REPOKT ON THE
 Electromagnetic Survey
 on the
 Raney Township Property (Grid 2)
 of
 GOIDROCK RESOURCES INC.
 by
 D.Greg Hodges, B.Sc.
 July 6, 1987

RECEIVED
JUL 311987
MINING LANDS SECTION
©10C

TABLE OF Gunauru

PAGE
INTRODUCTION 1
LOCATION AND ACCESS 1
CLAIM STATUS 1
GEOLOGY
Regional Geology 2
Property Geology 5
PREVIOUS WORK 6
SURVEY PROCEDURE MAX-MIN II
Theory 11
Field Method 13
PERSONNEL AND EQUIPVIENT 14
INTERPRETATION 14
ODNCLUS IONS AND RECOMMENDATIONS 15
REFERENCES 17
CERTIFICATION
APPENDIX A: Equipment Specifications
LIST OF FIGURESFigure 1 Property Location - RegionalFigure 2 Property Location - Local
Figure 3 Claim Map

INTRODUCTION

During the first part of 1987 , an electromagnetic survey was completed on 18 claims of the 72 claim Raney Township property of Goldrock Resources Inc.

The survey, conducted by Robert S. Middleton Exploration Services Inc., was used to define conductors and structure on the western area of the property, extending the coverage of previous surveys.

LOCATION AND AOCESS

The property is located east of Raney Lake and north of Denyes Lake in Raney Township, Ontario, approximately 50km south west of Foleyet, Ontario. (Figure 1 and 2). Access is by fixed wing aircraft (available in Foleyet or Timnins) to either lake.

CLAIM STATUS

The area surveyed consists of 18 un-patented mining claims in the Porcupine Mining District, all of which are held by Goldrock Resources Inc. of 1300-33 Yonge Street, Toronto, Ontario.

The claims are:

PROVINCE OF OMTARIO

Claims	Recording Date
P-756783	June 12, 1980
P-756784	June 12, 1980
P-756785	June 12, 1980
P-756786	June 12, 1980
P-756787	June 12, 1980
P-756789	June 12, 1980
P-756790	June 12, 1980
P-756791	June 12, 1980
P-756792	June 12, 1980
P-756793	June 12, 1980
P-769416	June 12, 1980
P-946116	July 21, 1984
P-946117	July 21, 1986
P-946118	July 21, 1986
P-946120	July 21, 1986
P-946121	July 21, 1986
	July 21, 1986

GEOLOGY

The following is quoted from Caira and Coster, 1984:
Regional Geology
"Raney Township is situated in the western end of the Abitibi greenstone belt and is underlain by Early Precambrian (Archean) supracrustal rocks of volcanic and sedimentary origin. The supracrustal rocks have been intruded by Archean felsic and mafic intrusives. The plutonic rocks occupy the southwestern corner and the northwestern portion of the township.

The youngest rocks are lamprophyre dikes, that may possibly occupy pre-existing faults. The dikes are

believed to be Late Jurassic to Early Cretaceous in age. The next youngest rocks are believed to be the felsic intrusives. These rocks have been interpreted by Thurston, Siragusa and Sage to be Early Precambrian in age, and include massive to weakly foliated biotite and hornblende trondhjemite, granodiorite and minor quartz diorite. These rocks were not encountered on the J-dex Raney property. The next youngest rocks are the felsic to intermediate metavolcanics including felsic porphyritic and pyroclastic rocks with thin cherty interflow metasediments. These rocks occurred throughout a large portion of the J-dex Raney property.

The oldest rocks in Raney Township are mafic to intermediate metavolcanics including basaltic to andesitic flows, pillow lavas, and gabbroic coarse-grained flows or intrusions. Among these the andesitic flows are predominant. The J-dex Raney property is thought, by the authors, to lie within the Swayze - Deloro metavolcanic - metasedimentary belt, which is part of the Abitibi Subprovince.

The rocks of the Swayze - Deloro metavolcanic metasedimentary belt generally have foliations and schistosities parallel or at low angles to the bedding

[^0]and banding. Well foliated rocks occurred sporadically throughout the J-dex Raney property. The foliation was not discernable in the more massive varieties of the mafic metavolcanics.

Secondary lineations are relatively common in the metavolcanic - metasedimentary belts in the map area including elongated pyroclastic fragments, small scale crenulations and elongated clasts in detrital rocks. Several of these secondary lineations were seen on the J-dex Raney property.

