REPORT ON EXPLORATION PROGRAMS
 Topboot Lake and Sylvanite Projects Swayze and Denyes Townships
 Swayze Area, Ontario
 1988
 for
 CAN MAC EXPLORATION LTD

Report on Exploration Programs
Topboot Lake Project Sylvanite Project

> by

Frank H. Toews, B, Sc., F.G.A.C.
contributions by
Robin E. Goad, M. Sc., F.G.A.C.
GEOLOGICAL ENGINEERING SERVICES
January
1989

SUMMARY:

Can Mac Exploration Ltd. Has option agreements on three properties in the Swayze Gold District near Timmins, Ontario. The company has recently completed work on two of these properties referred to as the Topboot Lake and Sylvanite Prospects. They are comprised of 42 and 76 unpatented, contiquous claims in Swayze and Denyes Townships. During the period of May through October, 1988, further linecutting, stripping, trenching, and diamond drilling was conducted on the Topboot Lake group of claims. In August and September, 1988, an access corridor was opened to the Sylvanite group of claims where stripping and trenching programs were carried out.

The stripping and trenching on the Topboot Lake property was successful in extending the Derraugh vein System over a strike length of > 300 metres, and the Main Derraugh Vein System over a strike length of 265 metres. Some secondary splay veins enechelon to the Main Derraugh Vein were also stripped after achieving highly anomalous gold values in grab samples associated with disseminated chalcopyrite. The \#2 Vein system was also extended over a strike length of 80 metres. Stripping failed to identify any additional significant quartz veins near the \#3 Vein. The $1,204.5$ metre (3,952 foot) Diamond Drill Program was successful in intersecting both the Derraugh and \#2 Veins. However, the gold concentrations in core samples were found to be much lower, up to $1580 \mathrm{ppb}(.046 \mathrm{oz} \mathrm{Au})$, than grades achieved in surface chip samples (up to $52,460 \mathrm{ppb}$ (1.53 ozs. Au/ton) in the

Derraugh Vein). Therefore no current work is recommended on the known vein occurrences. The Topboot lake property has grassroots gold exploration potential on other parts of the claim group.

The stripping on the Sylvanite claims was successful in exposing a number of interesting vein occurrences associated with feldspar porphyry dykes. Grab samples collected from these veins returned grades of $10,360 \mathrm{ppb}(0.31 \mathrm{ozs} \mathrm{Au} / t o n)$ and $3,910 \mathrm{ppb}$ (0.ll ozs Au/ton). Only six grab samples were collected because of budget restraints. Systematic chip or channel sampling of the exposed veins is recommended.
1 INTRODUCTION 1
2 PROPERTIES, LOCATION AND ACCESS 2
3 GEOLOGICAL SETTING 4
4 SWAYZE AND DENYES TOWNSHIP EXPLORATION HISTORY AND
PREVIOUS WORK6
RECENT WORK
5.1 Personnel 6
5.2 Linecutting 7
5.3 Stripping and Trenching
Topboot Lake 8
Sylvanite 10
5.4 Geological Mapping
Topboot Lake 11
Sylvanite 12
5.5 Review of Geological Mapping
Topboot Lake 12
Sylvanite 21
5.6 Diamond Drilling 28
5.7 Review of Diamond Drilling 31
SUMMARY AND CONCLUSIONS
Topboot Lake 39
Sylvanite 41
7 RECOMMENDATIONS
Topboot Lake 43

TABLE OF CONTENTS CONTINUED:

Sylvanite 44
8 Certificates...
9 References ii
10 Appendix iii
Rock Types
Symbols
Figure 1) Location of Topboot Lake and Sylvanite properties and
Regional Geology Apdx,
Figure 2) Topboot Lake Claim Map. Apdx.
Figure 3) Sylvanite Prospect Claim Map . Apdx.
Figure 4) Proposed Grid Extension For the Topboot Lake Claims
...Figure 5) Detailed Geology of the North Part of Trench " $1+25$ W"and the "l+93 S" Cross Trench and location of 1988 Diamond DrillHoles.pocketFigure 5A) Trench Plan and Geology of the Derraugh Trench Northand South Extensions and the \#3 Vein North and South crossTrenches with the Horizontal Projections of the Drill HolesPlottedpocket
Figure 5B) Trench Plan and Geology of Trench JH and the DT \#2Trench with the Horizontal Projections of the Drill HolesPlottedFolder
Figure 6) Trench Plan and Geology of the $1+25 \mathrm{~W}$ Trench and the$1+93 \mathrm{~s}$ Trench with the Horizontal Projections of the Drill HolesPlottedpocket
Figure 7) Trench Plan and Geology of the Sylvanite Occurrencespocket
DDH LOGS AND SECTIONS
DDH T.L. 88-1 to DDH T.L. 88-13 pocke.t
Assay Sheets pocket

1 INTRODUCTION:

This report deals with two claim groups, referred to as the "Topboot Lake Property" and the "Sylvanite Property" in Swayze and Denyes Townships, Ontario. These properties are held by Glen Auden Resources Limited., subject to an option agreement with Can Mac Exploration Limited. Under the terms of the agreement, Can Mac may earn a 50% equity interest in these and one additional property by making expenditures of two million dollars over a period of four years. The recent work performed on these properties is a continuation of that begun by Can Mac during the November 1987 to March 1988 period. (See report by R.E. Good, 1988.)

The properties are gold prospects and are found within the Swayze-Deloro Metavolcanic-metasedimentary belt along with numerous other prospects and several past-producing gold mines such as the Halcrow-Swayze Mine, the Jerome Mine and the Joburke Mine. (P.C. Thurston, et al, 1977; Figure 1)p Previous chip sampling by Can Mac in the Derraugh Trench on the Topboot Lake Property obtained gold values of up to $52,460 \mathrm{ppb}$ Au (1.53 oz. Au/ton), while in the "l+25W" Trench anomalous Au content in the analyses of chip samples reached $1,130 \mathrm{ppb}$. (.033 oz Au), (Goad, 1988). Abernathy (1987) as quoted by Goad (1988), collected grab samples from old trenches on the Sylvanite property which resulted in gold analyses of up to 0.321 oz Au.

Because of the favorable location of the claim groups, as well as the promising results of Can Mac's winter exploration program
on the Topboot Lake Property, additional geological exploration, stripping, trenching and a 1,204.5 meter (3952') diamond drill program was conducted on the Topboot claims. Also, an access corridor to the sylvanite prospect was located to bring in equipment for stripping and trenching, geological mapping and sampling.

This report summarizes the exploration work done on the two properties and has been prepared at the request of principals of Can Mac Exploration Limited.

Geologist Frank H. Towes worked on the projects during the late spring summer and early fall of 1988. He is the principal author of this report and did most of geological mapping and data documentation.

Geologist Robin E. Goad initiated a portion of the Topboot exploration program and briefly examined the Sylvanite property. He also provided supplementary data and organized portions of the final draft of this report.

2 PROPERTIES, LOCATION AND ACCESS:

The two claim groups mentioned above are located in Swayze and Denyes Townships in the Porcupine Mining Division.

The "Topboot Lake Property" consists of 42 contiguous claims which straddle the northern part of the common boundary between Swayze and Denyes Townships. (Figure 2.) Access is via a winter road which extends west from the gravel based, main timber haulage road maintained by the Foleyet Timber Company Limited.

The main haulage road runs south from Highway 101 , at a point 1 km west of the Mooseland Resort between Timmins and Foleyet. The access road intersects the main haulage road at a point approximately 60 km south of Highway 101.

The "Sylvanite property" is comprised of 76 contiguous unpatented mining claims in the northwest part of Denyes Townships (Figure 3) and the property can now be accessed by a branch from the winter road to Topboot.

Both properties may also be reached by float of ski-equipped fixed wing aircraft, by helicopter; or by all-terrain vehicle when winter ground-frost has dissipated.

3 GEOLOGICAL SETTING:
The Swayze-Deloro Metavolcanic-Metasedimentary belt is E.W. trending, somewhat arccuate in shape, narrowing to the northeast and southeast (Figure 1.). This belt is part of the superior Structural Province of the Canadian Precambrian Shield. The metavolcanic-metasedimentary rocks are Early Precambrian in age and are bounded by granitic rocks. The belt is terminated by the Kapuskasing Structural Zone to the northeast. (Thurston, et ald 1977).

Mafic to intermediate metavolcanics predominate, with areas of felsic to intermediate metavolcanics and metasediments occupying the central part of the belt. Parts of one of these felsicintermediate areas occurs in Swayze and Denyes Townships, on ground underlying the claim groups optioned by can Mac. Intruding the metavolcanics are bodies of feldspar +/- quartz porphyry. Younger lamprophyre dykes are also present. (Thurston et al,1977).

Metamorphism has produced mineral assemblages ranging from greenshist to amphibolite facies, with the latter occurring mainly toward the margins of the belt. (Thurston et al,1977). Foliations in the metavolcanic-metasedimentary rocks are generally parallel to sub-parallel to bedding and flow banding. The plunge of lineations varies from steep to more shallow (20 degrees - 60 degrees) going from the eastern to the western parts of the Swayze-Delor belt. Joints trend from northeast to northwest and prominent faults are oriented north northwest to
north, along with northeasterly trends. Shear zones with an east-west orientation are also present. (Thurston et al, 1977).

Folding is characterized by isoclinal folding about east to northeast axes, which is more or less parallel to the stratigraphic trends. These fold axes have been subsequently warped by cross-folding. (Thurston et al; 1977).

Prospecting for gold deposits has been going on in the area since the $1930^{\circ} \mathrm{s}$, resulting in the development and production of a number of small gold mines.

4 SWAZEY AND DENYES TOWNSHIP EXPLORATION HISTORY AND PREVIOUS

 WORK:Reference

> "Report on stripping and trenching on the Saxton Lake, Topboot Lake and Sylvanite prospects, Swayze and Denyes Townships, Porcupine Mining District, Ontario, Nov. 1987 through Mar. 1988.", for Can Mac Exploration Limited., by Robin E. Goad, 1988.

5 RECENT WORK:
COMPANY:
CAN MAC EXPLORATION LTD
John C. Hildebrandt, Vice president P.O. Box 1118 (l Hildebrandt Street) Barry's Bay, Ontario. KOJ 180.

PROPERTIES:

1) TOPBOOT LAKE PROJECT (42 CLAIMS)

Swayze and Denyes Townships, ontario.
2) SYLVANITE PROJECT (76 CLAIMS)

Denyes Township, ontario.
GEOLOGICAL CONSULTANTS:
Geolocical Engineering Services North Bay, ontario

5.1 PERSONNEL:

Frank P. Tagliamonte, P.Eng.
Frank H. Towes, B.Sc., F.G.A.C.
Robin E. Goad, M.Sc., F.G.A.C.
SUPERVISION AND MANAGEMENT
Noron Exploration Services
P.O. Box 1211

Barry's Bay, Ontario. KOJ lBO
James Hildebrandt
Herbert Hosick
Brian Both
Harild Booth
Eugene Hollett
Leonard Hollett

Les Entreprises Jacques Rousseau Forage a Diamant Inc. Rouyn-Noranda, Quebec

PERSONNEL
4 diamond drillers
EQUIPMENT
Longyear 38 Diamond Drill
STRIPPING AND TRENCHING
Camroy Construction Limited
Hagar, Ontario
PERSONNEL
2 heavy equipment operators and 1 laborer
EQUIPMENT
Catapillar D-7 Bulldozer
A link belt tracked back hoe
A bombardier $J-7$, eight wheel All-terrain argo
5.2 LINECUTTING:

An approximate 25 line kilometer metric grid was cut on the Topboot Lake claims during May and June, 1988 by Noron Exploration Services. The grid was cut as an extension of the previously existing metric grid to cover the 14 claims at the northeast corner of the property. The grid was cut by extending the $9+00 \mathrm{~N}$ tie line northeast and cutting new 100 metre interval lines from the tie line at 330 degrees. The new grid was cut using figure 4 as a guide, although additional tie lines were also cut, they are not shown in this diagram.
5.3 STRIPPING AND TRENCHING:

Topboot Lake:
Additional stripping and trenching was carried out on the Topboot Lake claims in June, July and October 1988 by Camroy Construction Limited. Areas selected for trenching were first cleared of vegetation and topsoil using a bulldozer. This stripping was then followed by trenching to bedrock utilizing a backhoe. After trenching, the bedrock was cleaned hydraulically and blasted by personnel from Noron Exploration Services. The exposed bedrock was mapped and sampled by geologists from Geological Engineering Services.

Stripping and trenching was first conducted in the vicinity of the Derraugh Trench where the earlier program had exposed the auriferous Derraugh Vein System. The Derraugh Trench was widened between $D T 1+00 \mathrm{~m} \mathrm{~N}$ and $\mathrm{DT} 2+00 \mathrm{~m} \mathrm{~N}$ in order to trace the north extension of the Main Derraugh Vein (Figure 5A). The vein was not sufficiently well exposed by the earlier trenching program. The Derraugh Trench was also widened to the south between DT $0+00$ and DT $1+00 \mathrm{~m} \mathrm{~s}$ in order to trace the south extension of the Derraugh Vein System. Two additional smaller trenches were dug in October, 1988 at the request of John Hildebrandt in order to test the projection of some auriferous splay veins en-echelon to the Main Derraugh Vein. One of these trenches (Trench JH) was dug in a northwesterly direction for 75 metres from DT $0+00$ (Figure 5B). The other trench (DT \#2) Trench) was dug in a northerly direction for 40 metres from 10 meters east of DT $0+90$ $\mathrm{m} N$ (Figure 5B). Another trench (Trench $0+900 \mathrm{~W}$) was dug for 200
metres south from the east side of the South Derraugh Cross Trench. This trench was excavated in June 1988, but was not cleaned or mapped because of the lack of any significant mineralization.

Additional trenching was also carried out in the vicinity of the \#2 Vein System (Trench $1+25 \mathrm{~W}$) in order to trace the veins along strike to the north and south (Figure 6). The trench was also widened in order to expose a number of previously undiscovered parallel veins. A new trench (Cross Trench l+93 S) was also excavated for 75 meters in an easterly direction northeast of l+93 m S on Trench l+25 W (Figure 6).

Two small 50 meter cross trenches were also dug perpendicular to Trench $3+75 \mathrm{~W}$ from the previous trenching program (Figure 5A). The trenches are referred to as the \#3 Vein North and South Cross Trenches and were dug in an attempt to trace a possible extension of the \#3 vein.

The dimensions of these trenches are as follows:

TABLE 1

TRENCH	LENGTH	WIDTH	AREA
North Derraugh ext.	100 m	20 m (average)	$2,000 \mathrm{sq} \mathrm{m}$
South Derraugh ext.	100 m	10 m (average)	$1,000 \mathrm{sq} \mathrm{m}$
Trench JH	75 m	12 m (average)	900 sq m
DT \#2 Trench	50 m	15 m (average)	750 sq m
Tremch l+25 W ext.	45 m	10 m (average)	450 sq m
Trench l+93 s	75 m	10 m (average)	750 sq m
\#3 Vein North Cross	100 m	20 m (average)	$2,000 \mathrm{sq} \mathrm{m}$

Trench
\#3 Vein South Cross $140 \mathrm{~m} \quad 20 \mathrm{~m}$ (average) $2,800 \mathrm{sq} \mathrm{m}$
Trench
Trench $0+90 \quad 200 \mathrm{~m} \quad 20 \mathrm{~m}$ (average) $4,000 \mathrm{sq} \mathrm{m}$
SYLVANITE (see figure 7)
Trenching on the Sylvanite Property was restricted to parts of claims 931817, 931816, l026280, and was carried out more or less following a plan devised by R.E. Goad. Most of the trenched areas lie in the southeast part of claim number 931817 where earlier work by Erie Canadian Mines Limited and Sylvanite Gold Mine Limited included some trenching (Goad 1988). Four crosstrenches of varying lengths were excavated on claims 931817 and 931816. These cross-trenches were oriented parallel to previously cut and picketed grid lines (Another, older set of picket lines are also present which run at 030 degrees). Trench " $1+255$ " trends perpendicular to and between two of the crosstrenches. Itlengthens and widens the more limited exposures in a series of older pits and trenches, most of which had not reached bedrock. The purpose of the recent trenches was to expose porphyry intrusions found within metavolcanic rocks, along with the associated, gold-bearing quartz veins.

North of the "l+255" Trench, an area 40-60 meters long was stripped but not excavated to bedrock along its entire length due to budget limitations.

In addition, a short cross-trench was excavated near the north boundary of claim 1026280 in order to investigate the cause of an
airborne geophysical anomaly at this location (R.E. Goad, telephone communication, August 24, 1988).

Not all trenches were cleaned hydraulically due to equipment malfunctions, logistical and personnel problems.

Approximate dimensions of the trenches (clearing) follow:
TABLE 2

CLAIM \#	TRENCH		LENGTH (m)	WIDTH (m)	AREA (m2)
931816	3+90	W $\mathrm{X}-\mathrm{Tr}$	40	17	680
931817	4+33	W $\mathrm{X}-\mathrm{Tr}$	235	24	5,640
931817	5+60	W $\mathrm{X}-\mathrm{Tr}$	155	15	2,325
931817	1+25	S	105	25	2,625
931817	Road (now	Trench buried)	20	10	200
931817	4+90	$\mathrm{W} \mathrm{X}-\mathrm{Tr}$	60	15	900
1026280	4+30	W $\mathrm{X}-\mathrm{Tr}$	35	10	350

5.4 GEOLOGICAL MAPPING:

Detailed geological mapping was done on scales of $1: 500$ and 1:1000 on the Topboot Lake and Sylvanite properties using a slightly revised rock nomenclature as that devised by Goad (1988) and is included in the appendix.

Topboot Lake:

Most of the Derraugh Trench (where the Derraugh Vein is exposed), including the recently excavated north and south extensions were mapped by Robin Goad at a scale of 1:500 (Figure 5A). The \#3 Vein North and South Cross Trenches are included on this map (inset) and were also mapped at a scale of l:500. The JH and DT \#2 Trenches were mapped by Frank Toews at a scale of 1:1,000 (Figure 5B). The area of the $1+25 \mathrm{~W}$ Trench where the \#2 Vein is exposed, and the $1+93 \mathrm{~S}$ Trench were mapped by Frank Toews
at a scale of 1:500 (Figure 6).

Sylvanite:

The trenching on the Sylvanite property was geologically mapped by Frank Toews at a scale of 1:500 (Figure 7). Some grid lines in the vicinity of the trenches were also mapped prior to and concurrent with the trenching. The areas mapped along the grid lines are predominantly overlain by overburden up to 4 meters deep. An old diamond drill hole casing was also observed near line $5+00 \mathrm{~W}$ on the south side of Trench $1+25 \mathrm{~S}$ (Figure 7). 5.5 REVIEW OF GEOLOGICAL MAPPING:

Topboot Lake:

The geology of this report is an extension of the stripping and trenching program conducted by Can Mac during the winter of 1987. The earlier stripping was supervised by Goad (1988) who differed in his interpretation of the dominant host rock types
with Abernathy (1987) who conducted most of the earlier work for Glen Auden Resources Limited. Goad (1988) interpreted the dominant host rock of the Derraugh Vein and other areas of the property as a heterogeneously deformed felsic to intermediate porphyritic intrusion. Abernathy (1987) interpreted many of these rocks as lapilli and crystal tuffs. This recent work follows the interpretation of Goad (1988). However, it should be noted that although the host rock near the Derraugh Vein System is clearly an intrusion, rocks observed in drill core near the \#2 Vein system and in outcrops further north, contain altered plagioclase phenocrysts and fragments or clasts of intensely
altered rocks. It is not clear whether these rocks are heterogeneously deformed and altered porphyritic intrusions or related deformed and altered tuffaceous rocks in the transition from intrusive to extrusive depositional environments.

Derraugh Trench:

The Derraugh Trench is predominantly underlain by a greenish gray, fine-grained, massive rock with a homogeneous distribution of 20 to 30%, to 3 mm , subhedral to euhedral plagioclase phenocrysts. The rock is well jointed, massive and contains up to $28,0.5$ to 1 meter, irregular, chloritic xenoliths. The xenoliths typically have sharp to partly assimilated reaction rims distal to the Derraugh Vein. The rims are commonly silicified and bleached in areas more proximal to the vein. The porphyritic rock becomes increasingly bleached, altered and foliated near the Derraugh vein and the northeasterly-trending lineaments or swampy depressions recognized in previous mapping by Abernathy (1987), and Goad (1988). Both Abernathy and Goad interpret these depressions as faults. A progressive alteration is recognized in these areas resulting in the replacement of feldspar phenocrysts by carbonate and sericite. Progressive deformation also gives the rocks a laminar fabric. This fabric is also apparent in other areas of localized deformation and shearing resulting in a foliation trending between 050 and 070 degrees, and dipping north at 45 to 85 degrees.

The porphyritic intrusion is locally cut by a diorite intrusion up to 10 meters wide. This diorite is composed of 15 to 20%
hornblende, 10 to 15 \% quartz, and 65 to 75 . plagioclase. In altered localities the hornblende is commonly pseudomorphed by chlorite, the plagioclase is sericitic and there is abundant interstitial carbonate. The diorite has sharp to gradational contacts with the porphyritic intrusion and is thus considered to be a late phase of the same intrusive body. Abernathy (1987) recognizes an association between the diorite and the aforementioned linear depressions.

The porphyritic intrusion is also cut by an irregular lamprophyre dyke up to 2 meters wide. The lamprophyre is composed of 15%, to 3 mm hornblende and plagioclase phenocrysts in a fine-grained, dark brown groundmass. The lamprophyre has a northerly zig-zag orientation and is spatially associated with the Derraugh Vein. The lamprophyre is locally cut by the Derraugh Vein and contains fine quartz-carbonate veinlets. In these localities the dyke has an alteration assemblage including chlorite, carbonate and sericite. The dyke also locally cross-cuts the Derraugh vein suggesting that they are coeval.

The Derraugh Vein System is exposed in the Derraugh Trench over a continuous strike length of 265 meters. The Derraugh Vein System includes the Main Derraugh Vein and related smaller veins and quartz $+/-$ carbonate stockworks. The Main Derraugh Vein is 1 cm to 1.4 meters wide, strikes at North 160 degrees East, and dips 72 to 82 degrees to the east. Local variations in the strike direction are apparently influenced by the northeasterly
trending shearing. The vein locally bifurcates or becomes stockwork-like and commonly has related, en-echelon splay veins radiating from its margins. The Derraugh veins are composed of milky-white quartz and minor milky-white or yellow-brown carbonate and sericitic fractures. The veins contain nil to 5 \% sulphides but average less than 1 \%. Sulphides are predominantly pyrite with local chalcopyrite and rare arsenopyrite. The veins have sharp external contacts but are commonly cut by multiple generations of subsequent veins typically within the outer boundaries of the larger veins. In some localities the veins have silica flood zone appearance between sharp linear contacts. The alteration marginal to the Derraugh Vein System has been traced up to >300 meters along strike and between 5 and 50 meters wide. The alteration has an outer assemblage of green coloured, well foliated chlorite-carbonate-sericite schist with quartz-carbonate veinlets and minor pyrite. plagioclase phenocrysts are apparent in less altered areas with gradational contacts defined by the intensity of alteration. The alteration near the veins is dominated by a beige to pinkish-beige, finegrained to cryptocrystalline assemblage of quartz, carbonate, sericite +/- alkali feldspar, +/- pyrite (<l to 5) and lesser chalcopyrite. This siliceous alteration is cut by 1 to 50 \% quartz $+/-$ carbonate veins, veinlets and stockworths near the Main Derraugh Vein. The alteration typically bleaches, recrystallizes and metasomatizes the precursor beyond recognition. However, local areas are not feldspar destructive
as some areas contain pristine, euhedral plagioclase phenocrysts in a siliceous and bleached altered groundmass.

Only 6 samples were collected by the writers in areas not sampled by the previous stripping program. Only 2 of these contained anomalous gold concentrations up to 190 ppb gold. However, grab samples were collected by John Hildebrandt of Can Mac Exploration Ltd in areas where Goad (1988) previously obtained up to $52,460 \mathrm{ppb}$ gold (1.53 oz Au) in the country rock and $16,800 \mathrm{ppb}$ gold (. 49 oz Au$)$ in the vein in 1 meter chip samples. Hildebrandt's grab samples detected up to $212,470 \mathrm{ppb}$ gold ($6.20 .02(\mathrm{Au})$ and $6,720 \mathrm{ppm}$ copper (. $67 \% \mathrm{Cu})$. All of the significant gold assays were from samples containing chalcopyrite and the strong correlation between these elements in many samples suggests that chalcopyrite is a strong indicator of gold mineralization. Chalcopyrite is only common for 25 metres along strike in the Derraugh vein and 15 metres along strike in the \#2 vein.

\#3 Vein North and South Cross Trenches:

Detailed geological mapping in the vicinity of the \#3 Vein failed to detect any additional mineralization. The \#3 Vein North Cross Trench is underlain by weakly chloritic and sericitic feldspar porphyry. A 15 meter long area is sheared at approximately north 70 degrees east, dipping vertically. The shears are intensely chloritic and contain up to 208 continuous to discontinuous pyrite over a 5 meter width. These pyritic shears could not be extended but adequately explain the I.P.
geophysical anomaly detected in this area by Glen Auden Resources Limited. A two meter chip sample across these shears (375 N) detected 570 ppb gold. (.016 oz Au).

The \#3 Vein South Cross Trench is underlain by a diorite intrusion composed of plagioclase, quartz and chloritic hornblende. The diorite is cut by a 1 meter lamprophyre dyke with an irregular, northeasterly strike. The stockwork quartz veinlets discovered in the previous stripping program could not be extended more than 5 meters along strike. A l meter chip sample across these veinlets (375 s) detected no gold mineralization.
"D.T. \#2" Trench
The D.T. \#2 vein intersected near surface in Diamond Drill Hole TL 88-6 is now exposed in the "D.T. \#2" Trench and the vein can be traced over a strike length of about 45 meters in the trench. The vein appears to be quite narrow on surface (unlike the drillcore width) ranging from a few centimeters to about 30 centimeters maximum. The vein appears to be semi-continuous, and at one point is offset (left-laterally) by l-2 meters along steeply north-dipping fracture-shearing trending at 060-075 degrees.

The vein dips vertically to about 80 degrees W and strikes at approximately 020-025 degrees north of the drill
hole, swinging to 220 degrees 225 degrees $/ 70$ degrees s to the south of the drill hole. The vein appears to project toward another vein, up to 15 cm wide, in the "Derraugh" Trench. This
latter vein strikes at 230 degrees-260 degrees, dips at 80 degrees S, and splays into several veinlets l-2 centimeters wide trending between 200 degrees 220 degrees towards the east contact of the Main Derraugh Vein.

The "D.T. \#2" vein is comprised of quartz-carbonate (+/chlorite +/- epidote +/- pyrite) with silicification of wallrocks locally up to 30 centimeters wide. The host rocks are light to medium greenish, fine-grained, sericitic-chloritic with areas of visible feldspar phenocrysts (porphyry). Limonitic weathering surfaces indicate carbonatization of the porphyry. Less than 1% disseminated pyrite is visible. Also present are locally up to 5% stockwork, quartz-carbonate veinlets 0.1-2 centimeters wide.

ii) "J.H." Trench

Rocks encountered in the "J.H." Trench were medium to darker greenish-grey, fine-grained, chloritic - sericitic and locally porphyritic (feldspar). Areas of light greenish, patchy alteration (silicification?) are also present. Disseminated Py can be observed throughout much of the trench, in amounts varying from less than 1% to locally 5\%. Minor chalcopyrite could be seen and minor amounts of narrow quartz-carbonate veinlets are also present (No significant veining could be seen). Limonitic weathering surfaces indicate carbonatization of the host rocks.

South Cross-Trench:

The widening of the western end of the South Crossmench exposed rocks similar to those that were seen in the earlier
excavation, but only disseminated Py was observed in the new exposure, as opposed to both pyrite and scattered occurrences of chalcopyrite which were previously encountered.

