010
40.1

RECEIVED

FEB 141985
MINIMG LANDS SECTION

REPORT ON AN
AIRBORNE MAGNETIC AND VLF-EM SURVEY SWAYZE AND CUNNINGHAM TOWNSHIPS PORCUPINE MINING DIVISION, ONTARIO

for

QUINTERRA RESOURCES INCORPORATED

TABLE OF CONTENTS
Page

1. INTRODUCTION 1
2. THE PROPERTY 1
3. GEOLOGY 2
4. SURVEY SPECIFICATIONS 3
4.1 Instruments 3
4.2 Lines and Data 4
4.3 Tolerances 4
4.4 Photo Mosaics 5
5. DATA PROCESSING 5
6. INTERPRETATION 7
7. SUMMARY 8
Appendix A - Instrument Specifications
Appendix B - List of Claim Numbers
Figure 1 - Location Map
Figure 2 - Claim MapFigure 3 - Sample of Analogue Data
Maps in Jacket:
407.1-1 Total Magnetic Field
407.l-2 Vertical Magnetic Gradient
407.1-3 VLF Contours and Profiles
407.1-4 Interpretation

A combined airborne magnetic and VLF-EM survey was carried out on a block of 100 claims located in Swayze and Cunningham Townships, in the Porcupine Mining Division, Ontario. The claim holder is Quinterra Resources Inc., 321 Algonquin Avenue, North Bay, Ontario. The work was carried out by Terraquest Ltd., 111 Richmond Street West, Toronto, during the period October 20, 1984 to February 6, 1985.

The survey area was covered by a grid of parallel flight lines spaced 100 metres apart and aligned north-south.

The purpose of the survey was to assist in mapping geology, and to explore for shear zones, faults, and other structures potentially favourable to gold or base metal mineralization.

2. THE PROPERTY

The property is composed of 100 contiguous claims lying in Swayze and Cunningham Townships, Porcupine Mining Division, Ontario. Cree Lake lies on the western part of the north boundary of the property. Ground access is by winter trail from the village of Sultan, 19 km to the south which, itself is on the CPR Railway and Highway 667. The town of Chapleau lies 55 km to the west and Gogama is 70 km to the east. An all-weather road, originating from Sultan, comes to within 8 km of the eastern edge of the property at Garnet Lake.

Latitude and longitude are $47^{\circ} 46^{\prime}$ and $82^{\circ} 40^{\prime}$ respectively and the NTS reference is $410 / 15$.

A list of claim numbers is given in Appendix B.

3. GEOLOGY

Map References

1. Map 2070, Swayze and Dore Twps., O.D.M., 1963, 1 " $=\frac{1}{2}$ mile.
2. Map 436 Swayze Gold Area, O.D.M., 1934.

The claim group is mainly underlain by a suite of intermediate to basic volcanic rocks with some interbedded acid volcanic rocks which are older. Two exposures of a granite intrusion have been mapped and a few short exposures of diabase dykes are shown on map 2070.

The intermediate to basic volcanic rocks are divided into a number of subformations of which chlorite schist, a massive andisite, and a grey massive andisite would appear to be the most common. Banded iron formation lies in places within the basic volcanics.

A gold and silver occurrence lies about 300 metres north of the north boundary in the massive andisite.
4. SURVEY SPECIFICATIONS
4.1 Instruments

The present survey was carried out using airborne instruments with the sensor elements mounted in the wing tips of a Cessna 182 aircraft. The magnetic field was measured with a proton precession magnetometer model GSM-8BA, manufactured by GEM Systems, Toronto. The VIF-EM field was measured with a three component total field strength instrument, model TOTEM-2A, manufactured by Herz Industries Ltd., Toronto. Terrain clearance is measured by a King KRA-1OA Radar Altimeter. Data from these three instruments are processed by a UDAS-100 data processor, manufactured by Urtec Ltd. and then recorded onto a ninetrack tape recorder, and printed as profiles on a thermal printer in real time on the aircraft (Fig. 3). A Geocam video tape system is used to follow the flight path, and fiducial numbers generated by the UDAS-100 are recorded onto the video images.