A lack of outcrop throughout most of the Swayze Deloro map area makes the positive defining of faults a difficult process. Strike-slip faults exist throughout the map area together with east-trending shear zones. More major north-northwest to northwest striking faults are conspicuous throughout the metavolcanic metasedimentary belt. Throughout the Swayze - Deloro belt, the faulting is indicated by abrupt discontinuities in the felsic metavolcanic units, similar to that on the J-dex Raney property.

Property Geology

The 21 claim J-dex, Raney Township property is underlain by metavolcanic and metasedimentary rocks of the Swayze - Volcanic belt. The metavolcanic sequence includes predominantly calc-alkalic basaltic to andesitic massive flows, pillowed flows and tholeiitic coarser grained massive flows, as well as predominantly rhyodacitic ash tuffs and crystal tuffs related to a felsic to intermediate volcanic center and possible shallow water volcanogenic sedimentation.

In the northern part of the property sheared felsic to intermediate tuffs occur that are greater than 400 metres in thickness. Along the lower contact, basaltic to andesitic massive flows, pillowed flows and intermittent tholeiitic basalts occur that are silicified and somewhat brecciated along the mafic-felsic contact.

Towards the centre of the claim group the basaltic to andesitic massive flows and pillowed flows predominate. Pillow top directions were difficult to detemine although south facing tops were seen in one locality. Numerous zones of felsic pyroclastic rocks composed of rhyodacitic crystal tuffs and ash tuffs are indiscriminantly scattered throughout the sequence and

Abstract

indicates that intermittent felsic explosive activity continued during the accumulation of the predominantly mafic metavolcanic sequence. In the southern part of the property, a thicker sequence of felsic pyroclastic rock occurs, including waterlain rhyodacitic crystal lapilli tuffs and fine ash tuffs."

PREVIOUS WORK

The following is quoted from Caira and Coster, 1984:
"The Swayze gold belt has been intermittently explored over a time span of about 80 years. Most of the interest has centered on gold but base metals have been searched for as well.

Current exploration activity has been directed to the search of gold mineralization. Some of the more prominent gold exploration activity has been by; Orofino east of Raney township; Quinterra Resources in 'Toons and Greenlaw townships southwest of Raney township; and by Carlson Mines in Rollo township. This activity has discovered significant gold values within chert and quartz-carbonate zones within basalts. These occurrences coupled with many known gold occurrences in the Swayze Gold Belt implies a good environment to search for gold deposits.

The following summary of the previous work in the area has been abstracted from assessment work files and reports from others who have worked in the area. Figure No. 2 shows the location of the J-dex Raney township claim group relative to neighbouring townships along the Swayze gold belt.

A review of the assessment work files in the Timnins Resident Geologist's office reveals that sporadic exploration has been carried out on the J-dex property in the northeast corner of Raney Lake. It is as follows:

Hole No. 84-15EA
245^{\prime} of winkie drilling encountered visible gold in quartz stringers with disseminated pyrite, molybdenite, sphalerite, chalcopyrite and associated apple green mineral (fuchsite?), tourmaline within an east-west trending fault zone.

Hole No. 84-15EB
216' of winkie drilling encountered visible gold in quartz stringers with disseminated pyrite and associated fuchsite?, tourmaline, fault zone.

Hole No. 84-15WA
213^{\prime} of winkie drilling encountered visible gold, disseminated pyrite, pyrrhotite, sphalerite, chalcopyrite associated with quartz floodings, fault zone.

Hole No. 84-15WB
197' of winkie drilling encountered visible gold, with disseminated pyrrhotite, pyrite, molybdenite associated with quartz floodings, fault zone.

Hole No. 84-30EA
186^{\prime} of winkie drilling encountered visible gold, with disseminated pyrrhotite, pyrite, molybdenite associated with quartz-carbonate veining, within an east-west fault zone.

Hole No. 84-30EB
199' of winkie drilling with visible gold, and disseminated molybdenite and pyrite within quartz-carbonate veins in tuffs.

Hole No, 84-30FC
181^{\prime} of winkie drilling with visible gold, and disseminated molybdenite pyrite and sphalerite within quartz -carbonate veins in tuffs.

Hole No. 84-450NA
185' of winkie drilling encountered disseminated pyrite and pyrrhotite within Dacitic tuffs.

Hole No. 84-450NB
163^{\prime} of winkie drilling encountered disseminated pyrite, pyrrhotite and chalcopyrite within Dacitic tuffs.

