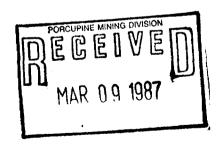


OM86-5-P-157


63.4945

010

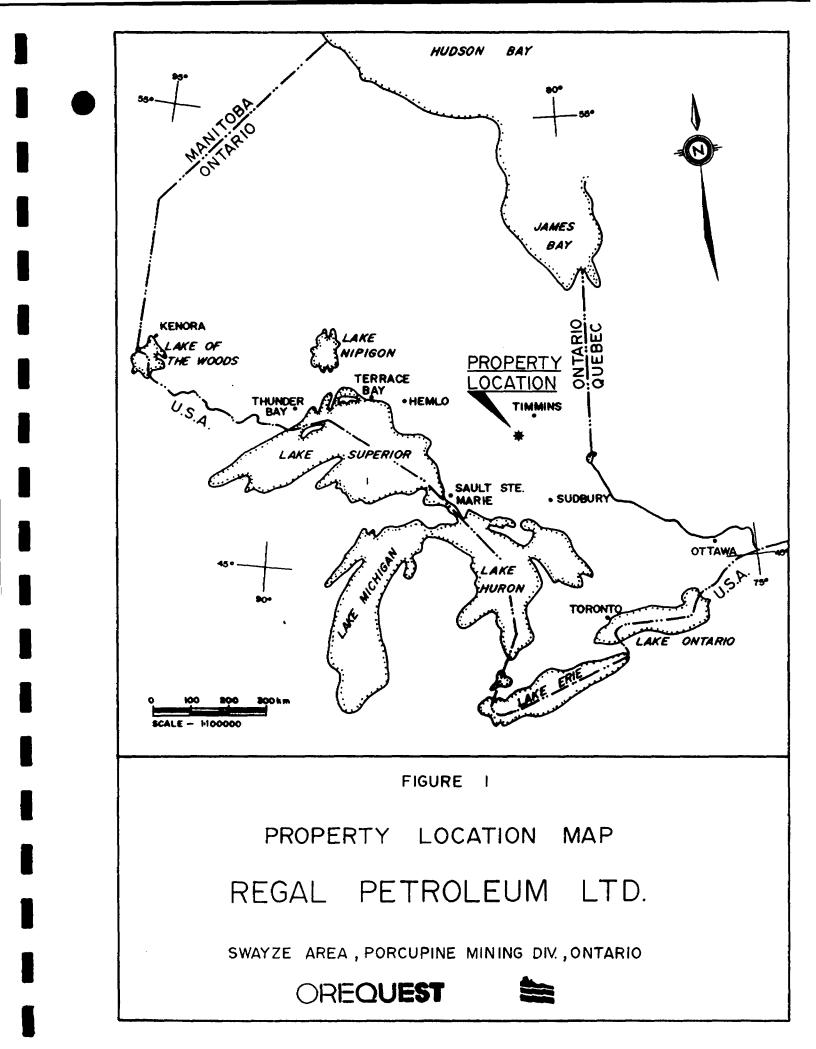
REPORT ON THE 1986 EXPLORATION PROGRAM OF REGAL PETROLEUM LTD. SWAYZE PROPERTY PORCUPINE MINING DIVISION ONTARIO

> George Cavey Jim Chapman Wesley Raven January 14, 1987

OREQUEST

OREQUEST CONSULTANTS LTD. 404 - 595 Howe Street, Vancouver, B.C., Canada, V6C 975 Telephone: (604) 688-6788

SUMMARY


The 1986 exploration program on Regal Petroleum's Swayze gold property was primarily a drilling program aimed at locating higher grade intersections within the known sub-economic mineralization at the shaft area. Additional mapping, geophysics and trenching was carried out along the projected eastern extension of the shaft shear zone. This work confirmed the existence of the shear for a minimum of 3,500 metres along strike.

The I.P. survey was conducted over the area of this eastern extension and outlined a number of anomalous trends flanking the shear trace. Of these, three anomalies were the focus of the second phase drilling.

A test grid for soil geochemistry was conducted southwest of the shaft area, however, results were not encouraging and due to extensive esker and swamp cover over the majority of the property, no further soil sampling was carried out.

The results of the 1986 drilling were similar to previous drilling carried out in 1985. In the area of the shaft and stepping out south easterly, more sub-economic mineralization was encountered within the cataclastic shear zone. No obvious higher grade sections were discovered but the shear system was still evident and strong at the end of the area explored in 1986.

A further 6 kilometers of strike length remains untested and provides an excellent exploration target for future programs.

Ø10C

TABLE of CONTENTS

Summary	
Table of Contents	
Introduction	1
Location and Access	1
Property and Claim Status	2
Physiography and Vegetation	3
History and Previous Work	4
Regional Geology	6
Property Geology	9
Geology - Shaft Group	9
Structural Geology	9
Mapping - 1986	11
Geophysics	12
Soil Geochemistry	17
Results	17
Trenching Program	19
Summary	20
Detailed Trench Geology	23
Diamond Drilling	34
Introduction	34
Discussion	35
RG-86-1	38
RG-86-2	38
RG-86-3	39

RG-86-4	40
RG-86-5	40
RG-86-6	41
RG-86-7, 8	42
RG-86-9	42
Whole Rock Analyses	43
Conclusions and Recommendations	44
Certificate of Qualifications	
George Cavey, Consulting Geologist	
Jim Chapman, Consulting Geologist	

•

Wesley Raven, Geologist

Bibliography

LIST of APPENDICES

Appendix A	Drill Logs
Appendix B	Assay Reports - Drilling and Trenching
Appendix C	Thin Section Report
Appendix D	Whole Rock Analyses
Appendix E	IP Survey Pseudosections

LIST of FIGURES

Figure 1	Location Map	Following Summary
Figure 2	Claim Map	Following Page 2
Figure 3	Regional Geology	Following Page 6
Figure 4	Soil Geochemical Results	Following Page 17
Figures 5a, b	Trench 86-1	Following Page 23
Figure 5c	Trench 86-2	Following Page 24
Figure 5d	Trench 86-3	Following Page 25
Figures 5e, f	Trenches 86-4, 5	Following Page 26
Figures 5g	Trench 86-6	Following Page 27
Figures 5h, i	Trenches 86-7, 8	Following Page 28
Figures 5j, k	Trenches 86-9, 10	Following Page 29
Figure 51	Trench 86-11	Following Page 30
Figure 5m	Trench 86-12	Following Page 31
Figures 5n, o	Trenches 86-13, 14	Following Page 32

Figures 5p, q	Trenches 15, 16, 17	Following Page 33
and r		
Figure 6	Trench Locations, Drill Hole	In Pocket
	Locations and I.P. Anomalies	
Figure 7	Shaft Area Drilling	Following Page 35
Figure 8	1986 Geology	In Pocket
Figures 9 - 12	Drill Sections	In Pocket
Figure 13	Drill Section 86-5	Following Page 40
Figure 14	Drill Section 86-6	Following Page 41
Figures 15 - 17	Drill Sections 86-7, 86-8, and 86-9	Following Page 42

INTRODUCTION

This report details the results of the 1986 exploration and drilling program on the Swayze propery of Regal Petroleum Ltd.

A total of 78 line kilometers were cut on a 100 metre grid spacing for mapping and geophysical control.

Following initial mapping, trenching and an I.P. survey, 2,130 metres of diamond drilling was carried out. This consisted of two phases: the first being a follow up to the 1985 drilling program and the second to test the 1986 survey I.P. anomalies.

The aim of this program was to locate higher grade intersections within the zone outlined by previous work, and trace the continuation of the shear along strike.

Reports on previous exploration programs are listed in the Bibliography.

LOCATION and ACCESS

The Regal Petroleum property is located approximately 40 kilometers east of the town of Chapleau and 120 kilometers southeast of Timmins, Ontario (Figure 1). Highway #101 connecting Chapleau to Timmins lies some 16 kilometers north of the north boundary of the property. A number of logging roads, originating from the small town of Kormak 16 kilometers southeast Chapleau, provide access to the southern portion of the property. During the summer months easiest access is by float plane to the Shunsby Lake camp through charter operators located in Chapleau or from Ivanhoe Lake, 56 kilometers north. The work described herein was carried out from a base camp located at the south end of Shunsby Lake. A skidder trail was cut from the end of existing access at Betty Lake to the base camp. A shallow ford was constructed to cross the Kinogoma River.

PROPERTY and CLAIM STATUS

The entire property consists of 9 patented claims and 173 unpatented claims in Halcrow, Greenlaw and Tooms townships, Porcupine Mining Division, Ontario (Figure 2). They are listed as follows:

PATENTED

Patent Group - (6 claims)

<u>Township</u> Halcrow

S-22148
 S-22150
 S-22152 to 22153

Claim Number

Shaft Group - (3 claims)

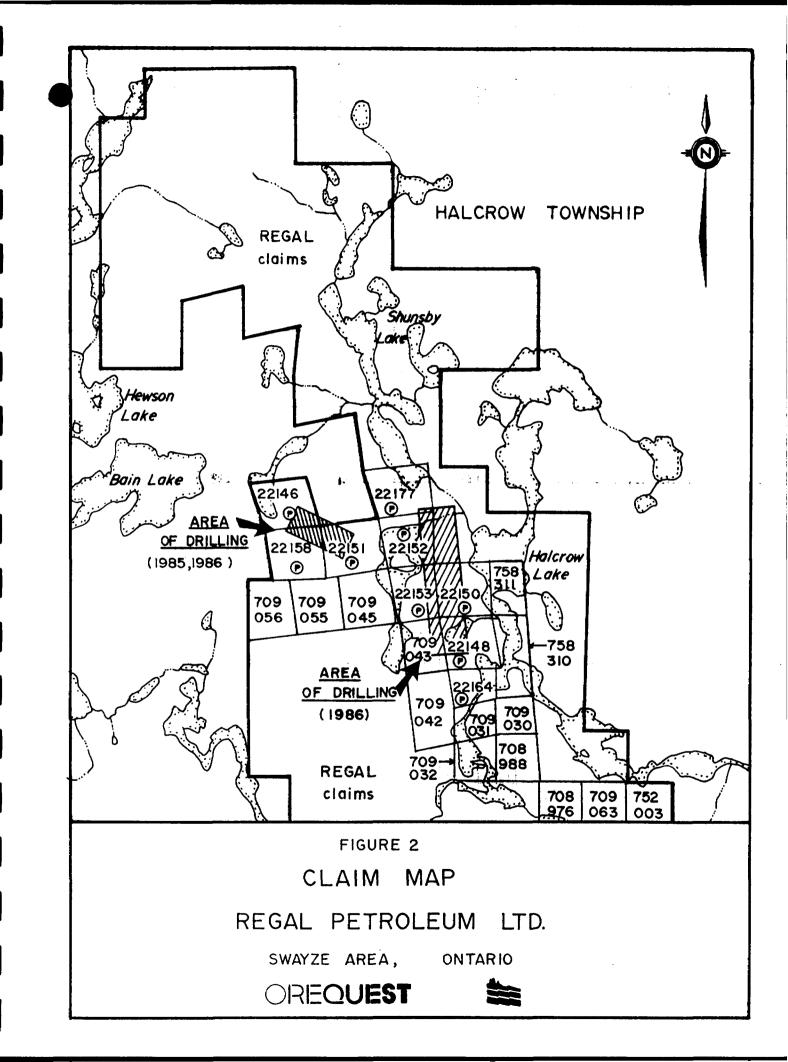
<u>Township</u>

Claim Number

Halcrow

~ S-22146
~ S-22151
~ S-22158

✓ S-22164 ✓S-22177


UNPATENTED - (173 claims)

<u>Township</u>	<u>Claim Number</u>	Expiry Date
Greenlaw	P-688610 P-708930 to 708946 incl.	March 4/87 March 4/87
Tooms	 ✓P-688585 to 688590 incl. ✓P-688595 to 688609 incl. ✓P-708968 to 708969 ✓P-709068 ✓P-708950 to 708954 incl. ✓P-708958 to 708961 incl. 	March 4/87 March 4/87 March 4/87 March 4/87 March 4/87 March 4/87
Halcrow	 P-708955 to 708957 incl. P-708970 to 708988 incl. P-709030 to 709043 incl. P-709045 to 709067 incl. P-758310 to 758319 incl. P-757402 to 757404 incl. P-757390 to 757401 incl. P-758284 to 758285 P-708962 to 708967 incl. P-783632 to 783634 incl. P-779842 to 779847 incl. P-779870 to 779873 incl. P-783631 P-752003 to 752008 incl. P-779840 to 779841 	March 4/87 March 4/87 March 4/87 May 5/87 May 5/87 May 5/87 May 5/87 March 4/87 Dec. 23/87 Dec. 23/87 Dec. 23/87 Dec. 23/87 Dec. 23/87 Dec. 23/87 Dec. 23/87

The patented claims are held in good standing as long as the taxes are paid. The work completed on the Regal property in 1986 will extend the expiry date on all claims to at least 1988 pending government approval.

PHYSIOGRAPHY and VEGETATION

The property area is relatively flat with a maximum elevation change in the order of 30 metres. A low gently sloping ridge, site of the old Halcrow Swayze mine, dominates the Shaft Claims. Overburden cover, consisting of sand and gravel till, mantles over 90% of the claim group.

Vegetation cover, on the Shaft claims, is dominated by mature stands of poplar, birch and jackpine. Outside of the Shaft area, the low ground and swampy areas are covered by spruce, balsam, cedar and abundant undergrowth of alder. The southeastern portion has been recently logged and the new growth is immature, mainly pine.

HISTORY and PREVIOUS WORK

Although the gold potential of the Swayze greenstone belt has been recognized since the early 1900's, the first major thrust in gold exploration occurred in the 1930-1943 period. The discovery of gold to the east of the area in Swayze Township, in 1931, lead to extensive prospecting in the area. A detailed account of other work carried out in the Swayze gold belt can be found in a report by Esson, 1983.

One of the most important gold discoveries of that era was that of the Halcrow Swayze mine, presently located on the three claims of the "Shaft Group" held by Regal Petroleum Ltd. According to Laird (1935) "Development of the property... consisted mainly of surface exploration (trenching), underground development, diamond drilling and the operation of a 25-ton test mill". Testing of the three main veins on surface yielded the following results (Laird, 1935):

Vein	Length (Feet)) Width (Inches)	Gold Content (oz/ton)
No.	1 100	16	.235
No.	2 900	84	.120
No.	4 30	12	.857

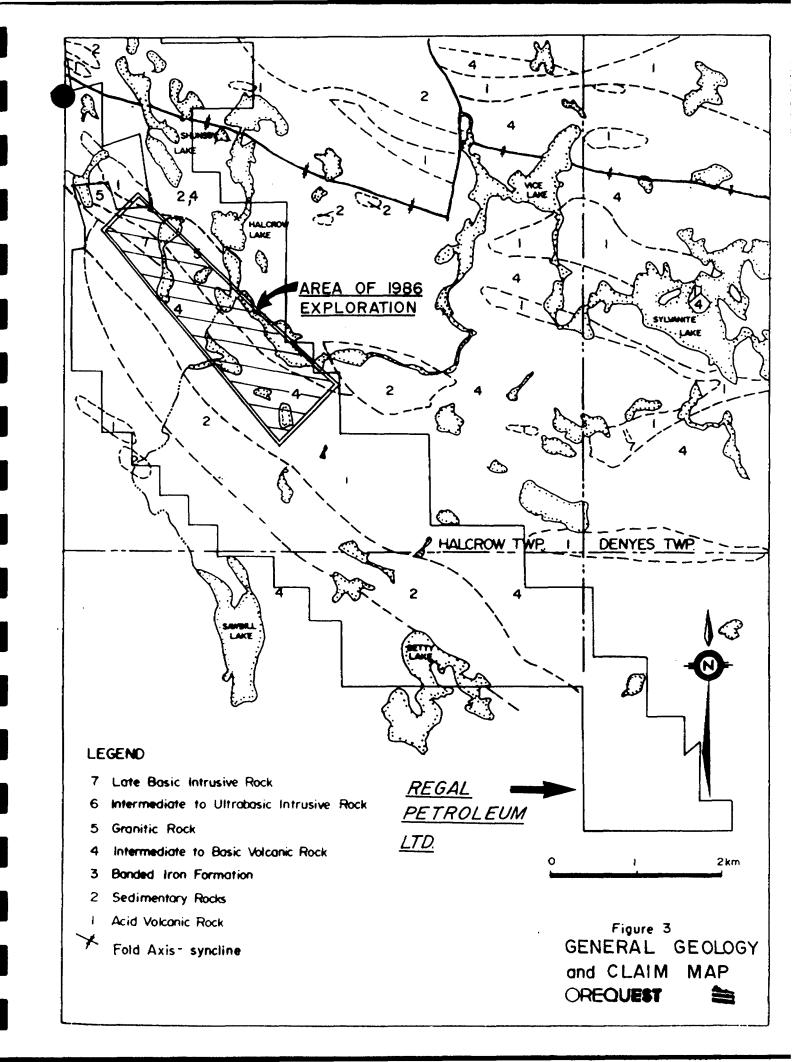
A shaft was sunk on No. 2 vein to a depth of 371 feet, with levels at 200

and 354 feet. Drifting on the No. 2 vein at the 200 foot level extended for 1,138 feet over width of 4 to 7 feet and the vein was opened for 200 feet at the 354 foot level. Ore reserves were estimated at 85,500 tons of ore grading .11 oz/ton Au in the No. 2 vein above the 200 foot level and a further 45,000 tons of the same grade between the two levels. Vertical continuity of the ore zone was indicated by diamond drilling to a depth of 500 feet.

Initial exploration work by Regal Petroleum Ltd. on the property commenced in 1984, with an airborne geophysical survey flown by Aerodat Limited. Data from magnetometer, HEM and VLF electromagnetic system were collected over the entire property.

In 1984, the firm of David R. Bell Geological Services Inc. was contracted to undertake a geological assessment of the Regal Petroleum property. A widely spaced cut grid was established over the entire property followed by geological mapping, rock sampling and limited soil geochemistry.

During the same year a preliminary phase of exploration on the "Shaft Group" of Patent Claims (old Halcrow Swayze Mine) was undertaken. Old trenches were cleaned and sampled and a cut grid was established along a 300° surveyed baseline with crosslines spaced at 100 foot intervals. Assays from grab samples ranged from 11 ppb to 0.713 oz Au/ton.


In 1985, exploration was restricted to the Shaft Group of claims (claims S 22146, S 22158 and S 22151). A geochemical soil survey and ground geophysics consisting of induced polarization, VLF-EM and magnetic surveys were completed in the early part of the summer. Sixteen trenches were also excavated and later mapped and sampled. The trenches were located in two separate areas; twelve trenches were excavated on the Shaft Group and four others were located near the number three post of the claim S 22164. A total of 77 samples consisting mainly of grab samples with some channel and chip samples were collected from the trenches and assayed for gold.

A diamond drilling program was undertaken in November, 1985 to test the structure associated with the Halcrow Swayze Mine on the Shaft Group. The drilling was carried out by Bradley Brothers of Timmins under the supervision of OreQuest Consultants Ltd. A Viking Helicopter Hughes 500D provided the helicopter support. Diamond drilling began on November 15 and terminated on December 10 with the completion of the 14 drill holes for a total of 1,396 metres.

REGIONAL GEOLOGY

The property is situated in the western most corner of the Swayze greenstone belt. The Swayze area is an arcuate volcano-sedimentary belt grouped within the Abitibi sub-province (Figure 3). Á.

- 6 -

A brief account of the regional geology as taken from Ontario Department of Mines Geological Report #63 "Geology of Halcrow-Ridout Lakes Area" by J.F. Donovan (1969) is as follows:

> "The area is underlain by Precambrian rocks, consisting of acid-to basic volcanic rocks, sedimentary rocks and intrusive igneous rocks.

Intermediate-to-basic volcanic rocks are dominant and trend in an east-west direction across the area. Acid volcanic rocks are abundant in Denyes Township, but elsewhere acid volcanic rocks are intercalated with the intermediate-to basic volcanic rocks. Two major belts of sedimentary rocks traverse the map-area and form part of a major synclinal structure. The sedimentary rocks are predominantly conglomerate and quartzite with minor pelitic rocks, greywacke and arkose. A few bodies of intrusive granite cut the western part of Halcrow and Tooms Townships and a contact metamorphic zone is developed by the granite. A few bodies of intrusive diorite are closely associated with the basic volcanic rocks and numerous northwest and northeast trending diabase dikes transect all other rock types. Pleistocene and Recent deposits cover much of the area.

The rocks are steeply dipping and tightly folded about an east-west trending synclinal fold axis. The syncline is doubly plunging and its north limb is overturned; facing south. Major north-south trending fault zones are found along the Kinogama and Wakami Rivers; elsewhere small faults offset lithologic units".

Mapping of the Regal Petroleum property was undertaken by Reukl and Conquer

in 1984. They summarized its geology as follows:

"The property was found to be underlain by a metavolcanicmetasedimentary assemblage dominated by massive to foliated andesites intercalated with discontinued bands of fine to medium grained sediments. Banded iron formation was located in many places on the property occurring as discontinuous pockets or lenses. Granitic rocks occupy the west central and northwest portions of the property representing the eastern margin of a pluton". The following is a table of geological units used by Donovan (1968):

TABLE 1

TABLE OF FORMATIONS

PRECAMBRIAN INTRUSIVE ROCKS

Late Basic Intrusive Rocks, Diabase

Intrusive Contact

Intermediate to Ultrabasic Intrusive Rocks: Diorite, gabbro, lamprophyre, serpentine.

Intrusive Contact

Granitic Rocks: Granite, syenite, monzonite, quartz, monzonite grandiorite, quartz diorite, gneissic granite.

Intrusive Contact

INTERMEDIATE TO BASIC VOLCANIC ROCKS

Massive andesite and basalt, pillow andesite and basalt, chlorite-horneblende-feldspar schist, basic tuff, grey massive andesite, volcanic breccia, amphibolite, hornblende-mica-feldspar schist, diorite and gabbro (flows or intrusions), porphyritic andesite and basalt.

Iron Formation: Banded iron formation, schistose iron formation.

SEDIMENTARY ROCKS

Shale, argillite, slate, conglomerate, quartzite, greywacke, arkose, paragneiss, mica-hornblende-plagioclase-quarttz schist.

ACID VOLCANIC ROCKS

Massive rhyolite, acid tuff, volcanic breccia, sericite-quartzfeldspar schist, banded rhyolite, silicified rhyolite, rhyolite porphyry, feldspar porphyry.

PROPERTY GEOLOGY

Geology - Shaft Group

Information obtained from diamond core drilling has permitted the identification of rock textures and structures otherwise indistinguishable in surface exposures. As a result, the underlying geology initially inferred from the trenching was re-interpreted.

The claim group is crosscut by a shear zone locally trending at 300° that forms the contact zone between a quartz diorite sill to the northeast and mafic volcanic rocks to the south (Figure 3).

Intense deformation and hydrothermal alteration along the contact has produced a wide cataclastic zone which has affected both the quartz diorite intrusive and the mafic volcanic rocks.

This zone which was initially thought to be sedimentary quartzites and greywackes and in past has been mapped as a felsic volcanic is in fact the result of polyphase deformation and hydrothermal alteration of the quartz diorite.

Structural Geology

The cataclastic zone developed along the contact of a quartz diorite and mafic volcanic succession appears related to a regional fault trending at 300° and extending beyond the boundary of the Shaft Group.

A linear magnetic anomaly (Aerodat, 1984) parallels the trend of the shear

zone and extends for 10 kilometers across the entire Regal property.

West of the shaft the contact zone dips steeply south while east of the shaft, the zone appears to be rotated and faces north.

Deformation of the quartz diorite may have been initiated at an early stage by protoclasis. Protoclasis applies to cataclasis of an igneous body or parts of an igneous body, generally before it has completely crystallized (Higgins, 1971).

The felsic intrusive may originally have been emplaced along a fault plane, only to be deformed by later fault movement. In metamorphic terrain, dikes, veins and sills often formed zones of easiest movement during periods of directed stress. Polyphase deformation is evidenced by thin section examination of the cataclasite from the 1985 drill ore which shows a granulation of quartz and feldspar crystal into fragments less than 2 mm and megascopic examination of rock or core specimens which typically exhibit a micro brecciation of this granulated matrix into .5 to 2 cm fragments separated by a network of sericitic veins. Deformation and alteration gradually increases from north to south, although sinusoidal dispersion of stress during deformation of the quartz diorite has produced zones of highly strained rock adjacent to less deformed rocks. For this reason intercalation of quartz diorite with its tectonised phases are found throughout the map area. Mapping - 1986

During this phase of the program mapping was carried out on cut lines spaced at 100 metre intervals along a 4 kilometer baseline (Figure 8). The primary aim of the mapping was to attempt to locate the strike extension of the cataclastic zone and identify areas for follow up trenching. Outcrop exposure is poor over most of the area of interest with extensive cedar bog and esker cover.

The 1985 Aerodat survey outlined three sub-parallel magnetic highs trending northwest-southeast. The northern most of these was known to be the quartz diorite dyke flanking the cataclastic zone. A diabase dyke was thought to be the cause of the middle trend, and scattered outcrops located during the mapping proved this to be the case. At line 3+50E/6+80S a windfall tree exposed a 6 metre thick banded iron formation. Trenching exposed the same formation 50 metres along strike to the southeast after which overburden cover became excessive. This zone conforms to the location of the southermost magnetic anomaly.

Follow up on several of the E.M. anomalies revealed no obvious causes other than conductive swamps.

Several old trenches were located during the mapping one of which exposed a 0.3 metre wide quartz sulfide vein, a channel sample of which ran 5,140 ppb Au.

As no significant changes were made to the geological assemblage the reader is referred to the 1986 report by Cavey, LeBel and Dumouchel for more detailed

- 11 -

GEOPHYSICS

An induced polarization geophysical survey was conducted on the property. A previous induced polarization in the vicinity of the old Halcrow-Swayze mine detected a weak but distinct anomaly associated with the known mineralized zone. The purpose of the present survey was to explore for similar anomalies elsewhere on the property.

The survey was conducted in the time domain with an EDA IP-1 receiver and a Phoenix Geophysics IPT-1 transmitter and was done with the dipole-dipole electrode array with an electrode spacing of 25 metres expanded through four separations. The electrode array was selected to provide reasonable depth of detection and resolution of any narrow targets present.

The survey coverage was selectively applied to areas of known or inferred cataclasite and the contact between the cataclasite and volcanics. The coverage was further restricted by initially surveying alternate, 200 metres spaced lines and infilling at 100 metre intervals only if anomalies were recorded. Much of the area surveyed was coincidentally covered by a mantle of glacial till.

Line	From	То
5+00E	5+00N	8+50N
6+00E	6+00N	8+50N
7+00E	4+25N	7+25N
8+00E	4+25N	6+75N
9+00E	0+25N	7+50N
10+00E	3+75N	6+75N
11+00E	0+00	6+25N
12+00E	3+75N	6+25N
13+00E	3+005	6+25N
14+00E	3+25N	5+00N
	3+005	0+25N
15+00E	2+25N	4+75N
	2+505	0+50N
16+00E	2+755	4+50N
1 7+00 E	2+00N	4+25N
	3+255	0+75N
18+00E	4 + 50S	0+75N
21+00E	1+755	2+75N
23+00E	2+255	1+75N
25+00E	2+00S	2+00N
27+00E	2+005	1+50N
29+00E	1+755	0+75N
31+00E	1 + 50S	1+00N
33+00E	0+50S	2+75N
35+00E	0+505	4+00N

The coverage provided by the survey is as follows:

Since the present survey was conducted with a different reciever than the previous survey, a limited amount (2 short lines) of repeat coverage was done in the area of the Halcrow Swayze mine. This coverage did not exactly repeat the previous coverage because different (new) cut lines were used. This coverage is as follows:

1+25S

2+75N

37+00E

Line	From	То
4+00E	0+255	2+25N
5+00E	0+755	1+50N

This coverage was also included because a drill hole was contemplated for the area.

The results of the survey are presented in pseudosection format in Appendix E. With the exception of lines 4+00E and 5+00E above only the anomalous portions of the pseudosections are shown in order to reduce the amount of data presented. Locations of the anomalies, in plan, are shown on Figure 6.

Weak chargeability anomalies ie. up to 9 msec. in a background of less than 4 msec. were recorded on llines 4+00E and 5+00E to duplicate previous results obtained in the vicinity of the old Halcrow Swayze mine. Although the anomalies are weak they are quite distinct because background values are uniformly low.

Five anomalous chargeability zones, labelled A to E, and one resistivity anomaly as shown on Figure 6 were recorded by the survey away from the original anomaly near the old Halcrow Swayze mine.

Zone A occurs principally on line 5+00E but is also evident on line 6+00E between 6+50N and 6+75N. On line 5+00E, zone A, exhibits chargeabilities of up to 30 msec. which were the highest values recorded by the survey. At this location zone A reflects a 50 metre wide body centered at about 7+00N. Zone A was tested by (RG-86-6) and was found to be caused by graphitic tuffs and siltstones.

Zone B extends from line 5+00E at 5+75N to line 15+00E at 4+25N. On line

15+00E the anomaly is not completely defined because the Kinogama River impeded the survey coverage. Chargeabilities in zone B range from 10 msec-25 msec. On line 13+00E the zone produced only weakly anomalous results because it is at a depth of 25-50 metres. Elsewhere zone B is generally shallow.

Zone B varies in width from narrow (ie. less than 25 metres) to 75 metres. At its widest located on lines 7+00E and 11+00E, it seems to be composed of a 50 metres wide zone of weakly anomalous values on the north, followed by a 25 metre wide band of strongly anomalous values on the south. Zone B was drilled on line 9+00E (RG-86-8), and on 11+00E (RG-86-7), and found to be a pyritic tuff. In both cases the variability in the anomaly was found to be caused by about 1% sulphides in the first part of the hole followed by a narrow intersection of 5%-50% sulphides.

Zone C crosses lines 13+00E to 18+00E at about 1+25S to 1+50S. Chargeabilities vary up to around 25 msec. and the width of zone C varies from narrow to 25 metres. On line 17+00E the zone is at a depth of 25m and on line 18+00E its depth has increased to about 50 metres.

Zone C appears to be associated with a marked resistivity low. For this reason it was argued that the zone may reflect a mineralized shear zone. Stratigraphically the zone appears to occur at the contact between andesite and volcanics and the cataclasite although geological evidence on line 14+00E possibly positioned the zone within andesites.

Drilling zone C on line 13+00E (RG-86-9) hit 2%-3% pyrite in andesite to

explain to chargeability anomaly. The amount of sulphides present was not sufficient to significantly depress the resistivity of the andesites and no other feature was found to adequately explain the resistivity low associated with the anomaly. A second hole (RG-86-10) in zone C on line 15+00E was not completed because of a major equipment failure.

Zone D is evident on lines 15+00E, 16+00E and 17+00E at about 2+75N. Chargeabilities associated with this zone are low achieving a maximum of 15 msec on line 16+00E. The zone reflects a narrow, less than 25 metre wide, body. This zone was not drilled.

Zone E extends from 21+00E to 37+00E within about 100 metre on either side of the base line with the exception of line 29+00E where no anomaly was obtained. Zone E is weak, rarely achieving over 10 msec in amplitude. Although it is weak the anomaly is quite distinct because background response in the area is unifromily low. The cause of zone C is not known nor was it tested by drilling. It appears to occur in andesites and occupies a similar stratigraphic position as zone C.

An anomaly of about 20 msec occurs on line 18+00E between 3+00S and 3+25S. This feature was not followed up because its location in andesites did not fit the model for the gold mineralization being sought on the property.

- 16 -

SOIL GEOCHEMISTRY

A total of 79 soil and 13 humus samples were collected during this portion of the program. An effort was made to collect B-horizon samples with A-horizon humus samples taken where a good B-horizon was not available. All samples were collected at 25 metre intervals over lines 1W to 4W. This was a test area to determine the viability of soil geochemistry as an exploration tool in an area where overburden cover was not excessive. The samples were analysed for gold, silver and copper by Vangeochem Lab. Ltd. in North Vancouver, B.C.

Results

Results of the soil sampling survey were disappointing with only one anomalous gold value of 150 ppb received on Line 1W, Station 0+25S. This sample was an organic rich muck from a cedar bog. The highest gold geochem in the remaining sampling was 10 ppb. No anomalous copper or silver values were detected. On the basis of these results no further sampling was undertaken as overburden would be more of a problem outside the test area and samples collected would not reflect bedrock mineralization.

A total of 40 rock samples were collected during the geological mapping program. Table 2 is a summary of the rock samples listing sample number, rock type, grid location and gold and copper values.

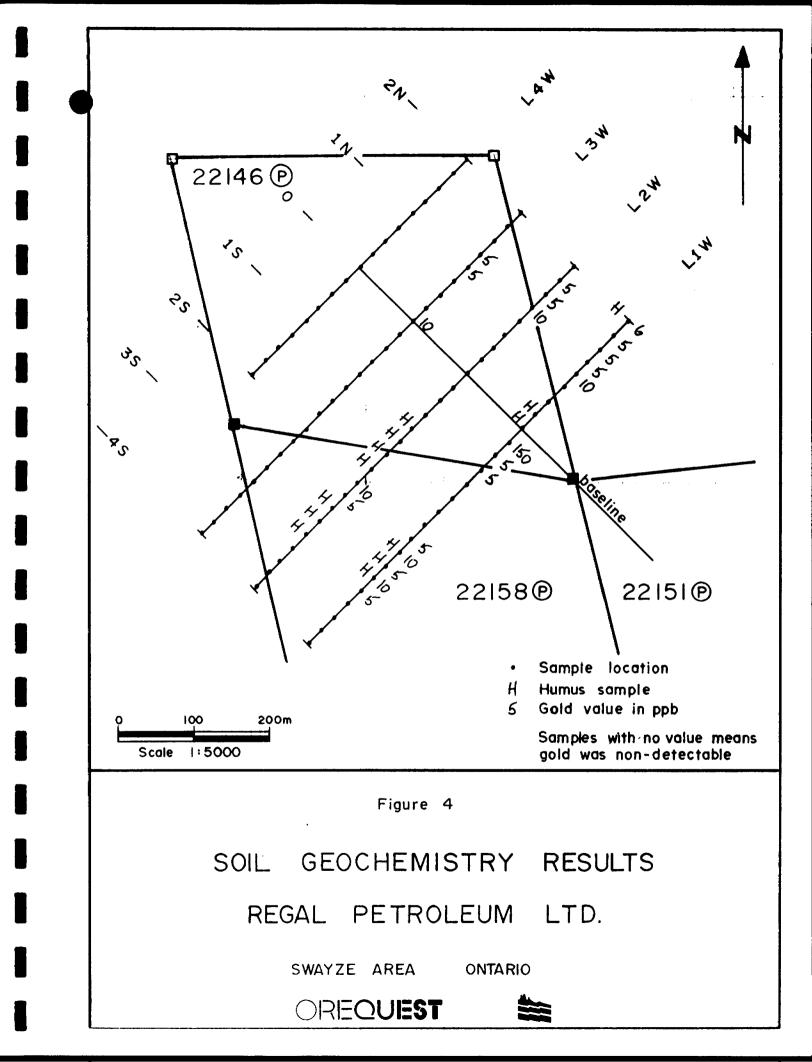


TABLE 2

Sample N	o. Rock Type	Grid Location	Gold Value (ppb)	Copper Value (ppm)
				-
09775	QD	1+00E, 1+60N	nd	5
09780	QD	15+90E, 0+75N	nd	91
09781	Quartz vein in QD	15+92E, 2+00N	10	10 15
09782 09783	QD QD	16+85E, 0+70N 18+55E, 0+75N	20 5	21
09783	CQD	4+15W, 0+50N	20	10
09752		•	2835	3160
09753	Quartz vein in CQD	•	• 320	115
09754	CQD	3+05W, 0+60N	5	104
09764	CQD	2+95E, 3+30N	nd	13
09765	CQD	2+75E, 1+85N	nd	5
09766	CQD	2+80E, 1+65N	nd	90
09776	CQD	6+00E, 6+35N	10	8
09778	CQD	6+40E, 6+25N	30	3
09788	CQD	15+34E, 2+65N	5	14
09789	CQD	15+60E, 3+55N	nd	7
09769	CAT or Quartzite?	1+30E, 8+00N	5	16
09768	m MV	7+25E, 2+25S	nd	6
09763	f MV	1+98E, 1+60S	nd	26
09767	f MV	6+03E, 0+50S	nd	109
09755	sh MV	3+05W, 3+56S	20	40
09756	sh MV	2+08W, 2+005	10	131
09757	sh MV	2+00W, 2+08S	nd	50
09758	sh MV	2+10W, 3+90S	nd	37
09759	sh MV	1+00W, 2+05S	5	141
09760	sh MV	1+15W, 2+95S	5	11
09761	sh MV	1+05W, 3+70S	nd	25
09777	sh MV	6+00E, 6+60N	5	50
09790	sh MV	14+35E, 2+95S	nd	40
09787	sh MV breccia	18+95E, 0+10S	nd	45 120
09762	sh, bl, MV	1+25E, 2+25E	10 35	111
09772	sh, bl, MV	3+55E, 6+70S	90	158
09773 09784	BIF BIF	3+55E, 6+80S 18+75E, 3+25S	15	54
09785	BIF	18+90E, 3+155	nd	27
09786		19+00E, 0+15S	nd	60
07/00	sediment	19:002, 0:190		•••
09770	sil. siltstone	2+50E, 7+30N	15	15
09771		3+00E, 6+80N	70	70
	veins in siltstone			
09779	quartz vein	8+15E, 2+20S	nd	23
	in mudstone	-		
09774	limonitic	3+45E, 6+68S	5	137
	lamprophyre			
C	fimuma Ea fan naale tu	na decemintions		

See figure 5a for rock type descriptions.

The highest results obtained were from the quartz sulfide vein system at L4+00W, 0+75S which was exposed in TR-86-01. Gold and copper values from a grab of the sulphide vein were 2,835 ppb and 3,160 ppm respectively along with 9.1 ppm silver. A gold value of 320 ppm together with 115 ppm copper and 1.9 ppm silver was received from the surrounding barren quartz vein system. A banded iron fromation, sample # 09773, exposed by TR-86-04 and TR-86-05 returned 90 ppb gold and 158 ppm copper. Sample #09771 returned 70 ppb gold and 70 ppm copper from quartz-carbonate veins in a siltstone unit found outside the main grid area on the west shore of Shunsby Lake. From the remaining samples gold values ranging from 5 ppb to 35 ppb were received.

TRENCHING

The excavation of the trenches was undertaken using a John Deer Backhoe mounted on a S1 Model Muskeg Tractor. After the backhoe removed as much overburden as possible, shoveling cleared any remaining material. The trench was then washed with water utilizing a high pressure pump leaving a clean, well exposed surface.

Channel sampling was conducted at various intervals depending upon the rock type and/or quantity of mineralization present. Areas deemed the most interesting were sampled at 1-1.5 metre intervals with 2-3 metre intervals used over secondary areas. The channel sample was obtained by using a Stihl Model 350 saw with either a composite or diamond blade depending upon the hardness of the rock type encountered. Two parallel grooves approximately 3 cm apart were sawn to a depth of about 3 cm and then chiseled out over the desired interval. The channel cut provides a more representative sample of the interval than chip sampling or blasting.

A total of seventeen trenches were stripped, mapped and sampled. The objective of the trenching program was to confirm the presence along strike of the major shear zone outlined by previous work programs as well as the testing of other targets located by the 1986 geological mapping program.

Trench target areas were determined from the geological mapping program with an attempt to expose the cataclastic zone and its contacts. Where no outcrop was present the zone was projected along strike and an attempt made to expose bedrock. Over much of the property the overburden cover was excessive and test pits dug to the 4 metre limit of the machine bottomed in sand and gravel.

Table 3 lists trench locations and sample numbers from the trenching program with detailed information contained on the trench maps, Figures 5a to 5r.

Table 4 lists trench number, sample numbers, interval length in metres and gold results in ppb for all samples of greater than or equal to 10 ppb.

Summary

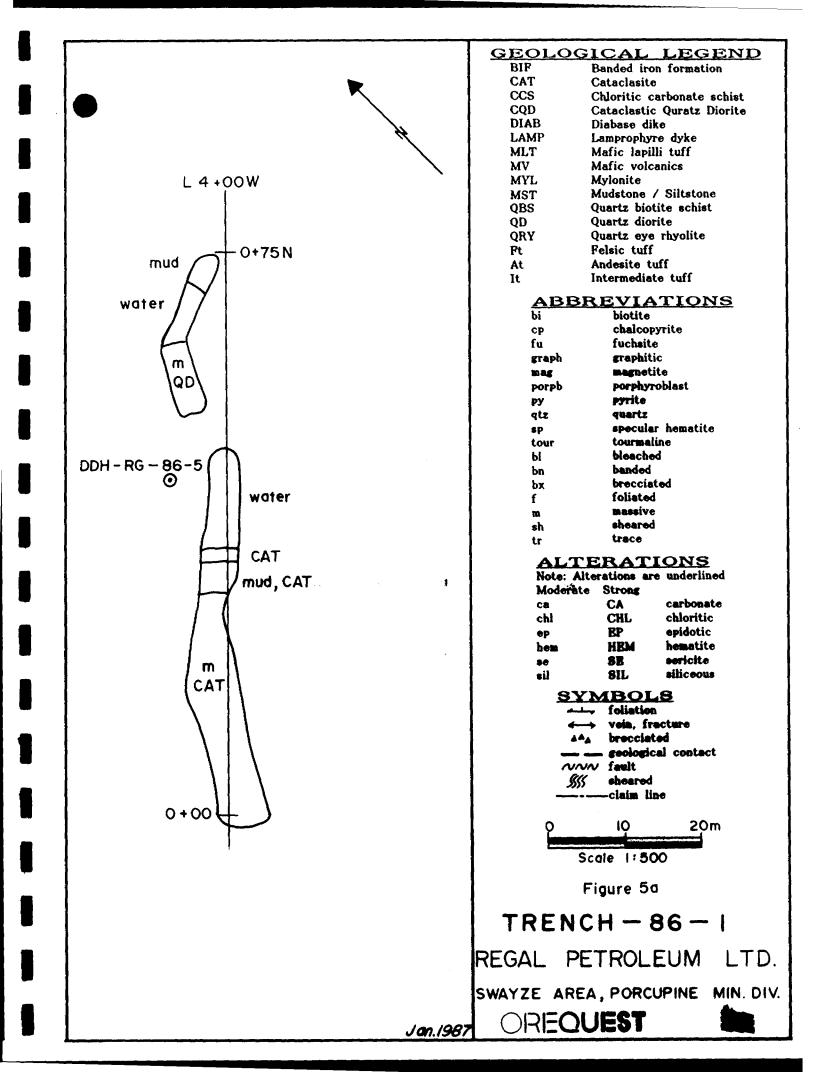
The trenching program succeeded in delineating the shear zone along strike. This shear zone trends northwesterly-southeasterly with steep dips to the north and has been traced along strike from L 4+00W to L 35+70E for a total length of 3,970 metres. Other sub-parallel shear systems were noted in the mafic volcanics, but on a much smaller scale. A generalized section, north to south, across the zone shows it to be bounded by quartz diorite grading into cataclastic quartz diorite (a transitional unit), cataclasite and mafic volcanics. This sequence was consistent with the geological section obtained from the 1985 diamond drill program. Results of the trenching program were disappointing with only anomalous, but sub-economic gold values encountered.

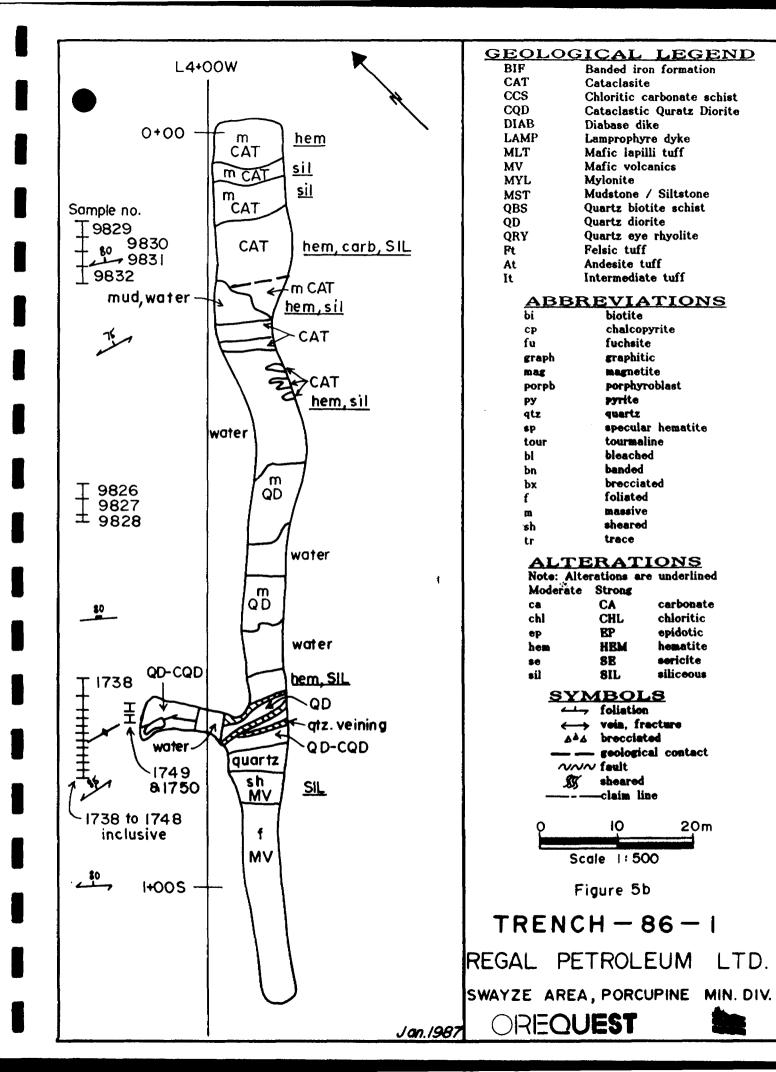
TRENCH DATA

Table 3

Trench No.	Line	Station	Sample Numbers
TR-86-01	4+00W	0+75N - 1+15S	01738-01750, 09826-09832
TR-86-02	3+00W	0+15S - 0+60S	09833-09835
		0+68S - 0+85S	
TR-86-03	1+00W	3+005 - 3+805	01623-01639
TR-86-04	3+50E	6+35S - 7+05S	01601-01617
TR-86-05	4+00E	6+355 - 6+60S	01618-01619
		6+72S - 7+01S	
TR-86-06	5+00E	1+40N - 0+75N	09836-09839
TR-86-07	15+50E	3+76N - 3+35N	01693-01698
TR-86-08	16+00E	1+98.5N - 1+43.5N	01687-01692
TR-86-09	16+00E	0+62N - 0+10N	01678-01686
TR-86-10	16+75E	0+75N - 0+31N	01675-01677
TR-86-11	18+85E	0+05N - 0+55S	01661-01674
TR-86-12	19+00E	1+065 - 1+51S	01651-01660
TR-86-13	22+00E	0+60N - BLO	01640-01650, 01701-01704
		0+155 - 0+525	
TR-86-14	24+00E	0+05N - 0+50S	01705-01709
TR-86-15	31+50E	0 +89N - 0+63 N	01710-01713
TR-86-16	33+20E	1+98N - 1+55N	01714-01726
TR-86-17	35+70E	1+82N - 1+37N	01727-01737
			~ 153 samps

TABLE 4


Trench	Sample No.	e Interval Length (metres)	Gold Value (ppb)	Sample No.	Interval Length (metres)	Gold Value (ppb)	No.	Interval Length (metres)	Gold Value (ppb)
TR-86-01	01738	2.3	20	01739	2.0	10	01740	1.0	30
	01741	1.0	80	01742	1.0	170	01743	1.0	30
	01744	1.0	30	01746	1.0	650	01747	1.0	110
	01748	1.0	115	01749	1.7	140	01750	0.3	5140
	09826	2.0	65	09827	2.0	40	09829	2.0	45
	09831	2.0	10	09832	2.3	15			
TR-86-02	09835	2.2	240						
TR-86-03	01627	3.0	260	01628	3.0	25	01635	5.0	10
	01639	5.0	20						
TR-86-04	01602	1.0	140	01603	1.0	80	01604	1.0	25
	01605	1.0	20	01617	2.0	10			
TR-86-05	01619	2.5	15						
TR-86-06		1.25	70	09837	1.25	70	09838	2.0	60
	09839	1.70	140						
TR-86-09	01678	2.0	20						
TR-86-10	01675	2.0	20	01676	2.0	80			
TR-86-11	01662	2.5	30	01666	2.5	20	01669	2.5	50
	01672	3.0	40	01673	2.0	40			
TR-86-12	01658	2.0	10	01659	3.0	10			
TR-86-13	01641	2.0	10	01642	1.5	10	01647	1.0	15
TR-86-14	01705	3.5	15	01707	1.75	20			
TR-86-15	01713	1.5	15						
TR-86-16	01720	2.0	40	01721	1.8	10			
TR-86-17	01729	2.0	15	01730	2.0	20			

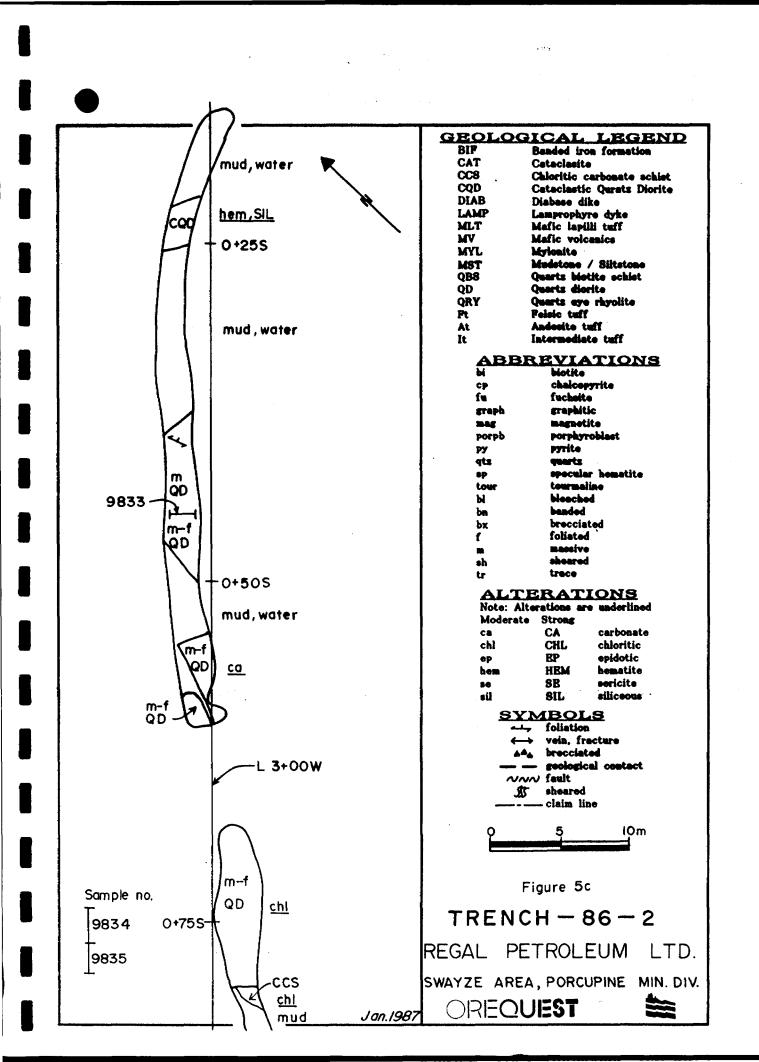

TR-86-01

Quartz diorite occurs at the north end of the trench as a massive, equigranular intrusive with weak hematite and silica alteration and contains some porphyritic feldspars. Fractures trending 130/80°N over this section were gossaned and contained minor amounts of disseminated pyrite. A section of quartz diorite roughly 50 metres south of the baseline was found to contain chalcopyrite and malachite as disseminations and along fracture planes.

The cataclasite zone resembled the quartz diorite, but has undergone more intense alteration and the intrusive texture had been destroyed. Alteration included weak to moderate carbonate, hematite, sericite and silica. A variable competancy existed throughout the cataclasite with fractured areas having a stronger alteration imprint and heavier gossanous stains. The fracture systems trended approximately 115/75°N. The zone of quartz diorite/cataclastic quartz diorite was intensely silicified as a result of extensive quartz flooding producing small veins, clots and swells up to 0.5 metres wide. At the mafic volcanic contact a 2-3 metre wide zone contains a convoluted mass of quartz veins and swells. Generally veins are barren, but some wallrock fragments and small areas of sulfide enrichment containing up to 5% pyrite were noted. Of particular interest in this area was a 30 centimetre wide vein containing up to 50% massive pyrite with some chalcopyrite and malachite. The vein can be traced on surface for approximately 8 metres before disappearing under overburden.

Of the 20 samples collected from this trench most returned at least weakly

anomalous gold results. The highest gold value obtained was 5,140 ppb (.15 oz/ton) coupled with 5.9 ppm silver and 2,140 ppm copper over the 30 centimetre quartz sulfide vein. A 1.7 metre section of the wallrock from either side of this vein returned values of 140 ppb gold, 0.7 ppm silver and 295 ppm copper.


Anomalous gold values were also obtained from the silicified quartz diorite/cataclastic quartz diorite, see table 4, and from the area of quartz flooding at the volcanic contact.

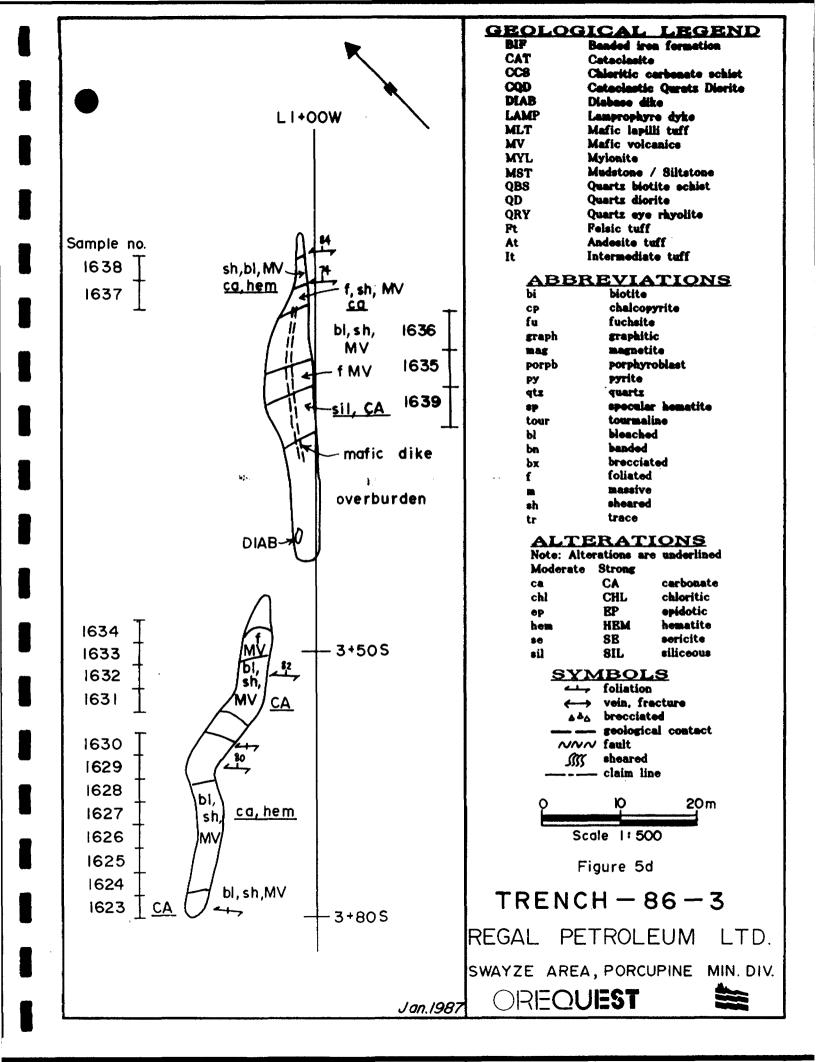
TR-86-02

This trench consists of 2 pits separated by an 8 metre exposure of quartz diorite. The longer northern trench experienced severe flooding problems reducing exposure to about 20%. A small section of cataclastic quartz diorite was mapped at the north end with the remainder being quartz diorite. The cataclastic quartz diorite showed intense fracturing with weak carbonatization and sericitization, moderate to strong hematization and susong silicification. Small quartz-carbonate and chlorite veinlets (less than 1 mm) were noted throughout. The unit was heavily gossaned, but with less than 1% visible sulfides.

