ONTARIO PROSPECTOR ASSISTANCE PROGRAM

MoA. TREMBLAY

89-002
I.FF I.AKE PROJECT

Terraquest I.td. of Toronto, Ontario carried out an aerial survey of this property on behalf of the author in late August 1989. The report has been submitted for assesment credits.

Follow-up ground work was carried out in late October. The strongest gerial conductor was found to be caused by a pyritiferous chert bed. The chert is bounded to the south by calc-alkalic rhyolite and to the north by calc-alkalic basalt. Two samples taken from old trenches assayed as follows:

$$
\begin{array}{lll}
56882- & .02 \% \mathrm{Cu} . & .09 \% \mathrm{Zn} \\
56883- & .015 \% \mathrm{Cu} . & .095 \% \mathrm{Zn} .
\end{array}
$$

The conductor extends F-SE into Lee Lake to the Greenlaw Showing where i.t is cut by the Iee lake Fault, and to the $\mathrm{W}-\mathrm{NW}$ to the claim boundary. A nuartz vein located 1000 ft . North of the conductor and parallel to the lee Lake Fault shows as a linear on aerial photographs. It has an orientation of $N 5^{\circ} \mathrm{W}$. It is quite possible that the source of copper is the chert horizon, the copper having been remobilized and deposited orith the cuartz as it crosscut the chert bed.

A maymmin survey would be recommended over this chert horizon to better define it's width and conductivity. The old trenches should be cleaned out and blaster.

Assaying of other trenches on the property were generally met by disapnointing results. The best assay from a pit on the Greenlaw Showing indicated. $049 \mathrm{oz} / \mathrm{t} \mathrm{Au}$. On the West Showing a previous sample taken by Coljingwood Energy indicated $.277 \mathrm{oz} / \mathrm{t}$ Au. This was not repeated. However. a shear zone located immediately south of the West Zone was found to be at least 100 ' wide and may represent a good target for further prospecting. A number of trenches noted along strike of the shear to the southeast should be cleaned out and sampled. Due to the amount of the blowdown in and around these trenches, cleaning them was not possible without assistance.

NORTH GREENLAW IRON FORMATION
A Total of 4 days of prospecting were spent on this property. Several old trenches were located along this carbonate magnetite iron formation. Samples from this area number from 56851 to 56865 inclusive. The best samples assayed as follows:

	$\mathrm{Au}(\mathrm{ppb})$	$\mathrm{Ag}(\mathrm{ppm})$	$\mathrm{Cu} \%$	$\mathrm{Zn} \%$
56854	124	1.3		
56857	396	1.2	.025	.025
56858	220	1.2	.015	.035
56863	453	3.5		

The iron formation is bounded to the south by a felsic pyroclastic unit (Calc-alkaline rhyolite) and to the north by tholeiitic basalts. The iron formation was found to be conductive.

In view of the fact that the adjoining property hosts a significant zinc deposit, staking of four claims is recommended. This would be followed up by a soil geochemistry program to test for Cu-Zn anomalies and a maxmin survey to delineate and define conductive horizons.

SOUTH GREENLAW IRON FORMATION

A total of 22 days were spent on this program. Seventy seven samples were collected and assayed. They number fron 56651 to 56700 and 56751 to 56777 . Four samples were assayed for gold and seventy three had ICP whole rock peochemistry done.

Because of the extremely low water levels at the begining of the program and the fact that some access water was frozen, it was not possible to nrosnect the most essterly portion of the project. This area should be assessed as soon as possible. Sample 56664, which is one of the most easterly: may represent a feeder pipe. This sample ran . $02 \% \mathrm{Cu}$.

A -ice ranqe of cal c-alkalic and tholeiitic suite rocks has been indicated by the Jensen Cation Plot. A number of anomalies are indicated by the peochem data. It is not the scope of this report to analyze these results, ror am I qualified to do so. However, the data is a good foundation for further study in this area, as well as being useful for targeting areas that warrant further detailed study. Results should be compared with Siragusa's geochemical data from the 'Geology of the Garnet Lake Area'(1987).

Other highlights of the program include:
56653- Utramafic Komatiite warrants further work in view of its potential as a host for gold mineralization.
56681- intermediate agglomerate mass. ${ }^{\text {kis }}$. py- . $03 \% \mathrm{Cu}, .01 \% \mathrm{Zn}$.
56700 felsic/intermediate tuff (1-3\% py) 118 ppb Au
In closing I would like to thank the staff of the Drill Core Library in Timmins for their help and access to their computer and use of their JenCalc and JenPlot proprams. As well I would like to thank the staff of the Resident Geologist's Office in Timmins for their assistance in all matters, great and small.