Hole No. 84-450NC
123^{\prime} of winkie drilling encountered disseminated pyrite within Dacitic tuffs.

	Hole No. 84-450ND
	110^{\prime} of winkie drilling enountered disseminated pyrite within tuffs.
1983	218' of winkie drilling in one hole. Visible gold with disseminated galena, pyrite, tourmaline within an eastwest trending fault zone with associated quartz-carbonate veins.
1982	Magnetic and VLF surveys by J-dex Mining and Exploration Ltd. and Ingamar Resources.
Sporadic	exploration has been carried out on
properties in	the immediate vicinity located east and
southeast of	the J-dex Raney Township claim group.
This work is b	riefly summarized as follows:

1932 \& 1935 Throne - Greaser Gold Showing
Reported on by Furse G.D. (1932) and Rickaby H.C. (1935).
Located on the south shore of a small pond north of Raney Lake. 2^{\prime} wide quartz vein traced for 100^{\prime}
in arkose and impure quartzite.
Veins strikes $\mathrm{Az} 080^{\circ}$ and dips
steeply to the north.
Vein contains pyrite, carbonate and trace native gold. Smaller 6" quartz vein in feldspar porphyry 500^{\prime} south of larger vein; strikes $\mathrm{Az} 060^{\circ}$ and traced for 100^{\prime}. At one location native gold, pyrite, chalcopyrite, galena and tourmaline was reported.

1972-1982 J-dex Mining and Exploration
Claim blocks on southwest end of Raney Lake. 1972
345° of winkie drilling in 3 holes. Rhyolite with some disseminated pyrite interesected. 1973
I.P., Magnetic and Geochemical Surveys Produced:
9 zones of anomalous chargeabilities.
Magnetic distortions.
Highest geochemical - copper 65ppm, $\mathrm{Zn}-205 \mathrm{ppm}$. 110^{\prime} of winkie drilling done.

1975-1979
5 winkie drill holes totalling 1,568'.

Unex
Airborne survey southwest end of Raney Lake. Part of a larger program over parts of the Swayze Gold Belt.

Ontario Geological Survey
©
Input aeromagnetic survey over the Swayze Belt Magnetic and Electromagnetic surveys flown.

Lacana Mining
Geological survey work on west boundary of Raney Township west of J-dex claim group. Carbonatite - alkalic complex. Rock types associated with Kapuskasing structural zone mapped."

During the sumner of 1986 induced polarization, magnetics and VLF-EM surveys were conducted by Goldrock Resources. The IP survey covered the north central area of the claim block, and the mag/VLF survey covered the south-central area. Several interesting IP anomalies were detected, some of which extend west into the current claim block.

Concurrent with this survey, a magnetics survey was completed on the same area of the property, and an electromagnetic and magnetic survey was conducted on the eastern 17 claims (Grid 3) of the group.

SURVEY PROCEDURE

MAX-MIN II

Theory
The Max-Min II is a frequency domain, horizontal loop electromagnetic (HLEM) system, based on measuring the response of conductors to a transmitted, time varying electromagnetic field.

The transmitted, or primary EM field is a sinusoidally
varying field at any of five different frequencies. This field induces an electromotive force, (emf), or voltage, in any conductor through which the field passes. This is defined by:

$$
\oint E . d l=\frac{-\partial \phi}{\partial t} \quad \text { (the Faraday Induction Principle) }
$$

where E is the electric field strength in volts/metre (and so ©E.dl is the emf around a closed loop) and $\not \varnothing$ is the magnetic flux through the conductor loop. This enf causes a "secondary" current to flow in the conductor in turn generating a secondary electromagnetic field.

This changing secondary field induces an emf in the receiver coil (by the Faraday law) at the same frequency, but which differs from the prinary field in magnitude and phase. The difference in phase (the phase angle) is a function of the conductance of the conductor(s), both the target and the overburden and host rock. The magnitude of the secondary is also dependant on the conductance, and also on the dimensions, depth, and geonetry of the target, as well as on the interference from overburden and the host rock.

These two parameters (phase angle and magnitude) are measured by measuring the strength of the secondary field in two components: the real field or that part "in-phase" with the primary field; and the imaginary field, or that part in "quadrature" or 90° out of phase fron the primary field.

The magnitude and phase angle of the response is also a
function of the frequency of the primary field. A higher frequency field generates a stronger response to weaker conductors, but a lower frequency tends to pass through weak conductors and penetrate to a greater depth. The lower frequency also tends to energise the full thickness of a conductor, and gives a better measure of its true conductivity-thickness product (conductance).

