

Nombre D'Echantillons/No. of Samples: Soumis le/Submitted: AOUT/AUG-18-92

	No. D'Echantillon Sample Number	AU PPB	AU CH'KS PPB	AU CH'KS PPB	AU G/TONNE	AU CH'KS G/TONNE	au ch'ks G/Tonne	
<u> </u>	GRE-92-96	35						
	GRE-92-97	147	146	148				
	GRE-92-99	85						
	GRE-92-100	10						
	GRE-92-101				0.76			
	GRE-92-102	27						·····
	GRE-92-104				1.25	1.23	1.27	

Certifie par/Certified by

"AU SERVICE DE L'INDUSTRIE DEPUIS PLUS DE 50 ANS" "SERVING INDUSTRY FOR OVER 50 YEARS"

Date: AOUT/AUG-21-92

ASSAYERS LABORATOIRES/LABORATORIES DIVISION DE/OF ASSAYERS CORPORATION LTD.

780, AV. DU CUIVRE, C.P. 665, ROUYN-NORANDA (QUÉBEC) J9X 5C6 TÉL.: (819) 797-4653 FAX: (819) 797-4501

<u>Certificat/Certificate</u>

2R-1727-RG1

comp: CAMECO CORP.

Date: OCT-14-92

Proj: 5794 Atta: DOUG PANAGAPKO

Nombre D'Echantillons/No. of Samples: Soumis le/Submitted: OCT-07-92

	No. D'Echantillon Sample Number	ALU PPB	AU CH'KS PPB	AU CH'KS PPB	AU gms/ton	AU CH'KS gms/ton	AU CH'KS gms/ton	
	SL-92-139	223	215	231				
	SL-92-143	46						
	SL-92-147				0.81	0.75	0.86	
	SL-92-150	110						
	SL-92-154	94						
-	-GRE-92-155	23						••••
J	GRE-92-156	8						
•	GRE-92-157	10	12	8				
	GRE-92-158	7						
	GRE-92-159	74						
	GRE-92-160	14						
	GRE-92-161	8						
	GRE-92-162	10					•	
	GRE-92-163	16						
	GRE-92-164	5						
	GRE-92-165	6						
	GRE-92-166	5						
	GRE-92-167	<						
	GRE-92-168	7						
	GRE-92-169	12						
♠	GRE-92-170	7						
	GRE-92-171	27						

Certifie par/Certified by

J.J. Landers

"AU SERVICE DE L'INDUSTRIE DEPUIS PLUS DE 50 ANS" "SERVING INDUSTRY FOR OVER 50 YEARS"

ASSAYERS LABORATOIRES/LABORATORIES

DIVISION DE/OF ASSAYERS CORPORATION LTD.

780, AV. DU CUIVRE, C.P. 665, ROUYN-NORANDA (QUÉBEC) J9X 5C6 TÉL.: (819) 797-4653 FAX: (819) 797-4501

Certificat/Certificate

2R-1727-RG2

Date: OCT-14-92

Comp: CAMECO CORP. Proi: 5794

Proj: 5794 Atta: DOUG PANAGAPKO

Nombre D'Echantillons/No. of Samples: Soumis le/Submitted: OCT-07-92

	No. D'Echantillon Sample Number	AU PPB	AU CH'KS PPB	AU CH'KS PPB	
Γ	GRE-92-172 GRE-92-173	123 6	110	136	
V	GRE-92-174 GRE-92-175 GRE-92-176	64 88 30			
	GRE-92-177 GRE-92-178 GRE-92-179	13 27 13			
_	GRE-92-180 GRE-92-181	33 61	66	56	
	GRE-92-182 GRE-92-183 GRE-92-184	95 <5 23			•
	GRE-92-185 GRE-92-186	<5 14			
	GRE-92-187 GRE-92-188 GRE-92-189	21 55 94	92	95	
↑	GRE-92-190 GRE-92-191	12 14		:	
	GRE-92-192	14			

Certifie par/Certified by_

J.J. Landers

"AU SERVICE DE L'INDUSTRIE DEPUIS PLUS DE 50 ANS" "SERVING INDUSTRY FOR OVER 50 YEARS" ASSAYERS LABORATOIRES/LABORATORIES DIVISION DE/OF ASSAYERS CORPORATION LTD.

780, AV. DU CUIVRE, C.P. 665, ROUYN-NORANDA (QUÉBEC) J9X 5C6 TEL.: (819) 797-4653 FAX: (819) 797-4501

Certificat/Certificate

2R-1727-RG3

Date: OCT-14-92

comp: CAMECO CORP.

Proj: 5794 Attn: DOUG PANAGAPKO

Nombre D'Echantillons/No. of Samples: Soumis le/Submitted: OCT-07-92

	No. D'Echantillon Sample Number	au PPB	AU CH'KS PPB	AU CH'KS PPB	AU G/TONNE	AU CH'KS G/TONNE	AU CH'KS G/TONNE	
	GRE-92-193	 9						• • • • • • • • • • • • •
↓	GRE-92-194	6						
V	GRE-92-195	28						
	GRE-92-196	5						
	GRE-92-197	8						
	GRE-92-198	7						
	GRE-92-199	15						
	GRE-92-200	9						
	GRE-92-201	24						
	GRE-92-202	5						
• •	GRE-92-203	5						
1	GRE-92-204	8						
	GRE-92-205	ব					•	
	GRE-92-206	19						
	GRE-92-207	11						
	SWA-92-208	18						
	SWA-92-209	_			2.37	2.19	2.54	
	SWA-92-210	208	204	212				
	SWA-92-211	232	224	240				
	OSW-92-212			-	3.04	3.02	3.05	
	OSW-92-213				3.77	3.70	3.84	

Certifie par/Certified by

J.J. Landers

"AU SERVICE DE L'INDUSTRIE DEPUIS PLUS DE 50 ANS" "SERVING INDUSTRY FOR OVER 50 YEARS"

LES LABORATOIRES XRAL LABORATORIES

UNE DIVISION DE / DIVISION OF SGS INC. 150, 13e RUE • ROUYN-NORANDA • QUÉBEC J9X 2H6 TÉL. : (819) 764-9108 FAX : (819) 764-4673

CERTIFICAT D'ANALYSE/CERTIFICATE OF ANALYSIS

Nom de la Compagn			neco Co:	rp.			638
Bon de Commande N Projet/ Project Date Soumis/ Subm Attention	No	: F5 : Ju	114 1 20, 19 PANAGA				Jul 27, 1993
No. D'Echantillon Sample No.	AU PPB	AU CHK PPB	AU CHK PPB	AU g/ton	AU CHK g/ton	AU CHK g/ton	
RD93-02	18			-			
RD93-06	16						
RD93-07	36						
RD93-08	28	10	10				
RD93-10	19 21	19	19				
RD93-11 RD93-13	19						
RD93-15	42						
RD93-17	25						
RD93-21	18						
RD93-24	21						
D93-25	30						
RD93-27	218						
RD93-29	19						
RD93-30	*			5.21	5.07	5.35	
RD93-31	17						
RD93-32	129						
RD93-34	40						

		- M	1	
Certifie par /	Certified b	Y :	•	
	\$5 6	Membre du Grou	pe SGS (Société Géné	rale de Surveillance;

126

21

28

52

74 26

19

18 19

21

22 22

20

26 28

21

RD93-35 RD93-36

RD93-37

RD93-38

RD93-39

RD93-40

RD93-41 RD93-42

RD93-43 RD93-44

RD93-45

RD93-46 RD93-47

RD93-48

RD93-49 RD93-50

LES LABORATOIRES XRAL LABORATORIES

UNE DIVISION DE / DIVISION OF SGS INC. 150. 13e RUE • ROUYN-NORANDA • QUÉBEC J9X 2H6 TÉL... (819) 764-9108 FAX : (819) 764-4673

your ref: RIDOUT

our ref: 16089/917

CERTIFICAT D'ANALYSE/ASSAY CERTIFICATE

CAMECO CORP. 1349 KELLY LAKE ROAD UNIT 6 SUDBURY, ONTARIO P3E 5P5 ATTENTION: DOUG PANAGAPKO

Date sournis/ Submitted: September 8, 1993

No. of samples: 12

No. of pages: 1

01-Oct-93

ELEMENTS

WRMAJ % WRMIN PPM METHOD

XRF/WR

XRF/WR

DETECTION LIMIT

0.01 10.