Respectfully Submitted

CAMr

Nuthef:	ateas	Femas	Man	mat	1402
1	16.000	7.400	3.090	0.140	0.670
2	16.310	10.770	5.50	0.210	O. 0^{380}
3	0.680	5. 430	0.470	0.110	0.040
4	1.060	Y2.160	1.250	0.790	0.080
5	16,050	15.190	3.460	0.740	0.760
6	1\%.270	12.200	1.076	0.040	0.300
7	16.510	\%.060	1.470	0.040	0.460
θ	16.100	11.370	7.860	0.000	0.910
9	20.190	14.890	9.70	0.030	1.080
10	16.500	3.1%	0.900	0.10	0.480
11	17.9e0	W. 570	1.6%	0.160	0.580
12	13.800	12.900	2.980	0.50	1.700
13	\%.1\%0	12.60	E.850	0.70	0.0
14	19.900	a.310	7.400	0.00	0.460
15	14.150	2.760	2.810	1.850	0.260
16	16.500	6.960	1.95	0.210	0.600
17	14.170	5.210	0.970	0.120	0.940
19	0.800	41.040	1.549	1.050	0.030
19	3.640	27.460	2,600	1.150	0.190
\%	13.640	12.230	2.50	0.300	0.530
21	17.500	13.5eo	7.580	0.100	1.020
2e	$1 .+20$	14.610	6.490	-.20	0.740
-s	16.970	12.1050	4.180	0.800	0.960
24	16.010	3.746	0.740	0.990	0.400
E-5	16.060	12.310	4.170	-.300	\%.9.0
2	10.480	15.6	2.860	0.790	0.480
2	16.050	11.760	E.240	0.250	0.920
e	16.080	3.65	1.669	0.040	0.370
9	14.610	6.510	1.410	0.140	0.90
30	15.880	7.590	1.090	0.220	0.810
31	7.450	18.700	1.E®e	0.450	0.360
2	3.410	22.070	1.690	0.620	0.140
3	15.180	13.120	4.500	0.290	1.160
4	14.400	12.100	9.120	0.200	9.980
उ	10.120	9.090	7.510	9. 170	\%.\%
38	5.130	17.810	1.800	0.36	0.180
7	16.200	11.540	4.200	, \%\%	1.046
es	14.090	E.620	5.940	O.150	0.920
9	15.950	12.90	\%.120	\%.उE0	0.960
40	13.660	2.060	0.670	0.080	0.240
41	16.560	15.50	\#.50	0.80	0.920
42	15.390	12.300	4.250	-.20	1.68
43	16.660	11.610	3.150	0.260	1.210
44	15.710	3.140	1.2.\%	.,\%\%	0.290
45	10.690	Q.540	\%.6.0	a.160	1.0\%
46	16.820	12.030	W.ab	0.20	9.8ec
47	16.640	1.970	9.840	\%.040	0.290
43	16.520	11.660	6.250	0.00	1.250
48	17.100	10.110	4.70	a,2\%	0.85

Aका No क्णे

की MF｜F NUMEEF

A120
．．．．．．．．．．．．．．．．．．．．

17170 ＂．＂17

世＂ザ
15,440
16,010
10．0\％
14.760
$14, \%$ 世
16.240
19.700
10.960
10.400
$19, \% 4$
17.06

14,56
15.60
16.59
14.69
$14: 700$
15,240
13,29
10 － 76
1Ψ ॠक
14.50
$1 \%, \% 6$
1． 100
$14, \ldots 10$
17,46
0． 10
14.460

17,50
19.600
$12, \%$－
9． 4 9
$0, \ldots \%$
，，ल〇
．． 40
$\cdots, 180$
घ 6
－
9610
． 100
$10,6 \%$
－ 4
…
11.170
\％． 96
19．$\%$＂
区，
$\because, 100$
$17, \%$ \％
14．900
18.60
$7,7 \% 0$
6.6 \％
－ 190
， O
E． 140
世，200
6.490
11.650
12.190

11． 130
11.50
10.90

1 m
\％ 6
1% ．$\%$
．$\quad .6$
10 \％ 0
$10,4 \%$
11.6

世． 0
11.710

ی．
4.670

15 ． 1 ©
6．
10,50
世， 0
－w ，
2 4 4
e． CO
$9 ., 90$
．，$\%$
－$\quad .40$
10.65

Mow

F，$\quad .6$
1.7%
二＂
1．2．
1.210

4．\％\％
A． O
\％． F 9
\＆．ब玉
－ 150
\％$\%$
1．2 10
7450
अ．07\％
区．
7.240
6.700
7.5
7.240

世，＂．
$4,1 \%$
， 570
च．w
\％． 67
8.6

区．
7, ， 40
1．． O
\％． 00
4.31

ब．$\%$
0.240
1.400

2． 20
，
4.390
$1, \% 10$
0． 44
\％．
9． 10
0.190
＂x
：－

Molo
TM C
．．．．．．．．．．．．．．．．．．．
$0 . अ \%$
ॐ． 9.9
0, ．
0,160
．， 9
0.016
0.060

0． 50
\％ 060

\％．1．0 1．710

1.66
1.0 e
0.16
． 4%
0.10
＂． 0
． 44
\％ 10
$0,0 \cos$
）， 46
． 9%
0.160
． a 0
0． 1 O
0.6 ± 0
－
0．900
． 240
0.940
0.700
．
0． 90
1． 2