For these reasons two or more frequencies are usually used; the lower for penetration and accurate measure of good conductors, and the higher frequency for strong response to weak conductors.

Distinction between conductive targets, overburden, and host rock responses are made by studying the shape of the secondary field, and the difference in the frequency responses.

The transmitted primary field also creates an emf in the receiver coil, which is much stronger than the secondary, and which must be corrected for by the receiver. This is done by electronically creating an emf in the receiver, whose magnitude is determined by the distance from receiver to transmitter as set on the receiver, and whose phase is derived from the receiver via an interconnecting wire.

Field Method
The Max-Min II survey was carried out in the "maximum coupled" mode (horizontal co-planar). The transmitter and
receiver are carried in-line down the survey line separated by a constant distance (in this case 150 m) with the receiver leading. Three transmitter frequencies were used: $444 \mathrm{~Hz}, 1777 \mathrm{~Hz}$ and 3555 Hz . The transmitter and receiver are connected by a cable, for phase reference and operator commication.

PERSONNEL AND EQUIPMENT

The survey was conducted by Guy Thibeault Exploration Services of P.O. Box 1670, Timmins, Ontario, who provided 3 men to complete the survey. The line-cutting was done by Henry T. Gonzalez.

The electromagnetic survey instrument was an Apex Parametrics Max Min II horizontal loop (Slingram style system). Specifications for this instrument may be found in Appendix A.

INTERPRETATION
A major anomalous zone was detected in the south east corner of the grid, consisting of sub-parallel conductors of varying weak to moderate conductivity. These have trends ranging from roughly northeasterly to easterly. The anomalies suggest that there is also considerable disseminated mineralization in the area. Another moderate anomaly was detected at 225 S on Line 20 W , trending ENE and WSW, 100 metres in each direction.

There is a series of anomalies at 500 S on Line $25 \mathrm{~W}, 26 \mathrm{~W}$, and

A follow-up program of diamond drilling is recommended, the details of which would be decided based on the results of the IP and geology. An estimate of the diamond drilling required would be 1200 feet to 1500 feet, at $\$ 30 . /$ foot ($\$ 36,000$. to $\$ 45,000$.) plus mobilization, logistics, assaying etc.

Respect fully submitted

27W, but all are weak and may be due to lake bottom clays. There are many other irregular anomalies which are almost certainly due to lake sediments.

OONCLUSIONS AND REOCMMENDATIONS

The electronagnetic anomalies detected are not conclusive enough to warrant immediate diamond drilling, but they do suggest areas of interest for further work. Induced polarization surveying of the grid is recommended, with particular attention given to the electranagnetic anomalies and the magnetic anonaly between 450 S on L11W and 500 N on L23W.

Concurrently with the IP should be a geologic mapping program on the land claims.

The proposed budget is:

Induced Polarization Surveying
20 days @ $\$ 1,400 . /$ day
$\$ 28,000.00$
Mobilization-Demobilization
(includes air transportation)
5,000.00
Interpretation and report preparation
Geologic Mapping 12 days @ $\$ 250 . /$ day
1,500.00
3,000.00
900.00

Subsistence 12 days @ \$75./day
500.00

Sample preparation and assaying
Report preparation and drafting SUB TOTAL
Contingency 10\%
TOTAL
$\frac{1,000.00}{\$ 39,900.00}$
$\$ 39,900.00$
$4,000.00$
$\$ 43,900.00$

REFERENCES

CAIRA, NADIA and COSTER, IAN 1984

Geological Report of the 21 claim property for J-Dex Mining and Exploration

Report on the Magnetometer Survey on the Raney Township Property of Goldrock
Resources Inc.

I, D. Greg Hodges, of 136 Cedar Street South, in the city of Timmins, Province of Ontario, certify as follows concerning my report on the Goldrock Resources Inc. property in Raney Township, Province of Ontario and dated July 6, 1987:

1. I am a member in good standing of the Society of Exploration Geophysicists
2. I am a graduate of Queen's University at Kingston, Ontario, with a B.Sc. (Hons.) Geological Sciences with Physics, obtained in 1980.
3. I have been practising in Canada, and occasionally in the United States, Europe, and Australia for the past seven years.
4. I have no direct interest in the properties, leases, or securities of Goldrock Resources Inc., nor do I expect to receive any.
5. The attached report is a product of:
a) Examination of data included in the report which was collected on the property concerned.