The quartz diorite was massive to moderately foliated with weak to moderate carbonate alteration. A stockwork of narrow quartz veins occupied the middle section of the trench, though no sulfides were noted.

The smaller southern trench contained quartz diorite except for a 2 metre section of foliated mafic volcanics. The quartz diorite was massive to very

weakly foliated, intensely chloritized and devoid of carbonate alteration. The mafic volcanics were dark green, well foliated and gossaned with moderate carbonate alteration.

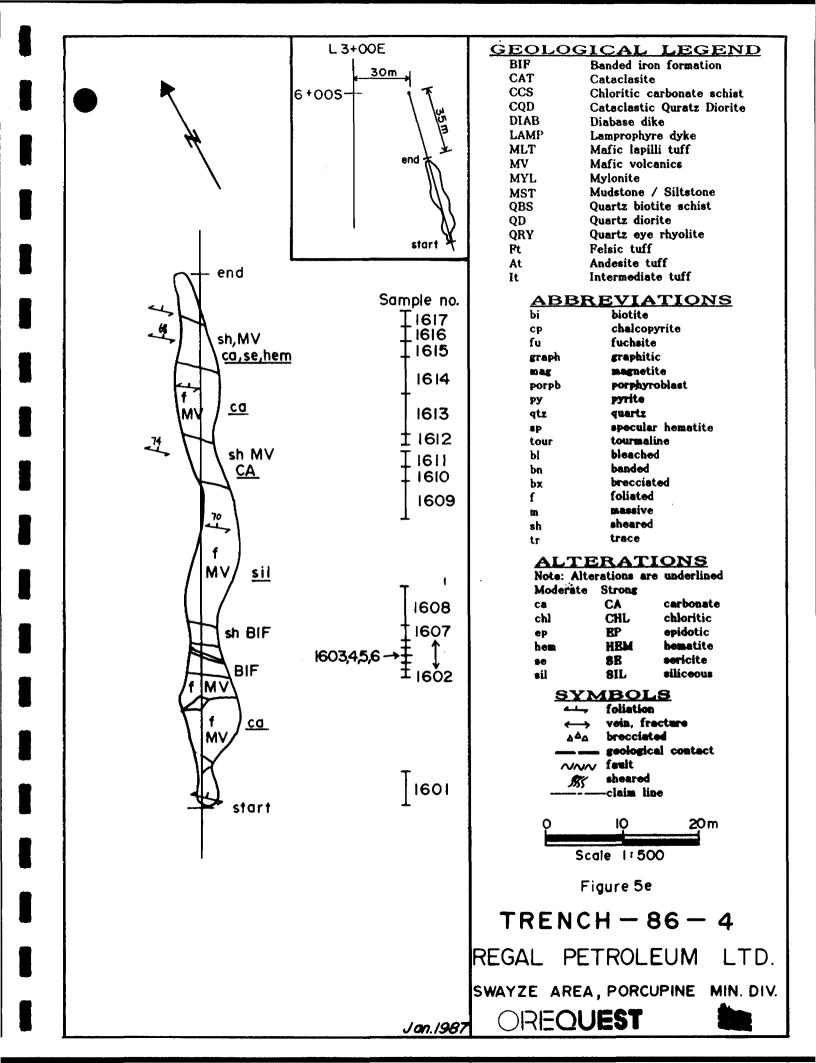

Foliation trends range from 108° in the middle to 130°-135° in the southern portions of the trench with steep northerly dips.

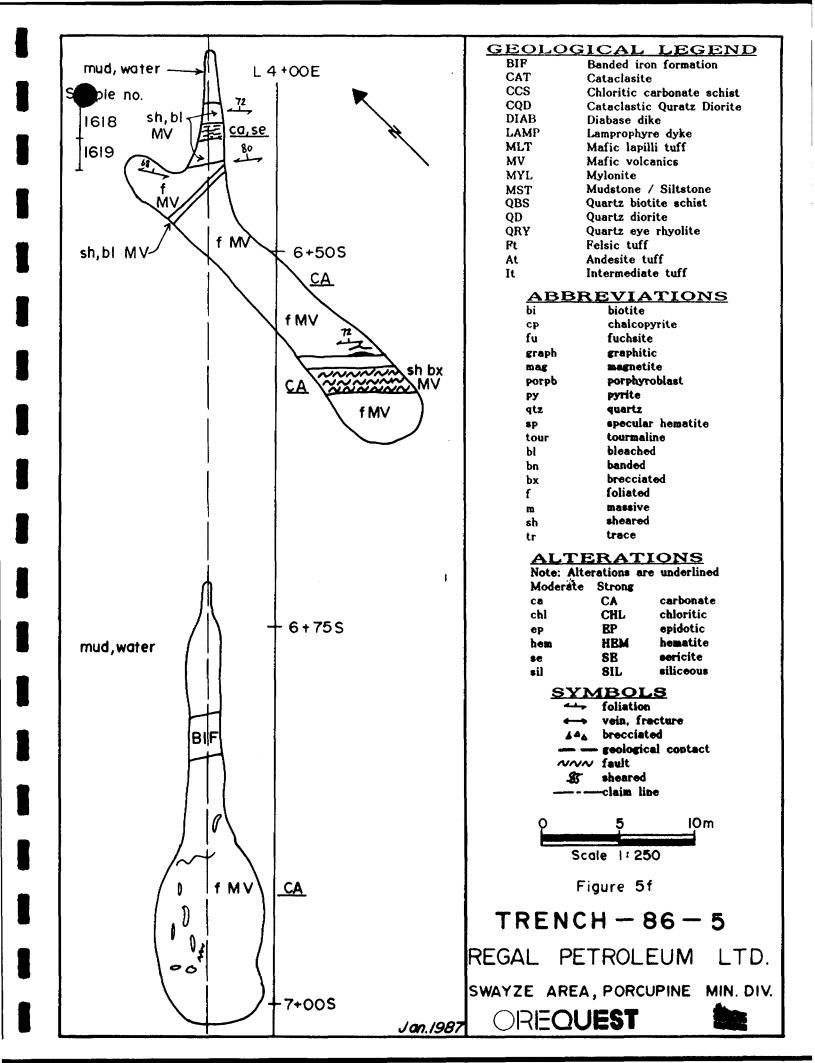
One gold anomaly of 240 ppb over a 2.2 metre interval was obtained from the southern end of the trench in an area of quartz veining near the mafic volcanic contact.

TR-86-03

This trench is underlain by mafic volcanics cut by a 15 metre diabase dyke. A pale to dark green foliated mafic volcanic with weak sericite and hematite alteration is the least altered rock. More intense shearing close to the diabase dyke shows an increase in sericite and hematite alteration. This gives rise to a reddish friable rock locally bleached to an off white colour. Carbonate alteration varies throughout the trench, but is generally moderate. Sulfide content was low throughout with less than 1% disseminated pyrite.

The diabase dyke was medium grained, weakly magnetic and pale greenish black with the typical "salt and pepper" diabasic texture. Minor gossan was observed in some sections and 1%-2% sulfides were common. Emplacement of the diabase in the mafic volcanics formed a 5 metre wide chill margin of fine grained, dense, dark green to black calcareous rock.

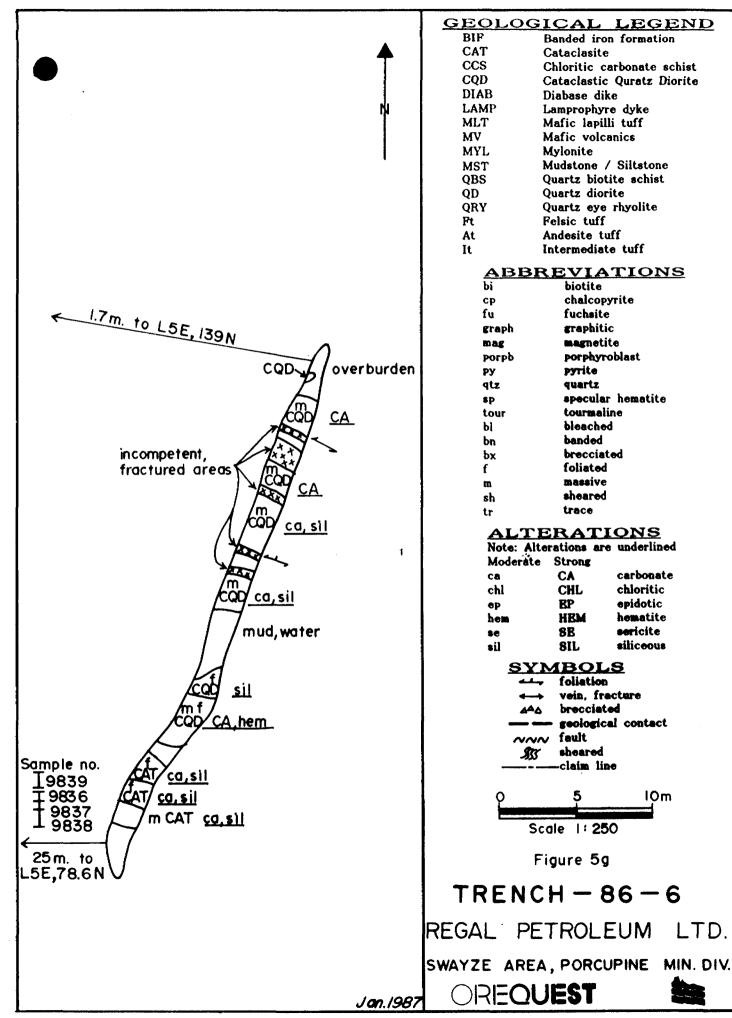

A gold high of 260 ppb over 3 metres was received from a section of sheared mafic volcanics containing a 5-6 centimetre wide rusty brown quartz vein that contained 5%-10% pyrite. An adjacent sample returned 25 ppb gold over 3 metres, this being the only other anomalous result from the 17 samples collected.


TR-86-04 and TR-86-05

These trenches exposed an iron formation unit within the mafic volcanics discovered during the mapping program. The iron formation consisted of thin discontinuous chert-magnetite bands (0.5-3 mm) containing 2%-10% sulfides as disseminations and thin veinlets with pyrite cubes up to 2 mm. Occasionally thin layers of bleached mafic volcanics were found interlayered with the chert bands. Chert was also noted as nodules up to 7 mm. Banding is parallel to the foliation seen in the enclosing volcanics, 130/70°N. Late stage barren quartz-limonite veinlets cut the iron formation. The contacts with the mafic volcanics are sharp. Moderate hematite occurs along with 2%-5% disseminated pyrite over the first metre of the volcanics. The iron formation had a width of approximately 6 metres in TR-86-04 and 3 metres in TR-86-05.

Foliated mafic volcanics comprise the bulk of the trenches. These are medium to dark green showing pervasive carbonate alteration, weak to moderate hematite in section and 1%-2% disseminated pyrite with minor to moderate gossan. Tension gashes and quartz veins were also present, with up to 15% sulfides seen in some veins. At the south end of both trenches the mafic volcanics were extensively chevron folded, the axial surface striking 158° plunge unknown with antiformal chevron folds trending 175/62°N to synformal open folds trending 176/43°N. Bleached tuffs were seen at the north end of both trenches with weak

- 26 -


to strong foliation, moderate carbonate and sericite alteration and strong pervasive gossan. Sulfides consisted of 1%-2% disseminated pyrite as subhedral to euhedral crystals.

Samples #01602, #01603 and #01604 returned anomalous gold values of 140, 80 and 25 ppb respectively. Each interval was 1 metre in length and all are from the banded iron formation. Copper values over the iron formation ranged from 94 ppm to 308 ppm and were generally higher than those found over the mafic volcanics. No anomalous results were received from TR-86-05.

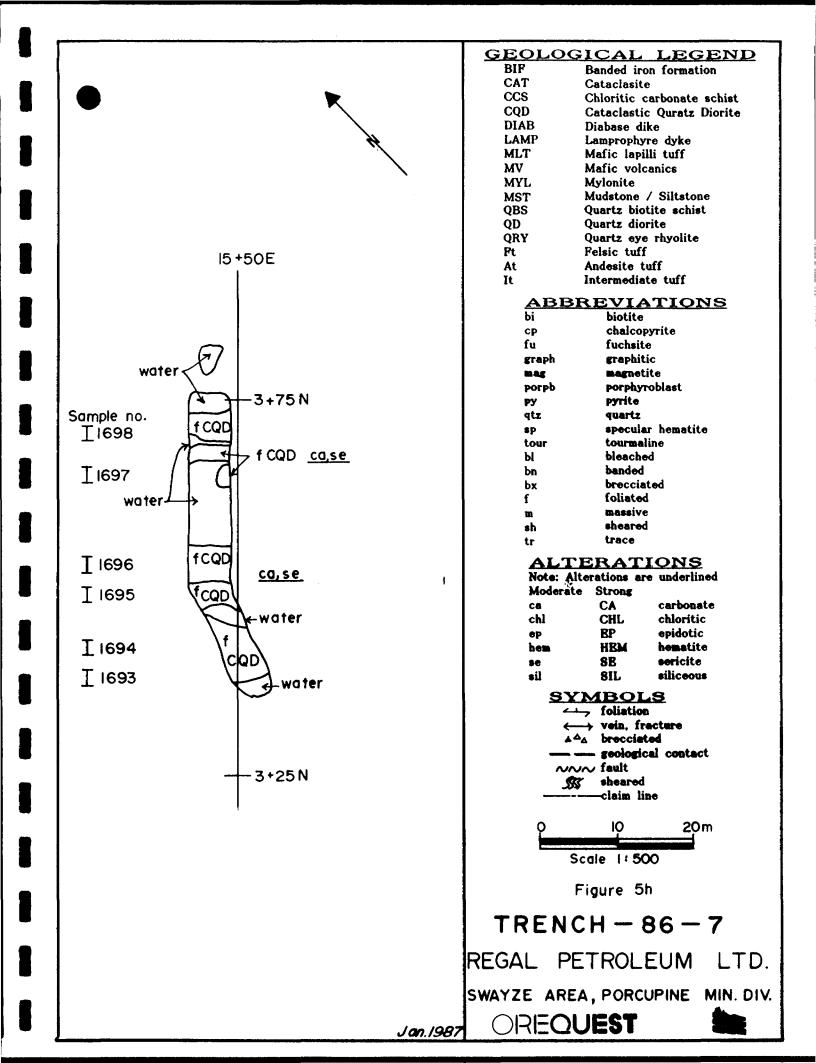
TR-86-06

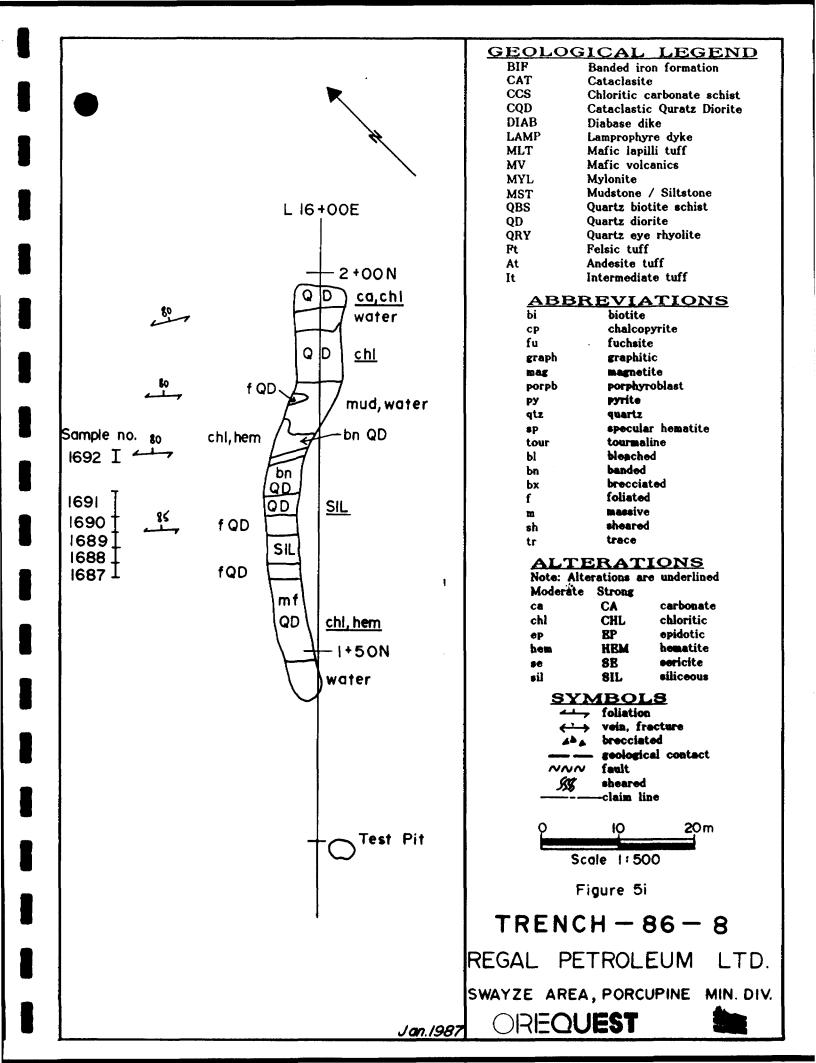
This trench, excavated in 1985, was extended in an attempt to expose the volcanic contact at the south end. Virtually the entire trench was mapped as cataclastic quartz diorite, though the distinction between this and the cataclasite is difficult to make on weathered material. A 7 metre zone of cataclasite was uncovered at the southern end of the trench.

The cataclastic quartz diorite exhibited slight variation throughout the trench, but was generally pale green, weakly foliated, with weak to moderate carbonate hematite, sericite and silica alteration. Sulfide content was low, less than 1%-2% disseminated pyrite. An 8 metre section of strongly hematitic cataclastic quartz diorite occurs at approximately 13 metres north of the trench's south end. North of this hematitic zone the chlorite content increases to 25%, as blebs and stringers before dropping off to about 5% in the northern third of the trench.

The 7 metre section of cataclasite exposed at the southern end of the trench was also a pale green colour with moderate to strong carbonate (as blebs within quartz-sericite), sericite, and weak to moderate silica alteration. Quartz-carbonate, chlorite veins are found crosscutting the foliation. Sulfides are present as disseminations up to 10% pyrite.

Four samples, #09839, #09836, #09837 and #09838 of the cataclasite returned gold values of 140, 70, 70 and 60 ppb over intervals of 1.7, 1.25, 1.25 and 2.0 metres respectively. Copper and silver values were low.


TR-86-07

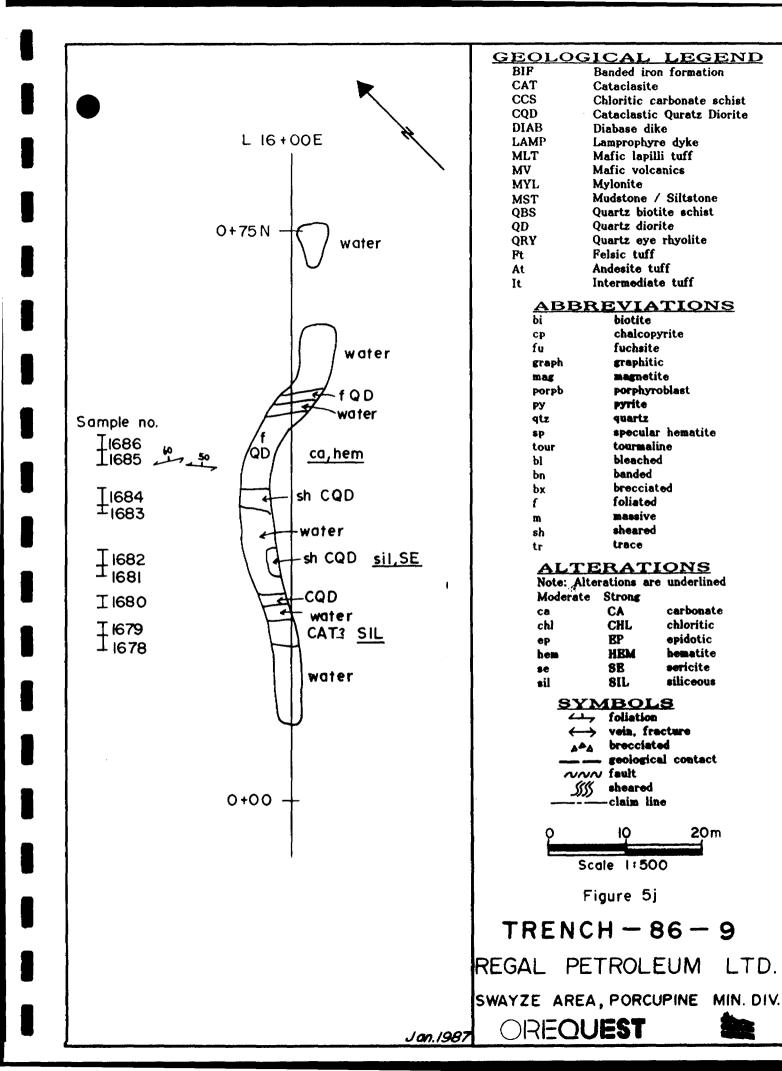

This trench was completely underlain by cataclastic quartz diorite except for a 0.5 metre lens of foliated mafic volcanics. Overall appearance of the cataclastic quartz diorite is a foliated, pale greenish-white, fine grained intruisve rock. Up to 10% porphyritic quartz eyes and 15% porphyritic feldspars were found sporadically throughout the northern part of the trench dropping to about 5% at the south end. Alteration consists of weak to moderate carbonate and moderate sericite. Only traces of disseminated pyrite was found.

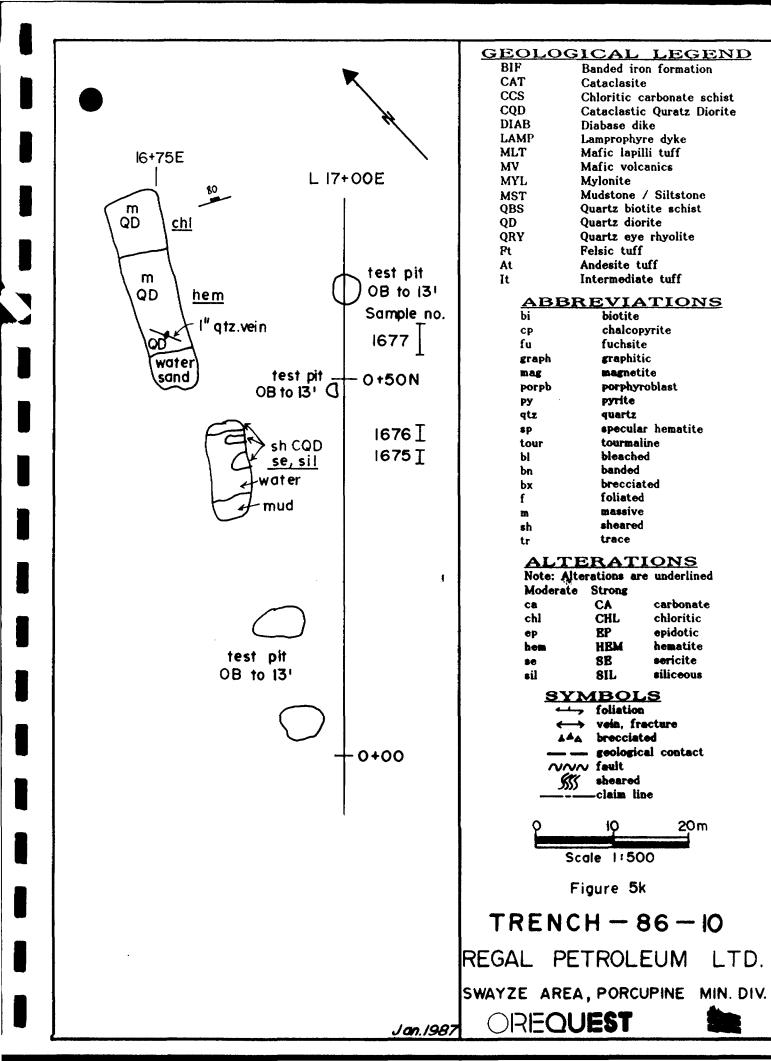
Six samples were collected containing no appreciable gold values.

TR-86-08

The trench is completely underlain by quartz diorite that has been subjected to varying stress and alteration. A well foliated and sheared variety contained moderate chlorite and hematite alteration as hairline to 1 cm bands trending 125/80°N. Up to 5% porphyritic feldspar crystals and occasional quartz

eyes were also noted. Silicified quartz diorite is somewhat foliated with minor chlorite and hematite alteration, and has been invaded by numerous small quartz veins (3-10 cm) that pinch, swell and form clots. Chlorite is commonly found between the quartz and wallrock material. General trend of the veins is 120/80°N.

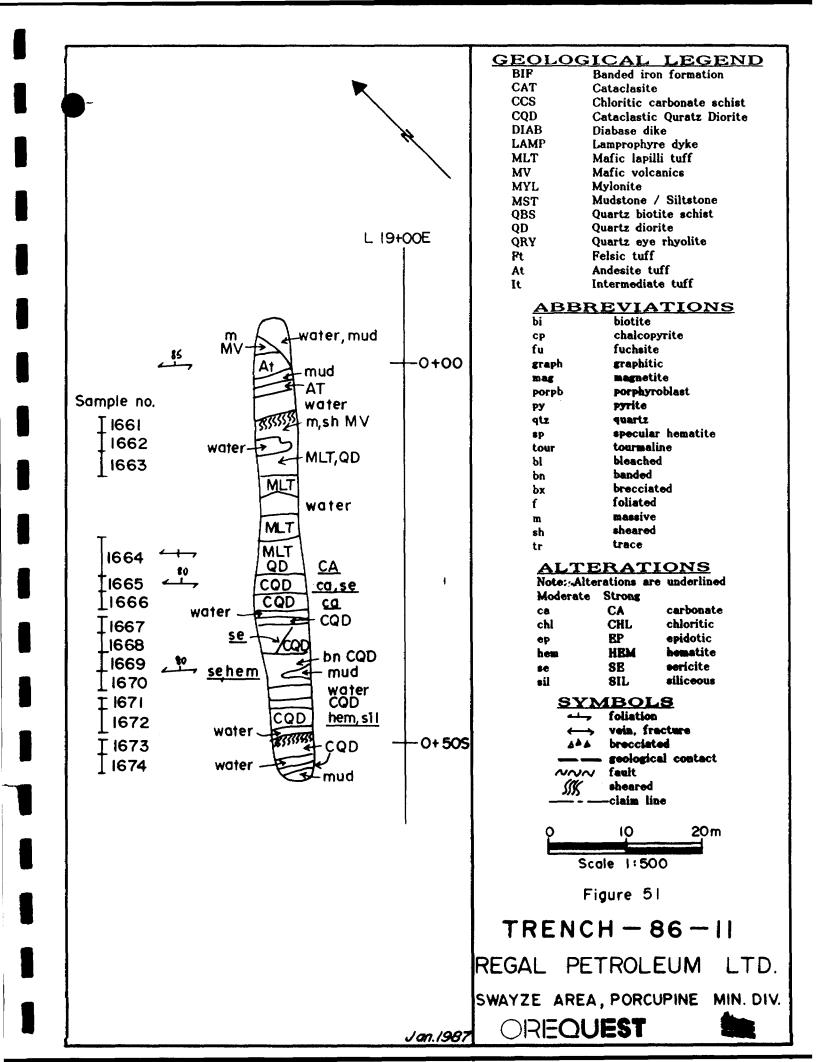

Assay results were disappointing with no detectable gold and low silver and copper values.


TR-86-9

From north to south rock types in this trench are quartz diorite, cataclastic quartz diorite and cataclasite. Rapid flooding during excavations at the south end of the trench prevented exposures of the mafic volcanic contact. The quartz diorite was a medium grained, mottled red and green, weakly to moderately foliated rock with up to 10% porphyritic feldspar and 5% porphyritic quartz eyes. Moderate to strong hematite, weak to moderate carbonate and weak sericite alteration has occurred. The general foliation trend averaged 130/60°N. The cataclastic quartz diorite was pale green and strongly foliated with some relic feldspar crystals and less than 5% porphyritic quartz eyes. Alteration included weak to moderate silicification and strong sericite +/- epidote. The cataclastic was similar to the cataclastic quartz diorite, but more intensely silicified.

TR-86-10

Two small trenches were excavated before overburden depth became excessive. The northern end of the trenches contains dark green chloritic quartz diorite

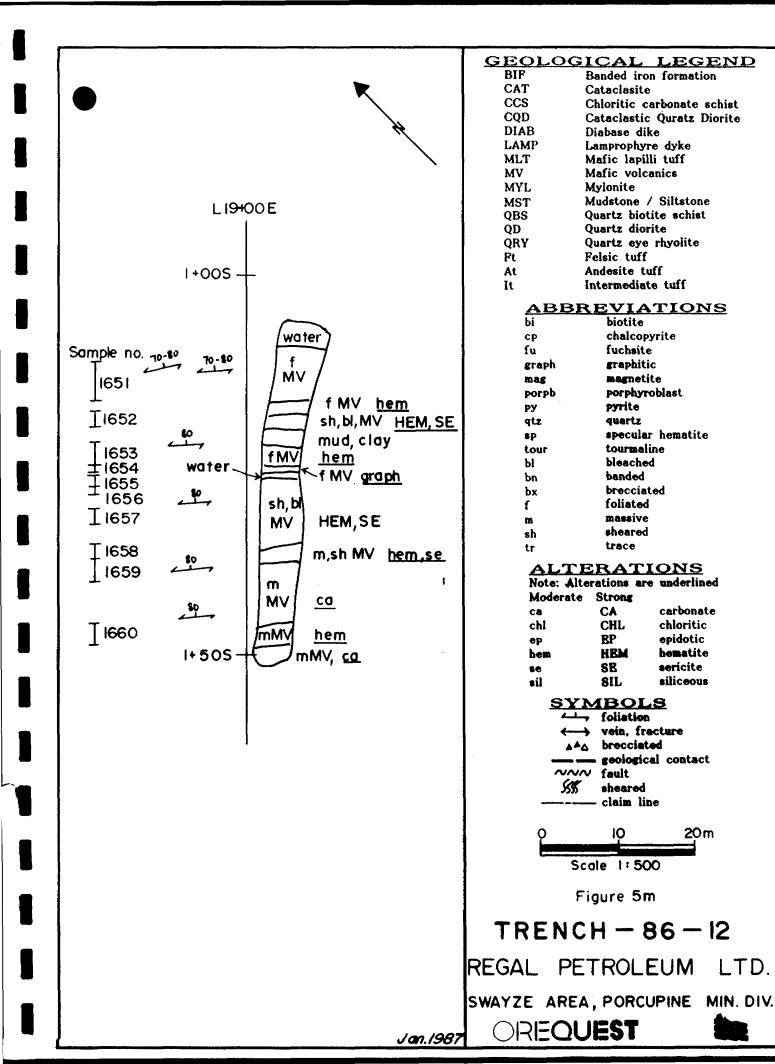

with minor hematite and carbonate alteration. This is bounded to the south by a distinctly red hematitic quartz diorite that contained 1%-2% disseminated sulfides. The cataclastic quartz diorite was pale green, highly sheared and friable with variable foliation trends (100/65°N to 135/80°N) and occasional relic feldspar crystals. Weak carbonate, moderate silica and moderate to strong sericite alteration was observed.

Three samples were taken from the trenches, one in the quartz diorite, returing negligible gold and two samples in the cataclastic quartz diorite returning gold values of 20 and 80 ppb.

TR-86-11

From north to south the trench is underlain by mafic volcanics, interlayered quartz diorite and mafic volcanics and cataclastic quaartz diorite. The mafic volcanics were massive and sheared andesitic tuffs and mafic lapilli tuffs. The massive and sheared tuffs were fine grained, medium green without any notable alteration and contained traces of pyrite. The sheared tuffs displayed a platey breakage along well developed foliation planes trending 120/85°N. The mafic lapilli tuff contained fragments up to 2 cm x 4 cm set in a fine grained mottled matrix of quartz-feldspar-chlorite along with some hematite and epidote-carbonate bands. The matrix also contained 2%-3% recrystallized quartz eyes.

The quartz diorite was a pale greenish-white rock, weakly foliated (133/90°) and contained 5%-10% porphyritic quartz eyes. The cataclastic quartz diorite was generally pale greenish-white with occasional relic feldspar crystals and up



to 5% porphyritic quartz eyes. Alteration showed strong carbonatization, moderate sericitization and weak hematitization. Some sections appear banded, with alternating red hematitic and green chloritic bands. One 2.5 metre section was cross-cut by 0.5-5 mm discontinuous quartz veins and blebs. Foliations ranged from weak to very strong generally trending 130/80°N. Only minor amounts of pyrite were noted.

No anomalous values of copper and silver were detected and only weakly anomalous and sporadic gold values were obtained. A high of 50 ppb gold over 2.5 metres was returned from a sheared hematitic zone within the cataclastic quartz diorite. Two samples in the banded cataclastic quartz diorite at the south end of the trench returned values of 40 ppb gold over a total length of 4.5 metres.

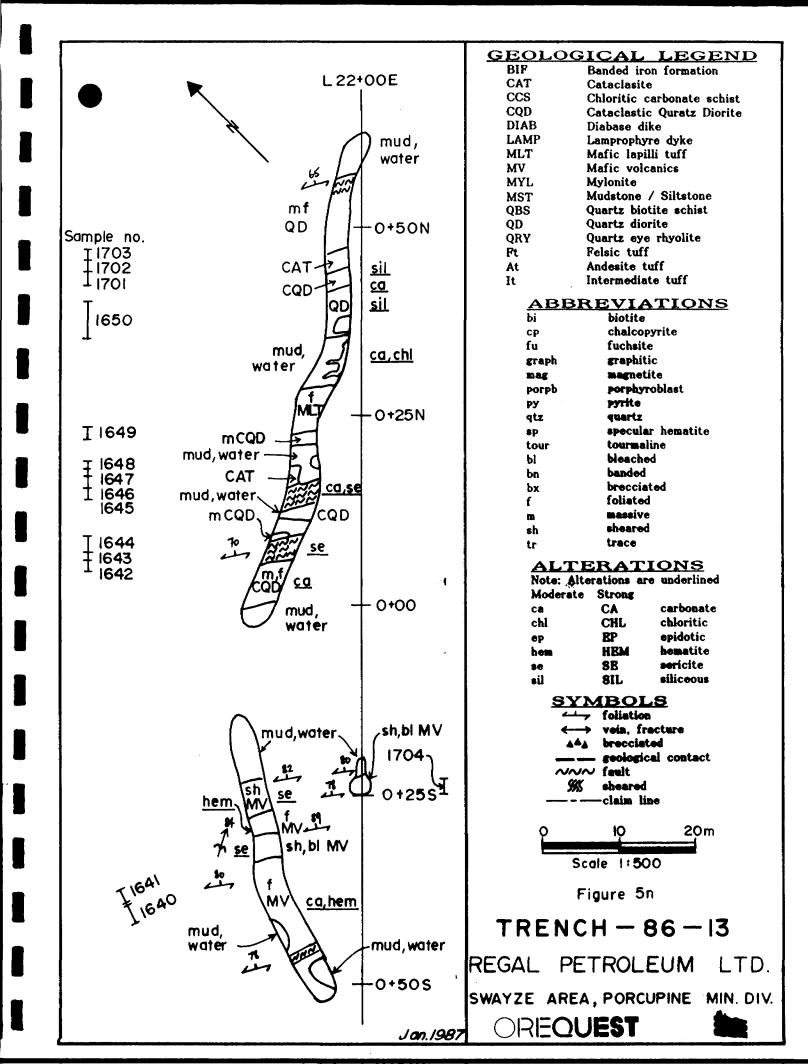
TR-86-12

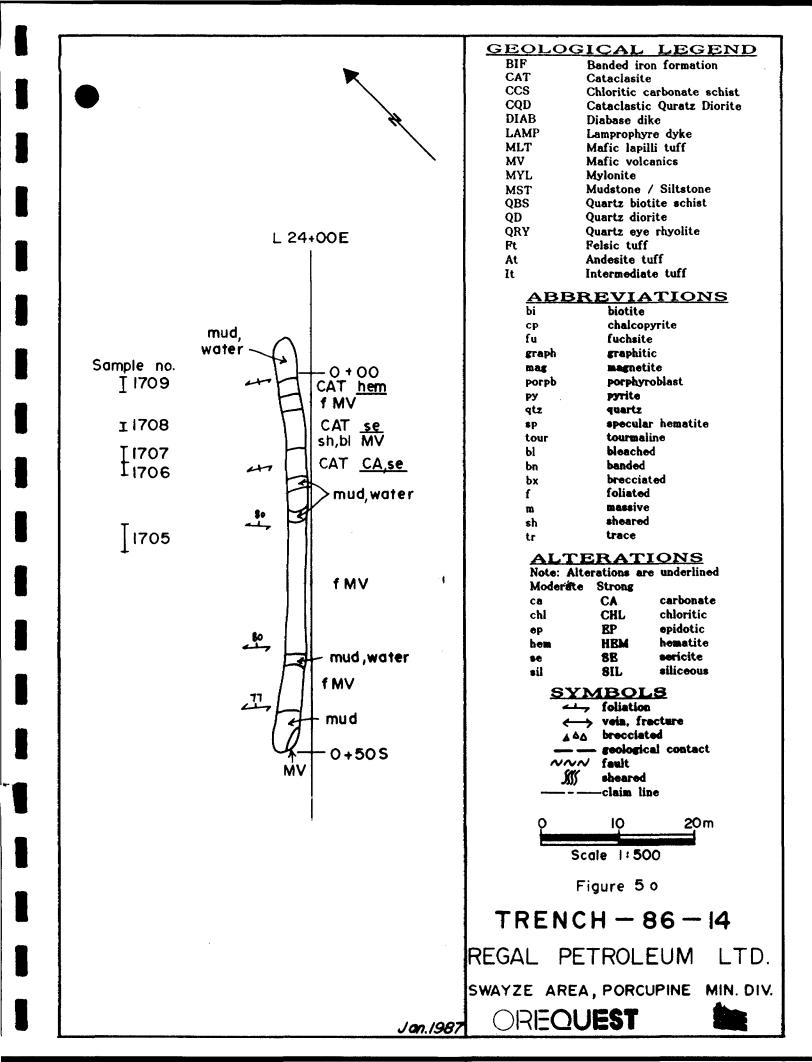
This trench is completely underlain by mafic volcanics. The foliated mafic volcanics were medium green with weak pervasive carbonate alteration while some sections also contained weak hematitic and sericitic alteration. The sheared and bleached mafic volcanics were a very pale greenish-white on fresh surface with strong pervasive sericite alteration. Heavy gossan made it difficult to obtain a fresh sample. Sulfides included 1% disseminated pyrite with some small (2-3 mm) bands also present. The massive mafic volcanics were very fine grained on weathered surface, but when broken up exhibited a platey almost slate-like cleavage/foliation trending 128/80°N. Weak carbonate and sericitic alteration was observed with one 3 metre wide hematitic zone at the south end. Weak gossan and 1% fine grained disseminated pyrite was observed throughout.

Assays were disappointing with no anomalous gold or silver values detected.

TR-86-13

The contact zone could not be exposed at this location due to excessive overburden. A trench north of the baseline bog exposed quartz diorite while a southern pit uncovered mafic volcanics.


The northern trench contained thin sheared zones within the quartz diorite. The quartz diorite occurs as relatively fresh, fine to medium grained dykes with some porphyritic plagioclase crystals and variable amounts of chlorite. Sulfides consisted of less than 1% pyrite.


Mafic lapilli tuff bands contain 2-40 mm stretched, unsorted, subangular felsic fragments set in a chlorite-epidote matrix. This occurs as a massive to strongly foliated rock with 2%-3% disseminated pyrite seen in the foliated section. Sulfide content was generally low, approximately 1% disseminated pyrite with smaller sections containing up to 10% pyrite.

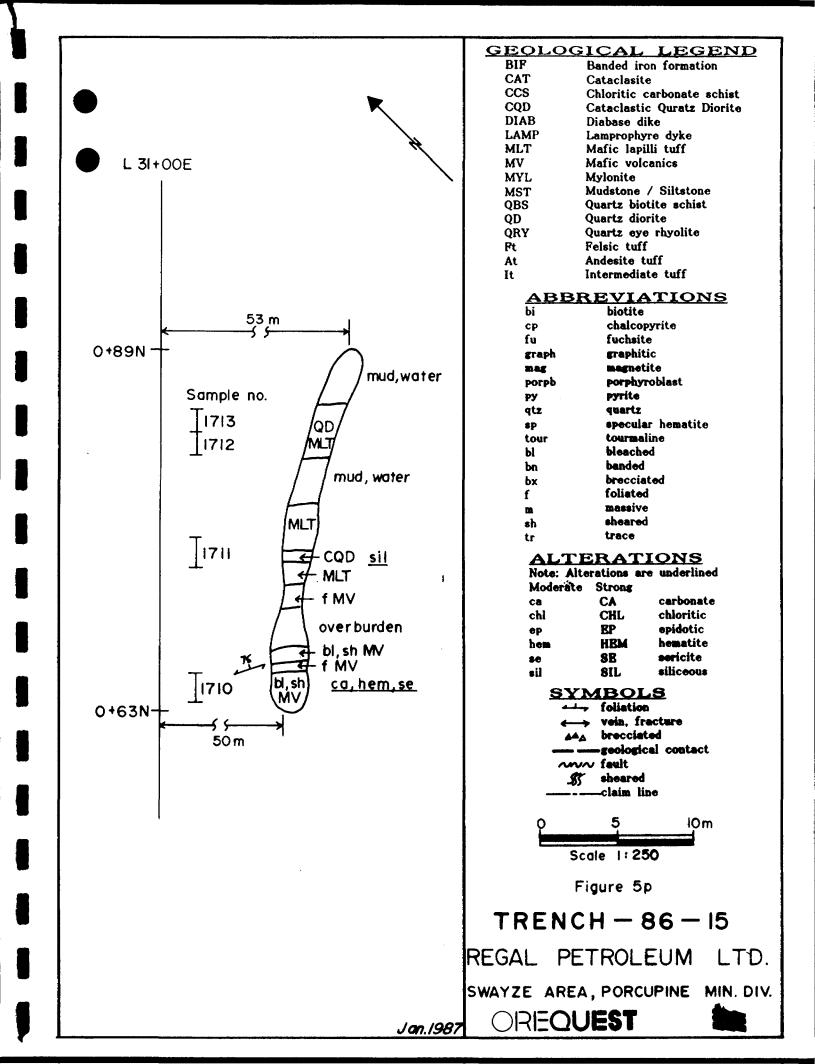
Assay results were low with no anomalous results detected.

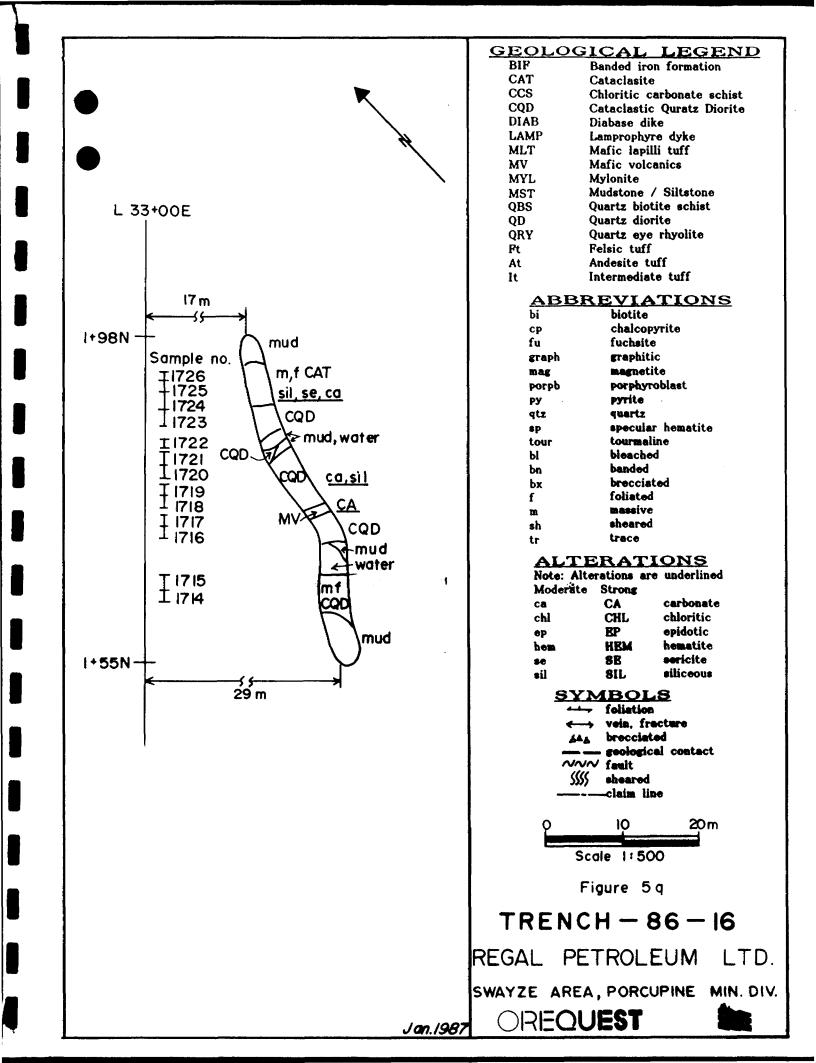
TR-86-14

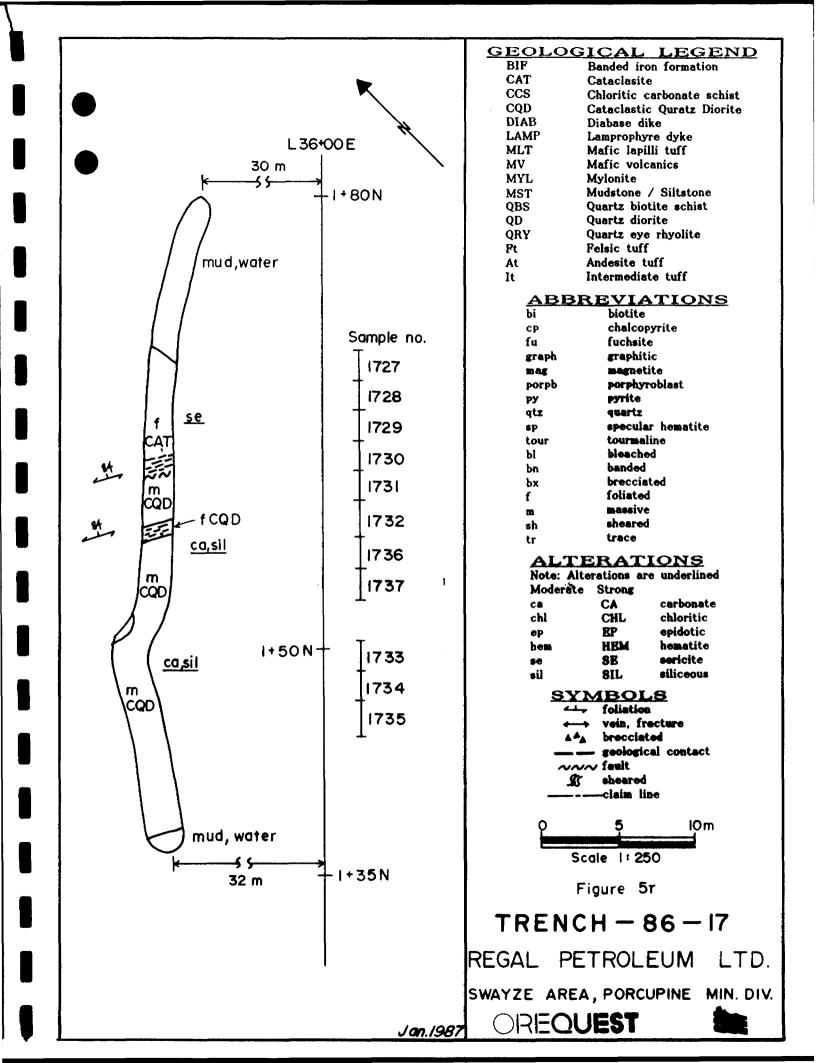
The southern half of the trench exposed weakly to moderately foliated, dark green fine grained mafic volcanics. Alteration consisted of weak carbonate and minor sericite along foliation planes. No sulfides were visible though gossan was found on the foliation planes. The remainder of the trench was underlain by

aphanitic, light grey foliated cataclasite. It was strongly carbonate altered along with moderate hematite and sericite found at the north end. Sulfides were found as pyrite disseminations up to 2%.

No anomalous gold or silver values were received.


TR-86-15


The bulk of this trench was underlain by mafic volcanics and mafic lapilli tuff with some thin cataclastic quartz diorite dykes at the north end. Foliated and bleached mafic volcanics with weak carbonate, moderate hematitic and moderate to strong sericite alteration occur at the south end. Less than 1% disseminated pyrite was observed. The mafic lapilli tuff contained unsorted, subrounded felsic fragments (1 mm - 6 cm) set in a chlorite-epidote matrix. Fragments were stretched out along a trend of 115°. The cataclastic quartz diorite was pale green and aphanitic with very few clear quartz eyes. Sulfides consisted of less than 1% disseminated pyrite.


Assay results were low with no anomalous values detected.

TR-86-16 and TR-86-17

Both these trenches contain cataclasite in the northern end and cataclastic quartz diorite throughout the rest of the trench. The cataclastic quartz diorite was pale to dark green, fine to medium grained and massive to weakly foliated with a few plagioclase phenocrysts and porphyritic quartz eyes. Weak to moderate carbonate, silica, sericite and chlorite alteration was present. Sulfide content was generally low, less than 1% disseminated pyrite. The

cataclasite was grey to pale green, aphanitic and weakly foliated with some clear quartz eyes.

Assay results were low throughout both trenches with no anomalous copper or silver values and only one weak gold anomaly of 40 ppb.

DIAMOND DRILLING

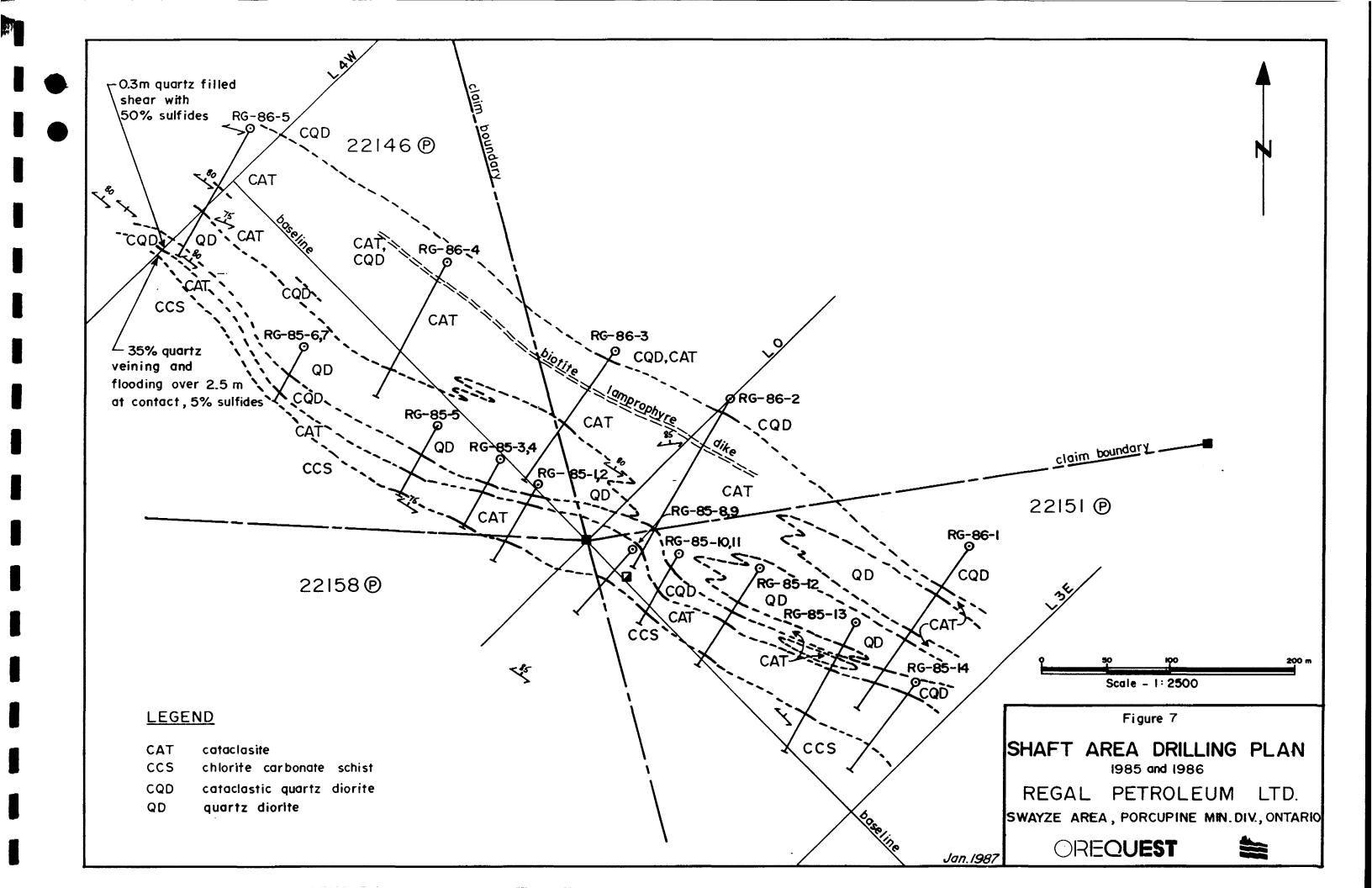
Introduction

Drilling commenced on the Swayze property in early October with the first phase of 1,175 metres completed by early November. D.W. Coates Enterprises of Vancouver, B.C. carried out the drilling under supervision of OreQuest Consultants Ltd.

First phase drilling consisted of 4 deep holes in the shaft area to test, at depth, those mineralized horizons intersected by the 1985 drilling.

During the second phase in early December one additional deep hole was completed in the shaft area and 5 short holes tested the IP anomalies to the southeast. This amounted to 955 metres for a total drill contract of 2,130 metres.

Overburden is generally less than 5 metres thick in the shaft area, however to the southeast along the geophysical trend this thickens to 15 metres. Discussion


Results of the deep drilling on the shaft zone returned values very similar to those encountered during the 1985 drilling program. Wide intersections of sub-economic low grade gold mineralization were encountered in the cataclastic rocks in close proximity to the volcanic contact.

A second major cataclastic horizon was outlined to the northeast (Figure 7). This zone ranged from 50 metres to 150 metres thick and though visually the same as the main contact zone it contains very low gold values. Pinching and swelling of these zones occurs both laterally and vertically as would be expected and additionally thin subsidiary shears are found interfingering with unaltered intrusives and volcanics.