$0 . \mathrm{O}_{\mathrm{o}}$
）， 20
0.870
0.640

0,170
O． O
இ，णक
－ 37
？ 10
\％ 10
）． 0
1．110
0,360
o E O
$+490$
0.470
＂． 0
世， 10
\％． 970
0.970
© ， 4
\％ 010
\％． 040
\％
\％ 010
0． 0
\％ 170
$0 . \mathrm{TO}$

IS A CALC-ALKALINE NNDESI'TE
IS A CALC-ALKALINE BASALT
IS AN ULTRAMAEIC KOMATITE
IS A BASALTIC KOMATITE - chem scrl. Cetly ir.
IS A THOLEIITIC ANDESITE
IS A THOLEIITIC ANDESITELhem. Sed.
IS A CALC-ALKALINE DACITE
IS A THOLEIITIC BASALT
IS A THOLEITTIC BASALT
IS A CALC-ALKALINE RHYOLITE
IS A CALC-ALKALINE DACITE
IS A THOLEIITIC ANDESITE
IS A BASALTIC KOMATITE
IS A CALC-ALKALINE BASALT
IS A HIGH IRON THOLEIITIC BASALT Chem. Sed.
IS A THOLEIITIC RHYOLITE
IS A THOLEIITIC RHYOLITE
IS A BASALTIC KOMATITE cherty if
IS A HIGH IRON THOLEIITIC BASALT Chem. Sed
IS A IHOLEIITIC n NDESITE
IS A THOLEIITIC•BASALT
IS A THOLEIITIC BASALT
IS A THOLEIITIC ANDESITE
IS A CALC-ALKALINE RHYOLITE
IS A THOLEIITIC ANDESITE Chem. Sed.
IS A HIGH IRON THOLEIITIC BASALT Gruneritic Nmphlbolite
IS A THOLEIITIC BASALT
IS A CALC-ALKALINE DACITE
IS A THOLEIITIC RHYOLITE Agglomerate
IS A THOLEIITIC DACITE Agslomerate
IS A HIGH IRON THOLEIITIC BASALT IF
IS A HIGH IRON THOLEIITIC BASALTIF
IS A HIGH IRON THOLEIITIC BASALT
IS A HIGH MAGNESIUM THOLEIITIC BASALT
IS A HIGH MAGNESIUM THOLEIITIC BASALT
IS A HIGH IRON THOLEIITIC BASALTIF
IS A CALC-ALKALINE BASALT
IS A CALC-ALKALINE BASALT
IS A THOLEII'IIC BASALT
IS A CALC-ALKALINE RHYOLITE
IS A HIGH IRON THOLEIITIC BASALT
IS A THOLEIITIC ANDESITE IF
IS A THOLEIITIC ANDESITE IF
IS A CALC-ALKALINE RHYOLITE
IS A CALC-ALKALINE ANDESITE
IS A CALC-ALKALINE BASALT
IS A CALC-ALKALINE RHYOLITE
IS A THOLEIITIC BASALT
IS A CALC-ALKALINE BASALT
IS A CALC-ALKALINE BASALT
IS A HIGH IRON THOLEIITIC BASALT
IS A BASALTIC KOMATITE - chet IF
IS A CALC-ALKALINE DACITE

1s A C CAICC-ALKALINE RIIYOLITE
IS A HIGH IRON THOLEIITIC BASALT
IS A HIGH IRON THOLEIITIC BASALT
IS A THOLEIITIC BASALT
is A CALC-ALKALINE BASALT
IS A CALC-ALKALINE ANDESITE
IS A CALC-ALKALINE RHYOLITE
IS A CALC-ALKALINE RHYOLITE
IS A CALC-ALKALINE BASALT
is a calc-alkaline andesite
is A CALC-ALKALINE ANDESITE
IS A THOLEIITIC BASALT
IS A THOLEIITIC BASALT
IS A THOLEIITIC BASALT
IS A THOLEIITIC BASALT
IS A CALC-ALKALINE BASALT
IS A HIGH IRON THOLEIITIC BASALT
IS A HIGH IRON THOLEIITIC BASALT
IS A THOLEIITIC ANDESITE IF
IS A CALC-ALKALINE RHYOLITE Granite
IS A 'rHolelitrc basali
IS A HIGH MAGNESIUM THOLEIITIC BASALT
IS A THOLEIITIC BASALT Chert $\mathbb{1 K}$
IS A CALC-ALKALINE RHYOLITE Felsic pyrulastic
IS A BASALTIC KOMATITE-Cherty IF
IS A THOLEIITIC ANDESITE
IS A CALC-ALKALINE RHYOLITE
IS A THOLEIITIC RHYOLITE Shemen prev:
IS A HIGH IRON THOLEIITIC BASALT
IS A CALC-ALKALINE DACITE NHowe \ldots...."
IS A BASALTIC KOMATITE - cherty If -