West of the \#2 Vein and the " $1+25 \mathrm{~W}$ " Trench, an attempt was made to expose possible, additional veins in the "1+93 s" crossTrench. (See Figure 5B.)
"1+93 S" Cross-Trench:
The "l+93 s" Cross-Trench was also not washed. Only minor quartz-carbonate veinlets could be found in the fine-grained greenish-grey often limonitic weathering, carbonatized, chloritic to sericitic, foliated to schistose rocks which were exposed in this trench. Locally, plagioclase phenocrysts, up to several millimeters in size, were observed in the more massive parts. Minor disseminated pyrite is also present.
"1+25 W" Trench:
In the "l+25 W " Trench, the \#2 Vein from approximately 0.5 meters to 3 meters in width, and has a strike length of approximately 80 meters on surface, open to the north in swamp. It trends parallel to the adjacent, irregular steeply-dipping, carbonatized lamprophyre dykes. These dykes appear to intrude the \#2 vein in part, but the dykes are also brecciated by the vein. In addition, subsidiary quartz-carbonate veining crosscuts the lamprophyre, as well as the main vein, indicating at least two stages of quartz-carbonate introduction.

The host rocks are variable: schistose to foliated to more massive, medium to light greenish-grey, fine-grained, sericitic
and chloritic. The porphyritic character is indicated by local areas containing l-2 millimeter-sized, faint to distinct, sericitic plagioclase phenocrysts. The most strongly foliated to schistose rocks are located in the northern part of the trench, near the swamp, where schistose, narrow lamprophyre dykes are also present, oriented parallel to the foliation, which strikes at 065-080 degrees and dips at 55-65 degrees N. (The swamp may conceal an easterly to northeasterly trending fault zone). Limonitic weathering surfaces indicate the presence of carbonatized areas. Beige to slightly pinkish siliceouscarbonate alteration patches and haloes are also observed in close proximity to the veining. Disseminated pyrite is also present near the veining. The foliation in the host rocks is cross-cut by the main \#2 vein, although some shearing is present along contacts. Locally, adjacent to the main vein, up to 25% contorted, subsidiary veins appear to turn into the foliation planes, but in other areas the subsidiary veins form stockworks which cross-cut the foliated host rocks. The subsidiary veins range from less than 1 centimetre to 15 centimeters in width. The main \#2 vein is comprised of milky quartz with limonitic weathering, beige carbonate patches and veinlets: Remnant patches and fragments of wall rock altered to sericitic-chlorite and some pinkish to beige silicification-carbonatization are also found in the vein. Traces to locally lo disseminated sulfides (pyrite +/- chalcopyrite +/- malachite) are present. The main vein is irregular, bulging and pinching with strikes varying from

315 to about 360 degrees, and dips ranging from steep (east and west) to vertical on surface. (See also "review of Diamond Drilling.") The subsidiary veining consists of milky quartz $+/-$ carbonate +/- chlorite +/- pyrite +/- chalcopyrite. SYLVANITE:

Geological mapping was confined to the trenches and nearby cutlines (see figure 7). Not all trenching was washed due to equipment malfunctions and personnel problems.

Bedrock exposed in the trenches and cut-lines is comprised of intermediate (-mafic) metavolcanics, including some pillow lavas and fragmental rocks, some felsic metavolcanics, intermediatefelsic(?) feldspar porphyry intrusions and minor younger, narrow lamprophyre dykes. Quartz-carbonate (+/-sulfide) veining apears to be injected into all lithologies except for the lamprophyre. The amount of veining is variable and often associated with the porphyry. The most impressive veining occurs in the "l+25 s " Trench.

The predominant rocks exposed are intermediate, fine-grained, dark to medium greenish-grey metavolcanics. These rocks are generally foliated to schistose, with foliations striking at 080120 degrees and mainly dipping from near-vertical to 60 degrees N, often parallel to sub-parallel to contacts. Locally, thinnlybedded units can be observed with beds l-4cm thick. The intermediate (-mafic) rocks are chloritic +/- sericite and often carbonatized as is indicated by limonitic weathering surfaces. Traces to locally 18 disseminated pyrite can be seen. Pillow
lavas are located in the " $4+33 \mathrm{W"}$ Cross-Trench at approximately $2+10 \mathrm{~m} \mathrm{~s}$, in a 6 -meter wide zone. The pillows are up to 1.5 meters long and 0.6 meters wide, the long axes trending at about east-southeast. The pillows have chloritic selvages and 2-3\% quartz-carbonate veining occupies the areas interstitial to the pillows. Near line $4 \mathrm{~W} / 3+00 \mathrm{~m}$ S, small outcrops of chloritized, carbonatized intermediate metavolcanics contain some fragmental rocks. The fragments are felsic, up to 18 centimeters long, set in a foliated chloritic matrix. The fragments are elongate in the plane of the foliation which trends at 095-105 degrees/80 N at this locality.

Felsic-intermediate metavolcanics occur at the north end of the "4+33 W" Cross-trench. These rocks are strongly foliated to schistose, light greenish, fine-grained, sericitic-chloritic with some yellowish-green epidote alteration. The foliation is steeply dipping, locally deformed and strikes at 120 degrees. Swamp occurs at the north end of the trench. A zone of guartzcarbonate veining cross-cuts the foliation and is lost in the swamp. The vein zone, which is about 15 meters long by 15 centimeters to l meter wide, consists of quartz-carbonate veinlets approximately $1-15$ centimeters wide, locałly with minor associated disseminated pyrite +/- chalcopyrite.

The zone strikes at 075 degrees in the north changing to approximately 035 degrees in the southern part where it appears to dissipate as a few 0.5-2 centimeter wide veinlets. A grab from this: sample ("D"=Table 3) $\begin{gathered}\text { from } \\ \text { zone } \\ \text { contained } \\ 10 \mathrm{ppb} \\ \text { gold }\end{gathered}(.003 \mathrm{oz} \mathrm{Au)}$.

The other occurrence of felsic-intermediate volcanics is in the isolated, extreme southern section, in the " $4+30 \mathrm{~W}$ " cross-trench on claim 1026280. Here, a short trench* was excavated in order to investigate the cause of an airborne V.L.F. geophysical anomaly (R.E. Goad, telephone communication, August 24, 1988). The felsic matavolcanics are well-foliated to schistose (105-115 degrees/90-55N), locally thinly bedded (l-4cm, thick at N 125 degrees/steep), light to medium grey to beige, fine-grained to aphanitic, sericitic-chloritic, partly siliceous and weakly carbonatized (limonitic weathering). The rocks are locally cherty (possibly silicified?) Minor amounts of l-2 millimeter wide quartz-carbonate veinlets are locally present. The zone of felsic-intermediate volcanics is approximately 6 meters wide, enclosed by altered feldspar (+ quartz) porphyry intrusions on the north and south. The northern contact with the porphyry is at about 130 degrees $/ 82$ S. Here, the felsic metavolcanics are cherty (silicified?) with anastomosing l millimeter wide quartz carbonate (limonitic) veinlets and the porphyry is limonitic weathering, locally beige-colored, silicified and carbonatized, with stockwork quartz-carbonate veinlets up to 5 millimeters wide some of which trend at 010 degrees?. The northern porphyry is light greenish-grey more massive to foliated at 105 degrees/50 N . The southern contact with porphyry trends about 105 degrees/90+/parallel to the foliation in a sericite schist with limonitic weathering.

[^0]The southern porphyry is foliated to more massive, light grey to somewhat beige to greenish grey and parts are a brownish, medium grey color. Anhedral to sub-hedral, feldspar phenocrysts up to 5 mm in size, can be observed in the fine-grained matrix. Also, some glassy quartz phenocrysts up to 3 millimeters in size are visible. The matrix also contains up to 1% finer grained, disseminated pyrite which contributes to the limonitic weathering surface along with weak carbonatization (The pyrite may be a contributing factor to the geophysical anomaly.) Minor amounts of l-3 millimeter wide quartz-carbonate veinlets are present. The southern contact of the porphyry was not exposed in the trench (where overburden is up to 3 meters deep) so the width of the porphyry may exceed 6 meters.

A narrow, dark grey, magnetic, fine grained lamprophyre dyke cuts the southern porphyry body only. The lamprophyre is oriented at 022 degrees $/ 80 \mathrm{E}$, sub-perpendicular to the volcanicporphyry contact. The dyke exhibits a chilled margin on its eastern contact; the western contact is not exposed, but the lamprophyre is not much more than 10 centimeters wide. Minor carbonate veinlets cross-cut the contact. Biotite and amphibole phenocrysts up to 2 millimeters in size are set in fine-grained carbonatized matrix.

Other feldspar porphyry intrusions are found in the trenches in the area between $0+20 \mathrm{M} \mathrm{S}$ and $1+90 \mathrm{M} \mathrm{S}$ relative to the baseline. The intrusions can pinch and widen, range in size from a few centimeters to several meters wide, and one is interpreted to
have width of about 60 meters. This large porphyry body, which is exposed in the $1+25 \mathrm{~S}$ Trench and in two old cross-trenches, is interpreted to be the locus for many of the porphyry dykes observed in the " $4+33 \mathrm{~W}$ " and " $5+60 \mathrm{~W}$ " cross-trenches. The porphyries are limonitic weathering (carbonatized), light to medium grey to greenish-grey, more massive to foliated and contain up to 30%, anhedral to subhedral to rounded, white to slightly pinkish and greenish plagioclase phenocrysts 2-5 millimeters in size. The phenocrysts are set in fine-grained matrix containing some sericite andor chlorite. Traces to locally 2% pyrite, in the porphyry. Observed porphyry contacts are often parallel to sub-parallel to foliations in the metavolcanics. Apophyses of porphyry both parallel and crosscut foliation-contact trends. In the larger porphyry body in the "l+25 S" Cross-Trench, bands of metavolcanics can be observed to pinch out in the porphyry, and one porphyry - meta volcanic contact is offset (right-hand) in a step-like fashion along a prominent fracture set trending at approximately 030 degrees. A porphyry dyke near $1+05 \mathrm{M} S$ in the " $4+33 \mathrm{~W}$ " cross-trench is offset 30 cm in a left-hand sense, along a narrow, cross-cutting, northeast-trending lamprophyre dyke.

Milky Quartz-carbonate (+/-chlorite +/- pyrite +/- chalcopyrite) Veining can be observed throughout the trenches in amounts ranging from less than $1 / 28$ to locally 40%. The veining occurs along porphyry - metavolcanic contact areas, trends parallel to foliations or can cross-cut contacts and foliations. Veins often
occur as stockworks, but may also be seen as individual or subparallel veins, and sometimes as narrow lenses in the foliation planes of the metavolcanics. Veins range in width from 0.1 to 10 centimeters mainly.

In the "l+25 S" Trench, which appears to be the area of principal interest with respect to veining and sulfide mineralization, there are also localized massive quartz carbonate pods up to 0.8 meters wide, quartz-carbonate breccia zones containing wall rock fragments and local areas of more intense veining. These are all focussed along parts of two ENE-trending, somewhat "en echelon," foliated, intermediate metavolcanic bands within the porphyry. This "focussed" zone, which is about l-2 meters wide, lies approximately between line $5+15 \mathrm{M} \mathrm{W} / \mathrm{l}+20 \mathrm{M} \mathrm{S}$ and line $4+80 \mathrm{M} W / \mathrm{l}+28 \mathrm{M} \mathrm{S}$. This zone occurs within a broader zone of stockwork-type quartz-carbonate veining roughly ten metres wide, extending from about linecont'd on page 27.

TABLE 3 - Sylvanite Property - An Analyses of Grab Samples

SAMPLE

A

B

C

D

E

LOCATION
"1+25S" Trench ~ $5+08 \mathrm{MW} / 1+24 \mathrm{MS}$
"l+25S" Trench ~ $5+14 \mathrm{MW} / \mathrm{l}+19 \mathrm{MS}$
"1+25S" Trench
~ $5+13 \mathrm{MW} / 1+23 \mathrm{MS}$
" $5+33$ W"X-Trench
$\sim 4+33 \mathrm{MW} / 1+23 \mathrm{MS}$
DESCRIPTION
Quartz-carbonate Vein

Quartz-carbonate $\quad 10,630(.31 \mathrm{oz} \mathrm{Au})$ Breccia + Py, Cp

Foliated metavolcanic 3,910 (.11 oz Au) + Qz-Carb veinlets + Py, Cp (?)
Q_{z}-carbonate vein 10
in Felsic Volcanics
(Schist) + Py (?)
"4+60W"X-Trench Qz-carbonate vein ~west side/0+36 +porphyry

Road Trench (Trench now covered by access road) ~ $5+47 \mathrm{MW} / 1+47 \mathrm{MS}$

Porphyry $+Q z$-Carb veinlets $+/-$ Py

20
be seen are:
TABLE 4

Trench/Location w.r.t. Baseline	Veining		Host Rock	

5.6 DIAMOND DRILLING:

Diamond drilling was carried out only on the Topboot Lake Property and consisted of two phases which occurred during the summer and the fall periods of 1988.

SUMMER PERIOD:
Dates:
Contractor:
Les Entreprises Jacques Rousseau, Rouyn, P.Q.

Drilling Completed: 1) Derraugh Vein - 6 holes - 516.6M (1695 ft)
11) \#2 Vein - 3 holes - 317.6M (1042
ft)

Total 9 holes $834.2 \mathrm{M}(2737 \mathrm{ft})$
Core Size:
$B Q$
Samples Split: $\quad 370$

Geochemical
Analyses:

- element - gold and some for silver
- number - 370
- laboratory - Swastika Laboratories

Limited, Swastika, Ontario
FALL PERIOD:

Dates:	September and October
Contractor:	Les Entreprises Jacques Rousseau, Rouyn,
	P.Q.
Drilling: Completed	$1)$ Derraugh Vein $-370.3 \mathrm{M}(1215 \mathrm{ft})$

Total: 4 holes 370.3 M (1215 ft)
Core Size:
$B Q$
Samples Split: $\quad 76$

$$
\begin{aligned}
\text { Geochemical Analyses: } & \text { - element - Gold and some for silver } \\
& \text { - number - } 76 \\
- & \text { laboratory - Swastika Laboratories } \\
& \text { Limited, Swastika, Ontario. }
\end{aligned}
$$

TABLE 5 DIAMOND DRILL HOLE SUMMARY OF THE DERRAUGH VEIN ZONE
DERRAUGH VEIN

D.D.H.\#	LOCATION	DIP AZIMUTH	LENGTH	VEIN INTERVAL	*AU (ppb)/M
		(degrees) (degrees)			
TL88-1	6+66 MS	-48 250	78.05	47.4-48.4 M	1580/1.0
	0+63 MW		(256)	48.4-49.3 M	620/0.9
TL88-2	$6+66 \mathrm{MS}$	-601/2 250	87. 2M	58.6-59.0 M	620/0.4
	0+63 MW		(286)		
-				wall rocks:	
				59.0-60.0 M	1250/1.0
TL88-3	6+49 MS	-45 250	77.75M	$35.06-36.06 \mathrm{M}$	210/1.0
	$0+64 \mathrm{MW}$		255	$36.06-37.0 \mathrm{M}$	1010/0.94
TL88-4	$6+49$ MS	-60 250	99.4 M	52.55-53.4 M	NIL/0.85
	$0+64 \mathrm{MW}$		(326)	$53.40-54.0 \mathrm{M}$	370/0.6
TL88-5	$6+93$ MS	-45 247	71.96 M	53.40-53.71 M	560/0.31
	0+62 MW		(236)		
TL88-6	$6+14$ MS	-471/2 245	102.64 M	45.91-46.20 M	1200/0.29
	0+50 MW		(336.7)	$46.20-46.90 \mathrm{M}$	220/0.70
				46.90-47.60 M	60/0.70
TL88-10	6+17.55	-45 130	76.0 M	67.7-69.15	20/1.45 M
	1+10 W		(256)		
TL88-11	6+17.55	-60 130	92.4M	NOT INTERSECTED	
	1+10 W		(303)		
TL88-12	$5+90 \mathrm{~s}$	-45 104	92.7M	43.0-44.0 M	50/1M
	1+07.5 W		(304)	$44.0-45.0 \mathrm{M}$	450/1M
TL88-12	$5+90 \mathrm{~s}$	-60 $\quad 104$	107.3M	NOT INTERSECTED	
	1+07.5 W		(352)		

DT \#2 VEIN

* Where more than one analysis was doner the highest value is quoted.

5.6 REVIEW OF DIAMOND DRILLING:

Derraugh Vein zone:

The diamond drill program which was carried out during the summer period was conceived by R.E. Goad. The purpose of the program was to test both the Main Derraugh Vein and the \#2 Vein for continuity, structure and gold mineralization at moderate depths ($25-70 \mathrm{M}$). The fall program was later initiated by John Hildebrandt in order to test for possible extension of the DT \#2 vein.

The Main Derraugh Vein (MDV) was intersected in all six diamond drill holes of the summer program and 2 hole of the fall program. The vein was traced over a strike length of approximately 80 meters. (Table 5 and drill logs with sections in appendix) Vein widths varied from about 0.3 to 1.9 meters, as measured along the core axis. Gold values ${ }^{*}$ in portions of the MDV ranged from 60 ppb $\mathrm{Au}(.002 \mathrm{oz} \mathrm{Au}$) over 0.7 meters to $1580 \mathrm{ppb} \mathrm{Au}(.046 \mathrm{oz} \mathrm{Au}$) over 1.0 meters (of core length).

The MDV generally strikes at about 350 degrees in the Derraugh Trench and dips steeply (70-80 degrees) easterly as indicated by the drill hole-trench projections. However, in diamond drill holes TL88-3 and -4 the vein steepens to a near vertical orientation.

The MDV is often observed as a zone of intense silica flooding, as well as more massive quartz, in altered host rocks which also

* Where more than one Au analysis was available for a sample, the highest value is quoted.
occur as patches - fragments within the vein. Carbonate occurs in the vein as patches and veinlets which can be seen to crosscut fragments of host rock. Sulfides noted consist mainly of finely disseminated pyrite, both in the vein material and the fragments. Pyrite also occurs in chloritic (+/- carbonate +/sericite $+/-$ epidote) fractures. Chalcopyrite mineralization appeared to be relatively scarce, occurring as fine disseminations and fine fracture fillings. Both pyrite and chalcopyrite can occur in conjunction, or separately, and both sulfides can be found as scales on some fractures.

Another vein, here named the D.T.\#2 vein, was intersected near surface in diamond drill hole TL88-6. This vein, with contacts at 15-10 degrees to the core axis, had a core length of 1.58 meters. This vein, similar to the MDV, appears to be an offshoot of the MDV as indicated by subsequent trenching ("D.T.\#2" Trench, Figure 5 B in appendix.) However, in the trench, the vein is generally quite narrow, ranging from about 5 to 30 cm . wide. In the drill hole, the upper half of this vein intersection returned a Au value of $1570 \mathrm{ppb}(.046 \mathrm{oz})$ over 0.79 meters. Chalcopyrite galena and pyrite was associated with this section of vein material.

The host rock for the MDV (and the D.T.\#2 vein) appears to be variably altered feldspar porphyry, containing less than 30% faint to distinct, rounded to sub-angular, l-5 mm, white to pale greenish, sericitized plagioclase phenocrysts set in a fine grained, greenish-grey, chloritic-sericitic matrix. The host
rock is also variably affected by pervasive to patchy to banded carbonatization, silicification and/or epidotization, superimposed upon the chloritic-sericitic alteration and often imparting a beige to pinkish to pale greenish coloration to the rocks. The beige to pinkish coloration (due to silicificationcarbonatization) often envelopes the MDV for distances up to 15 meters, but can also occur as more isolated bands and/or patchy areas away from the vein. Remnants of the porphyritic character and the greenish-grey chloritic alteration can be found within areas of more pervasive, beige-pinkish alteration zones.

In all drill holes, quartz-carbonate $+/-$ chlorite veining is generally present marginal to, and removed from, the MDV. This veining is often comprised of parallel to anastromising narrow veinlets less than 1 cm wide, in amounts of less than 1% to locally 35% over short intervals of less than 25 cm . (A few veins have widths of 5 to 50 cm .) These veins can be observed to cross-cut the bands and patches. As well, some of the larger veins contain altered fragments indicating that the veining is a later phenomenon.

Disseminated pyrite (+ /- chalcopyrite can be associated with quartz-carbonate veining, but fine grained, disseminated, cubic pyrite appears to be ubiquitous throughout the host rocks, in amounts ranging from traces to 1% to locally 5-10\% over a few centimeters. Disseminated and sometimes scaly pyrite also occurs in chloritic ($+/-$ carbonate) fractures which seem to be a later feature, since they can cross-cut the veining. Minor amounts of
chalcopyrite and/or galena chalcopyrite and/or galena can give rise to higher gold values, but this is not always the case; perhaps because of the generally minor, visible quantities of these particular sulfides. Of the samples analyzed outside the MDV zones, gold values ranged from NIL to 1250 ppb Au 1.036 oz Au). The largest intersection of, more or less, continuously anomalous gold mineralization occurred immediately below the MDV in diamond drill hole TLB8-6, with an average 247 ppb Au over 4.6 meters.

Also present in the host rocks are scattered, rounded to angular, dark green, chloritized fragments generally less than several centimeters in size. Disseminated pyrite and occasionally chalcopyrite, can be found within, or bordering the fragments. Narrow selvages or "reaction rims" are sometimes present. These fragments can be observed in pervasive beige-pink alteration zones, surviving remnants of the original host rocks. Here, a bright green mica (Fuchsite?) partially and sometimes totally, replaces the chloritized fragments. Flecks of the green mica are present in the alteration zones and in some of the quartz-carbonate veining.

Altered (carbonatized, chloritized, epidotized) lamprophyre dykes, which often parallel the MDV in the Derraugh Trench, are also encountered in the drill holes. In the Trench, the lamprophyre dykes along with other host rocks have been affected by the main ENE-trending foliation. The later MDV and subsidiary veins cross-cut the foliation and the dykes. Late movements
along the contacts of the $M D V$ and along the earlier foliation planes have resulted in some deformation of the veins. This can be seen in the drill core as well.

The results of the drilling programs on the Derraugh Vein, while informative, did not generate economic gold values. The MDV and its host rocks contain anomalous quantities of gold, some associated with subsidiary veining and/or with fracture fillings. The association of chalcopyrite and galena with some of the higher gold analyses indicated that areas with greater quantities of these sulfide minerals should be targeted. Some of these areas containing more visible chalcopyrite mineralization, were grab sampled by J. Hildebrandt and yielded some relatively high gold analyses (Frank P. Tagliamonte, verbal communication).

Three diamond drill holes were targeted on the \#2 Vein zone including T.L. $-88-7$ to -9 (Table 6). All three hole intersected their target along a strike length of approximately 30 metres and core lengths of between 2 and 4.1 metres. The dip of the vein was determined to be between vertical and 80 degrees to the west. the \#2 Vein is observed as a series of milky-white quartz +-milky-white to yellow-brown carbonate veins, veinlets and stockworks with sericitic, chloritic, carbonatized and/or silicified fragments of the host rock. The sulphide content was typically low, averaging between traces and $<1 \%$ disseminated and fracture filling pyrite. Traces and irregular specks of chalcopyrite were also locally observed. The veins locally contain a fine, thread-like film of black, earthy material which is believed to be graphite and occasional flakes of green mica. The wall rock marginal to the veins is comprised of a beige to pinkish-beige, massive rock comprised of a fine-grained, siliceous and carbonatized material intermixed with green, foliated, chloritic, sericitic and carbonatized rock. The latter locally contains gradational zones of plagioclase phenocrysts. The gradation appears to be controlled by the intensity of alteration. This intermixing of two rock types may be the result of heterogeneous deformation or the presence of altered volcanoclastic fragments. However, it should be noted that no volcanoclastic fragements were observed in surface exposures of the rock. The altered rocks grade away from the vein.
into a greenish-grey, foliated, chloritic, sericitic, and locally carbonatized rock with plagioclase phenocrysts.

Lamprophyre dykes were also intersected near the \#2 Vein. They are typically well foliated and altered to chlorite, sericite, carbonate and green mica. They are also typically cut by guartzcarbonate veins and veinlets.

Low gold values were obtained from the \#2 Vein Zone similar to those in the Derraugh Vein Zone. The highest gold assay was from the \#2 Vein and was $1,700 \mathrm{ppb}(0.049 \mathrm{oz} \mathrm{Au})$ the next best was only $260 \mathrm{ppb}(.007 \mathrm{oz} \mathrm{Au})$.

TABLE 6 DIAMOND DRILL HOLE SUMMARY OF THE \#2 VEIN ZONE
\#2 VEIN

D.D.H.\#	LOCATION	$\frac{\text { DIP }}{\text { degrees }}$	$\frac{\text { AZIMUTH }}{\text { degrees }}$	LENGTH	VEIN INTERVAL	$\underline{A U}(\mathrm{ppb}) / \mathrm{M}$
TL88-7	$\begin{aligned} & 2+02 \mathrm{MS} \\ & 0+87 \mathrm{MW} \end{aligned}$	-47	246	$\begin{aligned} & 94.52 \mathrm{M} \\ & (310) \end{aligned}$	62.8-64.2M	1700/1.4M
					$\begin{aligned} & 118.3-119.8 \mathrm{M} \\ & 119.8-120.5 \mathrm{M} \end{aligned}$	$\begin{aligned} & 150 / 1.5 \mathrm{M} \\ & 260 / 0.7 \mathrm{M} \end{aligned}$
TL88-8	$\begin{aligned} & 2+02 \mathrm{MS} \\ & 0+87 \mathrm{MW} \end{aligned}$	-60	246	$\begin{aligned} & 135.99 \mathrm{M} \\ & (446) \end{aligned}$	120.5-121.9M	100/1.4M
					60.9-62.6M	200/0.7M
TL 88-9	$1+83 \mathrm{MS}$	-451/2	255	117.0M	$62.6-63.9 \mathrm{M}$	120/0.3M
	0+71.5MW			(384)	63.9-65.4M	140/1.5M

Topboot Lake:

i) Anomalous gold mineralization occurs in association with two vein systems (the Derraugh Vein and the \#2 Vein) found within altered intermediate porphyritic intrusions on the Topboot Lake Property.
ii) With the exception of the "D.T.\#2" Vein, no new veins were exposed in the limited trenching done in the vicinity of the Derraugh Trench, or the " $1+25$ W" Trench (\#2 Vein). The "D.T.\#2" Vein, intersected in the summer diamond drilling program, was found to be quite narrow in the surface trenches and appears to be an offshoot of the Main Derraugh Vein.
iii) The drilling programs, to test the Main Derraugh Vein at moderate depths, intersected the vein in eight diamond drill holes. Anomalous gold values of up to 1580 ppb (0.046 oz $A u$) over 1.0 meter were obtained from core samples of the vein. Adjacent wall rocks contained up to $1250 \mathrm{ppb} \mathrm{Au}(0.036$ oz Au) over a core length of 1.0 meter. The vein widths varied from about 0.3. -1.9 meters (core lengths) and dips were steep in the range of 70 degrees E to near vertical. Two environments of gold enrichment occur: one in the Main Derraugh Vein and the other in subsidiary veins and fractures. The presence of chalcopyrite (+/- galena) in association with pyrite mineralization appears to be the best indicator of gold values. However, in the samples of split drill core this
did not always hold true, perhaps because of the paucity of visible chalcopyrite mineralization.
iv) The "D.T.\#2" vein is a splay vein, en-enchelon to the main Derraugh vein, but gold values only attained a maximum of $1570 \mathrm{ppb} A u(.045$ oz Au) in the split drill core samples.
v) The \#2 vein contains highly anomlaous gold concentration (up to $1,700 \mathrm{ppb}(0.049 \mathrm{oz} \mathrm{Au})$ in analyses of split drill core.