Certifie par/Certified by:

J.J. Landers Gerand/Manager

1-BLY ASSAY LABORATORIES 01-Det-93 REPORT ----- REF. 15089 PAGE 1

۲

•

-

Simple	0120 % IRF-F	KGO % 127-7	1203 % 12F-F	SIO2 % IRF-7	P2C5 % IIF-F	K20 % 13F-F	CAO % IRF-F	TIO2 % XRF-F	C3203 % I3F-F	HOO X IRF-F	FE203 % X2F-F
RD93-21 -	5.24	1.29	14.6	54.0	.:2	1.54	3.65	.322	.01	.09	4.32
2093-03-	.:2	16.7	2.76	21.8	. 03	.03	13.4	.118	. 37	. : 3	7.74
3D93-19-	1.94	6.31	13.5	50.8	. 38	. 37	10.3	. 651	.01	.13	12.1
2093-12	3.93	6.06	12.4	43.4	. :9	. 38	6.93	. 525		.17	10.0
2093-14-	4.26	3.63	16.2	50.2	.16	1.50	2.25	.722		.24	5.95
2093-18 -	2.10	6.38	15.0	47.4	.03	.05	9.75	.313	.03	.19	11.9
3093-19-	2.59	2.76	14.7	52.8	. 16	1.32	5.39	.573		. :0	6.02
3593-20	2.10	8.35	15.0	46.4	.57	.15	9.31	.719	.05	.20	13.1
2093-22	1.83	2.44	13.9	51.6	. : 4	. : 9	4.08	1.25	<.01	.23	17.2
2093-23 -	3.53	4.81	:3.9	60.5	. : 3	. 05	4.23	. 553		.15	8.15
3D93-25-	4.27	5.08	14.3	50.1	.24	. 54	1.74	. 691	.01	.09	8.00
2093-33 -	1.81	5.98	12.7	50.5	.63	<.01	8.12	.764	<.91	. 19	12.3
2093-01	5.22	1.31	14.5	54.0	. 12	1.53	3.66	.347	.01	.09	4.35
SAHPLE	13 PPH IPF-F	SZ PPH I2F-F	7 PPH X2F-F	ZR ?PH IRF-7	98 PPH 12F-F	BA 773 127-7	LDI % IRF-F	STH % 127-f			
RD93-01	40	233	<10	101	17	457	4.63	100.0			
2D93-03	<10	155	<10	<10	17	54	27.3	100.6			
2093-09	<10	275	<10	50	24	111	2.60	98.9			
R593-12	<10	2:5	13	52	15	178	11.4	190.2			
RD93-14	42	142	<10	135	<19	511	4.15	100.4			
RD93-18	<10	140	:0	48	12	72	6.00	39.5			
2093-19	27	\$ 16	10	155	20	320	3.75	100.4			
RD93-20	<10	192	13	38	25	129	3.20	99.2			
2D93-22	30	53	11	89	20	158	7.45	100.4			
2093-23	14	201	25	98	12	124	3.60	99. 7			
3D93-28	26	99	<10	165	14	257	4.15	99.4			
RD93-33	<10	110	11	55	15	91	7.40	99.9			
RD93-61	55	265	<10	103	15	456	4.75	100.0			

•

Ministry of Northern Development and Mines

Report of Work Conducted After Recording Claim

Mining Act

CHU Transaction Number W9460.00152

900

2.15494

Personal Information collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines. Fourth Floor, 159 Cedar Street, Sudbury, Ontario, P3E 6A5, telephone (705) 670-7264.

- Instructions: Please type or print and submit in duplicate.
 - Refer to the Mining Act and Regulations Recorder.
 - A separate copy of this form must be co
 - Technical reports and maps must accom
 - A sketch, showing the claims the work is I

Recorded Holder	NECO	Client No 114820			
Address #6 -	1349	585 705-523-4555			
Mining Division	RCUPI			Township/Area GREENLAW	Mor G Plan No. G-3235
Dates Work Performed	From:	FEB	15/93	TO: JULY	31/9493 ASTER

Work Performed (Check One Work Group Only)

	Work Group	Туре											
V	Geotechnical Survey	Linecutting, Magnetic-VLF Survey, Geological Mapping											
	Physical Work, Including Drilling	RECORDED											
Γ	Rehabilitation	In CONDED											
	Other Authorized Work	SECTION 18 ONLY JUN 29 1994											
	Assays	BECEIVED Receipt											
	Assignment from Reserve												

Total Assessment Work Claimed on the Attached Statement of Costs \$ ______

Note: The Minister may reject for assessment work credit at or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

Name	Address
Houle, Patenarde & Assoc.	19 rue Gamble West, Rourn-Noraida, Que J9x 2R3
Vald'Or Geophysics	7 50 boul Lamaque, Vald'Or, Que J9P2H6
Douglas A. Panagapko	1349 Kelly Lake Road, #6, Sudbury, Ont P3ESP5
100 yas manajapo	1341 mery and 1000, 40, 500, 6019, 001 132 313

(attach a schedule if necessary)

Certification of Beneficial Interest * See Note No. 1 on reverse side

I certify that at the time the work was performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest $JUNE3c$ by the current recorded holder.	0/94 Dongles A. Panagenko
---	---------------------------

Certification of Work Report

I certify that I have a personal kno its completion and annexed report		report, having performed the work or witnessed same during and/or after
DOUGLAS A P		KELLY LAKE RO, SUDBURY, ONT. P3ESPS
Telepone No.	Date	Certified By (Signature)
(705) 523-4555	JUNE 30/94	Donglas A. Ponaggolo
- 0. 82 ^{1.} 5	Approval Date Noice for Amendments Sent	Uff Sole

٦g

0241 (03/81)																 		
-																		Number for Applying Reserve
Total Number of Claims	4															1179541	1179540	Claim Number (see Note 2)
ſ																7	ار	Claim Units
Total Value Work Done	22827															4800	18027	Assessment Work Done on this Claim
Total Value Work Applied	22827											EC	FIV	D		4800	18027	Applied Claim
Total Assigned From											Rece		ORD) 2 9 1					Assigned from this Claim
Total Receive																		Work to be Claimed at a Future Date
1. 2. 3. In	the e	Credits Credits Credits	are to are to are to are to nat you	be cu be cu be cu be cu have	it back it back it back not spe	starting equally as prio cified y	g with the over a prized of our chercies.	he claim II claim n the a Dice of	n listed is conta ttached priority	l last, n ained in l apper . option	vorking n this i ndix. n one i	g backv report (will be	wards. of work implem	nented.		IN 2	2 IY	

Note 2: If work has been performed on patented or leased land, please complete the following:

Ecertify that the recorded holder had a beneficial interest in the patented Signature or leased land at the time the work was performed

Da-÷

Ministry of Northern Development and Mines

Mi are du Développement du Nord et des mines

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5. telephone (705) 670-7264. Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la Loi sur les mines et serviront à tenir à jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, ministère du Développement du Nord et des Mines, 159, rue Cedar, 4^e étage. Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Coûts indirects

1. Direct Costs/Coûts directs

Туре	Des	cription	Amount Montant	Totals Totai global
Wages Salaires	Labour Main-d'oe	ouvre	6375	
	Field Sup Supervision	ervision n sur le terrain		6375
Contractor's and Consultant's	Type LINEC	8898	7	
Fees Droits de l'entrepreneur	MA6+1	ILF	4930	
et de l'expert- conseil	ANAL	-4515	528	14356
Supplies Used	Туре			
utili sées		BECI	IVED	
	Туре		 	
Equipment Rental Location de				1
matériel	ļ •=			; ;
<u></u>	•			
		Total Di Total d es coi	rect Costs Its directs	20731