Gold is generally associated with late stage quartz veins and shows a strong correlation with copper values. Copper is present as chalcopyrite both disseminated and in quartz-carbonate-pyrite veins and fracture fillings. Minor amounts of pyrrhotite and fuchsite were noted but showed no close association with gold values. Most gold bearing zones exhibited some degree of silicification and commonly hematization however the degree of alteration did not necessarily reflect the intensity of gold mineralization. Larger 10cm plus quartz veins, with or without sulfides, returned erratic gold values and comprise a very small percentage of the section.

Second phase drilling produced a mixed assemblage of volcanics, sediments and intrusive rocks. Three of the anomalous zones outlined by the IP survey were tested and causes determined for each (Figure 6).

- 35 -

A single line anomaly at 5E/6N, Zone A, produced the highest chargeability, 30 milliseconds, of the survey. This was determined to be caused by a 50 metre interval of graphitic mudstone/siltstone and interbedded graphitic mudstones and volcanics. The remainder of RG-86-6 consisted predominantly of tuffs. No anomalous gold values were encountered.

Anomaly B occupies a northwest-southeast trend and occurs over 8 lines. Two holes, RG-86-7,8, were used to test this anomaly at 9E and 11E/6N (Figure 6). These holes intersected a similar sequence of mudstone/siltstone and felsic to mafic tuffs as noted in hole RG-86-6. The source for this anomaly is a sulfide bearing felsic tuff 3 metre wide in RG-86-7 and 2 metre wide in RG-86-8 containing up to 10cm of massive pyrite and an average of 10-15% sulfides over the interval. Some quartz veining is associated with this zone, approximately 5%, however no gold values were reported.

Anomaly C occurs within the volcanics to the southwest of the projected trace of the cataclastic-volcanic contact. Hole RG-86-9 cut a section of predominantly intermediate volcanics with a short cataclastic quartz diorite interval. Increased sulfide content, 2-3% pyrite, at 112 m to 129 m is the probable cause of the IP anomaly as the remainder of the hole contains 1% or less sulfides. No gold values were obtained.

Drill hole RG-86-10 was located to test the same anomaly along strike at line 15E however this hole was abandoned at 18.9 metre due to major equipment failure. The hole collared in mafic volcanics and appeared to be a repeat of the section encountered in RG-86-9. Based on this information it was decided not to attempt another.

Structures, where intersected in the drilling, were generally narrow, less than 10cm, and gave no indication as to either direction or amount of movement. In most cases little or no quartz veining was associated with these features.

Table 5 provides a summary of drill hole locations, attitudes and lengths.

TABLE 5

Drill Hole	Co-ordinates	Dip	Azimuth	Depth
		(degrees)	(degrees)	(metres)
RG-86-1	2+10E/2+05N	-60	215	306.7
RG-86-2	0+05W/1+60N	-60	208	306.7
RG-86-3	0+90W/1+20N	-65	218	285.4
RG-86-4	2+10W/1+00N	-65	210	276.2
RG-86-5	4+00W/0+45N	-60	225	214.3
RG-86-6	5+00E/6+00N	-50	225	169.5
RG-86-7	11+00E/6+00N	-50	225	154.3
RG-86-8	9+00E/6+00N	-50	225	181.7
RG-86-9	13+25E/0+25S	-50	225	215.2
RG-86-10	15+00E/1+00S	-50	225	18.9

DDH-RG-86-1

This hole intersected a section composed primarily of quartz diorite with lesser amounts of cataclastic quartz diorite and cataclasite. The cataclasite occurs as several thin horizons, maximum thickness 10 metres, throughout the section and a thin 3 metre zone at the chlorite-carboante schist contact. This is significantly narrower than the approximately 50 metre thickness encountered in DDH-85-13,14 which are the overlying shallow holes. Gold values were generally low with the best being 2 metres of 0.023 oz/ton at 280 metres and 3 metres of 0.018 oz/ton at 271 metres. The former occurs in the cataclasite near the chlorite-carbonate schist contact and the latter in a brecciated section of cataclastic quartz diorite.

DDH-RG-86-2

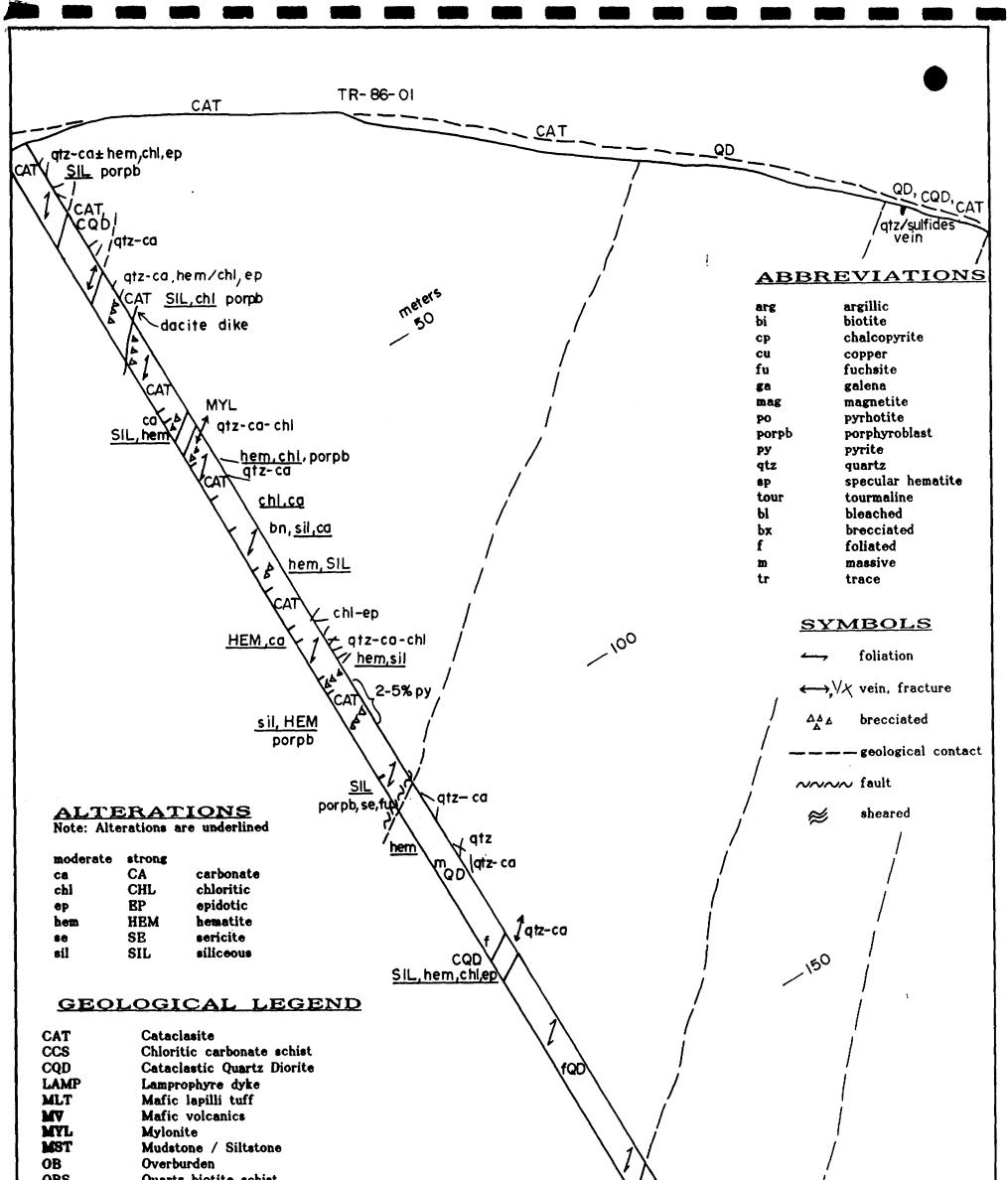
Hole RG-86-2 was the first to cut the main body of the northeastern cataclastic zone, which has a true thickness of 100 metres. This zone is separated from the 3 metre thick contact cataclastic zone by 70 metes of quartz diorite. A biotite lamprophyre dyke intersected in the upper portion of this hole extends across holes 3 and 4. Gold values occur in both the cataclasite and the quartz diorite. At 92.3 metres a 7 metre section of cataclasite and cataclastic quartz diorite displaying weak to moderate silicification and hematization and very minor quartz-carbonate fracture filling assayed 0.042 oz/ton Au. Within the quartz diorite a quartz-carbonate, pyrite, chalcopyrite vein system assayed 0.02 oz/t Au over 12 metres. A similar vein system at 264 metres to 273.4 metres close to the base of the quartz diorite section assayed 0.03 oz/ton Au. Toward the base of this interval the rock becomes a cataclastic quartz diorite. The final mineralized zone occurs in the cataclasite and

- 38 -

cataclastic quartz diorite adjacent to the chlorite-carbonate schist where a 17 metre section from 277 metres to 294 metres, assayed 0.015 oz/ton Au.

This hole in particular shows the strong correlation between late stage quartz and quartz sulfide veining with gold mineralization. At the same time the interval from 92.3 metre to 99.4 metre contains very little veining yet returned one of the higher assays. The underlying 20m section is quite strongly silicified and locally brecciated and though no gold values were obtained within that interval it is probably related to the overlying mineralization.

DDH-RG-86-3


Pinching and swelling of the shear zone produced a thickness of only 60m for the northeastern cataclastic horizon in this hole (Figure 11). This resulted in a proportionally thicker, 70 metres, mass of intrusive quartz diorite. On surface the cataclasite horizon at the volcanic contact thins along strike to the northwest, however, at depth the reverse holds true and in hole RG-86-3 it has increased to 6 metres.

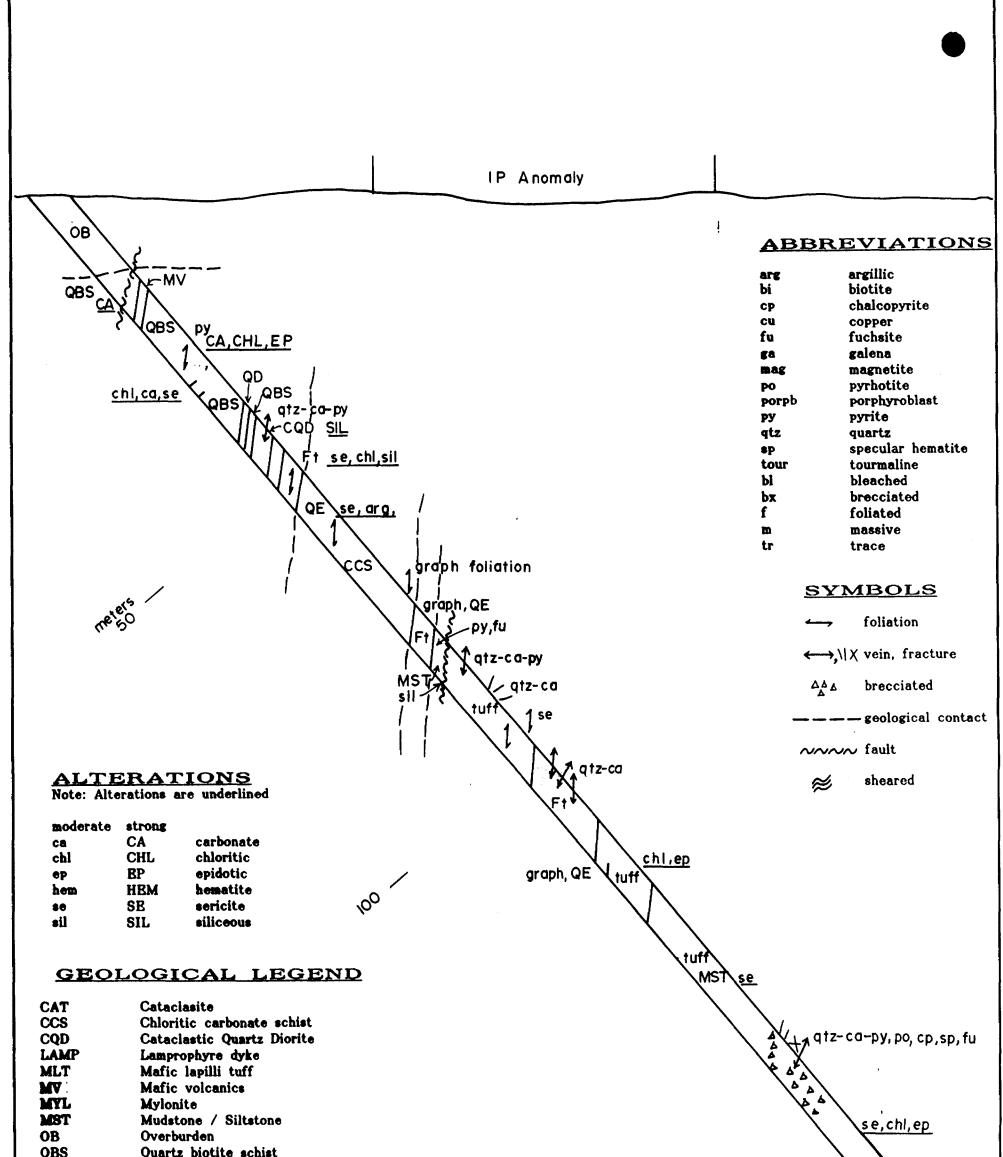
Gold mineralization was restricted to 2 zones, from 222 metres to 237.8 metres in the quartz diorite and 253 metres to 261 metres in the cataclasite at the chlorite-carbonate schist contact. The diorite hosted interval assayed 0.021 oz/ton Au probably due to moderately silicified cataclastic horizons containing up to 5% pyrite and minor chalcopyrite and a 12cm quartz vein containing 5-10% pyrite and chalcopyrite. At the chlorite carbonate schist contact a strongly silicified brecciated section of cataclasite contains up to 5% pyrite with traces of fuchsite. Only minor quartz veining was present. Hole RG-86-4 was collared in the cataclastic horizon and cut a true thickness of 110 metres of variably altered cataclasite in the northeastern zone. Approximately 60 metres of quartz diorite and cataclastic quartz diorite separates the two cataclastic zones in this hole. In this hole the contact zone has thickened to 15 metres of siliceous cataclastic and mylonite, locally brecciated and containing up to 5% sulfides. The hole was terminated 6 metres in to the chlorite-carbonate schist.

The longest zone of gold mineralization occured in the siliceous mylonite near the schist contact at 249 metres to 271.5 metres. This assayed 0.016 oz/ton over the 22.5 metre interval. Shorter higher grade intersections were intersected within a mixed sequence of cataclastic quartz diorite and cataclasite overlying the above section. These consisted of moderately to strongly siliceous, moderately hematitic rocks with 1-5% sulfides, predominantly pyrite, as stringers and disseminations. Veining is present but not extensive and generally appears as thin, less than 5mm, quartz-carbonate veinlets or fracture fillings conformable with foliation. This interval from 237 metres to 246 metres included 1 metre of .087 oz./ton Au and 4 metres of 0.019 oz/ton Au.

DDH-RG-86-5

This hole was situated at the west end of the shaft area drilling and intersected 75 metre of cataclasite in the northeast zone. A 35 metre interval of quartz diorite and cataclastic quartz diorite separates the upper cataclastic zone from the contact with the mafic volcanics. In RG-86-5 the volcanic contact

QBSQuartz biotite schistQDQuartz dioriteQEQuartz eyesQRYQuartz eye rhyoliteVOLCVolcanicFtFelsic tuffAtAndesite tuff	Au 0.019 oz/ton
FIGURE 13	Scale 1:500
DDH SECTION	COD PY, CD
RG-86-5	DIP ANGLE -60°
REGAL PETROLEUM LT	
SWAYZE AREA, PORCUPINE MIN. DIV., ONT	TOTAL DEPTH 214.3 m
OREQUEST	JAN. 1987


zone occupies a 25 metre interval of cataclasite, cataclastic quartz diorite and quartz diorite cut by several mafic volcanic dykes. Drilling continued for 17 metres past the lowest cataclasite unit because of the interlayered nature at the contact zone.

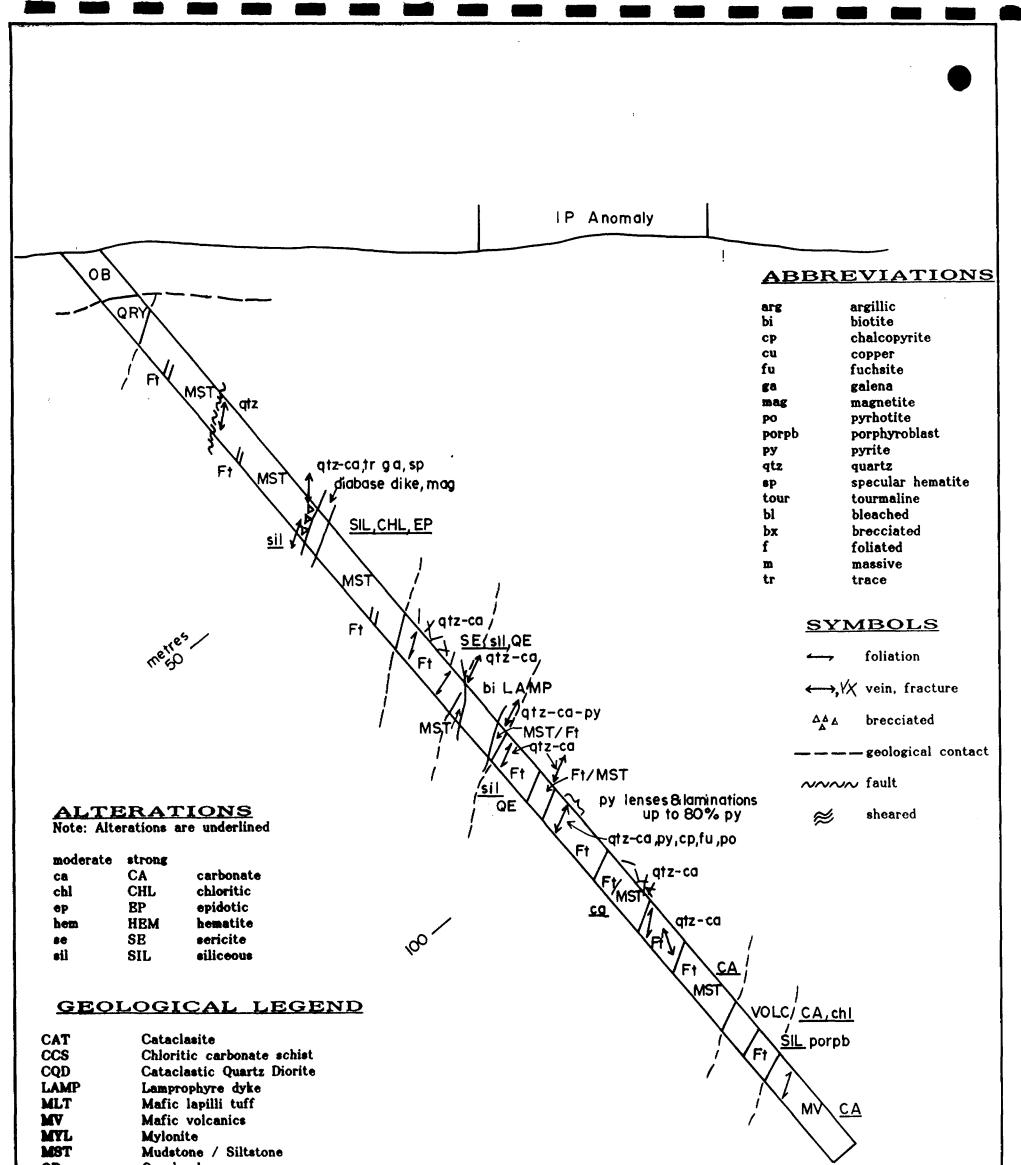
As in the previous holes the northeastern cataclastic zone contained only weak gold mineralization with the best values occuring above the volcanic contact. At 170 metres to 179.6 metres an assay of 0.019 oz/ton was contained in siliceous pyritic cataclasite cut by mafic volcanics dikes. No other noteable mineralized sections were encountered.

DDH-RG-86-6

An isolated IP anomaly was the target for this hole. Anomaly A showed the highest chargeability of the survey at 30 milliseconds, however, it is a single line anomaly. The section intersected by the drilling consisted primarily of tuffs with some mudstone/siltstone, minor mafic volcanics and intrusives. The anomaly appears to be caused by a 50 metre interval of graphitic tuffs and mudstones. Within the mudstone/siltstone unit the rocks are locally strongly graphitic in the mudstone portions. In the siltstone and tuff sections the graphite tends to occur as thin coatings along foliation planes.

Sulfides were low throughout the hole generally less than 1% but, occassionally increasing 2%-5% for short intervals. No significant gold values were detected in this hole.

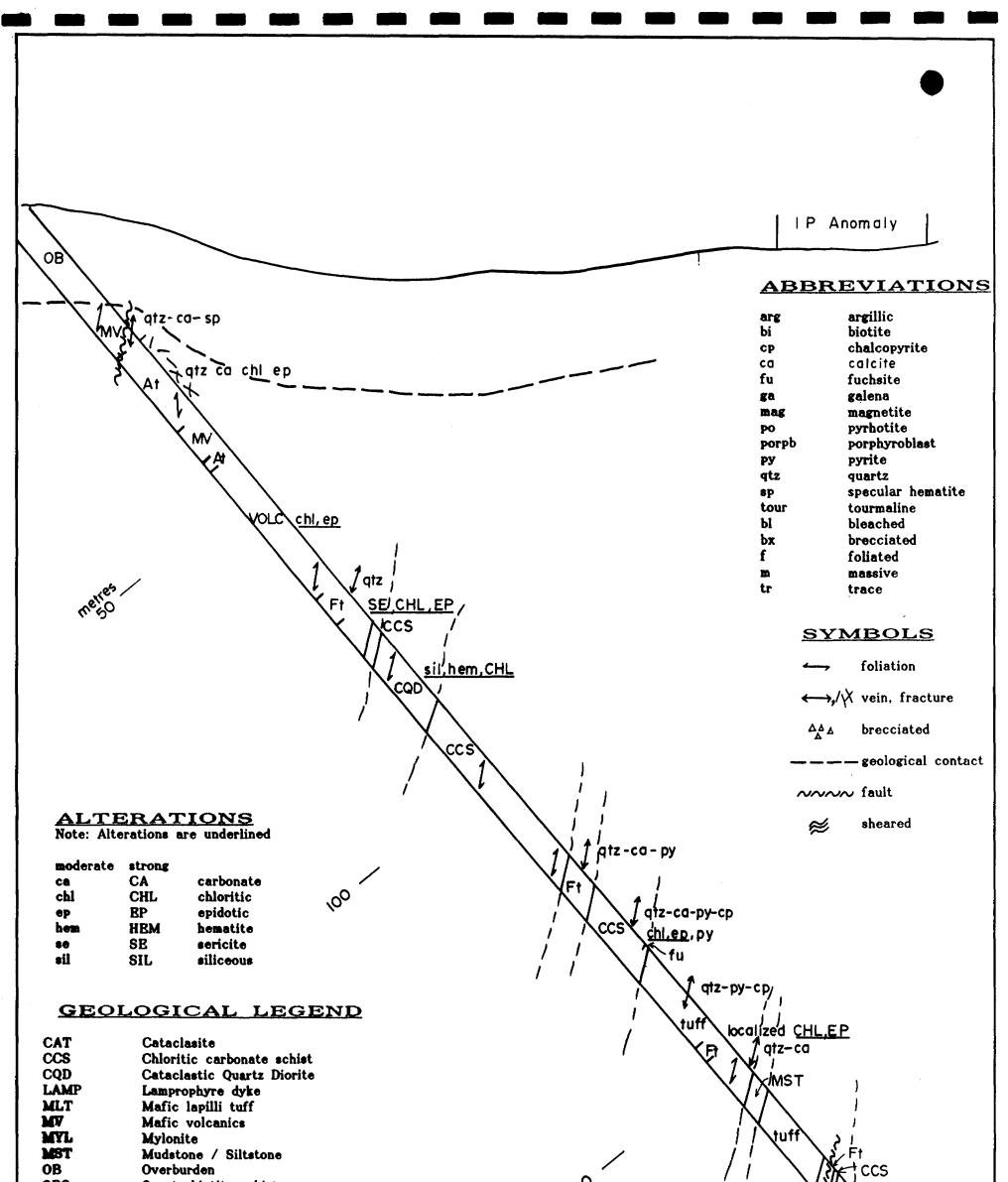
QDQuartz biotite schistQDQuartz dioriteQEQuartz eyesQRYQuartz eye rhyoliteVOLCVolcanicFtFelsic tuffAtAndesite tuff	150
FIGURE 14	0 10 20 m Scale 1:500
DDH SECTION RG-86-6	LOCATION L 5+00E / 7+60N
REGAL PETROLEUM LTD.	DIP ANGLE -50° BEARING 225°
SWAYZE AREA, PORCUPINE MIN. DIV., ONT.	TOTAL DEPTH 169.5 m
	JAN. 1987


A similar sequence of rocks were intersected in holes 86-6, 7 and 8. This consisted predominantly of tuffs, mudstone/siltstone and mafic volcanics with minor intrusive.

In holes RG-86-7 and RG-86-8 a felsic tuff bed containing massive and disseminated sulfides appears to be the cause of the IP anomaly. Pyrite, the main sulfide, with traces of chalcopyrite, pyrhotite and fuchsite, occurs as stringers and dissemination averaging 10-15%, over 3 metres in 86-7 and 2 metres in RG-86-8. Both intervals also contain narrow, less than 10cm, quartz-carbonate vein hosted massive sulfides. A 3 metre to 5 metre envelope of 1%-3% pyrite surrounds these pyritic tuffs with the remainder of the section containing 1% pyrite or less. No gold values were associated with these zones.

DDH-RG-86-9

This was the first test of the southeastern IP anomaly. The hole encounterd the thickest overburden cover thus far, 16 metres, due to a swamp at the proposed drill site. Tuffs and chlorite carbonate schist make up 95% of the sequence with cataclastic quartz diorite forming the remaining 5%. A zone of chlorite-carbonate schist and felsic tuffs from 112 metres to 129 metres contains from 1%-3% pyrite as compared with less than 1% pyrite throughout the bulk of the section. This pyritic interval is the most likely cause of the IP anomaly with the only other possible source being a short graphitic section from 149 metres to 152 metres. No gold values were reported from this hole.


The results of this hole indicate that the anomaly is not related to the

OB Overburden

QBSQuartz biotite schistQDQuartz dioriteQEQuartz eyesQRYQuartz eye rhyoliteVOLCVolcanicFtFelsic tuffAtAndesite tuff	150
FIGURE 15	0 i0 20 m Scale 1:500
DDH SECTION	LOCATION LII+00E / 5+50N
RG - 86 - 7	DIP ANGLE -50°
REGAL PETROLEUM LTD.	BEARING 225°
SWAYZE AREA, PORCUPINE MIN. DIV., ONT.	TOTAL DEPTH 154.3m
OREQUEST	JAN. 1987

IP Anon	naly
OB SIL chl.ep.se	
CODY DI LAMP	ABBREVIATIONS
SL,MST, uff	arg argillic bi biotite
chi, se porpb	cp chalcopyrite cu copper fu fuchsite
da qtz-ca metres	ga galena mag magnetite
graphitic MST	po pyrhotite porpb porphyroblast py pyrite
dtz-ca	gtz quartz sp specular hematite tour tourmaline
	bl bleached bx brecciated
1. The second se	f foliated m massive tr trace
qtz-ca	
Ft CA, se IQE	SYMBOLS foliation
ang SIL,	$\underbrace{\longleftrightarrow}_{SE}^{I}$
the g	$\frac{\Delta \Delta}{\Delta} = \frac{\Delta \Delta}{\Delta}$ brecciated
(MST	qtz-ca-py-cp-pogeological contact
ALTERATIONS py zone in the set of	sheared
moderate strong	Ft arg, chi, ep, se dtz-ca
ca CA carbonate chl CHL chloritic ep BP epidotic	dacite- dike
hom HBM homatite se SE sericite sil SIL siliceous	1 qtz-cu
	VOLC chi,ep
GEOLOGICAL LEGEND CAT Cataclasite	dtz-ca + chl-ny 150
CCSChloritic carbonate schistCQDCataclastic Quartz Diorite	CQD <u>SIL,chl,ep</u>
LAMP Lamprophyre dyke MLT Mafic lapilli tuff MV Mafic volcanics	DIAB dike Contact zones <u>SIL</u> , bi, bx
MYL Mylonite MST Mudstone / Siltstone	<u>SIL, bl</u> , mag
QBS Quartz biotite schist QD Quartz diorite	Ft chi porpb
QBQuartz eyesQRYQuartz eye rhyoliteVOLCVolcanic	VOLA <u>chi,ep</u>
Ft Felsic tuff At Andesite tuff	/ locally CCS
FIGURE 16	
DDH SECTION	Scale 1:500
RG - 86 - 8	LOCATION L9+00E /6+00N
	DIP ANGLE - 55°
REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV., ONT.	BEARING 225°
	TOTAL DEPTH 181.7 m
	JAN. 1987

QBSQuartz biotite schistQDQuartz dioriteQBQuartz eyesQRYQuartz eye rhyoliteVOLCVolcanicFtFelsic tuffAtAndesite tuff	,50 MAT CCS
FIGURE 17 DDH SECTION	Scale :500
RG - 86 - 9	LOCATION LI3+25E/0+25S DIP ANGLE -50°
REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV., ONT.	BEARING 240° 200 [°] TOTAL DEPTH 215.2 m
OREQUEST	JAN. 1987

extension of the shaft area shear zone as expected, but lies wholly within the volcanic section.

WHOLE ROCK ANALYSES

A total of 87 samples mostly drill core were sent to X-Ray Laboratories for whole rock analyses (see Appendix G). These included both individual rock type samples and sequential groups encompassing greater than 150 metres of section in some holes. The purpose of this study was to determine variations in major element distribution and their relationship, if any, to gold mineralization. A correlation of sodium (Na) and calcium (Ca) depletion with potassium (K) enrichment and elevated gold values has been observed in the Hemlo deposits by Roger J. Kuhns, and this sampling was designed to check this association on the property.

Average values for Na_2O within the cataclastic units and the quartz diorites range from 5% to 7% with K_2O typically 1% to 2.5%. In DDH-RG-86-4 a series of samples were collected at 15 metre intervals from 15 metres to 180 metres. From 15 metres to 135 metres values remained within the norms for both groups then between 135 metres and 180 metres. Na_2O suffers 23% depletion while K_2O is enriched by 46%. These variations coincide with weak gold enrichment over that interval. From 15 metres to 135 metres the rocks contained no gold values.

A sample from DDH-RG-86-1 which was taken from an interval assaying 0.029 oz/ton Au contained 4.31 % Na $_2$ O and 3.62% K $_2$ O exhibiting the postulated depletion/enrichment. Further examples exist in DDH-RG-86-2 between 165 metres

and 3.63% $\rm K_2O.~$ Assay results for this interval were 0.022 oz/ton Au.

Complete results with locations and rock types are contained in Appendix D.

From this information it appears that though the gold values are low the correlation with the enrichment/depletion haloes is guite good.

CONCLUSIONS and RECOMMENDATIONS

Gold values from the shaft area drilling were disappointing in that no higher results were obtained than those reported for the 1985 drilling. Wide zones of upto 0.02oz/ton Au occurred at depth, similar to those delineated near surface.

A parallel shear was outlined to the northeast of the shaft, separated by 40 - 80 metres of massive to foliated quartz diorite. This zone is wholly within the quartz diorite and probably represents a splay off the main shear. Overall, the gold values in the tested portion of this zone were lower than those encountered near the volcanic contact.

The mapping program indicated that the shear zone continues on a 130° trend to the southeast at least as far as Halcrow Lake and previous mapping programs have indicated similar shears 5 km along the strike to the southeast. Extensive exker and swamp development over much of the trench limits exposure even with the aid of backhoe trenching.

With one exception only weakly anomalous gold values were obtained from the

trenching program, however the contact zone was exposed only in TR-86-1, which did return a gold value of 5140 ppb.

Discontinuous lenses of banded iron formation were located but returned only weakly anomalous gold values.

Two subparallel I.P. anomalies outlined by the geophysical survey were tested during the second phase of drilling. A strongly pyritic felsic tuff 2 to 3 metres thick was the cause of Anomaly A and a weakly pyritic sequence of chlorite-carbonate schists and felsic tuffs caused Anomaly B. Neither zone returned anomalous gold values.

Prior to drilling it was thought that Anomaly B represented the shear trace along the volcanic contact. As this proved not to be the case the contact zone remains untested.

As described in the geophysical section of this report, additional I.P. anomalies remain untested along the southeast extension of the shear zone, to the limit of the survey area.

Further mapping and geophysical work to the southeast will likely reveal a continuation of the shear beyond its present limits. This was not done as it was beyond the scope of the current program.

Further work on the property should concentrate on the shear zone at the volcanic contact. Previous work, and this year's results, has shown this site

to have the greatest potential for hosting gold mineralization.

At present, approximately 4 kilometers of this contact zone have been delineated on the property with good probability of this extending an additional 6 kilometers further to the south east. This would require drill testing.

Data from previous programs indicates areas, along this trend, where due to thinness of overburden, soil geochemical surveys would be effective. In others, a combination of trenching and overburden drilling would be necessary. An I.P. survey should be carried out along the projected trace of the shear for anomalies related to the contact.

Results of these activities would provide targets for a series of short angle holes to test the structure.

Costs for a program of this nature would be on the order of \$400,000 and require a crew for a period of 3 months.

BIBLIOGRAPHY

CAVEY, G. and FLOYD, A. Summary Report on the Regal Petroleum Ltd., Swayze Area, Porcupine Mining Division, Ontario, July 10, 1985.

CAVEY, G., LEBEL, L. and DUMOUCHEL, J. Report on the Exploration program of Regal Petroleum Ltd., Swayze Property, Porcupine Mining Division, Ontario, February 10, 1986.

CONQUER, S. 1984: Introductory Report, Regal Petroleum Ltd., Swayze Area, Patent Claim Group, unpublished report, D.R. Bell Geological Services Inc.

DONAVAN, J.F. 1968: Geology of Halcrow-Ridout Lakes Area, Ontario Department of Mines, Geological Report 63, 45 p. with maps 2120 and 2121.

DUMOUCHEL, J. 1977: Structural Evolution of Grenville Gneissic Rocks, University of Ottawa, unpublished, B.Sc. Thesis, 41 p.

ESSON, D.W. 1983: Report on the Property of Regal Petroleum Ltd., Swayze Area, Porcupine Mining Division, Ontario, 18 p.

HIGGINS, M.W. 1971: Cataclastic Rocks, U.S.G.S. Prof. Paper, 687, 97 p.

HOGG, R.L. SCOTT 1984: Report on Combined Helicopter Borne Magnetic, Electromagnetic and VLF Survey, Swayze Area, 16 p.

KUHNS, ROGER J. 1986: Alteration Styles and Trace Element Dispersion Associated with the Golden Giant Deposit, Hemlo, Ontario, Canada, GOLD 86 Proceedings Volume.

LAIRD, H.C. 1935: Recent Developments in the Swayze and West Shining Tree Areas, Ontario Dept. of Mines, Vol. 44, Pt.7.

OGS

1982: Airborne Electromagnetic and Total Magnetic Intensity Survey, Swayze Area, Vice Lake Sheet, District of Sudbury; by Questor Surveys Limited for the OGS, Map 80540, Geophysical/Geochemical Series.

REUKL, R. and CONQUER, S.W. 1984: Geological Report on the Regal Petroleum Ltd. Property, Swayze Area, Porcupine Mining Division, Ontario, D.R. Bell Geological Services Inc.

SIMUNOVIC, J.

September 1985: Summary Report on Trenching and Mapping for Regal Petroleum Ltd., D.R. Bell Geological Services Inc.

WHITTAKER, P. and CONQUER, S.W.

1984: Addendum to the Geological Report on the Regal Petroleum Ltd. Property, Swayze Area, Porcupine Mining Division, Ontario, D.R. Bell Geological Services Inc.

CERTIFICATE of QUALIFICATIONS

I, George Cavey, of 6891 Wiltshire Street, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1976) and hold a BSc. degree in geology.
- 2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of 404-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. The information contained in this report was obtained by direct supervision of the work done on the property by OreQuest Consultants Ltd. in 1986 including several property examinations during the field program.
- 7. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property nor in the securities of <u>Regal</u> Petroleum Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Factor other public document.

George Cave Consulting Geologist OW

DATED at Vancouver, British Columbia, this 14th day of January, 1987.

CERTIFICATE of QUALIFICATIONS

I, Jim Chapman, of 580 West 17th Avenue, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1976) and hold a BSc. degree in geology.
- 2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of 404-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a member of the Canadian Institute of Mining and Metallurgy.
- 5. The information contained in this report was obtained from onsite supervision of the program during September to December, 1986, and a review of data listed in the bibliography.
- Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property nor in the securities of Regal Petroleum Ltd. or any of its subsidiaries.
- 7. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Jim Chapman Consulting Geologist

DATED at Vancouver, British Columbia, this 14th day of January, 1987.

CERTIFICATE of QUALIFICATIONS

I, Wesley D.T. Raven, of 481 North 6th Avenue, Williams Lake, British Columbia, hereby certify:

- I am a graduate of the University of British Columbia (1983) and hold a BSc. degree in geology.
- I am presently employed as a project geologist with OreQuest Consultants Ltd. of 404-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed as an exploration geologist on a full time basis since 1983.
- 4. The information contained in this report was obtained during an onsite property examination personally conducted by myself and OreQuest Consultants Ltd. in 1986.
- Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property described nor in the securities of Regal Petroleum Ltd.
- 6. This report may be used by Regal Petroleum Ltd. for all corporate purposes and including any public financing.

Wesley D.T. Raven Wesley D.T. Raven Geologist

DATED at Vancouver, British Columbia, this 14th day of January, 1987.

APPENDIX A DRILL LOGS

OREQUEST (ONSUL TANT	S LTD.			DIAMOND DRILL							Fill in) Age>;	Hole No. ; PC-84-1 *	-
Orilling (Collar Elevation	Bearing from	Dip of hole			of hole in point on a			Map Ref. I			Claim No. 5-22151 F	4
Date Hole	D.W. COAT Started	Date Completed	Date Logged	215	306.7 m.			point on t					on. or Lat.		.)
10/16/86 Evolocatio		10/19/86 ner ar Optionee	; Date Submitted	Logged by J. CHAPMAN									'45"N, 82 5		
	Roleum Lto		ionte Submitteo	Submitted (sign)	a .	1 1 1 1	·; 				Property REGAL - S				
Meter From		Rock Type		DESCRIPTION			Planar		Your	Sampl	: e (a.)	¦ Sample		Assay	5 pp
fr u u	, 10 	; ; ;	i (Colour; grain size; t	texture: minerals: ai	teration; etc.)		Specimen Neterage		From	-	Length (a.)	 Cu	Ag	Au
-	2.44	loverburden	casing]					1			;
2.44		iquartz diorite	la foliated quartz diori laedium to coarse graine lcore, 25%-40% mafics st land abundant quartz-car lconformable to and cros lchlorite vein at 7.32 m	ed; foliation consist trongly chloritized; rbonate veinlets less sscutting foliation;	antly at 60 de pervasive carb than 2 am boti	grees to Bnitization h	1 60 60	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9			9 9 9 1 1 1 1 1 3 4 4 4 4 4 1) 			
7.32	8.54	icataclastic Iquartz diorite	dark gray with anhedral ihematized, pervasive ca ifilled fractures at ran ifootwall silicified for	arbonate in matrix; h ndom orientations; fa	airline to 2 m	n hematite			1901	7.32	8.82	1.5	30	0.3	-
8.54	10.5	quertz diorite	ifine to medium grained loccasional quartz-carbo lbase, basal vein at 20 lchlorite, epidote, hema	onate veinlets from h degrees to core with	airline at top 3 cm border m	to 7 cm at									
10.5	13.87	cataclastic	i from aphanitic to mediu						1902	10	12	2	20	0.8	-
i) * * 1	lquartz diorite 	lgreen, pervasive hairli lveining, moderate hemat 12 cm, quartz-carbonate,	tization: approximate	ly 10% veins g	reater than		6 3 8 9	1903	12	13.9	1.9	60	0.1	• • • •
	†) 	ithan 3%; suifides; marg with same orientation;	gins of some veins my variably silicitied	ionitic; veins	all 20X-40X) 1	1 1 3 1	1 1 1 1	2 2 4	 	1
13.87	14.3	i Icataclasite I I	i Iaphanitic dark reddish Iepidote, hematite, mino Idiorite upto 4 cm in ap	or magnetite; fragmen	icturad; fractu its of cataclas	re tillings tic quartz	- - - - - - - -		1904 1	13.9	15.75	1.85	24	0.1	-
14.3	15.42	 cataclastic quartz diorite 	i fine grained dark gray- blasts; variably silic(quartz; carbonate vein 4% and trace chalcopyri	eous with prevasive c lets with alnor assoc	hioritization; lated pyrite a	stockwork	1 3 3 1 1 4		1 8 9 7 8 4 4 4		6 9 9 9 9 9 9 9 9			1 5 4 4 5 1 1 1	
15.42	: 22.17	¦ Iquartz diorite	; ipredominantly medium to	a coarse grained, equ	ligranular, dar	k greenish	tol.		1905	15.75	17.1	1.35	30	0.2	-
	!	1	(brown) strongly foliate +/- chlorite; epidote	ed approximately 45 d	legrees; quartz	-carbonate	1 45	1	1906	1 18.5	20	1.5	1 11	0.2	1

Request C	CONSULTAN	IS LTD.			DIAMOND DRILL							Fill in every p		Hole No. RG-86-1	-
	D.U. COAT		Collar Elevation	Bearing from True North 	iDip of hole lat: Collari	-60	to fix	on of hole ed paint on			Map Ref.	No.		Claim No. S-22151 P	
ate Hole 0/16/86	Started	Date Completed	Date Logged	Logged by	. ,	-57	:				Location	(Twp.Lot.)C	on. or Lat 45"N; 82 !	、and Long 567日	.)
	in Co.+ Oi	mer or Optionee		J. CHAPMAN Submitted (sign)	•						Property REGAL - S				
Meter Fron 1	-	Rock Type		DESCRIPTION				Core Specisen	l Your Sample			l Sample Length		Åssay	
:		1	; (Colour, grain size;	i texture; minerals; al	teration, etc.)		Angle	IMeterage	No.	f Fran	i To	: (a.)	Cu	1 Ag	i Au
22.17	26.22	quartz diorite	igrained strongly she isections 10-20 cm thi intense zones general is above; but mostly igrained in lower port icarbonate t/- epidote	rease toward base of s red zone less then 20 ick; weakly hematized t ly associated with fir fine to medium grained tion; 19.25-24.77m zone veining preferred or mes; hematization stro	cm thick also s throughout with a grained shear b predominantly of most intens ientation of vei	iliceous local ed sections medius se chlorite ns) 					
26.22	28.62	quartz diorite Icataclastic Iquartz diorite ISO/SO	interbanded with apha iporphyroblosts up to iquartz-carbonate +/- 11%-3% pyrite througho	ined; dark reddish brow mitic grayish pink cat 1 cm; section cut by a chiorite veinlets and put with traces of chal mal fracture filling; a	aclastic zones many hairline tension fractur copyrite mostly	with quertz		5	1907	26.22	28	1.78	30	D.1	
28.62	33.86	icataclastic Iquartz diorite	carbonitization and F	tic to fine grained rec menatizations weak to a	oderate chlorit	te» abundant			1908	28	30	2	20	0,4	5
		i i i i	(32.8m) very fine grai	tures parallel to folia ined pyrite disseminate			1 J 		1909	30.3	32.3	2	23	0.1	-
			approximately 5%; tra				i 	1	1910	32.3	33.9	1.6	26	D.2	-
33.86	41.06	i quartz diorite	icarbonate +/- chlorit icataclastic zones 34.	ined foliated; reddish e veins; pervasive car .76-35.26 metres; pyrit moderate chloritzation	bonatization re te 1X-3X dissemi	stricted to		5	1911	40.6	42.8	2	17	0.1	-
41.06	44.4	cataclastic quartz diorite	idiorite, quartz-carbo lwith foliation in she	nded rød and græen witt omate 1/- chlorite vein eared zones, minor blud oloritization weakening oase	ning throughout e quartz veins i	conformable ess than 1%				f 1 3 4 9 1 1 1	•		9 2 4 9 1 1 2 8 1 1		
		ł	i				i	i	i	i	•	1	•	•	!

Request (ONSULTAN	TS LTD.			DIAMOND ORILL LOGS	1					Fill in every p		Hole No. 1 RG-86-1 1	
rilling (D U (OA)	TES INC.	Collar Elevation	iBearing from ITrue North	Dip of hole at: Collar -60	ito fixed	of hole i point on			Map Ref.	No.		Clain No. S-22151 P	
ate Hole D/16/86	Started	Date Completed	Date Logged	 Logged by		1				HALCROU T	(Twp.Lot.)Ct VP., 47 47	45"N; 82 5	619)
	n Co., O	wner or Optionee	Date Submitted	¦J. CHAPMAN Submitted (sign) 	, ,					 Property REGAL - S 				
Neter From 1	•	: Rack Type		DESCRIPTION	*****************************			Your Sample			Sample Length		•	ppt
			{ (Colour) grain size) texture) minerals) al	teration; etc.)		Heterage	· · · · ·			: (m.)			
			isilicified, short 20	minor tourmaline, local nes, up to 20 cm, inter minated throughout, loc	sely sheared; very fine	50	* * * * *	1913	46.6	48.7	2.1	25	0.2	-
49.26	54.76	 cataclastic quartz diorite	with disseminated py		bonate; sericite; chlorite Marance due to alternating Maly siliceous; quartz		4 5 9 1	1914	50.8	52.4	1.8	16	0.2	-
, 1 1 1 1 1				mm to 1 cm/ fragments o				1915		1	1			
54.76	58.06	icatac lastic	<pre>porphyroblosts; inte silicification; grou pyrite (very fine d)</pre>	nsely hematized and per ndmass quartz> carbonat	with 1 mm to 1 cm quartz vasive carbonate and te, sericite, hematite, minor chiorite-epidote			1916 1917 1918	54.8	56.3	1.5	23	0.2	
				grained with abundant		upper		1919	57.4	58.3	0.9	15	0.2	-
58.06 	66. 1	imatic volcanics 	luith above: pervasiv throughout 1%-3%; ca	e carbonatization; very	15 metres (15 cm wide) and	icontact 70 iover		1920	58.3	i 59 i	0.7	- 66	0.4	-
- - - - - - - - - - - - - - - - - - -			 - 56.72 to 59.75 8 59.75 to 62.8 5	S% recovery - loss in 4 0% recovery - loss in 4 5% recovery - loss in 4	volcanics volcanics	contact 60				4 5 6 7 7 7				1
66.1	73.3	quartz diorite	ifoliation weak to ab iweakly chioritized); iweak hematization fo	raing narrow envelopes				2032	66.25	67.45	1.2	165	0.1	
			land foliation becomi l lfoliated, fine to me	ng more pronounced dium grained, kink band	ds in foliation and larger	itol. 1 55								
73.3	82.62	lquartz diorite 	with thin mafic volc		55 degrees, interlayered 5 cm fault zone at 80.7m /e	lfol. 45				; ; ;				1

nin and and a

1

REQUEST C	ONSUL TANT	IS LTD.			DIAMOND DRILL LOGS						Fill in every p	age>:	Hole No. f RG-86-1	'age
	0. . . COA1		Collar Elevation 	True North	Dip of hole at: Coller:	-60 ito fix	on of hole i to point on			lMap Ret. l	No.	1	Clain No. S-22151 P	
ate Hole D/16/86	Started	1Date Completed 110/19/86	Date Logged	Logged by		-57				Location	(Twp.Lot,Co WP., 47 47	in. or Lat. 45"N; B2 5	and Long.) 6'V)
pioratio		vner or Optionee		Submitted (sign)						Property REGAL - 5 	Nane			
Meter		Rock Type		DESCRIPTION			Core	Your	•		Sample		Assays	ppb
Fron 	10		i 1 (Colour) grain size	; texture; ninerals; al	teration; etc.)		e (Speciuen Heterage				Length	Cu l	Ag	Au
82.62	107.59	lquartz diorite		14 metres, weak chlorit		1	1 -	1921	85.3	87.3	2	61	1.4	-
i			1100.75 to 103.6 setr	2%-5% pyrite in gray bl es; weak hematization;	traces of chalcopyrite			1922	89.3	91.2	1.9	25	0.1	-
			105.4-106.30 metres	e veins; trace dissemin increasing pyrite conte ion and grading into me	nt up to 20% at base (ith i		1923	99.4	101	1.6	238	0.6	40
 			Irock immediately ove	rlying 15 cm quartz vei ing of brecciated hemat	1.		1 1 1	1924	101	103.1	2.1	50	0.1	100
1			1	-				1925	103.1	105.1	2	30	0.4	45
107.59	118.1	cataciasite	Ifine grained grounds	and hematized; dark red ass with quartz porphyr	blasts: pervasive			i 1926	105.2	106.5	1.3	33	D.4	Ę
		 		k to moderate seritizat arb. veining at top of				1927	106.5	108.3	1.8	5	0.3	15
ł		i se		%; trace chalcopyrite a 10 cm wide at 112.1 m 5			$[d_{ij}]_{ij}$	1928	108.3	109.4	1.1	24	0.4	-
1 1 1		} 	lcontact with foliate	d quartz diorites hemat	ization weakening	idike i S		1929	109.4	111.1	1 1.7	5	0.1	-
			l lequigranular, medius	to corase grained; dar	k grayi weakly hemati:	ed, ifol.		1930			1.6	18	0.1	100
118.1	157.06	lquartz diorite		ized with occasional th		i 1° 3		1931 1932					0.3 0.3	10 65
				s than 1% disseminated by 122.23 metres: abund		i Ifol.	1	1933					0.3	10
Ì		ł		lorite +/- epidote, hem		• - •	1	1934				55	D.4	-
1		ł		ally containing specula		1	ł	1935			-		0.1	-
		1		throughout to 134.3 met	185		1	1936					0.2	50
i		i •	1134.6 to 137.2m incr		- utal 49-99 Jinainia	ا است	i	1937					0.1 ¦ 0.2 ¦	- 40
		1	pyri	e euhedral py up to 1 c te	S WITH IN-TH OISBENING	1140 1	1	1939						420
1		1		ic volcanic dyke with S	an chilled margin			1940		-				310
1		1	upp	er contact at 50 degree	s; lower contact					1	∎use – °u) ∎		1	
1		 		tion and sitistication		7		í 1.		- 1 1			ļ	
157.06	163.55	icataclastic		tion and silicification ly more brecciated to 1	· · · · · · · · · · · · · · · · · · ·		s far si '	1941	157	158.5	1.5	58	0.5	-
		quartz diorite		te as above; quartz vei	•	lvein		1942					0.2	. -
l l		1		rown; pyrite locally up		1100 15		1 1943	159.7	161.4	1.7	10	0.3	70
		1		ailky quartz vein perv	sive carbonatization		1	1944					0.8	30
:		1	trace	chalcopyrite		i 6 ibottos	5	1945					D.4 D.2	- 55

1

,

OREQUEST	CONSULTAN	IS LTO.			DIAMOND DRILL LOGS	:					Fill in every p	age);	Hole Na. RG-86-1	
Drilling	D.V. COA		Collar Elevation 	lBearing from True North		lta fixe	n of hole i d point on			Map Ref.	No.	l	Claim No. S-22151 F	
)ate Hole .0/16/86	Started	Date Completed	lDate Logged	Logged by		1				Location	{Twp.Lot;Co VP.; 47 47'	n. or Lat. 45"N; 82 5	and Long 6'V	.)
xplorati		mer or Optionee	Date Submitted	;J. LHAFTIAN Submitted (sign) 						Property REGAL - S	Nane			
Nete Fros	rage 1 To	Rock Type		DESCRIPTION			Core Specimen	l Your Sample		e (m.)	Sampie Length	••	Assa)	
		 	l (Colour) grain size	; texture; minerals; ai	teration; etc.)	Angle	Heterage	i No. i	From	i To	: (m.) ;	Cu l	Ag	} Au
	ł	1			ite as above and weakly	ł	ł	1 1947 ;	164.6	165.5	1 0.9 1	25 :		
163.55	167.56	iquartz diorite/			vein at 166.91; pyrite	lvein	1	1948						
	• !	icataclastic iquartz diorite	lapproximately 5% with	h trace chalcopyrite		1 45 1 80		1949					0.2 0.6	
			aedius to coarse ora	ined: equieranular, we	k hematization, thin, 5-10		•	1 1750 1	10/.3	1 107	1 1.3 1		0.0	-
167.56	174.46	quartz diorite	-		to 5 cm bleached weakly	1		1951	172.3	174.4	2.1	74	0.2	i
	1	1		envelopes traces pyrite		shears	i	1952				35 ;		1
	1	1	1			approx.	1	1953	176	178.3	2.3	8i	0.4	: 3
		1		section above: shear		45	ł	1954 1					0.2	
174.46	181	cataclastic		ely unaitered quartz di				1955						
	1	lquartz diorite		es: 35% quartz veins ui		shears		1956					0.9	
	i 1	i 1		ed by cataclastic quart	z diorite with pyrite up	approx.		1 1957 1						
	1	4	to 10%			45	1	1958 1959						
181	201.55	iquartz diorite	incedominantly medium	to coarse praiped equi	granular dark gray partly	itol.	1	1960						
				derate hematization and		145-75	1	1961					0.2	
	1	1			s of fine to very fine	1	i	1		1				Ì
	1	1	Igrained greenish gray	y or hematitic rock cut	by thins less than 2 cm	ł	1	1 1962	200	201.1	1.1	65	-	: -
		1	quartz_carbonate_+/-	chlorite, hematite, fe	dspar veins: pyrite and	1	1	1 1		1	1			1
	4	1			sociated with shear zones;	1		1963	201.1	202.7	1.6	60	0.6	1 !
	÷	-	lincreasing hematizat	ion at base of section		1				1 007 0				
201.55	1 207 4	; icetaclastic	- i - Frénomali, Lourseland et	o 202.60 metres, veinir		i itol.	i 1	1964	202.7	203.8		40 1	0.4	
201.33	1 207.4	iquartz diorite		rbonate chlorite; hemat		1 40	1	1965	203.8	205.4	1.6	25	0.1	3
	1				tion dominant with weak	1 40	1	1 1/00 1	200.0	:			•••	-
	1	1			z veining; cataciastic	Ì	i	1966	205.4	206.6	1.2	46	0.2	1 :
	1	1			d dark gray quartz diorite	1	1	1 1		ł	;			1
	1	ł	las above			1	1	1967	206.6	208.3	1.7	22	0.2	1
						1								ł
207.4	1 270.6	iquartz diorite			ear zones as in 202.6 to	;		1968	208.3	209.8	1.5	39	6.1	
	•	i I		214 metres moderate her	erization and Existely 15% of section	lfol. 55	1	1 1969	210.4	211.8	1.4	60		1
	1	1		y foliated steepening (i 55	1	1970					0.6	
		, 1			hematite veining parallal	1 75		1971					-	1
	:	1		re locally up to 1% chi	· · · · · · · · · · · · · · · · · · ·	1	1	1972	219.8				0.4	
	1	ŧ	1237-245s chlorite ep			:	1	1 1973						
	1	i		section with brecciate		1	ł	1 1974 1						
	1	1		ontaining quartzy chios		1	1	1975						
	;	}	ltourmaline, pale to p	edium green at base di	section before transition	1	1	1 1976	228.7	230.2	1 1.5	259	0.5	1