Sylvanite Property:
i) Mapping of the trenching done on parts of the sylvanite Property determined that auriferous quartz-carbonate veining is associated with intermediate porphyritic intrusions in mainly intermediate (-felsic) metavolcanics. (These porphyritic intrusions resembled parts of those found on the Topboot Lake Property). The veining is predominantly a stockwork-type, but some massive pods and breccia veining also occur in the "1+25 s" Trench where a larger body of feldspar porphyry contains several bands of foliated, east-southeasterly trending intermediate metavolcanics. The most promising mineralization appears to be located along, or near the contact areas of the porphyry-metavolcanics in this trench. Alteration of the host rocks includes silicification and carbonatization and disseminated pyrite $+/-$ chalcopyrite mineralization occurs in the veining and the adjacent host rocks. Limited grab sample assays from the "1+25 s" Trench indicated the presence of up to $10,630 \mathrm{ppb} A u(0.31$ oz Au). Thorough channel sampling appears to be required to evaluate the exposures of veining and mineralization in the trenches.
ii) Limited trenching ("4+30 W" Cross-trench) investigated an airborne geophysical anomaly located approximately 300 meters south of the baseline. Disseminated pyrite mineralization was found in altered porphyry dykes, in
foliated to schistose, felsic-intermediate metavolcanics, at about 335 meters south of the baseline. Minor quartzcarbonate veinlets were also noted. Perhaps additional trenching or ground geophysics will reveal the precise location of the anomaly and its cause. Overburden was up to 3 meters deep in the trench.
iii) Following the results of channel sampling in existing trenches, reconnaissance of the surrounding areas may reveal the presence of additional porphyry intrusions and associated auriferous quartz-carbonate vein systems. Overburden depths may hamper this investigation.

Topboot Lake:

1) The principle targets of exploration on the Topboot Lake claims were the Derraugh and \#2 Veins. These veins are interesting in their size, alteration, deformation and gold concentrations. Significant concentrations of gold occur over narrow widths and short strike lengths in the Derraugh vein as observed in surface chip samples. Anomalous gold concentrations are similarly present in the $\# 2$ vein in surface chip samples and in both the Derraugh and \#2 veins in diamond drill core samples. The Derraugh Vein remains not completely sampled along the 15 meter interval between already chip sampled areas across the zone. In addition, the JH and DT \#2 Trenches were not sampled. The completion of this sampling is considered a very low priority but should be done if additional grass roots exploration is to be carried out on other parts of the property.
2) The Topboot Lake property is situated in the Swayze-Deloro Belt which is part of the economically important Abitibi Greenstone Belt. The claims are underlain by rocks with deformation and alteration assemblages considered a favorable host for gold mineralization. Highly anomalous gold concentrations are known to occur in these rocks on the claims. The Topboot Lake property has some potentially interesting areas which have not been sufficiently explored. These include the claims at the northeast corner of the property and some of the linear depressions near the known veins. A soil geochemical
survey and geological mapping program is recommended to explore these areas.

Sylvanite:

1) Future work to be done on this property, will require reliable overland transportation facilities and equipment. A serviceable camp should also be erected at the Sylvanite prospect if any prolonged exploration activity is to be done.
2) Channel or chip sampling of all of the existing trenches is recommended before proceeding with any further work in the immediate area. Perhaps the use of gas luggers would suffice to carry out a preliminary sampling program eliminating the need for heavy equipment transport.

Respectfully submitted,

Frank H. Thews, B. Sc.
January 1989.

North Bay

ontario
LEGEND

Figure 4 PROPOSED GRID EXTENSION FOR THE TOPSOOT LakE Cu th - PREVIDUSLY cUT GRID LINES - - - PROPOSED GRID LINES. NOTE:
(tie lines were also cut do
THE NEW GRID (PROPOSED) WHICH.
ARE NO SHOWN ON THIS DURUM)

(3)

年

SWANEE
LIKE.

I, Frank H. Toews , B.Sc., F.G.A.C., of Highway 537 , RR\#3, Sudbury , Ontario, certify as follows concerning my report entitled Report on Exploration Programs , Topboot Lake and Sylvanite Projects, Swayze and Denyes townships, Swayze Area, Ontario for Can Mac. Exploration Ltd., dated 20 th January 1989.

1) That I am a graduate of the University of Waterloo, Waterloo , Ontario and hold a Bachelors Degree (197l, Earth Science).
2) That I am a member of good standing in the Geological Association of Canada.
3) That I have practised my work related to the mining and exploration industry in Canada for over 18 years.
4) That this report is a product of:
a) Extended property visits to the Topboot Lake and Sylvanite Properties supervising parts of the stripping, trenching and diamond drilling programs.
b) Data obtained from Can Mac Exploration Ltd., Geological Engineering Services and government geological reports and maps.
5) That I have no direct or indirect interest in the properties and securities of Can Mac Exploration Ltd.,

Dated this 20th day of January 1989

$$
\begin{aligned}
& \text { Frank Wh Toens....... } \\
& \text { Frank H. Toews , B.Sc., F.G.A.C. } \\
& \text { Geological Engineering Services } \\
& \text { NORTH BAY, Ontario }
\end{aligned}
$$

9 CERTIFICATE:

I, Robin E. Goad, M.Sc., F.G.A.C., of 163 Pine Valley Dr., Unit 55, London, Ontario, certify as follows concerning my report entitied Report on the Second Phase of Linecutting, stripping, Trenching and Diamond Drilling on the Topboot Lake Project and the First Phase of Stripping and Trenching on the Sylvanite Project, Swayze and Denyes Townships, Porcupine Mining District, ontario. May Through October 1988., for Can-Mac Exploration Limited.

1) That I am a member in good standing of the following professional organizations.
a) Geological Association of Canada.
b) Geological Society of America.
c) Canadian Institute of Mining and Metallurgy.
d) Prospectors and Developers Association of Canada.
2) That I am a graduate of the Department of Geology, University of Western Ontario, London, Ontario, with an M.Sc. in geology, obtained in 1987 and a bachelors obtained in 1981.
3) That I have been gainfully employed in the exploration and mining industry for more than 11 years.
4) That this report is a product of:
a) Numerous extended property visits including a 1 month continuous presence on the Topboot lake poject site supervising the stripping, trenching and parts of the diamond drill program.
b) Data obtained from Can-Mac Exploration, Geological

Engineering Servjces and Robert S. Middleton Exploration
Services Inc.
c) Data obtained from the government assessment offices in Timmins, Ontario.
d) Discussjons with coleagues who are actively working in the area.
5) That I have no direct or indirect interest in the properties and securities of Can-Mac Exploration Ltd., except for 5,000 common shares purchased on the open market.

Dated this 20 day of Jan., 1989.

Robin E. Goad, M.Sc., F.G.A.C. Geological Engineering Sevices, North Bay, Ontario.

8 REFERENCES:

1) Abernathy, R.k. 1987. Summary Report on the Geology survey Conducted on the Topboot Lake Property of Glen Auden Resources Ltd., Swayze and Denyes Townships, Porcupine Mining Division, District of Cochrane. Unpublished Company Report.
2) Abernathy, R.K. 1987. Report on the Property of Glen Auden Resources Ltd., Denyes Township, Porcupine Mining Division, District of Cochrane. Unpublished Company Report.
3) Goad, R.E. 1988. Report on stripping and Trenching on the Saxtion Lake, Topboot Lake and sylvanite projects, swayze and Denyes Townships, Porcupine Mining District, Ontario, Nov., 1987 Through Mar., 1988. Unpublished Company Report for Can-Mac Exploration Ltd.
4) Thurston, P.C., Siragusa, G.M. and Sage, R.P. 1977. Geology of the Chapleau Area, Districts of Algoma, Sudbury and Cochrane. Geoscience Report 157, Ontario Division of Mines GR 157, 293 p ., Accompanied by Maps 2351, Scale 1:250,000, and Map 2221, Scale 1 Inch: 4 Miles $(1: 253,440)$, Ministry of Natural Resources, Toronto.

ROCK TYPEB

6 DIABASE INTRUSIONS
5 METASEDIMENTS
a) Massive to moderately well laminated, fine-grained quartz-feldspar-biotite schist $+/-$ muscovite $+/-$ chiorite.
b) Well laminated, fine-grained, argillaceous \&/or calcareous quartz-feldspar-chlorite schist.
c) Well laminated, fine-grained carbonaceous (graphitic) schist.
d) Massive to moderately well laminated metaconglomerate containing 4 mm to 75 cm granitoid \&/or porphyry \&/or black lithic clasts in a fine-grained quartz-feldspar-biotite schist groundmass.
e) Well laminated, fine-grained, slatey quartz-feldspar-muscovite-biotite schist.

4 INTERMEDIATE PORPHYRITIC AND DIORITE INTRUSIONS AND LAMPROPHYRE DYKES
a) White, euhedral 1 to 3 mm plagloclase phenocrysts in a massive fine-grained light to medium green/gray quartz-plagioclase-muscovite $+/-$ chlorite groundmass.
b) Sericitic, 1 to 3 mm plagioclase phenocrysts in a weakly to intensely foliated, fine-grained and locally weakly altered quartz-plagioclase-muscovite schist groundmass. Alteration minerals may include sericite, chlorite, carbonate, pyrite, an unidentified pink alteration and guartz.
c) White, euhedral plagioclase phenocrysts in a fine-grained, light gray guartz-plagioclase-muscovite schist groundmass with biotite flecks.
d) Intensely altered porphyry with faint, sericitic plagioclase phenocrysts or with phenocrysts completely altered to sericite \&/or carbonate. Rock may also contain quartz-carbonate $+/-$ sulphide veins and veinlets. Alteration minerals include quartz, carbonate, chlorite, sericite, epidote, green mica, graphite, pyrite, chalcopyrite malachite and galena.
e) Coarse-grained dioritic phase of plagioclase, quartz and chloritic hornblende and biotite.
f)Fine-grained and porphyritic, brown lamprophyre dykes

3 FELSIC METAVOLCANICS
a) Massive to weakly follated, light to medium green, finegrained quartz-plagioclase-muscovite schist.
b) Moderately to intensely follated, light green, finegrained quartz-plagioclase-muscovite schist to sericite schist.
c) Well follated, altered, fractured a/or microbrecciated \&/or brecciated $\& / o r$ sheared and locally mylonitic quartz-plagioclase-muscovite schist. Alteration minerals include sericite, chlorite, quartz, alkali feldspar, epidote, green mica, carbonate, hematite/limonite, graphite pyrite and chalcopyrite.
d) Moderately to intensely foliated, light. green, fine-grained quartz-plagioclase-muscovite schist with lapilli-sized clasts.
e) Moderately to intensely foliated, light green, fine-grained quartz-plagioclase-muscovite schist with apparent tectonic clasts.

2 MAFIC METAVOLCANICS
a) Massive to weakly foljated, dark green/gray chloritic amphibolite flows.
b) Well foliated, medium to dark green chlorite $+/-$ plagioclase schist.
c) Well foliated and altered chlorite $+/-$ plagioclase schist with sericite, carbonate, hematite and sulphide alteration minerals.
d) Massive to weakly foliated, plllowed dark green/gray chloritic amphibolite flows.
e) 2 d) with pillow breccia.
f) Massive, dark green, fine- to medium-grained gabbro.

1 ULTRAMAFIC ROCKS
a) Massive to weakly foliated, dark green pyroxene spinofex komatilitic flows.
b) 2 a) with pillows.
c) Massive to weakly foliated, fine- to medium-grained, dark green peridotite intrusions.

BYMBOLS

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642.3300
ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
Orrtifitatr of Analybia
\qquad
Certificate No. 72140
Date: August 5, 1988

Received July 22, 1988 Rock

Submitted by Can Mac Resources Inc., Barry's Bay, Ontario_ Proj. \# Topbooth

SAMPLE NO.	GOLD	SILVER
	PPB	\cdot
DV-0455	120	Nil
$375-\mathrm{N}$	$560 / 570$	1.3
$375-\mathrm{S}$	30	Nil
$22-275-\mathrm{N}$	Nil	Nil
$22-275-\mathrm{N}$	Nil	Nil
$22-325-\mathrm{NC}$	Nil	Nil
$22-325-\mathrm{V}$	Nil	Nil
$22-330-\mathrm{N}$	$190 / 110$	Nil

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642-3244 FAX: (705) 642-3300
ANAYLTICAL CHEMISTS - ASSAYERS - CONSULTANTS
Oprtifitate nf Analyaib

Certificate No. \qquad Date: \qquad 1988

Received August 1, 1988 \qquad Samples of Rock and Split Core

Submitted by Can Mac Exploration Ltd., Barry's Bay, Ontario

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642.3300
ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
Ortifirate of Analynia

Certificate No. \qquad Date: \qquad
Received Augsut 17, 1988 22 Samples of \qquad Split Core

Submitted by Can Mac Exploration Ltd., Barry's Bay, Ontario

SAMPLE NO.
GOLD PPB

TL-88-3-37 10
38 Nil

39
40
10

41
42
43 20/20

44
Nil

45
Nil
Nil
TL-88-4-6
Ni 1
7
8
21
22
23
24
25
26
27
28
29
30

SWASTIKA LABORATORIES LIMITED
P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244
ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

©rrtifirate af Analybib

Certificate No. \qquad Date: Sept. 6, 1988
Received Aug. 29, 1988 57 Samples of \qquad Split Core

Submitted by Can Mac Exploration Ltd., Barry's Bay, Ontario.

SWACTIKA LABORATCIES LIMITED
P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642-3300
ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS
©rrtifitate of Analygia

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARID POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642.3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS Orrtiftratr of Analygia

Certificate No. \qquad Date: Sept. 23, 1988

Received \qquad Sept. 15, 1988 \qquad 37 Samples of \qquad Split Core

Submitted by \qquad Can Mac Exploration Ltd., Barry's Bay, Ontario.

	SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { PPB } \end{aligned}$	SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { PPB } \end{aligned}$
	TL-88-6-2]	$\mathrm{Ni}]$	TL-88-6-42	80
	22	Nil	43	1200
	23	Nil		0.044(0z/ton)
	24	Nil	44	220
	25	Nil	45	60
	26	Nil	46	240
	28	50	47	520
	29	270/330	48	70
	30	Ni 1	49	120
	31	Ni 1	50	330
	32	Nil	51	330
	33	Nil	52	270
;	34	$\mathrm{Ni}]$	53	Nil
	35	Nil	54	130
	36	Nil	55	$\mathrm{Ni}]$
	37	Nil	56	Nil
	38	Nil	57	110
	39	Ni 1	58	Nil
	40	20		
	41	Nil		
	-		Per \qquad G.	
(8)				

SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642-3300 ANAYLTICAL CHEMISTS • ASSAYERS • CONSULTANTS (Tprtifitatr af Analygia

Certificate No. \qquad Date: Sept. 27, 1988

Received Sept. 15, 1988 56 Samples of Split Core

Submitted by Can Mac Exploration Ltd., Barry's Bay, Ontario.

SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { PPB } \end{aligned}$	SAMPLE NO.	$\begin{aligned} & \hline \text { GOLD } \\ & \text { PPB } \end{aligned}$	SAMPLE NO.	$\begin{aligned} & \mathrm{GOLD} \\ & \mathrm{PPB} \end{aligned}$
TL-88-5-14	80	TL-88-5-39	480/560	TL-88-5-6	20
15	90	40	Ni 1	7	20
16	20	41	50	8	Nil
17	Nil	42	Nil	9	Nil
18	Nil	43	Nil	10	Nil
19	40	44	Nil	11	10
20	Nil	45	Nil	12	10
21	Nil	46	Nil	13	20
22	$\mathrm{Ni}]$	47	Nil	14	Nil
23	Nil	48	Nil	18	Nil
24	Nil	49	Ni I	19	Nil
25	210/220	50	20	20	20
29	Nil	51	Nil		
30	Ni 1	52	10		
31	Nil	53	30		
32	$\mathrm{Ni}]$	54	Nil		
33	Nil	55	Nil		
34	Nil	TL-88-6-1	Nil		
35	Nil	2	Nil		
36	Nil	3	20		
37	Ni]	4	30		
38	$\mathrm{Ni}]$	5	1290/1570		
	.	ESTABL	HED 1928	G. Lebel	of

SWA?TIKA LABORATC ZIES LIMITEDだ

P.O. BOX 10, SWASTIKA, ONTARIO POK 1 TO

TELEPHONE: (705) 642.3244 FAX: (705) 642-3300 ANAYLTICAL CHEMISTS • ASSAYERS - CONSULTANTS
©prtifirats of Analygia

Certificate No. 72963 .
Date: Sedt. 30, 1988
Received Seot. 19, 1988
41 Samples of
Split Core
Submitled by Can Mac Exoloration Ltd., Barry's Bay, Ontario.

Swastika Laboraıories
A Divislon of Assayers Corporation Lid.
Assaying - Consulting - Representation
©rprifitatr of Analygia
\qquad Date Oct. 12, 1988 .
Received_Oct._7._1988
22
Samples of Whole Core
Submitted by Can Mac Exploration Ltd., Barry's Bay, Ontario.
Proj. \#Top Boot

S.vastika Labora.ories
 A Division of Assayers Corporation Ltd.

Assaying-Consulting - Representation

© Cr rifiratr of Analysia

\qquad Date_Oct. 17. 1988.
Keceived Oct. 13, 1988 23

Samples of Whole Core
Submitted by Can Mac Exploration_to.e_Barry's Bay, Ontario.

P.O. Box 10, Swastika, Ontario POK 1T0

Established 1928

Swastika Laboratories
A Division of Assayers Corporation Lid.
Assaying-Consulting-Representation
© 0 rrtiffratr of Analysis

Certificate No. $\frac{73380}{} \quad$\begin{tabular}{l}
Date Oct.24, 1988*

Received Oct. 19, 1988

\quad

Rock Samples

\hline
\end{tabular}

Submitted by Can Mac Exploration Ltd., Barry's Bay, Ontario.
Proj. \#Sylvanite

"Fsec"page 5-A" "Foreign" Clink"
(606458)
Samply/should net be submitted sincertrenck was not fou CAN TriP groaned.

Reference Samples sent by J.H. to Lab. for Assay

S.astika Laboraisries
 A Division of Assayers Corporation Lld.

Assaying - Consulting - Representation

©

Certificate No. $13605 \quad$ Date | Nov.7, 1988. |
| :--- |
| Received_Nov. 4, 1988 |
| Submitted by_Can Mac Exploration Ltd., Barry's Bay, Ontario. |

Proj. \#Top Boot

S jastika Labora. ories
 A Division of Assayers Corporation Lid.

Assaying - Consulting - Representation

©̛rritifate nf Analysia

| Certificate No. 73638 | Date Nov. 9, 1988 |
| :--- | :--- | :--- |
| Received_Nov. 7, 1988 | 36 |

Submitted by Can Mac Exploration L.td., Barry's Bay, Ontario.
Proj. \#TOD Boot

SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { PPB } \end{aligned}$	SAMPLE NO.	$\begin{aligned} & \text { GOLD } \\ & \text { PPB } \end{aligned}$
TL8B-11-1	50	TL88-11-21	20
2	40	22	30
3	990/940	23	Ni 1
4	50	24	30
5	40	25	10
6	60	TL88-12-1	20
7	20	2	400
8	10	3	150
9	30	4	50
10	10	5	450
11	60	6	20
12	30	7	100
13	20	8	30
14	40	9	20
15	100/120	10	30/30
16	120	11	10
17	20		
18	20		
19	20		
20.	10		

P.O. Box 10, Swastika, Ontario P0K 1 T0

S :astika Labora Jries
 A Division of Assayers Corporation Lad.

Assaying-Consulting - Representation

©rprtifuata $\mathfrak{n f}$ Analygia

\qquad Date_ November 17, 1988 Samples of Drill Core ; Submitted by_Can_Mac Exploration_td_-_Barry's Bay, Ontario Proj.\# Jop BootGOLDPPB120Nil1105040044090

$$
740 / 760
$$70310

11 250
12 90
13 30
14 20
15 20
16 30
17 30
18 80
1920Ni
21 20
22 40
23 30

P.O. Box 10, Swastika, Ontario POK 1T0

DIAMOND DRILL RECORD

FOR CAN-MAC EXPLORATION LTD.

BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY, ONTARIO.
TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - DERRAUGH VEIN ZONE,
HOLE NUMBER: T.L.-88-2
LOCATION: $0+65 \mathrm{~W} / 6+65 \mathrm{~s}$
LENGTH OF HOLE: 89.6 METRES (294 FEET)
AZIMUTH: 250 DEGREES
DIP: - 60 DEGREES
STARTED: 27 JULY, 1988
FINISHED: 28 JULY, 1988
LOGGED BY: ROBIN E. GOAD
CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC
CORE SIZE: BQ
DIP TESTS: 89.6 METRES (294 FEET) $=61$ DEGREES

SAMPLES: TL-88-2-1
TL-88-2-2
TL-88-2-3
TL-88-2-4
TL-88-2-5
TL-88-2-6
TL-88-2-7
TL-88-2-8
TL-88-2-9
TL-88-2-10
TL-88-2-11

$$
T L-88-2-12
$$

$$
T L-88-2-13
$$

$$
T L-88-2-14
$$

$$
T L-88-2-15
$$

$$
T L-88-2-16
$$

$$
T L-88-2-17
$$

$$
T L-88-2-18
$$

$$
T L-88-2-19
$$

$$
T L-88-2-20
$$

$26.7-27.7 \mathrm{M}=1.0 \mathrm{M}$
Au PPB
40
10
NIL
10
20/NIL
20
NIL
NIL
NIL
20
20
$53.6-54.6 \mathrm{M}=1.0 \mathrm{M}$
70
$55.6-56.6 \mathrm{M}=1.0 \mathrm{M} \quad 40$
56.6-57.6 M $=1.0 \mathrm{M}$

20 $57.6-58.6 \mathrm{M}=1.0 \mathrm{M}$

190 58.6-59.0 $\mathrm{M}=1.0 \mathrm{M}$

620 $59.0-60.0 \mathrm{M}=1.0 \mathrm{M} \quad 1250 / 950$ $60.0-61.0 \mathrm{M}=1.0 \mathrm{M}$ 40 61.0-62.0 M $=1.0 \mathrm{M}$ 10 $62.0-63.0 \mathrm{M}=1.0 \mathrm{M}$

METERAOE
0-1.8 M
1.8-58.6 M
$1.8-22.4 \mathrm{M}$

DEBCRIPTION
CASING
TOPBOOT LAKE PORPHYRY INTRUSION
WEAKLY ALTERED FELDSPAR PORPHYRY
Approximately (approx) 25 to 30%, fine-grained, 1 mm sericitic plagioclase phenocrysts in a finegrained, chloritic and sericitic, altered groundmass. Numerous fine, 1 to 3 mm white carbonate (carb) veinlets which commonly trend @ 20 and 60 degrees to the core axis (C.A.). They typically occur every 3 to 5 cm and commonly in a criss-cross-like pattern. Abundant fine chloritic fractures and patches up to 1 cm in size. Approx 2 \%, 1 to 5 cm chloritic xenoliths. Rock is pervasively to partially carbonatized, particularly marginal to carb fractures and veinlets. These areas are commonly bleached. Traces (tr) of disseminated (diss) pyrite (py) but locally concentrated to 1 to 2 \% along chloritic fractures.
1.8-2.0 M Blocky core.
3.0-3.3 M Core locally vuggy because of the weathering of Carbonate.
4.5-6.5 M Locally blocky core because of an abundance of chloritic fractures and carbonate veinlets parallel to sub-parallel to the c.A. 8.9 M 5 cm wide quartz (gtz) $>$ carb veinlet a 60 degrees to the C.A. with marginal intense shearing composed of chlorite, carbonate and 2 \% fracture filling py either side.
9.4 M 3 cm wide carb veinlet @ 40 degrees to the C.A.

SERICITE-CHLORITE-CARBONATE ALTERATION ZONE

Gradational contact into a feldspar destructive alteration. plagioclase phenocrysts are only locally discernable with these zones having gradational contacts. Local chloritic xenoliths up to 5 cm . Core has a banding locally because of heterogenous silicification, carbonatization, sericitization and chloritic fractures. Bands are @ 40 degrees to the C.A. Bleaching is most intense marginal to gtz and carb veinlets. siliceous banding progressively changes to intense chloritization. Rock contains tr diss py but locally 1 to 2 \% within larger chloritic fractures. Numerous 1 to 3 mm carb veinlets commonly oriented © 45,80 and 20 degrees to the C.A.
23.2 M 40 cm wide zone of siliceous bleaching marginal to a 5 cm gtz-carb veinlet @ 40 degrees to the C.A.
24.7-26.0 M Locally intense beige coloured silicification marginal to carb veinlets and chloritic fractures @ 30 to 45 degrees to C.A. 27.0-30.7 M Locally abundant chlorite filled fractures with coarse 2 mm py. Fractures commonly trend a 30 to 45 degrees to the C.A. Zones of intense siliceous bleaching commonly marginal to the larger veinlets grading peripherally into sericitic and carb alteration. 32.3-35.2 M Same as above.
35.2-39.4 M
39.4-49.4 M
49.45-58.6 M

SILICEOUS ALTERATION ZONE
Gradational contact into a rock with less chlorite and sericite and increasing amounts of silica. The rock has a beige to pinkish-beige colouration which may be in part alkali feldspar metasomatism. Rock contains a greater concentration of sulphide with concentrations of 1 to 2 fracture filling py. Local areas with up to 25%, 1 to 2 mm faint, subhedral plagioclase phenocrysts. Local 1 mm to 1 cm carb veinlets with marginal intense siliceous bleaching commonly a 45 and 60 degrees to the C.A.

WEAKLY ALTERED FELDSPAR PORPHYRY
Gradational contact to sericitic feldspar porphyry composed of 25 to 30%, 1 to 3 mm , anhedral to euhedral, sericitic plagioclase phenocrysts in a finer-grained, green/gray sericitic and chloritic groundmass. Numerous 1 mm to 1 cm carb veinlets, commonly with marginal siliceos bleaching. Some carb and chlorite veinlets contain 1 to 2 \% py. occasional 1 to 3 cm chloritic xenoliths. Fractures and veinlets commonly trend orthogonally © 35 and 65 degrees to the C.A. 38.8-40.0 M Extensive bleaching marginal to fractures
41.6-44.5 M Same as above and local green mica.
43.8 M 1 cm gtz veinlet 4 cm offset and oriented \mathfrak{c} 60 degrees to the C.A.
47.0-47.8 M Numerous 1 to 3 mm carb and chlorite veinlets oriented @ 40 degrees to the C.A. with peripheral siliceous bleaching up to 5 cm either side.

SILICEOUS ALTERATION ZONE

Sharp contact @ 70 degrees to the C.A. to finegrained, beige to pinkish-beige, siliceous alteration as previosiy described. randomly oriented carbonate $+/-$ gtz and chlorite veinlets and fractures but commonly d 80 degrees, 50 degrees or sub-parallel to the C.A. Sulphides vary from tr to 1 and locally 5 adjacent to some chloritic fractures. Local zones with less altered, discernable plagioclase phenocrysts.
49.4-51.2 m fervasive beige bleaching with faint specks where plagioclase phenocrysts have been pseudomorphed by sericite. 51.2-52.3 M zone with numerous relict plagioclase phenocrysts.
52.3-53.0 M Patchy to pervasive siliceous bleaching.
52.6 M 10 cm of chloritic and carbonate microbreccia.
53.0-53.5 M zone with relict plagioclase phenocrysts and numerous carb veinlets, commonly @ 40 degrees to the C.A.
53.6-58.6 M Progressive increase in the number of fractures and veinlets towards the Main Derraugh Vein. Approx 1 \% py, most abundant in chloritic fractures. Progressively more intense pinkishbeige silicification.
53.6-57.0 M Chloritic fractures are oxiented @ 50 to 60 degrees to the C.A.
57.0-58.6 M Microbrecciated and 2 \% diss py

MAIN DERRAUGH VEIN
Sharp sheared upper contact with epidote and carbonate @ 35 degrees to the C.A. and sheared irregular lower contact a 90 degrees to the C.A. Zone of massive milky-white gtz silica flooding, yellow-brown carbonate and 1 \& finely diss py.