Full specifications of the instruments are given in Appendix A.
TERRAGUEST

FFGG. UER.EBO1E4-GFAR . RCFT C-FAKK FHE E:4E? FLTH GEI EUEALT 1 GOH

вия
\qquad

FIGURE 3. SAMPLE OF ANALOGUE DATA

4.2 Lines and Data

a) Line spacing
100 metres
b) Line direction
0 degrees, (astr.) (north/south)
c) Flying height
100 metres
d) Flying speed
156 km/hr
e) Data point interval:

- magnetic 42 metres
- VLF EM 21 metres
f) Tie Line interval 2 kilometres
g) VLF transmitter Ch. \#l (Line) - Cutler, Maine 24.0 kHz .
h) VLF transmitter Ch. \#2 (Orthogonal) - Annapolis, Maryland 21.4 kHz .
i) Line kilometres within the claim boundaries - 161
j) Line kilometres over total survey area - 190
4.3 Tolerances
a) Line spacing: Any gaps longer than one kilometre and wider than twice the line spacing were reflown.
b) Flying height: Portions of line longer than one km which were above 125 metres were reflown if safety considerations were acceptable.
c) Magnetic diurnal: Less than twenty gammas (nanotesla) deviation from a smooth background over a period of two minutes or less as seen on base station analogue record.
d) Manoeuvre noise: approximately \pm_{5} gammas.

4.4 Photo mosaics

For navigating the aircraft and recovering the flight path, photo mosaics were made at final map scale from existing air photos. In order to provide a semi-controlled base the airphotos were laid down on a topographic map which had been photographically adjusted to match the photo scale. The laydown was then photographed and printed at $1: 10,000$ scale for navigating and flight path recovery.

5.0 Data processing

Flight path recovery was carried out in the field using a video tape viewer to observe the flight path as recorded by the Geocam video camera system. The flight path recovery was completed daily to enable reflights to be selected where needed for the following day.

The remaining data processing was carried out in the offices of Dataplotting Services Inc. in Toronto.

Magnetic levelling was computed in the standard manner by tieing survey lines to the tie lines. The VLF-EM data was corrected by applying the following formula.
(A) Total Field Strength
$V=\frac{S M+100}{K} \quad$ where $\quad K=\frac{S(A-2 R)+100}{100}$
$\mathrm{V}=$ final corrected value in of
$M=$ raw data value from the magnetic tape
$S=$ scale factor
$A=$ average of all M on a given line.
$R=$ standard deviation of A
(B) Quadrature

$$
\begin{aligned}
& Q=\frac{S N}{K} \quad \text { where } K=\frac{S B+100}{100} \\
& N=\text { raw data } \\
& B=\text { average of all } N
\end{aligned}
$$

The vertical magnetic gradient is computed from the total field data using a widely accepted method of transforming the data set into the frequency domain, applying a transfer function to calculate the gradient, and then transforming back to the spatial domain. The method is described by a number of authors including Grant, 1972, and Spector, 1968.

Grant, F. S., Review of data processing and interpretation methods in gravity and magnetics, Geophysics, August 1972.

Spector, A., 1968, Spectral analysis of aeromagnetic maps: unpub. University of Toronto thesis.

These calculations, and all other corrections and map contouring were carried out by Dataplotting Services Inc. of Toronto.

6.0 INTERPRETATION

The contour pattern shows a number of linear magnetic anomalies which are roughly parallel and are trending in an east-west direction. Some of these coincide with outcrops of the chlorite schist and are interpreted as such. Others are within the general region shown as intermediate to basic volcanic rocks and are labelled 4 m on the interpretation map to indicate magnetic units within the volcanics. Some lateral displacements of these linear units have been interpreted as faults.

Two very obvious linear magnetic anomalies striking approximately $\mathrm{N} 23^{\circ} \mathrm{W}$ are believed to be diabase dykes and are marked as such. An outcrop of granite lies in a roughly oval-shaped anomaly which has a different texture and character from the units marked as 4 m , and it is believed that this could indicate the granite intrusion that is mapped in that location.

The VLF conductor axes conform to the geology and the magnetic pattern in most places. The unit interpreted as chlorite schist is conductive, which is normal for this rock type. Other of the magnetic units appear not to be conductive and in fact some are quite resistive which would be more common for silicified iron formation that is outcropping or has very thin overburden.
7. SUMMARY

An airborne magnetic and VLF-EM survey has been carried out over the claim block at a density of approximately 1 mile per mineral claim. The information from the survey has been interpreted to modify and update the existing geology.