1

-

Drequest (Consultani	IS LTD.			DIAMOND DRILL LOGS							n bage>	Hole No. H RG-86-1 H	
	D.W. COAT		Collar Elevation 	Bearing from True North	lDip of hale	lLocation Ito fixed	n of hole in point on (n relation		lMap Ret.		1	Claim No. 5-22151 P	
		Date Completed		Logged by		1				Location	(Twp.Lot)Co WP., 47 47	on. or Lat.	and Long.	
		iner ar Optianee	Date Submitted			 -!				 Property				
	ROLEUM LTO			Submitted (sign)	•.					Regal - e				
Meter From	-	i Rock Type	 	DESCRIPTION			l Core Specimen		Sample		Sample Length			PPb
			{ (Colours grain size	i texturei aineralsi a	teration; etc.)		Heterage		Fran		(a.)			
82.62	107.59	lquartz diorite	•	14 metres: weak chiori: 27-57 munito in annu h	lization, intense lack fine grained diorite		1	1921	85.3	87.3	2	61	1.4	-
			1100.75 to 103.6 metr	es; weak hematization;	traces of chalcopyrite			1922	89.3	91.2	1.9	25	0.1	-
			(105.4-106.30 metres	increasing pyrite contr	nated magnetite in diorite ant up to 20% at base with			1923	99.4	101	1.6	238	0.6	4
			lrock innediately ove	rlying 15 cm quartz ve				1924	101	103.1	2.1	50	0.1	10
	9 7 9		1	ing of brecciated head				1925	103.1	105.1	2	30	0.4	4
107.59	118.1	cataclasite	ifine grained grounds	ass with quartz porphy				1926	105.2	106.5	1.3	33	0.4	
			Ibreccia and quartz-c	k to moderate seritiza arb. veining at top of	section: pyrite 11-21	i		1927	106.5	108.3	1.8	5	0.3	1
			ifilling, safir dyke	10 cm wide at 112.1 m	as disseminations and vein an chilled margin: lower			1928	108.3	109.4	1.1	24	D.4	-
			approaching contact	d quartz diorite; hema	tization weakening	ldike 1 60		1929	109.4	i 111.1	1.7	5	0.1	-
1		1 1 1 1	l lequigranular, medium	to corase grained, da	k grays weakly hematizeds	¦ ;fol.		1930	111.1	 112.7	1.6	18	0.1 t	10
118.1	157.06	lquartz diorite			vin matic horizons less	; 30	1	1931						
				is than 1% disseminated		1	ł	1932						
		1		by 122.23 metres; abun		ifol.		1933					0.3 1	
i		1	•		satite veins with random	; 50	i	1934		118.5			0.4 0.1	
1) !) 1		ally containing speculi throughout to 134.3 me		i I		1935 1936		135.5 137.5				
		1	134.6 to 137.2m incr		(rea	1	1	1937						
		1			with 1%-2% disseminated	1	1	1938				-	0.2 1	
		Ì	pyri			į	1	1939					0.6 1	
1		1	1155.77 to 156.4s maf	ic volcanic dyke with l er contact at 50 degree		1		1940					0.1	
		 		et vu udgie		70				•				
•		1	lincrease in Langting	tion and silicification	at the of pertine	+ 7U	• •	1 (1		1	1	• • ! !	1	
157.06	163.55	i cataclastic			60 metres then grading	1	1	1941	157	158.5	1.5	58	0.5	-
	100.00	iquartz diorite	• • •	te as above, quartz ve		lvein	i	1942						-
		1		rown; pyrite locally u		top 15	Ì	1943						•
	ł	1	-		asive carbonatization;	1	1	1944					0.8	
		1		chaicopyrite		65	1	1945	162.6					
	1	;	}			bottoe		1946						

orequest (CONSULTAN	TS LTD.			DIAMOND DRILL LOGS	E					Fill in every p	age)(Hole No. ; RG-86-1 ;	
Drilling (D.W. COAT	TES INC.	Collar Elevation	lBearing from True North	iDip of hole lat: Collar: -60	to fixed	n of hole i d point on	n relation claim.		Map Ref.	No.		Claim No. S-22151 P	
Date Hoie 10/16/86	Started	1Date Completed 11D/19/86	1	Logged by	- 306.757	•				HALCROW	(Tup.Lot;Cc TVP.; 47 47	45"N, 82 5	610	
	on Ca., Ou	wner or Optionee		¦J. CHAPMAN Submitted (sign) 		• •				Property REGAL - 1	Nane			
Neter From		Rock Type	 ; ;	DESCRIPTION		l Planar Feature	l Core ISpecimen	Your Sample	Saupti	r (m.)	Sample Length		Assays	i ppb
ł	l	1	; (Colour, grain size,	texture; sinerals; a		Angle	Meterage	No. I	From	To	: (m.) ;		Ag i	Au
			to cataclastic quartz	diorite			;	1977 1978	233.2	233.9	0.7	180		35
270.6	273.62	icataclastic Iquartz diorite	lpale to medium green lmedium grained quarts lminor epidote and hem	diarite, intense chli		fal. + 45		1979 1980 1981	233.9 235.4	235.4 236.8	1.5	171 1080	÷	1 60 1 4D
273.62	280.25	i Iquartz diorite 	i ipale green fine to se igrained shear zones:		ular with fine to very fine ote		; ; ;	1982 1983 1984	247.5	248.2	0.7	215	0.4 0.8 0.4	40
280.25	286.12	icataciasite 	with thin less than 1 281.76-285.3 metres d	cm massive pyrite ba ark red moderately si	c quartz diorite as above nds (trace chalcopyrite) liceous very fine grained	tol.		1985 1986 1987	259 270.7	261 272.1	2	35 700	0.4 0.4	180 380
			iquartz; carbonate; se iporphyroblasts; pyrit ichloritization i285.3-286.12 metres g	e † chalcopyrite appro		45	; ; ;	1988 1989 1970 1991	275.4 277	277 278.5	1.6	87 163	0.3	70 90
286.12	286.57	isericite schist	contact zone with pal chlorite schist - com	e to medium gray grae	n quartz; carbonate	itol. 1 40	; ; ;	1992 1993 1994	279.9 280.4	280.4 281.9	0.5 1.5	1050 131	1.6 0.4	300
286.57	295	chlorite Icarbonate	ica: quartz carbonate	veins parallel to fol	with 15% thin; less than 1 iation 1%-2% pyrite; kink			1995 1996 1997	284.4 285.2	285.2 286.1	0.8	96 63	0.1 -	100
3		ischist : :			rk gray green; vein density			1998 1 1999 1 2000 1	287.4 288.7	288.7 290.2	1.3 1.5	160 189	0.4 1	20 10
295	306.7	i Imafic Iapilli Ituff	idecreasing aedium to dark green - occasional guartz car		· · · · · · · · · · · · · · · · · · ·	itol. 1 50	1	2001 2002 2003	293	294.5	1.5	120 1	0.4 0.4 0.4	-
1				END OF HOLE	ANGLE	57							1	:

orequest (CONSUL TAN'	IS LTD.			DIAMOND ORIL							Fill in every p	age);		Page No. 1
Drilling (D.W. Coate			Collar Elevation 	True North	iDip of hole lat: Collar		to fixed	n of hole i point on	n relation claim,		Map Ref.	No.		Claim No. 5-22176 F	
20/10/86		Date Completed	1	Logged by							Halcrow T	(Twp.Lot)Co wp., 47 48	N; 82 56'W	1	-
	on Co., O	iner or Optionee			J. Chapman B. 		•				Property	Property Name Regal - Swayze			
Meter From J		Rock Type		DESCRIPTION				i Core ISpecimen	Your Sample		e (m.)	Sample Length		Assays	
		1	(Colour) grain size) texture; minerals; al	teration, etc.)		Meterage		From	To	(m.)	Cu l	Ag	l Au
D :	1.8	lOverburden								 					1
1.8	6.09	i Cataclastic		ified with moderate hem		•	fol		2004	5.9	6.3	0.4	780	0.8	-
		iquartz diorite	11 per 1 cm. Generall 1? veins at 3.65 (25c 1foliation; massive c	chloritization, chlorite carbonate 4/- epidote veiniets occur appro 1 per 1 cm. Generally hairline but up to 1cm thick, quartz tourmali ? veins at 3.65 (25cm) and 6.09m (10cm) true, conformable with foliation, massive chlorite selvages 1cm thick at vein boundaries a 6.09m, chalcopyrite blebs in vein, pyrite <<1%					2005	2.9	4.1 	1.2	15	0.1	-
6.09	8.97	Quartz diorite porphyry	lfeldspar porhyroclas ichloritization decre				ifoi 45	8	2006	8.2	9.6	1.4	30	0.4	
8.97 	12.97	i Cataclastic quartz diorite 		siliceous at the top b e quartz-carbonate vein	-		ifol 1 60		1 3 4 4 4 4				1 	1	
12.97	16.87	Cataclasite	icarbonatized along r	ongly sericitic; modera andomly oriented hairii , very similar in colou sseminations 1-2%	ne fractures:		itai 50	1 3 3 4 5 5 6 6 6 7 3	2007 2006 2009 2010 2011	14.6 16.4 17.8	16.4 17.8 19.1	1.8 1.4 1.3	25 21	0.3 0.3	-
16.87	27.42	Cataciasite	pronounced. 18.82-1	gray with patchy appear 9.57m strongly oxidized liy 1mm; locally weak t	quartz diorit		ifol 60		2012 2013 2014 2015 2015 2016	19.7 21.2 22.6 24.2	21.2 22.6 24.2 25.7	1.5 1.4 1.5 1.5	21 13 14 21	0.1 0.4 0.2 0.3	
27.42	45.86	Cataclasite	lfragment size range Isericitic groundmass	n superimposed an chlor K.5mm to X2mm, moderate # approx 5% blue quartz ctures 3 per 1cm, 1-2%	silicificatio fragments, ha	n strongly	fai 45		2034 2035 2036 2037	27.4 29 31.2 32.5	29 31.2 32.5 34.5	1.6 2.2 1.3	20 19 20 23	0.13 0.2 0.24 0.13	
34.41 	34.71	i Cataclasite 1	ifragments of blue wh	ite quartz upto 3mm, 4	per 1 cm white				2038 2039 2040 2041	36.3 37.9	1 37.9 1 38.9	1.6	15 15	0.02	-
38.35 ¦	39.11	l Icataclasite Ibrecciated	Moderately silicified, strongly hematized groundwass with 5 {fragments of blue white quartz upto 3mm, 4 per 1 cm white }quartz-carbonate veins conformable with foliation } large (1-2 cm) fragments of quartz, carbonate, feldspar out by thin chlorite carbonate foliations, 2-3% pyrite greenish 1						2042 2043 2044	40.9	42.2 43.7	1.3 1.5	17 15	D.14 0.07	-

OREQUEST	CONSULTAN	TS LTD.			DIAMOND DRILL LOGS						Fill in every p		Hole No. ¦ RG-86-2 ¦	-
Drilling D.W. Coat	es		Collar Elevation 	True North	Dip of hole lat: Collari-60	Ito fixed	n of hole i d point on	n relation claim.		Map Ref.	No.	1	Clain No. S-22176 P	
)ate Hole 20/10/86	Started	Date Completed		Logged by	306.7 n54	Ì				Location	(Twp.Lot;Co Wp.; 47 48'	n. or Lat. N; 82 56'W	and Long.)
xplorati		wner ar Optionee		·	•	-				Property Regal - 5 			*	
Nete: From	rage To !	E Rock Type		DESCRIPTION	*****	Feature		Your Sample_ No.		1	Sample Length (m.)		Assays Ag	A.,
45 RL	· · ·		colour; small (0.5 m Igradational upper an	n quartz porphyroblosts	within fragments;	i angie		2045 2046 2033	45 46.4	46.4 47.5	1 1.4 1	21 20	0.02 0.03	0.01
43.00	(97.70 1 1 1 1 1 1 1 1		lainor chlorite and c ica,porphyroblosts D.	arbonate, fracture dens 5 to 3 mm, locally weak inated with a few thin	45				F F F F F F F F F			8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
47.98	56.7	catac lasi te	carbonate; quartz ca conformable with fol		idote veins: 1 - 3ca:	fol. 45)) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	2047 2048 2049 2050 2051 2051 2052	50.7 52.3 53.6 55.3	52.3 53.6 55.3 56.7	1.6 1.3 1.7 1.4	11 15 13 13 10 14	0.06 0.07 0.03 0.04 0.04 0.06	
56.7	61.25	cataclasite siliceous			ass and 4.5 mm nate sericite chlorite	-		2053 2054 2055	57.6 59.1 60.3	59.1 60.3 61.7	1.5 1.2 1.4	24 15 17	0.02 0.07 0.05	-
61.25	63.3	cataclasite	porphyroblasts; quar	to very fine grained wi tz sericite groundmass; rite disseminated throu	strongly siliceous; 1-3%	lfal. 1 50		2056 2057 2058	63.5	64.9	1 1.4 1	25 145 70	0.03 0.07 0.02	-
63.3	69.92	i biotite amprophyre_dyke 	lcrystals; included s lca); 65.85 m (20 cm) lchilled margins; no	grained matrix with D. lices of above at 63.42 > contacts conformable visible sulfides, 1-15% n at 66.76 m parailel t	<pre>t (5 cm); 65.20 m (30 to foliation and show carbonate throughout;</pre>	dike 40		2059	69.8	71.3	1.5	20	0.08	-
69.92	73.4	cataclasite (silicedus		siliceous, moderately c hairline quartz carbon	hloritic; quartz sericite; ate veins; 1-3%	lfol. 45 		2060 2061 2062 2063	74.4	74.3 75.5	1.4 1.1	24 25 15 15	D.02 0.03 0.19 0.01	-
73.4	78.05	cataclasite Ichloritic	sections, chloritic with weak hematizati	ale gray green with mix fractures more pronounc on at base of section; vein at 78.0 m parallel	1 40-45		2064				15	0.33	-	
78.05	87.57	l Icataclasite	i ibanded red and green	cataclosite with 10-20	% red and green aylonite	 	1	2065	79.2	1 80.5	1 1.3	15	D.06	¦ -

and and any and any and a state

OREQUEST (CONSULTAN	IS LTD.			DIAMOND DRIL		:					Fill in every p	} age) 	lale No. 26-86-2	
Drilling (D.W. Coate	25		Collar Elevation 	Bearing trom True North	Dip of hole		ito fixed	of hole i point on	n relation clais.		Map Rei. 	No.	19	lain No. 5-22176 P	
Date Hole 20/10/86	Started	Date Completed	Date Logged	Logged by	•	-54	;				Location Halcrow T	(Twp.Lat;Ca wp.; 47 48'	n. or Lat. Ny 82 56'¥	and Long.)
	an Ca., O	mer or Optionee		Submitted (sign)		, 	•				Property Regal - S 	Nane			
Meter From		l Rack Type		DESCRIPTION		*********	Planar Feature	l Core Specimen	l Your l	Sampl	e (m.)	Sample Length		Assays	
			(Colour) grain sizi	e) texture) sinerals) al	teration; etc.)		Meterage		From	To	(.)	Cu ¦	Ag l	Au
		lhematitic/ lchloritic	bands (15 cm thick) veins and fractures	moderate to strongly si <5%	liceous; carbo	nate only in) 	2066	60.5 82	83.5	1.5	15 ¦	0.07 0.09	-
87.57	90.24	cataclasite/ aylonite	Ichipritic bands) qui	c to very fine grained, artz-carbonate veiniets weak to moderate perva	parallel to to	liation	lfol. 50		2068 2069 2070 2071	83.5 64.6 86.3 85.7	86.3 67	1.5 0.7	14 15 15 11	0.01 0.03 0.02 0.07	-
) 9 2 8 1 8	\$ 7 4 4 1	loccasional cross-cu silicification 1-2%	tting quartz-carbonate H disseminated pyrite	ematite veins,	moderate	;		2072 2073 2074		89.6	1.6	9 15 12	0.05 0.13 0.05	0.005
90.24	92.91	icataciasite i i	isiliceous, calcareo	green chloritic bands; us; small intervals of e bonate; sericite; hemati	ataclastic qua	rtz diorite	ifol. 50		2075 2076	91.1 92.3			15 6 	0.04 -	0.032
92.91	94.89	cataclasite	dominantly chloritin	c and as above			, ; ;	1 	2077	94.1 95.5			12 20	- 0.01	0.028 0.018
94.89	104	cataclasite/CQD	icataclasite predomin lis medium grained w land a gray green co	becoming more COD towing nantly chloritic with mi ith a patchy appearance lour, 1-2% pyrite, minor dspar clots vary from re	nor hematitic with chlorite • sericite; mod	zones; CQD laminations erate	fol. 45	, , , , , , , , , , , , , , , , , , ,	2079 2060 2061 2062 9803		98.1 99.4 100.8 102.7	1.5 1.3 1.4 1.9	14 13 11 25	0.01 0.01 0.07 0.07 0.07	0.086 0.028 - -
184	106.7	cataciasite	lquartz; chlorite; s	n and gray green; fine g ericite; carbonate with structures visible at 1 siliceous	(20% quartz po	rphyroblasts	 fo . 40-45 		9804 9805 9806 9807 9808	107.8	105.9 106.9 107.8 108.8	0.8 1 0.9 1	10 19 14 15	0.02 0.02 0.02 0.02 0.02 0.03	- - -
106.7	111.58	i Icataclasite Isiliceous	lpatchy and banded an icarbonate and epidor	dark green becoming more ppearance, quartz chlori te, zones of brecclation (1% to 3% mostly pyrite	te groundmass at base of se	with minor	fol . 45-55	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9809 9810 9811 9812 9813 9813	111.8 112.9	i 110.8 i 111.8 i 112.9 i 114.3	1 1 1 1 1.1 1.4	19 16 20 20	0.07 0.02 0.02 0.01 0.05 0.05	
111.58	120.6	brecciated Icataclasite	strongly siliceous a Biotite lamprophyra labove; quartz porph;	mented with quartz; carl and hematitic; softer ci dyke 4 cm at 114 m and yroblasts 1-3 am 15-30%; noreasing near contact t	loritic bands; 114.5 m; suifi 120-120.6 m r	<15%. des as			9818 9819 9820 9821 9821	115.1 116.1 117	116.1 117 117.9 118.9	1 0.9 0.9 1	14 105 14 10	0.02 0.02 0.14 0.05	- - -
, oo ()	175 77	i icataclastic	iceroonele content il i i	neressing ngar tuntatt (HEN UNV				9814 9815	119.9	120.7	0.8	25	0.03 0.02 0.02	-

1

OREQUEST	CONSULTAN	TS LTD.			DIAMOND DRILL		:					Fill in every p		Hole No. RG- 86- 2	
Drilling D.W. Coat			Collar Elevation 	Bearing from True North	Dip of hole		to fixed	n of hole i j point on			Map Ret. 	No.	Ì	Claim No. S-22176 P	
20/10/86		Date Completed	1	Logged by	• •	-54	 				Location Halcrow T	(Twp.Lot;Co Wp.; 47 48'	n. or Lat. Ny 82 564	and Long.	
	on Co., Ou roleum Lto	wner or Optionee J.	Date Submitted	Submitted (sign)	!						Property Regal - S 				
Mete: From	-	Rock Type		DESCRIPTION			Feature	l Core ISpeciaen	Sample	_	e (a.)	Sample Length			
		i 		> texture; sinerals; al				¦Heterage	No.	Fron	¦ To	; (m.) ;	{u ;	Ag	i Au
		quartz diorite		hematitic with approxi			ļ	1	9816				174		
		1		pritization and silicif	ication; pyrite	1-2% as	i	1	1 2083				55		
125.33	138.8	; iquartz diorite	disseminations and t	hin 1-3 BR Stringers			i !	1	2084	128.3 129.7			70 : 69 :		-
120.00	100.0		dark grav fresh coar	se grained, weakly carb	onatized local	v meakly	1	:	2003	130.7		•	345	0.00	-
		1		veins at 129.87 a (10 c			1	i	2016	134.5			28	0.4	
		1	(137.5 a (8 ca), 8.5	a cataciastic zone at 1	35.1-135.6 •• 1	5% py + cp	1	1	2019	135.1	136.2	1.1	40 ;	0.1 I	-
		1		generally (1% pyrite in	diorite; but i	ocally up	1	1	2020		-		50		
470.0	454 00		to 2%						2021				46		
138.8	151.22	cataciasite	i Jaala seesial sees w			a shad	contact		2022	137.8			75 20	0.4	
		1		eak to moderately silic ricite; carbonate groun		•			2023	138.7			26	0.4	-
		1		selvages and scattered			i	1	2025				15	-	-
		1		43 m, 138.8 to 139.8 m			Ì		2026				7		-
		}	Idiorite: brecciated	171.9-173.3 m. Magneti	c diabase dike	at	1	1	2027	143.2	144.2	1 D.9 1	95	0.2	0.0
		}	(149.75-150.3 m) faul	t gouge at 149.85 av gr	ades into COD a	t 149.5 a	1	1	2028	144.2	145.1	0.9	50 1	0.2	-
		1	Isulfide 1 to 5% pyri	te 🕇 trace cp			1		2029				16		-
151.22	288.99	iquartz diorite					45		2030						0.2
		1	-	ined, dark gray, pervas		tions	ldike		2031	147	• • • • • •		70 :	0.4	-
				all 1-3 cm quartz veins		14 - 14 8 -		i	2086	-					-
i		í •	-	prophyre dyke at 157.83 crease in chloritizatio				i 1	2087 1 2088 1	150.4			40 112		
		1		nated and in veins; py			!	1	2080 1	151.2		•	204	-	-
1		1		oderate silicification	THEFEESTING CO. O.		!	1	2090 1				332		-
		1							2091				1120		-
		1	176.68-179 # - thin	quartz carbonate hemati	te veins; incre	asing chlori	10	· ·	2092				850		-
-		1	epidote alteration				1	ł	2093 1	163.6	1 164.7	: 0.9 ;	84	0.01	-
1		1	1				40	1	2094 1	164.7				0.01	
		1	181.4 a - 35 ca biot	ite lamprophyre dykes m	agnetic		ldike	1	2095	165.1			310		
		1		-laste and the state			i	i	2096	166.1					
		1		clastic zone fine grain		SITITE	i 1	i I	2097 1				950 ; 1900 ;		
		1	tend chidritic Danded	appearance 1-2% py + c	P		ital.	*	2098	168.2 169.9			1700		
		1	1209.44-210 D =	oritic cataclastic zone			1 45	1	2100				640		
		1						i	2101						0.01
		 	235-238.85 m - pale	gray green diorite with	mafic volcanic	xenolith	1	1	2102						
		1		ization along fractures			1	;	2103						0.0
1		2	1	•			ltal.	1	2104 1	175.1	176.2	1.11			
1		1	1241.58-242.38 = - sh	ort cataclastic zone 1-	31 pyrite + cp		; 65	1	2105	176.2	1 177.4	1.2	55	0.09	- 1

From To Feature Services Concerns Supple Length 288.99 271.4 Cataclastic cone at bare concerns of the print a concerns of the). Page 5		H Ige>lR	Fill in every pa								DIAMOND DRILL	1			IS LTO.	NSULTANT	REQUEST C
Lower Lower Sig. 7 e54. Lower	5 P	6-22176	ls			l Ma 1				to fixed		at: Collar!	1	True North			i .	W. Coate
Destination Dure Subaitted Dure Subai	ng.)	and Long	n. or Lat. 1, 82 56'W	wp.Lot;Cor .; 47 48'N	ocation (T alcrow Twp	Ha				i 				Logged by	Date Logged	Date Completed	itarted	ate Hole)/10/86
From To Feature (Sociant Suppr) Featur				ne	roperty Na	Pr				: : : : :	_*	#. 				mer or Optionee	Co., Ow	ploratio
288.97 291.4 225.64 = -20 cs aslic voicanic dike 70 2106 177.4 178.4 1 35 0.0 288.97 291.4 cstaciatic zone at base 70 2101 178.4 1 286.4 1.1 100 0. 288.97 291.4 cstaciatic zone at base 70 2101 178.4 197.9 1 341 0.0 288.97 291.4 cstaciatic termination of terminatio termination of termination of terminatio te	; ; ;	Assays		Length -	11	 e (_	Sample	Specimen	Feature			*****			Rock Type	-	
280.97 273.17 e - increased sulfides pyrite 2-51. 1207 178.4 179.5 1.1 120 0. 1 cataclastic zone at base 70 2108 191.9 197.9 1 341 0.0 280.97 271.4 cataclastic zone at base 70 2109 191.9 197.9 1 341 0.0 280.97 271.4 cataclastic inite approximately 103. 70 2101 192.7 1 341 0.0 100 0.1 280.97 271.4 cataclastic inite approximately 103. 70 2101 192.7 1 341 0.0 100 0.1 280.97 inite approximately catoclastic 271.4 inite approximately catoclastic 2112 198.2 197.1 0 100 0.1 291.4 inite approximately catoclastic inite approximately catoclastic 271.7 231 13.0 13 103 0.1 291.4 inite approximately catoclastic inite approximately catoclastic approximately catoclastic 101.1 231.2 231.4 231.8 0.0 0.0 <t< th=""><th>i Au</th><th>Ag</th><th>Cu i</th><th>(m,) ;</th><th>To i</th><th>: </th><th>From</th><th>i No. i</th><th>(Neterage)</th><th>; Angle</th><th></th><th>teration; etc.)</th><th>s alt(</th><th>texture; winerals; a</th><th>; (Colour) grain size)</th><th>•</th><th></th><th>; </th></t<>	i Au	Ag	Cu i	(m,) ;	To i	: 	From	i No. i	(Neterage)	; Angle		teration; etc.)	s alt(texture; winerals; a	; (Colour) grain size)	•		;
288.99 291.4 cetaclastic zone at base 70 2109 195.4 196.4 1.2 114 0.0 288.99 291.4 cetaclastic i quartz diorite derk gray: addrestely carbonatized and silicified, weakly chloritic. 2110 192.9 193.9 1 341 0.0 291.4 cetaclastic i quartz diorite derk gray: addrestely carbonatized and silicified, weakly chloritic. 2111 192.9 193.9 1.2 114 0.0 291.4 274.9 cetaclastic i quartz diorite derk gray: addrestely carbonatized and silicified, weakly chloritic. 2113 224.2 225.3 1.3 103 0.1 291.4 274.9 cetaclastic iesticu to dark green, moderate silicification chloritization 2-33.py. 50 2116 227.7 1.1 116 0.1 294.9 301.5 cetaclastic with abundant carbonate bands and inchisitigation chloritization 2-33.py. 50 2116 227.7 1.3 131 103 0.1 301.5 306.7 amtic lapilli tarding green to browning green schist with abundant carbonate add and inchistigation 2-33.py. 50 22116 227.7 1.1 1.4 50		0.09 0.1								1	2-51	+ chalconusite	rita ·	reased sulfides numit	258.20-273.17 = - inc			;
288.97 291.4 icataclassic idext gray, moderately carbonatized and silicified, weakly chloritic. 2111 192.7 193.9 1 288.0 0.1 288.97 291.4 icataclassic idext gray, moderately carbonatized and silicified, weakly chloritic. 2111 193.9 1 0 120 0 0 288.97 291.4 icataclassic idext gray, moderately carbonatized and silicified, weakly chloritic. 2112 193.7 134.8 0.9 1210 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120		0.05				•				•						1		;
 288.99 291.4. icataclastic dark gray, moderately carbonatized and silicified, weakly chloritic. 2112 198.2 199.2 199.2 199.1 198.2 199.1 198.2 199.1 198.2 199.1 1213 1224 1225.3 1.3 103 1.1 114 1213 1224 1225.3 1.3 103 1.1 114 1214 1224 1225.3 1.2 114 1225 1224 1226.1 1214 1226.2 122.1 1226.1 1214 1227.2 114 1228.4 1227.1 114 1224.1 1224.1 1224.1 1224.1 1224.1 1226.1 1227.2 1231.1 131.1 161.0 12112 1231.2 1231.4 1231.6 1231.4 1231.6 1231.6 1231.7 1331.1 1331.0 144.1 144 <		0.09		1												1		1
288.99 291.4 cataclastic 212 198.2 199.2 199.2 199.2 199.2 199.2 199.2 103 0.1 201.4 cataclastic 15. prite, trace chalcoprite 15. prite, trace chalcoprite 103 0.1 103 0.1 201.4 224.2 225.3 1.2 114 0.0 1214 225.3 1.2 114 0.0 201.4 124.2 225.3 1.2 114 0.0 1214 225.3 1.2 114 0.0 294.9 cataclastic imegions to dark gravn, moderate silicification chloritization 2-33 pr.9 50 50 2114 233 1.2 114 0.0 294.9 301.5 ichioritic apilit imegions of are silicification chloritization 2-33 pr.9 50.0 1216 233 1.2 114 45 0.0 301.5 istist iminor quartz veining itii 1210 233 1.2 124 124 233 1.2 124 125 1.4 332 0.0 301.5 itif chist istima or quartz vein		0.14							; ;	170				e voleznie dika	1 1275 84 20	1		i
Instruct diorite Idari gray, moderately carbonatized and silicified, weakly chloritic; 2113 224 225.3 1.3 103 0.1 291.4 294.9 Icataciasite indiue to dark green, moderate silicification chloritization 2-33 ep. 50 2114 225.3 1.3 103 0.1 294.9 Icataciasite indiue to dark green, moderate silicification chloritization 2-33 ep. 50 2116 229.7 233 1.3 103 0.1 294.9 Icataciasite indiue to dark green, moderate silicification chloritization 2-33 ep. 50 2116 229.7 233 1.2 114 0.0 294.9 301.5 Ichlorite indiue to dark green, schist with abundant carbonate bands and 2119 233 234.4 1.4 455 0.0 Icatabrate isenitic lipilli aedium green, very fine grained; 1-3 am fraggents, quartz carbonate 461. 2121 238 237.4 1.4 335 0.0 301.5 astic lipilli aedium green, very fine grained; u-3 am fraggents, quartz carbonate 455 21221 236.4 242.		0.11							יייייייייייייייייייייייייייייייייייייי	1				C VUICANIC DIKE	1273.04 W - 20 CH Haffit	cataclastic	291.4	288.99
271.4 274.9 Cataciasite if01 2115 226.6 229.7 1.1 116 0.1 274.9 301.5 chlorite iery fine grained aith (15% quartz porphyroblasts-alaost evicinite 117 231 231 0.2 77 0.1 274.9 301.5 chlorite iero to brownish green schist with abundant carbonate bands and 12116 223.1 0.2 233 1.2 127 0.0 ischist ienor quartz veining ion 101.1 21217 233 234.4 1.4 45 0.0 ischist ienor quartz veining ion ion 2121 233 234.4 1.4 333 0.0 ischist ienor quartz veining ion ion 2122 223.4 224.1 1.4 335 0.0 isti isti iapilli teclus green, very fine grained, 1-3 an fraggents, quartz carbonate 1212 224.6 227.7 2.4 1.4 0.7 181 0.0 isti tuff thiftes in tuff END OF HOLE ANGLE 54 22124 243.2 0.6 <td< td=""><td></td><td>0.13</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td>chloritic,</td><td>cified; weakly (</td><td>silic</td><td>carbonatized and sil</td><td>dark gray, moderately</td><td></td><td></td><td>;</td></td<>		0.13							1 1		chloritic,	cified; weakly (silic	carbonatized and sil	dark gray, moderately			;
274.9 301.5 chiorite icerbonate ischist ischist ischiorite ischist ischist 1.3 183 0.0 301.5 chiorite icerbonate ischist ischist ischist ischist ischist 1.3 183 0.0 301.5 chiorite icerbonate ischist ischist 1.4 45 0.0 301.5 306.7 inor quartz veining itol 2116 223.4 1.4 332 0.0 301.5 306.7 ischist ischist ischist 1211 233 1.2 1.4 332 0.0 istic iapilli chiorite epided vith 0 cs at 303.4 s, strongly heastized, (1X 1212 234.4 1.4 335 0.0 istific is in tuff istific is in tuff 1212 240.9 241.6 0.7 181 0.0 istific is in tuff istific is in tuff 1212 244.4 1.4 335 0.0 istific is in tuff istific is in tuff 1212 244.5 1.1 1205 0.0 istific is in tuff istific is in tuff 1.1 140 0.0 1.2 1.2 1.5		0.01	:							1				opyr i te	5% pyrite trace chalce			
294.9 301.5 ichiprite icarbonate ischipt icarbonate ischipt		0.16													l Indian An Indian -	icataciasite	294.9	291.4
274.9 301.5 [chlorite icarbonate ischist		0.02							i i ! 1	: 50								
Schist isnor quartz veining fol. 2120 234.4 235.1 0.7 332 0.0 301.5 306.7 astic lapilli isdigreen, very fine grained; 1-3 as fragsents, quartz carbonate; 45 2121 238.4 237.4 1.4 335 0.0 istic lapilli ichiorite epidote vein 40 cs at 303.4 as strongly hesatized; (1X 2122 240.9 241.6 0.7 181 0.0 isulfides in tuff ichiorite epidote vein 40 cs at 303.4 as strongly hesatized; (1X 2125 241.6 242.6 1 205 0.6 109 0.0 isulfides in tuff isulfides in tuff 2126 226.4 253.2 0.6 55 0.0 isulfides in tuff isulfides in tuff isulfides in tuff 2126 226.1 267.1 11 174 0.0 isulfides in tuff isulfides in tuff isulfides in tuff 2128 224.5 1.3 164 0.0 isulfides in tuff isulfides in tuff isulfides in tuff 2128 226.1 267.1 1.1 174 <td></td> <td>0.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1 1</td> <td></td> <td></td> <td></td> <td></td> <td>ivery the grathed are</td> <td>chlorite</td> <td>301.5</td> <td>294.9</td>		0.4								1 1 1					ivery the grathed are	chlorite	301.5	294.9
301.5 306.7 imafic impilli imagic impilli	15:1 -	0.05	45 1	1.4 1	234.4 1	1	233	2119	1	1	ds and	: carbonate ban	ndant	en schist with abunda	ligreen to brownish gree			1
mafic lapilli tuff imedium green, very fine grained; 1-3 mm frequents, quartz carbonate; tuff 45 2122 240.9 241.6 0.7 181 0.0 isulfides in tuff 1chiorite epidote vein 40 cm at 303.4 m, strongly bematized; (1% 2123 241.6 242.6 1 205 0.0 isulfides in tuff 2124 2268.4 2257 261.7 0.7 107 0.0 END OF HOLE ANGLE 54 2126 262.4 263.2 264.5 1.3 164 0.0 1 2129 266.1 267.1 1 174 0.0 <t< td=""><td></td><td>D.D8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>}</td><td></td><td></td><td></td><td></td><td>ainor quartz veining</td><td></td><td></td><td></td></t<>		D.D8								}					ainor quartz veining			
ituff ichlorite epidate vein 40 cs at 303.4 m, strongly heaatized, (1% 2123 241.6 242.6 1 205 0.6 109 0.0 isulfides in tuff 2124 2264.4 259 0.6 109 0.0 isulfides in tuff 2125 261.2 262.4 263.2 0.8 1007 2100 isulfides in tuff isulfides in tuff 2127 263.2 264.5 1.3 164 0.0 isulfides in tuff isulfides in tuff isulfides in tuff 2127 263.2 264.5 1.3 164 0.0 isulfides in tuff isulfides in tuff isulfides in tuff isulfides in tuff 11 174 0.0 isulfides in tuff isulfides in tuff isulfides in tuff isulfides in tuff 11 174 0.0 isulfides in tuff 11 174 0.0 isulfides in tuff 0.0 isulfides in tuff isulfides in tuff isulfides in		0.05											4	an maximad. 1-7 a- fa	i Indium mean, unu fir			301.5 ;
Sulfides in tuff 2124 258.4 259 0.6 109 0.0 END OF HOLE ANGLE 54 2125 226.1 242.2 0.6 55 0.0 2126 2262.4 242.5 1.3 134 0.0 55 0.0 2127 226.5 246.5 1.5 300 0.1 2127 226.5 246.5 1.3 144 0.0 2128 246.5 246.5 1.5 300 0.1 2128 246.5 246.6 1.5 300 0.1 2130 247.1 246.1 1.4 1097 0.0 0.0 0.0 2131 246.8 249.8 1 520 0.0 0.0 0.0 2133 249.8 277.2 1.5 1270 1.1 162 0.0 2134 271.7 278.7 280 1.3 1.3 137 0.0 2134 271.7 278.7 280 1.3 1.3 137 0.0 2137 278.7 278.7 278.7		0.02							, , 	1 40 !			-					-
END OF HOLE ANGLE 54 2126 262.4 263.2 0.6 55 0.0 1 2127 263.2 264.5 1.3 164 0.0 1 2128 264.5 266 1.5 300 0.1 1 2129 266.1 267.1 1 174 0.0 1 2130 267.1 268.8 0.7 610 0 1 2131 266.1 269.8 1 520 0.0 1 2132 268.8 269.8 1 520 0.0 1 2133 269.8 271.7 1.9 800 0.0 1 2135 272.2 273.4 1.2 210 0.0 1 2135 272.2 273.4 1.2 210 0.0 1 2135 272.7 280.7 1.1 162 0.0 1 2136 277.7 280.7 1.1 162 0.0 1 2137 278.7 280.7 1.4 100		0.08							i i							1		i
1 2127 263.2 244.5 1.3 164 0.0 1 2128 264.5 266 1.5 300 0.1 1 2129 266.1 267.1 1 1 174 0.0 1 2130 267.1 268.8 0.7 610 0.1 1 2132 268.8 269.8 1 520 0.0 1 2132 268.8 269.8 1 520 0.0 1 2133 269.8 271.7 1.9 800 0.0 1 2135 277.2 273.4 1.2 210 0.0 1 2135 277.2 278.7 1.1 162 0.0 1 2135 277.2 278.7 1.3 133 0.0 1 2137 278.7 278.7 1.1 162 0.0 1 2137 278.7 278.7 1.3 133 133 0.0 1 2138 280 281.3 1.3 133 1.0	13 -	0.03	210	0.7		ł				:					1	ł		;
1 2128 244.5 266 1.5 300 0.1 1 2129 266.1 267.1 1 174 0.0 2130 267.1 248.1 1 1090 0.1 2131 268.1 268.8 0.7 610 0. 2132 268.8 269.8 1 520 0.0 2133 269.8 271.7 1.9 800 0.0 2134 271.7 277.4 1.2 210 0.0 2135 272.2 273.4 1.2 210 0.0 2136 277.4 278.7 1.1 162 0.0 2138 280.1 281.3 1.3 133 0.0 2138 280.2 281.3 1.3 133 0.0 2139 281.3 282.7 1.4 100 0.0 2140 282.7 285.7 1.5 125 0.1 2140 285.7 285.7 1.5 125 0.1 2142 285.7 285.7		0.04								54	WGLE			END OF HOLE				1
1 2129 266.1 267.1 1 174 0.0 2130 267.1 268.1 1 1090 0.1 2131 268.1 268.8 0.7 610 0.0 2132 268.8 269.8 1 520 0.0 2133 269.8 271.7 1.9 800 0.0 2134 271.7 272.2 0.5 1270 0.1 2135 277.4 276.7 278.7 280 1.3 133 0.0 2137 278.7 280 1.3 133 0.0 0.0 2137 278.7 280 1.3 133 0.0 2137 278.7 280 1.3 133 0.0 2137 278.7 280 1.3 133 0.0 2138 280 281.3 1.3 137 0.0 2140 282.7 286.7 1.4 100 0.0 2140 282.7 284.2 1.5 125 0.1 2140 2		0.01				-			1 1 1 1	i i					4			i 1
1 2130 267.1 268.1 1 1090 0.1 1 2131 268.1 268.8 0.7 610 0. 1 2132 268.8 269.8 1 520 0.0 1 2133 269.8 271.7 1.9 800 0.0 1 2134 271.7 272.2 0.5 1270 0.1 1 2135 277.2 273.4 1.2 210 0.0 1 2135 277.4 276.7 1.1 162 0.0 1 2136 277.6 278.7 1.1 162 0.0 1 2137 278.7 280 1.3 1.3 133 0.0 1 2138 280 281.3 1.3 133 0.0 1 2138 280 281.3 1.3 137 0.0 1 2140 282.7 284.2 1.5 125 0.1 1 2140 285.7 1.5 125 0.1 145 0.0		0.06							1 1	1						1		
1 2132 268.8 269.8 1 520 0.0 1 2133 269.8 271.7 1.9 800 0.0 1 2134 271.7 272.2 0.5 1270 0.1 1 2135 272.2 273.4 1.2 210 0.0 1 2135 277.6 278.7 1.1 162 0.0 1 2137 278.7 280 1.3 133 0.0 1 2138 280 281.3 1.3 133 0.0 1 2138 280 281.3 1.3 133 0.0 1 2137 278.7 280 1.3 133 0.0 1 2138 280 281.3 1.3 133 0.0 1 2139 281.3 282.7 1.4 100 0.0 1 2140 282.7 284.2 1.5 125 0.1 1 2140 284.2 285.7 1.5 145 0.0 1		0.14													Ì	•		Ì
1 2133 269.8 271.7 1.9 800 0.0 1 2134 271.7 272.2 0.5 1270 0.1 1 2135 272.2 273.4 1.2 210 0.0 1 2135 277.6 278.7 1.1 162 0.0 1 2137 278.7 280 1.3 133 0.0 1 2138 280 281.3 1.3 133 0.0 1 2138 280 281.3 1.3 37 0.0 1 2139 281.3 1.3 1.3 37 0.0 1 2140 282.7 1.4 100 0.0 1 2140 282.7 284.2 1.5 125 0.1 1 2140 284.2 285.7 1.5 145 0.0 1 2142 285.7 287.2 1.5 145 0.0		0.1								1					1	4		1
1 1 2134 271.7 272.2 0.5 1270 0.1 1 12135 272.2 273.4 1.2 210 0.0 1 12136 277.6 278.7 1.1 162 0.0 1 12137 278.7 280 1.3 133 0.0 1 12137 278.7 280 1.3 133 0.0 1 12138 280 281.3 1.3 37 0.0 1 12137 278.7 280.1 1.4 100 0.0 1 12137 282.7 1.4 100 0.0 1 2139 281.3 282.7 1.4 100 0.0 1 2140 282.7 284.2 1.5 125 0.1 1 2140 284.2 285.7 1.5 145 0.0 1 2142 285.7 287.2 1.5 145 0.0		0.05																}
1 2135 272.2 273.4 1.2 210 0.0 1 2136 277.6 278.7 1.1 162 0.0 1 2137 278.7 280 1.3 133 0.0 1 2138 280 281.3 1.3 133 0.0 1 2138 280 281.3 1.3 133 0.0 1 2139 281.3 1.3 1.3 37 0.0 1 2139 281.3 282.7 1.4 100 0.0 1 2140 282.7 284.2 1.5 125 0.1 1 2140 282.7 285.7 1.5 145 0.0 1 2142 285.7 287.2 1.5 145 0.0		0.09 0.15								([1		1
1 1 2136 277.6 278.7 1.1 162 0.0 1 1 2137 278.7 280 1.3 133 0.0 1 1 2138 280 281.3 1.3 37 0.0 1 1 2137 278.7 280.1 1.3 133 0.0 1 1 2139 281.3 1.3 1.3 37 0.0 1 1 2137 282.7 1.4 100 0.0 1 2140 282.7 284.2 1.5 125 0.1 1 2141 284.2 285.7 1.5 145 0.0 1 2142 285.7 287.2 1.5 145 0.0		0.05							• •						 	•		,
1 1 2137 278.7 280 1.3 133 0.0 1 1 2138 280 281.3 1.3 37 0.0 1 1 2139 281.3 282.7 1.4 100 0.0 1 1 2140 282.7 284.2 1.5 125 0.1 1 1 2141 284.2 1.5 125 0.1 1 1 2142 285.7 287.2 1.5 145 0.0	14 ¦ O.	0.04		1.1	278.7	ł	277.6	2136	, I İ	1					ł	:		i
Image: Second	16 I O.	0.06	133	1.3	280	1	278.7	2137		1					1	1		2
Image: Second		0.05														i •		
Image: Second Se Second Second Sec		0.06 D 11							i i ! i	i !						1		1
i i i 2142 i 285.7 i 287.2 i 1.5 i 145 i 0.0		0.07														, , ,		1
	D3 D.	0.03			287.2	1	285.7		i i	}					1	}		1
		2 <i>0.05</i> 0.06	140 1	1.7 \	268.9 1	1	287.2	2143		1					1	 4 •	4	1

i chang dalah d

OREQUEST CONSULTANTS LTD.	pepany :Collar Elevation Bear Started IDate Completed IDate Logged :		DIAMOND OR		5 222					•			il in Pry pa		Hale Na. ¦ R6-86-2 ¦	
Drilling Company D.W. Coates	Collar Elevation	True North	Dip of hole		to fixed	of hole in point on				Har	> Ref.	No.		-	Clais No. 5-22176 P	
Date Hole Started (Date Completed 20/10/86 (23/10/86		Logged by	306.7	•										. or Lat. , 82 56'W	and Long.)
		Submitted (sign)		-								Nane Swayze				
Meterage Rock Type From To	i i (Colour) grain siz	DESCRIPTION es textures mineralss al	teration, etc	.)	lFeature	Core Specimen Meterage	l Saa	ple ¦		ł		Samp Leng (m.	th l-	Cu 1	Assays Ag	l Au
					••••••••••• 1 1 1 1 1 1 1 1	1	;	2145 2145 2146 2147	291.0	5 1	291.6 292.7 293.8			570 30 46		0.03
							;	2148 2149		31	295 303.9		1.2	67 65	0.05	

1

1

1

) **(111)** (111)

.

DREQUEST (CONSULTAN	IS LTD.			DIAMOND DRILL LOG							Fill i every	n page>	lole No. 1 RG-86-3	
)rilling ().W. Coate			Collar Elevation		Dip of hole at: Collar1-65	1		n of hole i I point on	n relation claim.		Map Ref.			Claie No. 5-22176 P	
ate Hole	Started	Date Completed			285.4	52 1					Location Halcrow T	(Twp.Lot.) Wp., 47 58	on. or Lat. 'N; 82 56'W	and Long.	.)
		iner ar Optionee		Submitted (sign)	•	i 					Property				
Regal Petr	oleun Lto	l. 	}	1		;					lRegal - S	Wayze	**********		
Meter From		Rock Type		DESCRIPTION		11	Feature	Specimen	Your Sample		:	-			
			i (LDIQUE) grain size)	texture; minerals; ai			-	-	i No.	i from 	i 10 	: (s.)	ilu if	\g 	ίAυ
0	1.8	lOverburden				1		1			;	} 1		ł	1
1.8	5.07	Cataclastic Iquartz Idiorite/	lweakly carbonatized a	zation, reddish brown, long quartz, chlorite, lict feldspars up to 2	carbonate veins) q	uartz l	foi 45		2170 2171		1	1	1	0.04 0.05	}
1		icataclasite	fine grained groundma		an in spinitic LD .		-0				1	1		1	
5.07	18.77	l Cataclasite !		ass of quartz; carbona wartz porphyrobiasts ()				1	2172 2173 2174	8.6	9.3	0.7	20 1	0.02 0.01 0.02	-
			lueak to moderate pred lquartz veins 2-10cm m	lominantly along vein a lost parallel to foliat	nd foliations, large ion, soderate hesat	e le ization de	veins 60-45		2175 2176	10.2 11.2	11.2 12.3	1 1.1	55 i 11 i	0.02 0.01	-
		1 1 1	land chloritization pr lpyrite: trace chalcop l		OF PETCHY ETTECT.	1-26			2177 2178 2179	13.5	14.7	1.2	18 ;	- D.01	-
18.77	26.22	cataclasite siliceous		ed strongly silicified > chlorite: epidote: h ritization moderate: u	ematite) pervasive (veak 1			2180 2181 2182	17.3	18.9	1.6	20	- - 0.02	-
26.22	71.07	l Icataclasite	laostly 45 degrees but	also D degrees					2183 2184	20.7 21.9	21.9 23.1	1.2 1.2	10 6	- 0.01	-
20.22	51.05	isiliceous l	carbonatization and s	and green; strongly s oderate chloritization han 25%; thin chlorite	in green bands, qu		foi 0-45		2185 2186 2187	24.2	25	0.8	4 4 4	0.05 0.02	-
31.03	31.94	l Icataciasite	ł	s, approximately 1% su cite epidote alteratio		ici-			2188 2189 2190	27.8	28.7	0.9	5	0.02 0.03 -	
31.94	34 12	siliceous	lfication				foi sn	1	2191 2192					-	-
1		isiliceous	dark red brown, patch			1	50		2193	31.9	33.1	1.2	10	-	-
34.12	55.21	icataclasite	12-70 cm wide parallel	ional hematitic and bl to foliation; very fi icite; carbonate; epid	ne grained groundmam ote with 20X-4DX qui	ss i artz i	fol 45	- - - - - - - - - - - - - - - - - - -	2194 2195 2195 2196 2197	34.3 35.7	35.7 37.1	1.4 1.4	1 7 1 10 1	- 0.02 0.01	-
			lless than 1 cm; 1X-2X Ichlorite; epidote alt	pyrite, moderate to s eration mostly restric	trong silicification ted to hairline frac	n) ctures			2198 2199	38.5 39.4	1 39.4 1 40.3	0.9 0.9	17 16	-	-
: 			land follation planes; section	15 cm pale green apha	nitic syldnite at bi	ł	tol 40-50	4 1 1 1 1	2200 2201 2202	40.3 41.8 43	43 44.2	1.2 1.2	20 19	-	-
55.21		icataclasite Istrongly	I fine to medium graine {becoming more banded	• • • • • • • • • •				1	2203 2204	44.2	45.3			•	-

and when these and these and these and the second and the second and

1

/KEWUC31 (CONSULTAN1	S LTD.			DIANOND DRI		=					Fill every	page	->:RG-86-3	Page no.
Drilling ().W. Coate	25		Collar Elevation	Bearing from True North	1Dip of hole lat: Colla	• •	to fixe	n af hale i d point an			Map Ref.	No.		Claim No S-22176	P
Date Hole 24/10/86	Started	Date Completed	Date Logged		285.4	. 52 -	1				Location Halcrow	(Tup.Lot) Tup.; 47 5	Can. ar La 8'N; 82 54	et. and Lor	ng.)
	on Eo., Ow	ner or Optionee		iJ. Chapman Submitted (sign) 	•						Property Regal - 1	Name			
Meter From 1		Rock Type		DESCRIPTION	******			Specimen			e (a.)	Sample Length		Assi	
; 			l (Colour: grain size;	texture: uinerals: al	teration; etc	. }	: Angle	(Meterage	; Na. ;	From	; Ta	{ (a .}	1Cu	49	(Au
		lsiliceous 	to veins and fracture	artz porphyroblasts ca s strong to intensely very fine disseminate	silicified; s		 fo! 45		2205 2206 2207 2208		\$50.5	: 1.1 1.5		3 - 5 - 2 -	-
65.4	67.14	icataclasite lintensely lsiliceous	lfine grained to aphan	oming dark blue at lam itic; quartz porphyrob groundmass quartz; ser	lasts decreas	e from 35%	tol	4 1 1 1 1 1 2	2200 2209 2210 2211 2211	51.6 53.1 54.3	53.1 54.3 55.6	1.5 1.2 1.3		3 - 2 -] -	
67.14	68.78	 biotite lamprophyre_dike 1		ximately 35% carbonate			l 45 Idike	2 3 6 6 7	2213 2214 2215 2215 2216	58.2 59.4	59.4 60.4	1.2		51 - 51 -	-
68.76	70.8	icataclasite lintensely isiliceous	continuation of 65.4- 12X-3X sulfides	67.14 metres, becoming	: græy græen a	ith depth;	25 30		2217 2217 2218 2219 2219	61.9 62.8	62.8 63.8 64.9	0.9 1 1.1		5 -	
70.8	73.15	icataclasite intensely isiliceous		hairline, quartz, chlo and sericitized, 1X-2X		te veins;	fol 45	8 1 1 1 1	2221 2222 2223 2223 2224	· ·	66.8 69.5 70.6	1 1.3 1.1	1 2	7 : -] : -] : - 2 : -	-
73.15	84.3	cataciasite 		nate: epidote; 20%-40% ; strongly siliceous a	quartz porphy nd sericitic;	vrobiosts	fol 40-50	9 1 1 1 1 1 1 1 1 1 1 1	2225 2226 2227 2228 2228 2229	72 73 74.3	73 74.3 75.2 76.4	1 1.3 0.9 1.2		7 0.01 5 0.01 4 - 5 0.01 5 -	2 -
64.3	99.14	cataclasite	10.5 mm pale red to p	h iess than 20% quartz ale gray blue; strongl adly broken 23-24.8 se	y siliceous, i				2230 2231 2232 2232 2233	77.8 79.2 80.5	79.2 80.5 81.5	1.4 1.3 1		0 0.0 8 0.0 4 0.1 5 0.0	2 -
99.14	103.95	cataclasite	dark reddish purple; Ichlorite hairline fra Isiliceous groundmass; Ibrecciated; colour ch lincreasing quartz por	ctures, aphanitic to v less than 5% quartz p ange at 102.35 metres	ery fine grain orphyroblasts to gray red a	ned + locally ith gradually	1		2234 2235 2236 2237 2237 2238	82.7 84.2 85.1 86.2 86.9	64.2 65.1 66.2 66.9 88	1.5 0.7 1.1 0.7 1.1	1 2 2 2 2 2	5 0.0% 0 0.0% 4 0.0% 5 0.0% 0 0.0%	2 - 3 - 7 - 6 0.009
103.95	105.49	i icataclasitic iquartz diorite	; dark reddish græy loc carbonatized silicifi	ally sheared fine to s ed; approximately 1% p	-	previously	ifat I 55 I	1 1 8 3	2239 2240 2241	89.1	90.1	1 1	2	1; 0.0 0; 0.0 5; 0.0	2 ; -

DREQUEST	CONSULTAN	TS LTD.			DIAMOND DRILL LOGS						Fill every	in page)	Hole No. RG-86-3	
)rilling ().W. Coat(25		Collar Elevation 		Dip of hole at: Collar:-65	ito fixe	n of hole in d point on a			Map Ref.		-	Claim No. S-22176 P	
		Date Completed	Date Logged	Logged by	285.4 52	•				Location Halcrow T	(Twp.Lot) wp.i 47 5	Con. or Lat. B'N; 82 56'N	and Long.))
	on Co., On roleum Lto	wner or Optionee d.		Submitted (sign)						Property Regal - S	Name			
Heter	age	Rock Type		DESCRIPTION	· · · · · · · · · · · · · · · · · · ·		Core Specimen	Your : Sample :		e (y.)	Sample Length	ppa	Assays	ррь Ррь
				s textures mineralss al			Heterage		From		(m.)			Au
		#assive		chlarite epidate +/- he	lus cp. locally (less than matite veining			2244 2245 2246	94.8 96.3	1 96.3 1 97.4	1.5 1.1	15 1 20 1	0.06 ¦ 0.02 ¦	-
123.5	227	i iquartz diorite lmassive l	i lighter gray than ab specularite veinlets 		rite epidote; and hematite		•	2247 2248 2249 2250		99.1 100.1	0.7 1	9	0.02 0.03	- - -
			icontaining specular land quartz veins 153 l- 2X-5X pyrite: star l181.45-183.55 m - ma	1,5-165 m - hematite car t of foliated quartz di fic volcanics with 5% v	m - 15% pyrite in lenses bonate veinlets 167-171 m orite; trace cp.	 to 40-45 to		2251 2252 2253 2254 2254 2255 2255	101.2 102.3 103.5 104.8 116.1 121.5	103.5 104.8 105.8 116.6	1.2 1.3 1 0.5	10 42 460 150	0.03 0.06 0.01 0.03	- - 0.00
			202.8-204.6 m - less - silicified carbona 222.9-223.7 m - biot	than 1% disseminated c tized locally cataclast ite lamprophyre	halcopyrite 221.16-222.9 a ic quartz diorite		2 2 2 2 2 2	2257 2258 2259 2259 2260	122.5 136.2 137.1 146.4	123.3 136.7 138.1 147.8	0.8 0.5 1	70 310 540 36	0.07 0.11 0.08 0.07	- 0.00 - -
227	236.58	l lquartz diorite lfoliated	hematization> 1-2% p		silicification and locally upto 5% over less a quartz vein with 5-10%	i ital 145-60 ivein		2261 2262 2263 2264 2264 2265	155.8 164.6	154.4 156.3 165.2	1 D.8 1 D.5 1 D.6	85 8 70	0.05 0.05 0.12	-
						40	1 3 4 6 6 8	2265 2266 2267 2268 2268	166.2 167.1 168.1	167.1 168.1 169	0.9 1 0.9	157 189 960	0.03 0.09 0.04	- - -
			- - - - - - - - - - - - - - - - - - -			, , , , , ,		2270 2271 2272	169.9 173.1 174.1	171.2 174.1 175.1	1.3 1 1	325 121 51	0.02 0.26 0.04	0.00 - 0.01
								2273 2274 2275 2275 2276	181.4 182.4 185.4	182.4 183.5 186.4	1 0.9 1	82 36 900	0.06 0.08 0.13	- - 0.0
	-	- - - - - -						2277 2276 2279 2280	188.1	188.1 188.6	: 0.8 : 0.5	86 300	0.07 0.1	0.0
ļ		• ;	4 1 1			r 	1	2280 ; 2261 ; 2282 ;	194.1	1 194.6	1 0.5		1 0.06 i	0.1

(

.