TOPBOOT LAKE PORPHYRY INTRUSION
SILICEOUS ALTERATION ZONE
Fine-grained, beige to pink, siliceous alteration with local zones of carbonatization and chlorite and carbonate fractures. Local microbreccia marginal to the main Derraugh Vein. Local zones of less altered feldspar porphyry composed of 30%, 1 to 3 mm , anhedral to subhedral plagioclase phenocrysts in a chloritic and siliceous, gray groundmass.
59.0-60.4 M Microbreccia composed of abundant carbonate $+/-$ gtz veinlets, chloritic fractures and pervasive silicification with 1 to 2% diss py. The larger veinlets commonly trend © 60 degrees to the C.A.
60.4-61.8 M Massive, pinkish-beige, chert-like, pervasively silicified rock.
62.0-66.3 M Zone of less intense alteration with distinct plagioclase phenocrysts. Contains < 1%, 1 to $>5 \mathrm{~cm}$, chloritic, xenoliths with siliceous reaction rims. 1 mm Carb veinlets @ 60 to 80 degrees to the C.A.
64.8 M 30 cm zone of extensive bleaching axound a 1 cm wide carbonate-chlorite veinlet © 20 degrees to the C.A. Locally discernable plagioclase phenocrysts.
66.3-74.9 M CHLORITE-CARBONATE-SERICITE ALTERATION ZONE Sharp contact @ 45 degrees to the C.A. to a dark green chloritic rock with 3 to 5%, 1 cm , irregular patches of pinkish-beige siliceous altered rock. Numerous halrilne to 1 mm carbonate filled fractures commonly oriented a 50,70 and 25 degrees to the C.A. Local areas of siliceous alteration over core lengths up to 10 cm .
67.3 M 2 cm wide breccia © 35 degrees to the C.A., comprised of 1 mm , green fragments in a finegrained, gray siliceous matrix. 68.9 M 10 cm of siliceous bleaching. 69.8-70.6 M Locally extensive bleaching adjacent to 2 mm to 1 cm carbonate-gtz veinlets oriented $@$ 40 degrees to the C.A. Local brecciation comprised of 0.5 to 3 cm angular clasts in a siliceous matrix.
73.4 M 1 cm wide carb-chlorite veinlet a 20 degrees to the C.A.
74.9-78.8 M WEAKLY ALTERED FELDSPAR PORPHYRY

Medium green/gray, fine-grained rock containing 20 \%, 1 mm , anhedral to subhedral, sericitic plagioclase phenocrysts. Upper contact is gradational, whereas the lower contact is sharp defined by a 2.5 cm carb veinlet \& 45 degrees to the C.A.
74.9-75.8 M Zone of intense beige, siliceous and carbonate alteration and bleaching withfine 1 mm specks of relict plagioclase phenocrysts pseudomorphed by sericite. 78.25-78.4 M Same as above with a sharp upper contact defined by a 2 mm carb veinlet a 40 degrees to the C.A..
78.8-89.6 M

CHLORITIC ALTERED DIORITE OR INTERMEDIATE VOLCANIC Numerous chloritic hornblende phenocrysts in a finer-grained dark green groundmass. Tr diss py. Local 1 to 3 mm carb veinlets commonly oriented ${ }^{\text {a }}$ 20 and 60 degrees to the C.A. Weak foliation @ 50 degrees to the C.A. defined by streaks of chlorite.
79.7-80.1 M Pervasive light green bleaching with 1 \% finely diss py and irregular carbonate veinlets. 83.1 M 2 cm carb-chlorite veinlet oriented @ 85 degrees to the C.A.
88.1 M 2 cm carb veinlet oriented @ 15 degrees to the C.A.

FOR CAN-MAC EXPLORATION LTD.

BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY ONTARIO.
TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - DERRAUGH VEIN ZONE
HOLE NUMBER: T.L. - 88-1

LOCATION: $0+65 \mathrm{~W} / 6+65 \mathrm{~S}$
LENGTH OF HOLE: 78.05 METRES (256 FEET)
AZIMUTH: 250 DEGREES
DIP: - 45 DEGREES

STARTED: 26 JULY, 1988
FINISHED: 27 JULY, 1988

LOGGED BY: ROBIN E. GOAD
CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC.
CORE SIZE: BQ
DIP TESTS: 78.05 METRES (256 FEET) $=46$ DEGREES

SAMPLES:
11.6-12.35 M $=0.75 \mathrm{M}$
16.8-17.8 M=1.0 M 18.1-19.1 $\mathrm{M}=1.0 \mathrm{M}$ 23.4-24.4 M=1.0M 32.65-33.65 M $=1.0 \mathrm{M}$ 33.65-34.65 M $=1.0 \mathrm{M}$ $34.65-35.65 \mathrm{M}=1.0 \mathrm{M}$ $35.65-36.65 \mathrm{M}=1.0 \mathrm{M}$ 36.65-37.65 M $=1.0 \mathrm{M}$ $37.65-38.65 \mathrm{M}=1.0 \mathrm{M}$ $38.65-39.65 \mathrm{M}=1.0 \mathrm{M}$ $39.65-40.65 \mathrm{M}=1.0 \mathrm{M}$ $40.65-41.65 \mathrm{M}=1.0 \mathrm{M}$ $41.65-42.65 \mathrm{M}=1.0 \mathrm{M}$ $42.65-43.65 \mathrm{M}=1.0 \mathrm{M}$ 43.65-44.65 M = 1.0 M 44.65-45.65 M $=1.0 \mathrm{M}$ 45.65-46.65 M $=1.0 \mathrm{M}$ $46.65-47.65 \mathrm{M}=1.0 \mathrm{M}$ 47.4-48.4 $M=1.0 \mathrm{M}$ 48.4-49.4 M=1.0 M 49.3-50.3 $\mathrm{M}=1.0 \mathrm{M}$ 50.3-51.3 M $=1.0 \mathrm{M}$

Au PPB
120
50
110
NIL
NIL
10
NIL
NIL
NIL
50
10
NIL
40
NIL
NIL
NIL
NIL
NIL
50
1580/930/820/890
620
250
NIL
$T L-88-1-24$
$T L-88-1-25$
$T L-88-1-26$
$T L-88-1-27$
$T L-88-1-28$
$T L-88-1-29$
$T L-88-1-30$
$T L-88-1-31$
$T L-88-1-32$
$T L-88-1-33$
$T L-88-1-34$
$T L-88-1-35$
$T L-88-1-36$
$T L-88-1-37$
$T L-88-1-38$
$T L-88-1-39$
51.3-52.3 M $=1.0 \mathrm{M}$
$52.3-53.3 \mathrm{M}=1.0 \mathrm{M}$
53.3-54.3 M $=1.0 \mathrm{M}$
54.3-55.3 $\mathrm{M}=1.0 \mathrm{M}$
$55.3-56.3 \mathrm{M}=1.0 \mathrm{M}$ 56.3-57.3 $\mathrm{M}=1.0 \mathrm{M}$ 57.3-58.3 M $=1.0 \mathrm{M}$ 58.3-59.3 $\mathrm{M}=1.0 \mathrm{M}$ $59.3-60.3 \mathrm{M}=1.0 \mathrm{M}$ 60.3-61.3 $\mathrm{M}=1.0 \mathrm{M}$ $61.3-62.3 \mathrm{M}=1.0 \mathrm{M}$ 62.3-63.3 $\mathrm{M}=1.0 \mathrm{M}$ 63.3-64.3 $\mathrm{M}=1.0 \mathrm{M}$ 64.3-65.3 M $=1.0 \mathrm{M}$ $65.3-66.3 \mathrm{M}=1.0 \mathrm{M}$ $66.3-67.3 \mathrm{M}=1.0 \mathrm{M}$

Au PPB
70
40
120
20
NIL

METERAOE
0-1.8 M
1.8-42.25 M
1.8-6.0 M

DEACRIFTION
CASING
TOPBOOT LAKE PORPHYRY INTRUSION
FELDSPAR PORPHYRY
Light green/gray, sericitic, carbonatized and chloritic feldspar porphyry composed of 20%, fine-grained, 1 mm faint plagioclase phenocrysts in a fine-grained altered groundmass. Phenocrysts are subrounded (anhedral) and extensively altered to sericite. The groundmass is sericitic, carbonatized and chloritic emanating from fine, < 1 mm white carbonate $>$ quartz, and/or chlorite, and/or epidote fractures and veinlets. Approximately 1 \% chloritic, angular to rounded patches up to 3 cm are interpreted as altered xenoliths. They commonly have reaction rims where they are partially assimilated by the porphyry groundmass. Local areas of patchy to pervasive, beige silicification with traces (ty) disseminated (diss) pyrite (py) and streaks or patches of chlorite.
8.0 M Fine carbonate and/or epidote fractures and veinlets commonly @ 30 degrees to the core axis (C.A.).
5.8 M Carbonate > quartz veinlets, $<0.5 \mathrm{~cm}$ wide @ 65 degrees to the C.A.
$6.0-32.65 \mathrm{M}$

SERICITE-CHLORITE-CARBONATE ALTERATION ZONE Contact @ 75 degrees to the C.A. to altered diorite or feldspar porphyry. The rock is composed of light green, sericitic and carbonatized, finegrained material with dark green patches or spots of chlorite comprising 10 to 15% of the rock. Patchy to pervasive silicification is common consisting of a cryptocrystalilne, chalcedonic, belge to pinkish-beige bleaching of the rock. Patches, fractures and stockworks of chlorite are also common in these areas. Fracture filling and diss py occurs up to 3 and is associated with the siliceous alteration and chloritic fractures. There are no discernable plagioclase phenocrysts. 6.1-6.4 M Locally ground and blocky core.
7.6-10.1 M 2 to 5 mm carbonate veinlets occur every 5 to 15 cm along the core, commonly @ 70 degrees to the C.A. with peripheral siliceous bleaching for 2 cm either side. 11.6-12.6 M Local very intense bleaching composed of pervasive carbonatization with patchy silicification and 1 finely diss py. Epidote, carbonate and chlorite filled fractures up to 3 cm thick @ 25 degrees to the C.A.
12.6-19.8 M Zone of extensive bleaching but less
intense than the previousiy mentioned interval. Abundant light green sericite and carbonate with numerous fractures filled with epidote, carbonate and/or chlorite @ 25 degrees to the C.A. Several quartz $+/$ - carbonate veinlets up to 15 cm thick. Less common patches of chlorite. 13.2-13.5 M Several quartz veinlets up to 1 cm thick \& 25 and 60 degrees to the C.A. Approximately (Approx) 1 to 2% diss py associated with irregular patches of chlorite up to 2 cm in size. Local chloritic fractures.
14.7 M 1 cm white quartz-carbonate veinlet with chloritic margins @ 30 degrees to the C.A.
16.1 M 15 cm wide quartz and carbonate veinlet with streaks of chlorite @ 25 degrees to the C.A. The wall rock is bordered for 2 cm with fracture fllling and diss py.
17.1 M 2 cm quartz and carbonate veinlet subparallel to the C.A. and bordered by 5 cm of fracture filling and diss py (2 to 3 \%). 18.3-18.9 M 2 cm quartz-carbonate veinlet subparallel to the C.A. with parallel chlorjte fractures containing 2 to 3 fracture filling and diss py.
18.9-19.8 M Locally intense light green to beige bleaching with dark green patchy chlorite. 1 * diss py and quartz-carbonate veinlets up to 3 cm wide trending sub-parallel to the C.A. Some smaller $<0.5 \mathrm{~cm}$ veinlets up to 75 degrees to the C.A.
19.8-32.65 M Abundant patchy green chlorite and numerous quartz and carbonate veinlets, often bordered by chlorite streaks and fracture filling and finely diss py. The veinlets are typically 2 to 5 mm wide and commonly trend @ 25 and 65 degrees to the C.A.

32.65-42.25 M SILICEOUS ALTERATION ZONE

Gradational contact into a rock with less chlorite and sericite and increasing amounts of silica. The rock has a beige to pinkish-beige colouration which may be in part alkali feldspar metasomatism. Rock contains a greater concentration of sulphide with concentrations of up to 3 \% py over 20 cm wide zones. The siliceous alteration is less feldspar destructive than the carbonate, sericite and chlorite alteration as faint to distinct plagioclase phenocrysts are locally apparent. 32.65-36.0 M Approx 5 \& patchy chlorite and fracture filling chlorite with associated py. 36.0-39.0 M Massive pink, siliceous rock with few fractures. Contains chloritic patches up to 3 cm in size with siliceous reaction rims interpreted as altered xenoliths. Occasional carbonate
veinlets a 30 and 70 degrees to the E, A, Local areas with 1 to 2 mm anhedral plagioclase phenocrysts.
38.4-39.0 M Locally abundant chlorite and carbonate fracture microbreccia. 39.0 M 3 cm quartz $>$ carbonate veinlet 80 degrees 39.0-42.25 M Rock has a more reddish-pink colour because of a limonitic staining. Locally abundant (5 \%) patchy chlorite with associated coarse 3 mm py.
42.25-43.5 M LAMPROPHYRE DYKE

Sharp upper and lower contacts @ 75 and 45 degrees to the C.A., respectively to lamprophyre dyke. The rock is light to medium green in colour with 10 \%, 1 to 2 mm hornblende phenocrysts, partially to completely pseudomorphed by chlorite. Local 1 mm plagioclase phenocrysts. Contains a 4 cm rounded pink altered xenolith with a tan coloured reaction rim.
43.5-47.4 M 43.5-47.4 M

TOPBOOT LAKE PORPYRY INTRUSION SILICEOUS ALTERATION ZONE siliceous alteration as previosly described 43.5-43.8 M Abundant < 2 mm stockwork green chloritic and white carbonate veinlets 43.8-45.6 M Massive light pink to belge sillceous alteration with local < 2 mm wide white carbonate veinlets $@ 25$ and 75 degrees tothe C.A.
45.8-47.4 M Fine-grained pink, siliceous altered rock but with 15 o plagioclase phenocrysts. The phenocrysts are at first faint and anhedral but grade down section into more distinct and euhedral, 1 to 2 mm crystals. Local chloritic fractures with diss py 10 degrees to the C.A. and 1 to 2 mm carbonate veinlets @ 20 degrees to the C.A.
47.4-49.3 M MAIN DERRAUGH VEIN

Sharp pyritic upper contact a 75 degrees to the C.A. and lower contact a 50 degrees to the C.A. zone of massive milky-white silica flooding and quartz veining. Multiple generation of quartz emplacement with minor yellow-brown carbonate fractures and clots. Tr finely diss py within the vein zone. Large 10 cm wide secondary vein @ 48.6 M and @ 65 degrees to the C.A. Local green coloured mica.

TOPBOOT LAKE PORPHYRY INTRUSION 49.3-63.3 M

Fine-grained, beige to pink siliceous alteration with iocal zones of carbonatization and chlorite
63.3-68.4 M

CHLORITE-CARBONATE-SERICITE ALTERATION ZONE
Gradational contact to a rock with increasingly abundant sericite and chlorite, less silica and fewer carbonate veinlets but contains intersticial carbonate. Chlorite occurs as patches or fractures carbonate. Chlorite occurs as patches or fractures
locally forming microbreccia. Tr finely diss py but locally concentrated up to 3 \% as coarse fracture filling grains over 10 cm intervals. $63.3-67.3 \mathrm{M} 25 \%$, 2 mm to 4 cm rounded patches of siliceous altered rock in a chloritic fracture microbreccia. The siliceous patches contain relict plagioclase phenocrysts. 1 to 3 mm carbonate veinlets commonly oriented © 65 degrees to the C.A.
67.3-67.9 M Lamprophyre dyke composed of medium green/gray, fine-grained material with approx 5 to $10 \%, 1 \mathrm{~mm}$, chloritic hornblende phenocrysts and euhedral plagioclase phenocrysts. Contains < 1 \% finely diss py. Upper contact is irregular whereas the lower contact is sharp a 15 degrees to the C.A. Upper contact contains several partially c.A. Upper contact contains several partially angular to rounded xenoliths also within the dyke with 1 to $2 \%, 1$ to 3 mm , coarse py.

WEAKLY ALTERED FELDSPAR PORPHYRY
and carbonate fractures. Local microbreccia. Local zones of 15 to 20%, 1 to 2 mm , anhedral to subhedral plagioclase phenocrysts.
49.3-53.0 M Abundant 1 mm to 3 cm carbonate veinlets commonly trending a 45 and 75 degrees to the C.A. Local chloritic fractures are commonly oriented @ 35 degrees to the C.A.
53.0-63.3 M Chlorite patches and fractures become increasingly abundant. The fractures are commonly oriented @ 20 degrees to the C.A.
49.3-57.7 M Zone with discernable plagioclase phenocrysts.
59.3-59.6 M Local zone of chlorite microbreccia with $1 \%, 2 \mathrm{~mm}$ coarse py. 60.0-60.5 M Same as above.
60.5-63.3 M Massive, fine-grained, siliceous alteration with 1 to 2 mm carbonate velnlets a 40 , 60 and 75 degrees to the C.A. The larger veinlets commonly have an associated bleaching with up to 5 \% diss py over 2 cm .
62.8-63.3 M 1 to 4 mm anhedral to subhedral, beige siliceous specks which may be relict plagioclase phenocrysts.

Medium green/gray, fine-grained rock containing 25 \%, 1 to 3 mm , anhedral to subhedral, sericitic plagioclase phenocrysts. Local 1 to 4 mm carbonate
veinlets are commonly oriented a 40 to 60 degrees to the C.A. Local chloritic fractures and local areas with 10 to 50 cm zones of sillceous and carbonate alteration and bleaching.
70.2-70.65 M zone of beige, siliceous and carbonate alteration and bleaching around carbonate and chlorite veinlets sub-parallel to the follation.
71.2-71.95 M Same as above.
73.2-73.6 M Same as above.
78.05 M (256 FEET) END OF HOLE

D.D.H, * TL 88-3

DIP : -45°
AZlROTH: 250^{n}
LOCATID1.S: TOPBOOT LAKE, SWAYZE TP. (Derraugh Trench), Claim 932196, Approximate Coordinates $L 00+64 \mathrm{~mW} / 6+49 \mathrm{~ms}$
ELEVATION: E-3ni abow vein ill Derraiegh Treuch
STARTED: JULY 28/33
STOPPED: JUMY 29/88
COMPANY: CAN-MAC EXPLOİATION LTD,
PROPERTY: TOPBOOT LAKE
CONTRACTOR iles Eitreprises Vacqued Rousseav, Rouyn, Quabee
LOGGED BY: Frank H. TOCい
DEPTH: 77.75 meters (255 feet)
CORESIZE: $B Q$
DIPTESTS: $77.75 \mathrm{mi}\left(255^{\circ}\right)-45^{\circ}$

- Casing pulled
$0-1.52 \mathrm{~m}$
$1.52-3.12 \mathrm{~m}$
3.12-24.5

4b/d CARBQNONATIZED-CHLORITIC-SERICITIC PORPHYRY (.
Greenish-grey with beige Rlteration zonestpatches up to 1 m . and as bands to several cm. wide about quartz-carbonate $t /$ chlorite veinlets ($1-15$ mm wide) which are scatfered Throughout; carbonatization. is pervasive; ; $\wedge^{\prime \%}$ uartz carbowate veinlets are at CA 40-650, Mainly traces of dissem inated Pyi with local fracture fillings of Py; cklvitic fractures at CA. 15-20 , 30-40, 60-70 ; about 1% denkgreen: chloritic, sub-angulan to sub-rounded Pragueruts 0,2 3 cm insize are scattered throughout; $10-20 \%$ sericitized plagioclase plenos are sub-angular to sub-rounded, 1-3 mm in size, disappearingin the beige alteration zoncs; gradational coutact
$3.12-4.12$
$4.12-5.12$
5.12-6.12 $6.12-7.12$
CASING (0-5')
46/CARBONATIZED-CHLORITIC-SERICITIC PORPHYRY Broken to rounded pieces of fgr. greenish-grey porphyry with feint sericitized plagisclase phenos in canbouatized, chloritisot-seyicitic matrix; also pieces of vuggy, dark green chloritized rock; 0.5 m G.C.or Lost Core ; stme re-drilled core
$1 / 2-1 \%$ Py disseminated $\$$ as fracture fillings associated with chlorite-sericite $\ddagger /$ on quantz carbollate
veiulets@CA 15.20°, 46-45 ${ }^{\circ}$
$<x_{2} \%$ Py disseucinated \ddagger also associated with chloritie. fragments
$1 / 2 \% P_{y} d$ issemsinated ; beige alteration; veinlets quartz.caris $1 / 2 \%$ P disseminated 4 fracture fillings @ C1t 10-20\%; beiae alteration q quartz-cribonatc vieinlets.

70\% 5 ericitic fragments (a breccia) with a crude foliation in part @ CA $20^{\circ} \mathrm{t} /$; contacts of zone $@ C A 45^{\circ}(+\lambda) \neq C A 60^{\circ}$
Veincoutact @CA 45°
37.0-40.1 $4 d /$ PINK TO

EIGE SILICEOUS-CARBONATE WRALTERATIDN ZONE Main'y pink to finkish; lichloritized fravereuts-patcios as renimants (Srm-several cme sied) 5-is\% anasinunsima quartio-carbonate veinlefs, $1 \mathrm{~mm}-2 \mathrm{~cm}$ wide e CA $20-30^{\circ}$, $40-50^{\circ}, 60-70^{\circ} ; 1 / 2-1 \%$ disseminated $P_{y} \neq P_{y}$ with chloritic fracture fillings focally up to 5% over sovern! cin.
$39,6-40.1$
Quantz-canbonate vein with sericite Practure fillings \# minlor disseminated Py; vein appears brecciated in part; milky to greyish; contact © 39.6 ue @ CA 35°; contact @ 40.1 m in B.C. (broken core)
42
BEIGE TO
ALTERATIC
40.1-40.80
45.9-47.45 10% quartz-Carbonate t/chlorite veinlets
$4 d / 6$
BEIGE
to pink silliceous alterition zone in altered porphiry
Similav to unit above but morve fale greenish-grey altered porpliyry (plagioclase) zones (5 -socn) with $\leqslant 20 \%$ haz z to fairly distinct plagioclase phenos (sub-rouided to occasionally sub-angelar) sericitic, $1-2 \mathrm{~mm}$ in size in a ins 'sericite-chlorite matrix; few chloritized fragments $\$ /$ or patches $1-3 \mathrm{~cm}$ insize; $1-2 \%$ quartz-carbonate veiulets $1-20$ mul wide 4 sometimes anastamosing scattered throughout Trace to locally 1% disseminated Py w"some fracture fillings 48.84
61.68-73,35
73.35-77.75
57.38-58.38
61.68
62.42-62,55
$4 \mathrm{~d} / \mathrm{b}$ CARBON
Piuk-beige alteration zone flooded by apeariz \ddagger parts cut by quartic - carbonate veiulcts; some chlorite fracture fillings $\left(t /-P_{y}\right)$; minor disseminated $P y$; contacts @CA $60^{\circ} \neq 40-45^{\circ}$; resembles portions of the Main Derraugh Vein?
Contact approximately at CA 30-35 ${ }^{\circ}$ between beige to pinkish alteration band (40 cm wide) with green mica \ddagger altered porphyry below
$46 / 2$ CARBONATIZED-SERICITIC-CHLORITIC PORPHYRY
Greenish-grey, with up to 20% hazy to distinct, auliedral to subhedral, rounded to sub-augular, sericitic plagioclase phenos. Set in a light to daw greenishgrey sericitic-chloritic generally carbonafized matrix; occasional chloritized fragments to 1 cm in size;
$1-2 \%$ scattered greartz-carboncate veiulets $1-10 \mathrm{~mm}$ wide @ CA $15-30^{\circ}, 45-60^{\circ}$, a $f e w$ with disseminated $P_{y} j$ Trace to locally 1% disseminated Fy, some with clebritic fractures
Beige siliceous alteration zone with Ecu quartz carbonate veintete $C A 60^{\circ}$ ATIZED - SERICITIC- CHLORITIC ALTERATION ZONE

Light to medium greenish-grey", carbouatized rock with occasional feint, plagioclase phenos (rounded); patchy light greeniskigrey to white al aeration; small' clots, patches $\$$ /or rags of chlorite $t /$ My throughout; scattered quartz-carbouate veinlets mainly $1-3$ nne wide at $C A 5-15^{\circ}, 35-45^{\circ}, 50-60^{\circ} ; \quad 1 / 2-1 \%$ disseminated $P_{\%}$ (locally. $2 \%^{\prime} \mathrm{P}_{y}$); some. Fy on fractures @ $C A 25^{\circ}-30^{\circ}, 45^{\circ}$
73.35 Sharp, irregular contact (a) CA 45-65 ${ }^{\circ}$
77.33-77.38 1 cm wide quartz-carbonate \neq green mica veinlets (a) CA $50^{\circ} \neq 30^{\circ}$
77.75 End of Hole

SAMPLING I ASSAYING
DDH TL 88-3
SAMPLE NO. FROM., TO LENGTH (meters)
Au (pp)

SAMPLING F ASSAYING, CH.
DDH TL83-3 ctd

SAMPLENO.	FROM	TO	LENGTH(meters)
TLBB-3-42	72.35	74.35	2.0 m
-43	74.35	75.35	1.0 m
-44	75.35	76.35	1.0 m
-45	76.35	77.75	1.4 m

Flev. O-
$10 n-$

Erni-
:20m-

40\%-

STM-
$6012-$

70m-
$83 n-$

Main Dermangh Vein (IIDV)

DDH.* TL 88-4
DIP -60°
Azimuth 250°
LOCATION TOPBOOT LAKE, SWAYZE TP. (Derraugh Trench), Claim 932196 , Approximate Coordinates Line $00+64 \mathrm{~mW} / 6+49 \mathrm{~ms}$
ELEVATION: 2.3 m above vein in Derrough Trench
GTARTED: July $29 / 88$.
STOPPED: July 30/88
COMPANY: CAN-MAC EXPLORATION LTD.
PROPERTY: TOPBOOT LAKE
CONTRACTOR: Les EutreprisesiJacques Rousseau, Rouyn, Quebec
LOGGED OY: Frank H. Toews.
DEPTH: 99,4 meters (326 feet)
CORE SIZE: AQ
DIPTESTS: $99.4 \mathrm{~m}\left(3266^{\prime}\right)=58^{1} 2^{\circ}$
Casing pulled

$$
\begin{gathered}
0-5.18 \mathrm{~m} \\
(0-17) \\
5.18-10.7
\end{gathered}
$$

$C A S I N G$
Sand, boulders; driller reported bedrock(?) ledge at about 4!, then passed back in to overburden
4d/b:- GREEN CHLORITE- SERICITG-CARBONATE ALTERATION IN PORPHYRY

Pale greenish alteratiou with 20% patches t zones of pale to nediun greenisk-grey pattered. porpluyry up to 10 cm in size with $10-20 \%$ rounded to sob-augular sericitized plagioclase phenos $1-5 \mathrm{~mm}$ in size set in a f.gr. matrix of chlorite -sericite; plagioclase phenos are distinct to feint to invisible; carbonate is pervasive; from scattered, angular to sub-rounded, chloritized fragments $0.5-3 \mathrm{~cm}$ in size; Traces to $<1 / 2 \%$ dissemiliated Ry occasionally with: quartz.-carbonate-chlorite veinlets which cut all rocks, are scattered throughout unit, vary frore mine. to 3 cm in width \ddagger are oriented e CA $40-50^{\circ}, 15-20^{\circ}, 30^{\circ} 35^{\circ}$, 60°; approximately $2-3 \%$ veinlets; contact is gradational. with unit below

4b/d ALTE CHLORITE

A PORPHYRY WITH GREEN SERICITE-CARPONATE-? ALTERATION ZONES

Medium to light greenish grey porphyry ($\$$ possible diovitic phases) with $20-25 \%$ pale g greenish alteration' bands \& zones $1-30 \mathrm{~cm}$ wide; porphyry is simian to unit above with exception of diovitle?? phase; 2.3\% quartz-carbonate, t/ chlorite veinlets imm-lcm wide@ CA $35-45^{\circ}, 15-25^{\circ}, 55^{\circ}, 10^{\circ}$, cut all rocks; Traces Ply; pervasive carbonate:
$13,2 \leq 143$ Possible porphyritic (feldspar) diorite which is gradational

DDH * TL 88-4
into surrounding rocks; 5% white, rounded ${ }^{15 \%}$ greenish rounded feldspar phenos $1-2 \mathrm{~mm}$ in size, set in a light greenisk-grey prim. Matrix of feldspar-quartz-chlonite-sericite, occasional chloritic fragment; rock is affected by the beige alteration as well
$16.6-23.8$

23.8
$4 b /$ GREEN -GREY

ALTERED PORPHYRY
Medium to medivm-dark greenisk-grey porphyny with 20-30\% plagioclase phenos which are rounded to sub-angular, 1- 3 mm in size, pale greenish (sericitic) to occasionally white \& are set in a f.gr. green-grey matrix of chlorite t//sericite; rocks are carbonati,zed, with. traces of By; few scattered chlovitic fragments which are angular to rounded, mainly $1-3 \mathrm{~cm}$ insizes \& contain disseminated Dy; one fragment is 17 cm long; $\leq 1 \%$ quartz carbonate $t /$ chlorite veinlets $1-5 \mathrm{~mm}$ wide throughout e CA $15-25^{\circ}, 40-50^{\circ}, 70,150^{\circ}$; contacts of rock unit are gradational into adjacent units
29.52-29.8 Beige siliceoos-carbonate alteration zone with distinct contacts @CA $40-45^{\circ} \neq 45^{\circ}$, Some remnant porphyjy
patches minor green mica! zone is cross-cut by patches \ddagger minor green mica; zone is cross-cut by a 3 cm , wide quartz carbonate Ply vein a CA 30° \& by $1-3 \mathrm{~mm}$ wide quartz-carbonate veinlets Q. CA $30-35^{\circ}+45-50^{\circ}$ which also cross -cat the 3 cm -wide vein with $1 / 2 \%$. fy dissemindins

37.0-37.3
38.2-52.1

4b/d GREEN

PINK-

CHLORITE-SNRRGITE-CARBONATE ALTERED PORPHYRY WITH BEIGE SILICEQUS H-CARBONATE ALTERATION ZONES Approximately $\dot{2} 0 \%$ of beige to pink siliceoust/-carbonate alteration as bands $0.5-4 \mathrm{~cm}$ wide and patchy/lisat zones with remnant porphyry $t 50 \%$ medium toligreengrey porphyry zones with distinct to feint sericitized feldspar phenos in chloritic \ddagger /or sericitic matrix with variable carbonatization scattered chloritic fragucats angular. to rounded $0.5-3 \mathrm{~cm} \neq 0 c i a s i o n c a l l y ~ 10 \mathrm{~cm}$ in size; Trace to locally $1 / 2 \%$ disseminated. By, sometimes associated with satickedovitic fractures \ddagger chloritic fragments; $1-2 \%$ scattered quartz-caubonate veilicifets $1-15 \mathrm{mmi}$ wide © $C A=25-35^{\circ}, 50-60^{\circ}, 10-15^{\circ}$; (morerveinlets it tower part of unit)
$\$ 1 \%$ blebs, disseminated $P_{y} \pm$ disseminated $P_{y} \$ C_{p}$ in lump chlorite carb.eCAZ.; 5.10% pink to beige siliceous-carbonate alteration patches and bands $0,3.3 \mathrm{~cm}$ wide @ CA $25-35^{\circ}+45.56^{\circ}$ 38,69 minor disseminated Cp
Green mica associated with chlovitic fragments t / P_{y} Foliated chloritic fragment © CA $40-45^{\circ}$ with disseminated By \& partly cut by chloritic fractures $(t) P_{y}$) @ CA $25-35^{\circ}$ Chloritic'fractures ($t /-P_{y}$), sometimes a mastamosing @CA 25-35, $40-45^{\circ}, 15-20^{\circ} ; 2-5^{\circ} ;(\leq 9 / 10 \mathrm{chc})$.
48.47- similar to 47.77m.
$49.31=$
49.86-5-10 mic wide tight gray cherty veinlet with $z \%$ quartz blebs trains; veinlet © $C A$ $3-5 \%$ quartzt/aibouate velulets often associated with beige siliceous alteration halos or bands; quartz veinlet are 1-5 mu i wide, © CA $40-45^{\circ}, 50^{\circ}-60^{\circ}, 20-30^{\circ}$, some veiulets are anastomosing \& some are offset by chlorific + carbonate fractures
51.17 -light grey cherty band 5 安mm wide at $C A 40^{-45^{\circ}}$, minor By in band \& wall rocks
51.53-51.69.. Quantz-carbonate vein with beige, subangular to rounded fragments; contacts irregular with beige host rock@ CA $40^{\circ} \neq 60^{\circ}$; fracture fillings to ribbons of chlorite parallel $\$$ cut vein which has minor By \& solve green mica
51.60-51.68 chloritic veinlet, 2-8 mu wide a CA 10-15 Cobliqua to Quartz vein) contains green mica near Quartz vein; chlorite veinlet shows a wispy termination. \& cross-cuts toffsets?) some quartz veiulets
52.1-52.55 48/ LAMPROPHYRE?