[^0]

PROJ: SOUTH ATTN: M.TREMBLAY

SAMPLE NUMBER	$\begin{array}{r} \text { AL203 } \\ \% \end{array}$	$\begin{gathered} B A \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{BE} \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{r} \text { CAD } \\ \% \end{array}$	$\begin{gathered} \mathrm{CO} \\ \% \end{gathered}$	$\begin{array}{r} \hline \text { CR203 } \\ \% \end{array}$	$\begin{gathered} \mathrm{CU} \\ \% \end{gathered}$	$\begin{array}{r} \text { FE203 } \\ \% \end{array}$	$\begin{array}{r} \mathrm{K} 20 \\ \% \end{array}$	$\begin{gathered} \text { MGO } \\ \% \end{gathered}$	$\begin{array}{r} \text { MNO2 } \\ \% \end{array}$	$\begin{gathered} \mathrm{MO} \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} \text { NA2O } \\ \% \end{array}$	$\begin{gathered} \mathrm{NB} \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NI} \\ \% \end{gathered}$	$\begin{array}{r} \text { P205 } \\ \% \end{array}$	$\begin{gathered} \hline \text { PB } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{RB} \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} \hline 102 \\ \% \\ \hline \end{array}$	$\begin{aligned} & \mathrm{SN} \\ & \% \end{aligned}$	$\begin{aligned} & \text { SR } \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 102 \\ \% \end{array}$	$\begin{aligned} & \hline y \\ & \% \end{aligned}$	$\begin{aligned} & W \\ & z \end{aligned}$	$\begin{gathered} \hline 2 N \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 2 R \\ \% \end{gathered}$
56651	16.02	. 020	. 001	3.81	. 005	05	. 005	7.42	. 90	3.09	. 14	. 005	3.62	. 01	. 005	. 20	. 005	. 01	60.97	. 005	. 02	. 67	. 015	. 005	. 005	. 010
56652	16.31	. 005	. 001	12.01	. 005	. 08	. 015	10.77	. 12	5.53	.21	. 005	1.99	. 01	. 010	. 40	. 005		49.07	. 005	. 01	. 83	. 030	. 005	. 005	. 005
56653	. 68	. 005	. 001	. 05	. 005	. 14	. 005	5.43	. 01	30.47	. 11	. 005	. 02	. 01	. 100	. 35	. 015		25.99	. 005	. 01	. 04	. 005	. 005	. 005	. 005
56654	1.06	. 005	. 001	. 19	. 005	. 11	. 005	52.16	. 01	1.25	. 79	. 005	. 07	. 01	. 005	. 29	. 005	. 01	22.01	. 005	. 01	. 03	. 005	. 005	. 015	. 005
56655	16.05	. 030	. 001	4.47	. 005	. 04	. 010	15.19	. 52	3.46	. 74	. 005	1.20	. 01	. 005	. 26	. 005	. 01	51.62	. 005	. 01	. 76	. 020	. 005	. 005	. 015
56656	12.27	. 015	. 009	2.03	. 005	. 03	. 005	12.23	. 33	1.07	. 04	. 005	4.01	. 01	. 005	.14	. 005	. 01	59.60	. 005	. 03	. 30	. 005	. 005	. 005	. 010
56657	16.51	. 030	. 001	2.83	. 005	. 04	. 005	3.06	. 65	1.47	. 04	. 005	5.73	.01	. 005	.14	. 005	.09	66.60	. 005	. 05	. 46	. 010	. 005	. 005	. 010
56658	16.10	. 005	. 001	9.88	. 005	. 07	. 015	11.37	. 03	7.86	. 20	. 005	2.64	. 01	. 015	.41	. 005	. 01	46.81	. 005	. 01	. 91	. 030	. 005	. 005	. 005
56659	20.19	. 005	. 001	5.48	. 005	. 07	. 015	14.89	. 11	9.75	. 23	. 005	1.98	. 01	. 015	. 36	. 005	. 01	39.43	. 005	. 01	1.08	. 035	. 005	. 005	. 005
56660	16.58	. 040	. 001	2.83	. 005	. 03	. 005	3.15	1.46	. 79	.12	. 005	4.95	. 01	. 005	. 11	. 005	. 01	66.75	. 005	. 02	. 43	. 005	. 005	. 010	. 010
56661	17.52	. 030	. 001	3.56	. 005	. 03	. 005	5.87	. 52	1.53	. 16	. 005	5.11	. 01	. 005	. 14	. 005	. 01	60.98	. 005	. 02	53	. 010	. 005	. 005	. 010
56662	13.80	. 015	. 001	5.72	. 005	. 02	. 010	12.92	. 39	2.93	. 32	. 005	2.07	. 01	. 005	.27	. 005		51.69	. 005	. 01	1.70	. 045	. 005	. 005	. 010
56663	5.19	. 010	. 001	22.95	. 005	. 02	. 005	12.36	. 68	8.89	. 72	. 005	. 29	. 01	. 005	. 59	. 005		13.66	. 005	. 01	. 33	. 010	. 005	. 005	. 005