TERRAQUEST LIMITED

Geophysicist

APPENDIX A

SPECIFICATIONS

Resolution:	0.5 gamma
Accuracy:	± 1 gamma over operating range
Range:	20,000-100,000 gamma in 23 overlapping steps
Gradient Tolerance:	Up to 5,000 gamma/meter
Out put:	VISUAL: 5 digit 1 cm ($0.4^{\prime \prime}$) high Liquid Crystal Display, visible in any ambient light
	DIGITAL: Multiplied precession frequency and gating pulse
	ANALOGUE: 0-99 gamma (optional)
External Trigger:	Externally triggered cycling with period of 1.00 sec .
Power Requirements:	28 V DC, 8 Ws per reading
Operating Temperature:	-40 to +55 C
Dimensions:	Console: $15 \times 8 \times 15 \mathrm{~cm}\left(6 \times 3 \frac{1}{4} \times 6^{\prime \prime}\right)$ Sensor: $14 \times 7 \mathrm{~cm}$ dia (5 3/4×2 $3 / 4^{\prime \prime}$ dia) Staff: 175 cm ($70^{\prime \prime}$) extended, 53 cm (21") collapsed or sectional 45 cm (18i) each section
Wei ght:	$2.7 \mathrm{~kg}(6 \mathrm{lb})$ complete, $2.3 \mathrm{~kg}(5 \mathrm{lb}) \mathrm{in}$ back-pack mode
Manufacturer:	Gem Systems Inc. 105 Scarsdale Rd. Don Mills, Ontario M3B 2R5

Introduction.

The Totem-2A measures basically the same parameters and shares the same package configuration as the well established Totem-1A.

This new generation instrument, however, measures multiple parameters on two channels simultaneously, with less noise and greater accuracy. These advancements have been achieved while maintaining the simple installation and operating procedures of the 1 A model.

The Totem-2A employs state of ant digital and linear integrated circuits to implement the functions of crystal controlled phase locked loop frequency synthesizers, dual frequency heterodyne conversion and proprietary time domain sampling vector computation techniques.

Features.

The principal parameters measured are the change in total field and the vertical quadrature field. Parameters also available are the total field gradient (from sensors in two locations) and the horizontal quadrature field. The quadrature polarity is defined by the direction of flight relative to the field. The total and quadrature magnitudes are insensitive to sensor orientation in pitch, roll and yaw.

One obvious advantage of dual frequency operation is that primary sources can be selected to ensure good coupling with conductors of any orientation. Potential uses of the gradient mode are enhanced interline contouring and deliniation of multiple conductors with horizontal and vertical gradient respectively.

Specifications subject to change.

Primary source:	Magnetic field component radiated from VLF radio transmitters (one or two simultaneously).
Parameters measured:	Total field, vertical quadrature, horizontal quadrature, gradient.
Frequency range:	15 kHz to 250 kHz front panel selectable for each channel in 100 Hz steps.
Senstivity range:	$130 \mathrm{uV} / \mathrm{m} 10100 \mathrm{mV} / \mathrm{m}$ at 20 kHz .3 dB down at 14 kHz and 24 kHz .
VLFsignal bandpass:	-30B at $\pm 80 \mathrm{~Hz}, 84 \%$ variation at $\pm 50 \mathrm{~Hz}$.
Adjacent channel rejection:	300 to $800 \mathrm{~Hz}=20$ to $32 \mathrm{~dB}, 800$ to $1500 \mathrm{~Hz}=32$ 1040 dB , 1500Hz > 40dB (for $\times 2 \%$ noise envelope).
Out of band rejection:	$10 \mathrm{kHz} 102.5 \mathrm{kHz}=5 \times 10^{-4} \mathrm{~A} \cdot \mathrm{~m} 105 \times 10^{-1} \mathrm{~A} / \mathrm{m}$ < 2.5 kHz rising at $12 \mathrm{~dB}^{\prime}$ oclave 30 kHz to $60 \mathrm{kHz}=5 \times 10^{-4} \mathrm{~A} / \mathrm{m}$ to $8 \times 10^{-3} \mathrm{~A} \mathrm{~m}$ $>60 \mathrm{kHz}$ rising at 60 B /octave (for no overload condition).
Output span:	$\pm 100 \%= \pm 1.0 \mathrm{~V}$
Output filter:	Time constant 1 sec for 0 to 50% or 10% to 90%. noise bandwidth 0.3 Hz (second order LP).
Internal noise:	$1.3 u \mathrm{~V} / \mathrm{mms}$ (ambient noise will exceed this).
Sterics filler:	Reduces noise contribution ol impulse interference.
Electric field rejection:	-0.5\% error for 20 mlow cable.
Controls:	Power switch, frequency selector switches (line \& ortho) level controls (line \& ortho), meter switch (total/quad) sferics filter switch.
Displays:	Meters (line \& ortho), sterics light, overload light.
Inputs:	Power, 23 to 32 Vdc fused 0.5 Amp . Signal, Sensor upper, Sensor lower.
Outputs:	Tolal, quad, gradient, multiplexed (line \& ortho). Audio monitor, slereo line \& ortho.
Dimenslons $\mathbf{2}$ weight:	Console 19^{\prime} rack mounled, 4.5 cm high $\times 34 \mathrm{~cm}$ deep, 3.8 kg . Sensor and pre-amplifier assembly 15 cm dia. and 46 cm long, 1.5 kg .