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

Filing Discounts

- Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
- Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit	Total Assessment Claimed
× 0.50 =	

Certification Verifying Statement of Costs

I hereby certify

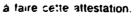
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

that as PROJECT GEOLOGIST am authorized

to make this certification

 Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
 Pour le remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Туре	Descript	ion	Amount Montant		globai
Transportation Transport	AIR CHAR	TE R	1295		
					
	RECORD	ב ט		1	
	JUN 291	994		12	95
Food and Lodging Nourriture of hébergement Rec	eipt			80)
Mobilization and Demobilization Mobilisation et démobilisation					
	Sub Tol Total partiel		rect Costs s Indirects	20	96
Amount Allowable Montant admissible	20	96			
Total Value of Ass (Total of Direct and indirect costs)	228	27			


Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandees dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépôt

- 1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation.
- Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation	Evaluation totale demandée
× 0,	50 =
dépenses ont été engagées pour	JUN 29 1994 plus exact possible et que ces t effectuer les travaux d'évaluation
sur les terrains indiqués dans la fo	THE CE CAPPORT de travail c-joint.
Et qu'à thre de	le suis evicusé
titu a relenregistre, representant	poste occupe dans la compagnie

Dugla A. Fannagh JUNE 30/94

Transaction No./Nº de transaction W9460.00152

Ministry of Ministère du Geoscience Approvals Office Northern Development Développement du Nord 933 Ramsey Lake Road 6th Floor and Mines et des Mines Sudbury, Ontario P3E 6B5 Telephone: (705) 670-5853 (705) 670-5863 Fax: Our File: 2.15494 Transaction **#:** W9460.00152 September 20, 1994

Mining Recorder Ministry of Northern Development and Mines 60 Wilson Avenue 1st Floor Timmins, Ontario P4N 2S7

Dear Mr. White:

RE: APPROVAL OF ASSESSMENT WORK ON MINING CLAIMS 1179540 ET AL. IN GREENLAW TOWNSHIP.

The assessment credits for Geology and Geophysics, sections 12 and 14 of the Mining Act Regulations, as listed on the original Report of Work, have been approved as of **September 19, 1994.**

Please indicate this approval on the claim record sheets.

If you have any questions concerning this submission please contact Dale Messenger at (705) 670-5858.

ORIGINAL SIGNED BY:

Ron CGd- - X

Ron C. Gashinski Senior Manager, Mining Lands Section Mining and Land Management Branch Mines and Minerals Division

// DEM/jl Enclosures:

> cc: Assessment Files Office Sudbury, Ontario

Resident Geologist Timmins, Ontario

REFERENCES

AREAS WITHDRAWN FROM DISPOSITION

M.R.O. MINING RIGHTS ONLY

S.R.O. SURFACE RIGHTS ONLY M.+ S. MINING AND SURFACE RIGHTS

File Date Disposition

(RTC)-REMOTE " OURIST CAMP

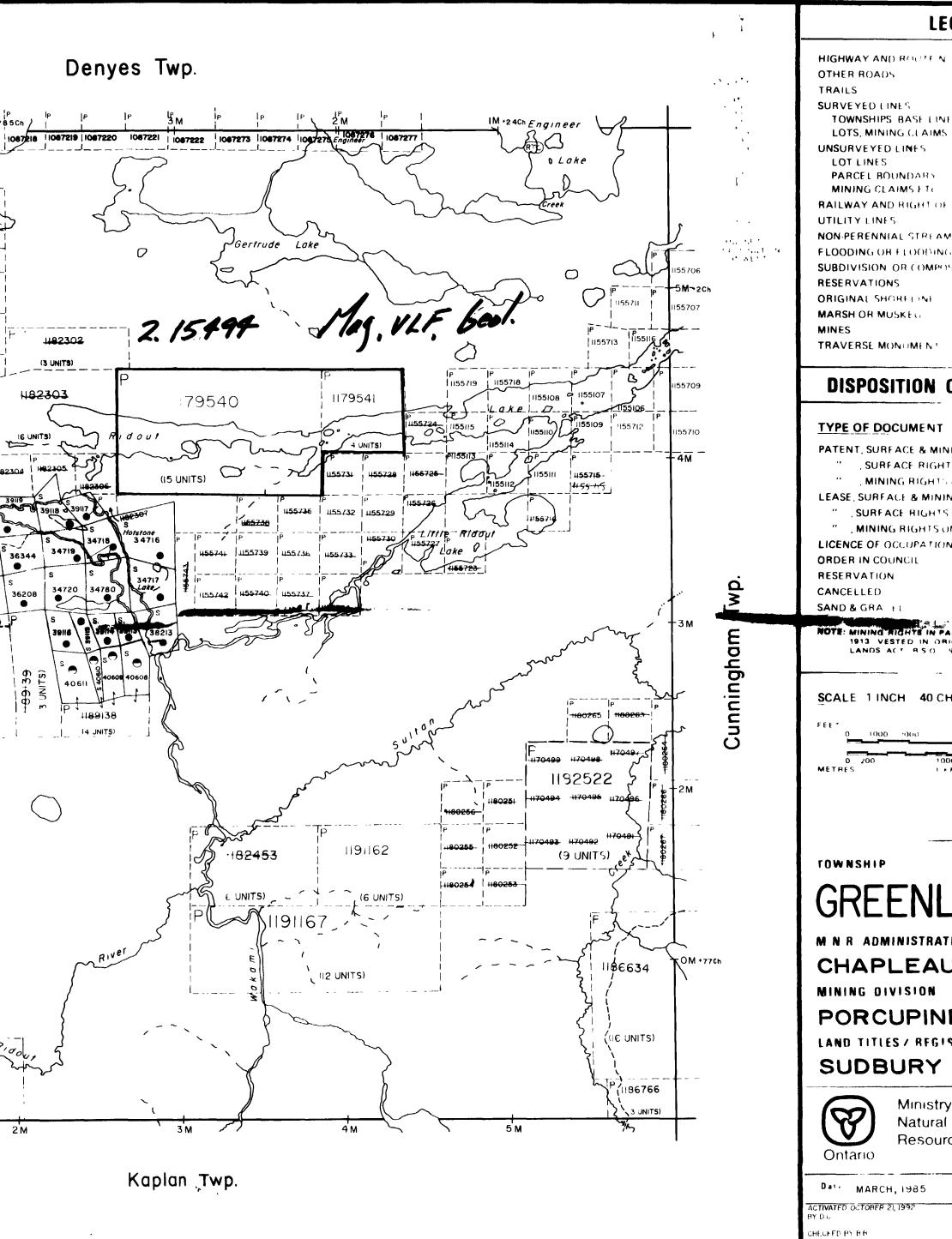
•

INFORMATION THAT

ARS ON THIS MAP

BEEN COMPILED

I VARIOUS SOURCES

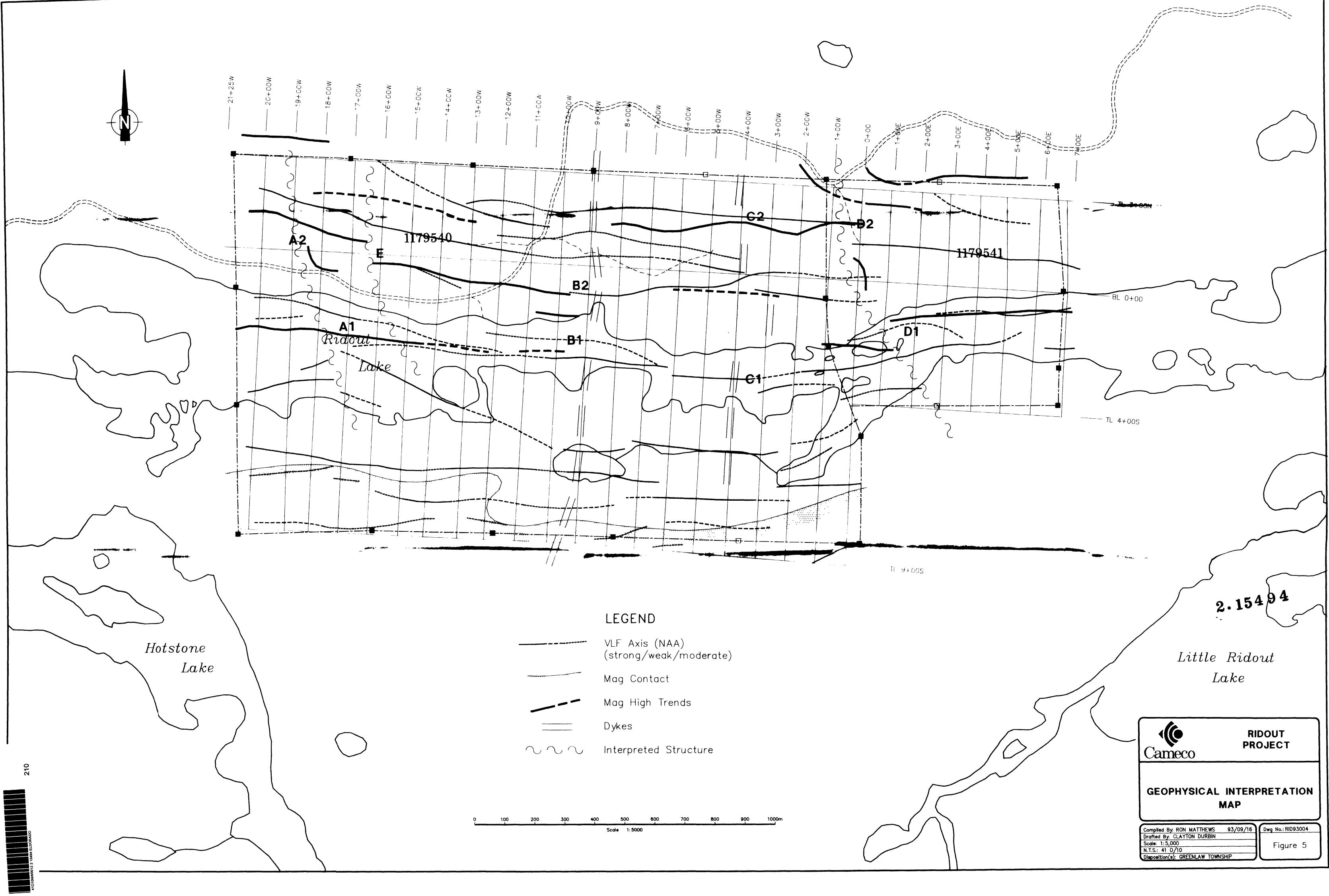

ACCURACY IS NOT

RANTEED THOSE ING TO STAKE MIN

THERN DEV AND MINES 1 DNAL INFORM THE STATUS (DS SHOWN HE

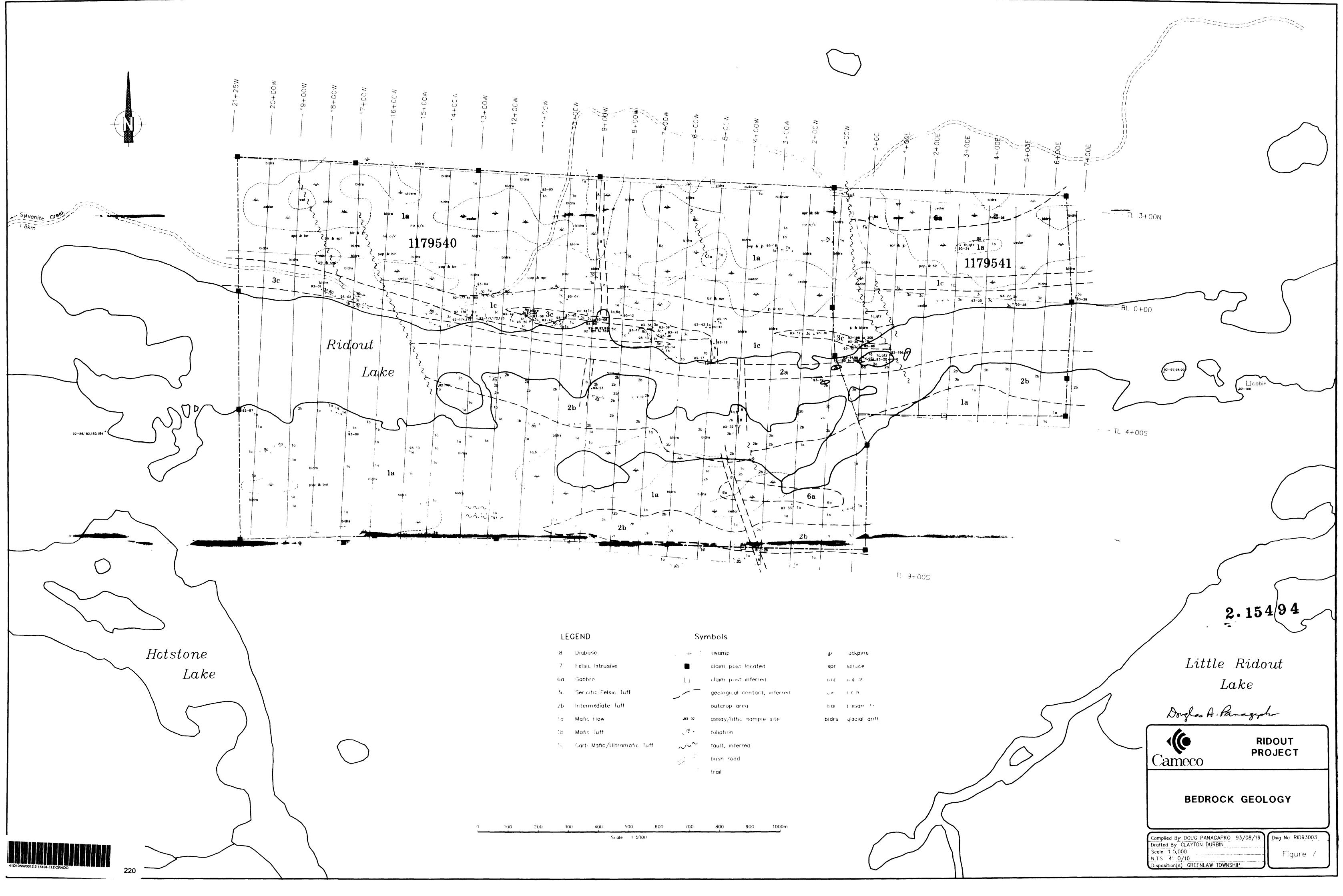
4M +85ch / 994553 99390 49**4550** 994551 994668 Lee 0 1182293-5M-1182302 1182296 (12 UNITS) (3 UNITS) 1182301 53771 Р H82303 553772 553777 55377 \sim 553776 553 779 553773 (6 UNITS) **■** C 4M-18230 6 553775 553780 / 482298 55377 39120 <u>1í29275</u> • 11292 36344 36345 • 89143 1189141 34720 36208 ● 112927. 36346 ● 9142 29273 Sylvonil P.991174 3 (12 UNITS) 1189140 Tooms 9 UNITS) 1189138 4 JNITS 2M- \bigcirc 1181513 Ridour б 0 NUT: 2[`]M 1