56684	18.90	. 015	. 001	9.37	. 005	. 05	. 020	8.89	. 07	7.40	. 32	. 005	2.61	. 01	. 015	. 35	. 025		46.49	. 005	. 01	. 46	. 020	. 005	. 005	. 005
56685	14.15	. 005	. 001	8.06	. 005	. 01	. 005	22.76	. 54	2.81	1.35	. 005	1.01	. 01	. 005	. 34	. 005	. .01	46.68	. 005	. 01	. 26	. 005	. 005	. 005	. 005
56666	16.50	. 015	. 001	3.02	. 005	. 03	. 010	6.96	1.80	1.35	. 21	. 005	2.23	. 01	. 005	. 14	. 005	. 01	64.53	. 005	. 01	. 60	. 015	. 005	. 005	. 010
56667	14.19	. 020	. 001	2.38	. 005	. 03	. 005	5.21	1.74	. 97	. 12	. 005	1.95	. 01	. 005	. 12	. 005	. 01	69.83	. 005	. 01	. 54	. 010	. 005	. 005	. 010
56658	. 80	. 005	. 001	2.64	. 005	. 03	. 005	41.04	. 01	1.84	1.03	. 005	. 06	. 01	. 005	. 30	. 005	. 01	39.28	. 005	. 01	. 03	. 005	. 005	. 005	. 005
56669	3.64	. 005	. 001	2.76	. 005	. 03	. 005	27.46	. 04	2.60	1.15	. 005	. 01	. 01	. 005	. 26	. 005	. 01	53.92	. 005	. 01	. 19	. 005	. 005	. 005	. 005
56670	13.64	. 020	. 001	3.14	. 005	. 04	. 005	12.23	. 58	2.52	. 30	. 005	3.52	. 01	. 005	. 20	. 005	.01	58.38	. 005	. 01	. 53	. 010	. 005	. 005	. 010
56671	17.52	. 015	. 001	3.98	. 005	. 06	. 010	13.52	. 57	7.23	. 18	. 005	1.98	. 01	. 010	. 28	. 005	. 01	46.90	. 005	. 01	1.02	. 035	. 005	. 005	. 005
56672	15.36	. 005	. 001	5.62	. 005	. 08	. 005	11.61	. 01	6.49	. 20	. 005	1.84	. 01	. 010	. 29	. 005		49.69	. 005	. 01	. 74	. 035	. 005	. 005	. 005
56673	16.97	. 015	. 001	9.75	. 005	. 05	. 010	12.85	. 65	4.18	.30	. 005	2.16	. 01	. 010	. 36	. 005		40.35	. 005	. 01	. 96	. 035	. 005	. 005	. 005
56674	16.01	. 030	. 001	2.36	. 005	. 03	. 005	3.74	2.12	. 74	. 09	. 005	3.40	. 01	. 005	. 11	. 005		68.57	. 005	. 01	. 40	. 005	. 005	. 005	. 015
56675	16.06	. 005	. 001	13.82	. 005	. 06	. 005	12.31	2.15	4.71	. 32	. 005	1.44	. 01	. 010	. 40	. 005	. 01	46.59	. 005	. 01	. 92	. 035	. 005	. 005	. 005
56676	10.48	. 005	. 001	6.40	. 005	. 03	. 010	15.36	. 10	2.86	. 79	. 005	. 46	. 01	. 005	. 28	. 005	. 01	59.53	. 005	. 01	. 43	. 010	. 005	. 005	. 015
56677	16.03	. 005	. 001	8.45	. 005	. 06	. 010	11.78	. 01	8.24	. 23	. 005	2.55	. 01	. 010	. 35	. 005		47.62	. 005	. 02	. 92	. 030	. 005	. 005	. 005
56678	16.08	. 045	. 001	3.07	. 005	. 02	. 005	3.36	1.21	1.66	. 04	. 005	4.35	. 01	. 005	. 13	. 005	. 01	66.60	. 005	. 03	. 37	. 005	. 005	. 005	. 010
56679	14.51	. 020	. 001	2.05	. 005	. 03	. 005	6.51	. 73	1.34	.14	. 005	4.53	. 01	. 005	. 13	. 005	. 01	66.35	. 005	. 02	. 33	. 005	. 005	. 005	. 010
56680	15.88	. 015	. 001	2.63	. 005	. 03	. 005	7.59	. 75	1.88	. 22	. 005	4.12	. 01	. 005	. 15	. 005	. 01	63.50	. 005	. 02	. 61	. 010	. 005	. 005	. 015
56681	9.45	. 005	. 001	1.85	. 005	. 02	. 030	18.70	. 23	1.88	. 43	. 005	2.65	. 01	. 005	. 18	. 005	. 01	54.41	. 005	. 01	. 36	. 010	. 005	. 010	. 010
56682	3.41	. 005	. 001	1.89	. 005	. 04	. 005	22.07	. 04	1.69	. 62	. 005	. 23	. 01	. 005	. 21	. 005		66.30	. 005	. 01	. 14	. 005	. 005	. 005	. 005
56683	15.18	. 020	. 001	7.71	. 005	. 04	. 005	13.12	. 01	4.59	. 29	. 005	3.69	. 01	. 005	.31	. 005		52.42	. 005	. 01	1.16	. 035	. 005	. 005	. 005
56684	14.52	. 010	. 001	7.31	. 005	. 09	. 005	12.10	. 46	9.12	. 20	. 005	2.58	. 01	. 025	. 37	. 005	. 01	49.94	. 005	. 02	. 94	. 020	. 005	. 005	. 010
56685	16.12	. 020	. 001	8.74	. 005	. 09	. 005	9.09	1.35	7.51	. 17	. 005	1.86	. 01	. 015	. 38	. 005	. 01	51.67	. 005	. 01	. 62	. 025	. 005	. 005	. 005
56686	5.13	. 005	. 001	1.39	. 005	. 04	. 025	17.81	. 37	1.80	. 36	. 005	. 33	. 01	. 005	. 20	. 005	. 01	68.58	. 005	. 01	18	. 005	. 005	. 030	. 005
56687	16.22	. 015	. 001	6.55	. 005	. 07	. 015	11.54	. 26	4.22	. 33	. 005	2.91	. 01	. 010	. 29	. 005	. 01	49.99	. 005	. 01	1.04	. 035	. 005	. 005	. 005