SPECIFICATIONS: UNIVERSAL DATA ACQUISITION SYSTEM URTEC MODEL - UDAS-100

BASIC UDAS

MICROPROCESSOR AND MEMORY:

- Texas Instruments TMS 9900-16 BIT with built in multiply and divide hardware.
- Total memory expandable to 32 k words.
- Basic system contains:
- 16k - 16 bit word RAM
- Up to $8 k$ - 16 bit word EPROM
- Cartridge program loading
- $12 k$ - Bytes of non volatile RAM program storage (optional)

INPUTS AND OUTPUTS

- Analog input: 16 differential input channels with 12 bit resolution at $\pm 5 \mathrm{~V}$ full scale
- Analog output - up to 16 channels (optional)
- 30 addressable ports for multiple byte transfer
- 56 inputvoutput lines for BCD arí binary data information (transferred in multiples of 8 bit bytes)
- 3 pulse accumulator inputs for frequency and pulse information. (eg. - Doppler navigation and radar altimeter).
- 2 digital spectrometer inputs. (eg. upward and downward detectors selectable at 256 or 512 channels)
- 1 RS 232 serial port for interactive keyboard and display
- 1 RS 232 serial port for addition of CRT floppy disks and other terminals.
- 1 same protocol as RS 232 with TTL level
- 1 operator controlled fiducial input (switch or keyboard activated)
- Youtput for graphic display on oscilloscope
- High speed data transfer-lines GPIB - IEEE-488 compatible

INTERFACES:

- Magnetometer control and signal input for proton or cesium magnetometers
- Error condition indicator level for remote monitoring of diagnostic tests.
- Controller and outputs for two 9 track $1 / 2$ inch magnetic tape units.
- Printer/Recorder controller.
- Digital interface to navigation camera (8 digits of fiducial and coding information). -
- Controller for magnetic tape cartridge (program̀ loader)
- Disk storage interfaced via RS-232 or GPIB - IEEE-488 BUS

CONTROLS:

- System power on/off switch
- Keyboard with 24 character alphanumeric display. Keyboard/display can be operated on main console or remotely
- Manual start and load of Julian clock and fiducial numbers.
- All control functions interrogate with YES or NO answer.

SOFTWARE:

The basic system is supplied with the necessary programs (on magnetic cartridge) to execute routine operational functions and standard survey requirements. Additional dedicated programs are also included to provide:

- Spectrometer Calibration
- Aulomatic resolution check
- Full spectra printout on recorder/printer
- Continuous monitoring of system gain using natural "K" photopeak
- Automatic window adjustments
- Fast total count sampling (0.1 sec) for point sources resolution.
- Selective graphic display options.
- Read after write data verification.
- Selective data tape dump
- Magnetic tape copy (optional)
- Data processing and plotting program (optional)
- Diagnostic test programs
- A variety of additional special functions programs are available on request.

PRINTER/RECORDER

CONTROLS

- Power on/oft switch
- Automatic paper feed
- Print contrast control
- On/oti print head control
- Automatic take-up spool

FORMATS

- Alphanumeric, complete ASCII character set. Thermal 5×7 dot matrix
- Graphics 70×70 dots per inch resolution
- Software programable under UDAS control
- Records up to 16 analog traces each with variable O and F.S. setting. Traces can be stacked or overlapping. Software controlled. Trace position and amplitude can be adjusted via interactive keyboard.
- Overflow is automatic by digital stepping.
- Complete alphanumeric annotations can be printed on recording chart (eg. name of project and survey area details, fiducial numbers, time. recording scales and parameters etc.)
PAPER
- Thermosensitive paper 222 mm (8.75 in .) wide, 30 meter (100 ft.) long
- Thermal print head is board mounted and easy to replace

POWER

- 24-28VDC 3.0 A average

WEIGHT

- 15.6 kg .35 Jbs .

DIMENSIONS

- 48.2 cm (19 in.) wide, 17.8 cm (7.0 in .) high, 40.6 cm (16 in.) deep (standard rack mount).