200



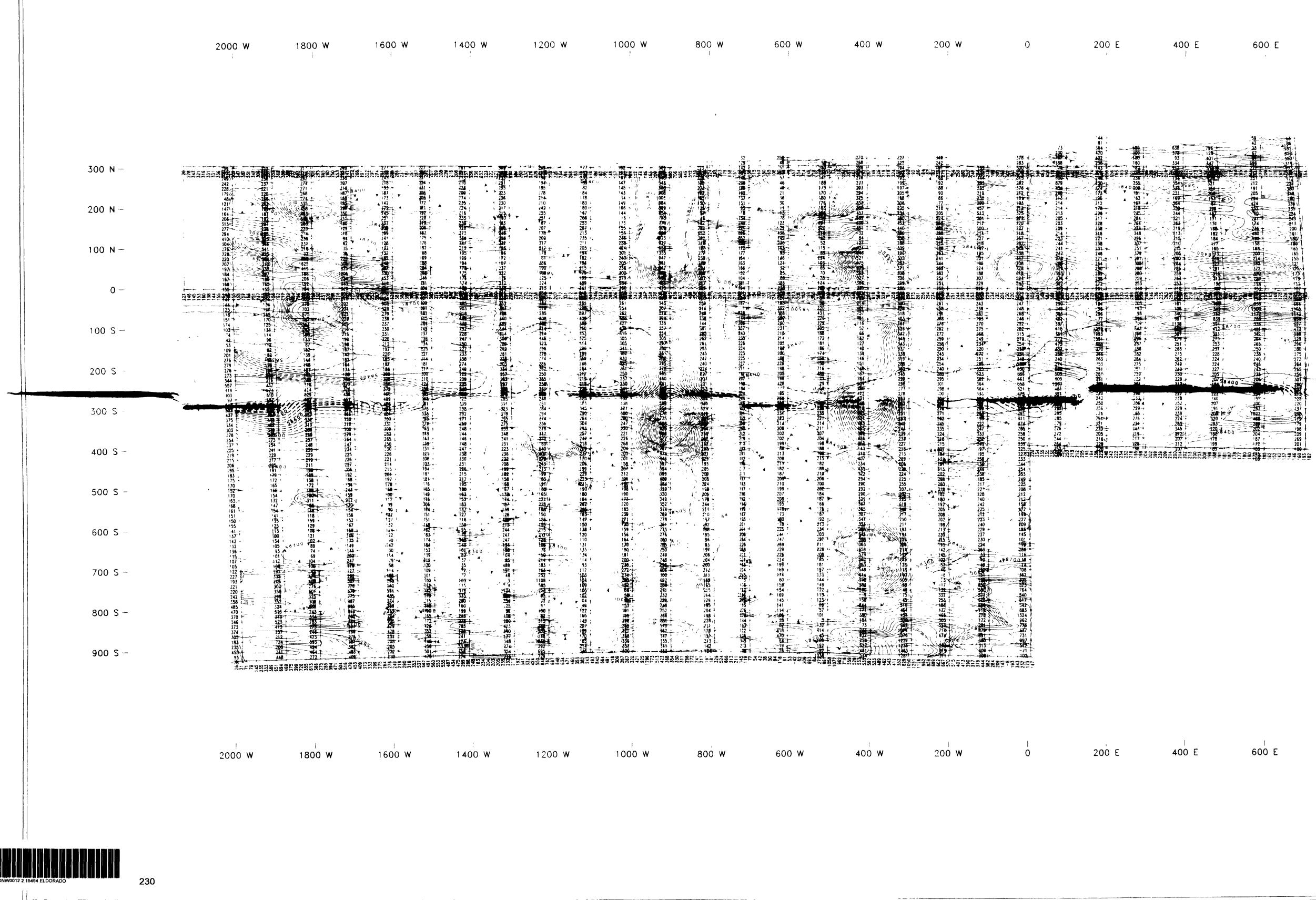
LEGEND -----

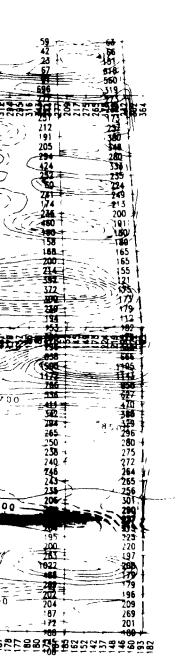
----SURVEYED LINES TOWNSHIPS BASELINES ETC LOTS, MINING CLAIMS PARCELS ETC -UNSURVEYED LINES LOT LINES PARCEL BOUNDARY MINING CLAIMS FTC RAILWAY AND RIGHT OF WAY UTILITY LINES NON-PERENNIAL STREAM FLOODING OR FLOODING RIGHT SUBDIVISION OR COMPOSITE PLAN RESERVATIONS ORIGINAL SHORELINE MARSH OR MUSKEU <u>\$</u> TRAVERSE MONUMEN!

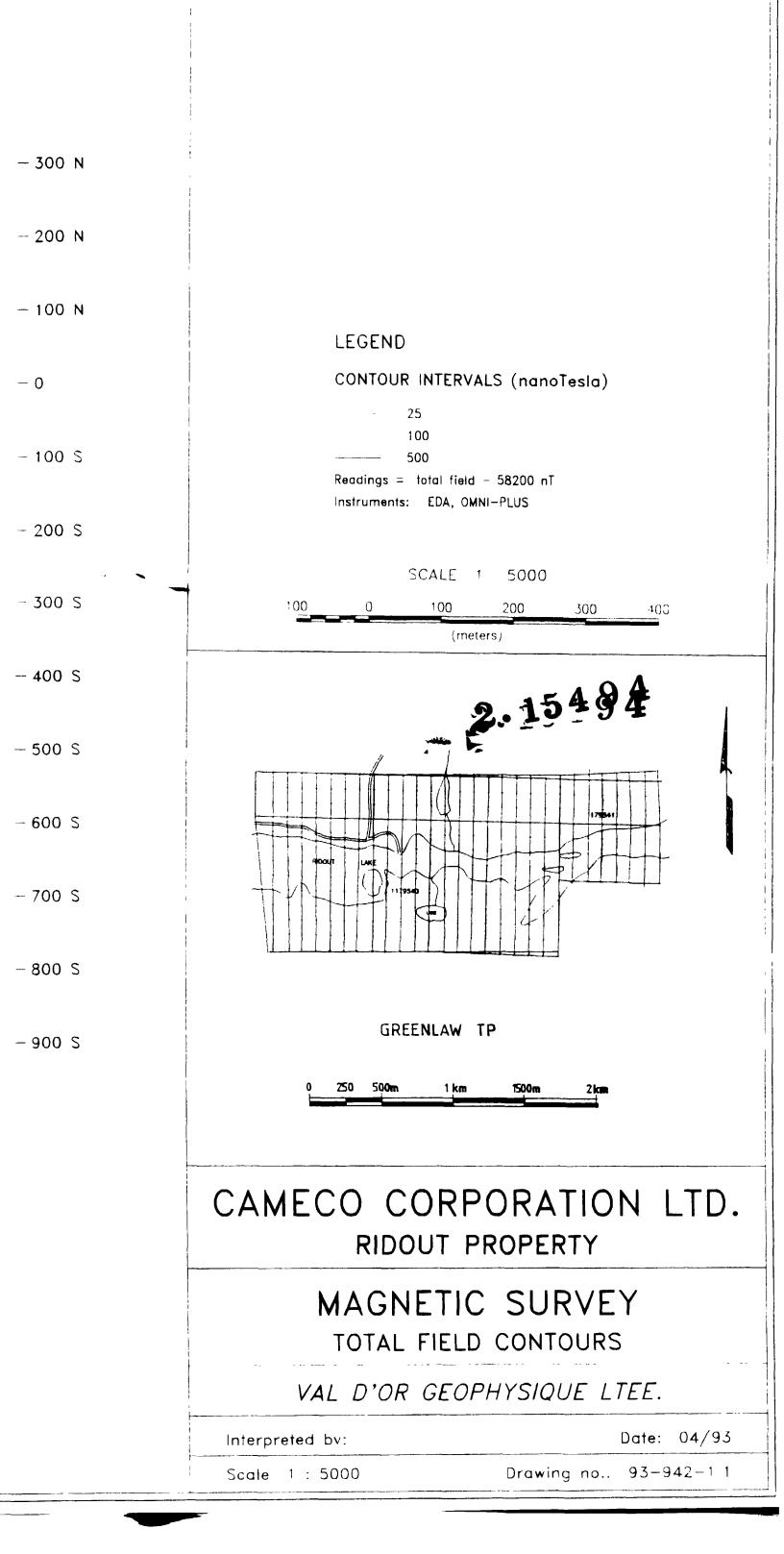

DISPOSITION OF CROWN LANDS

TYPE OF DO	CUMENT	SYMBOL
PATENT SUR	FACE & MINING RIG	
	ACE RIGHTS ONLY	•
	NG RIGHTS UNLY	õ
	ACE & MINING RIGH	
	CE RIGHTS ONLY	
	GRIGHTSUNLY	
LICENCE OF O		Ţ
ORDER IN CO		OC
RESERVATION	N	(R)
CANCELLED) ()
SAND & GRA	t l	(6) (6)
1913 VE LANDS A	STED IN ORIGINAL PA	ATENTET, PRICE TO MAY 6 ATENTEE BY THE PUBLIC 380 SEC 63 SUBALIC 1
-		
FEE* 0 1000	1000 4 000	000k 000d
0 200 METRES	1000 1 K M	2000 (2 # M
M N R ADM CHAP MINING DI PORC	VISION UPINE S/ REGISTRY D	
Ontario	Ministry of M Natural No Resources or	orthern Development
Date MARCH	1, 1985	Number
	· · · · · · · · · · · · · · · · · · ·	
ACTIVATED OCTOBER 2	C 1002	G-3235