56688	14.09	. 055	. 001	6.95	. 005	. 08	. 010	8.62	1.59	5.94	. 15	. 005	4.23	. 01	. 005	. 32	. 005	. 01	54.08	. 005	. 05	. 92	. 020	. 005	. 005	. 015
56689	15.95	. 005	. 001	11.60	. 005	. 07	. 015	12.88	. 28	5.12	. 38	. 005	1.71	. 01	. 005	. 43	. 005	. 01	48.67	. 005	. 01	. 93	. 035	. 005	. 005	. 005
56690	13.56	. 055	. 001	1.65	. 005	. 06	. 005	2.06	2.44	. 67	. 03	. 005	3.36	. 01	. 005	. 10	. 005	. 01	73.42	. 005	. 02	. 24	. 005	. 005	. 005	. 010
56691	16.56	. 035	. 001	7.39	. 005	. 06	. 015	15.53	1.29	5.55	. 30	. 005	2.49	. 01	. 010	. 35	. 005	. 01	46.30	. 005	. 01	. 92	. 035	. 005	. 005	. 005
56692	15.39	. 010	. 001	10.52	. 005	. 04	. 010	12.33	. 83	4.25	. 23	. 005	1.35	. 01	. 010	. 37	. 005	. 01	50.38	. 005	. 01	1.06	. 040	. 005	. 010	. 005
56693	16.66	. 015	. 001	8.13	. 005	. 03	. 005	11.61	. 59	3.15	. 26	. 005	3.46	. 01	. 005	. 33	. 005	. 01	51.02	. 005	. 02	1.21	. 020	. 005	. 010	. 015
56694	15.71	. 020	. 001	2.04	. 005	. 03	. 005	3.14	. 90	1.25	. 05	. 005	6.63	. 01	. 005	.10	. 005	. 01	67.00	. 005	. 02	. 29	. 010	. 005	. 005	. 010
56695	18.60	. 020	. 001	6.34	. 005	. 06	. 020	8.54	. 83	3.86	. 16	. 005	2.68	. 01	. 015	. 28	. 005	. 01	48.55	. 005	. 01	1.06	. 035	. 005	. 005	. 005
56696	16.32	. 015	. 001	9.80	. 005	. 07	. 020	12.03	. 74	5.61	. 23	. 005	2.47	. 01	. 015	. 37	. 005	. 01	46.16	. 005	. 01	. 88	. 035	. 005	. 005	. 005
56697	16.64	. 030	. 001	. 83	. 005	. 03	. 005	1.97	1.04	. 84	. 04	. 005	7.25	. 01	. 005	. 07	. 005	. 01	69.29	. 005	.03	. 29	. .005	. 005	. 005	. 010
56698	16.52	. 020	. 001	5.54	. 005	. 04	. 005	11.66	1.07	6.23	. 23	. 005	4.58	. 01	. 005	. 32	. 005	. 01	49.89	. 005	. 01	1.25	. 030	. 005	. 005	. 010
56699	17.10	. 155	. 001	10.85	. 005	.10	. 005	10.44	1.23	6.70	. 26	. 005	1.96	. 01	. 020	. 42	. 005	. 01	47.84	. 005	. 01	. 65	. 025	. 005	. 005	. 005
56751	17.17	. 015	. 001	12.20	. 005	. 09	. 005	11.17	. 53	5.56	. 32	. 005	2.47	. 01	. 010	. 42	. 005	. 01	46.19	. 005	. 01	. 92	. 040	. 005	. 010	. 005
56752	5.43	. 005	. 001	2.47	. 005	. 03	. 005	20.96	. 01	1.77	. 28	. 005	. 06	. 01	. 005	. 23	. 005	. 01	66.74	. 005	. 01	. 16	. 005	. 005	. 015	. 005
56753	. 39	. 005	. 001	3.91	. 005	. 07	. 005	19.65	. 01	2.33	. 09	. 005	. 05	. 01	. 010	. 25	. 005	. 01	71.49	. 005	. 01	.01	. 005	. 005	. 015	. 005
56756	15.44	. 045	. 001	2.96	. 005	. 05	. 005	3.57	2.15	1.23	. 06	. 005	4.73	. 01	. 005	. 14	. 005	. 01	68.16	. 005	. 04	. 33	. 005	. 005	. 005	. 010
56757	16.01	. 015	. 001	2.91	. 005	. 07	. 005	3.18	. 50	1.21	. 06	. 005	6.32	. 01	. 005	.14	. 005	. 01	66.94	. 005	. 04	.37	. 005	. 005	. 005	. 010
56758	13.07	. 005	. 001	10,47	. 005	. 02	. 005	17.52	. 27	4.92	. 28	. 005	1.70	. 01	. 005	. 43	. 005	. 01	47.11	. 005	. 02	1.71	. 105	. 005	. 005	. 005
56759	14.76	. 005	. 001	15.91	. 005	. 02	. 020	14.90	. 06	4.08	. 22	. 005	. 13	. 01	. 005	. 48	. 010	. 01	43.56	. 005	. 09	1.56	. 090	. 005	. 005	. 005
56760	14.35	. 005	. 001	11.24	. 005	. 02	. 005	13.52	. 13	5.87	. 25	. 005	2.57	. 01	. 005	. 43	. 005	. 01	48.98	. 005	. 01	1.02	. 065	. 005	. 005	. 005
56761	18.24	. 015	. 001	12.10	. 005	. 20	. 010	7.73	1.09	6.83	. 15	. 005	2.23	. 01	. 010	. 42	. 010	. 01	46.77	. 005	. 01	. 45	. 025	. 005	. 005	. 005
56762	19.70	. 020	. 001	8.15	. 005	. 05	. 005	6.62	1.15	6.15	. 14	. 005	4.20	. 01	. 010	. 32	. 005	. 01	49.99	. 005	. 01	. 20	. 015	. 005	. 005	. 005
56763	10.96	. 015	. 001	2.54	. 005	. 07	. 005	2.15	1.02	. 76	. 04	. 005	3.92	. 01	. 005	. 13	. 005	. 01	76.57	. 005	. 02	21	. 005	. 005	. 005	. 005