APPENDIX B

SWAYZE \＆CUNNINGHAM TOWNSHIP．

MINING CLAIM NUMBER

P	740046	
937	740047	
\％	740048	
第	740049	
\％ink	740050	
－	740051	
	740052	
$\frac{6}{x-2}$	740053	
5	740054	
$\begin{aligned} & \text { +hat } \\ & =1 \end{aligned}$	740055	
2	740056	
过	740057	
Exicis	740058	
最建	740059	
	740060	
6ters	740061	
	740062	
安为	740063	
	740064	
－	740065	
	740066	\because
	740067	
\because	740068	－

P	740069	
Fgy?	740070	
Eration	740071	
	740072	
$\sqrt{\operatorname{kan} 2}$	740073	
－	740074	
－	740075	
－12	740076	
＋20	740077	
	740078	
Equ	740079	
E－	740080	
Cime	740081	
	740082	
$4 \cdot 9$	740083	
	740084	
Craiz	740085	
\cdots	740086	
	740087	－
\bigcirc	740088	
－	740089	\cdots
	740090	
\because	740091	

PREFIX

740092	779971	779982
740093	779972	779983
740094	779973	779984
740095	779974	779985
740097	779975	779986
740098	779976	779987
740099	779977	779988
740100	779978	779989
779956	779979	779990
779957	779980	799001
779958	779981	799002
779959		799003
779960		799004
779961		799006
779962		799007
779963		799008
779964		799009
779965		799010
779966		799011
779967		799012
779968		
779969		
779970		

SWAYZE \& CUNNINGHAM TOWNSHIP.

PREFIX	MINING CLAIM NUMBER	MINING CLAIM NUMBER
P	740092	779982
	740093	779983
	740094	779984
	740095	779985
	740097°.	779986
	740098	779987
	740099	779988
	740100	779989
	779956	779990
	779957	799001
	779958	799002
	779959	799003
	779960	799004
	779961	799006
	779962	799007
	779963	799008
	779964	799009
	779965	799010
	779966	799011
	779967	799012
	779968	
	779969	
	779970	
	779971	
	779972	
	779973	
	779974	
	779975	
	779976	
	779977	
	779978	
	779979	,
	779980	
	779981	

Ministry of
Order of

In the matter of mining claims:

> See attached list as per
> Report of Work $\# 493 / 84$
in the Townships of
Swayze and Cunningham.

Ervin Jamieson, Rodney Frazer, John Jamieson, On consideration of an application from the recorded holder, Quinterra Resources Incorporated
under Section 77 Subsection 22 of The Mining Act, 1 hereby order that the time for filing reports and plans in support of Airborne Geophysical (Electromagnetic \& Magnetometasserment work recorded on November 8, \qquad 1984
be extended until and including \qquad February 20, 19

Copies:
Ervin Jameson
Rodney Frazer
John Jamieson
P.O. Box 43

Note Dame du Nord P 2, Quebec JOR BO

CC: Mining Recorder Timmins, Ontario

cc: Terraquest Limited
111 Richmond Street West
Toronto, Ontario
MEH 2 GU
Attention: Roger K. Watson
cc: Quinterra Resources Incorporated P.O. Box 447

321 Algonquin Avenue
North Bay, Ontario
P1B 8 Jl
FILE

Mining Lands Section
Control Sheet

File No 2.7807

TYPE OF SURVEY
GEOPHYSICAL
\qquad GEOLOGICAL
\qquad GEOCHEMICAL
\qquad EXPENDITURE

MINING LANDS COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2. Heerst

Signature of Assessor

Swayze Twp. M. 1150

THE TOWNSHIP
OF

CUNNINGHAM

DISTRICT OF
SUDBURY
PORCUPINE
MINING DIVISION
SCALE:1-INCH=40 CHAINS

LEGEND

```
\mathrm{ PATENTED LAND }
CROWN L
LOCATED LANO
LICENSE OF OCCUPATION
LICENSE OF OCCUPATIO
MINING RIGHTS ONLY
SURFACE RIGHTS ONLY
SURFACE RIGHTS ONLY
ROADS
IMPROVED ROAOS
KING'S HIGHWAYS
KING'S HIG
RAIL WAYS
POWER LINES
MARSH OR MUSKEG
MINES
CANCELLED
PATENTED FOR SURFACE RIGHTS ONLY
```

NOTES
400 Surfoce Rights Reservation ulong the
shores of all lokes 8 rivers \qquad
plan no. M. 744
Denyes Twp.-M. 758

SWAYZE

DISTRICT OF
SUDBURY
PORCUPINE
MINING DIVISION

400 Surfoce Rights Reservation alon the shores of all lakes and rivers.