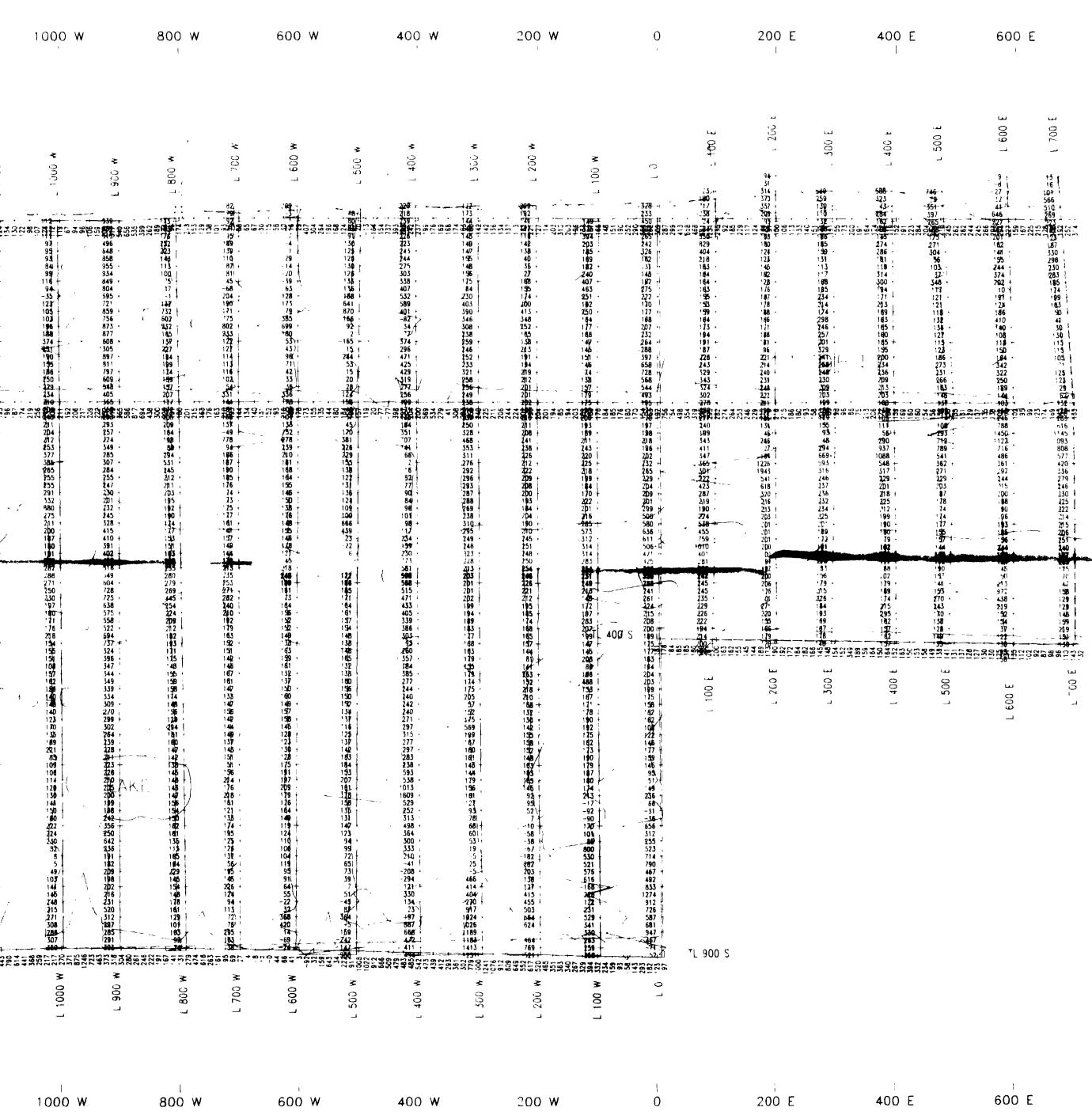
VLF Axis (NAA) (strong/weak/mod er ate)
 Mag Contact
 Mag High Trends
 Dykes