COMP: M.TREMBLAY
PROJ: SOUTH
ATTN: M.TREMBLAY
61

61	SAMPLE NUMBER	$\begin{array}{r} \hline \text { AL203 } \\ \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{BA} \\ \% \end{gathered}$	$\begin{gathered} \hline 8 E \\ \% \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { CAO } \\ \% \end{array}$	CO	$\begin{array}{r} \mathrm{CR2O3} \\ \% \end{array}$
	56764	18.40	. 005	. 001	4.17	. 005	. 05
	56765	19.39	. 030	. 001	11.01	. 005	. 04
	56766	17.05	. 020	. 001	5.77	. 005	. 03
	56767	14.53	. 010	. 001	6.91	. 005	. 03
	56768	15.68	. 005	. 009	10.63	. 005	. 06
70	56770	16.59	. 005	. 001	11.52	. 005	. 08
	56771	14.69	. 005	. 001	11.99	. 005	. 09
	56772	14.70	. 005	. 001	11.61	. 005	. 08
	56773	15.24	. 005	. 001	8.93	. 005	. 07
	56774	13.29	. 005	. 001	9.82	. 005	. 05
	56775	10.37	. 005	. 001	7.93	. 005	03
	56776	13.28	. 010	. 001	5.72	. 005	. 04
	56777	14.58	. 035	. 001	2.85	. 005	. 06

COMP: M.TREMBLAY
MIN-EN LABS - ICP REPORT
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N $1 T 2$
(604)980-5814 OR (604)988-4524


```
jen-Calc #
```


Geochemisol Andiysis certificate 9T-0981-RG1

Company: M.A.TREMBLAY
Project: GOUTH Greenlaw Iron Formation Attn: M.A.

Date: NOV-22-89
Copy 1. M. A. TfEMELAY, TIMINS, DNT.
2. Mi A. TREMELAY, C/O HIN-EN LABS
He hereby certify the following Geochemical Analysis of 4 ROCK samples submitted NOV-17-89 by M.A.TREMBIAY.