	IS LTO.			DIAMOND DRILL LOGS						Fill every	in Hc page) RC	ole No. 194 5-86-3 1	-
Prilling Company).V. Coates		Collar Elevation	True North	Dip of hole lat: Collar:-65	ito fixed	of hole in point on			Map Ref. 			ain No. -22176 P	
)ate Hole Started 24/10/86	Date Completed		Logged by	285.4 52	1				, Location Halcrow T	(Twp.Lot) wp., 47 5	Con. or Lat. a B'N; 82 56'W	and Long.)	
	iner or Optionee		Submitted (sign)		-	'n			Property Regal - S	Nane			
Meterage Froe 1 To	Rock Type		DESCRIPTION	· 	: { Planar !Feature	l Care Specimen	Your	Sampl	e (m,)	Sample Length	pp=	Assays	PPb
	1	(Colour) grain size	, texture, minerals, al	teration; etc.)		Meterage		From		(m.)	Cu As	g iAi	U
236.8 247.03	quartz diorite foliated		gray with short interv .48 metres; 25 cm bioti	als, less than 20 cm; weak te lamprophyre dyke	45-50		2283 2284 2284	206.3	207.4	1.1	292 :	0.07 :	0.00
247.03 251.6	ratarlasite Isiliceous	silicification with thematization, winor disseminated fine groups	weak chloritization, ca sericite, intensely fra	ictured (hairline); 1%-2% norease in sulfide content	dike 450 fol 40-50		2285 2286 2287 2287 2288 2288 2289 2290	207.4 213.9 215.6 221 222 226.8	214.9 216.5 222 222.9	1 0.9 0.9 0.9	125 137 41 46	0.02 0.02 	0.01 - 0.01 0.01
251.8 256.38	 cataclasite brecciated 	as above with increa	sing chloritization and				2291 2292 2293 2293 2294	228.5 229.4 230.3 231.4	229.4 230.3 231.4 232.3	0.9 0.9 1.1 0.9	87 48 159 244	0.04 0.03 0.01 0.03	0.02 - 0.02 0.02
256.38 260.46	i Icataclasite Isilicitied Icontact zone	lfuchsite, pyrite up	ciation probably anneal to 5%; stringers more p n; blue mineral in frac	revalent, chloritization	i fa 45 		2295 2296 2297 2298 2298 2299	232.3 233.3 234.1 235.1 237.1	234.1 235.1 236.6	0.8 1 1.5	160 ; 89 ; 1010 ;	D.D6 0.07 0.01 0.06 0.03	0.03 0.01 0.0 0.09 0.09
260.46 267.2	ichlorite carbonat Ischist	Imaximum thickness of	bands with interbanded bands, most 1-4 mm, 1% hk banding and small sc	-2% pyrite predominantly	fol 40-50 		2169 2168 2163	245.7 246.6 248.5	246.6 247.7 249.2	0.9 1.1 0.7	50 26	0.06 0.26 0.04	- 0.00
267.2 260.32	i Imafic Iapilli Ituff I		calcareous: less than 1	1 on flattened fragments X pyrite occasional thin;	 fp 45 		2164 2165 2165 2166 2167 2167	250.2 251.3 252.2	251.3 252.2 253.2	1.1 0.9	i 30 10 10	0.01 D.01 - - 0.01	0.00 0.00 0.00
	, biotite lamprophyre dyke	aafic dyke with appri	oximately 30% carbonate	•	35-40 		2157 2158 2158 2159	253.7 255.2 256.1	255.2 256.1	1.5 0.9	158 990	0.07 0.03 0.01	0.03 - D.0
283.51 285.36	imafic lapilli ituff	as above			, foi 40 		2160 2160 2161 2162 2150	257 257.7 258.5	257.7 258.5 259.6	1 0.7 1 0.8 1 1.1	84 22 21	0.03 0.11 0.02 0.05	0.0 0.06 0.05 0.09
	• • •	1 	END OF HOLE		52	1	2151 2152 2153	260.3 261.3	261.3 262.2	1 1 0.9	1 60 l	0.07 0.04	0.0 0.00

.

Drequest (CONSULTAN	S LTD.			DIAMOND DRILL LOGS	2					Fill in every (n page)	Hole No. RG -86 -4	-
Drilling (D.W. COATE	S		Collar Elevation	Bearing from True North	Dip of hole lat: Collar: -65	Ito fixed	n of hale i d point on :			Map Ret.	No.		Claim No. 5-22146	
Date Hole Oct. 27; 1	Started 1986	Date Completed Oct. 30; 1986	iDate Logged	Logged by	276.2 57	-				Halcrow T	wp. 47 484	on. or Lat. Ny 8256'W)
		mer or Optionee				-				Property	Nane			
REGAL PETR	ROLEUN LT).		Subaitted (sign) 		1				(regal - s	WAYZE			
Heter From 1		1 Rock Type	· haaf fersaaf had ferse } 	DESCRIPTION			l Core ISpecimen		Sample	e (n.)	Sample Length		ssays †	ozito
••••••		1 	(Colour: grain size	+ texture: ainerals: 4	literation; etc.}		(Neterage		Fran	, L Ta	(u.)	Cu ł	Ag i	Au
0 ;	7.92	Overburden	9 1 1			ł	1			ļ	}		l	
7.92	12	Cataclasite			weak chloritization and sation dominant 1 - 2% very	ifot 40		2300	8 8.8				D.02	-
1			Ifine grained pyrites	fine grained quartz,	chlorite winor sericite, porphyroblasts less than		1	2302	9.6 10.8	10.8	1.2	12 1	0.02	-
i			10.5 mm.	s picn zu - eus querta	porphyrodiasts issa inen	1 1 1		2304 1	14.9	16.4	1.5	; 7 ;	0.04	
12	15.07	i Mafic voicanic	l lfine to very fine ar	ained dark gray green:	20 - 35% carbonate	i Idike	1	2305	16.4 17.3				0.02	-
		ldike		veinlets parallel to	25		2307	18.2	19.3	1.1	10 1	•	-	
15.07 l	41.61	i Cataclasite	i loals red brown stron	gly silicified, modera	stely hematized and	45		2308 2309	19.3 20.1				0.01	-
		siliceous	Ichloritized; weakly	carbonatized; abundant	hairline chlorites	Itol	i	2310	21.2	22.2			0.01	-
;		1 1 1		fractures; fine grain	· · · · · · · · · · · · · · · · · · ·	135-45	1		22.2				0.02	-
		2 4	-	r carbonate; 1% pyrite than 1as; 2 - 20 ca qu	artz carbonate chlorite	veins 120-45	1	2312 2313	23.1 23.6				- 1	
1		1			slight colour changes	1	1	2314					D.01	-
				-	tion and chloritization	1	1	2315	25.8		•			-
i I		1		 predominantly brick epidate fractures to 2 	red with hairline quartz	i Ifal	i 1	2316	26.9 28.1				0.03 0.05	-
		1		- brick red intensely		35-45	1	2318	29.1		-		D.08	-
1				quartz; carbonate tour	saline veins contornable	1	1	2319 1	-				0.06	-
i		4 	with foliation	,		i I	i 1	2320 2321 2	31.4 32.5				0.07	0.00
41.61	69.1	Cataclasite	lpale red brown, fine	grained: moderate sil	leification, chloritization	*	1	2322	33.6				0.13	-
1		1		atization: 20 - 30% qu		ifal .	1	2323	34.9				0.07	
י 				z ano quarto chiorite: yriteo epidote also pi	carbonate veins parallel Traliel to follation	135-45	i I	2324	35.8 36.8				0.02 0.02	
l		ł		strongly banded dark			ł	2326 (37.8	38.5	1 0.7	61	0.02	-
69.1	77 4	l Cataciasite	i Idaek ourola sod. sod	angta gilicification -	ith abundant hematite:	1		2327 2328	38.5 39.4				0.02 0.04	-
	14.14	}			is 5/cms predominantly	1		2329	40.5				0.04	; -
		1			tting: generally hairline	1	1	2330	41.6				0.02	
		i 		tz porphyroblosts less ith depth; less than {	i than 0.5 to 3 mm; fracture I avrite		1	2331	42.5 44				0.01 0.03	
		1	j j insueirt mäpigastil ä a		M 44(120	fal		2333	45.2				0.03	, -
72.4	84.1	Cataciasite			zation, generally weak	140-50	1	2334	46.2	47.5			0.05	
		1		tization, chloritizati moundmassi 15 - 35% mu	ion; fine grained quartz;	1	i 🖡 de Marie - La	2335	47.5 47.9				0.01 0.05	

t start Shir war shir that take have been been itse itse itse take take

REQUEST (CONSUL TANT	S LTD.			DIAMOND DRILL							Fill i every		Hale No. >1RG-86-4	-
Filling (I.W. COATE			Collar Elevation 	Bearing from True North	Dip of hole			of hole i point an			Map Ref.	No.		Claim No. 5-22146	
ct. 27, 1	986	Date Completed	Date Logged	21D degrees Logged by	- 276.2 .	57					Haicrow	Twp. 47 48	'N; 82 56'	t. and Long. V	
xploratio		ner or Optionee		¦J. Chapman Submitted (sign) 	•		i , 				Property REGAL - 1	Nane	*******		
Heter Fros		Rock Type		DESCRIPTION				Specimen		_	e (a.)	Sample Length	PPN.	Assays +	oziton
		i *****	{ (Colour; grain size;	texture; ainerais; a	iteration; etc.)		i Angle	Meterage	1 No. 1	Froe	To	{ . .}	¦ Cu	i Ag	i Au
		2 7 7 7	ithan 0.5 to 2 mm; occi icarbonate chiorite ve laetre; 76.5 metre; 79 i1 % pyrite	in at 75.5 metres sma	iller 1 - 3 cm ve	ins at 75.8			2337 2338 2339 2340	48.9 49.6 50.6 51.8	50.6 51.8	0.8	1 5	0.03 0.01 0.03	- 1
		1					1 40		2341	52.9	54	1 1.1	1 6	0.05	
84.1	107	Cataciasite	Idarker coloured version is initiation and the second seco			1 - 7 1	1	1	2342	54 54.9		•			-
			ipyrites trace specula		•	1 - 2 8	;	1	2344		•			0.08	
		1	199.5 - 101.5 metre -			-	1	1	2345				•	0.01	
		1	iquartz with sinor chi isurfaces.	orite; trace sericite) carbonate on ti	racture	ifol I 45		2346					0.04	
i		1	1					i	2348						
107	113	Cataclasite	las above with only 15				1	1	2349		-				-
			lincrease in epidote b			- epidote:	1	1	2350 1801			-		0.02	-
			carbonatization	E VEINS AND ITALLUTES	1) ute k			1	1802	64.5					-
;		!	1				Ital	i i	1803	65.6		1 1.1		i 0.01	
113	120.7	Cataclasite	les in 84 - 107 setres				40-45	1	1804					0.01	-
i		;	quartz porphyroblasts				1		1805		-			0.01	-
1		1	ichloritic and hematit		ISS THEN 2 CS THIS	563	i Ifol	1	1806 1807					0.04	-
ļ		, , ,					1 45		1608					0.02	
120.7	137.65	Cataclasite	iduli gray brown and ge	reenish braun: 15 - 3	10% quartz parphys	oblasts	:	l.	1809	72.3	; 73.6	1.3		1 0.01	
1		1	liess than 0.5 - 2 am	*			1	1	1810			-	-	0.02	-
		i 1	lainor carbonate ground				1	i	1811					0.01	-
1		1	i4 mm; quartz carbonati lveinlets; 1 - 2 % dis;			-	1	1	1612 1613	75.4				0.01 0.02	
į			itap of sections increa				I foi	i	1814						
ł		1	1123.5 - 129.0 metres	• ·	itic fractures		40-45	1	1815			1 1	1 5	0.02	- 1
1			1129.0 - 132.2 metres				1		1816					0.04	-
		i 1	lincreasing fracture de	ensity with depth to	stock work at 1	SU metres	:		1817						
i		н !	for 15 cm. 132.2 - 134.8 metres -	- henstitle onna utak	shoet, 10 cm in	terusle of	•	1	1818 1819					0.04	
1		4 1 3	inglanite (no quertz p				1		1617					0.03	
į		1	134.8 - 137.5 metres	• •				1	1821					0.01	
;		ł	lvein parailel to folio				1	1	1822	85.7	86.8				
1		•	:				ltol	1	1823					0.02	
137.65		Cataclasite	lbrick red strongly si				40-45		1824	. 68.1	1 69.3	1.2		1 0.05	

Request C	ONSUL TANT	S LTO.			DIAMOND DRILL LOGS						Fill ir every p		Hole No. RG-86-4	
rilling C .W. COATE	S	**************	Collar Elevation	Bearing from True North 	Dip of hole lat: Collar! -65	to fixed	n of hole i d point on			Map Ref.	No.		Claim No. 5-22146	
ate Hole ct. 27; 1	Started 986	Date Completed	Date Logged	Logged by		1				Halcrow 1	(Twp.Lot;Co Wp. 47 48'N	Ir 82 561¥		
	n Co.; Ow	ner or Optionee	Date Submitted	Subsitted (sign)	• • • • • • • • • • • • • • • • • • •					Property REGAL - S	Nane			
Heter Fron 1	-	Rock Type	:	DESCRIPTION	==+=+U+U=+=========================		l Core (Specimen		Sampl	e (n.)	Sample Length	₽ ₽ ₩.	Assays +	oziton
		!	; (Colour) grain size)	texture: minerals; a	Iteration; etc.)	Angle	Heterage	i No. i	Fron	l To	! (m.)	Cu	Ag	Au
138.6	141.5	Cetaclasite			gly siliceous less than 20%	1	1	1826	90.7					0.005
					itly disseminated with some		-1	1827	92					-
1		i 	ifine stringers; perva	ISIVE CARDONATIZATION		i 2	i 1	1828 1829	93 93.9	-				
141.5	144.85	Cataciasite	ipale gray, moderate t	a strongly silicified	weakly chloritic and	1	1	1830						· -
ļ		1			seminated: 15 - 25 % quartz	1	1	1831						
1			porphyroblasts in fin	ne to very fine graine	d groundeess.	1		1832						-
144.85	153 25	i Cataclasite	i Shairk and to asla and	a. wast to sodassta e	ilicification, abundant	i I	i	1833 1834	98.4 99.4					
144.05 1	155.25				tite epidote fractures;	1		1835	100.5					-
1		1			147.67 - 148 metres: 1 cm	itol	i	1836	-					- 1
ł		1	Ifauit gauge at 147.6	metres parallel to fo	liation. 1 - 2 % pyrite.	40-45	1	1837	102.4					-
453.00								1838	103.5		·			-
153.25	155	Cataclastic Iquartz diorite	a quartz chlorite gro		and feldspar aggregates in	i I fol	i	1839 1840						
		iquartz olorite	icarbonate veins. 1%		riine to 5 CH quertz	1 45	1	1841						
Í		1	1			1	i	1842	108.1					. -
1		1	1			;	1	1843	108.6					-
1						1	ļ	1844						-
i		i				1fo1 1 40		1845 1846	110.8 112					, - , no
1		1				i 40	i !	1046						: D.O.
i						ļ	1	1848						- 1
1		ł	1			I	1	1849					0.02	- 1
		1				1	1	1850					0.06	-
i		1						1851						i -
		• !				i !	i 1	1852 1853	118.4 119.4	119.4			• •	-
i		, 				1		1854						- 1
		1				1	1	1655	121.6	122.6	1 1	2	0.05	i -
		l				1	1	1856						-
i		i				i.								0.01
1		1				1	4 . 1	1858 1859					· - i	-
						i	Ì	1660					- 1	-
1		ł	1			1	1	1861	128.4	129.3	1 0.9	3		-
1		1				I	1.	1862						-
		;	;			1	4.1	1863			1 1.5		0.02 0.02	<u>-</u>

and along and along the state and along the state and along the state

1

OREQUEST	CONSUL TAN	IS LTD.					LOGS	8						Fill i every		Hole No. -> RG-86-4	lPage No. 4
Drilling D.W. COAT			Collar Elevation	Bearing from True North	(Dip of) lat:	hole Collari	-65		on of hole ed point on		00	M 	lap Ref.	No.		Claim No 5-22146	
Date Hole Oct. 27;		Date Completed	Date Logged		- 276	.2	57	-; -;						(Twp.Lot.C wp. 47 48'		at. and Long 'U	g.)
•	on Co., Ov ROLEUM LTC	iner or Optionee).	Date Submitted 	IJ. Chapman Submitted (sign) 	i •• ======= i i i	R. ; R, 							Property REGAL - S				
Hete From	rage ¦ To	Rock Type		DESCRIPTION	******	*****			- 1 Core I Speciaen	: Your Sample		apie !	()	Sample Length	ppm.	Assays +	ozitor
			(Colour) grain size:	i texturei aineralsi a	Iteration	etc.)			Meterage		Fra		To	(a.)	Cu	i Ag	l Au
*****	 									18	6 133	33 1	133.9 134.9	-	1	6 0.06	
								i 		18 18 18	8 1	.9 36 .9	136 136.9 138	0.9	1	0 - 6 0.03 7 0.04	
	;	k 1							1	18	10	38	138.3	0.3	1	6 0.02	- 1
	i 1	1						1	1	18 18		.3 39	139 16.25	0.7 0.8	-	1 (D.05 6 (D.08	
	}	1						1		18		.8	140.6	0.8		0 0.01	
	!	1						1		18		.6	141.5	0.9		5 0.03	
	1	1								18		.5	142.4	0.9		6 C D.02	
	• !	1	i I					i 1		18		.4	143.5 144.7			5: 0.04 0: 0.02	
	1							1		18		.7	145.7			1; -	-
	ŧ	1						1	1	18		71	146.8	• -		0 0.05	-
	l		1						1	1 18		.8	147.7	0.9		1 0.01	
455								1		18		.7	148.6	0.9		0 0.03	
155	i 167.45	lquartz diorite foliated		dary gray with depth Trate chloritization				ifol i 4		10		.6	149.7 150.5			0; 0.06 0; 0.01	
	! !			vs, Simetre, less than			1 - 288	1 46 1	1	1 18		.5 1	150.5	0.8		0 0.01	
	}					6				16		.4	152.7	1.3		5 0.02	
167.45	177.25	Icataclastic	approximately 50150	in 1 to 1.5 metre sect	ions, qua	rtz dia	rite	1	i i	1 18		.7	153.6	0.9		4 0.02	
	ł	quartz diorite/	Ifoliated fine grained						1	1 18	7 153	.6	154.6			9 0.02	
		lquartz		, some stringers. Cat		-		40 - 49	5 l	1 10		.4	168.3	0.9	-		
	i I	diorite	- igrayish pink with pat - 11 - 2% pyrite; weak i	tchy brecciated appear			chigritic;			1 18		.3	169.4 170.2	1.1 0.8			
		1	1			iver 14 -		ł				.2	171.4				0.01
177.25	226.2	Iquartz diorite	Imedium gray: medium g	rained, partly weakly	foliated	, perva	sive	Í	i	18		.4	172.4				
	1	laassive	[carbonatization; less		• •			.1	1	1 . 18		.4 1	173.3			9 D.O2	1 0.00
		1	179.25 - 180.1 setres		y foliated	dark (grāy	1	1	1 18		.3	174.3			1 0.03	
		1	ichioritic quartz dior					Itol		1 18		.3	175.6				
	i I	i I	187.9 - 168.8 metres		carbonati	ted and	OT MAG.			1 18		.6	176.5	0.9		0 0.04 • • • • •	
		1	section at 195 metres	i.		19 - E		í 6.)	18		.5	177.4 180.2				
226.2	228.9	icataclastic	, Ipale gray to pinkish	aray, and un arained	with 10 -	20 cm	intervale	i fai		1 10		.2 1	180.2 186.1	1.2		9 0.07	
		quartz diorite	lof fine grained quart					4	5 i	19		.9	188.8	0.9		9 0.12	
		1	Ito moderate silicific					4	1	1. 17		.8	189.7	-		6 0.01	
1		1	1					ł		1 17		.71	190.3	0.6		0 1 0.01	
228.9		cataclastic		ove 1 - 5% pyrite str							3 19		200.5	1 0.6	1 90	51 0.34	1 0.0

tarted		Collar Elevation			DIAMOND DRILL LOGS						Fill in Hole No. every page>1RG-86-4			
	Drilling Company D.V. COATES		Bearing from True North	at: Coller: -65	Ito fixed point on clais.			Map Ref. No.			Claim No. S-22146			
Date Hole Started (Date Completed Oct. 27; 1986 (Oct. 3D; 1986 Exploration Co.; Owner or Optionee REGAL PETROLEUM LTD.		Date Logged								Location (Twp.Lot;Con. or Lat. and Long.) Halcrow Twp. 47 48'N; 82 56'W				
				••• ••• ••• ••• ••• ••• ••• ••• •••	 					Property Name REGAL - SWAYZE				
Heterage ; Rock Type Froe ; To ;			DESCRIPTION						• (m.) !	Sample	ppa. i	ppe. Assays + ozl		
		(Colour; grain size;	texture: sinerals: a						Fron	Ta	t (m.)	Cu	t Ag t	Au
	quartz diorite	foliation 238.9 - 240.2 actres - product(?) along veins	first appearance of and fractures)	blue mineral (al dyke upper	contact	65	1 7 7	1758	227.4 228.3 229.5 230.1	228.3 229.5 230.1 231	0.7 1.2 0.6	48 181 1350 85	0.03 - 0.13 0.32	- - 0.0
	quartz diorite/	ichloritics quartzy chi	orite groundmass wit	h approximately 5	K quartz		8 9 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1760 1761 1762 1763 1763 1764	233.5 234.5 235.5 236.5	234.5 235.5 236.5 237.2	1 1 1 0.7	70 61 96 148	- 0.01 0.06 0.07	-
		icarbonitization, incre icarbonate veining 1 - 3 1 ipale to dark rød brown	asing silicification 3 cm approximately c > aphanitic to very	to base; increas concordant with for fine grained with	ing quartz Hation.	lfol 45 - 55	5 7 7 7 7 7 7 7 7 7 7 7	1766 1767 1768 1769	238.1 239.7 240.7 241.7	239.2 240.7 241.7 242.4	1.1 1 1 1 1 1 1	70 49 50 90	- - 0.04 0.05	- - 0.
		Ipredominantiy as strim Ihematization; bonded an Iwhite carbonate bearin Ibecoming patchy. 1261 - 261.35 metres -	gers, intensely sili ppearance due to dar g bands. Silicifica silicified brecciate	cified, moderate a k green chloritic tion weakening wit	zones and			1771 1772 1773 1774 1774 1775 1776	243.6 244.7 245.7 246.5 247.5 248.5	244.7 245.7 246.5 247.5 248.5 248.5 249.5		105 51 35 32 193 76	0.01 0.06 - - 0.02 0.02	0.0 0.0 - -
270.5					g with depi			1778 1779 1780	250.5 251.6 252.2	251.6 252.2 253.1	1.1 0.6 0	275 30 73	0.11 0.09 0.09	0. 0.0
						fol 45	1	1782 1783 1784 1785	254 254.9 255.7 256.7	254.9 255.7 256.7 257.5	0.9 0.8 1 1	15 26 24 91	0.06 0.01 0.07 0.05	0.0 0.0 0.
			ENG OT NGIE	. •	ny i e			1787 1788 1789	258.4 257.4 260.3	259.4 260.3 261	1 1 1 0.7	51 16 30	0.06	0.0 D. 0.0
2	To 250.4 666.05 270.5	250.4 Rock Type To quartz diorite quartz diorite quartz diorite/ cataclasite donite siliceous ayionite siliceous	Rock Type To Image: Second Se	Rock Type DESCRIPTION To (Colour, grain size, texture, elevals,	Rock Type DESCRIPTION To I (Calour, grain size, texture, einerals, alteration, etc.) iquartz diorite iquartz carbonate veining approximately 5% concordant with ifoliation 1230.9 - 240.2 metres - first appearance of blue mineral (al product(1) along veins and fractures) 1239.3 - 239.8 metres - biotite improphyre dyke upper lower 250.4 icataclastic 170/30 pale rose to pale red brown, moderately siliceous mea quartz diorite/ ichloritic, quartz, chlorite groundeass with approximately 5 icataclasite 100/30 pale rose to pale red brown, moderately siliceous mea inver 250.4 icataclastic 170/30 pale rose to pale red brown, moderately siliceous mea quartz diorite/ ichlorite, ichloritic, quartz, chlorite groundeass with approximately 5 icataclasite 100/30 pale rose to pale red brown, moderately siliceous mea inver 250.4 icataclastic 170/30 pale rose to pale red brown, moderately siliceous mea quartz diorite/ ichlorite 10% quartz porphyroblasts and some relict fieldspars. 1 - 5% pyrite, w icarbonate veining 1 - 3 cm approximately concordant with fo ipale to dark red brown, mehanitic to very fine grained with isiliceous 66.05 imyionite 10% quartz porphyroblasts, less than 1 mm. 2 - 5% pyrite isiliceous ibecoming patchy. 1261.35 metres - silicified brecciated some 5% pyrite ibecoming patchy. 1261.23.30 metres - as above 10% metres of sabove invionite 10% as above with approximatel	Rock Type DESCRIPTION To i (Colour, grain size, texture, sinerals, alteration, etc.) i (Colour, grain size, texture, sinerals, alteration, etc.) i (Colour, grain size, texture, sinerals, alteration, etc.) i quartz diorite i quartz carbonate veining approximately 51 concordant with ifoliation iz28,9,9,240.2 metres - first appearance of blue mineral (alteration irroduct(?) along veins and fractures) 250.4 i cataciastic i 70/30 pale rose to pale red brown, moderately siliceous weakly invert diorite/ ichloritic, quartz, chlorite spoundeass with approximately 51 guartz invert cataclasite 250.4 i cataciastic i 70/30 pale rose to pale red brown, moderately siliceous weakly invert contact 250.4 i cataciastic i 70/30 pale rose to pale red brown, moderately siliceous weakly invert contact 250.4 i cataciastic i 70/30 pale rose to pale red brown, moderately siliceous weakly invert contact 250.4 i cataciastic i 70/30 pale rose to pale red brown, moderately silicitasticastic invert contact 250.4 i cataciastic i 70/30 pale rose to pale red brown, moderately silicitation weaking quartz ichloritic, quartz chlorite, quartz chlorite, solerite, weak cataciastic i roch red brown, aphanitic to very fine grained with foliation. i predominanty as stringers, intansely siliciflad, moderate to strong ineradonate bearing bank.	Roct Type DESCRIPTION Planar [Feature] Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) Angle Inverte (Colour, grain size, texture, ainerais, alteration, etc.) So Inverte (Colour, grain size, texture, ainerais, alteration, etc.) So Inverte (Colour, grain size, texture, ainerais, alteration, texture, ainerais, alteration, iterasis, and factures) So Inverte (Colour, grain size, iteration, texture, angle, iteration, texture, angle, iteratecon, iterais, angle, iteration, texeus, angle, iteration, textu	Rock Type DESCRIPTION Planar Core frature 10 Image: Planar Core frature: Specient (Colour, grain size, texture, einerals, alteration, etc.) Angle Meterage iquartz diorite iquartz carbonate veining approximately 5% concordant with ifeliation ifol ifol 1236,9 - 240.2 metres - first appearance of blue mineral (alteration iproduct(?) along veins and fractures) ifol ifol 250.4 icataclastic 170/30 pale rose to pale red brown, moderately siliceous weakly iquartz diorite/ icataclastic ifol ifol 250.4 icataclastic 170/30 pale rose to pale red brown, moderately siliceous weakly iquartz diorite/ icataclastic ifol ifol 250.4 icataclastic 170/30 pale rose to pale red brown, moderately siliceous weakly iquartz diorite/ icataclastic ifol ifol 251.4 icataclastic 170/30 pale rose to pale red brown, moderately siliceous weakly iquartz diorite ifol ifol 252.4 icataclastic 170/30 pale rose to pale red brown, aphanitic to very fine grained with foliation. icataclastic ifol 253.5 ipele to dark red brown, aphanitic to very fine grained with foliation. ifol ifol 26.05 ipedoimanity as tringere	Rock Type DESCRIPTION Planar Core Your To (Calour, grain size, texture, ainerais, alteration, etc.) Feature (Specien) Sample iguartz diorite tourtz carbonate veining approximately SL concordant with 1 1 1754 ifulation 1233, 7 - 240, 2 metres - tirst appearance of blue aineral (alteration) 50 1755 1239, 7 - 240, 2 metres - tirst appearance of blue aineral (alteration) 50 1755 1239, 7 - 240, 2 metres - biotite improphyre dyte upper contact 65 1759 1239, 3 - 239, 8 metres - biotite improphyre dyte upper contact 65 1761 1204, Cataclastic 170/30 pale rose to pale rod brown moderately siliceous weakly 1784 1204, Cataclastic 170/30 pale rose to pale rod brown moderately siliceous weakly 1785 1204, Cataclastic 170/30 pale rose to pale rod brown moderately siliceous weakly 1786 1204, Cataclastic 170/30 pale rose to pale rod brown moderately siliceous weakly 1786 1204, Cataclastic 170/30 pale rose to pale rod brown aphanilic to very fine grained with less than 1786 1204, Cataclastic 170/30 pale rose to pale rod approximately siliceous moderate to strong 1716 <t< td=""><td>Rock Type DESCRIPTION Planar Core Your Sample To ICalour, grain size, texture sinerals, alteration, etc.) Angle Metarage is and iteration iteratiteration iteration it</td><td>Roct Type DESCRIPTION I Planer Core Your Sample (s.) To I (Calour: grain size: texture: sinerals: alteration: etc.) I Angle (Hetrage Ma. Fraiture (Specien) Sample (s.) I quartz diorite i quartz carbonate veining approximately SL concordant with to listion I 1754 226.2 227.4 228.3 227.2 227.4 228.3 227.2 227.3 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.1 228.2</td><td>Roct Type OESCRIFTION Plane: Core Your Sample (s.) Sample (s.)</td></t<> <td>Rock Type DESCRIPTION Planar Care Your Samele (n.) Samele (n.)<td>Rock Type OESCRIPTION Planer Care Your Sample (n.) Sample (n.)</td></td>	Rock Type DESCRIPTION Planar Core Your Sample To ICalour, grain size, texture sinerals, alteration, etc.) Angle Metarage is and iteration iteratiteration iteration it	Roct Type DESCRIPTION I Planer Core Your Sample (s.) To I (Calour: grain size: texture: sinerals: alteration: etc.) I Angle (Hetrage Ma. Fraiture (Specien) Sample (s.) I quartz diorite i quartz carbonate veining approximately SL concordant with to listion I 1754 226.2 227.4 228.3 227.2 227.4 228.3 227.2 227.3 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.3 227.2 228.1 228.2	Roct Type OESCRIFTION Plane: Core Your Sample (s.) Sample (s.)	Rock Type DESCRIPTION Planar Care Your Samele (n.) Samele (n.) <td>Rock Type OESCRIPTION Planer Care Your Sample (n.) Sample (n.)</td>	Rock Type OESCRIPTION Planer Care Your Sample (n.) Sample (n.)

OREQUEST CONSULTANTS LTD.			DIAMOND DRILL LOGS	**			Fill in every pi		Hole No. 1 186-86-4 1	
Drilling Company D.W. COATES	Collar Elevation 	Bearing from True North 210 degrees	Dip of hole lat: Collar: -65	Location of hole in relation to fixed point on claim.		Map Ref. N			(Claim No. 15-22146	
Date Hole Started Date Completed Dct. 27; 1986 Oct. 30; 1986	Date Logged 	Logged by	, ,			Location (Halcrow Tw	Twp.Lot.Co	n. or Lat. , 82 56'W	. and Long.	.)
, 27; 1986 Oct. 30; 1986 Ioration Co.; Owner or Optionee NL PETROLEUM LTD. Meterage Rock Type		Submitted (sign)				Property N REGAL - SW	hat			
Meterage Rock Type From To 	 (Coloury grain size	DESCRIPTION 1) texture; minerals; m	lteration, etc.)	Planar Core Your Feature Specimen Sample Angle Meterage No.			Sample Length - (m.) }	ppm. A Cu l	Assays + 1 Ag 1	ozitor 1 Au
				1793 1794 1795 1795 1796 1797 1797 1797 1800 9801 9802	264.2 265 266.8 266.8 267.8 268.8 268.8 270 270.8	265 266 266 8 267.8 268.8 268.8 270 270.8 270.8 271.6	0.9 0.8 1 0.8 1 1 1.2 0.8 0.8 0.8 0.8 0.9	40 57 15 21 31 45 60	0.07 0.02 0.07 0.03 0.04 0.01 0.04 0.04 0.05	0.024 0.017 0.005 0.017 0.017 0.017 0.017

.

OREQUEST	CONSUL TAN	TS LTD.			DIAMOND DRILL LOGS	8					Fill	in page)	Hale No. 1RG-86-5	-
Drilling (D.W. COATE	S		Collar Elevation	lBearing from [True North	Dip of hole at: Collar: 60	ito fixe	n of hole i d paint an			Map Ref.			Claim No S-22146	P
)ate Hole 10V. 26, 1	Started 1986	1Date Completed 1NOV, 29, 1986		Logged by		-1				Location	(Twp.Lot)	Con. or Lat 0+45N/4V 47	. and Lon 48'N, 82	9.) 57'₩
	on Co., Oi	wner or Optionee				•				Property REGAL - S	Nane			
Meter Fron		Rock Type		DESCRIPTION		Feature	Specimen			1			Assays	ррb
			i (Colour) grain size	s textures minerals; al	teration; etc.)	i Angle	Heterage	No.	From	¦ To	¦ (m.)	1Cu		1Au
0	D.5	loverburden	1) · · · .		1		1	1	1	1	}
0.5	5.2	catac lasite	lless than 10% porphy	roblasts, less than 1%	d brown; fine grained with pyrite; top 0.5 setres proughout; 1%-5%; random	;tol. ;40-55 ;		9851 9852 9853 9854 9855	0.5 1.95 2.45 3.95 6.95	2.45 3.95 6.95	0.5 1.5 3	20 24 40	1 1 1	-
5.2	16	cataclasite 	ito medium grained gr	oundmass; fractures pre	ss than 3 am, 20X-50X fine Hominantly chlorite-epidote, pyrite	- 	*	7855 7856 9857 9858 9859 9859	8.7 11.6 13.3 14.8	9.7 12.7 14.8 15.8	1 1.1 1.5 1	21 27 10 15	1	-
16	25.3	cataciasite/CQD	15%-10% pale to dark labove; COD generally loccasional relict fe lpossible xenoliths;	green cataclastic quart fine to medium grained ldspars up to 4 mm; sho foliation weak; increas	ort intervals: 5-20 ca: of sing thickness of veins and	40-50		9861 9862 9863 9864	16.9 18.4 19.7 20.8	18.4 19.7 20.8 21.7	1.5 1.3 1.1 0.9	1 7 1 7 1 9 1 9		
		1		erage but upto 1 cm; ra ce at 60-80 degrees; wa · less than 1%			4 3 4 3	9865 9866 9867 9868	27.1	27.1 28.5	1.4	1 9 1 8		- 24
25.3	35.36	icataciesite 	porphyroblasts less isilicification and c land veinlets, fractu llesser hematitic and	than 1 mm to 3 mm; weak hloritization; carbonat re filling predominant minor chlorite-epidote	dius grained with 10X-30X to moderate te primarily in fractures by quartz carbonate with progenerally less than 1 progenerally less than 1 progenerally less than 1	i i i dyke		9869 9870 9871 9872 9873 9873	29.7 31.3 32.3 33.4	i 31.3 i 32.3 i 33.4 i 34.3 i 35.3	1 1.1 1.1 1.7	16 15 38 60		- 6
35.36	43	i icataclasite	lat 27.5 metres, 20 c lower contact, patch less than 1%	a dacitic dyke at 33.4 y chloritic zones throu eakly hematitic locally	aetres with brecciated sphout interval, pyrite	40		9875 9791 9792 9793 9794	36.4 37.9 39.4 40.9	37.9 39.4 40.9 42.3	1.5 1.5 1.5 1.5 1.4	68 226 76 35	6 9 1 1 1	- 11
			lapproximately 1%, tr				1 1 1 1 1	9795			;	 	:	-
43 	50	icataciasite J	145.8 metres; mylonit	ic zones contain no por	prained mylanitic zone from phyroblasts: pinkish gray lite epidote alteration:	itol. 45		9796 9797 9797		46.7	1 D.9	42	1	

drequest (CONSULTANT	IS ĹTO.				ND DRILL	L LOGS	123					Fill every		Hole No ->:RG-86-5	. ¦Page No. ¦ 2
rilling ().W. COATE	S		Collar Elevation 	Bearing from True North	lDip of lat:	Collar		50 Ito fixe		n relation ciaim.		Map Ref.			Claim N 5-22146	P
ate Hole OV. 26, 1	Started 1986	Date Completed	Date Logged	Logged by	- 	.						Location HALCROW T	(Tup.Lati OWNPSHIP	Can. ar Li 0+45N/4W /	17 48'N, 8	ng.) 2 57'₩
	in Co., Ow	mer or Optionee	Date Submitted	Submitted (sign)			¦	54 				Property REGAL - S	Nane			
Neter From (Rock Type	1 1 1	DESCRIPTION			••••••••••••••••••••••••••••••••••••••		l Core Specimen	Your Sample			Sample Length		Assays	
; ;		: 	l (Colour) grain size	s textures mineralss al	iteration	n, etc.)	l Angle	Heterage	l No.	l From	t To	; (s.)	łCu		1Au
			ica to 5 ca vider loc	with occasional quartz- ally moderately hematit ined pyrite approximate	tic, brec	cciated	zones uptr			9799 9800						-
50 i	55.5	 cataclasite 	10.5 mm to 2 mm; show Thematitic) to dark g	rained groundwass with s variation in colour f reen (chloritic) less t te veins approximately	fron pale than 1% p	e orangi pyrite;	e (bleached thin 1-2 i	m itol.) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9840 9841 9842 9843 9843	50.7 52.2 53.6	52.2 53.6 55	i 1.5 i 1.4 i 1.4			-
55.5	60.2	catac lasite	l Idark green to dark g Iinterval becoming mo	reenish browns weakly b re chloritic with depth h pervasive from 57 met	hematitic h: carbon	c at top nitizat	p af ion	fol.		9845 9845 9846 9847 9848 9849	56.3 57.8 59 60	57.8 59 60 61.5	1.5 1.2 1 1.5	87 29 12 30		-
60.2	65.8 5	icataclasite	i ipale gray fine grain ibanded appearance du igenerally less than iquartz carbonate vei	ed with 10%-30% porphyr e to weakly hematitic a 5 cm; pervasive very fi niets; volcanic xenolit asing with depth pyritu	and pale ine carbo th at 62.	bleach Dnate w .65 aetr	ed bands ith feu	foi. 50		9850 38051 38052 38053 38054	63 64.5	64.5 65.5 66.5 67.6	1.5 1 1 1 1.1	27 11 11 11 11 11		
65.8 5	68.9	catac lasite	:	with 20% chlorite, min			titic zonen	fol.	- 	38055 38056 38057	68.6 69.4 70.4	69.4 70.4 71.4	0.6	22	2 1 7	34
68.9 	74.7	i Icataclasite I		erately siliceous folia ng finer grained with d		larance	almost CQ(50), fol. 40-50		38058 38059 38060 38061	72.3	1 73.7 1 74.7	1 1.4 1 1		3 4 3 3	
74.7	77.7	icataciasite 	lepidote alteration s	ed; pale to brick red i trong along sccasional vein; pervasive carbona	fracture	IS rest	ricted to	fol. 50	1 3 4 4 4 4	38062 38063 38064 38065	75.7 76.7 77.7 78.7	77.7 78.7	1 1 1 1	1	7 5 1 3 1	-
77.7	83.5	cataclasite	igreen (10-20 cm) int imoderately siliceous	ray with lesser pale or ervals, fine to very fi and hematitic 78.5-80. z carbonate; and chlori iv high angle.	ine grain .3 metres	nedi loi Babundi	cally ant thin		1 4 1 2 1 4 4 1 4 4 1 4 4	38066 38067 38068 38068 38069 38070	81.5 82.8	81.5 82.8 84.4	0.8 1.3 1.6		3 7 1 2	-
				accia at 83.1 metre: w	rak folia	tion, i	less than 1	it i ifol.		38071 38072	85.4	86.4	1 1	1 1	51	-

un auto anto anto attai attai

1

4

~ 1

	CONSUL TAN	L.			DIAMOND DRIL	*********						•	page	> RG-86-5	
)rilling).W. COAT	Company ES		Collar Elevation	Bearing from True North	Dip of hole	60	Location Ito fixed		n relation		lMap Ref.	No.		Claim No S-22146	р. Р
	Started	Date Completed		Logged by		 	1				Location	(Tep.Lot)	Con. or La	it. and Lo	ng.)
		ner or Optionee	Bate Cubaitand		214.3 .		•								
EGAL PET		mer of optionee	ibale Supartieu i	Submitted (sign)	•						Property REGAL - S 				
Mete From		Rock Type	1	DESCRIPTION					Your Sample	Sampl	e (1.)	Sample	рра	Assays	ppb
	! !		l (Colour) grain size	, texture, minerals, al	teration; etc.				i No.		¦ To	(m.)	lCu		lAu
	1						1 50	1	38073	87.5	88.5	; 1	1 16	5 I	; -
83.5	93.8	Icataclasite		rk gray green with appr			1	1 ¹	38074	88.5	89.3	1 0.8		3 1	
	1	1	porphyroblasts (0.5-	3 mm); weakly carbonati	zed; bleaching	related to	1	ł	38075	89.3					-
	1			ns - bleached envelope		1 ce to 5			38076				-	3 1	-
				lated to vein thickness			1		38077						-
	1	1		X-3X pyrite both dissem		•		1	38078			-	• -		-
	i	i		ine to medium grained,			lfol.	i	38079			-	-	? :	· ·
	1 !	i I	170.2 BETRES - 23 CB 1	breccia zone with predo	minantly chier	TIC BETRIX	60	1	; 38080 ; 38081	94.3 95.3				2 3	4
	• !	1		k to moderate overally	cananal incana	ea ulth danth	+ .+	1	38082	96.2				3	
		1		V CO BUACIELE DAGLETI)	Achelet turien	es with debri	1	2	38083			-	-		-
93.8	97.8	cataclasite	fine grained dark re	d brown approximately 2	OX porchyrobia	sts less			38084						· -
		1		siliceous increasing a			1.5	Ì	38085						- 1
	ł	1	pyrite	-			tol.	1	38086	100.2	101	1 0.8	1 19	5 1	-
	1	ł	1				45-55	1	38087		•	-		3	-
97.8	104	cataclasite		een at contact; 20%-60%				1	38068						-
		1		stly 1-2 mm; moderate t			lfol.		38087		-				-
	i 1	1		le rose to medium red g					36090	104	104.8	1 0.8	i 6	5 1	i •
	(!	1		ite, minor quartz-carbo int due to sericite, fu	-			4 4	38091	107.6	1 109	1.4	1	5 1	-
	({	1	zone at 103 metres	INCOUR LO SEFICILES IL	CUBILE:1 TA-TA	Pyrite ieun		1	38092	107.8	110.8			2 :	
	2	1	troug at the merican					1	1 30072		1 110.0	1		1	
104	127.8	quartz diorite	nedium grained: weak	ly follated with occasi	onal low angle	quartz	ì	1	38093	115.7	116.7	1.2	13		- i
	;	1	-	k cataclasis over 0.3 a	-		1	1	1	•	:	1	1	1	}
	1	1	104.0-106.0 setres -	moderate hematitic alt	eration weaken	ing with	1	1	38094	124.7	125.7			7 1	-
	1	4		tres - massive with sev			1		38095		-		-	3	-
	1	1		ins, bleached alteratio			1		38096					3 1	-
	i 1 1 1		iquartz-carbonate vel icontact	ns (low angle), weakly	TOILATED APPro	ach i ng	i 		38097	129.7	130.3	0.6	i 1: 	5 1	-
127.8	130.25	i icataclastic	1 177 8-178 4 mathematic	129.6-130.25 setres, st	مامدده بالمعقة	etic annae	1	1	1 1		1	!	1	1	i
11(10		quartz diorite		ered interval between r			1	1			1	1	Ì	i	ł
				eration: strongly silic			1	i	i		i	1	i	Ì	
	1 1	 		te quartz-carbonate vei			i	Ì	Ì		i	1	Ì		
	ł	1					1	1		1	ł	1	1	1	i t
130.25	164	lquartz diorite	Ifoliated predominant	ly medium grained light	to dark gray	locally	fol.	1	38098	151.9	153.1	1.2	4	1 1	: 18
	ł	\$		occasional fine and com	irse grained se	ctions:	150-	l			1	I.			
,		1	ainor erratic quartz	carbonate veins			160	1	38099	157.7	1 159.1	1 1.4	. 175	0	1 3

DREQUEST C	ONSULTANT	S LTD.			DIAMOND DRILL LOGS						Fill every		:Hole No >:RG-86-5	. ¦Page No. ¦ 4
)rilling C).W. COATE	5		Collar Elevation 		Dip of hole lat: Collar: 6		n of hole i d point on			Map Ref.	No.		Claim No S-22146	
	Started	Date Completed	iDate Logged	Logged by	8. 214.3 8. 5								Lat. and Los 47 48'N; 82	•
xploratio EGAL PETR		ner or Optionee	Date Submitted	Submitted (sign)	1.					Property REGAL - 1				
Meter Fron	age To	Rock Type		DESCRIPTION	******		Core Specimen	Your Sample	Sampl	e (a.)	: Sample : Length	pp =	Assays	PPb
	10	1	l (Colour) grain size	i texturei aineralsi al	teration, etc.)		Meterage		froe	t Ta	{ (a.)	iCu	!	Au
164	173.1	i Icataclasitc Iquartz diorite		ltered; fine to medium asing with depth); appr	grained weakly chloritic oximately 1% pyrite	fol. 50	9 1 1 1 1 1	38100 38101	159.1 160.5		-		60 1	- 180
173.1	175.8	i Icataclasite	lporphyroblasts less 11-3 am stringers; we		as disseminations and thi cation; little veining; 1			38102 38103 38104 38105		173 174	; 1.5 ; 1	-		0.03 - 0.00
175.8	178	1 Imafic volcanic I	dark green with 10%	quartz carbonate bands	less than 1% pyrite			38106 38107	175	175.8	0.8		1	0.01
178	179.6	ltuff 1	ldark purple highly s i	ilicified, upto 5% pyri	te: little veining :		1	38108 38109	177.6	,			1	 D.C
179.6	181.9	tmafic volcanic -	las in 175.8-178.8 ee	tres		lfol. 45	;	38110 38111			-		1	0.00 -
181.9	197.6	tuff 	ichlorite veinlets, 2 1183.2-185.0 metres - 1185.0-191.2 metres - ihematitic and chlori ipyrite trace cp 1191.2-197.6 metres - imoderate to strong s	O cm mafic volcanics in mafic volcanic as in 1 COD/CAT moderate to st tic, 4 cm quartz vein a	75.8-178.0 metres rongly siliceous, strongl t 191.0 metres 1%-3% with 18% matic volcanics, itization with weak to	y itol. 50 itol. 55		38112 38113 38114 38115 38116 38116 38117 38118 38119 38120	185 186.2 187.3 188.3 189.3 190.3 190.3 191.3 192.2	186.2 187.3 188.3 189.3 190.3 191.3 191.3 197.2 193.2			66 37 32 95 33 78 26 67 96	- - - 23 26 8 8
197.6	214.3	; Bafic volcanics ; ; ;	-	dant quartz carbonate v f contact; 1%-2% pyrite	-	fol. 60 fol. 50		38121 38122 38123 38124 38125 38125 38126	194.3 195.3 196.3 197.2	195.3 196.3 197.2 198.1	1 1 1 1 0.9		32 26 20 21 27 54	

1

-

orequest (CONSULTANT	IS LTD.			DIAMONO DRILL							Fill i every		Hoie No. Pi RG-86-6	•
Drilling C D.V. Coate	5		Collar Elevation 	True North	1Dip of hole lat: Collar!	50	ito fixed	n of hole i S point on	n relation claim.		Map Ref.			Claim No. 756314	
Date Hole 30/11/86	Started	Date Completed			169.5 .	49	ł				Location Halcrow T	(Twp.Lot)(wp 5E/8	Con. or Lat Ny 4748'N	. and Long.) ; 82 55'30#W	
Exploratio	on Co., Ow	iner or Optionee		Submitted (sign)							Property	Nane			
Regal Petr					;	******	;			******	Regal - S		1		
Heter Fron I	age To	Rock Type	i (Colour> grain size	DESCRIPTION , texture, minerals, al	teration, etc.)		Feature		i Tour i Sample i I No. I		1	Sample Length (m.)		Assays 1 iAi	
	12.37	Overburden		*****************											
12.37	15.06	 Quartz-biotite schist 	foliated: carbonate	as pink to white subhed								1 1 1 1			
15.06	16.26	i Mafic Volcanics ¦	; ;Fine grained, dark g ;alteration, strong c		- - - - -						 				
16.26	29.57	Quartz-biotite Ischist	ichloritics weakly se		mate moderate to strongly calcareous, moderately tic; 2-3% sulfides at 22.7-23.8m blebs and stringers writic bands along foliation planes, quartz,				37451 37452 37453	23.8	25.3	1.5	55		- -
29.57	29.9				tic; 2-3% sulfides at 22.7-23.8m blebs and stringers ritic bands along foliation planes; quartz;				37454	29.9	30.6	10.9	24		-
29.9	30.7	Quartz-biotite Ischist	i las in 16.26-29.57m		pieos and stringers pritic bands along foliation planes, quartz, ficite groundmass, <1% disseminated pyrite							9 1 1 9 9	8 8 9 9 9		
30.7	31.1	Quartz-sericite Ischist		• •							, , ,	• • • •	4 4 4 1		
31.1	35.9	Guartz-biotite Ischist	as in 16.26-29.57m 32.5-33.7m 1-2% pyri	te-disseminated					37455	32.6	33.6	5.8 :	102		-
35.9	37.4	Quartz diorite		soderate chlorite epid	• en; porphyritic; 60% phenocrysts of derate chlorite epidote alteration; volcanic							 			
37.4	42.8	Ceteciastic Iquartz diorite	lvisible: moderate si	licification; weak carb ren quartz carbonate ve	disseminated en; porphyritic; 60% phenocrysts of derate chlorite epidote alteration; volcanic yrite ained; <20% of plagioclase phenocrysts still ification; weak carbonate; chlorite quartz carbonate vein at 41.7m; 1-2%				38293	41.5	43	1.5 	32		-
42.8	44	Mafic tuff	· · · ·	e; quartz; carbonate ma ock; 5% clear quartz e;		ic fragments	1 6 1 7 7					*	 		
** ;	48.2	 Falaic Tutt 		fine to medium grained 5-10% of sample; foliat	· · · · · · · · · · · · · · · · · · ·							, L 1 1	1		

orequest c	CONSULTAN	IS LTD.			DIAMOND DRILL							Fill in every p		Hole No. (Pi 186-86-6)	-
Drilling C D.W. Coate			Collar Elevation	True North	Dip of hole lat: Collari	50	to fixed	of hole i point an	n relation claim,		Map Ref. 	No.		Claim No. 758314	
Date Hole 30/11/86		Date Completed	1	Logged by	• •	49	Ì				Haicrow Te	wp 5E/61	N; 47 48'N	. and Long.) ; 82 55'30"8	
Exploratio	on Ca.; Oi	iner or Optionee	Date Submitted	;J. Chapman Submitted (sign)							Property Regal - S	Nane			
Heter From 1	-	Rock Type		DESCRIPTION	*		l Planar Feature	: Core Specimen	i Your i Sample i	Sampi		Sample Length		Assays	ppl
:		3	l (Colour) grain size	i texturei mineralsi al	teration; etc.)			Heterage		From		(.)		l lAi	U
			ichlorite along fol. iblebs; small feldspa	es) clay alt (?) along planes; much carb occur r fragments (?) (1mm; (quartz vein with a narr t 44.1m	s as white stret 1% disseminated	ched out sulphides	foi 45 		36252		ł	;	}		
48.2	71.2	carbonate	igreen locally epidot iquartz eyes througho isheared out quartz c ialteration 158.6-60.3m - schisto ibands in schistosity iapprox 1%	y with overprinted foli ic; sericitic along fol ut 1-5% ((1mm to 2cm); arbonate bands and zon sity parallel to core w ; probably fold nose. graphitic along foliati	lation planes; g patchy appearanc es of intense ci ith foliation at Sulfides (py wit	iray blue ie due to ay .40 y kink			36250 36251 38249	57.4	1 58.8	1.2	74		
71.2		Graphitic tuff Mudstone Igraphitic	lfragments and beds u lcolour, 1-2% pyrite Black; very fine gra labove; audstone loca 175.6m - 20cm silicif	35% carbonaceous (graph p to 1cm thick, 5-10% e ined mudstone with 10-3 lly silicified and oxid ied beige felsic tuff a xidized at upper contac contact	uartz eyes (2mm) 5% interbedded t lized 15 in #7 and #8 w	dark gray utt as	: : :		38255 38254 38253	74.6	75.4	D.8	36	1	-
77.4	95. 4	Tuff	ifoliation planes; ca iveinlets (ice predom i-cerbonaceous sudsto i-10cm to 30cm bands isome sericite on foi 181.8-83.2m - series	-	sscutting quartz m vein at 81.7m tions from 2% to epidote quartz c	: carbonate with py 30% arbonate;	1 45 1 1 45-55 		38257 38258 38259 38260 38261	82.7 83.3 85.5 88.5 94.6	84.5 86.7 90	1.2 1.2 1.5	35 41 60		- - - -
95.4	108.5	 Felsic tutt 	lpatchy appearance du l lPale to medium gray, l<1X pyrite from <2em		y alteration) fr rags	agnents;		1 7 1 1 1 1 1	38262 38263 38264 38265 38265 38266	100.9	100.9 102.3 103.8	1.5 1.4 1.5	55 36 54		- - - -

nan ann ann ann ann ann ann ann a

)Request c	CONSULTANT	'S LTD.			DIAMOND DRI							Fill i every (n ¦ page>¦	Hole No. RG-86-6	
Drilling C D.W. Coate	:5		Collar Elevation 	Bearing from True North	Dip of hole lat: Colla		ito fixed	n of hole i d point on			lMap Ref.	No.		Clain No. 758314	********
		Date Completed	Date Logged	Logged by J. Chapman	169.5		1				Halcrow T	wp 5E/6	on. or Lat. V; 47 48'N;	82 55'30"	
ixploratio Regal Petr		iner or Optionee		 Submitted (sign)		• - , 	-: -:				Property Regal - S	Nase			
Heter Fron 1	-	Rock Type		DESCRIPTION		******	Planar	l Core ISpeciaen	Your	Samp I	e (a.)	; Sample	PP 8	Assays	••
	10		: (Colour: grain size;	texture: minerals: al	teration; etc	.)		iNeterage	No.	From		(m.)			A u
	********	**************************************	quartz carbonate veina	;		*********		;	38267	105.1	105.4	0.3	42	 	
108.5	112.4	 Tuff (graphitic) 	Fine to medium grained	-		ous audstone;	 tol 45		38268	109.4	110.9	1.5	26		-
112.4	119.4	; ;Tuff	As above with audstone alteration wore eviden			epidate	50	• { 				 		1	
119.4	143.3		1119.4-123.5a - graphit 1123.5-125.7a - (20% GM 1125.7-127.2a - GM beda	i all as small thin ix	San frags wax	•	65	1	38269 38270		-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
			127.2-132.4m - 30% GM			primary			36271 36272	125.4 128.3	126.8	1.4			-
			1132.4-143.3m - <15% GM interva 1140.6m - sericitic ove	frags. over top 3m (38275	139.9	1	1			
143.3	156.6	l l lTuff	above, rotate Patchy variety; pale g	id 90		-			38273 38274						-
			iclay alt; fine grained 143.6-144.3m - breccia itotalling 50% of inter	I to very fine grained ited by quartz cerbona	increasing v	ein density		1	38276 38277 38278	146.2	1 147.5	1.3	83 1	1	-
1			148.7-149.05m - vein b 1150.0-155.2m - large f ipossibly agglomerate	preccia containing pov					38279 38280 38281	148.5 149.3	149.3 150.2	0.8	96 103	ł	-
156.6 	169.5	l lTuff l	 Dark gray; fine to med fragments along foliat		•]]]	38282 38283 38284		1 152.1	0.5	80	ļ	- -
		 	irotated 90 deg: approx 168.1-169.5m - predomi 1						38285 38286 38287	156.4	156.4 157.3	1.5 0.9	100 60	4	-
									38288 38289	157.3 160.2	1	;		1	-
:		 	4 } }				1	\ 	38290	164.6	1 166.1	1 1.5	 56	1	-
1		} !					1	1	38291	1 167.7	1	1	1 1	· 1	-