Well-foliated (CA $5-20^{\circ}$, sinuous?) greenisl-grey, sericitic-
ckloritic-carbonate alteration; Contact @ CA $35-45^{\circ}$ partly overprinted by beige siliceouscarbonate alteration bound 2 cm wide (cross-cutl)ing contact 生foliation) @ CA 60°; This band is in turn crosscut () by 2 mus wide quartz veinlet @CA 15° ushidi parallels the foliation
15% anastomosing quartz t/-carbonafe t/ chlorite $1-15 \mathrm{~mm}$ wide parallel to foliation $\$$ crosscutting @CA $30-40^{\circ}, 50-60^{\circ} j$ the crosscutting veinlet are partly ptygmatically folded due to movement along the foliation part of a fragment of pinkish siliceous alteration RRAUGH VEIN
Contact fairly regular at CA 45-50
Quartz-carbancote vein; milky; serikite \ddagger chlorite veindets - fractures; Trace' Py; 'lower contact @ CA 50° Brecciated beige to occasionally pinkish siliceous-cirbonate alteration flooded by quartz $1 /$-car bonafe which also occurs as later vein lets $-\frac{1}{2}-20$ min wide ${ }_{n}$ a dA $36-50^{\circ}, 15=20^{\circ}$; light green irregular sericitic veinlets ane also present; Tract locally $1 / 2 \%$ disseminated Dy
$53.4-540<1 / 2$ to ! $\%$ dissemiliated P_{y} Contact irregular@ approximately CA 50°
-EPIDOTE?
SILICEOUS - CARbONATE - SERICITE, ALTISRATION. ZONE (epidote?)
Beige to very pale greenish pol th variable weak carbonate, local chlorite, occasional green mica a s sociated with several $0.5-2 \mathrm{~cm}$ chloritic fragments; $1 / 4-7 \%$ (locally) disseminated By which also occurs in some fractures $t /$ chlorite; 5-10\% quartz -carbonate veinlefs $1-15 \mathrm{~mm}$ wide, often anastamosing@CA $25-35^{\circ}, 40-50^{\circ}, 65-70^{\circ}, 5-15^{\circ}$ and. occasionally Py-bearing; larger veiulets contain wall rock fragments
54.0-54.07 54.1-54.24
54.65
$57.0-57.2$
$5712-57.5$

DDH TL -88-4

rock is well- foliated@CA 15° to sub-parallel to $C A$; Possible epidotization at Lower. contact which is © CA: $20^{\circ}-35^{\circ}$ (irregular); quartz veinlets cut contact \& alteration

PINKISH - PALE GREENISH' SILICISOUS -CARBONAT ET EPIDOTE-CHLDRITE e alteration zone

Groundmass is variable with beige to slightly pink topple greeu(epidotized) containing variable amounts (N il to locally 50%, average $15-20 \%$) of chloritic patches, clots, flecks \pm occasionally $0.8-2.0 \mathrm{~cm}$ wide bands; patches are $0.5-10 \mathrm{ck}$ size; disseminated 4 : Debs Ry often (but not al lays) :show \bar{w} an, association. with the chlorite, Tr ace to locally 2% My (average $1 / 2 \%$); occasionally feint, rounded, sericitized plagioclase phenos? $1-3 \mathrm{mim}$ in size in the chlorite patches ; . $1 / 2 \%$ to locally 5% (over 20 cm) of quant z carbonate ($4-$ chlorite) are scattered throughout merit, In widths of 1-5 new $\ddagger 0$ occasionally op to 6 cm @ $C A 15-20^{\circ}, 25-35^{\circ}, 45-50^{\circ}, 60-70^{\circ}$, veinlet. may occurs as individuals or anastomosing groups,
$3-5 \%$ quartz carbonate veiulets
Zone of quartz flooding in pinkish alteration plus 15 mm quartz carbonate veinlet t chlorite $t /-P_{y} e$ CA 55° 2-3 cm chloritic patch with $30 \% P_{y}$ (massive-disseninated) Quartz -carbonate vein $1 /$ chlorite ribbons @ CA $45-50^{\circ}$; Trace My yellowish- epidotet, (pervasive in felsic matrix but variable)
 74.77 2-3 cir quartz-carblunate-chlorite veil@ ct 30°
 Minor C_{p} with disseminated P_{y}
several 55 mm quartz-carbonate veimlets © $C A 30^{\circ}$
Contact fairly abrupt in -that chlorite disappears the pale greenish to beige matrix remains
77.55-84.8

4d/PALE GREEMISH TO BEIGE'EPIDOTE-SILICEOUS =CARBONATE--SERICITE t/-CHLORTTE ALTERATION ZONE
(efidotized)
Pale areenishnto beige siliceous carbonate-sericite alternation with 10% zones ($10-15 \mathrm{~cm}$ wide) withremuants of chlorite alteration-$a^{2-10} 0^{\circ}$ Chlonitic grains \neq occasional dapkatchess; $1 / 2-1 \%$ disseminated My fracturefillrugs; a few, Scattered chloritic fragments 2-10 mm in si zee often with associated green unica; 1% scattered quartz -carbonate veinlets $1-10 \mathrm{~mm}$ wide at $C A, 15-26^{\circ}, 35: 15^{\circ}$, some ω, th, disseminated P_{y} (see below for wider veins);

DPH TL 88-4

DDH TL88-4

SAMPLING \& ASSAYING

DOH TL 88-4

SAMPLING \& ASEAYING ctd.

Az. 250°

Elev. 0
Main Dermaigh Veins (HDV)

ODH:
TL 88-5

DIP: -45°
AZIMUTH:
LOCATION: TOPBOOT LAKE, SWAYZE TP. (Derraugh Trench); Claim 932196; Approximately Line $00+62 \mathrm{~mW} / 6+93 \mathrm{~ms}$
ELEVATION: $3-4 \mathrm{~m}$ above vein in Derraigh Treuchitamabove 88-1
STARTED: July 30,1988
STOPPED: July 31,1988
COMPANY: CAN-MAE EXPLORATION LTD
PROPERTY: TOPBOOT LAKE
CONTRACTOR! Les Entreprises Jacques Rousseav, Rouyn, Quebec
… LOGGED BY:. Frank H. Toews.
… DEPTH : 71.96 meters (236.feet)
CORE SIZE: $8 Q$
DIP TESTS: $71.96 \mathrm{ve}\left(236^{\prime}\right)-431 / 20$
Casing pulled

$$
\begin{aligned}
& 0-0.91 \mathrm{~m} \mid C A S I N G \\
& (0-3.5)
\end{aligned}
$$

091-7.0 Ad/BEGE-PALE GREEN SERICITE-CARBONATE-CHLORITEZSILICIFICATION ALTERRTION ZONE \qquad
Rocks have beige to pale green sericite, carbonate-feldspar groundmass with variable ($0-10 \%$) chlorite mairuly as small clots, rags a occasionally a small (1 cm) patch
of chlorite-rich material; the chlorite rags or streak of chlorite-rich material; the chlorite rags.on streaks are often aligned parallel to the foliation ecA $20-35^{\circ}$ wheveppsat; carbonatiention is pervasive from weck to relatively
strong in the lower pant of unit; silicification strong in the lower part of unit; silicification is: variable being more extensive in the upper part of unit; Figr. disseminated Py is present as Trace to locally $1 / 2 \%$ over $\leqslant 10 \mathrm{~cm}$, mainly in wall rocks tminor amounts in sonc quartz-carbonate veinlets; locally see possible pbale greeu ish, $1 \mathrm{~mm}+/ /$, anhedral p lagioclase phevos; Quartz-carbonate ${ }^{+/-c h l o r i t e l e t s, ~} 1-5 \mathrm{~mm}$ wide mainly, often inregular, anastomosing $\$$ sometimed de formed, are scattered throughout in amounts of $1,2 \%-5 \%$ locally over $15-20 \mathrm{~cm}$.; a few veins are $1-2 \mathrm{~cm}$ wide; verulets areoriented@CA 10-15; $25-30^{\circ}, 50-55^{\circ}, 65-70^{\circ}$ क also sub-parallel to CA; veinlets $\wedge^{\text {often } r o s s-c u t ~ f o l i a t i o n ~ w h e n ~}$ present; Contact is gradational
$0.91 \cdot 2.0 \mathrm{~m}$
\qquad
Broken core, soluc re-drilledpieces; G.C. approxinutely 25 cma ; some of the $B C$ due to oxidized Finggy carbonate:quartz veiulets @ $C A$ 2-150, $60,-70^{\circ}$; since foliation ech $25-35^{\circ}$
2.0 m - Sonce pieces of broken Quartz-carbonate veru Quartz-carbonate velulet 1 cm iwlde along one side of core. some oxidation; minor Py; wall rocks silicified $\&$ hove 12% Py
2.75 r
4.62
$5.28-5.48$

$5.64-6.05$

$$
7.0-15.15 m
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13.88-14.05 $12.65-15.02$
15.95-15.15 15.15

4b/d GREEN

By

Possible plagioclase phenos.
1 cm Quantz-carboncofe Vein let © CA 20-30 ; minor
Several 1-2 cm wide Quartz-carbonate Veiulets plus silica -carbonate flooding \$ brecciation of wall rocks; one central relatively. good "vein" @ CA 55 "; contacts of zone are@ CA 55° \& 35° (oblique to each other) minor chloritic fractures; Traces of PH
3% Quartz-carbouate t-chlorite veintefs irregular@ CA 25-50 ; veiulets cut foliation (e $C A 30-35^{\circ}$) and are also partly offset by it; at offsets get chlorite concentrated in places; $\leqslant 1 / 2 \%$ My in wall rocks; some carbonate: is oxidized near oxidized chloritic fracture @ $6 A 25^{\circ}$ (a) 5.9 m Foliation@ CA 20-30

SERICITE - CHLORITE - SILICEOUS-CARBONATE-EFIDOTE
(Episode in pant) Rocks are medium greenish-grey to pale greek, to focally somewhat beige; light greevislugry to pale green f.gr. sericitiet siliceous carbonate ground mass with clots,
 Showing anhedral to rounded plagioclase phenos 51 mmo ; the groundmass also occurs as bands ($\leqslant 10 \mathrm{~cm}$) © CA 2530°, $50-60^{\circ}$; Trace- 12% of fig disseminated PP y occasional rounded chloritic fragment 1-3 .cm size; scattered $1-5 \mathrm{~mm}$ carbonate quartz veiulets-gasheslocesional bal haj: $3-5 \%$ carbonate quavitz. veinlets \ddagger gashes@ CA 60-70\% $50-55^{\circ} 85-45^{\circ} 15-25^{\circ}$; cut all rocks; barren of sulfide $10.35-10.90$ vuggy barixidized quartz-carbouate veiulets Le: 55 than 11.95 as $\gamma_{2} \%$ to locally 2% dis semivated $P_{y}+$ occasional Produce ca' 25° Shear zone@ CA $35-40^{\circ} \ddagger 45-50^{\circ}$; partly oxidized, sericite-clelorite-carbonate with $1 / 2 \%$ disseminated Dy; (some G.C. here); few quartz-carbouaté veinlet \& gashes parallel to cross-cutting foliation; one is partly folded; a few gashes Sub-perpeudicular to the lower contact \& cros's-c"utting the foliation(ca45") in the wall rocks below shear. zone.
Foliated (shear)@CA 45-50 ; oxidized at 14.02 m , Trace to $1 / 2 \%$ disseminated. By
Foliation Q CA $25-30^{\circ}$; in places appears tole cot by grounduiuss alteratiou.bands @ CA 60
More siliceous $\$$ more epidote d?) cit by carbonate veinlets. Very irregular sharp contact © about CA 35°.

CHLORITE -CARSONATETSERICITE ALTERATION ZONE Median to light greenish grey; relatively massivejfgr.

Th. 88-5

(Move senicitte?)
becomes inereasingly ighter greenish in proportion to
 as rags $\ddagger 5$ pols; patches $\leq 4 \mathrm{~cm}$ with soun remkant plagioclase phenos visible; 1-2\% carbonate-quartz \# quarte-carbonate-chlor ite veinlets \&oshes 1-5inin, cutiall phases of alteritiou (1) CA $50-60^{\circ}, 15 \cdot 25^{\circ}, 30-35^{\circ}$; Traces of Py
28.5-28,85 1-2 mm quartz-carbouate veim!ets eCA5-10 with bleaching halo, in places appearis to be. cut by carbonate-quartz veiulets Q CA 50-60号 32.95-33.0 minor disseminated Py assorieted with carbonate veinlet wall rock \ddagger ehlowitic patcle $30.36 P_{x}, C_{p}$ on wargin of 's.mmi !quart carbonate veinlet e CA 35-40 30.53-31.3 Chlorite $+1=$ Carbonate fracture e $C_{A} 0-10^{\circ}$ with $P_{y}+\ldots$. C_{p}. 33.2 coytact gradationinal:
$4 d^{\prime} / b$
$4 b / d$
35.3
36.3

GREEN wITH

GREY SERIKENCARBONAE OHORITG ALTERD PORPHKY
Medion to light greenisi grey seriaitic tocarbantatt chlorite grould mas's with up to 25% rounded to occasionallyisub-cingular, slightly greeuisliniplige ioclase phenos 1-e mim in size. appearing feint to quitedistinct; seattered rounded to angular chloritic fragments $0.5-2$ cm insize occasionully witla 1 mm
$\leqslant 5 \%$ Wide r reaction rim；$\leq 1 / 2 \%$ fragments（one is falsie） balldsthoy pale greenish to beige，silicone carbonate up to 27 cm wide in one case，but mainly $0.2-3 \mathrm{~cm}$ wide \ddagger often cored by： $1-5 \mathrm{~mm}$ wide quantz－carbonate th－chlorite veinlets which occasionally can be seen to cross－cut the alteration bands；Trace to locally （ $\leq 10 \mathrm{cim}$ ） $2-3 \%$ By as dissemination st fracture fillings in the hostrock，the altereration bands \＄associated with sone of the quartz－carlonate veinlets；in the vicinity of 43.15 m minor disseminating $\mathbb{C} P+P_{y}$ is al so found in or adjacent to a couple of quart $\overline{z-c a r}$ bonate－
 are C（1）$C A 5-65^{\circ}, 40-50^{\circ}, 30-35^{\circ}, 15^{\circ}$ ；Pyritic fracture fillings can also be found in these orientions； $1 / 2-1 \%$ My onavage

38．5：38．77

39．45－40．25
c_{P}

40．6－41．3
41．95－43．1
43：1－43．25
（ p
\qquad ＠CA 15° containing sub－parallel to crosscutting quartz－carbonate－chlorite veinlet $3-5$ min uride； also 2－3 mm wide veinlet $+/-P y$＠CA 30° cross－ Cuts alteration baud；$\leq 1 \%$ disseminated Dy within band and in wall rocks．
Similar alteration bald to 372 m with， 3 cm wide， quartz carbouate－chlorite veinlet © CA $55-60^{\circ}$ ．n． containing wall rock fragments \ddagger sone disseminated Pu plus fracture fillings with chlorite－py；alteration band contains one hazy，feint porphyritic patch－band and $1-2 \%$ Ry as disseminatious \＆fracture fillings ＠CA $40^{\circ}, 70 \% ; 50^{\circ}$ as well as several other quartz－ carbonate－chlorite veiulets $1-2 . \min$ wide；upper，hazy contact of band＠CA 50－55 ；lower contact hazy（plus offshoot）© CA $60^{\circ}-65^{\circ}$ which is： cross－cut by Ty．Veinlet © CA 45°（Ty veinlet also cross cuts a $1-2 \mathrm{~mm}$ wide quartz－carbonate－ chloriteveiulet＠CH60 near．lower contact）
1 mm quartz－carbonate veinlet sob－parallel to CA with beige halo intersecting $10+$ alteration bands 0．5－3 cm wide with quartz－carbonate＊－Py cones＠ CA $60-70^{\circ}$ ；it 39.46 m a 3 cm －wide band contains quart z－carbonate－chlorite veinlet $2-3$ min wide with． $P_{y} \neq$ an adjacent 1 cm ．long fragnenct altered to green $\hat{u}_{2} j$ ca $\$ P_{y}$ in fractures in the fragment $12(+)$ ）Pyritic fractures $t /$ Chlorite cut some alteration bails，i guartz－carbonafe veiulets Scattered dy chlorite fractures Several $8-5$ min wide quartz ccarbouate－chlonte－pyrite Veiulets 交 gashes＠CA $25^{\circ} \times 60 \cdot 70^{\circ}$ \＆irreg regular；one $@ C A 25^{\circ}$ \＆one＠CA 70° also contain several C_{p} grails） $1 / 2-1 \%$ My in fractures \＆dissiminations in zone well rocks

43,25-47.9 Distinct plagioclase phenos zre oftan in move patcluy tobacded zonas $10-20 \mathrm{~cm}$ in 1 cn the with feint. to non-existant phenos in the intervening aveas; amartz-carboncife veinlets decveasing to $1 / 2=2 \%$ locally;still kave Trace to 1% Py as disseminatious $\$$ Scatteved fracture filliugs t-chooit: © CH $25-35^{\circ}, 40-50^{\circ}, 60^{\circ}, 70^{\circ}, 85^{\circ}$; scattoved beige topink. pale greenish altaciation baceds 2 nem to sevenal cue wide t/- quartz-caribonate coves e CA $50-60^{\circ}, 70,20-25^{\circ}$ 45.2-45.3 Chlorite-sericite-epidote fracture © $C A 5^{\circ}$, with C_{p}, P_{y} smear 45.95 Ronnded figr. felsic framuat with chlorite....... flecks \& 1 kn clloritic reaction rime, partly cut by quantz veindet
47.9. Gradational Coutact
$47.9-53.40$
4d/PINK-SEIG SIGICROUS-CARBONATE - SERTCITE CHMORITE
ALTERATION ZONE
Pale pirk to beige in siliceous -carbouate ialteration as bauds, patcicy to more nussive, zound ($\leqslant 2 \mathrm{~m}$ size containing, remnant liazy patches (sloang ond ediuni tolight giey-greenish-grey porphyinitic rock with fainly distinct to Peint, roanded to occasionaly sub-angclar, white to slightly greenislu plagioclase phenos $1-2 \mathrm{~mm}$ insize \nmid up to 20% by volume in a Pigu, grocundmass; < 1% scaHered, rounded to sub-angular chloritic fragments <1 to 3 cm in size; $1-3 \%$ quartz-carbonafet-chlorite veinlets $\$$ gashes, 1-5 mm wide, uni formito wore ivregular in shape CA $65-75,4550^{\circ}, 25-35^{\circ}, \ldots$ 5-10 , sonelives forming ctockwonks of riarrow veinlets; $1 / 2-1 \%$ (locally) disseminated \neq fracture fillings $(t / 2$ chlorite) of Py somictipes occurring as small blebs ($\leqslant 5 \mathrm{~mm}$); Pyritic fractures @ CA $55-60^{\circ}, 35-45^{\circ}, 20-25^{\circ}$;
Sluar zore, 5.4 wide at coutact with Main De Ghar zone, $5 . \mathrm{cm}$ wide at coutact with Main Derraugh Vein
$47.9-49.0$
More banded to anastomosing veins of pink-beige siliceous-carbowate alteratiou which is kot always. cored cy quartz-carbonate $+\%$ chlorite veinlets; this leaves patches of porplyyritic rock with medicum to light grecuslrgrey to light grey rock; Sometincs ... plaaioclase plicies fairly district in the siliceouscarbonate alteration bands; occasional wider quartz-carbonate veinlet contains sueall augular) fragments of altered wall-rocks; Trace to $1 / 2 \%$ Py as disseminations $\$$ fractuse filliugs
 porphyritre patches secoral cmu.insize; few scattered

． 5 ． 5.40
$53.40-53.96$
MAIN DERMAUGH VEIN ZONE green mica ilk size fracture adjacent vein below
chloritic fragments； 51% quartz－cavbounte veiulcts \＄gashes；some plagioclase phenos still visible in parts of beige groundmass； $1 / 2 \%$ disseurineted $\$$ Fracture fillings wit．Fy；occasion spot of

49－49，8 5% clear rounded quartz grains $1-2$ mu
49.34 cm patch of quartz－carisonatetr Fy with apophyses；green mica associntad ut．Pyritic
$50.55-50.105 \quad 2 \%$ Ply disseminated； $1 \mathrm{~mm}(t)$ size grains Patent light greyish areas with plagioclase plicios：． visible； $1-2 \%$ quartz－carbonatetz chlorite． veinlets，gashes； $1 / 2 \%$ By disseminated plus fracture fillings；few ollowitic fragments Appears more pinkisli；cataclastic；upper contact about＠cA 8 ！，
 some feint plagioclase phevios Visible in patches； $1 / 2-1 \%$ disseminated $P_{y} \nVdash C_{p}$ ．Fin fractures © CA $15-40^{\circ} ; 2-3 \%$ $\therefore \leq 2 \mathrm{~mm}^{2}$ quartz－cirbonate gashes $\frac{1}{4}$ veinlets etA $30-70^{\circ}$ ； may be some silica flooding；rock a rove siliceous within 7 cm of shear zone below；nock part of vein？

Shear zone－Medina to light greenish－grey，cataclastic， with felsic fragincals ≤ 1 wnw to occcisionaly 1 cmu ．fragments． are rounded fo ovoid 1 anquan set in a wispy matrix of
 $P_{y}+L_{p}$ rock is foliated O CA $65^{\circ}-50^{\circ}$ which de forms and offsets some ir regular quartz carbonate veinlets $1-3$ mm wide $\$$ which appear to cross－cut the foliation which in turn cross－cuts the veinlets； Upper contact of shear zone is regular＠CA 70° while lower contact is more irregular＠about CA $50^{\circ}-60^{\circ}$ ； some of the fine sericitic－epidote（？）－chloritic threads penetrate the contact \＆enter the Main Derraugh

53．40－53．66
No quartz vein proper but extensive，white－grey． patchy quartz flooding with pinkish to beige． alteration patches来clots．；fine crackle fracture fillings of carbonate，chlorite；fine，pale green， wispy sericitic shears impart a foliation © CH 20－45 in places； $1 / 2 \%$ to locally 1% disseminated By， <1 min to 2 mm size grains ；lower contact e about CA 65°（broken core）
$53.66-53.71$
altered to a pale yellow color dies to patchy stalin. by pale yellow Epidote (?); vein is slithered by 5% anastomosing, late quarts $t /$-chlorite veinlets, ≤ 1 m. wide t in the lowed pant by very fine ragged', horsetail-like, chloritic veinlets emanating from the brecciated zone below; Coutant about CA 65
53.71-53.74 thin
53.74-53.88 -results © about CA 65-70; some carbonate, present Similar to 53.71-53.74. hat chlorite verulets less de use, lost rock' is els ic \ddagger siliceous to 63.78 (quartz + feldspar (?) + some cerlorato) with an 'overall pale' yellowish-guey colon: cataclastic appearance with a gross foliation@ about CA 50°; pale yellowish, wispy Epidote threads throughout; rock is cut by $5-10 \%, 1-2 \mathrm{~mm}$ to locally 5 mm wide whit wart. t carbonate t-chlorite veinlets (possibly of move thane one generation some of which are regular @ CA. 30° and others irregular, some what ptyguatically deformed (possibly along foliation plane) Q ob out CA 15° (earlier phase of veining? ; a 2.5 uni wide, white quartz veinlet with some traverse chlorite fracturing: occurs along, the contact with unit below; this veii inlet is partly broken up $\&$ an apophyses $\leq 1 \mathrm{~mm}$ wide (2) CA 70° crosses the contact which appears to be partly gradational
53.88-53.961

Ire $6 a+C$
$53.96-54.76$
Ad/ PINKISH
SILICEOUS-CARBONATE ALTERATION ZONE
Pinkish-grey cast with patchy to banded slightly deeper pink siliceous-carbonate alteration; some
chloritic spots; some feint to fairly distinct, rounded white to beige-pinkish plagioclase phenos, :1-4 mim in size in patchy areas; pink bands up to 3 cm wide are oriented@ CA 15-25 with some 1-2 mm oblique pink veinlets @CA 40°; $\cdots 1-2$ mon wide quartz-carbonatett veinlets parallel cross-cut the bauds as well as The pink veiulets; quartz-carbonate veiulets ($<5 \%$) are@CA $15-25^{\circ}, 50^{\circ} 55^{\circ}, 35^{\circ}-49^{\circ}$; some are gashes; $1 / 2 \%$ to locally 2% My is disseminated incl rocks. sometimes in chlorite t epidotetsericife fractures e $C A 20^{\circ}, 30^{\circ}, 55-60^{\circ}$
$54.76-57.53$