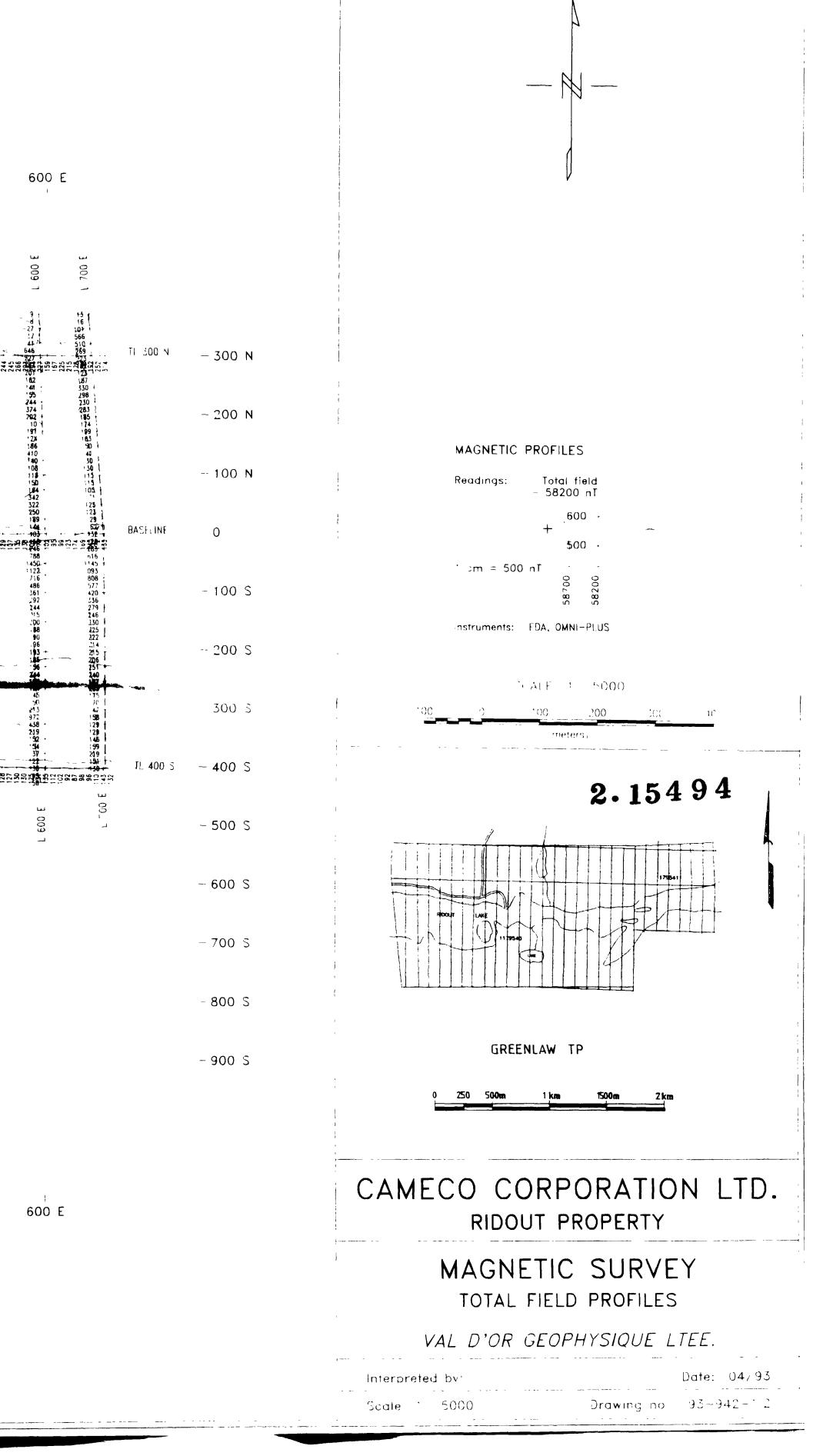


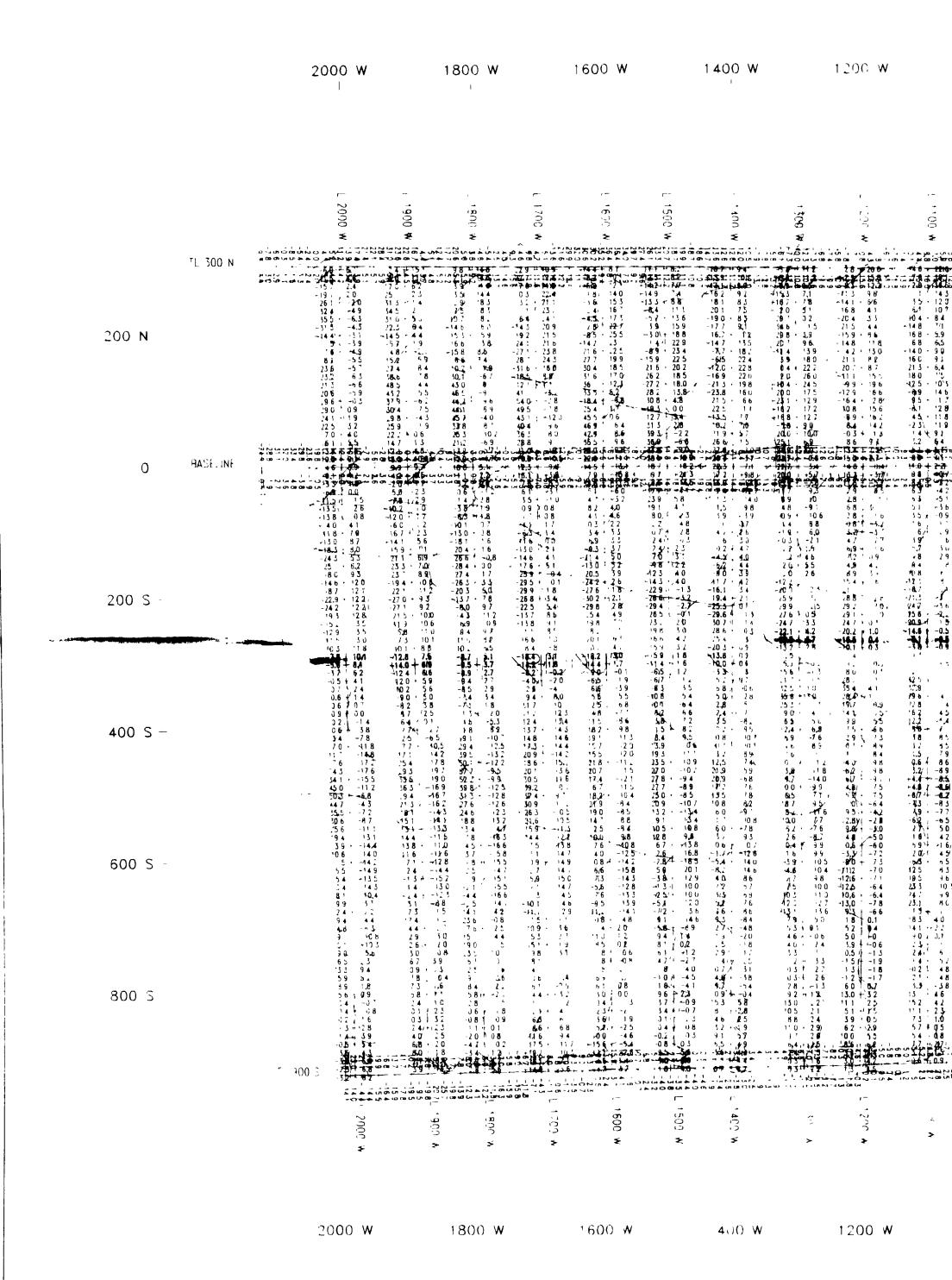



.

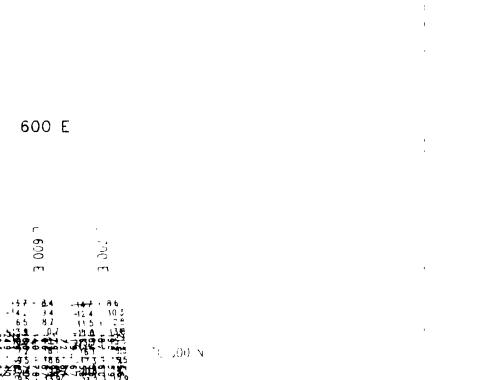
1	swamp	
	claim post located	
	claim post inferred	
	geological contact, inferred	
	outcrop area	
	assay/litho_sample_site	Þ
	toliation	
,	fault, inferred	
-	bush road	
	trail	