Ŧ

orequest c	ONSULTANT	S LTD.			DIAMOND DRILL							Fill every	•	¦Hale Na. ≻IRG-86-7	
Drilling C D.W. COATE			Collar Elevation	Bearing from True North 1225	Dip of hole lat: Collar	50	to fixed	of hole in point on			Hap Ref.			Claim No. 758313	
DEC. 3, 19	B6	Date Completed	Date Logged	Logged by	- 		• 				Location	(Twp.Lot) CWNSHIP 1:	Con. or La 1E/6N 47	t. and Long 48'N; 82 55	a.) 540
	n Cs., Ow	ner or Optionee	Date Submitted	J. CHAPMAN Submitted (sign) 							Property			********	
Heter Fron 1	-	Rock Type	1 2 1	DESCRIPTION	***********		Planar Feature	l Core Specimen	Your Sample	Sampl		Sample Length		Assays	ppb
 			: (Colour) grain size)	texture: sinerals; a	Angle	Heterage	No.	Fran	1 To	; (m.)	Cu		l Au		
ו	7.9	overburden	isand and clay				1	1			1	l	1	1	4 1
7.9	10.6	irhyalite 	; ;pale gray to gray gre ;quartz carbonate vein ;alteration			itol. 50		38127 38128						-	
10.6 ¦	62.7	l laudstone 65%	¦ ¦interbedded black; fi	ne to very fine grain	th light to	45-65		38129	25.6	 27,1	: : 1.5	¦ ¦ 57		-	
;		isiltstone 35%	ldark gray siitstone; lfrom less than 1 mm l		-	• . •	:	 38130	29.3	¦ 30.1	¦ ¦ 0.8	1 1 60	1	-	
			ica. Mudstone beds ge in diameter occur spo	radically less than 1	Koverail. Occa	sional			38131	34.5	35.7	1.2	53		-
i 		i 1	Isaail scale folds and lbeds pinch and swell				;	; ;	38132 I	42.3	43.7	i 1.4	i 1 50	i 	-
		1	ica average 5-20 cm 125.9 metres - narrow	fault some with 3 cm .	autett unin		50	1	; 38133 ; 38134	43.7 44.7		-			90 40
			130.3-40.5 metres silt 143.0-45.5 metres sili	stone greater than au	dstone 70/30%	liabase dike,		4 9 1 1	38135	47	48.1	1.1	1	1	3
		1	labundant quartz carbo 145.5-47.0 metres - di lappearance due to oxi	nate veining; trace g abase dike; strongly	alena and sphale	rite			38136	57.9	59.4	1.5	36		-
		1	147.D-48.1 silicified	audstone/siltstone wi	th strong chlori	ite epidate		i	38170						-
			laiteration in siltsto 58.2 metres 45 cm fel		een fissile. m	tly elau	: 55	1	38171 38172				31 19		-
:		1	 	baie Biel Bi.			1	1	38173	64.3	65.6	1.3	1 2	1	-
62.7 ;	75.2	felsic tuff	luniformly fine graine	• • • • • • • • • • • • • • • • • • • •		•	itol 155-75	ł	38174						-
;		i !	istrongly sericitic; w ifilled fractures (pre idensity from 1/10 cm	dominantly hairline)	pervasive; but (varying in	199- <i>1</i> 9	• } !	38175 38176	67 68.7		1	1		-
		1 1 1	10.5 mm to 2 mm) in a				1	1		, 100, f	1 07.6	. 9.7 	; 4		-
;		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ichiorite, epidote gro (Coarser grained secti (contorted foliation)	ons show larger quart	z patches up to		; ; ;		38177 38178						27
75.2	75.6	audstone	 predominantly black f		-	than 10%	;	1	 				:	1	1
8		 	linterbedded siltstone Icontact with overlyin	g tuff; lower contact	10 degrees with	-	60	1							1 1 1
1		; ;	llamprophyre dike, 1%-	Sk pyrite blebs in au	ditione		i 	i 1	i 	i 1	1	1	1	i }	1
75.6 1	81 A	lbiotite	laagnetic; calcareous	with AD on stennely s	ilicanus black		1	•	1	1	1	1	ł	1	1

	NTS LTD.			DIAMOND DRILL							Fill every		Hole No. RG-86-7	
)rilling Company).W. COATES		Collar Elevation 	Bearing from True North 225	Dip of hole at: Collar!	50	to fixed	of hole i point on	n relation claim.		Map Ret. 	No.		Claim No. 758313	
EC. 3, 1986	Date Completed	Date Logged 	Logged by			•				HALCROU	TOWNSHIP 1	1E/6N 47 4	. and Long. 8'N; 82 55'	4
	Wher or Optionee		Submitted (sign)			 				Property R	Name EGAL = SWAY)	ZE		
Keterage From To	Rock Type		DESCRIPTION				Specisen	-		e (m.)			Assays	PPD
	l lanprophyre		; texture; winerals; a 				Heterage	No. 38179	From 61.3	*******	; (n.) ; 1.3			Au
	dike		20 degrees; xenaliths	-				38180 38181	82.6	63.6	1 1	1 26	1	-
81.4 63.4	i mudstane; isiltstone ifelsic tuff	layered sulfides (py) up to 1 cm thicks py	nd 40% respectively with disseminated and up to 1 cm thick; py also associated with ng conformable with bedding with quartz eyes approximately 40% and up to 4 G, moderately siliceous; chlorite-epidote			- - 	38182 38183 38184	84.2 85.1	85.1 86.6	0.9 1.5	12 11		-
83.4 90.2	felsic tuff	l las in 62.7-72.5 metri lmm; pyrite less than	es with quartz eyes ap 1%; moderately silice	p to 1 cm thick; py also associated with g conformable with bedding with quartz eyes approximately 4D% and up to 4 moderately siliceous; chlorite-epidote y few quartz carbonate veinlets ations less than 2 mm thick gives striped				38185 38186 38187 38187	87.5 90.8	90.8 92.3	1.3 1.5	12 11		: - : - : -
90.2 92.8	} felsic tuff	 with 20% mudstone ia	minations less than 2	with quartz eyes approximately 40% and up to 4 moderately siliceous, chlorite-epidote y few quartz carbonate veinlets ations less than 2 mm thick gives striped reasing toward base of section gray, 10%-30% quartz eyes; minor quartz-				38189 37456 37457 37458	94.6 95.6	95.6 96.6	1 1	• • •		0.0
92.8 104.1	felsic tuff	icarbonate veining qu	artz sericite groundma laminations and fragme	y few quartz carbonate veinlets ations less than 2 mm thick gives striped reasing toward base of section gray; 10%-30% quartz eyes; minor quartz- z sericite groundmass with minor chlorite inations and fragments of pyrite less				37459 38190 38191 38192	97.6 98.5 99.5	98.5 99.5 101	0.9 1 1.5	11 10	1	
104.1 130	 feisic tuff 	llaminations up to 2 196.2 metres (5 cm) a 195.3-97 metres stron	nd 97.9 metres; 10 cm gest mineralization 10 3 cm black pyritic mud stain; po.	9 4 4 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9										
		(lithic tuff)				* } }	1 1 1 1	36193 38194						-
		crosscutti approximat	ng quartz-carbonate ve ely 1%	in 92.8-95 metres terbedded tuff and mudstone/siltstone carbonatization moderate to strong; sporadic quartz-carbonate veins up to 1 cm wide; pyrite				38195 38195 38195	121.6	123.1	1.5	\$ 93	1	-

NSULTANT	S LTD.										Fill i every		Hale No. 1 1RG-86-7	-
mpany		Collar Elevation	Bearing from True North	lat: Colla	irl 50	Ito fixed)	Map Ref.	No.			
		Date Logged 	Logged by	·-	. 	• •				,			-	
		Date Submitted				•						E		
9e To	t Rock Type	 (Colour) grain size:	DESCRIPTION , texture, minerals, a	lteration; etc		Feature	Specimen	Sample	1	}	Length			ppb Au
		120.5-130.0 - repeat (lithic tuff) 			linated;	65 		 			 	 		·······
	lintermediate	icalcareous upper this	d of interval contain	s 10%-20% whit	ish quartz		- - - - - - - - -	38200 38201	136.1	137.6	1 1.7	1		-
139.4	dacite dike	lchlorite-epidote alte	eration along fracture	is and veinlets		60	5 6 7 7 7 8 8			: 190.r : : : : : :			+	
		lof dark green andesit	tes: less than 1% pyri	te, foliation		 55~65	 	; ; ;	6 8 8 8					1
	apany tarted 5 Co.; Ow EUM LTO 134.7 134.7 137.4	tarted {Date Completed 5 IDEC. 5, 1986 Co.; Owner or Optionee EUM LTO. ae Rock Type To 134.9 {felsic to intermediate volcanics 137.4 {dacite dike } 154.3 {felsic to intermediate	apany Collar Elevation tarted IDate Completed Date Logged 5 IDEC. 5, 1966 Co., Owner or Optionee Date Submitted EUM LTO. 3e Rock Type To 1 120.5-130.0 - repeat 1120.5-130.0 -	apany Collar Elevation Bearing from tarted Date Completed Date Logged 5 DEC. 5, 1966 Logged by Co., Owner or Optionee Date Submitted	apany [Collar Elevation] Bearing from [Dip of hole tarted [Date Completed] [Date Logged] [225] tarted [Date Completed] [Date Logged] [Logged by] 5 [Dec. 5, 1986] [Date Submitted] [J. CHAPMAN] [Submitted (sign)] Co., Owner or Optionee [Date Submitted] [Date Submitted] [Submitted (sign)] [Submitted (sign)] ge Rock Type [Colour, grain size, texture, minerals, alteration, etc.] [(Colour, grain size, texture, minerals, alteration, etc.] [120.5-130.0]	apany (Collar Elevation intermediate intermedinte intermedintermediate intermedintermediate intermedin	apany [Collar Elevation [Bearing from [Dip of hole [Location] tarted [Date Completed] [Date Logged] [Dip of hole] [Location] tarted [Date Completed] [Date Logged] [Dip of hole] [Location] (Co., Owner or Optionee] [Date Submitted] [Date Submitted] [Dip of hole] [Location] (Co., Owner or Optionee] [Date Submitted] [Date Submitted	apany Collar Elevation True North Collar: Col	Parameter and a set of the set o	apany [Collar Elevation [Bearing from [Dip of hole [Location of hole in relation intered [Date Logged [Zos [Zos [Zos [Zos intered [Date Logged [Logged by [Logged by [Zos [Zos [Zos Co. J Owner or Optionee [Date Submitted [Logged by [Zos [Zos	Parany Collar Elevation Collar Elevatio	appany [Collar Elevation Bearing from 10 is of hole Location of hole in relation [Map Ref. No. tarted [Date Cospleted] [Date Logged] [Date Logged] <td>Proventiend in the set of the se</td> <td>terry page</td>	Proventiend in the set of the se	terry page

Drequest C	ONSULTAN'	TS LTD.			DIAMOND DRILL		•				,	Fill in every p		Hole No. RG-86-8	Page No.
Drilling Cu D.W. Coate			Collar Elevation	iBearing from iTrue North 1 225	Dip of hole lat: Collar!	-55		n of hole i d point on			(Map Ref. 	Na.		(Claim No 1 758313	
ate Hoie S 215186	Started	Date Completed	Date Logged 	Logged by							Halcrow T	(Twp.Lot:Co wp. 9E16N;	47 48'N	82 55'W	-
xploration egai Petro		wner or Optionee d.		Submitted (sign)	• ••	******	* - { - { - {				Property Regal - S	Nase			
Metera Fron I	-	Rock Type	 (Colour, grain size,	DESCRIPTION	literation, etc.)		Feature	; Core ;Specimen ;Meterage		Sampi From	e (s.) Ta	Sample Length (m.)		Assays	ppb i Au
נ מ	1.9	löverburden					1					}			
1.9		icataclastic iquartz diorite	ipale greenish gray we with local zones of q fractures, chlorite e	uartz flooding; minor	carbonate along	smaller	ifol 45		38144 38137					•	-
			weak to moderate seri 13.3 - 4.45m - fine to 110.25-12.9m chlori Jelongate < 1mm thicky	very fine grained pa te - epidote alterati	on, fragments ty		 fo 45		38138 38139 38140	7.6	9.1	1.5	4		
13.6	14.1	audstone	surface exidation alo			silicitied			38141		1	1		1	-
14.1	14.55	biotite lamprophyre	averlying mudstone bl chilled wargins < 1 c			er contact er contact	50 45		36142 38143 38145	15.8 17.2	17.2	1.4	14 31	4 1 2 2	- 80 -
14.55	21.6	ituff	gray - blue, fine gra lainor epidote, quartz lapproximately 10 - 30 116.9 - 18.9 m - conta lmudstone, 1% py. 18.9 graphitic black mudst	porphyroblasts < 0.5 K ins approximately 30 - 21.6m - contains a	5 mm - 3 mm, ave. MX graphitic blac Nappox. 15%	. < 1 mm :k	fo 45 - 55 fo 50		38146					1 1 1 1 1 1 1 1 1 1 1 1	-
1			of interval - conform						38147	33.7	34.6	0.9	61	1	30
21.6	58.7	audstone (graphitic)	black very fine grain leostly soft but local	ly siliceous, interbo	idded with dark g	ray	ital .	1	38148	1	1	1		1	40
		8 7 ₽ 1	<pre> siltstone (wacke) hor with small-scale fold mostly); locally shor</pre>	ing; quartz carbonate	veining approx.		50		38149	1	1	1	1		-
58.7	71.5	tuff	felsic to intermediat Igreenish gray; fine t Iaudstone and siltston 11% pyrite	o medium grained; app	orax. 15 - 20% in	terbedded	45		38150	54.6	56.1	1.5	30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
71.5	82.1	i ituff	; predominantly light g D.5mm to 5mm (most <1 foliation planes with calcareous	um); weak chiorite-er	idote alteration	along	foi 45		38151 38152 38153	1 75.4	1 77.1	1.7	35	1	50 - 60

enn anno bean saint taint taine taine taine taine t

1

orequest (CONSULTANT	S LTD.			DIAMOND DRILL LOGS	3					Fill in Hole No. Page N every page);RG-86-8 ; 2 ;				
Drilling (D.W. Coate			Collar Elevation	Bearing from True North 225	Dip of hole (at: Collar) -55	to fixe	n of hole in d point on (Map Ret.	No.		Claim No. 758313		
1215186		Date Completed	1	Logged by	•					Halcrow T	wp. 9E16N	sCon. ar Lat. and Long.) 5N; 47 48'N; 82 55'V			
		ner or Optionee		J. Chapman Submitted (sign)	;	•				Property Name Regal - Swayze					
Regal Petr	oleun Ltd		1							1					
Heter From	-	Rock Type		DESCRIPTION		Feature	l Core Specimen	Sample		1	Sample Length			PPD	
		; 	{Colours grain size	; texture; sinerals; a	iteration; atc.)	¦ Angle	Meterage	No.	From	To 	; (m.) ;	Cu i		i Au	
82.1	89 1	i nudstone		grained audstone with blebs upto 2 cm; mino	20% thin (2cm siltstone	50	1	38156 38157						-	
UC.1	07.4			arren); basal 0.5 m 40			8 9 9	38158	84.4	85.9	1.5	80		-	
			as in 71.5 - 76.7 m			l	1	38159						-	
89.4	113	ltuff '		tic zone: predominanti	•	 45 - 60	1	37463 37460						-	
1		1 1	quartz-carbonate vei		cm of 70% pyrite in a	143 - 60	1	37461						-	
				· ·	patchy appearance due to		:	37462						-	
		1 1 1 1		ts; increasing chlorit	e-epidote and argillic	ł	1	38160	92.7	94.3	1.6	10		-	
1		1 1. 1			-	1		38161	113	113.9	0.9	68		-	
113	141.6	intermediate	laiteration: 1 - 3% c		nate veining and patches;		, , ,	38162	132.9	134.4	1.5	100		-	
1		voicanics			occurs locally as large 1		;	1 791/7	170 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				-	
		9 9 1	1113.0 - 113.5 = - 2		ed intrusive (dacite) dyke large 2 - 4 om biotites	45 - 60		38163 38164		139.8 141		99 103		-	
		1 	approx. 1%		inige z un piocicep	ł	1	38165	144.3	145.4	1.1	B6		-	
		1 1 1 6	1132.9 - 140.6 m - in Icross cutting at high		orite pyrite fractures -		1	38166	145.4	146.9	1.5	21		-	
		- 		· _·· # ***		1	ł	38167			1.6	36		: -	
141.6		i cataciastic		en locally strongly s idote alteration; < 1%	iliceous with weak to pyrite: weakly carbonatiz	Idi	1	38168 38169	151.3 152.7			124 120		-	
144.3	145.4	lquartz diorite 			lue gray intensely cs; and C.Q.D. from above;						1 1 1 1 1 1	(r 4 4 4 1	
145.4	149.9	idiabose dike	40% euhedral to subh	edral aagnetite, local	d, strongly magnetic 20 - ly reddish stain due to Some quartz-carbonate	1 1 2 1 1 1 1 1 1	1 1 1 1 1 1 1		4 } } } 1 { 1))) () () () () () () () () (
147.9	151.3			s cut by decitic dikel	and silicified, brecclated ets with xenoliths of blue	1 F C			1 5 1 6 5	1 1 1 1	- 	r F F F F F F			

nan ann ann ann ann a

OREQUEST CONSULTANTS LTD.		DIANOND DRILL LOGS							Fill every		Haie Na. ->186-86-8	Page no 1 3		
Drilling Company D.W. Coates	Collar Elevation 	Bearing from True North	Dip of hoi lat: Col				n of hole d paint on		In	Map Ref	f. No.		Claim No 758313	
Date Hole Started Date Completed 1215186 1218186	}	Logged by	-{ 	B. (*********	1			an (Twp.Lot) # Twp. 9816			ig. }		
Exploration Co.; Owner or Optionee (Date Submitted)-		Submitted (sign)	Submitted (sign)							Propert Regal -	ty Name - Swayze			
Meterage Rock Type From To		DESCRIPTION				Feature	l Core ISpecimen	Sample	1	e (m,)	Sample Length		Assays	PPb
151.3 157.5 cataclasite		e, texture, minerals, a		*****	asts < 0.5		Heterage	; No. 	From	To 	; (m.)	Cu 	••••••••••	Au
157.5 181.7 volcanics	l felsic to intermedia	nte; gray to gray-green prite-epidote alteratio	•	lorite		45					* * * *	1 1 1 1		
			end of hol	1.		: 1	1		1	1	1	1	1	1

888 					DIAMOND DRILL LOGS						Fill in every :		Hole No. 1RG-86-9	-
rilling Co .W. Coates			Collar Elevation	True North	Dip of hole at: Collar 50	to fixed	of hole i point on	n relation claim.		Map Ref.	No.		Claim No. 709043	
2/9/86		Date Completed	Date Logged 	Logged by				Halcrow T	Location (Twp.Lot;Con. or Li Halcrow Twp 13+25E/0+255; 4			7 47'N; 82 55'30'V		
	n Co., Ow	ner or Optionee	Date Submitted	Subaitted (sign)	•	Property Name Regal - Swayze								
Hetera From }		Rock Type	 (Colour+ grain size	DESCRIPTION ; texture; sinerais; s	iteration, etc.}		l Core ISpeciaen IMeterage		Sempl From	e (m.) To	Sample Length (m.)	i ippa iCu	Assays Ipps IAg	leeb lAu
0 1	17.3	lOverburden) 	***************************************					*****	 				
17.3	36.8	i Mafic Volcanics	-	edium grained, massive	•	55	i	36203	12.3	18.8	1.5	1	1	-
			lapprox 1%; specular	e carbonate and minor a hematite occurs as irri	egular patches and			38204	24.6	26	1.4	165	1	-
			lhairline fractures m	-	dote alteration along cally tuffaceous sections	1		38205	31.4	32.9	1.5	7		8
				vein with specular hea	atite			38206	35.5	32	1.5	183		-
		2 4 1	23.5m - 36.8m - tuff: 	aceous section		4 5 	1	1		 	 	¦ ¦	↓ ↓	
36.8 ;	71.6	l'Intersediate Volcanics		ntly medium grained wi idote alteration; <1% (th weak foliation weak to - pyrite	50-75	1	38207	41.6	43.4	1.8	5 	1	-
		}	141.6-42.6m - tufface 165.0-69.1m - sericit	Dus interval lo zone: increase in li	ntensity of	1	1	38208	54.6	55.8	1.2	6	1	-
		 	ichlorite-epidote alt ifoliation	eration; sinor quartz (veining conformable to	1	1	38209	57.4	58.7	1.3	3 	 	-
71.6	73.1	l Chiorite	1	ed; approximately 60/4	A chineitic/carbonate	55		36210	62.9	64.4	1.5	14	1	-
			lintervals; <1% pyrit				• • •	36211	67.4	68.9	1.5	8	 !	-
73.1	85.1	Cataclastic Iquartz digrite		antly pale reddish; fli	ne to medium grained; hematization; CQO with	60	1	36212	73.2	74.7	1.5	24	1	-
		iquerts didrite	lintensely chloritize	d zones approx equal:	individual bands thickest			38213						-
			lin center of interva				1	38214		1	1	ł	1	-
85.1	112.3	Chiorite carbonate_schist			chlorite to carbonate bands e with foliation pyrite <1%			38215 38216	86.3	87.8	1.5	45	1	-
112.3	117.5	: Felsic tuff	: ifine to medium grain	ed gray, unifora grain	size, weakly foliated,	50	1	38217 38218	93.9	95.4	1.5	1 90	1	-
1		1	11-3% pyrite as disse 11-4ce quartz veins	mination and stringers	associated with small	1.	1	38219 38220	99.8 104.1					-
117.5	128.7	¦ ¦Chiorite	 as in 85.1-112.3m; c	ontorted foliation com	son and 2-5% quarty veining	:		38221 38222	111.1					-
1			((up to Scm)) chlorit	e-epidote alteration #	oderate locally intenses			36223	115.5	1 117	1.5	1 12	1	-
		i	lpyrite 1-3% associat 1110-119.5#	ed with quartz veining	, possible fold zone at	i -	1	38224	117					

Equest con	ISULTANT	S LTD.	DIANOND DRILL LOGS				*******		Fill in every page -	:Hole No. >:RG-86-9		
128.7	168.7	tuff/mudstone	banded; very fine grained gray brown tuff with elongate vitrous gray fragments; very soft: dark green to black chlorite-biotite bands; white quartz carbonate bands; minor fuchite at 128.4m; 1% pyrite and itrace cp associated with quartz veining conf. with foliation; locally intense chlorite-epidote alteration 136.6m - 10cm quartz vein with 5% pyrite; trace cp; contorted bedding 143.2-145.3m - 0-65 deg. at 128.5m; 133.3m; 135.6m; 138.6m; pale gray ibrown felsic tuff uniform fine grained very weak banding; weakly icalceneous	fol ane 45 45-90		36227 36228 38229 38230 38230 38231 38231 38232 38233 38233 38234 38235	127.2 128.7 130.3 131.6 133 134	128.7 : 130.3 : 131.8 : 133 : 134 : 135.5 : 136.9 :	1.5 1.5 1.6 1.5 1.2 1 1.5 1.4 1.5	251 : 70 : 59 : 66 : 61 : 74 : 45 : 59 : 56 :		
			150.2-151.3m - black mudstone lenses within tuff section; strongly lgraphitic 152.7-153.1m - same as 150.2-151.3 1149.2-149.7m - 80% quartz veins conformable with foliation; graphitic lpartings between veins 1165.4-167m - gray white felsic tuff similar to mineralized zone in 10DH # 788; <1% pyrite; fault at 166m			36234 36237 36238 36239 36239 36240	150.2 151.6	150.2 151.6 153.1	1.5 1.5 1.4 1.5 1.4	56 97 66 70 114	-	
168.7		Chlorite Carbonate schist	las in 85.1-112.3m 168.7-171.3m - andesitic tuff	50		38241 38242 38243 38243 38244 38245 38245 38246 38248	163.9 165.4 165.4 166.9 175.8 181.9 196.5	165.4 166.9 168.3 177.3 183.3 197.2	1.5 1.5 1.4 1.5 1.4 1.4 0.7	109 106 75 71 102 99 130		
						36247	199.2	200.8	0.8	73		
					4 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							
5 					r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
					i							

DREQUEST CONSULTANTS LT	0.			DIAMOND DRILL LOGS					Fill every		¦Hale Na. ¦P ->¦RG-86-10 ¦	'age 1
)rilling Company). W. Coates Enterprise:		Collar Elevation 	Bearing from True North - 225	Dip of hole lat: Collar: 50	Location of hole to fixed point or			Map Ref	. No.		Claim No. 709043	
	-13-86	Date Logged 12-15-86	Logged by		-				· •		at. and Long.) 30# 82 55*30	
Exploration Co., Owner (Regal Petroleum Inc.		Date Submitted	Submitted (sign)		-; ; ;			Propert	y Nase Regal-Si	iayze		
Meterage Fron To	Rock Type	; ; ; (Colour, grain size,	DESCRIPTION texture: minerals: al	iteration; etc.)	Planar Core Feature Specimer Angle Heterage		Sam From	oie (m.) To	Sample Length (a.)		Asseys	Au oz/t
4.8 18.9 chi	Overburden prite carbon- schist	l (1% pyri	te.	th white calcareous bands; carbonate layers thinner	1 fol 50	38292	14.7	16.2	1.5	95		-
				end of hole				ļ				

second second second second second

and the second second second second

APPENDIX B

ASSAY REPORTS - TRENCHING and DRILLING

 MAIN OFFICE

 1521 PEMBERTON AVE.

 NORTH VANCOUVER, B.C. V7P 2S3

 (604) 986-5211

 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

Rock Sumples from mulping program 09775- 09790

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE:	0ct 22	1986
ADDRESS:	404 - 595 Howe Street			
. 1	Vancouver, B.C.	REPORT#:	860543	GA
:	V6C 2T5	JOB#:	860543	

PROJECT#: RG SAMPLES ARRIVED: Oct 20 1986 REPORT COMPLETED: Oct 22 1986 ANALYSED FOR: Cu Ag Au (FA/AAS) INVOICE#: 860543 NA TOTAL SAMPLES: 16 SAMPLE TYPE: 16 ROCK REJECTS: SAVED

٩

SAMPLES FROM: Timmins, Ontario COPY SENT TO: WESLEY RAVEN

PREPARED FOR: MR. JIM CHAPMAN

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

.

REPORT NUMBER: 868543 GA	JOB NU	MBER: 860	543	OREQUEST CONSULTANTS LIMITED	PAGE	1	OF	1
SANPLE #	Cu	Ag	Au					
	000	p pm	pob					
09775	5	.2	nd					
09776 ·	8	nd	10					
0 9777	50	.2	5					
6 9778	3	nd	38					
09779	23	.3	nd					
09780	91	.6	nd					
69781	10	.1	10					
09782	15	.4	28					
89783	21	.3	5					
09784	54	.3	15					
89785	27	.2	nd					
09786	69	.3	nd					
09787	81	.7	ස					
09788	14	.4	5					
8 9789	7	.2	nd					

DETECTION LIMIT 1 0.1 5 nd = none detected --- = not analysed is = insufficient sample

45

.4

nd

Soil Simples

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE :	Oct 29	1986
ADDRESS:	404 - 595 Howe Street			
:	Vancouver, B.C.	REPORT#:	860547	' GA
:	VEC 2T5	JOB#:	860547	,

PROJECT#: RG SAMPLES ARRIVED: Oct 20 1986 REPORT COMPLETED: Oct 29 1986 ANALYSED FOR: Cu Ag Au INVOICE#: 860547 NA TOTAL SAMPLES: 92 SAMPLE TYPE: 92 SOIL REJECTS: DISCARDED

SAMPLES FROM: WESLEY RAVEN COPY SENT TO: Timmins, Ont.

PREPARED FOR: MR. JIM CHAPMAN

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860547 6A	JOB	NUMBER: 8	868547	OREQUEST	CONSULTANTS	LINITED	PAGE	1	OF	3
SAMPLE #	Cu	Ag	Au							
	000	0.0M	daq							
L1W 8+88N	7	.1	nd							
L1W 0+25N	11	.1	nd							
L1W 8+50N	3	nd	nd							
L1W 8+75N	10	.1	nd							
L1W 1+88N	6	nd	10							
L1W 1+25N	5		5							
L1W 1+50N	5		5							
L1W 1+75N	3		5							
L1W 2+00N	7									
L1W 0+25S	5	.2	158							
L1W 0+50S	5	.2	5							
L1W 0+755	15	.2	5							
L1W 1+80S	9		nd							
L1W 1+25S	3		nd							
L1W 1+50S	15	.1	nd							
L1W 1+755	5	.4	nd							
L1W 2+00S	28	.4	5							
L1W 2+255	12	nd	10							
L1W 2+50S	7		5							
L1W 2+75S	7	.1	10							
L1W 3+005	9		5							
L1W 3+255	17	.2	nd							
L1W 3+50S	5	.2	nd							
L1W 3+755	16	.4	nd							
L1W 4+885	7	.1	nd							
L2W 0+00N	15	.3	nd							
L2W 0+25N	10	.3	nd							
LEW 0+50N	5	nd	nd							
L2W 8+75N	8	nd	nd							
L2W 1+99N	5	.1	nd							
L2W 1+25N	6	nd	10							
L2W 1+50N	5		5							
L2W 1+75N	4	.3								
L2W 2+00N	42	.3								
L2W 8+255	5	.2	nd							
L2W 0+50S	5									
L2W 8+75S	16	.2								
L2W 1+005	10	nd	nd							
L2W 1+259	10	.2	nd							

DETECTION LIMIT nd = none detected 1

-- = not analysed

8.1

5 is = insufficient sample

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 2 OF 3

REPORT NUMBER: 868547	GA JOBINU	MBER: 864	547	OREQUEST CONSULTANTS LIMITED
SAMPLE #	Cu	Ap	Au	
	DOM	DDM	opb	
L2W 1+50S	. 8	.2	nd	
L2W 1+75S	10	.1	nd	
L2W 2+00S	50 ·	nd	10	
L2W 2+259	31	.5	5	
L2W 2+58S	10	.5	nd	
L2W 2+755	7	.2	nd	
L2H 3+085	14	.2	nd	
L2W 3+25S	50	nd	nd	
L2W 3+58S	5	.2	nd	
L2W 3+75S	10	.1	nd	
L2W 4+985	25	.2	nd	
L3W 8+00 N	5	.3	10	
L3W 0+25N	4	.2	nd	
L3W 8+58N	4	.1	nd	
L3H 0+75N	7	nd	nd	
L3W 1+00N	30	.3	5	
L3W 1+25N	5	.5	5	
L3W 1+50N	5	.5	nd	
L3W 1+75N	5	.1	nd	
L3W 2+00N	6	nd	nd	
1.741 4.475	-			
L3N 9+255	6	nd	nd	
L3W 8+585	14	nd	. nd	
L3W 8+755	7	nd	nd	
L3W 1+995 L3W 1+255	5 4	• 4 1	nd nd	
LOW ITEDS	•	nd	114	
L3W 1+505	26	.3	nd	
L3W 1+755	13	.2	nd	
L3W 2+805	13	.1	nd	
L3W 2+255	10	.2	nd	
L3W 2+505	4	.3	nd	
LOW 21000	-			
13W 2+755	5	nd	nd	
L3W 3+985	9	nd	nd	
L3W 3+255	11	.2	nd	
L3W 3+50S	6	.4	nd	
L3W 3+755	6	.2	nd	
	-			
L3W 4+005	4	.1	nd	
LAH B+BEN	5	nd	nd	
L4N 8+25N	15	nd	nd	
LAW 8+58N	10	nd	nd	
DETECTION LIMIT	1	8.1	5	
nd = none detected	= not ani	lysed	is = in	sufficient sample

REPORT NUMBER: 868547 6A

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

 MAIN OFFICE

 1521 PEMBERTON AVE.

 NORTH VANCOUVER, B.C. V7P 2S3

 (604) 986-5211

 TELEX: 04-352578

JOB NUMBER: 868547

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 3 OF 3

e de la co

SAMPLE #	Cu	Ag	Au
	DDM	pper	pop
L4H 8+75N	15	nd	nd
L4W 1+00N	5	.2	nd
L4W 1+25N	5	nd	nd
L4W 1+50N	6	.4	nd
L4W 1+75N	5	-1	nd
L4W 2+00N	4	nđ	nd
L4W 0+25S	4	nd	nd
L4W 8+585	24	-1	nd
L4W 8+755	12	nd	nd
L4W 1+00S	7	nd	nd
L4W 1+25S	3	.2	nd
L4N 1+58S	5	.2	nd
L4H 1+75S	2	nd	nd
L4W 2+885	14	.2	nd

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

Rock Sumple: from mapping program

09751 - 09774

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE:	Oct 29 1986
ADDRESS :	404 - 595 Howe Street		
1	Vancouver, B.C.	REPORT#:	860563 GA
2 - Exercise 1	V6C 2T5	JOB#:	860563

PROJECT#: RG SAMPLES ARRIVED: Oct 23 1986 REPORT COMPLETED: Oct 29 1986 ANALYSED FOR: Cu Ag Au (FA/AAS) INVOICE#: 860563 NA TOTAL SAMPLES: 24 SAMPLE TYPE: 24 ROCK REJECTS: SAVED

SAMPLES FROM: WESLEY RAVEN COPY SENT TO: Timmins, Ont.

PREPARED FOR: MR. JIM CHAPMAN

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

01601-01619 \checkmark

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE:	Oct 29	1986
ADDRESS:	404 - 595 Howe Street			
3	Vancouver, B.C.	REPORT#:	860569	GA
:	V6C 2T5	JOB#:	860569	

PROJECT#: RGT SAMPLES ARRIVED: Oct 24 1986 REPORT COMPLETED: Oct 29 1986 ANALYSED FOR: Cu Ag Au (FA/AAS) INVOICE#: 860569 NA TOTAL SAMPLES: 19 SAMPLE TYPE: 19 ROCK REJECTS: SAVED

SAMPLES FROM: WESLEY RAVEN COPY SENT TO: Timmins, Ont.

PREPARED FOR: MR. JIM CHAPMAN

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

81617

01618

81619

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860569 GA	Job Nu	MBER: 860	569	OREGLEST CONSULTANTS LIMITED	PAGE	1	DF	1
SAMPLE #	Cu	Ag	Au					
	DOM	D D B	pob					
01601	41	.9	nd					
01682	129	1.3	140					
81683	112	.6	80					
01684	94	nd	25					
01605	308	.8	20					
8168 6	191	.4	nd					
01607	122	nd	nd					
01608	50	.2	nd					
01609	51	.4	5					
01510	120	.2	nd					
01511	141	.7	nd					
01612	111	.3	nd					
01613	39	nd	nd					
01614	61	.2	nd					
01615	190	.1	nd					

DETECTION LIMIT 1 8.1 5 nd = none detected --- = not analysed is = insufficient sample

119

82

85

190

.3

nd

.1

nd

nd

10

nd

,

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 996-5211 TELEX: 04-352578

 \checkmark

/

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

01629-01639 1901 - 2032

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE:	Nov 13	1986
ADDRESS:	404 - 595 Howe Street			
I	Vancouver, B.C.	REPORT#:	860595	GA
:	V6C 2T5	JOB#:	860595	

PROJECT#:	RG - TR
SAMPLES ARRIVED:	Oct 31 1986
REPORT COMPLETED:	Nov 13 1986
ANALYSED FOR:	Cu Ap Au (FA/AAS)

INVOICE#: 860595 NA TOTAL SAMPLES: 153 SAMPLE TYPE: 153 ROCK REJECTS: SAVED

.

SAMPLES FROM: Timmins, Ont. COPY SENT TO: JIM CHAPMAN

.

PREPARED FOR: MR. GEORGE CAVEY

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: None

1910 1911

1912

1913

1914

1915

1916

1917

1918

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860595 6A	JOB NUMBER	: 860595	OREQUEST CONSULTANTS	LINITED	Page	1 (DF	4
SAMPLE #	Cu f	Ag Au						
		DM DDD						
01629		.3 nd						
01630		.5 nd						
01631		nd nd						
01632		.1 nd						
01633		.5 nd						
01634	35 .	.7 nd						
81635	20 .	.3 10						
01636	24 .	.1 nd						
01637		nd nd						
01638	58 .	.i nd						
01639		nd 20						
01651		.6 nd						
01652		.3 5						
01653		.5 nd						
81654	73 .	.3 nd						
01655		.2 nd						
01656		.5 nd						
01657		nd nd						
01658		.2 10						
01659	1 0 5 1	nd 10						
81668	125	.3 nd						
1901		.3 nd						
1982		.8 nd						
1903		.1 38						
1904		.1 nd						
1985	38 .	.2 nd						
1906		.2 nd						
1907		.1 5						
1968	20	.4 5						
1989	23	.i nd						
1910	26	.2 nd						

DETECTION LIMIT nd = none detected 17

21

25

16

15

27

22

16

1

-- = not analysed

.1

.1

.2

.2

.2

.2

.3

nd

8.1

nd

5

nd

nd

110

20

80

10

nd = none detected

-- = not analysed

.

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

SAMPLE #	Cu	Aç	Au		
1919	DDN 15	.2	daa		
1920	66	.c .4	nd nd		
1921	61	1.4	nd		
1922	25	.1	nd		
1923	238	.6	40		
1801	50				
1924	50	.1	100		
1925	38	•4	45		
1926	33	.4	5		
1927	5	.3	15		
1928	24	.4	nd		
1929	5	.1	nd		
1938	18	.1	100		
1931	15	.3	10		
1932	55	.3	65		
1933	15	.3	10		
1934	55	.4	nd		
1935	35	.1	nd		
1936	20	.2	50		
1937	84	.1	nd		
1938	41	.2	48		
1939	180	.6	420		
1948	89	.1	310		
1941	58	.5	nd		
1942	25	۰.	nd		
1943	10	.3	70		
1944	95	.8	38		
1945	20	.4	55		
1946	48	.2	nd		
1947	25	.2	nd		
1948	47	.1	nd		
1949	20	.2	nd		
1950	224	.6	nd		
1951	74	.2	20		
1952	35	nd	10		
1953	81	.4	380		
1954	30	.2	80		
1955	45	.1	nd		
1956	1630	.9	248		
1957	58	.2	30		

is = insufficient sample

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

SAMPLE #	Cu	Aņ	Au		
	DDM	DDM	daa		
1958	43	- 4	5		
1959	· 65	.3	80		
1960	87	.3	15		
1961	60	.2	nd		
1962	65	nd	nd		
1963	60	.6	50		
1964	40	.4	70		
1965	25	.1	330		
1966	46	.2	25		
1967	22	.2	8 5		
1968	39	.1	40		
1969	5 0	nd	25		
1970	48	.6	10		
1971	121	nd	119		
1972	45	.4	nd		
1973	78	.3	20		
1974	241	.7	5		
1975	270	.3	nd		
1976	259	.5	50		
1977	155	.4	178		
1978	180	.4	35		
1979	170	.8	50		
1980	174	.1	80		
1981	1080	.8	48		
1982	207	.4	180		
1983	215	.8	40		
1984	450	.4	20		
1985	252	.6	100		
1986	35	.4	180		
1987	700	.4	380		
1988	225	nd	240		
1989	87	.2	70		
1990	163	.3	90		
1991	140	.2	nd		
1992	1050	1.6	300		
1993	131	.4	1000		
1994	87	nd	35		
1995	298	nd	nd		
1996	96	.1	nd		
DETECTION LIMIT	1	0.1	5		

REPORT NUMBER: 868595 GA

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LINITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 860595

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 4 OF 4

SAMPLE #	Cu	Ag	Au	
	DDM	(DDM	pob	
1997	63	nd	100	
1998	66	.2	130	
1999	160	.3	20	
2000	189	.4	10	
2001	125	.3	10	
5965	120	.4	nd	
2003	200	.4	nd	
2884	780	.8	nd	
2005	15	.1	nd	
2006	30	.4	nd	
2007	19	.2	nd	
2008	50	.4	nd	
2009	25	.3	nd	
2010	21	.3	nd	
2011	75	.5	nd	
2012	12	.1	10	
2013	13	.4	19	
2014	14	.2	nd	
2015	21	.3	19	
2016	20	•5	20	
		_		
2017	345	.5	98	
2018	28	.4	nd	
2019	40	•1	40	
2020	50	.5	70	
2021	46	.4	780	
2822	75	•4	15	
2023	20	nd	100	
2024	26	.4	48	
2025	15	.4	45	
2626	7	nd	50	
2027	95	.2	210	
2628	50	.2	90 90	
2029	50 16	nd	90 28	
2030	586	na 1.0	20 7500	
2030	2000 70	.4	198	
C031	10	• •	100	
2032	165	.1	39	
L. Y. M.	103	• •	30	

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 996-5211 TELEX: 04-352578

 \checkmark

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

01640-01698

GEOCHEMICAL ANALYTICAL REPORT

 OREQUEST CONSULTANTS LIMITED 404 - 595 Howe Street	DATE:	No∨ 14	1986
Vancouver, B.C. V6C 2T5	REPORT#: JOB#:	860632 860632	GA

PROJECT#: RG - TR SAMPLES ARRIVED: Nov 12 1986 REPORT COMPLETED: Nov 14 1986 ANALYSED FOR: Cu Ag Au INVOICE#: 860532 NA TOTAL SAMPLES: 47 SAMPLE TYPE: 47 ROCK REJECTS: SAVED

SAMPLES FROM: Timmins, Ont. COPY SENT TO: MR. JIM CHAPMAN

PREPARED FOR: MR. GEORGE CAVEY

ANALYSED BY: VGC Staf SIGNED: ٦,

GENERAL REMARK: Au analyses by fire assay/AAS finish

REPORT NUMBER: 860632 GA

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JDB NUMBER: 868632

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 1 OF 2

REPORT NUMBER: DODOSE		UMDER: DO	WOJC -	UNERGEST CUNSULTEN
SAMPLE #	Cu	Ag	Au	
	DOM	DDW	000	
01640	17	nd	nd	
81641	7	.2	10	
01642	18	.5	10	
01643	20	.3	5	
01644	5	.2	nđ	
01645	19	.2	nd	
01646	14	.3	nd	
81647	36	.3	15	
01648	15	.4	5	
01661	14	.2	nd	
01662	16	.1	30	
01663	9	nd	nd	
016 54	35	.3	nd	
01665	24	.2	nd	
01666	41	.3	20	
01667	37	.2	nd	
01668	12	nd	nd	
01669	15	.1	50	
01670	21	.2	nd	
81671	15	nd	5	
01672	10	.4	40	
01673	41	-4	40	
01674	44	.1	nd	
01675	62	.4	58	
01676	29	.3	80	
01677	48	.3	nd	
81678	17	.3	20	
01679	25	.3	nd	
01680	10	.1	nd	
01581	187	.7	nd	
01682	81	nd	5	
01683	15	.2	nd	
91684	12	.2	nd	
01685	26	.2	5	
81686	35	.2	5	
01687	14	.3	nd	
01688	10	.1	nd	
01689	18	.2	nd	
81698	10	.3	nd	
DETECTION LIMIT	1	0.1	5	
nd = none detected	= not an	alysed	15 = ir	nsufficient sample

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

35

nd

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

÷

REPORT NUMBER: 860632 GA	JOB NI	JMBER: 860	632	OREQUEST CONSULTANTS LIMITED	Page	2	OF	5
SAMPLE #	Cu	Ag	Au					
	DOM	D 06	oob					
01691	14	.1	nd					
01692	26	.1	nd					
01693	16	.1	nd					
01694	16	.1	nd					
01695	24	.2	nd					
01696	15	.2	nd					
81697	21	.1	nd					

nd

DETECTION LIMIT 1 0.1 5 nd = none detected --- = not analysed is = insufficient sample

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

2033 - 2237 /

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: OREQUEST CONSULTANTS LIMITEDDATE: Nov 18 1986ADDRESS: 404 - 595 Howe Street: Vancouver. B.C.: Vancouver. B.C.: V6C 2T5: V6C 2T5: J08#: 860631

PROJECT*: RG-DR SAMPLES ARRIVED: Nov 12 1986 REPORT COMPLETED: Nov 18 1986 ANALYSED FOR: Cu INVOICE#: 860631 NA TOTAL SAMPLES: 205 SAMPLE TYPE: 205 ROCK REJECTS: SAVED

SAMPLES FROM: Timmins. Ont. COPY SENT TO: MR. JIM CHAPMAN

PREPARED FOR: MR. GEORGE CAVEY

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOLVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 86863.	1 GA JOB NUMBER: 869631	OREQUEST CONSULTANTS LIMITED	PAGE 1 OF 6
SAMPLE #	โน		
	006		
2033	16		
2834	28		
2835	19		
2036	20		
2037	23		
2038	58		
2039	15		
2848	15		
2041	19		
2842	17		
2043	15		
2044	20		
2845	21		
2845	29		
2847	11		
2048	15		
2843	13		
2050	13		
2851	10		
2052	17		
2053	24		
2054	15		
2055	17		
2856	25		
2057	145		
2058	70		
2059	20		
2968	24		
2061	ස		
5965	15		
2053	15		
2064	15		
2065	15		
2066	19		
2067	15		
2068	14		
2069	15		
2879	15		
2071	11		
DETECTION LIMIT	1		
nd = none detected	= not analysed is	<pre>insufficient sample</pre>	

3

REPORT NUMBER: 868631 GA

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JEB NUMBER: 868631

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5658

PAGE 2 OF 5

DETECTION LIMIT nd = none detected	1 not analysed	is = insufficient sample and a second state of the second state of
2119	288	
2109	341	
2188	119	
2107	128	
2106	35	
2104 2105	167 55	
2183	235	
2192	810	
	• • •	
2101	309	
2100	640	
2099	1708	
2098	1900	
2097	950	
2896	1330	
2095	310	
2054	1050	
2893	84	
2925	850	
2091	1120	
2090	332	
2089	204	
2088	112	
2887	49	
2886	82	
2885	69	
2084	70	
2883	55	
2082	<u>ක</u>	
	_	
2981	14	
2080	13	
2079	14	
2076	30	
2077	12	
2076	6	
2075	15	
2074	12	
2073	15	
2072	9	
	RCC	
	DO M	

2

÷.,

4 r.,

REPORT NUMBER: 862631 SA

....e

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 86263:

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 3 OF 6

ACPUAL NUMBER: DOCOSI SH	JUB NUMBER: ODODS.	UNCOUST CONSULTANTS LIATTED	PHOE 3 UP D
SAMPLE #	Cu		
	000		
2111	190		
2112	128		
2113	103		
2114	114		
2115	116		
2115	181		
2117	79		
2118	127		
2119	45		
2120	332		
2121	335		
2122	181		
2123	205		
2124	189		
2125	210		
5.00			
2126	55		
2127	164		
2128	328		
2129	170		
2130	1990		
2131	610		
2132	520		
2133	800		
2134	1279		
2135	210		
2136	182		
2137	133		
2138	37		
2139	188		
2148	125		
2141	165		
2142	145		
2143	148		
2144	372		
2145	570		
2146	30		
2147	4 6		
2148	67		
2149	ଣ		
ACTOMINAL LANT		•	
DETECTION LINIT	1 • not analysed is = i	nsufficient sample	

VGC

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

DETECTION LIMIT

nd = none detected --- = not analysed

is = insufficient sample

REPORT NUMBER: 858631 GA

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JCB NUMPER: 860631

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 5 DF 6

2169 5 2190 18 2191 5 2192 7 2193 10 2194 10 2195 9 2196 10 2197 15 2198 17 2199 16 2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 19 2207 12 2208 14	
2190 10 2191 5 2192 7 2193 10 2194 10 2195 9 2196 10 2197 15 2198 17 2199 16 2200 19 2201 200 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2190 10 2191 5 2192 7 2193 10 2194 10 2195 9 2196 10 2197 15 2198 17 2199 16 2200 19 2201 20 2202 19 2283 24 2204 15 2205 18 2206 15 2207 12	
2193 10 2194 10 2195 9 2196 10 2197 15 2198 17 2199 16 22000 19 2201 20 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2193 10 2194 10 2195 9 2196 10 2197 15 2198 17 2199 16 22000 19 2201 20 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2194 10 2195 9 2196 10 2197 15 2198 17 2199 16 2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2195 9 2196 10 2197 15 2198 17 2199 16 2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2196 10 2197 15 2198 17 2199 16 2200 19 2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2197 15 2198 17 2199 16 2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2198 17 2199 16 2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2199 16 2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2200 19 2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2206 15 2207 12	
2201 20 2202 19 2203 24 2204 15 2205 18 2206 15 2206 15 2207 12	
2202 19 2203 24 2204 15 2205 18 2206 15 2207 12	
2283 24 2284 15 2285 18 2286 15 2287 12	
2284 15 2285 18 2286 15 2287 12	
2285 18 2286 15 2287 12	
2206 15 2207 12	
2207 12	
2 288	
2209 13	
2210 12	
2211 20	
2212 17	
2213 18	
2214 16	
2215 15	
2216 15	
2217 14 2218 15	
2218 15	
2219 15	
2229 12	
2221 19	
2222 20	
2223 20	
2224 22	
2225 19	
2226 15	
2227 14	
DETECTION LIMIT	

nd « none detected

9

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

SORE 6 OF 6

REPORT NUMBER:	860631 (GA JCB	NUMBER:	860631	OREQUEST	r Consultant	S LINITED	206E	6	OF	ŧ
SAMPLE #		Cu									
		000									
2228		15									
2229		15									
2238		20									
2231		18									
2232		14									
2233		15									
2234		15									
2235		20									
2236		24									
2237		25									

des.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

01751- 01900 02238 - 02350 09801 - 09822

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE:	Nov 25	1986
ADDRESS:	404 - 595 Howe Street			
:	Vancouver. B.C.	REPORT#:	860655	AA
:	VEC 2T5	JOB#:	860655	

PROJECT#: RG-DR SAMPLES ARRIVED: Nov 20 1986 REPORT COMPLETED: Nov 25 1986 ANALYSED FOR: Cu INVOICE#: 860655 NA TOTAL SAMPLES: 285 SAMPLE TYPE: 285 DRILL CORE REJECTS: SAVED

SAMPLES FROM: Timmins. Ont. COFY SENT TO: MR. JIM CHAPMAN

PREPARED FOR: MR. JIM CHAPMAN

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860655GA	JOB NUMBER: 860655	OREQUEST CONSULTANTS LIMITED	PAGE 1 OF
SAMPLE #	Cu		
	MCC.		
01751	76		
01752	350		
01753	295		
01754	35		
01755	48		
01756	181		
01757	1350		
01758	85		
01759	156		
01760	25		
01761	70		
01762	61		
01763	96		
01764	148		
0 1765	990		
01766	70		
01767	49		
01768	50		
01769	90		
01770	76		
01771	185		
01772	51		
01773	35		
01774	32		
01775	193		
01776	76		
01777	75		
01778	275		
81779	30		
01780	73		
01781	45		
01782	15		
01783	26		
01784	24		
01785	91		
01786	28		
01787	51		
91788	15		
01789	30		
DETECTION LIMIT	1		
	· · · ·		

nd = mone detected -- = not analysed

REPORT NUMBER: 860655 AA

.

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JDB NUMBER: 860655

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PA6E 2 DF 8

nd = none detected	= not analysed	is = insufficient sample	
DETECTION LINIT	1		
01828	15		
01827	7		
01826	6		
01825	8		
01824	9		
01823	10		
81822	10		
01821	5		
01820	6		
01819	6		
01818	6		
01817	15		
01816	5		
01815	5		
•			
81814	4 8		
01812 01813	4		
01811	5		
91810	5 5		
01889	9		
01808	8		
01806 01807	5 5		
01805	9		
01804	9		
01803	5		
01802	10		
01801	9		
91800	45		
01799	31		
01798	21		
01797	15		
01796	52		
01795	40		
01794	20		
01793	22		
01792	15		
01791	23		
01790	10		
	nco		

REPORT NUMBER: 868655 AA

.

VANGEOCHEM LAB LIMITED

DREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 860655

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 3 DF 8

DETECTION LINIT nd = none detected	1 = not analysed	is = insufficient sample
01865 01867	10	
91865 91866	6 4	
01864	7	
01063	5	
01862	7	
01861	3	
01859 01860	5 4	
A1050	F	
91858	5	
01857	3	
01856	4	
01855	2	
01854	20	
01853	12	
01852	10	
01851	15	
81850	13 20	
01849	15	
01848	12	
81847	15	
01846	9	
ð 1845	8	
91844	5	
01843	15	
01842	10	
01841	7	
01840	5	
01839	7	
01838	10	
01837	11	
01836	15	
01835	16	
01834	17	
01833	11	
01832	10	
01831	5	
01830	8	
01829	00M 6	

REPORT NUMBER: 860655 AA

.