Ga-Py
(4)
chlorite

Ad/ BEIGE
55.45
55.53-5685
57. 4-57.53
57.53
-SERICITE-CITLORITE
SILICEOUS-CAR SON ATEARICITE-CITLORITE A TERATION ZONE (ia portpaigriticDion'te
Patchy to banded beige to slightly pinkish siliceous carbonate alteration in a light to medium greeuishighey rock (dior ite?) with 5% (?) spots 4 mascionally ar blades of chlorite (after amphibole?) up to 2 mm long a long with feint white to beige rounded to sub-angular plagioclase phenocrists 1-4 mm insize, in a feign felsic matrix with sericite; alteration bands are a CA $2-15^{\circ}$, 40-55 , cored by \& cut by ${ }^{3}$ quartz-carbonate veiulets <1 to 3 mm wide; the alteration bands are often intersecting; My is disseminated in all rock's occasionally. in quarle-carlonate veinlets 14 amounts of $<\frac{1}{2} \%$ to locally 1%; Disseminated By \ddagger a coating of Galena partly covers a fracture @CA 15° with some chlorite \& sericite near the intersection with another conjugate fracture H - quartz-carbonate @CA 15°; the first fracture is along an apophyses of the beige alteration zone below.
Beige alteration zone with patches of lost rock; zone is probably sub-parallel to CA; Trace to locally 1% disseminated By; zone cut by $2-3 \%$ quartz-carbonate veinlets, $1-2 \mathrm{~mm}$ wide e CA $40-50^{\circ}$; some Sericite- Epidote fractures \& CA $15-25^{\circ}$; lower contact is a band $<1 \mathrm{~cm}$ wide sub-parallel to CA with cross-brancles \ddagger which extends to 57.1 m Beige alteration band with hazy boundavirs e about CA: 55° with 55 mm wide quartz-caubonate veinlet (a). about CA 60°; band contains patch of ho sf rock; $<1 \%$ disseminated By in baud, minor Pry in veinlet. and several chlorite:pyrife fractures @ CA $15^{\circ}, 60-65^{\circ}$ one of which appears to be out by quartz carbonate veinlet $\$$ anollco enters unit below Somewhat gradational contact

TL 88-5

TL B8-5
64.23-71.96. $4 \mathrm{~d} / \mathrm{E}$ CARBONATE-CHLORITE-SERICITE ALTERED ZONE (IN ?DIORITEPORPHYRITIC)

64,53
65.65

$$
.65 .55
$$

64.73-16.52
66.08-66.65
66.8
67.75-6\%.3
71.84-71.96
$71.96\left(236^{\circ}\right)$
\qquad
39,7
$53.71 .-53.74$
56.8

61,79

As for 57.53-63.65 but with some darker sections $4 \mathrm{~cm} \times 2 \mathrm{~cm}$ ovoid Chloritic fragment
Py-Chlorite veinlet@ CA 30°
1-2 mn wide quantz-carbonate-epidore(?)-Py veinlet e CA 20-25 ; may have narrow beige alteration halo 2 mm wide quartz -carbonate veinlet sub-parallel to $C A$ Seven P_{y}-Chlorite fracture fillings 50.5 mim wide e, CA $35-45^{\circ}, 55-60^{\circ}$
z-3 cm. wide Quautz-carbonate clilovite veinlet in broken core; some \mathbb{F}^{2} epidote \& disseminated Fyi one contact (upper) @ CA 40-45 with Ry margin in part, Epidote alteration veinlets.in wall rock; plus disseminate t a fracture filling wi Hi P_{y} @ CA 65° in wall rocks. 3-5 mm wide car borate quartz veinlet © CA 10° Less carbonatized, more granular f.gr. ($1-2 \mathrm{~mm}$) diorite with some plagioclase pheuos $\leqslant 3 \mathrm{~mm}$; rock is predominately feldspar with chlorite-sericite in matrix; on possible hornblende pheno 2 rmm size; contact is bleached compared with the mediun-greanish-gray of the rock; -contact © CA 10. mainly; few ply grains End of Hole

Additional C_{p} observations during cove splitting Local disseminated $C p$ associated with chlorite in' carbonatequartz, veinlet $@ C A 70^{\circ}$
$<1 / \%$ disseminated By; C_{p}
C_{p} smears on contact of carbonate veinlet @ CA $45-50^{\circ}$ \& some C_{p} surrounds a few P_{y} grains in wall rock Chlonitic fracture@ CA 40-450 with disseminated.. $P_{y}+$ minor C_{p}

DDH TL 88-5
SAMPLENO... FROM TO :"LENGTH (ncters) Au(ppb)

SAMPHING\&ASSAYING DDH ${ }^{*}$ TL 88-5, ctd.

VOH*: TL 88-6
DIP: $-47 \frac{1}{2^{\circ}}$
AziMUTII: 245°
hOCATION: TOPBOOT LAKE, SWAYZE TP. (Derrangli Trench); (laim 932196 Approximately Line $00+50 \mathrm{~mW} / 6+14 \mathrm{mS}$
ELEVATION: ~Same Elevation as Veln In Derraugh Trench $\ddagger \sim 3$ meters below Th $88-3$
STARTED: August 1; 1988
STOPPED: August 2, 1988

- COMPANY: CAN-MAC EXPLORHTION LTD.
- PROPERTY: TOPBOOT LAKE

CONTRACTOR: Les Entreprises Jacqua Rousseau, RoöynQuebec
LOGGEDBY: Frank H. Toew's
DEPTH: $102.64 \mathrm{~m}\left(336.7^{\prime}\right)$
CORE SIZE: :BQ
DIPTESTS: $90.25 \mathrm{~m}\left(296^{\prime}\right)-45^{\circ} \frac{1}{2}^{\circ}$
Casing pulled

In the bands of the medium to darker greenish-grey host rock \& to some extent in tho beige to light-pale greenish-grey alteration bands with hazy to fairly sharp boundaries; Trace Dy 3.8 m - contact in broken core
$3.8-5.6$ $5.6-6.65$
\qquad
\qquad
\qquad

Derraugh
TRENCH "VEIN NOM" (DTVI)
Patchy to veiu-like light grey to milky quant z -carbonate, containing $40-60 \%$ patches \& fragments $(\leqslant 1-15 \mathrm{~cm})$ of figr, sericitic (\#epidote), pale greenish to beige siliccous-carbonate altered rock, sometimes with discernable white 1 mm plagioclase phenos; $\leq 1 / 2 \%$ disseminated $P_{y}(\leq 1$ min) occurs in-quartz carbonate the fragments' at the lower coutactla 1 cm wide late (?) shardiftzatad carbonate-chlonite veinlet parallels the contact @ CA $15-20^{\circ}$ adjacent to patchy, milky quartz with fragments; 530% ragged, bifurcating chlorite

0	
\ddots	\ddots
$2010-30,0$	

30.0-34.5
$\begin{array}{l:l} & 34.5-45.91 \\ 4 \mathrm{~d} / \mathrm{b}\end{array}$
$1 / 2 \%-1 \%$ dissenimuted P_{y}
Foliated parts@CA20-30
Pr $+2 \dot{C}_{R}$ 'scale's on fractures $@ C A 25^{\circ} \pm 35^{\circ}$
Pinon C_{p} on chlowitic fracture filling e cA 45° :
ISH-GREY CHLORITE-SERICITE-CARBONATE ALTERED
YR
Medium to lighter greenish grey with $20-30 \%$ relatively distinct to feint, rounded, $1-4 \mathrm{~mm}$, white to slightly greenish sericitictplagioclase phenos in a fig. cubritic $\$ /$ ow sericitic; fidspon +ryytymess; carbonate is pervasive but variable; scattered, rounded to sub-aggulas, chloritict tepidly fragments $0.5-3 \mathrm{~cm}$. in size; $\leq \frac{y_{2}}{\mathrm{H}_{2}}$. scattered, carbonate - quartz $\%$ chlorite veinlets, $1-5 \mathrm{~mm}$ wide @ CA $50-60^{\circ}, 70-75^{\circ}, 30-40^{\circ}, 15.25^{\circ} ;$ Trace - $1 / 2 \%$ disseminated Pr; chlarife t-sericite ty-carboute t.epidole to Pr fractures © CA $30-4 \delta$ $45^{-55^{\circ}} 10-15^{\circ}$, locallyoutto $8-10 / 20 \mathrm{cks}$, average $1-2 / 10 \mathrm{~cm}$ 1 cm chporiticipnangment with diss geminated C_{P}
Chlorite $t /$ Epidote t / P_{y} fractures © CA 30-45 ; $8-10 / 20 \mathrm{~cm}$.
Gradational contact
siliceous-carbonate alteration in hight greenish-SERICITIC-CHLORITIC. FAINTLY PORPHYRITiC ROCK
Patchy to banded (s / c_{m}) beige siliceous-carbonate $\%$ epidote allaration which also occurs as halos about some quarte-carbonate veinlets; host rock is light greenishgrey with areas containing feint, $1-2 \mathrm{~mm}$ sercicic plagioclase phenos set in a figr. sericitic-chloritic groundmass; sone quartz visible; scattered chlovitic, rounded to sub-angular fragments, $0.5-5 \mathrm{~cm}$ in size, carbonate $\$$ silicic licewion variable; $1-2 \%$ scattered quartz-car bouatex velinlets, mainly $1-3$ min wide Q $E_{A} 40-50^{\circ}, 60-70^{\circ}, 15-25^{\circ}$; scattered chlaritic (t) My thecurboudr) fractures © CA $15-25^{\circ}, 30-40^{\circ}, 50-60^{\circ}$, Trace to locally 1% disseminated $P_{y} \&$ some fracture fillings
$\leq 3 \mathrm{~cm}$ wide zone of quartz-carboncate, ${ }^{t-}$ VP in w th chlorite ribbons @ about CA 50-55 containing some wall rack fragments; irregular, harrow apophyses with My th chlorite are oriented@ about CA $10-30^{\circ}$; bleaching near main vein; may be sonic Epidote present
8 cm ch loritic fragment with $\leq 1 \%$ dissewithoted Dy Gradational contact
BEIGE TO LIGHT GREY STLICEOUS-CARSONATE $+/$-EP ePIDOTE ALTERATION IN LIGHT GREENISH-GREY TO LIGHT GREY PORPHYRITIC ROCK (PINITE)

Patchy to banded $(\leq 10 \mathrm{~cm})$ beige to light grey siliceous t, .

Carborate alteration which also occurs as haloes (纟kin) about quartz-carbonate veiulets $;$ silicificatiou $\&$ carbonate. alteration is pervasive but variable;: host rock coutains. $<25 \%$ feint to fairly distinct, rounded white to slightly greenish sericitic plagioclase phenos, 1-3 um insize, set in a sericitic -chloritic figr. groundmass; scattared, rounded, chloritic fragments 1-14cm loug; $1-2 \%$ to locally 5% quariz-carbonate 4 chlorite veinlets, often 1-5 mm wide, but occasionally $1-3 \mathrm{~cm}$ wide; cherite fractures $t /$ 'Py sometiuses cross-cut the veinkts which increase to wards - Mo Main Derrangl. Veik $\$$ are orieuted @CA $50-65^{\circ}, 70-80^{\circ}, 25-35^{\circ}$; chloritic fractures with Py beconie incrensingly munuerous towards the Main Derrangh Vein varying in amounts froun $2 / 10 \mathrm{cme}$ to $\leq 10 / 10 \mathrm{~cm}$ oriented @ CA $50-60^{\circ}, 35-45^{\circ}, 10-25^{\circ}$; $<1 / 2$ to 1% Py as dissemillations $\$$ in chleritic fracture fillings \ddagger minor an quartz-car-bonate veinlets rocks appear cataclastic $\&$ epidotized Near Hain Derviugh
Vein Veill
41.0
43.41
44.32
44.47
44.90
45.42-45.2 |rroui:: epidote veiulets, pale yellousish-gveen; also a 0.5 cm wide, quartz carbenate veinet © CA 50° whic: has becu. disrupted by chloritic fiactures @ CA $30^{\circ} \neq$ Sub-parallel to CA
45.55
$45.65-45.1$
3 cm , wide quartz-carbenate vein @ CA $60-66^{\circ}$ with Margincel piote (veir hay cut epidote veinlets oblique to quartz veiu) Ever al wall-rock iuclusious; quartz veiu is cut 4 partly
cpflest by chleritic fractures a
CH. $25^{\circ} \neq$ sub-paralled to cpfoset by chleritic fractures é $\mathrm{CA}_{\mathrm{A}} \cdot 25^{\circ} \neq 5$ sob-parallel to A_{F} Rock appeais cataclastic; potcly Epidotization as finc. Slicies of pate yollow Epiclets \# also as stainiug on. $50 m e 0^{-5}$ mim sidu quantz veiulets a, CA $20-25^{\circ}, 55^{\circ}+5^{\circ}$, 50° 鸟ashes sub-paliallel to CA; feus ofthe verícts aontain wall-rock riclusious \ddagger sóme are brokere uptor at by irregutar chlritic proctures) host rock is epidonited

46.23.-47.20 50% milky white to translucent quartz-carbonate with about 50% light grey to beige, silicified, figs. fragments which are literually shattroved by $<1-2$ mm wide quartz -carbonate veinlets; chlovitic (4-sericite) fractures with disseminated By © CA 50-600, $15-30^{\circ}$ cut all rocks; some green hicai spots; By occurs as ≤ 1 mm disseminations \ddagger small blebs <3 mm in size in both vein material \& fragments; Ply often associated with. chlorite; $1 / 2 \%$ My overall
46.93 Minor fine disseminated C_{p} along with P_{y}
47.20-47.60 Similar to above, but $<15 \%$ silicified Pragucents; Contact bs itch silicified vein wall rocks@ about: CA $15-20^{\circ}$ with some apophyses
4d/ BEIGE TO LIGHT-MEDIUN GREY SILICEOUS-CARBONATE ALTERATION ZONE

Similar to parts of unit from 34.5-45.91 m
47.60-47.80 Beige, figs, pervasive stlicificatiou t - carbonate fradurefillings as in fragments in Mail Dervang h Vein;; $5-10 \%$ so mewhat irregular quartz-carboute veiulets <1 cm vide@ subparallel CA near vein $\$$ @ CA $15-30^{\circ}$ more on less parallel to vein contact above; $8-10^{1 a t}$ chbriteBy t/ Sericite fractures e CA 20-25 which cross gradational contact with rocks below $\$$ sometimes offset quartz -carbonate veinlets; $1 / 2+1 \%$ dissemination Py \& shall blebs ≤ 2 mminsize, occurs in all rocks
47.80-48.40 Light-mediune grey with patchy beige to slightly
pinkish siliceoss-corbonate alteration : possible pinkish siliceoos-corbonate alteration; possible, very feint plagioclase phew os; $\leq 10 \%$ clear, rounded quartz grains $\leqslant 2 \mathrm{~mm}$ size; 3% quartz-carbouate veinlet <1 to 5 um wide, partly anastamosing (C) CA $60-70^{\circ}, 30-40^{\circ}, 15-20^{\circ}$; Numerous 1 kl Chlorite- P sericite, fractures @. CA 20-30,40-45 \ddagger sub-par allele to CA (some offset quartz-caubonate veinlet \& all would be oblique to M'aju Devraugh Vein contact \& to contact with unit below); several sural clelovitic fraguonts; $1 / 2-1 \%$ dis semivated P_{y}.
48.40 Contact @ CA $30-35^{\circ}$ with guartz-curbonate veinlet $\leq 1 \mathrm{~m}$ wide at contact.
48.40-49,85 4d/b() FOLLIATED MEDIUH-LIGHT GREY-GREENISH GREY CHLORITEM.

Probably tectonically de formed altered porphyritic rock; somewhat gradational into unit below; feint to distinct, rounded plagiockse phenos up to several rem in size are sometincos visible; rock appears cataciastic moreso in upper parton unit; rock has a patchy pale yellowish caste due to pervasive epidativalion. which is variable, as is carbonate alteration; several small ($\leq 5 \mathrm{~mm}$) chlonitic fragment's present;
48.4-48.85 Strongly foliated @ CA $30-35^{\circ}$. 0 . $15-20^{\circ}$; cataclastic;
 crosscut \& parallel the foliation \& way be do? along the foliation planes; patchy beige silicifiction in Vicinity of veinlets; Trace Ply
48.85-49.90 Foliation varies frovic CA 15-20 increasing to CA 50°; 1% quartz-carbouate veinlets, $1-3$ mine wide, at $C A$ $20-25^{\circ}, 35-45^{\circ}, 50-60^{\circ} \not \ddagger 5-10^{\circ}$ of fen cross-c cutting
foliation, $\&$ sometimes deformed along. foliation planes foliation $\&$ sometimes deformed along foliation planes Partly cataclastic \& more strongly foliated © CA $50-60^{\circ}$ $\star 5 \mathrm{~mm}$ quartz-carbonate veinlet parallel foliation @CA. 60°.
SILICEOUS (CARBONATR)-SERICITE-CHLCRITE ALTERATION IN POPHYRY:
Patchy to banded beige to occasionally slightly pinkish. alteration in. light to medium grey to greevishl-grey faintly to distinctly porphyritic -rock with up to 25% rounded, white to slightly greeiush; sericitized plagioclase phenos, $1-3$ mminsize set in a figr sericitic-chloritic groundmass; siliccoustecarbonate) alteration can be pervasive but variable, often !lore intecuse hear quartz-earhonetetveining which is found throughout in a mounts varying from 1% to locally 35% (over 25 cm); veinlet $\$$ gashes offer: $0.1-1 \mathrm{Cm}$ wide @CA $15-25^{\circ}, 40-50^{\circ}, 6070,5510^{\circ}$, average $2-3 \%$ quart \hat{z}-carbonate veinlet; scattered chlóritic. fragments. $1-10 \mathrm{~cm}$ in size; Trace to locally 2% (over 5 ck) disseminated P_{y} in wall rocks, in quartz-carlonate veinlets \& often on chlorite t/- sericite to epidote fractures a $C A \quad 60-70^{\circ}$, $45-55^{\circ}$, $25-35 \%, 5-15 \%$ average less than $1 / 2 \%$ Ry:
50.04-50.22 Chloritic fractures $\$$ By © CA 60-70 ; quartz-carborate veinlets@CA $50-60^{\circ}$, $35-45^{\circ}$ Some gashes of quartz-caubonate cutting 10 cm .chloritic fragnicit with blebs of By $\leqslant 1 \mathrm{~cm}$ In size associated with quartz; more interne silicificatiny
near contact with quartz carbonate vein bebui Quarte-carbonate Sin with 25% wall rock. inclusions; vein contacts approximately e $C A, 35-45^{\circ} \neq 15^{\circ}$; vein is milky white with cream to beige carbonate as patches and veinlets which partly rim fragments \& vein as well as cross-cut the quartz \ddagger fragments; $<\frac{1}{2} \%$. disseminated $P_{y}+C_{0}(\sqrt{0}$ in fragments $\$$ vein; silicification is more intense near vein $\$$ in fragments; some chlorite $\left(t / P_{y}\right)$ fractures paralie: to oblique to Vii. contacts in wall rocks Honour C_{p} ossoria Sob-parit'rl to 'spca (possibly afothosis of main vein above. Quartz -c. borate vein with 50% hall rock inclusions; Vein contras: a $\operatorname{EA} 40^{\circ} \neq 15-20^{\circ}$ (may be oblique to veii ifrom 50.22-50.5 m); inclusicus cut by unurenous vein'ets of quai z-carbsento; $1 / 2 \%$ disseminated By in inclusions \# wall rocks, minor By in vein
Two chlovite-quartz t/-epidstic th green mica veinlets ($1-5$ m) with disseminated P_{y} @ $C A 30^{\circ} \nmid 50^{\circ}$
Chioriti= trexpidote fractures , nth disseminated Dy aC $50-0^{\circ}$ $30-40^{\circ} ; 1-5 / 5 \mathrm{~cm}$; sone fractures off set quartz-
cartonat. veiu!ots
 franurit's; $51 / 2 \%$ disseminated My in wall rocks中 fraguads: possibly miner c_{10} coating sue Dy grain

 Plagioclase peeves more distinct; $<1 \%$ to locally 2%
 Wide; $P_{y}+$ minor C_{p} on chlovitic fracture Q CA $30-35^{\circ}$. 57.8 m . More infuse :- mons dillon with some green mica. flor epidote ir. several chleritic fragments $0.5-2 \mathrm{~cm}$ Size; Dy rims or replaces some fragments; green \because rca found in some of the quantz-carbounte veinlets in the altersetisu zone; fy in fracture fillings with chlorite \& in sone opartz-carbonate veinlets as well as in host rock; $1 / 2 \%$ My
Chlorite th Ser citify tarbante fractures a CA $55-65^{\circ}, 35^{\circ}-45^{\circ}$, 15°, $2-5 / 10 \mathrm{~cm}$; occasinial minor Ply on fractures 5%. 5 : ti carlewte veinlet, $1-3$ min wide e CA 60-80, $\leq 2 \%$ issennain y_{y} mainly in wall rocks
Belg- $-x k$ sion siliceous alteration band © CA $55-65^{\circ}$ with ehbirc hosinataltered to green mica + By; A cut by later y wart. carib boule veiults i minor disseminated Pg
 $65^{\circ}, 50-55^{\circ}, 30^{\circ}$; minor Pr disseminated in uxill rock A veii inlei

$1_{2}-1 \%$ disseminated Dy in wall rocks which are silicified in this area
77.65
77.8

78,4-78,6
78.83
79.8
81.18

8175
81.86. Two 82.07-84.55.

84,56-85,95
87.3-101.28
85.95-87.3
87.3 Local Green Mica in fracture. $1-2 \mathrm{~cm}$ wide zone of sheared (?) quartz -Pyrite velvets (e) CA 40-45
2% disseminated a rags of Ty $H Q z$ oriented ea bout CA $30-45^{\circ}$ $0,5-1 \mathrm{~cm}$ wide quant z PM veinlet © CA. $C A$ 25 5° 2 cm wide quairtz-carbonate-sericite veinlet © $C A 40^{\circ}$ with off shoot' E CA 25°; some chlorite $\#$ minor heuratite present; < 1% disseminated By $+\angle c_{p}$ in vein et which appears banded parallel contacts
Mod on fracture CA 20°
Possible minor $C P$ with disseminated P_{y} on fracture Surface $\& C A P_{10-15^{\circ}}$ with some chlorite streaks oblique to CA; (81.73 m- Cross fracture a CA $30-35^{\circ}$ with coley f P $+C_{p}$?) Chorite-carbonate quartz - Ty veinlets, $1-2 \mathrm{~mm}$ usfide with possible minor Cp
Rock has feint pinkish cast with parts showing 1% disseminated chlorite spotting $\$$ locally (in lower $1 / 2$). up to 5% chloritic rags and irregular patches 0.5-zere insize; minor amounts of disseminated C_{p} occur with $P y$ in
 Y-2 mm wide@CA50-55 $5^{\circ} 4$ with que quartz-chlorite-Py veinlet 2 mm wide @ $C A 5-10^{\circ} ; C_{p}$ in area from about $79.0-84.25 \mathrm{~m}$, with $1 / 2 \%$ to locally 1% sulphides ($P_{y}+/ C_{p}$) Still taint pinkish cast to falsie ground mass but with about 3% disseminated chlorite spotting, rock nay resemble parts of unit from 87.3 -. 101.1 m ; locally some rags of chlorite; few carbonate -quartz veinlets; $\frac{1}{2} \%$ to locally 5% (over 5 cm) dissencincited 4 fracture fillings of My \%-Chlorite \% carbonate t-epidote e CA 25.35, $50-60^{\circ}, 5^{\circ}$
Pale greenish to beige to slightly pink is alteration zone with epidotersericite-siliceous-carbonate $\$$ a banded zone of patchy chlorite between $86.29-86.57 \mathrm{~m}$; $2-3 \%$ quantz-carbonatet chlorite $t-P y$ velulets $\&$ gashes mainly $1-5$ mum wide with a few 1 cm wide, velulets are oriented @ CA $65-70^{\circ}, 80^{\circ}, 35-40^{\circ}, 5-15^{\circ}$, $k_{2} \%$ to locally 1% dissemisucaled By; 10% Vcinlets from $86,04-86,25 \mathrm{~m}$, Contact is hazy $@ C A 20^{\circ}$ with mit below $\$$ semigradational as some feint pinkish patches extend into unit below
4d/ér)GREENISH-GREY SERICITE-CHLORITE CARBONATE TI SILICGOUS. ALTERATION ZONE IN DIORITIC ROCK WHICH IS LOCALLY FAINTLY POAPYYAIIC?

Medivin to light greenisl-grey; f.gr; ; prohndmats of poly,

Cp?
Portly:
C_{p}
greenish to white, senicitized plagioclase with variable amounts of chlorite as small grails, larger (54 min) lathy grains (aider amphibole?), rags, chits \& patchy areas with 15% chlorite; scattered sections with rounded, 1 - Aware, feintly (plagioclase) porplyyritic rock; carbonate alteration' is pervasive but highly variable; some parts with beige siliceous alteration patches $\&$ bands $\leq 5 \mathrm{~cm}$ wide; other areas May be grey but hard \& siliceous over 10-15 cu; ; $1-2 \%$ carbonate $\$$ quartz-carbouate t-chlorite veinlets, mainly: $1-5 \mathrm{~mm}$ wide; occur. throughout at orientations of $C A=25-40^{\circ}, 50-60^{\circ}, 10-20^{\circ}, 2-5^{\circ}$; Trace to locally 2% Ry occurs throughout as disseminations, of tom associated with. chlorite, as small veiulets t-chlorite, as small blebs, 7 sometimes within quartz-carbonate vein lets; average: $\leq 1 / 2 \%$ Dy.
Area of givuggy car bonate veillets \ddagger patches
Some small patchy, feintly pinkish alteration in felsic matrix
Six $5-20^{\circ} \mathrm{CA}$ fractures tochloritet P My cutting several $5-20^{\circ} \mathrm{CA}$ carborate-quartz veinlets $1-3 \mathrm{~mm}$ wide, as well as $C A 60^{\circ}$ veinkts Fractures t/chlovite e CA $55-65^{\circ}, 30^{\circ}, 1 / 5 \mathrm{cmc}$ to $3 / 5 \mathrm{~cm}$. Several chlorife-carbonate $t=P y$ veiilets © CA $5-15^{\circ}$ Pyrite fracture fillings $\$$ veinlets, $\leq 3 \mathrm{~mm}$ wide @ $C A \geq 5-35^{\circ}$, $15-20^{\circ}$, as well as disseminated. Ty several chlorite-carbante -quaitz:-Py veinlets $\leq 1 \mathrm{~mm}$ wide @ CA $45^{\circ} ; 60^{\circ}$; $1 / 2 /$ - to locally
2% Py (over $5-10 \mathrm{~cm}$); average $1 \% P_{y}$; some of the Dy veiulets crosscut a few quartz-carbouate veiulets Which are oriented @ CA 35-45 ; local patchy beige silicification
Several quartz-carbonate-chlovite-Py veinlets $1-3$ an a aide @CB 50-60 with halos of beige silicifreation; one. veinlet of 94.77 has Pyritic fractures as branches e $C A 5-15^{\circ}$ one of which contains possible: C_{p}
Relatively homogeneous, medium greenish-grey porplyvitic rock with gradational contacts; $\leq 10 \%$ feint to fairly distinct pale greenish to white, rounded plagioclase. phenos in a figri matrix of chbrite-sericite' $1 / 2 \%$ disseminated $P_{y} ; 1 \%$ carlonate-quart z^{t-c} - verimiklets \& gashes © CA $65-75^{\circ}, 35-45^{\circ}, 1-5$ mum wide;
ore chlorite-pyrite - C_{p} fracture e CA 30° at 95.83 m ; few small ($\leq 1 \mathrm{~cm}$) chloritic fragments partly replaced by By,
Banded to patchy, beige to slightly pinkish, siliciceous alteration @ about CA 55°; Cut by $1-2$ um wide. carbonate -quartz t-chlorite $t-P y$ veinlets \ddagger gashed @ $C A 50-60^{\circ}, 35.40^{\circ}$; $<\frac{1}{2} \%$ disseminated By $; 96,27 \mathrm{~m}-1-2 \mathrm{~cm}$. si zee patch of best dissenvinated fy with mini dissem inated C ?