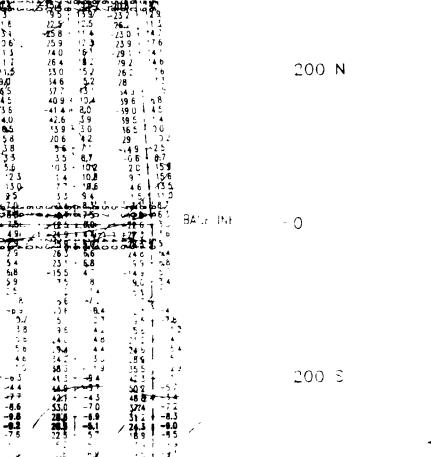



600 E


	2000 W	1800 W	1 60 0 W	1400 W	1200 W
	L 2000 ¥	L 18.00 W	r •600 ★ r •500 ¥	. 400 W . 1360 W	L 1206 ¥
300 N - TL 300 N	10 10 10 10 10 10 10 10 10 10			160 160 160 160 160 160 160 100 100 100	144 139 2855748522342234597452
200 N -	12 % 170 2 * 210 *	130 130 130 130 142 137 135 135 124 137 146 138 137 146 138 145 145 124 137 146 131 165 145 131 165 145 131 165 146 131 165 146 131 165 146 130 791 164 140 15 15 150 70 757 755 751 156 156 70 755 156 70 757 156 70 757 156 70 753 142 -156 70 156 70 753 156 70 753 156 70 753 156 70 753 156 70 753 156 70 753 156 70 753 156 70 753 156 70 753 156 70 753 157 756 <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>**** ************************************</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	**** ************************************	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
100 N -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180 + 44 + 180 + 44 + 180 + 15 + -18-+ 4√ 606 170 + ₹51 ₹51 ₹51	911 25 - 781 25 - 821 132 - 822 15 - 822 18 - 132 + 119 - 186 138 - 217 - 54 -	140 + 122 - *44 - 107 128 r 187 +	155 - 185 - 167 181 182 - 155 - 178 44 1 11 4 132 - 256 135 140 - 165 -
O – BASELINE	134 34		266 271 266 271 - 175 + 154 + -	125 112 125 1 124 - 125 1 - 135 1 - 135 1 - 145 - 142 - 142 - 145 - 140 + - - 162 - 162	
100 S -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	428 154 - 575 173 - 575 173 - 126 - 313 166 - 334 166 - 377 148 107 - 117 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
200 S	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	176 171 TSP + 164 157 - 131 -36 + 197 -50 150 - 178 - 60 +	168 · 178 - 224 · 193 99 - 164 · 1782 + 207	296 + 275 273 264 246 + 328 239 324 - 135 196 212 - 200 - 205 - 206 - 212 - 200 - 205 - 206 - 187 - 208 - 209 - 107 - 208 - 209 - 108 - 208 - 209 - 200 - 201 - 203 - 204 - 205 - 108 -
300 S	47	479 401 401 401 401 401 401 401 401	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200 205 108 225 11 325 134 295 244 240 124 214 206 254 776 245
400 S	75 - 91 69 79 65 67 156 55	179 175 169 1 176 + 161 77	252 199 215 193 200 189 180 + 61 ⊬ 16 71 71 - 38 164 155 165 - 144 + 151 151 147 - 33	194 198 196 191 + 98 191 + 197 4 73 + 188 191 180 196 180 196 180 172 181 198 185 188	247 - 107 327 - 192 113 - 166 590 - 1799 357 - 187 - 228 - 120 - - 93 - 156 - 163 - 40 -
500 S	120 15 02 - 15 - 120 .04 113 - 821 - 18 97	86) 1 18 127 89 148 115 -	1911 (131 147 · 131 126 .26 115 1 15 · 50(1 99 62(1 90 49(1) 156 40) 114 ·	165 132 162 - 108 - 145 118 130 + 12 + 173 - 134 - 133 - 137 - 138 - 137 - 87 + 89 +	140
600 S	120 .04 113 821 113 97 114 97 115 97 116 97 117 94 101 91 101 91 101 91 101 91 101 91 102 751 911 631+ 87 501 93 84(- 821 551 86(- 451+ 855(- 51/ 571 67'+ 551 56/+	*091 *021 + 90 **77 561+1 1008 * *17 592 521↓ 125 * 39 ↓ 991 24 ⊮ 937 *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	771 761 661 89 105 165 45 tr 194 71 197 238 197 93. 144 51 108	100 :33 + 105 + 97 + 165 + 881 + 167 78 + 607 + 55 \ 811 26 ↓ 85 1
700 S	854 51/ 57\t 67'+ 55/1 58/ 72/-4 44 ~ 777 285 143 56 - 71 257 1 10 + 308 -	19 1 152 54 1 97 ·	64\\ 89\ -21\ 69\- 10g2\ 70\ 64\+ 59\+ 136 51\ 205\ 50\+ 90\- 622\ 511\ 1322\+ 385\ 520\ 324\- 665\7 319 298\	GS 144 51 108 32 541 -14 451 -15 439 22 784 231 -1 531 -1 531 -1 52 -1 531 -44 651 -44 1024 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
800 S -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ດ້ອງ ຊະດ	224 115 125 + 122 279 376 - 378 + 302	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 775 (11) 525 (24) 225 (24) 244 (24) 214 (22) 214 (22) 244 (24) 214 (226) 245 (267) 707 (222) 192 (133) 168 (14) 179 (123) 168 (14) 129 (123) 165 (14) 129 (123) 165 (14) 161 (14) 162 (14) 161 (14) 161 (14) 162 (14) 161 (14) 162 (14) 161 (14) 161 (14) 162 (14) 162 (14) 163 (14) 164 (14) 165 (14) 164 (15) 160
900 S -	255 135 135 135 135 135 135 135 135 135 1	23323 2325 2325 2325 2325 2325 2325 232	222483 22445 2245 2255 245 2255 245 24		100 110 110 110 110 110 110 110
	L 2000 W	1800	L 1500 W	L 1400 W L 1300 W	L 1206 W
	2000 W	1800 W	1600 W	1400 W	1200 W

240

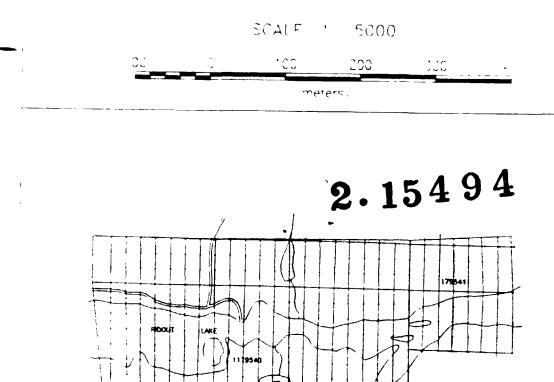




250

.

1000	W	פ(ר)ר ∧		ê⊊() w		4 00 N		200 W		0 1		2 0 0 E	400 E	
900 900 900		- 80 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		- 600 → × 22222	ري 00 ★	Г - - - - - - - - - - - - - - - - - - -		200 X	- 		- 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
9 -906 -906 -706 -706 -766 -716 -746 -716 -746 -716 -746 -716 -746 -716 -746 -716 -746 -716 -746 -716 -746 -716 -746 -716 -747 -716 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717 -747 -717	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -163 \\ -163 \\ -55 \\ -65 \\ -22 \\ -71 \\ -104 \\ -85 \\ -71 \\ -90 \\ -85 \\ -71 \\ -90 \\ -85 \\ -71 \\ -90 \\ -85 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -97 \\ -$	$\begin{array}{c} -169 & -16 \\ -169 & -16 \\ -169 & -16 \\ -169 & -15 \\ -169 & -15 \\ -169 & -15 \\ -169 & -15 \\ -169 & -15 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -169 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 \\ -160 & -17 $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>$\begin{array}{c} -164 \\ -177 \\ -197 \\ -190 \\ -167 \\ -190 \\ -190 \\ -166 \\ -190 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -1$</td> <td>$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$</td> <td>$\begin{array}{c} 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 140 \\ 123 \\ 140 \\ 123 \\ 140 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 133 \\ 123 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\$</td> <td>$\begin{array}{c} 0.3 + 2.0 \\ 0.0 + 4.9 \\ 15 + 8.2 \\ 5.4 + 9.9 \\ 1.7 + 9.9 \\ 9.7 + 1.0 \\ 6.4 + 4.5 \\ 4.4 + 8.2 \\ -1.4 + 6.9 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 +$</td> <td></td> <td>$\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$</td> <td>a - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<td>1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<td> </td><td></td></td></td>	$\begin{array}{c} -164 \\ -177 \\ -197 \\ -190 \\ -167 \\ -190 \\ -190 \\ -166 \\ -190 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -120 \\ -166 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -100 \\ -1$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 144 \\ 123 \\ 140 \\ 123 \\ 140 \\ 123 \\ 140 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 133 \\ 123 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\$	$\begin{array}{c} 0.3 + 2.0 \\ 0.0 + 4.9 \\ 15 + 8.2 \\ 5.4 + 9.9 \\ 1.7 + 9.9 \\ 9.7 + 1.0 \\ 6.4 + 4.5 \\ 4.4 + 8.2 \\ -1.4 + 6.9 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + 1.6 \\ -4.5 + $		$ \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $	a - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<td> </td><td></td></td>	1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td> </td> <td></td>	 	
1000) W	800 W		600 W		400 W		200 W		0		200 E	400 E	



600 S

E 008

'n-pncse	1 cm = 20 "				
. Out-ot-phase	1 cm. = 20 7				
Station NAA (crossline) Frequency 24 C Khz Readings direction North	Station N.S.S.BL – TL. Frequency – 21:4 Knz Readings direction – East				
Readings: n-Phase - -	Out-ot-Phase				
nstrument: EDA OMNI PLUS					

GREENLAW TP

600 E

90C

CAMECO CORPORATION LTD RIDOUT PROJECT ELECTROMAGNETIC V.L.F. SURVEY N.A.A. PROFILES VAL D'OR GEOPHYSIQUE LTEE

Date: 04/93 Interpreted by: -----Scale : 5000 Drawing no.. 93-942-2.1 ------