Dated this July 6, 1987
Timmins, Ontario
D. Greg Hodges, Geophysicist

$$
\underline{A} \quad \underline{P} \quad \underline{P} \quad \underline{E} \quad \underline{N} \quad \underline{D} \quad \underline{I} \quad \underline{X} \quad \underline{A}
$$

EQUIPMENT SPECIFICATIONS

The MP-2 has the following epacifications:

Resolution	1 Gamina
Total Field Accuracy	± 1 Gamma over full operating range
Rango	20,000 to 100,000 gananas in 25 overlapping stepa.
Internal Moasuring Programm	Single reading - 3.7 seconds. Recycling feature permits automatic repotitive readings at 3.7 saconde intervale.
Extarnal Triggor	Extornal trigger input permite use of sampling intervals longer than 3.7 second E .
Display	```5 digit LED (Light Emitting Diode) readout displaying total magmetic field in gammas or normalized battery voltage.```
Data Output	Multiplied precession frequency and gate time outputs for basestation recording using interfacing optionally available from Scintrex.
Gradient Tolerance	Up to $5000 \mathrm{gammab/metre}$
Power Source	B alkaline 'D" cells provide up to 25,000 readings at $25^{\circ} \mathrm{C}$ under reason-
	lower temperatures). Premium carbonzinc cells provide about $40 X$ of this number.
Sensor	Omnidirectional, shielded, noisecancelling dual coil, optimized for high gradiont tolerance.
.	.
Harness	Complete for operation with staff or back pack seneor.
- Operating Tomperature Rango	$-35^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Size	Conoole, with battariest
	$80 \times 160 \times 250 \mathrm{~nm}$.
	Senbor: $80 \times 150 \mathrm{~mm}$. ${ }^{\text {a }}$
	$\begin{aligned} & \text { Staff } 30 \times 1550 \mathrm{~mm} . \\ & 30 \times 600 \mathrm{mm.} \text { (extended) } \\ & 30 \times 1 \text { apsed) } \end{aligned}$
Weights	Console, with batteriess l. ikg .
	Sencor: 1.3 kg
	Staff 0.6 kg

Credits Requested per Each Claim in Columns at right

Expenditures (excludes power stripping)
Type of Work Performed
Performed on Claim (s)

Instructions
Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.
Date

Certification Verifying Report of Work

Mining Claims Traversed (List in numerical sequence)

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the/work or witnessed same during and/or after its completion and the annexed report is true.
Name and Postal Address of Person Certifying,

REFERENCES
areas withorawn from dispoition
M. + S. - MINING AND SURFACE RIGHTS

LEGEMD	
highway and route no. OTHER ROADS TRAILS SURVEYED LINES OWNSHIPS, BASE LINES, ETC LOTS, MINING CLAIMS. PARCELS UNSURVEYED LINES LOT LINES PARCEL BOURDARY MINING CLAIMS ETC. RAILWAY AND RIGHT OF WAY UTILITY LINES NON.PERENNIAL STREAN FLOODING OR FLOODING RIGHTS SUBDIVISION OR COMPOS:TE PLAN RESERVATIONS ORIGINAL SHORELINE MARSH OR MUSKEG MINES TRAVERSE MONUMENT	$\Leftrightarrow 0$
DISPOSTICR OF CROK\% LREUS	
TYPE OF DOCUMENT SYIfBOL PATENT. SURFACE \& MINING RIGHTS \qquad SURFACE RIGHTS ONLY. \qquad \qquad LEASE, SURFACE \& MINING PIGHTS \qquad SURFACE RIGKTS ONLY MINING RIGHTS OA_Y. \qquad \qquad LICENCE OF OCCUPATION \qquad ORDER-IN-COUNCIL \qquad RESERVATION \qquad CANCELLED SAND \& GRAVEL \qquad \qquad mote: mining rights in pareels patenteo prior tomay 1913, VESTED TN ORIGINAL PATENTEE GY THE PUELIC LANDSACT, RSO 19 IS CHAP 380 SEC 63 SUBSEC :	
SCALE 1 INCH $=40$ CHAINS	
RANEY M.n.R. administrative district CHAPLEAU minikg division PORCUPINE LAND TITLES / REGISTRY DIVISION SUDBURY	
(1)Ministryof Natural Resources Land Branagement Ontario	
$\text { Do:0 wАRCH, } 1985$	

[^0]: 1. 1977: Geology of the Chapleau Area, Districts of Algoma, Sudbury and Cochrane: Geoscience Report 157