TL 88-6 Additional Cp-Galenar obervations during core splitting

TL 8B-6 Additional C_{p} observations, cid.
Similar to 82.12 m
Minor C_{p} with $1 / 2 \%$ disseminated P_{y}
Carbquate-epidote-chlovite t/-quartz fracture irregular but sub-parallel CA with $P y+1-C_{p}$, plus anollien epidote-chlorite-sericite fracture sub-parrallel to $C A$ but oblique to previous fracture with occasional c_{p} \& chlorite streaks which are oriented oblique to CA
83.55

83,98
84.24
85.5
85.79
$98.35 \quad$ Dy + minor C_{p} disseminated on: a chlowite-sericite-
99.28 $@ C A 25-30^{\circ} \& 35^{\circ}$
∞ CA $25-30^{\circ}$ \& 35°
$C_{P} P_{y}$ on a chlorite-epidote-sericite fracture e $C A 45^{\circ}$ Minor disseminated Cp. with Ply
$P_{y}+/ C_{P}$ on a chlorite -epidote fracture @ CA 40°. Minor Cp with By on a chlorite-epidote fracture ecaiti where it intersects a veinlet of carbonate-quartz-chlorite,-epidote a CA. 70° epidote fracture e CA $15-25^{\circ}$ which cuts carbonatequartz veiulets (a) CA $40^{\circ}, 60^{\circ}, 25^{\circ}$
$\leq \gamma_{2} \%$ disseminated P_{y}, with a speck of C_{p} ?

Th 88-6 ctd.

TL 88.6 ctd.

DIAMOND DRILL RECORD

FOR CAN-MAC EXPLORATION LTD.

BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY, ONTARIO.
TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - \# 2 VEIN AREA
HOLE NUMBER: T.L.-88-7
LOCATION: $0+87 \mathrm{w} / 2+02 \mathrm{~s}$
LENGTH OF HOLE: 94.52 METRES (310 FEET)
AZIMUTH: 246 DEGREES
DIP: - 47 DEGREES
STARTED: AUG. 3, 1988
FINISHED: AUG. 4, 1988
LOGGED BY: FRANK TAGLIAMONTE WITH MODIFICATIONS BY ROBIN GOAD CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC.

CORE SIZE: BQ
DIP TESTS: $94.5 \mathrm{M}(310 \mathrm{FEET})=-45$ DEGREES
NOTE: CASING LEFT IN HOLE

SAMPLES:

Au PPB Ag PPM 10 NIL
10 NIL
10 NIL
30 NIL
1500/1700 0.5
170 NIL
140 NIL
150 NIL
80 NIL
NIL NIL
20 NIL
NIL NIL
NIL NIL

METERAGE
$0-0.9 \mathrm{M}$
0.9-62.2 M
$0.9-42.7 \mathrm{M}$
42.7-62.2 M

DESCRIPTION
CASING
TOPBOOT LAKE PORPHYRY INTRUSION OR TUFF ALTERED FELDSPAR PORPHYRY OR TUFF
Fine-grained, granular, gray rock with a random series of beige to weakly pink, fine-grained, siliceous fragments or heterogenous alteration and bleaching. These siliceous fragments or patches of alteration are 1 cm to 35 cm in size but most are 5 to 20 cm and give the rock a "leopard skin-like" appearance. Local areas contain angular pearlywhite plagioclase phenocrysts. A vague foliation is recognized at 25 degrees to the core axis (C.A.). Random low angle fractures from 15 to 20 degrees to the C.A. and high angle fractures from 45 to 55 degrees to the C.A. *NOTE* The surface expression of these rocks are intensely sheared, plagioclase porphyritic and altered. It occurs north of the feldspar porphyry intrusion hosting the Derraugh vein. It is not known for certain if these rocks are deformed and altered areas of the intrusion or related tuffaceous rocks.

QUARTZ-CARBONATE BRECCIA ALTERATION ZONE Varjably coloured, fractured, brecciated and hydrothermally altered rock comprised of siliceous, beige coloured areas and carbonatized, sericitic and chloritic areas. The rock has a fragmental appearance as previously described. Numerous thin, sinuous guartz (gtz) and carbonate (carb) veinlets, filaments and patches and chertlike siliceous and chloritic fractures. Qtz and carb locally comprise 30 \% of the rock.
42.5 M Fault or slip @ 30 degrees to the C.A. with limonitic staining up to 15 cm either side. Thin sandy gouge and silica deposition on the slip face.
41.4 M Fault or slip @ 24 degrees to the C.A. with a thin black coating on the slip face with slickensides.
43.1-53.6 M Homogenous rock comprised of a pale green chloritic groundmass with creamy-white qtz specks and random veinlets. This rock may be an altered lamprophyre dyke.
53.6-62.6 25% creamy-white gtz-carb fragments, sinuous stringers and filaments in a pale yellowbeige groundmass. Thin hair-like, dull-black, earthy filaments throughout. Occasional laths of dark green mica. Sparsely disseminated (diss) fine cubic pyrite (py), typically less than 0.1\%. Occasional wispy, gray, siliceous seams with fine py.
64.2-94.5 M 64.2-94.5 M
\# 2 VEIN ZONE
> 80 \& creamy-milk-white gtz-carb healed breccsa with laths and hair-like seams of pale yellow sericite. "Crushed zone" with subsequent gtz-carb emplacement. Sparse areas with very fine-grained py in rare random, gray, slliceous streaks or threads.

TOPBOOT LAKE PORPHYRY INTRUSION OR TUFF
QUARTZ-CARBONATE BRECCIA ALTERATION ZONE
Generally as previously described but with local variations as noted.
65.8 M 25 cm wide zone of very fine py in thin sinuous, grey, siliceous seams. 66.7-68.3 M Finely fragmented, vaguely foliated, pale yellow sericite saturated zone. Foliation @ 35 degrees to the C.A.
69.8 M Fine beads of chalcopyrite (cpy) and fine grajns of py in a 3 cm milky-white gtz fragment.
69.8-84.1 M Random losely diss dark green mica flakes or laths. Some fine-grained py (0.5%). Siliceous, pale-yellow, massive sericitic groundmass. 5% random veinlets and filaments of pearly-white gtz. Random but notable hair-like filaments of a dull-black, earthy material usually associated with siliceous threads.
77.7 M 15 cm crushed, gtz stringer @ 18 degrees to the C.A. 2 num black, earthy, graphitic seam along one margin.
82.4 M 10 cm zone with networks of black, earthy, siliceous material with an apparant gtz thread veinlet association.
84.1-91.7 M Gradation contacts to pink tinted, weakly follated, hard, siliceous and porphyritic zone. Loosely distributed, unsorted, pearly-white feldspar phenocrysts less than 3 mm in size. Vague fragmental appearance and subtely foliated @ 35 degrees to the C.A. 91.7-94.5 M Pink tinted, vaguely foliated, weakly sericitic beige alteration zone. Foliation a 30 degrees to the C.A.
93.3 M Limonitic stained faults @ 20 degrees to the C.A. Blocky core.
94.5 M Probable fault zone @ 28 degrees to the C.A. Limonitic staining adjacent to slip e 28 degrees to the C.A.

TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - \# 2 VEIN AREA

HOLE NUMBER: T.L. -88-8
LOCATION: $0+87 \mathrm{~W} / 2+02 \mathrm{~S}$
LENGTH OF HOLE: 136.0 METRES (446 FEET)
AZIMUTH: 246 DEGREES
DIP: - 60 DEGREES
STARTED: AUG. 4, 1988
FINISHED: AUG. 5, 1988
LOGGED BY: FRANK TAGLIAMONTE WITH MODIFICATIONS BY ROBIN GOAD CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC.

CORE SIZE: BQ
DIP TESTS: $136 \mathrm{M}(446 \mathrm{FEET})=-56$ DEGREES
NOTE: CASING LEFT IN HOLE

```
SAMPLES: TL-88-8-1
    TL-88-8-2
    TL-88-8-3
    TL-88-8-4
    TL-88-8-5
    TL-88-8-6
    TL-88-8-7
    TL-88-8-8
    TL-88-8-9
```

110.0-111.6 M Au PF 111.6-113.1 M 40 113.1-114.6 M 20 114.6-115.2 M 20

50 150 230/260 100 20

Ag PPM NIL NIL NIL 0.2 NIL NIL NIL NIL 0.3

METERAGE
$0-0.9 \mathrm{M}$
0.9-118.3 M
0.9-53.0 M

DESCRIPTION
CASING
TOPBOOT LAKE PORPHYRY INTRUSION OR TUFF
ALTERED FELDSPAR PORPHYRY OR TUFF
Fine-gralned, granular, gray rock with a random series of beige to weakly pink, fine-grained, siliceous fragments or heterogenous alteration and bleaching. These siliceous fragments or patches of alteration are 3 mm to 15 cm in size but most are 5 to 10 cm and give the rock a "leopard skin-like" appearance. Local areas contain angular pearlywhite plagioclase phenocrysts. A vague follation is recognized at 35 degrees to the core axis (C.A.). Random, thin, dull-blacck, halrline seams associated with pearly-white quartz (qtz)carbonate (carb) veinlets, generally conformable with the foliation. *NOTE* The surface expression of these rocks are intensely sheared, plagioclase porphyritic and altered. It occurs north of the feldspar porphyry intrusion hosting the Derraugh vein. It is not known for certain if these rocks are deformed and altered areas of the intrusion or related tuffaceous rocks.
21.2 M 7.5 cm wide, rusty coloured gtz-carb stringer @ 50 degrees to the C.A.
22.5 M 20 cm lamprophyre dyke @ 40 degrees to the C.A.
29.3-30.5 M Pink, siliceous, granular fragment or alteration. Sharp contacts a 40 degrees to the C.A.
31.1-32.3 M same as above. 34.4-35.0 M Series of imonitic, stained fractures (45 degrees to the C.A.
35.4 M 30 cm zone with a series of thin, black, hair-like seams @ 55 degrees to the C.A. 35.4-53.0 M 10 series as above.

SILICEOUS ALTERATION ZONE
Pink to pinkish-beige, siliceous, hard, aphanitic, massive to foljated alteration zone. Rock comprised of quartz $+/-$ alkall feldspar and carbonate with local sericitic, chloritic and more carbonatized areas. The rock has local zones of distinct to faint plagioclase phenocrysts with gradational contacts. The phenocrysts occur in areas with less intense alteration or in areas with a less feldspar destructive, siliceous (only, ie no carbonate) alteration. Numerous (10 \%), vague, filaform, pearly-white gtz and carb veins, veinlets patches. Random series of 3 \% thin, hairline and 2 nim black threads, generally
conformable but locally crose-cutting the follation. vague follation and fracturing a 45 degrees to the C.A.
58.5 M Fault zone a 25 degrees to the C.A. with 0.5 cm plating of dull-black, earthy material and
 ejther side.
80.2-100.3 M zone of distinct, less altered feldspar porphyry comprised of a uniform distribution of pearly-white plagioclase phenocrysts in a fine-grained, pink stained, siliceous groundmass. Occasional fine gtz and carb veinlets and irregular masses. Random, hair-like, sericitjc threads and 1 to 2 cm chlorjtjc patches. Random, dull-black, earthy threads. Foliation typically @ 55 degrees to the C.A. Appears to be vaguely crushed. Gradational contacts. 100.3-118.3 M Pale-lemon coloured, vaguely brecciated and filaform gtz stockwork zone. Fine granular, 20 q, milky-white gtz stockwork. Random patches and threads of pale yellow sericite. Occasional triangular laths of dull and bright green mica. Random, dull-black threads. Random, sinuous, dirty-gray, siliceous threads with fine granular py (0.25 \%).

135.9 M (446 FEET) END OF HOLE
246°

DIAMOND DRILL RECORD

FOR CAN-MAC EXPLORATION LTD.
BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY, ONTARIO.
TOPBOOT LAKE PROJECT \# 2 VEIN AREA
HOLE NUMBER: T.L.-88-9
LOCATION: 0+71.5 W / 1+83 S
LENGTH OF HOLE: 87.2 METRES (286 FEET) DEEPENED TO 117.0 M (384 FEET).

AZIMUTH: 255 DEGREES
DIP: - 45.5 DEGREES
STARTED: AUG. 5, 1988
FINISHED: AUG. 6, 1988
CONTINUATION OF THE HOLE: OCT., 1988
LOGGED BY: FRANK TAGLIAMONTE WITH MODIFICATIONS BY ROBIN GOAD
CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC.
CORE SIZE: BQ
DIP TESTS: 87.2 M (286 FEET) $=-45$ DEGREES
NOTE: CASING LEFT IN HOLE

SAMPLES:
17.4-18.1 M
18.1-20.1 M 20.1-20.6 M 20.6-21.3 M 21.3-21.6 M 27.1-28.2 M 39.9-40.4 M 41.7-43.3 M
43.3-44.8 M
60.9-62.6 M
62.6-63.9 M
63.9-65.4 M
65.4-66.7 M
66.7-68.1 M
68.1-69.6 M
75.6-77.1 M
78.3-79.4 M 91.4-93.0 M

Au PPB
30/30
10
10
20
NIL
NIL
NIL
$10 \quad 0.3$
10 NIL
200/160 NIL
120 NIL 140 NIL 20 NIL 40 NIL 150/200 NIL NIL NIL $50 \quad 0.3$ 150 NIL

SAMPLES CONTINUED:

TL-88-9-19
TL-88-9-20
TL-88-9-21
TL-88-9-22
TL-88-9-23
$93.0-94.5 \mathrm{M}$
$94.5-95.9 \mathrm{M}$
$95.9-97.2 \mathrm{M}$
$97.2-98.7 \mathrm{M}$
$98.7-100.3 \mathrm{M}$
98.7-100.3 M

30
110
70
230/150
30

NIL
0.2
0.4
0.5
0.2

METERAOE
0-1.5 M
1.5-60.6 M 1.5-17.5 M
17.5-24.7 M
24.7-28.5 M

DEBCRIETION

CASING

TOPBOOT LAKE PORPHYRY INTRUSION OR TUFF CHLORITE-CARBONATE ALTERATION ZONE
Fine-grained, gray/green rock with pearly-gray fragments or patches of heterogenous alteration 2 mm to 3 cm in size. Weakly but noteably foliated @ 30 degrees to the core axis (C.A.). Fine sericitic threads throughout. 5 \%, 2 to 5 mm , creamy-white, kinked, cross-cutting, sinuous quartz (gtz)
veinlets throughout. Random fractures, some with limonitic staining a 25 and 45 degrees to the $C . A$. 8.8 M 30 cm zone of fractures with ilmonitic staining @ 25 and 45 degrees to the C.A. Water seam.

ALTERED FELDSPAR PORPHYRY OR TUFE
Intermixed zone of pink tinted, fine-grained rock with pearly-white plagioclase phenocrysts with fragments or patches of heterogenous creamy-beige, siliceous alteration. Random, sub-angular, dark and bright green patches between 0.5 and 1 cm in size. These patches are beleived to be either chloritic xenoliths or fragments. Random 2 mm gtzcarbonate (carb) veinlets. Rare random contorted and fragmented gtz stringers. Vague foliation © 20 degrees to the (C.A.). Low angle fractures a 20 degrees to the C.A. and high angle fractures a 50 degrees to the C.A. *NOTE* The surface expression of these rocks are intensely sheared, plagioclase porphyritic and alter*d. They occur north of the feldspar porphyry intrusion hosting the Derraugh Vein. It is not known for certain if these rocks are deformed and altered areas of the intrusion or related tuffaceous rocks.
17.5 M Creamy-white, sinuous and kinked 0.5 cm gtz veinlet cross-cutting the contact. 18.0 M 10 cm fragmented gtz-carb stringer zone @ 35 degrees to the C.A.
20.7 M 3 cm mechanically broken gtz stringer with fine pyrite (py) and chalcopyrite (cpy).
21.6-24.7 M Pink-tinted plagioclase porphyritic rock.
23.2 M Fault or fracture © 35 degrees to the C.A.

SILICEOUS ALTERATION ZONE
pale-beige to pinkish-beige, cryptocrystalline, siliceous rock with a vague follation. Local less altered areas with a discernable porphyritic texture. 2 \%, thin, cross-cutting qtz threads with rare very fine-grained py. Rare randoml to 2 mm bright green mica flakes.
28.5-40.8 M
40.8-46.6 M
46.6-60.6
27.3 M 3 mm gtz veinlet with very fine py and cpy. 27.4 M 3 cm gtz stringer @ 25 degrees to the C.A. 27.9 M 8 cm kinked and contorted gtz stringer zone with very fine-grained py

CHLORITE-CARBONATE ALTERATION ZONE
Generally as described above with the following qualifications.
28.5-35.7 M As above but with random, kinked gtzcarb veinlets. Vaguely foliated @ 20 degrees to the C.A. and laced with thin sericitic seams. 35.7-40.8 M Local areas with discernable plagioclase phenocrysts up to 60 cm wide. Dark gray-black lapilli-like groundmass with local thin qtz-carb veinlets and threads. 40.2 M Thin, hair-like, siliceous, seams with fine py and cpy associated with pearly-white gtz stringers.

WEAKLY ALTERED FELDSPAR PORPHYRY
Fine-grained, granular rock with 2 to 3 mm plagioclase phenocrysts with hairline networks of sericite. Vague foliation. 3 \% random pearly-white gtz-carb threads and veinlets. Random series of kinked, fragmented and sinuous pearly-white qtz veinlets with dirty gray, siliceous threads, usually carrying fine py and cpy. Random and irregular laths of dull green mica.
42.1 M 15 cm zone with "horse tall", pearly-white, gtz impregnated with 2 mm dirty gray siliceous seams with fine granular py and cpy. 43.3 M 5 cm zone with 2 mm , pearly-white gtz networks cut by dirty ygray siliceous seams with fine py and the odd grain of cpy.
43.6 M 2 mm dirty gray siliceous thread with fine py.
44.2 M 2 Same as above cutting a kinked 5 mm , pearly-white qtz stringer containing fine granular py and cpy.
45.8-46.6 M Gray/green fine fragment or xenolith with sharp contacts.

SILICEOUS ALTERATION ZONE
Beige to pinkish-beige, cryptocrystalline, siliceous rock, vaguely crushed, and locally sericitic and carbonatized. Laced with pearlywhite gtz threadsand veinlets. Local gtz breccia. Random dark green and bright green mica flakes. Random hair-like black threads. Principle fracture direction is 48 degrees to the C.A. Local variations as noted. 46.6-56.7 M Pale-creamy colour, siliceous. Laced with pearly-white gtz threads and veinlets (5) . $56.7-60.6 \mathrm{M}$ Qtz stringer zone comprised 10% of a
random series of 0.5 to 4 am wide gtz stringere, Vague foliation. Saturated with sericite.
60.6-65.7 M \# 2 VEIN ZONE
> 60 \% creamy-milk-white gtz stockwork with lesser silicified and sericitic fragments of the country rock.
65.7-117.0 M TOPBOOT LAKE PORPHYRY INTRUSION OR TUFF
65.7-117.0 M

SILICEOUS ALTERATION ZONE
Generally as previously described but with local variations as noted.
65.7-66.0 M Silicified zone with diss fine py. 65.7-87.2 M 20 \%, mainly thread-11ke and 3 mm wide, sinuous, cross-cutting, pearly-white gtz stringers in a fine, granular and vaguely follated, siliceous groundmass. Qtz-carb breccia and stockwork. Multiple series of halr-like, black (tourmaline?) threads throughout. Random fine green mica flakes. Sparse py and rare cpy.
91.7-100.3 M Random series of pale-pink, siliceous bands cut by dirty gray and black, siliceous seams with 1 \%, very fine diss py. Microbrecciated "crackel breccia", comprised of 10 \& random, milky-white gtz-carb threads and $<3 \mathrm{~mm}$ veinlet stockworks.
100.3-111.6 M Pale-yellow, fine, granular, quartzite-like alteration. Laced with gtz-carb threadsand veinlets (5 \% qtz-carb). Random pale and dark green mica flakes. Random gray-black threads.
109.4 M Fault zone with gouge @ 30 degrees to the C.A. with limonitic sstaining - possible water seam.
110.0-117.0 M Zone of pale-pink, fine, granular, siliceous alteration. Laced with gtz veinlet stockworks. 10 o gtz veinlets and threads. 111.6 M shearing and 5 mm gtz stringers @ 30 degrees to the C.A. Local black tourmaline? along the shear plane.
114.6 M Slip @ 20 degrees to the C.A. 115.2 M Slip @ 15 degrees to the C.A.

70 m

80 m

DIAMOND DRILL RECORD

FOR CAN-MAC EXPLORATION LTD.
BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY, ONTARIO. TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - DERRAUGH VEIN ZONE

HOLE NUMBER: T.L.-88-10
LOCATION: $1+10 \mathrm{~W} / 6+17.5 \mathrm{~S}$
LENGTH OF HOLE: 78.0 METRES (256 FEET)
AZIMUTH: 130 DEGREES
DIP: - 45 DEGREES
STARTED: SEPT., 1988
FINISHED: SEPT., 1988
LOGGED BY: ROBIN E. GOAD
CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC.
CORE SIZE: BQ
DIP TESTS: NONE

SAMPLES: TL-88-10-1
TL-88-10-2

$$
T L-88-10-3
$$

TL-88-10-4
TL-88-10-5
TL-88-10-6
TL-88-10-7
TL-88-10-8
TL-88-10-9
TL-88-10-10

$$
T L-88-10-11
$$

$$
T L-88-10-12
$$

$$
T L-88-10-13
$$

$$
T L-88-10-14
$$

$$
T L-88-10-15
$$

$$
T L-88-10-16
$$

$$
T L-88-10-17
$$

2.34-3.44 M $=1.0 \mathrm{M}$

Au PPB
110
20
11.4-12.4 $\mathrm{M}=1.0 \mathrm{M}$
12.4-13.4 M $=1.0 \mathrm{M}$

10
13.4-14.4 $\mathrm{M}=1.0 \mathrm{M}$

NIL
14.4-15.4 M $=1.0 \mathrm{M}$

40
$17.7-18.7 \mathrm{M}=1.0 \mathrm{M}$
20
$18.7-19.7 \mathrm{M}=1.0 \mathrm{M}$
30
19.7-20.7 M $=1.0 \mathrm{M}$
20.7-21.7 M $=1.0 \mathrm{M}$

30
21.7-22.7 M $=1.0 \mathrm{M}$
22.7-23.7 M $=1.0 \mathrm{M}$
$23.7-24.7 \mathrm{M}=1.0 \mathrm{M}$
80
$26.0-27.0 \mathrm{M}=1.0 \mathrm{M}$
110/90
110
66.7-67.7 M = $1.0 \mathrm{M} \quad 10$
67.7-69.15 M = $1.45 \mathrm{M} \quad 20$
69.15-70.15 M = 1.0 M NIL
$71.2-72.2 \mathrm{M}=1.0 \mathrm{M} \quad 10$

METERAGE
0-1.2 M
1.2-67.7 M
$1.2-2.94 \mathrm{M}$

2.94-11.4 M

DESCRIPTION
CASING
TOPBOOT LAKE PORPHYRY INTRUSION
SILICEOUS ALTERATION ZONE
Beige to weakly pink, fine-grained siliceous rock with local 25 \%, 1-2 mm faint, subhedral, sericitic plagioclase phenocrysts. 1-2 \%, 2-5 mm chloritic patches are interpreted as altered xenoliths. Approximately 1%, $1-3 \mathrm{~mm}$, finegrained, chert-like, siliceous veinlets are commonly at 30 degrees to the core axis (C.A.). Numerous healed siliceous fractures. 2.6-2.94 M microbrecciated with numerous stockwork, hairline siliceous and chloritic fractures.

CHLORITIC AND SILICEOUS ALTERATION ZONE Greenish gray altered porphyry comprised of up to 20 \%, 1-2 mm, faint to distinct, euhedral to subhedral plagioclase phenocrysts in a finergrained chloritic and/or sillceous groundmass. A beige to pinkish beige, patchy siliceous alteration bleaches the rock with sharp to gradational contacts. The patchy nature of the alteration may be in part controlled by the xenoliths observed in less altered porphyry. chloritic alteration occurs as wisps throughout the groundmass. Numerous quartz (gtz) $+/-$ carbonate (carb), chloritic and chert-like sillceous fractures and veinlets in random orientation (locally microbrecciated). Larger gtz $+/-$ carb veinlets (up to 2 cm wide) are commonly at 40 degrees to the C.A. Trace (tr) disseminated (diss) pyrite (py) although locally concentrated up to 5 over 2 cm intervals where there are abundant veinlets. 4.5-5.6 M microbrecciated; beige, siliceous bleaching; and faint sericitic phenocrysts.
4.5 M 1 cm wide gtz veinlet @ 15 degrees to the C.A.
4.6 M 1 cm wide qtz veinlet @ 40 degrees to the C.A.
7.8-11.4 M Gradation to increasingly more siliceous alteration and fractures are healed. 10.2 M 3 cm wide qtz veinlet @ 35 degrees to the C.A.

SILICEOUS ALTERATION ZONE
Pervasive beige to pinkish beige, fine-grained, siliceous alteration with no visible plagioclase phenocrysts. However, there are gradations into areas with $25 \%, 1-2 \mathrm{~mm}$ plagioclase phenocrysts in
a grey sillceous alteration with less alteration, Numerous $(2$ \&) < $1-3 \mathrm{~mm}$, siliceous, randomly oriented hairline fractures and larger qtz veinlets up to 1 cm wide. Local chloritic wisps and fractures, and epidote and sericite filled fractures. Local areas with tr. to 1 \%. diss. and fracture filling py associated with the more chloritic areas. The siliceous fractures are in random orientation but commonly 40 to 70 degrees to the C.A.
11.4-16.0 M Tr. to 1 \% diss. and fracturefilling py with local 5 cm intervals with 2 to 3 \% py. 16.0 M 5 to 8 cm wide chloritic band with sharp contacts @ 70 degrees to the C.A. and fine anastomosing chloritic fractures. The rock is interpreted as an altered lamprophyre dyke.
16.1-17.1 M Less intensely altered zone with 25 \%, 1-2 mm plagioclase phenocrysts in a gray, finegrained siliceous groundmass.
18.5-26.2 M siliceous alteration has a pervasive locally intense pink to pinkish red stain beleived to be hematization. Dark green to black, pyritic fractures and 1 \& diss. py. Approximately 1 \& 1 to 5 mm wide, white gtz veinlets commonly 45 and 60 degrees to the C.A. Numerous hairline, pyritic epidote and sericite filled fractures 60 to 90 degrees to the C.A. Py locally up to 2 in 10 cm wide patches.
25.2-27.9 M Pervasive beige to pinkish beige siliceous bleaching with healed siliceous fractures and occasional $1-2 \mathrm{~mm}$ chloritic wisps.
27.9-67.7 M

FELDSPAR PORPHYRY WITH HETEROGENOUS SILICEOUS AND LOCAL CARBONATE ALTERATION
25 to 30%, $1-3 \mathrm{~mm}$, euhedral to subhedral plagioclase phenocrysts in a finer-grained, gray, siliceous groundmass. < 1 \%, 1-3 cm angular, chloritic xenoliths. Patches of pervasive beige siliceous alteration up to 4 m locally overprints the porphyry with gradational to sharp contacts. Phenocrysts are locally visible in the altered jocalities. Areas with siliceous bleaching contain $1-5$ i, $1-3 \mathrm{~mm}$ wide gtz veinlets commonly 60 to 70 degrees to the C.A. and numerous hairline chloritic and epidote filled fractures.
42.4-67.7 M 1 \& angular chloritic xenoliths and 1 \%, $1-3 \mathrm{~mm}$ wide gtz $>$ carb veinlets commonly @ 35 and 50 degrees to the C.A.
52.0-59.8 M Locally abundant interstitial carbonate.
$52.02,2 \mathrm{~cm}$ wide gtz-carb veinlets @ 60 degrees to the C.A.
52.2 M 4 cm wide gtz-carb veinlet @ 40 degrees to the C.A.
56.4-56.6 M Irregular gtz veinlets with 5 cm intervals containing up to 5 \% coarse-grained py. 58.8-67.7 M Patches of pervasive fine-grained beige siliceous bleaching possibly arising from preferential alteration to xenoliths in the protolith.
59.8-60.3 M Sharp contact into bleaching as above. 62.5-62.85 M Sharp contact into bleaching as above with tr. diss. py.
63.2-63.4 M as above with local wisps of greem mica.
63.8-64.0 M as above with a pink colouration.
67.7-69.15 M DERRAUGH VEIN ZONE

Sharp upper contact @ 45 degrees to the C.A. into a zone of gtz veining and sllica flooding with irregular chloritic fractures containing 1 \% fine py. Lower contact is brecciated and gradational into altered porphyry.
69.15-78.0 M TOPBOOT LAKE PORPHYRY INTRUSION 69.15-78.0 M

FELDSPAR PORPHYRY
25-30 \%, 1-2 mm plagioclase phenocrysts in a finer-grained medium gray chloritic groundmass with interstitial carbonate. 71.2-74.5 M 1 \% diss. py.
78.0 M END OF HOLE

256 FEET

DIAMOND DRILL EECORD

FOR CAN-MAC EXPLORATION LTD.

BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY, ONTARIO.
TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - DERRAUGH VEIN ZONE HOLE NUMBER: T.L.-88-11

LOCATION: $1+10 \mathrm{~W} / 6+17.5 \mathrm{~S}$
LENGTH OF HOLE: 92.4 METRES (303 FEET)
AZIMUTH: 130 DEGREES
DIP: - 60 DEGREES
STARTED: SEPT., 1988
FINISHED: SEPT., 1988
LOGGED BY: ROBIN E. GOAD
CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC.
CORE SIZE: BQ DIP TESTS: NONE

SAMPLES:	TL-88-11-1	$13.6-14.6 \mathrm{M}=1.0 \mathrm{M}$	$\begin{aligned} & \text { Au PPB } \\ & 50 \end{aligned}$
	TL-88-11-2	14.6-15.6 M $=1.0 \mathrm{M}$	40
	TL-88-11-3	15.6-16.1 $\mathrm{M}=0.5 \mathrm{M}$	990/940
	TL-88-11-4	18.05-19.05 $\mathrm{M}=1.0 \mathrm{M}$	50
	TL-88-11-5	19.05-20.05 $\mathrm{M}=1.0 \mathrm{M}$	40
	TL-88-11-6	23.35-24.35 M $=1.0 \mathrm{M}$	60
	TL-88-11-7	26.9-27.9 M $=1.0 \mathrm{M}$	20
	TL-88-11-8	27.9-28.9 M $=1.0 \mathrm{M}$	10
	TL-88-11-9	28.9-29.9 M $=1.0 \mathrm{M}$	30
	TL-88-11-10	29.9-30.9 M $=1.0 \mathrm{M}$	10
	TL-88-11-11	30.9-31.9 M $=1.0 \mathrm{M}$	60
	TL-88-11-12	31.9-32.9 M $=1.0 \mathrm{M}$	30
	TL-88-11-13	32.9-33.9 $\mathrm{M}=1.0 \mathrm{M}$	20
	TL-88-11-14	$33.9-34.9 \mathrm{M}=1.0 \mathrm{M}$	40
	TL-88-11-15	$34.9-35.9 \mathrm{M}=1.0 \mathrm{M}$	100/120
	TL-88-11-16	35.9-36.9 M $=1.0 \mathrm{M}$	120
	TL-88-11-17	36.9-37.9 M $=1.0 \mathrm{M}$	20
	TL-88-11-18	45.85-46.85 M $=1.0 \mathrm{M}$	20
	TL-88-11-19	46.85-47.85 M $=1.0 \mathrm{M}$	20
	TL-88-11-20	47.85-48.85 $\mathrm{M}=1.0 \mathrm{M}$	10
	TL-88-11-21	48.85-49.85 M $=1.0 \mathrm{M}$	20
	TL-88-11-22	49.85-50.85 $\mathrm{M}=1.0 \mathrm{M}$	30
	TL-88-11-23	69.55-70.55 M $=1.0 \mathrm{M}$	NIL
	TL-88-11-24	82.25-83.25 $\mathrm{M}=1.0 \mathrm{M}$	30
	TL-88-11-25	90.35-91.35 M $=1.0 \mathrm{M}$	10

METERAOE
0-1.2 M
1.2-92.4 M 1.2-2.2 M
2.2-9.7 M
9.7-37.9 M

DEECRIPTION

CASING

TOPBOOT LAKE PORPHYRY INTRUSION
SILICEOUS ALTERATION ZONE
Beige to weakly pink, fine-grained siliceous rock with stockwork chloritic and siliceous hairline fractures and veinlets. Some fractures and veinlets commonly trend © 30 and 60 degrees to the core axis (C.A.).
2.0-2.2 M Pervasive pink stain interpreted as hematization marginal to a 1 cm quartz (qtz)carbonate (carb) veinlet (35 degrees to the C.A.

CHLORITIC AND SILICEOUS ALTERATION ZONE
Medium to light greenish gray altered porphyry comprised of up to $20 \%, 1-2 \mathrm{~mm}$, faint to distinct, euhedral to subhedral plagioclase phenocrysts in a finer-grained chloritic andor siliceous groundmass. The rock contains < $1 \%, 3$ mm to 3 cm , angular, chloritic xenoliths. The rock contains numerous hairline, stockwork chloritic and siliceous, chert-like fractures and qtz veinlets up to 5 mm wide. Fractures and veinlets locally form siliceous, pyritic microbreccias over several cm or tens of cm . Phenocrysts in these localities are faint, sericitic and subhedral. A beige to pinkish beige, pyritic, patchy, siliceous alteration locally bleaches the rock and overprints the chloritic alteration with sharp to gradational contacts. The patchy nature of the alteration may be in part controlled by the xenoliths observed in less altered porphyry. 4.1 M 2 cm wide gtz $+/-$ carb @ 70 degrees to the C.A.
8.0 M 2 and 1 cm wide gtz veinlets © 35 degrees to the C.A.
8.3 M Irregular patches of milky white gtz over 15 cm .
8.3-9.1 M Microbreccia with gtz patches, fractures and veinlets and marginal pervasive beige, finegrained siliceous alteration and trace (tr) disseminated (diss) pyrite (py).

SILICEOUS ALTERATION ZONE
Pervasive belge to pinkish beige, fine-grained, siliceous alteration with chioritic hairline fractures and wisps, gtz veinlets and patches, and local sericite and epidote filled fractures. The siliceous alteration grades into intervals with a pink to red colouration beleived to be hematization or alkali feldspar. 9.7-10.0 M Zone of intense microbrecciation
comprised of chloritic and siliceous stockwork hairline fractures and larger gtz veinlets up to 1 cm wide.
10.0 M 10 cm wide gtz veinlet trending © 35 to the C.A.
12.5-13.2 M Locally intense pik to redalsh pink stained siliceous alteration containining chloritic streaks up to 2 cm long defining a follation © 60 degrees to the C.A. Tr. diss. py. 13.65 M 2.0 cm wide gtz veinlet a 80 degrees to the C.A.
13.6-16.1 M Averages 1 a diss. py. with local intervals up to 2-3 \% py.
16.1-17.7 M Zone of less altered feldspar porphyry comprised of up to $25 \%, 1 \mathrm{~mm}$, subhedral, faint plagioclase phenocrysts in a finer-grained, ilght gray elliceous groundmase, Hairline cloritic fractures @ 45 degrees to the C.A. 17.7-22.8 M Zone of intense pink to pinkish red, pervasive stain (alteration) with <1 \% fracture filling py, chloritic wisps and fractures, and qtz $>$ carb veinlets in random orientation. 22.8-23.2 M Locally abundant dark gray-green chloritic patches.
23.35-24.4 Intense pervasive, belge, siliceous alteration with healed siliceous fractures and 1-2 diss. py.
24.4-24.5 M zone of intense fracturing to microbrecciation with larger fractures commonly trending @ 45 degrees to the C.A. 25.4-26.9 M zones of less intense alteration and bleaching with faint to distinct plagioclase phenocrysts.
26.9-37.9 M Intense beige alteration as previously described containing <1 \% angular chloiritic patches up to 4 cm and beleived to be altered xenoliths. Numerous fractures and veinlets in random orientation locally forming microbreccia. Qtz veinlets comprise 3 \% of the rock and locally 50 \% over 20 cm intervals. The velnlets are typically @ a low angle to the C.A. Chloritic hairline fractures locally define a poorly developed foliation @ 50 degrees to the C.A. Py. concentration varies from tr. up to 2 \% over 2 M intervals.
36.5-37.9 M Intense beige alteration with healed fractures but no appreciable veining. Rock contains fine chloritic wisps and approximately 1 \& diss. py.

FELDSPAR PORPHYRY
Silicified feldspar porphyry comprised of 25 to 30 \%, 1-3 mm , euhedral to subhedral plagioclase
phenocryete in a finer-gralned, light gray, siliceoue groundmas. Zones of intense sillceous bleaching occur in patches up to 50 cm long @ 10 cm to 1 M intervals with sharp to gradational contacts.
40.0 M 1 cm wide gtz veinlet @ approximately 15 degrees to the C.A.
42.3 M Intense siliceous bleaching over 15 cm marginal to a 1 cm wide siliceous, chert-like veimlet © 45 degrees to the C.A.
42.7 M 30 cm wide zone of intense siliceous bleaching and numerous healed siliceous hairline fractures.
43.0-45.2 M Approximately 2 \%, $1 \mathrm{~mm}-1 \mathrm{~cm}$ wide gtz veinlets and siliceous fractures commonly @ 50-60 degrees to the C.A.

Siliceous alteration zone
Intense, pervasive, beige, siliceous alteration as previously described but contains up to 30% chloritic wisps and streaks. veinlets and fractures are common throughout the zone but local intervals are devoid of fractures. Approximately 2 \% diss. Py diminishing in abundance eith increasing depth. Py is particularly abundant marginal to the chloritic and siliceous fyactures. 45.85-50.2 M 3 diss. Py, and locally 5 \% over 5 cm intervals marginal to chloritic and siliceous fractures.
51.530 cm wide zone of slliceous bleaching around 20.5 cm wide siliceous veinlets © 50 degrees to the C.A.
52.2 M 15 cm band of alteration marginal to 2,3 mm wide siliceous veinlets \& 45 degrees to the c.A.
52.7 M 3 cm wide gtz veinlet 055 degrees to the C.A.
52.8 m 30 cm band of intense siliceous alteration around a 0.5 cm pyritic band © 75 degrees to the C.A.
53.1-54.95 M Local zones of less altered feldspar porphyry comprised of faint subhedral plagioclase phenocrysts in a fine-grained siliceous groundmass.
54.95-73.4 M FELDSPAR PORPHYRY

Feldspar porphyritic rock comprised of 63.2-63.4 M as above with local wisps of 25%, $1-3 \mathrm{~mm}$, plagioclase phenocrysts in a light to medium green-gray, fine grained groundmass. Rock has < 1 of angular, chloritic xenoliths up to 5 cm . Approximately 1 \& diss. py. occurs in groundmass and locally 2 \% over 1 M intervals. Porphyry
grades from a sillceous alteration to a more chloritic and carbonatized alteration with depth. Qtz $+/-$ carb veinlets 1 mm to 10 cm wide are abundant and commonly trend @ 35 degrees to the C.A. Numerous chloritic and chert-like, siliceous fractures. Local patches of pervasive, beige siliceous alteration with sharp irregular contacts.
54.95-70.0 M Predominantly siliceous alteration. 59.8 M 15 cm wide zone of siliceous bleaching. 60.9 M 10 cm wide gtz vein with irregular contacts (a a low angle to the C.A.
70.0-73.4 M Alteration is dominated by chlorite and carb. 70.3 M 50 cm zone of intense sjliceous bleaching.
73.4-92.4 M
92.4 M
(303 FEET)

CHLORITIC ALTERED DIORITE
Medium to dark green mottled textured rock comprised of chloritic patches and wisps in a lighter epidotized and carbonatized groundmass. The chloritic patches are interpreted as retrograde altered hornblende. Local zones of intense sillceous bleaching (as previously described) overprint the chlorite and carb. Occasional carb $>$ gtz veinlets occur up to 4 cm wide. Numerous epidote and chlorite filled fractures. Py is locally 1 \% over 1 M intervals. Local interfingering of feldspar porphyry (as previosly described) up to 1.5 M long. 84.7 M 5 cm wide zone of gtz and carb veinlets @ 45 degrees to the C.A. 88.4-88.05 M Fine-grained dark green rock with numerous hairline epidote filled fractures commonly a 80 degrees to the C.A. Occasional carb. > gtz veinlets and patches up to 1 cm wide commonly d 30 degrees to the C.A. Local concentrations of up to 2 \& finely dise. py, In sillceous altered bands. This finer-grained rock is beleived to be the contact zone of the intrusion but may be mafic volcanics. 88.05-92.4 M Same as above but with a sericitic alteration defining a poorly developed follation © 70 degrees to the C.A. Fractures and veinlets comprise 5 of the rock. Locally abundant py (2-3 \& fracture fllling py) but averages < 1 \&.

END OF HOLE

DIAMOND DRILL RECORD

FOR CAN-MAC EXPLORATION LTD.
BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY, ONTARIO.
TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - DERRAUGH VEIN ZONE
HOLE NUMBER: T.L.-88-12
LOCATION: $1+07.5 \mathrm{~W} / 5+90 \mathrm{~S}$
LENGTH OF HOLE: 92.7 METRES (304 FEET)
AZIMUTH: 104 DEGREES
DIP: - 45 DEGREES
STARTED: SEPT., 1988
FINISHED: SEPT., 1988
LOGGED BY: ROBIN E. GOAD
CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC
CORE SIZE: $B Q$
DIP TESTS: NONE

SAMPLES: TL-88-12-1
8.5-9.5 M $=1.0 \mathrm{M}$

Au PPB
TL-88-12-2 41.0-42.0 M $=1.0 \mathrm{M}$ TL-88-12-3 $42.0-43.0 \mathrm{M}=1.0 \mathrm{M}$ 20

TL-88-12-4 $43.0-44.0 \mathrm{M}=1.0 \mathrm{M}$ TL-88-12-5 $44.0-45.0 \mathrm{M}=1.0 \mathrm{M}$ 400 TL-88-12-6 $45.0-46.0 \mathrm{M}=1.0 \mathrm{M}$ 150 46.0-47.0 $\mathrm{M}=1.0 \mathrm{M}$

50 TL-88-12-7 450 TL-88-12-8 $\quad 47.0-48.0 \mathrm{M}=1.0 \mathrm{M} \quad 30$ 20 $T L-88-12-8 \quad 47.0-48.0 \mathrm{M}=1.0 \mathrm{M} \quad 30$ TL-88-12-9 TL-88-12-10 56.9-57.9 $\mathrm{M}=1.0 \mathrm{M}$ 100 $57.9-58.9 \mathrm{M}=1.0 \mathrm{M}$ 20 TL-88-12-11 58.9-59.9 $\mathrm{M}=1.0 \mathrm{M}$

30/30
10

METERAGE
0-1.2 M
$1.2-43.0 \mathrm{M}$
$1.2-10.6 \mathrm{M}$

DEBCRIPTION
CASING
TOPBOOT LAKE PORPHYRY INTRUSION
CHLORITIC ALTERED DIORITE
Medium green-gray mottled textured rock comprised of chlorlte wisps and patches in a leucocratic groundmass with abundant interstitial carbonate (carb). Abundant epidote and chlorite filled fractures and $<1 \mathrm{~mm}-5 \mathrm{~mm}$ carb. veinlets (latter commonly trending a 45 degrees to the C.A. Occasional lighter green zones are overprinted by a siliceous alteration containing up to 3 \% py over 10 cm . Patches of altered feldspar porphyry comprised of fine, 1 mm , sericitic plagioclase phenocrysts in a siliceous groundmass occur towards the bottom of the interval.

ALTERED FELDSPAR PORPHYRY
Altered feldspar porphyry comprised of 30%, 1-3 mm , euhedral to subhedral plagioclase phenocrysts in a finer-grained siliceous groundmass with occasional chloritic xenoliths up to 2 cm long.
Groundmass is progressively stained by a pink alteration down section and is beleived to result from hematization or alkali feldspar. Occasional guartz (gtz) > carb. +/- chlorite veinlets up to 2 cm wide and chloritic hairline fractures. Beige to weakly pink, fine-grained siliceous alteration heterogenously throughout the rock and is locally feldspar destructive.
10.6-11.6 M Fine-grained siliceous bleaching with faint sericitic plagioclase phenocrysts.
14.5 M 30 cm of pervasive siliceous bleaching. marginal to a 1 cm wide gtz veinlet @ 25 degrees to the core axis (C.A.).
15.6 M 4.0 cm gtz-carb-chlorite veinlet subparallel to the C.A.
16.2 m 3.0 cm gtz-carb-chlorite veinlet @20 degrees to the C.A.
17.0-18.5 M Abundant siliceous, chert-like fractures with marginal siliceous bleaching. 19.0-20.65 M Increasing feldspar destructive siliceous alteration and pink staining.

CHLORITIC AND SILICEOUS ALTERATION ZONE
Sharp contact © 70 degrees to pervasive, pinkishbeige, fine-grained siliceous altered rock with green chloritic wisps and patches and abundant qtz $>$ carb veinlets and hairline chloritic and epidote filled fractures.
20.65-20.9 M Microbreccia comprised of gtz.,carb., chlorite and epidote filled stockwork fractures.
20.9-21.5 M Sharp contacts a 70 degrees to C.A. to breccia comprised of 15 \& angular to rounded clasts in a siliceous matrix.

35.3-41.1 M	ALTERED FELDSPAR PORPHYRY Sharp contact @ 35 degrees to the C.A. to belge siliceous alteration with faint sericitic plagioclase phenocrysts grading into jess altered feldspar porphyry. Less altered porphyry is comprised of 25%, 1-2 mm plagioclase phenocrysts In a light gray sillceos groundmass and occasional chloritic, angular xenoliths up to 3 cm . Abundant gtz veinlets and healed chloritic and siliceous fractures.
41.1-43.0 M	SILICEOUS ALTERATION ZONE
	Pervasive beige to pinkish beige, fine-grained,
	siliceous alteration locally microbrecciated with
	stockwork halyline chloritic and siliceous
	fractures and gtz veinlets. Tr. to 1 \% diss. py.

43.0-45.0 M DERRAUGH VEIN ZONE

Irregular, brecciated, sericitic contacts into white to cream coloured bull gtz with numerous stokwork healed fractures.
45.0-92.7 M TOPBOOT LAKE PORPHYRY INTRUSION
49.2-84.9 M

Microbrecciated and locally mylonitic pervasive pinkish-beige, fine-grained, siliceous rock with anastomozing to stockwork chloritic, sericitic and siliceous fractures. The anastomozing fractures are essentially 45 degrees to the C.A. Occasional gtz +/- carb veinlets and irregular gtz patches up to 15 cm wide.

ALTERED FELDSPAR PORPHYRY Gradational contact into altered feldspar porphyry comprised of $25 \%, 1-2 \mathrm{~mm}$, euhedral to subhedral plagioclase phenocrysts in a finer-grained, light gray, siliceous groundmass. 2 \%, 1-3 mm wide gtz veinlets commonly @ 70 degrees to the C.A.

SILICEOUS ALTERATION ZONE
Gradational contact into pervasive, fine-grained pinkish-beige to light green siliceous rock. < 1 \% gtz and carb veinlets and irregular gtz patches up to 70 cm wide. Varlable py content from tr. to 1 \%. Occasional emerald green wisps beleived to be green mica. Fine sericitic laminations @ 70 degrees to the C.A.
58.0-58.7 M Irregular patchy qtz > carb > chlorite vein containing clasts of the wall rock.
66.34 cali wide gta $>$ carb \Rightarrow chlorite veln a 45 degrees to the C.A.
71.6-74.5 M Areas of less intense siliceous bleaching and visible plagioclase phenocrysts. 72.6-72.9 M Numerous hairline siliceous fractures (60 degrees to the C.A.
74.0-75.0 M Locally microbrecciated comprised of numerous irregular slliceous fractures and gtzcarb veinlets.
75.5-84.9 M Areas of less altered medium gray porphyry.
82.0-83.0 M Microbreccia comprised of finegrained, pinkish-beige bleached rock with numerous irregular stockwork siliceous and epidote fillled fractures and fine gtz-carb veinlets and patches.
84.9-92.7 M ALTERED DIORITE

Medium to dark green-gray mottled textured rock comprised of chloritic wisps and patches in a leucocratic groundmass with interstial carbonate. Occasional carbonate veinlets 1 to 5 mm wide and tr. diss. py. Local interfingering of feldspar porphyry with sericitic plagioclase phenocrysts.
92.7 M

END OF HOLE

FOR CAN-MAC EXPLORATION LTD.

BY GEOLOGICAL ENGINEERING SERVICES, NORTH BAY, ONTARIO.
TOPBOOT LAKE PROJECT, SWAYZE TOWNSHIP - DERRAUGH VEIN ZONE
HOLE NUMBER: T.L.-88-13
LOCATION: $1+07.5 \mathrm{~W} / 5+90 \mathrm{~s}$
LENGTH OF HOLE: 107.3 METRES (352 FEET)
AZIMUTH: 104 DEGREES
DIP: - 60 DEGREES
STARTED: SEPT., 1988
FINISHED: SEPT., 1988
LOGGED BY: FRANK TAGLIAMONTE
CONTRACTOR: LES ENTERPRISES JACQUES ROUSSEAU, ROUYN, QUEBEC.
CORE SIZE: BQ
DIP TESTS: NONE

SAMPLES: TL-88-13-1
TL-88-13-2
TL-88-13-3
TL-88-13-4
TL-88-13-5
TL-88-13-6
TL-88-13-7
TL-88-13-8
TL-88-13-9
TL-88-13-10
TL-88-13-11
TL-88-13-12
TL-88-13-13
TL-88-13-14
TL-88-13-15
TL-88-13-16
TL-88-13-17
TL-88-13-18
TL-88-13-19
TL-88-13-20
TL-88-13-21
TL-88-13-22
TL-88-13-23
62.3-63.7 M $=1.4 \mathrm{M}$
63.7-65.2 $\mathrm{M}=1.5 \mathrm{M}$ $65.2-66.7 \mathrm{M}=1.5 \mathrm{M}$ $66.7-68.1 \mathrm{M}=1.4 \mathrm{M}$ $68.1-69.5 \mathrm{M}=1.4 \mathrm{M}$ 72.4-73.9 $\mathrm{M}=1.5 \mathrm{M}$ 73.9-75.0 $\mathrm{M}=1.1 \mathrm{M}$ $75.0-75.3 \mathrm{M}=0.3 \mathrm{M}$ $75.3-76.5 \mathrm{M}=1.2 \mathrm{M}$ 79.8-81.2 $\mathrm{M}=1.4 \mathrm{M}$ 81.2-82.7 M = 1.5 M 82.7-84.1 $\mathrm{M}=1.4 \mathrm{M}$ 93.7-94.3 $\mathrm{M}=0.6 \mathrm{M}$ 95.4-96.0 $\mathrm{M}=0.6 \mathrm{M}$ $96.0-97.5 \mathrm{M}=1.5 \mathrm{M}$ 97.5-98.7 M $=1.2 \mathrm{M}$ 98.7-100.3 M = 1.6 M $100.3-101.3 \mathrm{M}=1.0 \mathrm{M}$ 101.3-102.4 $\mathrm{M}=1.1 \mathrm{M}$ 102.4-103.2 $\mathrm{M}=0.8 \mathrm{M}$ $105.5-106.1 \mathrm{M}=0.6 \mathrm{M}$ 106.1-106.7 M $=0.5 \mathrm{M}$ 106.7-107.3 $\mathrm{M}=0.6 \mathrm{M}$
$A U$ PPB
120
NIL
110
50
400
440
90
740/760
70
310
250
90
30
20
20
30
30
80
90/80
NIL 20
40
30

METERACD
0-1.2 M
1.2-107.3 M
$1.2-13.4 \mathrm{M}$

CASING

TOPBOOT LAKE PORPHYRY INTRUSION
ALTERED AND BRECCIATED DIORITE
Variable pearly gray and dark charcoal gray groundmass - vaguely porphyritic and vaguely foliated. Random black chloritic "clots" and flakes as well as black siliceous fractures - some with pyrite. Local brecciated patches. Fracturing with limonitic staining e 40 degrees to the Core Axis (C.A.).
7.3-13.4 M Darker gray, silicified, hard, vaguely, loosely porphyritic. Random seams and grains of pyrite (py) with up to 25 \% py.

PINK ALTERED FELDSPAR PORPHYRY
Gradational but defineable contact, weakly foliated @ 65 degrees to the C.A. to pink altered aphanitic feldspar porphyry. Alternating and mixed zone of gray and pink porphyritic material and pink vaguely porphyritic or aphanitic material. Random tear drop-like dark green and pale green clasts.

FINK SILICEOUS ALTERED FELDSPAR PORPHYRY Pale pink, very fine-grained, aphanitic indistinctly foliated rock. 25 \% quartz-carbonate veinlets and streaks.

GRAY FELDSPAR PORPHYRY
Uniformly fine-grained feldspar porphyry. Pearly white feldspar phenocrysts. Occasjonal gray and pale green, aphanitic, crushed or broken shard. Lined with pearly white quartz veinlets and stockworks. Random sparse disseminated pyrite. Random bright green fuschite clasts. 49.1-51.5 M Patchy areas of alteration with random semi-rounded pale green fuschite. Laced with pearly white quartz veinlets.
53.9 M 25 cm of foliated diorite possibly a fragment, fairly granular with sharp foliated contacts @ 40 degrees to the C.A. 55.2-59.3 M Bands and fragments of foliated diorite intermixed with quartz-carbonate alteration zone material.

BRECCIATED QUARTZ-CARBONATE ALTERATION ZONE Variable zone of aphanitic, pale yellow and beige fragments intermixed with 40% pearly white quartz. Pale yellow sericitic matrix with threads and seams of 10% sericite. Sparse, very fine disseminated py. Occasional thin 1 mm py threads.
0.25-0.5 \& py. Random fractures a 50 to 65 degrees to the C.A.
61.3-76.7 M Qurtz-carbonate stringer and breccia zone.
70.4-77.3 M Diorite fragment as previously described. 75.0-75.3 M Series of hairline, siliceous threads with fine disseminated py. 75.1 M 4 cm siliceous seam with threads of fine granular py (50 \%) © 55 degrees to the C.A. 76.7 M Slip with gouge @ 25 degrees to the C.A. 76.7-88.4 M Prominantly brecciated and fragmented zone. Mottled, pearly gray and charcoal gray intermixing siliceous material. 10 \% pearly white guartz threads and fragments. Random sparse fine py. 2 to 3 \% sericite threads and seams.
88.4-93.7 M DIORITE DYKE

Dark green, fine-grained, granular diorite dyke with foliation @ 60 degrees to the C.A. Sharp contacts. Some destruction of grains.
93.7-107.3 M MINERALIZED CARBONATE-SERICITE ALTERATION ZONE Lemon yellow and beige, aphanitic groundmass. Moderately hard - dirty gray carbonate. Vague brecciation/fragmentation that appears compacted and follated. Vague follation a 60 degrees to the c.A. Locally thinly laminated. Pervasively sericitic. Thin hair-like threads and irregular patches. Random cross-cutting guartzcarbonate threads and veinlets - usually associated with fine granular py. patchy disseminated and wormy seams of granular py. 3 \% py.
94.5-95.1 M Porous possibly kaolinitic zone 101.3-104.1 M Prominantly thinly laminated, lemon coloured zone with sharp contacts. Moderately hard. Carbonated, silicified and sericitic. Laminations a 60 degrees to the C.A. Random fine beads and wormy, discontinuous seams of py. 102.9 M 1 cm dirty gray quartz veinlet with fine granular py @ 25 degrees to the C.A. 104.1-107.3 M Alternating gray-green bands and massive lemon coloured bands with fine, dissemfnated and irregular seams of spongey py patches (py grains in a gray quartz matrix) 3 \& py.
107.3 M END OF HOLE

[^0]: * This trench was not lenghtened due to curtailment of the trenching program.