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 860655

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PRGE 4 OF 8

SAMPLE #	Cu	
	ODM	
01868	. 6	
01869	7	
01870	14	
01871	11	
01872	6	
01012	Ū	
01873	10	
01874	ස	
61875	16	
81876	25	
01877	29	
01878	11	
01879	40	
01880	11	
01881	28	
01882	20	
01883	10	
81884	10	
01885	35	
61886	84	
01887	69	
01888	123	
01889	85	
81890	98	
01891	179	х.
01892	245	
01893	219	
01894	61	
01895	132	
01896	60	
01897	228	
v. 031		
01898	658	
01899	49	
01900	59	
82238	20	
02239	21	
	~	
82248	20	
82241	15	
82242	15	
82243	18	
RETERTION THIT	ť	
DETECTION LINIT	i	is = insufficient sample
nd = none detected	= not analysed	TD - THERITICIENE DEPARTS

REPORT NUMBER: 860655 AA

٠,

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 860655

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 5 DF 8

,	308 325 121 51 205 82 36 900 40 86 300 141 210 800					
,	325 121 51 205 82 36 900 40 86 300 141 210					
,	325 121 51 205 82 36 900 40 66 300 141					
,	325 121 51 205 82 36 900 40 86 300					
,	325 121 51 285 82 36 988 40					
,	325 121 51 285 82 36 988 40					
,	325 121 51 205 82 36 900					
,	325 121 51 205 82 36					
,	325 121 51 205 82					
,	325 121 51 285					
,	325 121 51					
	325 121					
	325					
	200					
	960					
	189					
	70					
	8					
	36					
	540					
	310					
	78					
	41					
	150					
	460					
	42					
	11					
	18					
	11					
	9					
	17					
	20					
	15					
		Cu DDM 12 15 20 17 9 9 11 18 11 10 42 460 150 41 70 310 540 36 372 85 8 70 70 70 70 157	DDM 12 15 20 17 9 11 18 11 18 11 10 42 460 150 41 70 310 540 36 372 85 8 70 70 70 157	DDM 12 15 20 17 9 11 18 11 10 42 460 150 41 70 310 540 36 372 85 8 70 70 70 157	DDM 12 15 20 17 9 11 18 11 10 42 460 150 41 70 310 540 36 372 85 8 70 70 70 157	DDM 12 15 20 17 9 11 18 11 10 42 460 150 41 70 310 540 36 372 85 8 70 70 70 70 70 157

REPORT NUMBER: 868655 AA

۰ •

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 860655

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 6 DF 8

	ION LIMIT	1 = not analysed	is = insufficient	sample	
82329 82321		60 15			
82319		35 60			
82318		10			
82317		10			
02316		9			
82315		7			
82313 82314		8 14			
82312		5			
82311		9			
02310		5 5 9 9			
82389		5			
82388		5			
82387		10			
82386		10		2	
82385		5			
82384		7			
02303		31			
62382		12			
02301		16			
62380		11			
82299		112			
62298		1010			
82297		89			
8 2296		160			
62295		91			
02294		244			
02293		159			
02292		48			
62291		87			
02290		99			
82289		46			
8 2288		41			
02287		139			
92286		125			
82285		96			
e2284		292			
02283		970			
		mco			

REPORT NUMBER: 868655 AA

.

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 860655

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 7 OF 8

SAMPLE #	Cu		
	anco		
R 2322	11		
82323	8		
82324	5		
RE325	6		
\$2326	6		
06360	U		
82327	10		
82328	4		
62329	15		
82338	10		
62331	5		
	-		
82332	10		
82333	4		
82334	5		
82335	3		
82336	5		
02337	8		
82338	5		
82339	5		
82348	10		
82341	6		
82342	10		
82343	5		
82344	5		
02345	4	·*	
02346	5		
82347	9		
82348	6		
62349	8		
62350	6		
09801	80		
09802	195		
89883	14		
89884	15		
09685	10		
09806	19		
09807	14		
9988 8	15		
89889	15		
09810	19		
DETECTION LIMIT nd = none detected	i = not analysed is		
and a serve determined	مثامعين المعرفة فمعرجة	<pre>= insufficient samole</pre>	

nd = none detected

..

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 8 OF 8

REPORT NUMBER: 860655	AA JOB NUMBER: 860655	OREQUEST CONSULTANTS LIMITED	PAGE 8 OF
SAMPLE #	Cu		
	DOM		
09811	. 16		
09812	20		
09813	20		
09814	25		
Ø9815	49		
09816	174		
09817	26		
8 9818	14		
09819	105		
09820	14		
89821	10		
098 22	14		

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

01623 - 01628, 1649 - 1650 -01701 - 01750 -01826 - 09839 -

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE:	Nov 27	1986
ADDRESS:	404 - 595 Howe Street			
:	Vancouver, B.C.	REPORT#:	860657	GA
:	V6C 2T5	JOB#:	860657	

PROJECT#: RG-TR SAMPLES ARRIVED: Nov 20 1986 REPORT COMPLETED: Nov 27 1986 ANALYSED FOR: Cu Ap Au (FA/AAS) INVOICE#: 860657 NA TOTAL SAMPLES: 72 SAMPLE TYPE: 72 ROCK REJECTS: SAVED

SAMPLES FROM: Timmins, Ont. COPY SENT TO: MR. JIM CHAPMAN

PREPARED FOR: MR. JIM CHAPMAN

ANALYSED BY: VGC Staff aller-SIGNED:

GENERAL REMARK: None

nd = none detected

--- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 868657 E	GA JOB NUMBER:	868657	DREQUEST CONSULTANTS LIMITED	PAGE 1 DF 2
SAMPLE #	Cu Ag	Au		
	ODM DDM			
8 1623	35 .4			
01624	· 33 nd			
01625	32 .4			
81626	39 .3			
01627	41 .4		4	
01628	59 nd			
01649	15 .3			
01650	22 .5			
01701	11 .2			
01702	10 .1	5		
01703	10.1			
01704	5.2			
01705	145 .4			
01706	119 .2			
81787	139 .4	20		
01708	25 .1	5		
01709	25 nd	nd		
81718	28 .2	nd		
01711	26.3			
01712	29.3	nd		
01713	4.2			
01714	17 .2			
01715	25 .2			
01716	8,3			
01717	19 .1	nd		
01718 01719	9.2 5 nd			
01720	15 .1			
01721	20 .1			
01722	17 .1			
01723	38.1	nd		
81724	15 .4			
01725	13.1			
01726	10.4			
01727	13 .1	5		
01728	18 .2			
01729	20 .2			
01730	11 .2		,	
01731	7 nd	nd	1	
DETECTION LIMIT	1 0.1	5		

is = insufficient sample

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 860657 6A	JOB NU	MBER: 860	657	OREQUEST CONSULTANTS LIMITED	PAGE	5	OF	5
Sample #	Cu	Ag	Au					
	DOM	DDM	ppb					
01732	11	.1	nd					
01733	15	.1	nd					
81734	5	.2	nd					
01735	10	.3	nd					
01736	10	nd	nd					
01737	11	nd	nd					
01738	498	1.8	20					
01739	51	.6	10					
81748	51	1.8	30					
01741	290	.5	80					
81742	600	1.4	170	1				
01743	164	.5	30					
01744	101	.5	30					
01745	30	.6	5					
01745	50	.4	650	,				
01747	12	1.3	118					
01748	13	.6	115					

01745	30	.6	5	
01746	20	.4	650 1	
01747	12	1.3	110	
01748	13	.6	115	
81749	295	.7	148	
01750	2140	5.9	5140 🗸	
89826	1610	1.0	65	
8 9827	568	.8	40	
89828	57 8	.5	nd	
09829	39	.2	45	
09830	50	.2	nd	
698 31	45	.2	10	
8983 2	35	.1	15	
09833	24	.1	nd	
09834	58	.4	nd	
09835	51	1.0	240 🗸	
09836	15	.1	70	
09637	38	.3	70	
09838	13	.4	60	
09839	45	.5	140 /	

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

ASSAY ANALYTICAL REPORT

CLIENT:	OREQUEST CONSULTANTS LIMITED	DATE:	Dec 17 1986
ADDRESS:	404 - 595 Howe Street		
:	Vancouver. B.C.	REPORT#:	860728AA
:	VGC 2T5	JOB#:	860728

PROJECT#: RG SAMPLES ARRIVED: Dec 12 1986 REPORT COMPLETED: Dec 17 1986 ANALYSED FOR: Cu Au Au INVOICE#: 860728NA TOTAL SAMPLES: 19 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 19 DRILL CORES

SAMPLES FROM: OREQUEST CONSULTANTS LIMITED COPY SENT TO: OREQUEST CONSULTANTS LIMITED

PREPARED FOR: MR. IAN CAMPBELL

ANALYSED BY: David Chiu SIGNED: Ď

Repistered Provincial Assaver

GENERAL REMARK: None

VANGEOCHEM L	AB LIMITED
--------------	------------

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	(604) 986-5211 TELE	X: 04-352578	(604) 251-5656	
REPORT NUMBER: 86872898	JOB NLMBER: 868728	orequest con	SULTANTS LIMITED	PAGE 1 D
θθω⊡E #	См %	∩u oz∕st		
₄ 37456	01	(. 005		
37457	(.01	. 216	. 008	
37457 37458 37459	(.01	. 005	:. 005	
37459	<. Ø1	(.005	- • •	
37460	(. 01	(.005		
+				
37461	(. 01	. 005		
37462	(. 01	(, 005	(.005	
37463	(. 01	1.005		
38101	. 03	(. 005		
38102		.034		
38103	:. @1			
38104	1.01	.008		
38105	(. 01	.010		
38106	(.01	.016		
38107	<. Ø1	.048	. 040	
38108	<. 01	(.005	-	
38109	. @1	.010	P*	

38110

38111

)

b, '

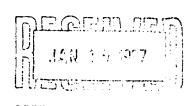
VGC

DETECTION LIMIT .005 .005 . 01 1 000 = 0.0001% 1 Troy oz/short ton = 34.28 ppm pom/= parts per million signed: ____ ----0

(.01

1.01

.008


.003

.....

l = less than

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: OREQUEST CONSULTANTS LTD. ADDRESS: 404 - 595 Howe Street : Vancouver, B.C. : V6C 2T5

DATE: Jan 13 1987

REPORT#: 870010 GA JOB#: 870010

PROJECT#: REGAL/SAVAGE SAMPLES ARRIVED: Jan 6 1987 REPORT COMPLETED: Jan 13 1987 ANALYSED FOR: Cu Au (FA/AAS) INVDICE#: 870010 NA TOTAL SAMPLES: 283 SAMPLE TYPE: 283 DRILL CORE REJECTS: DISCARDED

SAMPLES FROM: Timmins, Ont. COPY SENT TO: JIM CHAPMAN

PREPARED FOR: MR. GEORGE CAVEY

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: None

REPORT NUMBER: 870010 GA

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LTD.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 870010

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 1 OF 8

- 	SAMPLE # 89791 89792	Cu pp n 226	Au ppb 1 99		
	89791	ppm	рръ		
		226			
			1 27427		
		76	nd		
	09793	35	nd		
	89794	15	nđ		
	09795	27	nd		
. n					
per xin n'	89796	21	nd		
Ya.	09797	42	nd		
	09798	20	nd		
	8 979 9	12	nd		
	09800	24	nd		
			•		
	09840	15	nd		
	8984 1	7	nd		
)	09842	12	88		
	09843	11	nd		
	09844	71	nd		
l i	89845	67			
		87 25	nd		
	89846	25	nd		
	09847	12	nd		
	09848	36	nd		
)	09849	24	20		
	0 9850	22	10		
		17	40		
04	\$985 2	28	nd		
26.46-04	0 9853	24	nd		
ļ	69854	48	nd		
	62034	94	TNJ		
	89855	19	nd		
	09856	21	nd		
	69857	27	nd		
1	6 9858	10	nd		
	09859	15	nd		
·					
1	09860	11	48		
	09861	7	nd		
P	09862	7	nđ		
_	8986 3	9	nd		
	09864	9	35		
6					
	8 9865	38	nd		
	09856	9	248	.007	
	8 9867	8	48		
	09868	33	49		
1			-		
	DETECTION LIMIT	1	5		
	nd = none detected	= not an	alvend	is = insufficient samp	1

REPORT NUMBER: 870010 GA

VANGEOCHEM LAB LIMITED

DREQUEST CONSULTANTS LTD.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 870010

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 2 OF 8

	Sample #	Cu	Au				
		ppm	ppb				
Ĩ	89869	18	nd				
-	09878	16	nd				
-	09871	15	88				
	09872	38	nd				
	09873	58	nd				
			110				
	09874	71	65				
	09875	68	nd				
-	37451	108	nd				
	37452	55	nd				
	37453	35	nd				
• 4,7	01 100	20	116				
e fui	37454	. 74	nd				
	37455	182	nd				
	38051	12	nd				
	38052	18	58				
	38953	80	288	.008			
	00000		200				
The H	38854	45	205	.006			
- The	38855	22	30				
	38055	24	75				
	38057	7	348	.010			
	38658	23	.30	.0,0			
	30630	E9					
	38059	14	40				
-	38868	8	18				
	38961	13	28				
	38862	13	25				
	38863	5	nd				
-	30003	5	110				
	38864	10	nd				
	38065	8	nd				
	38866	8	nd				
	38067	9	nd				
	38868	18	nd				
	30000	10	5163				
-	38069	11	nd				
	38070	12	38				
		11	25				
	38671	25	e o nd				
Î	38072 38073	25 16	no nd				
	30673	10	TKU				
	38074	13	العم				
	38074 38075	21	nd nd				
	38876	13	nd				
-	38077	10	nd				
	DETECTION LIMIT	1	5				
	nd = none detected	= not ana		ie - i-	sufficient sample		
	IN - INTR DELECTED		1 7 30000	15 = 10	SALLICIANE SEMPLE		

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	REPORT NUM	MBER:	870018	6A .	JO8	NUMBER:	87 88	10	OREGUEST	CONSULT	ants l	TD.		page	3	OF	B
	SAMPLE #				Cu	A											
	CARDENE T			1	ppet	ppi											
	38078			•	14	n n											
	38879				7	n											
-	38080				12	4											
	38881				13	n							1				
	38682				13	n											
-	38883				20	_											
	38084				20 11	ា ហ											
1	38885				11	n N											
-	38086				15	n											
•	38087				18	11											
•	00001				10		0										
-	38088				16	n	d										
•	38889				36	71											
	38890				75	n											
	38091				15	30	đ										
•	38092				42	n	d										
	38093				. 71	-											
۲. ۲.	38694				131 89	n n											
	38895				13	10											
4	38896				13	10 10											
	38897				15 15	11 11											
fr.	00051				10												
	38098				41	181	5										
•	38899				750	31	8.	009									
	38168				60	18											
	38112				66	n											
	38113				37	30	d			•							
-	38114				32	n	a l										
1	38115				эс 95	44) 	5	.013									
	38115				33	ידד מ		.0.1									
	38117				78	23	5	.007									
	38118				26	26		007									
3							-										
	38119				67	B	5										
1	38120				96	6											
1	38121				32	7		-									
	38122				26	34		.010									
1	38123				20	n	d										
	38124				21	n	đ										
Δ	38125				29	n											
	38126				54	7											
RG-86-7	38127				16	ħ											
nu du I							-										
	DETECTION				1		5	in	** ******	-							
	nd = none	Getec	160	= n	01.8	inal ysed		12 - 148	ufficient	24mb16							

REPORT NUMBER: 870010 6A

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LTD.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 870010

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PRGE 4 DF 8

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 870010 6A JOB NUMBER: 870018 DREQUEST CONSULTANTS LTD. PAGE 5 OF 8 Cu SAMPLE # Au ppb DDM 4 38167 36 nd Rh-46 38168 124 nd 38169 129 nd 38170 37 nd 38171 31 nd 38172 19 nd 38173 2 nd 38174 3 nd 38175 1 nd 38176 2 nd ,004 38177 11 278 38178 54 nd 38179 50 nd 38180 26 nd 38181 17 nd 38182 12 nd 38183 11 60 38184 12 nd 38185 11 nd 38186 12 nd 38187 11 nd 38188 26 nd 38189 31 nd 38190 11 nd Λ 38191 10 nd ł 38192 11 nd \heartsuit 38193 81 nd 4 38194 100 nd 38195 199 nd j $\langle \gamma \rangle$ 38196 93 nd ſ. 38197 83 nd 38198 53 nd 38199 30 nd 38288 1

nd

nd

nd

nd

nd

88

5

1

52

1

7

1

--- = not analysed

165

nd = none detected

DETECTION LIMIT

38201

38262

38203

38284

38205

76.86.9

REPORT NUMBER: 870010 GA

VANGEOCHEM LAB LIMITED

OREQUEST CONSULTANTS LTD.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 870010

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 6 DF 8

				•	
	SAMPLE #	Cu	Au		
		ppm	ppb		
	38296	183	nd		
	38207	5	nd		
	38268	6	nd		
	38209	3	nd		
	38210	14	nd		
	38211	8	nd		
	38212	24	nd		
	38213	29	nd		
	38214	11	nd		
	38215	35	nd		
			•		
	38216	45	nd		
	38217	105	nd		
	38218	98	nd		
	38219	93	nd		
	38228	98	nd		
	38221	41	nd		
	38222	38	nd		
	38223	12	nd		
	38224	66	30		
	38225	50	48		
a	20000	73			
	38226	73	nd		
$\dot{\nabla}$	38227 38228	251	nd		
ふ	38229	70 59	nd nd		
1	38238	55 66	nd		
76-25-	30230	00	nu -		
•	38231	61	nd		
	38232	71	nd		
	38233	45	nd		
	38234	59	nd		
	38235	56	nd		
	38236	56	nd		
	38237	97	nd		
	38238	66	nd		
	38239	78	nd		
	38240	114	nd		
	38241	109	nd		
	38242	106	nd		
	38243	75	nd		
	38244	71	nd		
			-		
	DETECTION LIMIT	1	5	<i>.</i> . <u>-</u>	
	nd = none detected	= not a	nalyseo	15 = insuf	ficient sample

REPORT NUMBER: 878818 GA

VANGEOCHEM LAB LIMITED

DREBLEST CONSULTANTS LTD.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 878018

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 7 DF 8

	HEI ONT HONDENT DIODIO	- UN - JOB	NUMBER: DI		GUNDUL
	Sample #	Cu	Au		
i i i i i i i i i i i i i i i i i i i		ppa	ppb		
	38245	182	nd		
م مار	38246	99	nd		
R6: 86.9	38247	73	nd		
.10-	38248	139	nd		
	38249	67	nd		
	38250	88	nd		
	38251	74	nd		
ს	38252	78	nd		
َار ا	38253	81	nd		
	38254	36	nd		
્યુ હુર્ષ	200EE				
	38255 38256	57	nd		
		49	nd		
	38257	52	nd		
	38258	35	nd		
	38259	41	nd		
	38260	60	nd		
	38261	51	nd		
	38262	48	nd		
	38263	55	nd		
	38264	36	nd		
}					
	38265	54	nd		
	38266	41	nd		
r	38267	42	nd		
	38268	26	nd		
	38269	43	nd		
1					
	38270	87	nd		
ļ	38271	44	nd		
	38272	36	nd		
	38273	182	nd		
1	38274	48	nd		
	38275	39			
	38276	35 97	nd nd		
ļ	38277	83	nd		
	38278	92	nd		
	38279	56	nd		
ļ		50			
	38289	103	nd		
1	38281	91	nd		
	38282	100	nd		
	38283	86	nd		
1			_		
	DETECTION LIMIT	1	5	• • • •	
	nd = none detected	= not a	nalysed	is = insufficient	sample

OREQUEST CONSULTANTS LTD.

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 8 OF 8

	REPORT NUMBER: 87	0010 GA JOB	NUMBER: 870010
-	SAMPLE #	Cu	Au
-		pp#	ppb
	38284	87	nd
	38285	87	nd
	38286	100	nd
9 V	38287	88	nd
L L	38288	28	nd
,	38289	23	nd
150	38298	56	nd
-	38291	71	nd
- R6-86-10	38292	95	nd
B6-86-10 6-86-6	38293	32	nd

DETECTION LIMIT 1 5 nd = none detected --- = not analysed is = insufficient sample APPENDIX C THIN SECTION REPORT

.

Harris **EXPLORATION** SERVICES

MINERALOGY AND GEOCHEMISTRY

534 ELLIS STREET, NORTH VANCOUVER, B.C., CANADA V7H 2G6

TELEPHONE (604) 929-5867

Job #87-1

January 26th, 1987

Report for: Jim Chapman, Orequest Consultants Ltd., 404-595 Howe Street, Vancouver, B.C. V6C 2T5

Samples:

24 core samples from the Regal Petroleum property, Ontario, for petrographic study.

The samples were prepared as conventional thin sections. Cross reference between sample numbers and slide numbers is as follows:

Committee No.	
Sample No.	Slide No.
RG-2 35m.	87-004X
87m.	005X
88m.	027X
RG-3 260m.	006X
RG-4 30m.	007X
75m.	008X
135m.	009X
245m.	010X
255m.	011X
RG-5 130m.	012X
RG-6 22.7m.	013X
66.3m.	014X
86.6m.	
	015X
RG-7 58.2m.	016X
65.Om.	- 017X
108.Om.	018X
123.5m.	019X
139.Om.	020X
RG-8 15.7m.	021X
162.4m.	022X
RG-9 114m.	023X
144m.	024X
TR-4	025X
TR-13	026X

Summary:

This is a suite of rocks showing a very restricted compositional range, being

composed essentially of plagioclase, quartz, sericite and carbonate in various proportions. Additional or alternate components present in a few of them are chlorite and, in minor to trace amounts, rutile, pyrite, epidote and tourmaline.

Texturally these rocks display gradational characteristics. A few textural 'end-members' can be recognized with some confidence but many are less clearly identifiable as to genetic type.

The majority appear to be of igneous or pyroclastic origin. A few may be dominantly sedimentary, though probably still have tuffaceous affinities.

Sample RG-5 130m. is an intrusive-textured quartz diorite, strongly replaced by carbonate via a network of veinlets, but unsheared.

Sample RG-4 245m. also appears to have originated as a quartz diorite but has been strongly fragmented by shearing. It also differs from the previous sample in containing accessory K-feldspar.

Samples RG-2 35m. and 88m., RG-3 260m., RG-4 30m., 75m. and 135m., RG-7 65m. and RG-9 114m. are all closely similar. They are texturally heterogenous, with abundant individual crystals of plagioclase and lesser quartz set in a felsitic matrix which shows more or less clear evidence of shearing in the form of sinuous sericitic schlieren. The fine felsitic groundmass is believed to be of primary rather than cataclastic origin and these rocks are interpreted as probably being sheared quartz diorite porphyries. An alternative is that they are sheared andesitic to dacitic crystal tuffs.

Samples RG-4 255m. and RG-8 15.7m. also have a somewhat sheared aspect but have much less abundant coarse plagioclase phenocrysts or clasts. They are most likely modified tuffs.

Samples RG-2 87m. and RG-8 162.4m. are rather homogenous, fine-grained, weakly foliated rocks lacking any evidence of shearing. They are probably tuffs. The last of the three is of distinctive composition in that it contains chlorite and no sericite, possibly indicating a more mafic original composition. Sample RG-9 144m. may be of similar type but is particularly enriched in carbonate.

Sample RG-7 108m. shows the best developed pyroclastic features of all the suite. It is unquestionably a mixed lithic crystal tuff.

Samples RG-7 58.2m. and 123.5m. are also identified as tuffs but, unlike the previous sample (which is relatively coarse grained and shows no perceptible layering on the thin section scale), are fine-grained rocks which show a distinct lamination and have only a minor content of plagioclase crystal clasts or quartz eyes.

The three samples from RG-6 (at 22.7m., 66.3m. and 86.6m.) are similar finegrained, laminated rocks, typically with well-differentiated, micaceous (possibly sedimentary) and feldspathic (tuffaceous?) laminae. The first of them is distinctive in that the felsitic component is very minor and the rock is unique in containing major amounts of biotite. The last of the above samples is essentially devoid of recognizable clasts and may be dominantly sedimentary. The group probably represents a sequence of tuffaceous siltstones. All show strong deformation.

Samples TR-4 and TR-13 are also fine-grained laminated rocks, but undeformed. The first is distinctive in containing no sericite or chlorite; it appears to be a thin-bedded, calcareous, tuffaceous siltstone. The second shows well-developed clastic sedimentary textures and consists of interlaminated fine-grained feldspathic wacke and calcareous siltstone.

The remaining sample, RG-7 139m., appears to be of a different type to the rest. It is made up essentially of a homogenous, fine-grained, random aggregate of plagioclase of igneous aspect and is possibly an andesitic dyke.

All the rocks of the suite show the effect of mild regional metamorphism, leading to the partial recrystallization of original plagioclase and the development of sericite, chlorite and occasionally epidote.

A proportion of the samples exhibit cataclastic structures suggestive of shearing. A few others show strong small-scale crumpling producing an axial plane cleavage.

The effect of alteration is difficult to assess. Plagioclase, whether as coarser phenocrysts or clasts, or as fine-grained matrix, typically appears essentially fresh except for incipient sericitization.

The abundance of carbonate in most of the rocks may, in part, represent a form of alteration. In some cases the textural relationships (veining, pseudomorphing) are indicative of this; moreover the carbonate introduction appears sometimes to have been accompanied by minor silicification, in the form of associated micro-granular, chert-like quartz.

For the most part, however, the carbonate exhibits an intimately intergrown, inter-laminated relationship which suggests that it may have formed concurrently with the tuffs as a chemical sedimentary addition at the site of deposition. Whatever its origin, it largely predates the metamorphism and recrystallization.

The carbonate in almost all cases shows little or no reactivity to dilute acid and is presumably of dolomitic, or accasionally ankeritic composition. Exceptions are RG-6 22.7m. and 86.6m. and RG-7 123.5m. where it is apparently calcitic.

11 Ami

J.F. Harris Ph.D.

Sample RG-2 35m (Slide 87-004X) SHEARED QUARTZ-FELDSPAR PORPHYRY

Estimated mode

Plagioclase60Quartz30Sericite6Carbonate2Pyrite2

This rock consists of equant, subhedral plagioclase crystals, 0.2 - 1.5mm in size, together with lesser quartz of similar size range, set in a very fine-grained felsitic matrix. The latter has a grain size of 5 - 20 microns and consists of plagioclase and quartz in indeterminate proportions.

In addition to the individual phenocryst-like grains, a fair proportion of quartz is in the form of finer-grained aggregates. These often occur peripheral to quartz phenocrysts and between and around clumps of plagioclase phenocrysts. The quartz typically shows strain polarization.

The rock is traversed by discrete, sinuous, sub-parallel, wispy schlieren of sericite which diverge around the phenocrysts and define a weak, ill-defined, locally micro-lenticular foliation. The plagioclase phenocrysts and felsitic groundmass also show incipient to very weak pervasive sericitization.

Carbonate occurs sparsely as random flecks, intergrown with the granular quartz and associated with the sericite wisps.

Pyrite occurs as randomly disseminated, subhedral, sometimes skeletal grains to 0.5mm in size.

This rock has the aspect of a rather fresh but somewhat sheared igneous (quartz dioritic) intrusive. The shearing does not appear strong enough to have produced the fine felsitic matrix by cataclasis. This is therefore interpreted as a primary component, representing the groundmass in an original porphyritic rock.

Some of the finer-grained quartz may represent peripheral granulation of phenocrysts and some may be of introduced origin (silicification).

The lack of any mafic silicates (or derived alteration products) is notable.

Sample RG-2 87m. (Slide 87-005X)

Estimated mode

Plagioclase	62
Quartz	19
Sericite	10
Chlorite	5
Carbonate	1
Epidote	3
Tourmaline	trace
Rutile) Opaques)	trace

This is a weakly foliated, homogenous rock exhibiting the texture of a finegrained sediment or tuff.

It consists principally of an aggregate of plagioclase and lesser quartz in the size range 0.01 - 0.05mm, with randomly scattered angular clasts around 0.1mm in size. A few bands or lenses are made up of coarser grains to 0.2mm or so.

Fine-grained sericite and chlorite (often intergrown) form oriented tiny flakes throughout. These tend to coalesce as small diffuse wisps, but show no segregation into discrete continuous schlieren or foliae. The rock thus appears essentially unfoliated on the macro scale.

Epidote is the other accessory constituent, as evenly disseminated tiny specks, locally coalescing to small microgranular clusters.

Carbonate occurs as a few sub-concordant or discordant hairline veinlets, sometimes with traces of limonite or with intergrown epidote and/or chlorite. One coarsercross-cutting veinlet of carbonate (0.5mm thick) contains abundant, wellformed prismatic grains of blue-green tourmaline.

This rock has the aspect of an undeformed, fine-grained, metamorphosed sediment or volcaniclastic.

Estimated mode

Plagioclase	64
Quartz	12
Sericite	17
Carbonate	6
Rutile	1

This is a rock of similar type to RG-2 35m., though somewhat more strongly sericitic.

It consists of subhedral phenocrysts of plagioclase and lesser angular grains of quartz to 1.0mm in size, set in a felsitic groundmass. The plagioclase phenocrysts occur as individuals and concentrated in lenticular clumps, often with associated microgranular quartz.

The plagioclase phenocrysts show weak to occasionally moderate pervasive sericitization (as randomly oriented or crystallographically controlled flecks). The felsitic groundmass is rather extensively pervaded by fine-grained sericite as diffuse wisps. Locally these form sinuous through-going schlieren with intergrown fine-grained carbonate. These define a distinct foliation.

Minor carbonate also occurs as random granules and pockets throughout, especially in association with microgranular quartz and phenocryst clusters.

Disseminated specks and clumps of rutile are relatively abundant, often showing a close association with the carbonate/sericite schlieren.

Sample RG-3 260m. (Slide 87-006X) ALTERED PORPHYRY (OR TUFF?)

Estimated mode

Plagioclase	65
Quartz	18
Sericite	2
Carbonate	13
Chlorite	trace
Tourmaline	1
Rutile	trace
Pyrite	1

This is a rock of similar composition and general aspect to the sheared porphyries from RG-2. It differs in being somewhat more heterogenous, having a higher content of carbonate, and in lacking quartz phenocrysts.

Plagioclase phenocrysts are 0.2 - 2.0mm in size and range from euhedral to anhedral in form. The latter type often appear to be the result of marginal assimilation by the felsitic groundmass or by microgranular quartz.

Quartz appears to be almost entirely in the form of microgranular clumps and streaks. These are sometimes diffusely developed within the groundmass, sometimes closely associated with clusters or lenses of plagioclase phenocrysts, sometimes intimately intergrown with carbonate as sub-concordant streaks and lenticular masses, and occasionally of discordant, veniform character.

This rock contains very little sericite. What there is occurs as occasional wispy schlieren in the groundmass and as a very sparse dusting in some of the plagioclase phenocrysts.

Carbonate, by comparison, is abundant; it occurs as dispersed flecks and pockets throughout, locally concentrating as diffuse to compact lenses, sometimes with associated microgranular quartz. Rarely it forms discordant hairline veinlets.

A notable constituent is dark bluish-green tourmaline, as small radiate clusters of very fine-grained hair-like, acicular crystals and occasional more granular clusters. It is closely associated with (and usually included within) carbonate.

Minor pyrite occurs randomly disseminated and as trains of elongate grains associated with some of the carbonate/quartz lenses.

This rock does not appear to be significantly sheared. However, much of the carbonate and quartz have the textural aspect of introduced constituents, indicating that it may be rather extensively altered.

There is a tendency for the porphyry-textured rock to occupy a central zone in the slide and to be flanked by bands (?) in which phenocrysts are sparse and the groundmass shows more extensive carbonate and granular quartz development. An alternative interpretation is that this is a pyroclastic in which a central band rich in crystal clasts is interlayered with finer, more altered tuff. Estimated mode

72
20
3
5
trace
trace

This rock is of very similar type to RG-2 35m., consisting of abundant individual and clumped phenocryst-like grains of plagioclase and lesser quartz in a felsitic matrix.

Sericite occurs as very fine-grained dispersed flecks through the groundmass, only rarely concentrating as discrete wisps or sinuous envelopes to phenocrysts. Carbonate likewise forms random interstitial flecks, especially in association with clusters of phenocrysts. The fabric is only very weakly foliated.

The plagioclase phenocrysts mainly show little or no pervasive sericitization.

Quartz phenocrysts rather commonly show peripheral granulation. Similar microgranular quartz sometimes forms irregular pockets and networks between plagioclase crystals.

The phenocrysts in this rock are noticeably more rounded than in previous samples, and tend to show a weak preferred orientation parallel to the foliation, resulting in a somewhat clastic (greywacke-like) appearance in thin section.

Sample RG-4 75m. (Slide 87-008X)

Estimated mode

Plagioclase	67
Quartz	18
Sericite	11
Carbonate	2
Epidote	2
Chlorite	trace

This is another rock showing similar features to the previous samples of sheared quartz-diorite porphyry. The presence of epidote is, however, a distinctive feature (previously seen only in RG-2 87m., a fine-grained rock of different type).

Phenocrysts (of mildly sericitized plagioclase and lesser quartz) are 0.2 - 2.0mm in size, and range from euhedral to rounded. They occasionally show a preferred elongation parallel to the rather well-defined foliation.

Sericite is relatively abundant, as very fine-grained diffuse impregnations, locally concentrating as parallel, wispy schlieren. Fine-grained epidote is a common associate as specks and small clusters throughout the sericitic zones.

Carbonate is minor, mainly occurring concentrated in a single thin (concordant) zone at one end of the slide.

Quartz occurs, as in the other rocks, as individual phenocrysts, sometimes partially granulated, and as irregualr pockets of microgranular material in the groundmass and interstitial to clumps of plagioclase phenocrysts.

The rock exhibits a tendency for banded alternations of phenocryst-rich material and strongly sericitic material with few phenocrysts, possibly more highly sheared zones in which phenocrysts have been largely broken down by cataclasis and/or alteration. The alternative hpothesis of coarser and finer tuffaceous laminae could also apply. Sample RG-4 135m. (Slide 87-009X)

Estimated mode

Plagioclase	68
Quartz	15
Sericite	12
Carbonate	2
Epidote	2
Chorite	1
Rutile)	+ ***
Leucoxene)	trace

This is another rock of essentially the same type as the majority of previous samples in the suite. The overall size of the phenocrysts is slightly smaller (maximum 1.0mm) and they are often notably angular in shape. This is especially true of the quartz, though the plagioclase also shows poor development of crystal form. Random orientation of the phenocrysts (with only minimal tendency for elongation parallel to the weak foliation) is another feature which adds to the rather heterogenous, gritty textural aspect.

Sericite, in very fine-grained form, is rather extensively developed throughout the groundmass, concentrating as short parallel wisps between the phenocrysts. The plagioclase phenocrysts also show rather consistent weak pervasive sericitization (in random orientation).

Carbonate is minor, as small pockets interstitial to (and partially replacing?) plagioclase in some sericite-poor zones of small phenocrysts.

Fine-grained epidote and traces of sphene and leucoxene occur as small flecks, trains and clusters associated with sericite wisps.

Scattered small pockets of chlorite are seen, often apparently replacing plagioclase phenocrysts and/or associated with carbonate.

Estimated mode

Plagioclase	60
Quartz	12
K-feldspar	5
Carbonate	12
Sericite	10
Rutile	trace
Pyrite	1

This rock is distinct from all previous samples of the suite in containing accessory K-feldspar, and in exhibiting a texture clearly indicative of cataclasis of an original medium-grained, non-porphyritic, quartz dioritic intrusive.

It consists of remnant patches and lensoid augen up to 5mm in size, made up of strained, partially recrystallized, polygranular aggregates of plagioclase with intergrown accessory quartz and microcline, set in a strongly sheared, sericitized matrix. The latter apparently represents a more strongly granulated, disaggregated form of the same rock seen as the more coherent remnants.

The sheared form consists of felsitic material intimately intergrown with very fine-grained sericite. The latter locally concentrates as strong, throughgoing schlieren which define a distinct foliation. These sericitic shears sometimes separate fractured portions of such remnants.

Carbonate is also rather abundant, as irregular patches and randomly disseminated grains. It is concentrated in the less sericitized areas of granulated feldspars, and in streaky quartzose segregations. It also appears to form replacements of some of the less granulated kernels of intrusive. It possibly predates the main shearing and sericitization.

Minor disseminated fine-grained pyrite and rutile are partly random in their distribution and partly form short trains paralleling the sericitic shears.

Sample RG-4 255m. (Slide 87-011X)

Estimated mode

Plagioclase	38
Quartz	24
Carbonate	25
Sericite	12
Rutile	trace
Pyrite	1

This sample represents another variant of the sheared quartzo-feldspathic igneous lithotype making up the bulk of the suite.

Remnant phenocrysts are essentially absent, and the rock consists largely of felsitic material (possibly representing a finely granulated form of a coarser original rock) together with abundant carboante, quartz and sericite which have the aspect of alteration products (since more or less recrystallized).

The fabric is quite strongly oriented, with a foliation defined by sinuous, sub-parallel schlieren of sericite (sometimes with trains of fine-grained rutile). These separate streaky bands and lenses which consist of felsitic plagioclase with finely dispersed sericite and disseminated carbonate. Locally small rather ill-defined plagioclase phenocrysts, to 0.5mm in size, are recognizable in this material.

Carbonate also concentrates as extensive zones of en-echelon lenses with abundant intergrown granular quartz. This quartz appears distinct from the occasional, individual, more or less granulated augen or phenocrysts.

The quartz/carbonate zones locally exhibit small-scale kinks and microstructural disturbances.

Disseminated pyrite occurs as rather coarse grains, strongly associated with the lenses and anastomosing networks of carbonate and granular quartz, which may be partly of introduced origin.

Sample RG-5 130m. (Slide 87-012X) ALTERED QUARTZ DIORITE

Estimated mode

Plagioclase	50
Quartz	20
Carbonate	27
Sericite	3
Rutile	trace

This sample is unique in the suite in being a non-foliated rock, strongly altered but exhibiting no evidence of shearing.

It clearly originated as a medium-grained quartz diorite consisting dominantly of a granular aggregate of subhedral plagioclase of grain size 0.3 - 5.0mm. Accessory quartz, intergrown with the plagioclase in interstitial and sometimes graphic-textured relationship, is clearly of primary magnatic origin.

The plagioclase shows a rather even, weak to moderate, pervasive dusting of sericite and fine-grained carbonate. The major alteration, however, is carbonate in the form of a coarse network of irregular veinlets, intergranular fillings and coarse replacement patches. Locally the carbonate includes considerable intergrown microgranular quartz which appears to represent an associated introduced phase of silicification.

Fine-grained rutile, as irregular disseminated flecks, is a common (though trace-level) constituent of the carbonate alteration. Occasionally this is in the form of small angular clumps which may represent pseudomorphs of original mafic accessories.

Sample RG-6 22.7m. (Slide 87-013X) ALTERED LAMINATED MAFIC TUFF?

Estimated mode

Biotite	34
Chlorite	8
Felsite	8
Carbonate	30
Sericite	20
Tourmaline	trace
Apatite	trace
Sphene) Rutile)	trace

This slide is made up of a folded, thinly laminated sequence and shows a green and a white lithotype in conformable contact.

The green portion is made up essentially of intimately intergrown, very finegrained biotite and sericite, with lesser chlorite. The fabric is dominantly a felted one, locally displaying partial orientation. A fair degree of internal micro-deformation may be present.

Some sub-parallel lensy/laminar segregation of biotite-rich vs sericite-rich composition is seen, and chlorite also tends to concentrate as localized wisps.

A cryptocrystalline felsitic material is the other component and can be distinguished throughout as diffuse remnants - possibly representing an original matrix now almost totally obscured by the growth of biotite and sericite. Locally the felsitic phase forms small, better-defined, lensoid patches in which vestiges of plagioclase phenocrysts or clasts can sometimes be seen.

Scattered individual grains of apatite occur within the micaceous aggregate, as well as traces of dissemianted fine-grained rutile and sphene.

The white portion of the slide is composed dominantly of carbonate as ragged, relatively coarse-grained clumps and streaks (possibly disrupted laminae). Irregular patches and lenses of the biotite/sericite/chlorite assemblage and, occasionally, of felsitic plagioclase occur within the dominant carbonate.

Disseminated tiny grains of tourmaline are seen within the biotite-rich rock at the contact with the mixed carbonate/argillite sequence.

This rock may be an altered/metamorphosed, fine-grained, calcareous, mafic tuff.

Sample RG-6 66.3m. (Slide 87-014X)

Estimated mode

Felsite	52
Plagioclase)) 52
Quartz	8
Carbonate	27
Sericite	10
Chlorite	3
Tourmaline	trace
Rutile	trace
Pyrite	trace

This is a fine-grained laminated rock showing strong deformation. It consists essentially of alternating bands composed dominantly of felsitic plagioclase and of sericite and chlorite.

The micaceous bands are similar to silty argillites and contain more or less intergrown, minutely interlayered, fine-grained quartzo-feldspathic material. They show intense close-spaced crenulation, with development of axial plane cleavage.

The felsitic bands contain tiny plagioclase crystals and clumps of microgranular quartz, as well as varying amounts of intimately interlayered sericitic material. A few bands contain coarser plagioclase crystals (clasts?) and quartz augen up to 1.0mm in size. The coarser grains show partial destruction and assimilation by recrystallization.

Carbonate is an abundant constituent of the rock. It occurs as thin semicontinuous bands and trains of disseminated grains in the felsitic laminae. These show a sinuous deformation pattern and apparently represent concordant primary calcareous zones. Carbonate also occurs in interstitial mode between clumps of plagioclase crystals in the coarser quartzo-feldspathic laminae. A third form is as extensive irregular patches of granular mosaic which apparently represent more substantial interbeds which have suffered complex disruption and remobilization.

Traces of tourmaline and contorted films of rutile are seen in some of the argillaceous (sericitic) bands.

This rock appears to be a metamorphosed, laminated, calcareous, argillaceous tuff.

Sample RG-6 86.6m. (Slide 87-015X)

Estimated mode

Felsite	20
Quartz	7
Sericite	26
Chlorite	14
Carbonate	32
Rutile)	1
Leucoxene)	T
Tourmaline	trace

This is another rock of similar general type to the preceding two samples from RG-6.

It consists of alternating thin laminae (0.2 - 2.0mm in thickness) made up of various proportions of intimately intergrown carbonate, sericite/chlorite and felsitic plagioclase and/or fine-grained quartz.

The grain size throughout is in the range 0.01 - 0.1mm, and discrete plagioclase clasts or quartz fragments are very rare.

As in the previous sample traces of tourmaline are seen in some of the argillaceous laminae.

The rock shows close-spaced crumpling throughout, with the development of a prounounced axial plane cleavage (emphasized in the micaceous zones by strong concentrations of micron-sized rutile).

Of the three related rocks from RG-6 this one shows the least obvious tuffaceous affinities. It would appear to be essentially a laminated, calcareous siltstone/argillite.

Sample RG-7 58.2m. (Slide 87-016X)

Estimated mode

Felsite	26
Plagioclase	4
Quartz	14
Carbonate	44
Sericite	12
Rutile)	trace
Leucoxene)	eruce
Pyrite	trace

This sample shows a somewhat lensy, laminated structure on the scale 0.5 - 2.0mm.

It is of similar composition to the preceding samples (from RG-6) but is undeformed. It consists of alternating, somewhat interfingering laminae made up of varying proportions of felsitic plagioclase and fine-grained quartz, carbonate and sericite. These constituents are typically intimately intergrown and the laminae show less clear-cut differentiation than in the RG-6 rocks.

The more quartzo-feldspathic bands often show scattered quartz eyes (angular to rounded grains up to 1.0mm in size) and plagioclase clasts, sometimes as welldefined lensoid clumps and sometimes partially assimilated into the recrystallized groundmass. These features clearly attest to the igneous or pyroclastic affinities of the rock.

Fine-grained carbonate is disseminated throughout and concentrates as trains of elongate grains and as more or less distinct laminae. Sericite occurs in similar mode but is less abundant. Wisps of micron-sized rutile occur within the occasional, thin, concordant, sericite-rich schlieren.

This rock does not appear to show evidence of the intense shearing which would have been required to produce it cataclastically from an igneous progenitor. It is more likely a somewhat metamorphosed/recrystallized thin-bedded, calcareous tuff. Sample RG-7 65.0m. (Slide 87-017X)

Estimated mode

Felsite	35
Plagioclase crystals	28
Quartz	8
Sericite	16
Carbonate	12
Rutile	1

This rock appears to be of similar type to the samples from RG-2 classified as sheared porphyrites. It is, however, somewhat finer grained and has a lower ratio of phenocrysts (or clasts) to felsite. An alternative origin for these rocks is shearing of rather coarse crystal tuffs.

It consists of scattered, individual, equant/subhedral grains of mildly sericitized plagioclase and angular grains of quartz, and linear trains and lenses of such grains, set in a predominant felsitic matrix.

The quartz clasts tend to be somewhat coarser than the plagioclase, occasionally reaching 2.0mm in size.

The felsitic matrix contains intimately intergrown, well-oriented, very fine-grained sericite, concentrating as parallel wispy schlieren. These sometimes outline coarse flattened lenticles of felsite which appear to be stretched fragments.

Carbonate occurs as a fine-grained disseminated component, partly segregated as small elongate lenses and also in slightly coarser granular form interstitial to clumps of plagioclase crystals.

The parallel elongation of sericite schlieren, trains of plagioclase clasts and carbonate wisps bestows a rather well-defined foliation. Estimated mode

Felsite)	20
Lithic fragments)	20
Plagioclase crystals	40
Quartz	10
Sericite	5
Chlorite	10
Carbonate	15
Rutile	trace

Of all the rocks of the suite, this shows the most abundant and undeniable pyroclastic features.

It is an aggregate of randomly oriented, angular to sub-rounded plagioclase crystal clasts, 0.1 - 1.0mm in size, with lesser angular quartz grains to 2.0mm. These are set in a matrix of smaller crystals and felsitic plagioclase, with intimately intergrown carbonate, chlorite and minor sericite. The carbonate forms irregular, patchy concentrations as well as a few discordant veinlets.

The rock also contains obvious lithic fragments, up to 5mm in size, which are commonly strongly flattened or elongated. Some of these are felsitic, some porphyritic, and some shaly (micaceous). The parallelism of these lenticular lithic clasts constitutes almost the only perceptible planar structure in the rock. Sample RG-7 123.5m. (Slide 87-019X)

Estimated mode

Felsite	20
Plagioclase	3
Quartz	3
Carbonate	50
Chlorite	16
Sericite	8
Rutile	trace
Pyrite	trace

This rock is a finely laminated, highly calcareous rock which is probably a fine-grained silty tuff.

It exhibits lamination on the scale 0.5 - 2.0mm, and a strongly oriented fabric.

The laminae are composed of the usual constituents: felsitic plagioclase, chlorite, sericite and carbonate in various proportions. They range from essentially monomineralic to gradational mixtures.

Carbonate is particularly abundant, as strongly flattened, elongate grains, commonly coalescing to form discrete laminae. Sericite and chlorite also form occasional thin concentrated layers.

Crystal clasts (plagioclase and quartz) are sparse and small (generally up to 0.2mm or, rarely, 0.5mm). They occur randomly disseminated.

Traces of fine-grained rutile occur in the less carbonate-rich bands. There are also rare small randomly disseminated clusters of pyrite.

The rock shows a strong slightly sinuous foliation representing original layering.

Sample RG-7 139.0m. (Slide 87-020X)

Estimated mode

Plagioclase	80
Quartz	8
Sericite	6
Chlorite	4
Carbonate	2
Rutile	trace

This rock is texturally distinct from all others of the suite.

It consists essentially of a fine-grained aggregate of subhedral to anhedral plagioclase of grain size 0.01 - 0.3mm, with occasional euhedral grains to 1.0mm. The fabric is randomly oriented, locally mesh-like, and looks igneous. It could be classified as sub-porphyritic with the finest grains occurring interstially to the coarser ones but without a true groundmass.

The plagioclase shows a weak pervasive dusting of sericite. Sericite and chlorite also occur in interstitial mode and as an irregular network of somewhat diffuse hair-line veinlets.

Quartz occurs as minor interstitial pockets and, occasionally, as irregular veinlike bodies.

Carbonate is rare, occurring mainly as flecks associated with quartzose pockets.

The rock shows partial recrystallization, evidenced by blurring of original crystal outlines, and by local patches of textural coarsening. Also the sericite in the veinlet network shows a consistent orientation suggesting that the rock bears an overprint of dynamic metamorphism.

Its texture is consistent with origin as a feldspathic (andesitic) dyke.

emple RG-8 15.7m. (Slide 87-021X)

Estimated mode

Plagioclase)	42
Felsite)	42
Quartz	12
Sericite	30
Carbonate	16
Rutile	trace
Tourmaline	trace

This is another fine-grained, rather diffusely laminated rock.

It consists principally of an intimate intergrowth of sericite and felsitic material with accessory carbonate. The sericite is very fine-grained and occurs abundantly throughout as well oriented minute flakes, frequently concentrating as more or less coherent lensy laminae.

The felsite matrix is generally of grain size 0.01 - 0.05mm and appears somewhat recrystallized. It shows a tendency for grain flattening or elongation, emphasising the well-foliated fabric defined by the abundant sericite. Recognizable plagioclase crystals (clasts or phenocrysts) 0.1 - 0.2mm in size and equant in shape, are relatively common and tend to occur in lines.

Quartz clasts tend to be considerably coarser in size (to 2.0mm) and are rather abundant. They are angular to sub-rounded in shape and show random orientation with respect to the foliation.

Carbonate occurs rather evenly distributed as small wisps and lines of disseminated irregular grains, as well as coarser patches associated with concentrations of plagioclase and quartz clasts.

Rutile forms strings of small granules associated with the more sericitic laminae. Traces of tourmaline were seen as occasional lines of tiny prisms, elongated parallel to the foliation.

The foliation is distinctly sinuous and anastomosing, and there is local smallscale crumpling. Sample RG-8 162.4m. (Slide 87-022X)

Estimated mode

Felsite	40
Chlorite	26
Carbonate	32
Rutile	2

This is a rock of distinctive texture and mineralogy compared to the rest of the suite. It contains no sericite and displays no lamination or banding.

It consists of an evenly fine-grained felsitic aggregate of grain size 0.01 - 0.1mm, showing strong grain flattening. Chlorite, of similar grain size, occurs as an intergranular phase of well-oriented individual flakes, commonly coalescing as diffuse streaks and networks.

Carbonate is a major constituent, as disseminated grains and small clumps, commonly clustering to form en-echelon swarms and small lenses. It also shows strong parallel grain elongation and much of it is considerably coarser (up to 0.5mm) than the other components.

Rutile, and traces of opaques (oxides or sulfides), occurs as rather abundant disseminated irregular granules. These are closely associated with the chlorite but lack the strong orientation exhibited by the other constituents.

No quartz eyes or coarser plagioclase crystals are present.

The strongly oriented grain fabric appears to be an effect of recrystallization. The rather irregular, streaky/lensy concentrations of the major components may be a relic of pre-metamorphic deformational or fragmental structures.

The original character of this rock is indeterminate, but its mineralogy is consistent with that of an altered, metamorphosed mafic tuff.

Estimated mode

Felsite	34
Plagioclase crystals	20
Quartz	8
Sericite	14
Chlorite	12
Carbonate	12
Rutile	trace

This is a similar type of rock to RG-7 65m. except that it contains chlorite and the felsitic matrix looks a little coarser and more recrystallized.

It consists of a matrix of felsite of somewhat variable grain size, with intimately intergrown chlorite and sericite. These concentrate as close-spaced, wispy schlieren, bestowing a sinuous foliation which shows occasional local crunpling.

Carbonate exhibits a similar mode but is more restricted in its occurrence, being concentrated mainly in a few discrete lenses or laminae.

Plagioclase crystals and lesser quartz grains, in the size range 0.1 - 1.0mm, are rather abundant. They occur as scattered individuals and small lensoid clusters. They commonly show marginal granulation/recrystallization and partial assimilation by the matrix.

The texture overall is lensy. The rock is foliated but shows no well-defined layered compositional or grain size variations. In particular it lacks the intercalated, strongly argillaceous (micaceous) bands seen in some of the other, otherwise similar, samples.

Sample RG-9 144m. (Slide 87-024X)

Estimated mode

Felsite	40
Quartz	8
Carbonate	34
Sericite	10
Chlorite	7
Rutile	1
Pyrite	trace

This rock exhibits textural details which set it apart from others of the suite, although it is clearly of similar general type.

It consists basically of a rather even, very fine-grained felsitic aggregate of grain size 0.01 - 0.03mm, with intimately intergrown sericite and chlorite of similar grain size. The latter constituents are very evenly distributed and show little or no tendency to concentrate as discrete wisps or schlieren. Finegrained rutile occurs as disseminated granules.

The rock contains none of the coarser plagioclase crystals or quartz eyes seen in many of the other samples.

Carbonate is a major component. It occurs in distinctive manner as lines and lenticular clusters of equant, sub-prismatic grains, 0.1 - 0.5mm in size, which look very like pseudomorphs of original plagioclase crystals. It also forms a few thin coherent vein-like bodies or laminae; these are concordant with the lines of pseudomorph-like, individual carbonate grains mentioned above, and locally merge with them. In this form the carbonate often has intergrown streaks and patches of microgranular quartz and rare grains of pyrite.

These features suggest the possibility that the carbonate in this rock is mainly of introduced (alteration) origin and that the associated quartz represents an episode of silicification. It may, therefore, represent an altered version of the tuff lithotype which dominates the suite.

This rock exhibits only a weak foliation, defined by the linear arrangement of carbonate concentrations and some crudely banded variations in the abundance of intergrown sericite and chlorite in the felsite. It is notable that the individual flakes of micaceous minerals show a strong parallelism (somewhat disturbed by local minor crumpling) but this is oblique to the weak mineralogical banding, not parallel to it as in the majority of samples.

Sample TR-4 (Slide 87-025X)

Estimated mode

Felsite Plagioclase	}	36
Quartz	1	16
Carbonate		42
Limonite		5
Rutile)		1
Leucoxene)		T

This sample represents still another variant of the fine-grained felsitic, probably tuffaceous lithotype which dominates the suite.

It is unique in totally lacking any sericite or chlorite. Carbonate, by comparison, is extremely abundant.

It is a very fine-grained rock showing a strong, slightly sinuous, but essentially undisturbed laminar structure paralleling a very well-oriented grain fabric.

The felsitic matrix contains scattered small individual plagioclase crystals to 0.2mm in size, and rare composite augen of coarser plagioclase with intergrown carbonate. Thin, lensy variations in felsite grain size are common.

Quartz is relatively abundant, often segregating as microgranular laminae and lenses, and also forming scattered polygranular augen.

Carbonate is intimately intergrown throughout, as rather elongate grains, commonly coalescing to semi-continuous streaks and networks, and also forming some well-defined laminae, often with intergrown microgranular quartz. A proportion of the carbonate is of distinctive form, being extremely fine-grained and almost sub-opaque in appearance, partially as a result of intergrown flecks and cryptocrystalline inclusions of rutile and leucoxene. This form of carbonate forms swarms of parallel en-echelon wisps and more throughgoing schlieren which strongly reinforce the well-foliated character of the rock. These features are reminiscent of the wispy concentrations of sericite seen in some of the samples, and could possibly be pseudomorphic replacements thereof.

Minor carbonate is in the form of discordant veinlets, which cross-cut and also merge with the dominant laminar/concordant form.

One side of the slide shows strong limonitic impregnation, apparently developed largely by weathering of carbonate (presumably, therefore, a ferruginous variety). Rare elongate clumps of disseminated pyrite are also present but these do not appear to be the origin of the limonite.

This rock is apparently a calcareous thin-bedded tuff or tuffaceous sediment.