Sample	All-FIRE
Number	FHe
66700	1.6
56754	40
56755	72
56769	1

GEOEDEMiEEI AMEIVSisGEMtiticteter-0978-RG2

Company: MIKE TREMBLAY
Date: NOV-20-89
Project: LEE LAKE
Attn: MIKE TREMELAY

Copy 1. hike trenblay, timhins, ont.
2. hIKE TREMBLAY, C/O MIN-EN LABS.

He hereby certify the following Geochemical Analysis of 2 ROCK samples submitted NOV-19-89 by MIKE TREMBLAY.

Sample	AU-FIFE	AG
Number	FFB	FPM
56891	1	0.8
56893	1	

\qquad

Certified by

VANCOUVER OFFICE:

Company: MIKE TREMBLAY
Date: NOV-22-89
Project: LEE LAKE
Copy 1. MIKF TEEMELAY, timhins, ont.
Attn: MHE THEHEAY
2. HIKE TKEMELAY, C/O HIN-EN LASS.

We hereby certify the following Geochemical Analysis of 30 ROCK samples submitted NOV-19-89 by MIKE IREMBLAY.

Samole
Number
56858
56854
56856
$\begin{array}{ll}56 & 80.7\end{array}$
56959

56860
56861
56862
56863
$56 \quad 869$

9670
56811
$56 \quad 872$
56 87\%
56, 974
$56 \quad 975$
56 B76
56977
5ic 876
\%6 日79
56880
56861
56892
5id 883
56885
56836
56887
56889
56889
56690

ALIFIRE	AG	
FFE	Fi4	
71	0.8	North Greenlaw Iron Formation
1.4	1.3	$" 1$
17	1.4	$" 1$

60	0.9
1	0.8
34	1.6
45	3.5
18	6.4

11

11
LeeLake

1.2	$"$
1.2	$"$
0.7	$"$
1.4	$"$
0.6	

0.2
1.2
1.0
"
0.9
0.7

11
0.5
0. 5
0.3
4.0
"

Certified by

Ministry of Northern Development and Mines	Temiskaming Testing Laboratories	P.O. Box 799 Presley St. Cobalt, Ontario POJ 1C0 (705) 679.8313	Report Number $\text { св } 11016$
Laboratory Report			Aug. 23, 1989.

Issued To: Jim Ireland, Staff Geologist, M.N.D.M., 60 Wilson Ave., Timmins, Ont. P4N $2 S 7$

Sample Number	$\begin{aligned} & \text { Gold } \\ & \text { Oz. } \\ & \text { Per Ton } \end{aligned}$	Silver Qx. Pam Rabctioco	$\begin{aligned} & \text { Gold } \\ & \text { Ppb } \end{aligned}$	Cu\%	2n\%	Pb\%
89 LNL 122 SW		5	205			
89 LNL 123 SW	0.049	< 3				
89 LNL 124 SW		3	50	0.020	0.008	
89 LNL 125 SW		5	85			
89 LNL 126 SW		3	28			
89 LNL 127 SW		<3	43	0.019	0.004	<0.001

Fees Received Ministry

Except by special permission, reproduction of these results must include any qualifying remarks made by this ministry with reference to any sample.

89 LNL 122 SW Au, Ag

89 LNL 123 SW Au, Ag

Mike Tremblay - Greenlaw Twp. -Lee Lake prospect, pit near shaft. (MT-03) carbonatized greywackeys, 1-3\% pyrite (no ref. sample)
Mike Tremblay - As above.
(MT-04) same trench as 122 SW
quartz-carbonate \quad vein with
silicified
concentrated $\quad(5-15 \%)$
contacts (no ref. sample) at

89 LNL 124 SW Au,Ag,Cu, Zn Mike Tremblay - As above. (MT-06) collected from trench at L36E/45S - Argillaceous sediment with possible pyrite fragments-slatey cleavage developed. pyrite may be highly contorted pyrite beds. (No Ref. Sample)

89 LNL 125 SW Au, Ag
Mike Tremblay - As above. Sample colledted from trench on L40E/45+25S. (MT-08) chlorite schist, similar to sample 124 SW., cut by qutz-carb. veinlets with 5\% pyrite (No ref. sample)

89 LNL 126 SW Au, Ag
Mike Trembley - As above. Same location as 125 sw - small piece of "felsic, aphanitice material" carbonitized and siliceous, $\quad 3-5 \%$ pyrite. (MT-09) Dike?

89 LNL 127 SW Au, Ag, Cu, Zn, Pb

Mike Tremblay - Eisenhower Twp. - iron formation just east of Kinogama River, north of Kormak. (biotitic schist, possible sphalerite and/or fine-graned galena trace chalcopyrite in quartz filled freactures - possible garnet development. (Ref sample)

[^0]:
 91. J. A HXUH TRON THOLETXTTE EAWMLT Altered vrinbolls