Sample TR-13 (Slide 87-026X)

Estimated mode

Plagioclase) Felsite)	62
Quartz	15
Carbonate	15
Sericite	8
Rutile	trace

This rock is of distinctive appearance in thin section and clearly consists of undisturbed, thinly laminated alternations (on the scale of 2 - 10mm) of finegrained greywacke and calcareous siltstone.

The greywacke beds consist of abundant sub-rounded clasts, 0.1 - 0.3mm in size, of incipiently sericitized plagioclase and minor quartz, set in a felsitic-textured quartzo-feldspathic, silty matrix of grain size 5 - 30 microns. This matrix contains rather sparse wisps of very fine-grained sericite which wrap around the somewhat parallel-elongated clasts and define a weak, sinuous foliation. Carbonate is rather evenly disseminated through the matrix, in interstitial relation to the clasts.

The siltstone beds are of similar composition but lack the coarser clasts and consequently have a relatively higher content of sericite and carbonate and more even parallelism of fabric compared with the wacke.

This rock lacks the scattered coarse augen and wispy/lensy fabric seen in most of the rocks of the suite and thought to be indicative of tuffaceous character. It is a homogenous, well-sorted rock of obvious sedimentary origin, though the high content of plagioclase suggests close affinities with, or derivation from, felsic volcanic or tuffaceous material. APPENDIX D

WHOLE ROCK ANALYSES

CERTIFICATE OF ANALYSIS

TO: DREQUEST CONSULTANTS ATTN: G. CAVEY 595 HOWE STREET. SUITE 404 VANCOUVER. BRITISH COLUMBIA V6C 2T5

CUSTOMER NO. 1374

DATE SUBMITTED 19-NOV-86

REPORT 30291

REF. FILE 25862-S3

43 S.CORES PROJ. REGAL SWAZIE

WERE ANALYSED AS FOLLOWS:

		METHOD	DETECTION LIMIT
WRMAJ	X	WR	0.010
WRMIN	PPM	WR	10.000

X-RAY ASSAY LABORATORIES LIMITED

DATE 04-DEC-86

CERTIFIED BY

X	X	RRRRR		A		LL
XX >	(X	RR R	R	AAA	a	LL
XX X)	(RR	RR	AA A	AA	LL
XXX		RR R	R	AA	AA	LL
XXX		RRRRR	2	AAAAA	AA	LL
XX X)	(RR R	R	AA	AA	LL
XX >	(X	RR	RR	AA	AA	LLLLLL
X	X	RR	R	AA	AA	╘╘╘╘╘

XRF - WHOLE ROCK ANALYSIS

OREQUEST CONSULTANTS Attn: G. CAVEY 595 HOME STREET, SUITE 404 VANCOUVER, BRITISH COLUMBIA V6C 2T5

CUSTOMER No. 1374

DATE SUBMITTED 19-NOV-86

REPORT 30291 REF. FILE 25862 04-DEC-86

XRF W. R. A. SUMS INCLUDE ALL ELEMENTS DETERMINED. FOR SUMMATION ELEMENTS ARE CALCULATED AS OXIDES.

	Y. DAV. ACCAN LAD													
	X-RAY ASSAY LABO	RATURIES) (04-DEC-86		Na V	EPORT 30	291 REI	ERENCE	FILE 258	52	Ĩ	PAGE 1	
	SAMPLE	\$102	AL203	cad 🗸	MGO	NAZO	K20	FE203	MNÜ	7102	P205	CR203	L01	SUM
१ - ४४ वि	RG-1 H CA7	67. 2	15, 1	2. 50	0. 96	5. 29	2.19	7 2.13	0. 03	0. 32	0. 10	0. 01	3. 47	99. 5
2 87	RG-2 GMMYL	62.5	17. 4	2. 46	2. 12	6. 07	2. 01	3. 01	0. 05	0. 33	0. 13	0. 01	2. 93	99. 2
65	RG-3 GY BL CAT	62.0	14, 8	5. 9 9	1. 08	10. 6	0. 41	и 2.89	0. 06	0. 41	0. 27	0. 01	1. 00	100. 1
2-57	RG-4 GY CAT PY	67. 2	15, 4	2.44	1. 20	6. 31	1. 61	s 2.78	0. 03	0. 31	0. 11	0. 08	2.85	100. 5
- 75	RG-5 GN (A7	62.0	17. 9	2.93	1. 69	5. 83	2. 38	3. 70	0. 05	0. 35	0. 15	0. 01	2. 85	100. 1
2-35	RG-6 by CAT/CAD	67. 0	13. 8	2. 89	0. 55	6, 44	1. 33	3. 12	0. 04	0. 34	0. 11	0. 01	4. 00	9 9. 8
- 27	RG-7se CAT	64. 3	15. 7	3. 23	1. 07	6. 00	2. 02	2.40	0. 04	0. 35	0. 13	0. 01	4. 00	9 9. 4
286	RG-8 GN CAT	66. 2	15.6	2.17	0. 91	3, 49	3. 37	2.62	0. 03	0. 34	0. 09	0. 01	3. 85	98. 8
1.284	RG-9 H CAT	63. 3	13. 9	5. 19	0, 94	3, 54	2 71	2. 45	0. 06	0. 30	0. 07	0. 01	6. 39	9 9. i
• 282	RG-10 pink CAT	61. 9	17.6	3, 36	0. 86	4, 31	3. 62	2.36	0. 04	0. 38	0. 09	0. 01	4. 47	99.2
1-276	RG-11 QV	57. 1	12.4	5. 75	4. 50	3. 82	0. 54	7. 06	0. 12	0. 64	0. 34	0. 03	6. 47	9 9. 0
-280	RG-12 OD	55. 2	13. 7	6. 37	3. 95	5, 18	0. 57	5. 99	0. 12	0. 64	0. 33	0. 02	7.77	100. 0
-267	RG-13 QT	56. 7	15. 8	4. 59	3. 65	4, 84	1. 35	5. 62	0. 10	0. 60	0. 42	0. 02	5. 16	9 9. 1
712-4	RG-14 <k a="" bl<="" td=""><td>47. 2</td><td>12.8</td><td>6. 67</td><td>2 48</td><td>2.89</td><td>0, 05</td><td>13. 0</td><td>0. 25</td><td>(69</td><td>0. 14</td><td>0. 02</td><td>13.8</td><td>100. 1</td></k>	47. 2	12.8	6. 67	2 48	2.89	0, 05	13. 0	0. 25	(69	0. 14	0. 02	13.8	100. 1
n-13	RG-15 CAT	66. 6	12.6	3. 95	1, 54	6. 45	0. 67	2.13	0. 10	(. 28	0. 09	0. 01	5. 85	100. 4
4-15	RG-16 CAT R/G	67. 0	15. 7	2.67	0. 94	6. 39	1. 47	2.18	0, 05	0 33	0. 10	0. 01	2 16	9 9. 2
- 30	RG-17 CAT silk	64. 3	14. 7	3. 48	1, 43	7. 04	1. 00	2 56	0. 06	0. 29	0. 10	0. 01	5. 31	100. 5
4 - 45	RG-18 CAT R	67. 1	15. 8	3. 25	0. 62	6. 65	1. 53	1. 34	0. 04	0. 32	0. 10	0. 01	2. 31	99 . 3
4-60	RG-19 CAT R/G	65. 5	15. 4	4. 38	1, 13	5. 73	1. 65	2. 20	0. 07). 28	0. 09	0. 01	3. 31	100. 0
- 75	RG-20 CA: RK	66. 4	16.6	2 19	1. 00	5. 73	2. 37	2. 09	0. 04	0. 31	0. 10	0. 01	2.00	99. 1
4 - 90	RG-21 CAT R/GY	68. 5	15. 7	2 63	0. 83	6. 16	1, 71	2. 03	0. 04	0, 31	0. 09	0. 02	1. 85	100. 1
1-105	RG-22 CA7 R/6	67. 6	15. 2	2. 56	0. 94	6. 25	1. 60	2.00	0. 04	0 . 32	0. 10	0. 01	2. 47	99 . 3
4 - 120	RG-23 CAT R/G	67. 9	15.3	2 80	0. 80	5. 74	1. 96	2. 20	0. 04	0. 33	0. 10	0. 01	2. 31	99 . 7
4 - 135	RG-24 CAT GY/8	68. 0	15. 4	2.08	1. 38	6. 37	1. 11	2.16	0. 04	0. 36	0. 12	0. 01	1. 54	98 . 8
H (150	RG-25 CAT pola	66. 9	15. 5	2. 50	0. 84	5. 31	2 69	2 16	0. 03	0. 30	0. 10	0. 01		99.6
4 - 165	RG-26 (QD/OT)		14. 7	3. 96	3. 66	4. 86	2.39	5.97		0. 65	0, 32	0. 02	4. 47	
1 - 180	RG-27 CQD		14. 2	5. 68	4. 89	4. 30	3. 79	6.76	0. 13	0. 71	0. 40	0. 03	5. 77	99. 1
										• •		**		

-	X-RAY ASSAY LAB	DRATORIE	S a	04-DEC-80	b	R	EPORT 30	291 RE	FERENCE	FILE 258	62	I	PAGE 2	
	SAMPLE	S102	AL203	cao y	MGO	NA20	K20	FE203	MNO	T102	P205	CR203	L01	SUM
6-7	RG-28 CAT	62.2	15. 2	5. 16	0. 78	5. 73	1. 72	2.60	0. 08	0. 36	0. 08	0. 01	5. 00	9 9. 1
245	RG-32 COD/CA7	55. 1	13. 9	4. 78	3. 69	4. 72	2.80	5. 10	0. 11	0. 60	0. 31	0. 02	7, 93	99. 3
250	RG-33 CAT/COD	53. 1	13. 6	5. 82	3. 8 2	6. 40	0. 86	5. 80	0. 11	0. 60	0. 32	0. 02	8. 39	99. 1
-255	RG-34 CAT R/BR	64. 2	14. 8	2 79	1.85	4. 33	2. 97	3. 47	0. 05	0. 43	0. 19	0. 01	4. 47	9 9. 7
260	RG-35 CAT R/G	59. 6	14. 7	4. 98	1. 63	4. 47	2. 91	3. 50	0. 06	0. 44	0. 19	0. 01	6. 39	99 . 1
- 265	RG-36 CAT R/G	61. 5	13. 7	4. 93	2.15	4. 60	2.09	3. 81	0. 06	0. 45	0. 18	0. 01	6. 16	99 . 8
270	RG-37CAT R	61. 4	14. 0	4, 64	2.43	4. 91	2 17	3. 66	0. 07	0. 44	0. 18	0. 01	5. 23	99 . 3
155	RG-39 QD	58, 5	14. 4	4. 34	3. 61	4. 38	3. 37	5. 23	0. 09	0. 58	0. 28	0. 02	4. 08	99. 2
-165	RG-40 QD;	58. 0	14. 2	4. 88	3. 93	3. 39	4. 08	5. 99	0. 10	0. 63	0. 31	0. 02	2.85	9 8. 7
175	RG-41 Q D	58. 3	14. 7	4. 66	3. 87	4. 11	3. 63	5. 89	0. 11	0. 62	0. 30	0. 02	2.85	99 , 4
- 185	RG-42 COD/0D	58. 0	15. 2	3. 44	3. 95	5. 08	3. 16	6. 16	0. 09	0. 69	0. 33	0. 02	3. 70	100. 1
2:45	RG-43 QT7	54. 4	14. 1	5. 97	4. 13	4. 51	2. 72	6. 27	0. 12	0. 67	0. 36	0. 02	5. 93	9 9. 5
- 250	RG-44 CAT 134/GY	67. 2	15. 2	2. 44	0. 82	5. 32	2. 66	2. 43	0. 04	0. 30	0. 08	0. 01	2. 93	99 . 6
259	RG-45 CAT 6.Y/G	68. 4	14. 7	2. 51	0. 66	5. 02	2.76	1. 94	0. 03	0. 31	0. 08	0. 01	2. 85	9 9. 4
260	RG-46 CAT G	60. 2	11. 5	5. 6 8	2. 96	4. 31	1. 76	4. 26	0. 10	0. 41	0. 17	0. 03	7. 39	99 . 0
-236	RG-47 CCS	59. 3	13.5	5. 78	3. 79	5. 65	0. 84	4. 01	0. 08	0. 45	0. 19	0. 03	5. 70	99 . 5

K-RAY ASSAY LABORATORIES 04-DEC-86

* . *

REPORT 30291 REFERENCE FILE 25862

.

PAGE 3

			-					
	SAMPLE	RB _I	SR	Ŷ	ZR	NB	́∱ва	
	RG-1	100	1060	<10	70	20	820	
	Н сал RG-2	70	960	<10	110	10	810	
2 47	GF11/L RG-3	10	3540	30	90	30	860	
2-57	67 BL OF RG-4	80	940	10	90	10	690	
, x · ⇒7 , 1 75	େମ (କା RG-5 ଜନ୍ମ (କା	90	1490	10	120	20	890	
1 2 - 70	RG-6	60	570	C10	1 0 0	10	490	
1 29	RG-7	70	720	<10	100	10	640	
 - 1	зе сел RG-8	150	300	۲10	110	10	530	
1220	60 (1)4 RG-9	120	1040	10	60	<10	660	
1 7294 ■	H CP1 RG-10	180	870	<10	110	20	740	
2×2	RG-11	50	1010	10	160	10	420	
1 276	(x) / RG-12 /x (5)	40	1080	20	120	10	320	
2 70	RG-13	60	1250	10	20	20	560	
	RG-14	10	70	20	90	10	100	
T C- 4	-4. µ) ⇒ { RG−15	40	680	10	80	20	490	
	RG-16	60	1010	<10	100	10	670	
4- 1 ²	RG-17	50	1180	<10	70	20	340	
	RG-18	80	1020	۲10	100	10	650	
	RG-19	60	900	<10	90	10	750	
H - 17	RG-20	100	920	<10	90	۲10	870	
	RG-21	70	1210	20	90	10	740	
4 - 90 1 - 1	RG-22	60	B4 0	<10	100	10	660	
- , 5	R0-23	90	1100	<10	100	<10	650	
	RG-24	50	1120	10	110	۲10	420	
	RG-25	130	710	20	90	10	690	
	RG-26	110	910	20	210	10	740	
Ti 114	RG-27	210	1660	30	190	10	1300	
- 170								

-

RAY ASSAY	LABORATORIES		04-dec-86	REPORT 302				
SAMPLE	RB	SR	Y	ZR	NB	BA		
RG-28	80	640	<10	80	10	370		
RG-32	9 0	1110	10	150	10	940		
RG-33	30	930	<10	140	20	700		
RG-34	150	460	10	90	10	740		
RG-35	140	460	<10	100	10	880		
RG-36	90	520	C10	90	<10	680		
RG-37	90	510	10	100	10	660		
RG-39	160	1130	20	160	10	1400		
RG-40	170	1300	20	170	<10	1240		
ed (RG-41	160	1280	20	180	20	1120		
RG-42	160	830	20	200	20	930		
RG-43	130	920	30	170	۲10	1120		
RG-44	100	590	<10	80	10	670		
RG-45	120	560	C10	110	10	580		
RG-46	70	600	20	80	10	940		
RG-47	30	610	20	100	۲۱۵	560		

- -

:.

1 . .

i

٠

11

291 REFERENCE FILE 25862

PAGE 4

CERTIFICATE DF ANALYSIS

1	. :	÷	-	e .	• • •		Į				
1			•	E. E.	••••				•		į
•			• •	••		•	,	•••••••••	÷	: •	
:	1	;		••••	-	+ ·		•••			,
		_				-					

TO: DREQUEST CONSULTANTS ATTN: G. CAVEY 595 HOWE STREET, SUITE 404 VANCOUVER, BRITISH COLUMBIA V6C 2T5

CUSTOMER ND. 1374

DATE SUBMITTED 23-DEC-85

REF. FILE 26289-N1

REPORT 30710

44 SPLIT CORE

WERE ANALYSED AS FOLLOWS:

		METHOD	DETECTION LIMIT
WRMAJ	*	₩ર	0.010
WRMIN	PPM	WR	10.000

X-RAY ASSAY LABORATORIES LIMITED

DATE 19-JAN-87

CERTIFIED BY SCORE CARE

AY ASSAY LABORATORIES LIMITED • 1885 LESLIE STREET • DON MILLS, ONTARIO M3B 3, J4 • (416) 445-5755 • TELEX 06-986 * 7

X	x	RRR	RR	6	γ	LL
XX	XX	RR	RR	Af	A	LL
XX	XX	RR	RR	AA	AA	LL
X X	KX	RR	RR	AA	AA	LL
XX	KX	RRR	RR	AAAA	AAA	LL
XX	XX	RR	RR	AA	AA	LL
XX	XX	RR	RR	AA	AA	LLLLLL
X	X	RR	R	AA	AA	LLLLLL

XRF - WHOLE ROCK ANALYSIS

OREQUEST CONSULTANTS Attn: G. CAVEY 595 HOME STREET, SUITE 404 VANCOUVER, BRITISH COLUMBIA V6C 2T5

CUSTOMER No. 1374

DATE SUBMITTED 23-DEC-86

REPORT 30710 REF. FILE 26289 19-JAN-87

XRF W. R. A. SUMS INCLUDE ALL ELEMENTS DETERMINED. FOR SUMMATION ELEMENTS ARE CALCULATED AS OXIDES.

X-RAY ASSAY	LABORATORIE	S	19- JAN- 8]	7	R	eport 30	710 RE	FERENCE	FILE 262	89	ł	PAGE 1	
Sample	S102	AL203	CAO	MGO	NA20	K20	FE203	MNO	T102	P205	CR203	LOI	SU
5-70	65. 0	15. 6	3. 93	1. 02	5. 29	2. 03	2. 62	0. 05	0. 34	0. 13	0. 01	3. 77	100
5-80	65. 3	16. 3	2.79	1. 12	5. 94	2. 06	2, 84	0. 04	0. 39	0. 13	0. 01	2.93	100
5-90	67. 3	15. 6	2. 31	1. 09	6. 87	i . 16	2 70	0. 04	0. 35	0. 12	0. 01	2. 54	100
5-100	66. 0	14. 3	3. 27	1. 05	4. 92	2. 28	3. 0 0	0. 04	0. 46	0. 13	0. 01	4. 54	100
5-130	55. 8	14. 7	4. 17	3. 01	4. 13	4. 29	5. 14	0. 09	0. 58	0. 30	0. 02	6. 93	99
5-140	56. 8	16. 5	3. 75	3. 14	4. 09	4. 28	6. 02	0. 08	0. 68	0. 35	0. 01	4, 54	100
5-150	56. 3	14. 4	6. 87	2. 33	4. 25	2. 67	5. 52	0. 08	0. 60	0. 31	0. 01	6. 62	100
5-160	53. 0	17. 8	5, 50	2.52	4. 38	3. 49	5. 59	0. 07	0. 76	0. 43	0. 01	6. 54	100
5-170	58. 2	14. 6	6. 01	2. 02	4. 76	2. 27	4. 72	0. 09	0. 52	0. 28	0. 01	6. 31	100
5-180	58. 0	17. 9	3. 53	3. 0 6	6. 18	1. 75	5. 80	0. 10	0. 79	0. 21	0. 03	3. 00	100
5-190	64. 6	14. 6	3. 70	1. 66	5. 49	2. 15	3. 45	0. 07	0. 44	0. 19	0. 01	3. 62	100
5-200	65. 3	13. 1	4. 96	2. 61	5. 10	1. 14	3. 46	0. 0 8	0. 42	0. 16	0. 01	3. 70	100
6-25	44. 6	8. 21	6. 64	17. 8	i. 51	1. 36	9. 27	0. 16	0. 51	0. 19	0. 21	9. 23	95
6-35	44. 4	8. 26	6. 9 0	17. 5	1. 72	0. 11	9. 50	0. 16	0. 54	0. 22	0. 21	9. 62	99
6- 4 5	64. 6	14. 9	3. 90	i. 73	3. 77	2. 21	3. 69	0. 07	0. 38	0. 08	0. 01	4, 47	93
6-55	52. 7	15. 8	9. 70	1. 89	3. 24	2. 13	4. 78	0. 14	0. 83	0. 08	0. 03	8. 39	99
6-65	58. 5	15. 6	6. 47	2. 16	0. 84	3. 26	4. 45	0. 09	0. 70	0. 08	0. 03	7. 54	99
6-85	67.8	15. 8	2.69	1. 15	3. 37	2. 34	2. 73	0. 04	0. 34	0. 09	KO. 01	3. 85	100
6-95	55. 7	15. 3	7. 15	1. 67	3. 42	1. 26	5. 75	0. 11	0. 60	0. 08	0. 02	8. 62	99
7-65	67.8	14.6	2.80	0. 93	6. 16	1. 40	2.08	0, 04	0. 26	0. 07	0. 01	4. 16	100
7-70	67. 5	15. 5	2, 31	0. 80	7. 16	1. 14	1. 71	0. 03	0. 27	0. 08	0. 01	3. 39	100
7 -7 5	37. 5	14. 5	12.4	4. 41	3. 22	2. 39	7. 25	0. 29	0. 40	0. 12	(0. 01	17. 5	100
7-80	60. 2	14. 7	6. 26	1. 56	4, 44	i. 88	2. 70	0. 08	0. 34	0. 10	KO . 01	7. 39	99
7-85	64.6	15. 6	4. 01	1. 21	4. 55	1. 57	2.15	0. 04	0. 33	0. 08	<0. 01	5, 85	100
7-90	66 . 6	15. 9	3. 67	0. 9 5	4, 44	1. 61	1. 85	0. 03	0. 33	0. 09	0. 01	4. 70	100
7-95	69. 5	16.7	2. 02	0. 74	4. 04	2.11	1. 0 5	0. 04	0. 43	0. 10	0. 01	3, 54	100
7-100	67. 8	15. 0	4, 44	0. 59	4. 33	1. 65	1. 28	0. 03	0. 32	0. 08	0. 01	4. 62	100

ł

) X-Ray Assay Labo	RATORIES	19	9-JAN-87		REP	ORT 3071	lo refe	RENCE FI	LE 2628)	Pi	AGE 2	
:	SAMPLE	S102	AL203	CAO	MGO	NA20	K20	FE203	MNO	T102	P205	CR203	LOI	SUM
	7-105	57. 7	13. 5	8. 24	2. 23	3. 71	0. 85	5. 41	0. 12	0. 40	0. 07	0. 01	8. 08	100. 4
•	7-110	56. 8	16. 0	4. 50	3, 55	4. 76	0. 83	6. 47	0. 13	0. 9 7	0. 09	0. 02	6. 08	100. 3
	7-115	54. 8	15. 4	6. 47	4. 54	4. 12	0. 15	7. 35	0. 16	1. 05	0. 09	0. 02	6. 39	100. 6
•	7-120	48. 8	14. 2	9. 19	5. 07	2. 62	0. 33	9. 03	0. 22	0. 97	0. 08	0. 01	8. 93	99 . 5
	7-125	52. 4	14. 4	7. 8 9	4. 23	3. 73	0. 48	7. 55	0. 18	0. 74	0. 07	0. 01	8. 00	99. 7
-	7-130	44. 7	13.8	9. 36	7. 03	1. 42	0. 08	12.4	0. 33	0. 94	0. 08	0. 01	10. 0	100. 2
	7-135A	67. 8	16. 2	1. 52	1. 53	7. 82	0. 61	2. 29	0. 05	0. 33	0. 09	0. 01	1. 93	100. 3
-	7-135B	68. 7	16. 0	1. 67	1. 33	6. 93	1. 03	1. 9 9	0. 04	0. 31	0. 09	0. 01	1. 93	100. 1
1	8-60	63. 0	14. 7	4. 46	2. 22	3. 60	1. 52	4, 51	0. 07	0. 58	0. 34	0. 02	4. 70	99 . 9
1	8-65	59. 9	14. 7	6. 15	1, 74	4. 07	1. 58	4. 06	0. 09	0. 48	0. 18	<0. 01	6. 93	100. 1
1	8-70	67. 3	17. 2	1. 79	0. 88	4. 34	2. 27	2. 00	0. 03	0. 39	0. 12	<0. 01	3. 93	100. 5
(3-75	65 . 0	15. 8	4. 36	0. 90	4. 04	2. 23	2. 24	0. 04	0. 36	0. 09	0. 01	5. 08	100. 3
(8-80	59. 4	20. 6	2. 26	0. 94	9. 19	1. 31	2 10	0. 04	0. 33	0. 68	<0. 01	4. 00	100. 5
6	3 -9 0	65. 3	17. 0	3. 9 0	0. 48	4. 95	2. 03	1. 68	0. 04	0. 34	0. 11	0. 01	4. 31	100. 3
8	3-95	65. 2	15. 1	4, 85	1. 28	3. 48	1. 94	2 63	0. 05	0. 33	0. 08	0. 01	5. 08	100. 1
1	3-100	51. 3	14. 9	10. 6	2. 45	3. 44	1. 29	5. 34	0. 15	0. 84	0. 0 8	0. 02	9. 47	100. 0
8	3-105	53. 7	16. 3	8. 40	2. 37	3. 80	1. 58	5. 04	0. 12	0. 84	0. 08	0. 02	7. 6 2	100. 0

Î

1

SAMPLE RB SR Y ZR NB BA 5-70 90 990 20 100 10 450 5-80 80 800 (10 100 20 730 5-90 50 1060 20 110 20 550 5-100 110 930 (10 110 10 420 5-130 140 820 30 170 10 1290 5-140 190 480 20 230 20 1020 5-150 100 640 20 180 20 910 5-160 140 440 20 280 10 1280 5-180 70 1090 10 80 10 570 5-180 70 260 20 140 10 390 6-35 20 460 (10 30 10 70 6-35 120 <	RAY ASSAY LABOR	RATORIES	1	9- jan-8 7		REI	PORT 3071
5-80 80 800 $(10$ 100 20 730 $5-90$ 50 1060 20 110 20 550 $5-100$ 110 930 $(10$ 110 10 420 $5-130$ 140 820 30 170 10 1290 $5-140$ 190 480 20 230 20 1020 $5-150$ 100 660 20 180 20 910 $5-160$ 140 460 20 280 10 1280 $5-170$ 90 960 20 140 10 970 $5-180$ 70 1090 10 80 10 570 $5-180$ 70 1090 10 80 10 710 $5-180$ 70 1090 10 80 10 710 $5-180$ 70 1090 10 80 10 710 $5-180$ 70 1090 10 80 10 710 $5-180$ 70 100 30 10 70 $6-25$ 80 400 $(10$ 30 10 80 $6-35$ 20 440 $(10$ 30 10 320 $6-55$ 120 180 10 50 10 420 $6-55$ 120 180 10 70 10 380 $6-55$ 90 750 $(10$ 70 10 580 $7-70$ 60 <td< th=""><th>SAMPLE</th><th>RB</th><th>SR</th><th>Y</th><th>ZR</th><th>NB</th><th>BA</th></td<>	SAMPLE	RB	SR	Y	ZR	NB	BA
5-90 50 1060 20 110 20 550 $5-100$ 110 930 $(10$ 110 10 420 $5-130$ 140 820 30 170 10 1290 $5-140$ 190 480 20 230 20 1020 $5-150$ 100 660 20 180 20 910 $5-160$ 140 440 20 280 10 1280 $5-170$ 90 960 20 140 10 970 $5-180$ 70 1090 10 80 10 570 $5-190$ 110 620 20 150 10 710 $5-200$ 30 560 10 70 10 390 $6-25$ 80 400 $(10$ 30 10 70 $6-45$ 70 260 $(10$ 30 10 70 $6-45$ 120 180 10 50 10 420 $6-55$ 80 320 20 40 10 320 $6-55$ 120 180 10 50 10 420 $6-65$ 120 440 $(10$ 70 10 360 $7-70$ 60 870 $(10$ 70 10 560 $7-75$ 90 630 10 90 10 550 $7-80$ 60 560 $(10$ 90 10 550 $7-90$ 60	5-70	90	990	20	100	10	650
5-100 110 930 $(10$ 110 10 620 $5-130$ 140 820 30 170 10 1290 $5-140$ 190 480 20 230 20 1020 $5-150$ 100 660 20 180 20 910 $5-160$ 140 460 20 280 10 1280 $5-170$ 90 960 20 140 10 970 $5-180$ 70 1090 10 80 10 570 $5-190$ 110 620 20 150 10 710 $5-200$ 30 560 10 70 10 390 $6-35$ 20 460 $(10$ 30 10 80 $6-35$ 20 460 $(10$ 30 10 320 $6-45$ 120 180 10 50 10 420 $6-65$ 120 180 10 50 10 420 $6-65$ 120 180 10 70 10 540 $7-70$ 60 870 $(10$ 70 10 540 $7-75$ 90 630 10 80 20 680 $7-80$ 60 560 $(10$ 90 10 530 $7-85$ 60 560 $(10$ 90 10 330 $7-90$ 60 540 $(10$ 90 10 330 $7-90$ 60	580	80	800	۲۱۵	100	20	730
5-130140 820 30170101290 $5-140$ 19048020230201020 $5-150$ 100 660 2018020910 $5-160$ 14046020280101280 $5-170$ 909602014010970 $5-180$ 701090108010570 $5-190$ 110 620 2015010710 $5-200$ 30560107010390 $6-25$ 80400<10	5-90	50	1060	20	110	20	550
5-14019048020230201020 $5-150$ 100 660 2018020910 $5-160$ 14046020280101280 $5-170$ 909602014010970 $5-180$ 701090108010570 $5-190$ 110 620 2015010710 $5-200$ 30560107010390 $6-25$ 80400(10301070 $6-35$ 20460(10301070 $6-45$ 70260(108020320 $6-55$ 80320204010320 $6-65$ 120180105010420 $6-65$ 120440(1012010360 $6-75$ 90750(107010380 $7-76$ 90 630 108020480 $7-75$ 90 630 108020480 $7-80$ 60 560(1011020400 $7-90$ 60 560(1011020400 $7-95$ 80560101033030	5-100	110	930	<10	110	10	620
5-150100 660 2018020910 $5-160$ 14046020280101280 $5-170$ 909602014010970 $5-180$ 701090108010570 $5-190$ 110 620 2015010710 $5-200$ 30560107010390 $6-25$ 80400 $(10$ 301060 $6-25$ 20460 $(10$ 301070 $6-35$ 20460 $(10$ 3010320 $6-55$ 80320204010320 $6-45$ 120180105010420 $6-45$ 120440 $(10$ 12010360 $6-55$ 90750 $(10$ 7010380 $7-45$ 90 630 108020 680 $7-75$ 90 630 109010550 $7-80$ 60 560 $(10$ 9010550 $7-90$ 60 560 $(10$ 9010330 $7-95$ 80 560 10 12020490	5-130	140	820	30	170	10	1290
5-16014046020280101280 $5-170$ 909602014010970 $5-180$ 701090108010570 $5-190$ 1106202015010710 $5-200$ 30560107010390 $6-25$ 80400 $(10$ 301060 $6-25$ 20460 $(10$ 301070 $6-45$ 70260 $(10$ 8020320 $6-55$ 80320204010320 $6-55$ 120180105010420 $6-65$ 120440 $(10$ 12010340 $6-65$ 90750 $(10$ 7010540 $7-70$ 60 670 $(10$ 7010380 $7-75$ 90 630 108020 680 $7-80$ 60 560 $(10$ 9010550 $7-85$ 60 560 $(10$ 9010550 $7-90$ 60 540 $(10$ 9010330 $7-95$ 805801012020490	5-140	190	480	20	230	20	1020
5-170909602014010970 $5-180$ 701090108010570 $5-190$ 110 620 2015010710 $5-200$ 30560107010390 $6-25$ 80400 $(10$ 301080 $6-35$ 20460 $(10$ 301070 $6-45$ 70260 $(10$ 8020320 $6-55$ 80320204010320 $6-65$ 120180105010420 $6-65$ 120440 $(10$ 12010360 $6-65$ 120440 $(10$ 7010360 $6-65$ 120440 $(10$ 7010360 $6-65$ 120440 $(10$ 7010360 $7-65$ 90750 $(10$ 7010360 $7-70$ 60 870 $(10$ 7010360 $7-86$ 60 560 $(10$ 9010550 $7-85$ 60 560 $(10$ 9010350 $7-90$ 60 540 $(10$ 9010330 $7-95$ 805801012020490	5-150	100	660	20	180	20	910
5-180701090108010570 $5-190$ 110 620 2015010710 $5-200$ 30 560 107010390 $6-25$ 80400 $(10$ 301080 $6-35$ 20460 $(10$ 301070 $6-45$ 70260 $(10$ 8020320 $6-45$ 70260 $(10$ 8020320 $6-55$ 80320204010320 $6-65$ 120180105010420 $6-65$ 120440 $(10$ 12010360 $6-65$ 120440 $(10$ 7010360 $7-65$ 90750 $(10$ 7010360 $7-70$ 60 670 $(10$ 7010360 $7-75$ 90 630 108020480 $7-86$ 60 560 $(10$ 9010550 $7-90$ 60 540 $(10$ 9010330 $7-95$ 805801012020490	5-160	140	460	20	280	10	1280
5-190110 620 20 15010 710 $5-200$ 30 560 10 70 10 390 $6-25$ 80 400 $(10$ 30 10 80 $6-35$ 20 460 $(10$ 30 10 70 $6-45$ 70 260 $(10$ 80 20 320 $6-55$ 80 320 20 40 10 320 $6-55$ 12018010 50 10 420 $6-65$ 120440 $(10$ 12010 360 $6-65$ 120440 $(10$ 7010 540 $6-65$ 120440 $(10$ 7010 540 $6-755$ 90 750 $(10$ 70 10 540 $7-70$ 60 870 $(10$ 90 10 550 $7-80$ 60 560 $(10$ 110 20 400 $7-90$ 60 560 $(10$ 90 10 330 $7-95$ 80 560 10 120 20 490	5-170	90	960	20	140	10	970
5-200 30 560 10 70 10 390 $6-25$ 80 400 $(10$ 30 10 80 $6-35$ 20 460 $(10$ 30 10 70 $6-45$ 70 260 $(10$ 80 20 320 $6-55$ 80 320 20 40 10 320 $6-65$ 120 180 10 50 10 420 $6-65$ 120 440 $c10$ 120 10 340 $6-65$ 70 440 $c10$ 70 20 260 $7-65$ 90 750 $c10$ 70 10 540 $7-70$ 60 870 $c10$ 70 10 580 $7-75$ 90 630 10 80 20 680 $7-80$ 60 560 $c10$ 90 10 550 $7-85$ 60 560 $c10$ 90 10 330 $7-90$ 60 540 $c10$ 90 10 330 $7-95$ 90 580 10 120 20 490	5-180	70	1090	10	80	10	570
δ -2580400 $\langle 10$ 301080 δ -3520460 $\langle 10$ 301070 δ -4570260 $\langle 10$ 8020320 δ -5580320204010320 δ -65120180105010420 δ -65120440 $\langle 10$ 12010360 δ -65120440 $\langle 10$ 7020260 δ -6570460 $\langle 10$ 7010360 δ -6590750 $\langle 10$ 7010540 δ -7-70 δ 0870 $\langle 10$ 7010360 δ -7-7590 δ 30108020680 δ -7-85 δ 0560 $\langle 10$ 9010550 δ -850 $\langle 10$ 90103303030 δ -95580560 $\langle 10$ 12020490	5-190	110	620	20	i5 0	10	710
6-35 20 460 $(10$ 30 10 70 $6-45$ 70 260 $(10$ 80 20 320 $6-55$ 80 320 20 40 10 320 $6-65$ 120 180 10 50 10 420 $6-65$ 120 440 $(10$ 120 10 360 $6-65$ 70 440 $(10$ 70 20 260 $6-95$ 70 460 $(10$ 70 10 540 $7-65$ 90 750 $(10$ 70 10 540 $7-70$ 60 870 $(10$ 70 10 580 $7-75$ 90 630 10 80 20 680 $7-86$ 60 560 $(10$ 110 20 400 $7-90$ 60 540 $(10$ 90 10 330 $7-95$ 90 580 10 120 20 490	5-200	30	560	10	70	10	390
$6-45$ 70260 $\langle 10$ 8020320 $6-55$ 80320204010320 $6-65$ 120180105010420 $6-65$ 120440 $\langle 10$ 12010360 $6-65$ 70460 $\langle 10$ 7020260 $7-65$ 90750 $\langle 10$ 7010540 $7-70$ $\delta 0$ 870 $\langle 10$ 7010380 $7-75$ 90 $\delta 30$ 108020 $\delta 80$ $7-80$ $\delta 0$ 580 $\langle 10$ 9010550 $7-85$ 60560 $\langle 10$ 9010330 $7-95$ 805801012020490	6-25	80	400	<10	30	10	80
6-55803202040103206-651201801050104206-65120440C10120103606-9570460C1070202607-6590750C1070105407-7060870C1070103807-75906301080206807-8060560C10110204007-9060540C1090103307-95805601012020490	6-35	20	460	<10	30	10	70
6-651201801050104206-85120440<10	6-45	70	260	(10	80	20	320
6-85120440<10120103606-9570460<10	6-55	80	320	20	40	10	320
6-9570460C1070202607-6590750C1070105407-7060870C1070103807-75906301080206807-8060560C1090105507-8560560C10110204007-9060540C1090103307-95905601012020490	6~65	120	180	10	50	10	420
7-6590750C1070105407-7060870C1070103807-75906301080206807-8060560C1090105507-8560560C10110204007-9060540C1090103307-95905801012020490	6-65	120	440	<10	120	10	360
7-7060870C1070103807-75906301080206807-8060560C1090105507-8560560C10110204007-9060540C1090103307-95805801012020490	6-95	70	460	<10	70	20	260
7-75906301080206807-8060560C1090105507-8560560C10110204007-9060540C1090103307-95805601012020490	7-65	90	750	<10	70	10	540
7-8060580<1090105507-8560560<10	7-70	60	870	<10	70	10	380
7-8560560C10110204007-9060540C1090103307-95805801012020490	7-75	90	630	10	80	20	680
7-9060540<1090103307-95805601012020490	7-80	60	580	<10	90	10	550
7-95 80 580 10 120 20 490	7-85	60	560	C10	110	20	400
	7-90	60	540	<10	90	10	330
7-100 50 480 <10 90 10 350	7 -9 5	90	580	10	120	20	490
	7-100	50	490	<10	90	10	350

E

0710 REFERENCE FILE 26289

PAGE 3

X-RAY ASSAY LABORATORIES	;
--------------------------	---

19-**Jan-**87

REPORT 30710 REFERENCE FILE 26289

PAGE 4

SAMPLE	RB	SR	Y	ZR	NB	BA
7-105	50	210	<10	70	30	170
7-110	20	160	C10	60	10	250
7-115	10	120	30	40	10	90
7-120	30	120	30	40	10	90
7-125	20	90	<10	60	20	240
7-130	20	130	10	40	20	50
7-135A	20	230	10	90	10	290
7-135B	60	310	<10	90	<10	510
8-60	70	790	10	120	20	940
8-65	60	1030	۲10	80	10	900
8-70	90	800	<10	100	20	960
8-75	90	500	<10	100	10	440
8-80	60	1050	<10	100	10	500
8-90	80	680	<10	80	10	600
8-95	60	470	<10	100	10	360
8-100	40	350	20	30	20	300
8-105	60	310	10	40	10	300

DISTRIBUTION

TD: OREQUEST CONSULTANTS ATTN: G. CAVEY 595 HOWE STREET, SUITE 404 VANCOUVER, BRITISH COLUMBIA V6C 2T5

REPORT 30710

REF. FILE 26289-N1

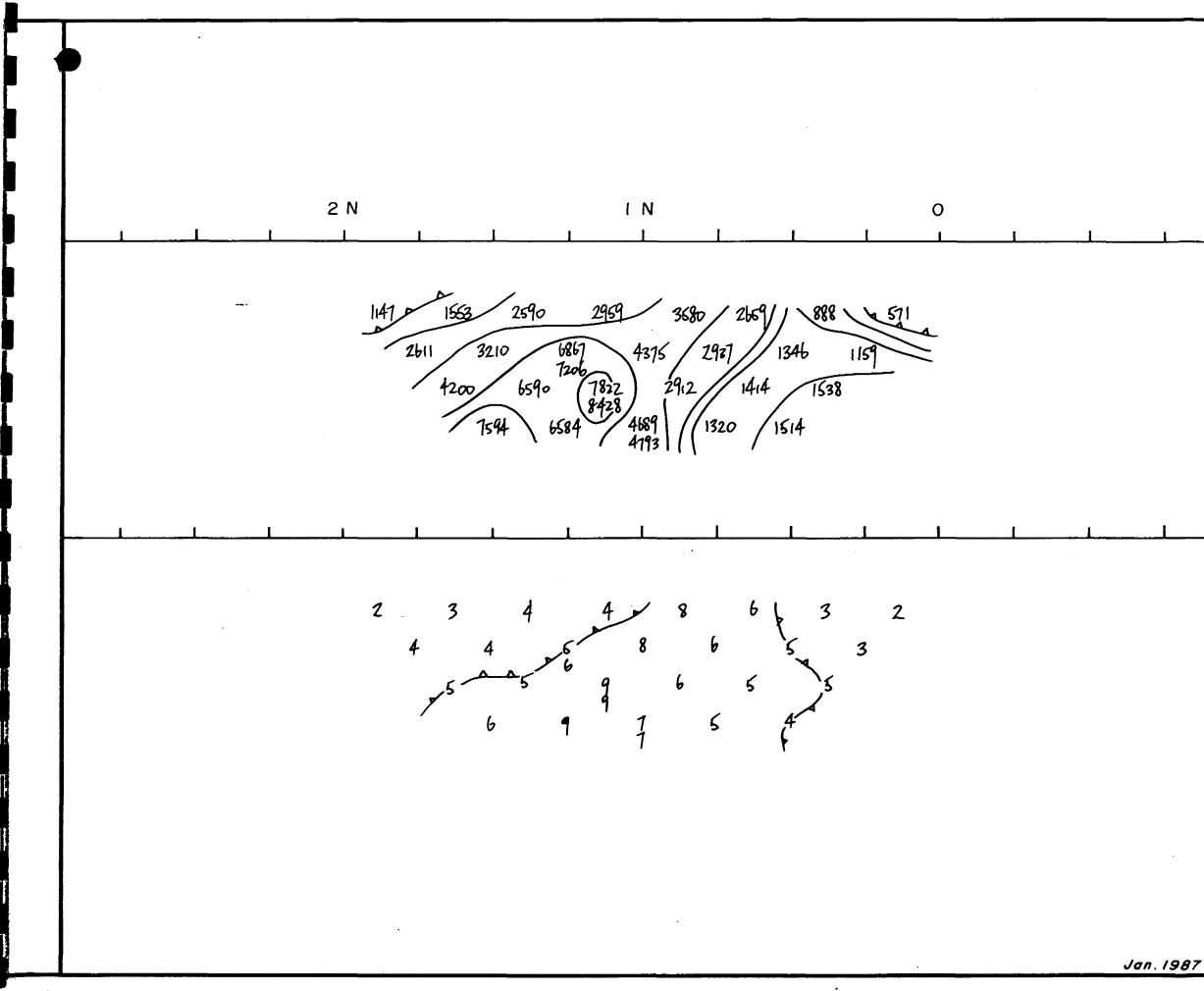
COPIES OF THIS REPORT WERE DISTRIBUTED TO THE FOLLOWING ADDRESSES:

COPIES OF REPORT 1

COPIES OF INVOICE 2

OREQUEST CONSULTANTS ATTN: G. CAVEY 595 HOWE STREET. SUITE 404 VANCOUVER. BRITISH COLUMBIA V6C 2T5

COPIES OF REPORT 1

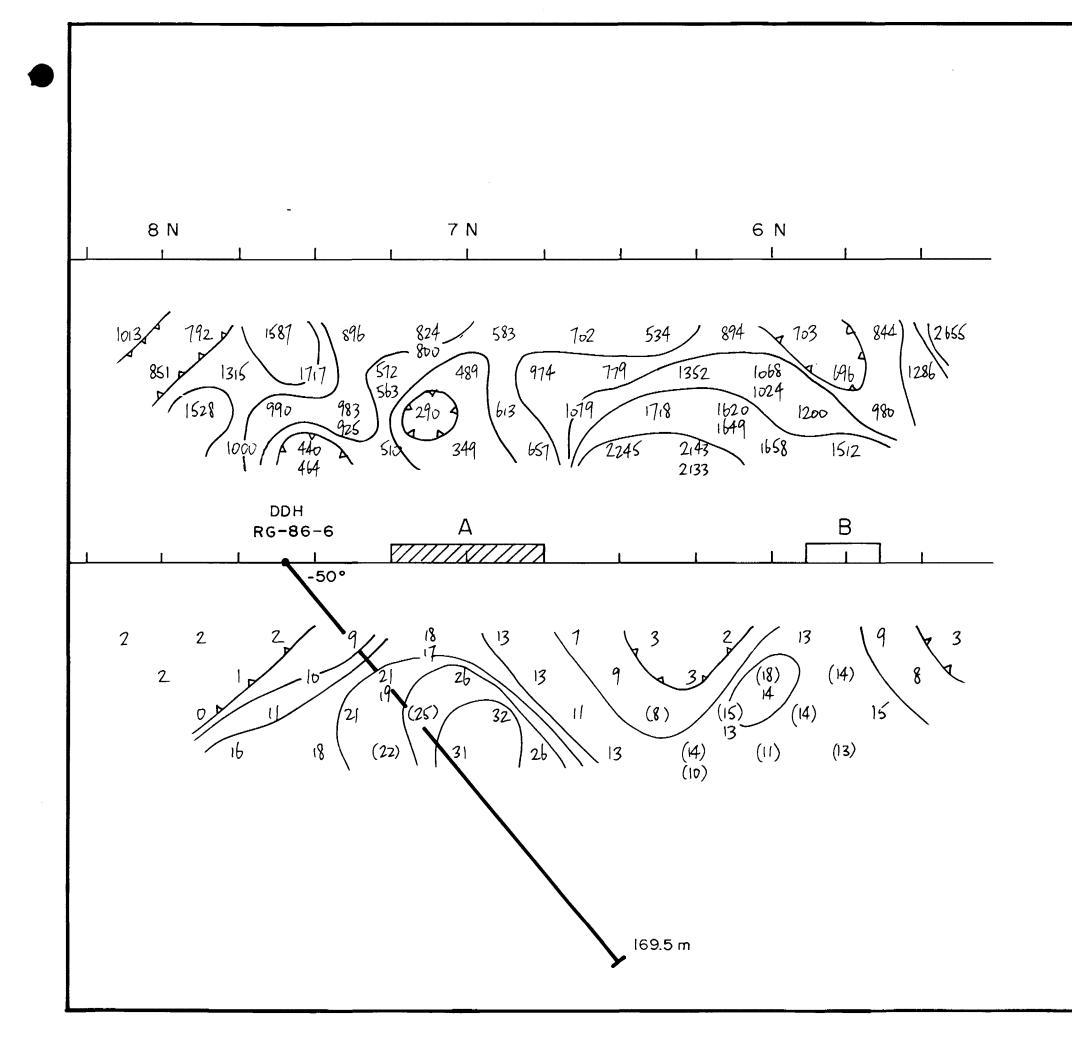

OREQUEST CONSULTANTS ATTN: JIM CHAPMAN 323 TOKE STREET TIMMINS, ONTARIO P4N 6V4

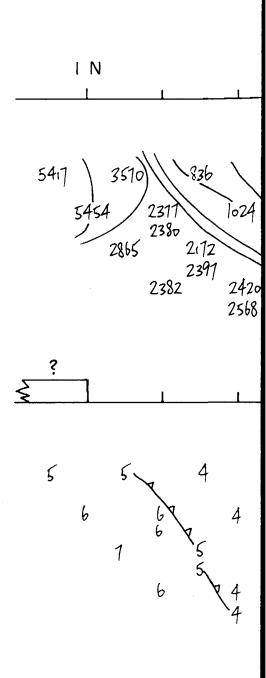
INVOICE

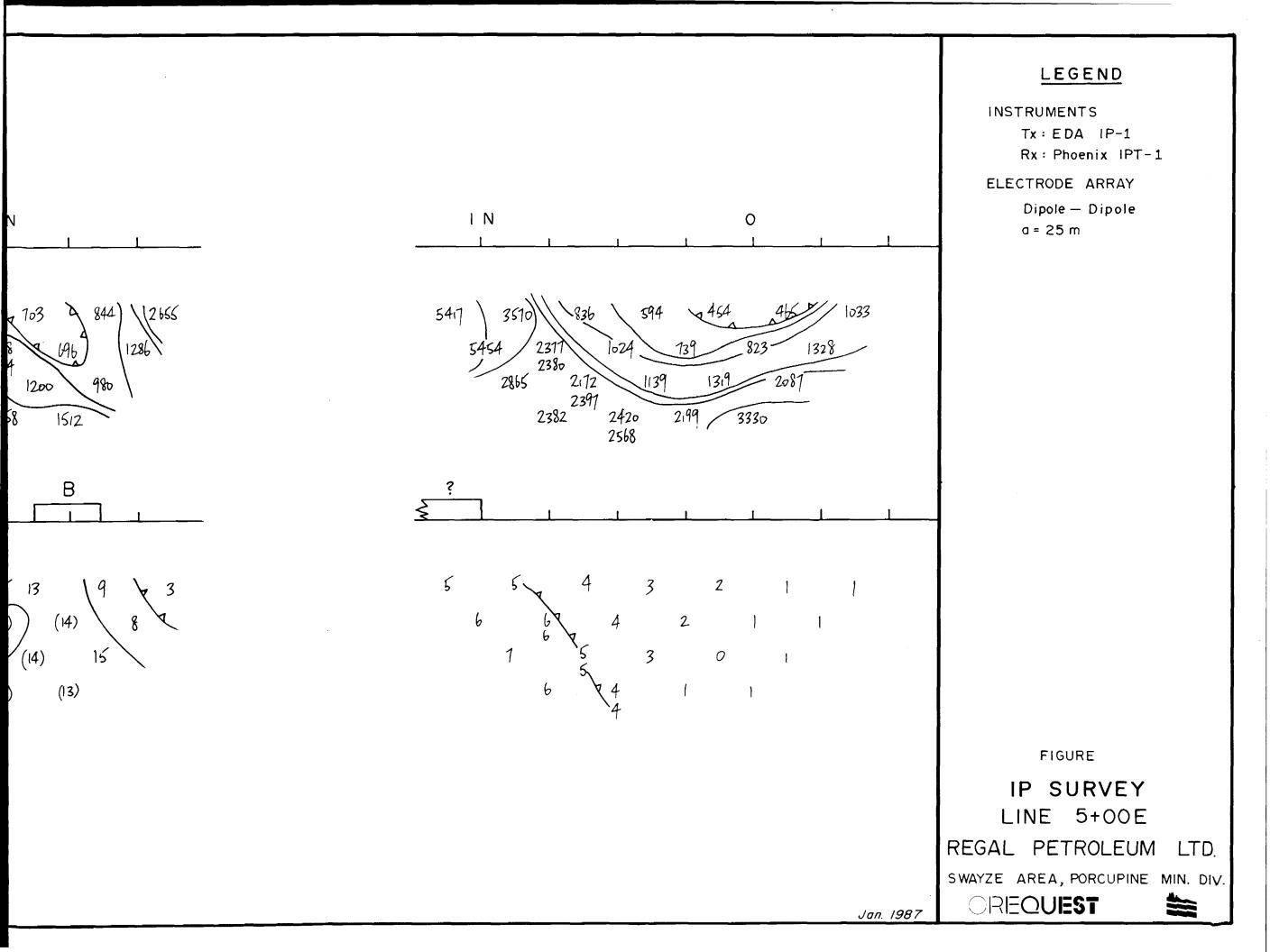
OREQUEST CONSULTANTS ATTN: G. CAVEY 595 HOWE STREET, SUITE 404 VANCOUVER, BRITISH COLUMBIA V6C 2T5

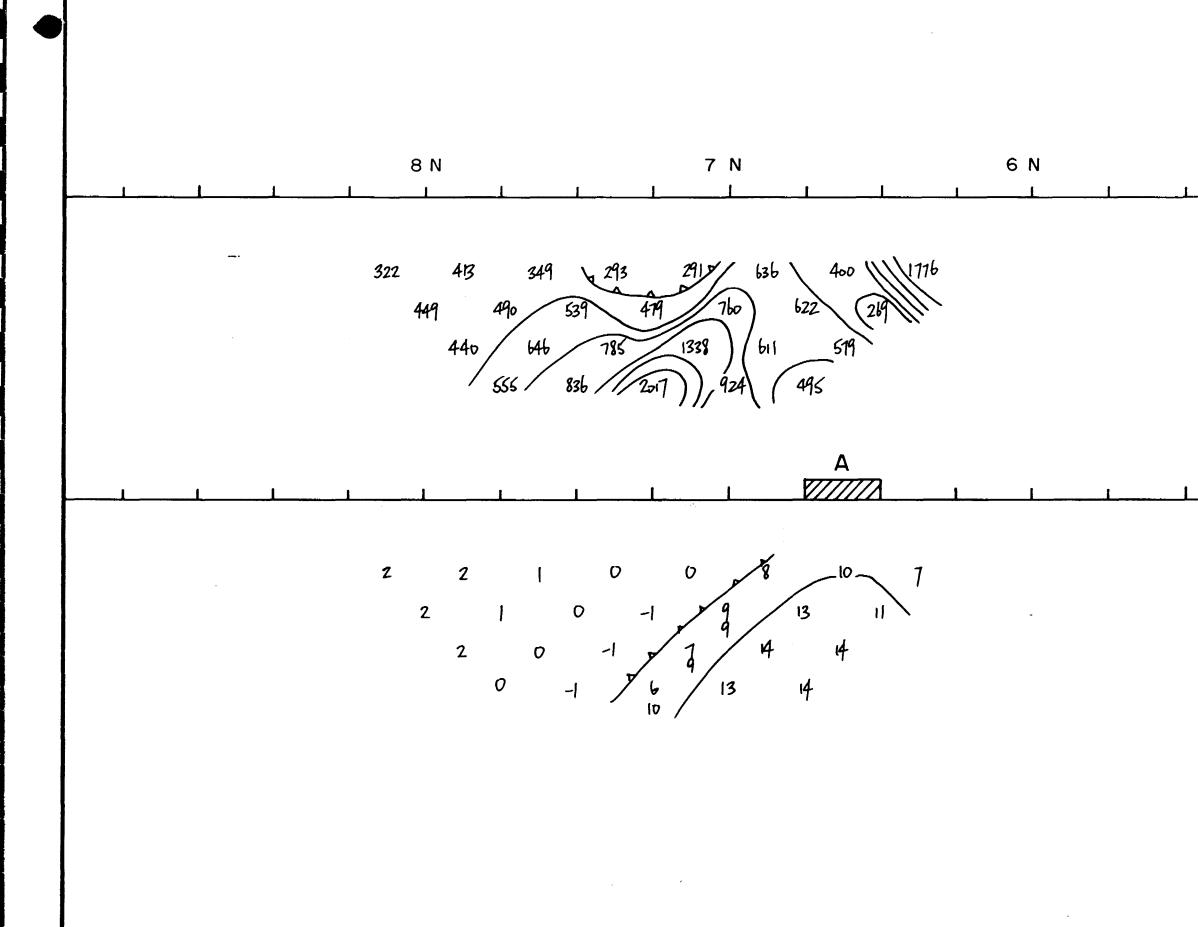
RAY ASSAY LABORATORIES LIMITED • 1885 LESLIE STREET • DON MILLS, ONTARIO M3B 3J4 • (416) 445-5755 • TELEX 06-986947

APPENDIX E IP SURVEY PSEUDOSECTIONS

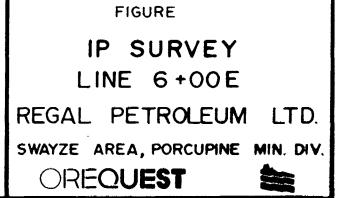


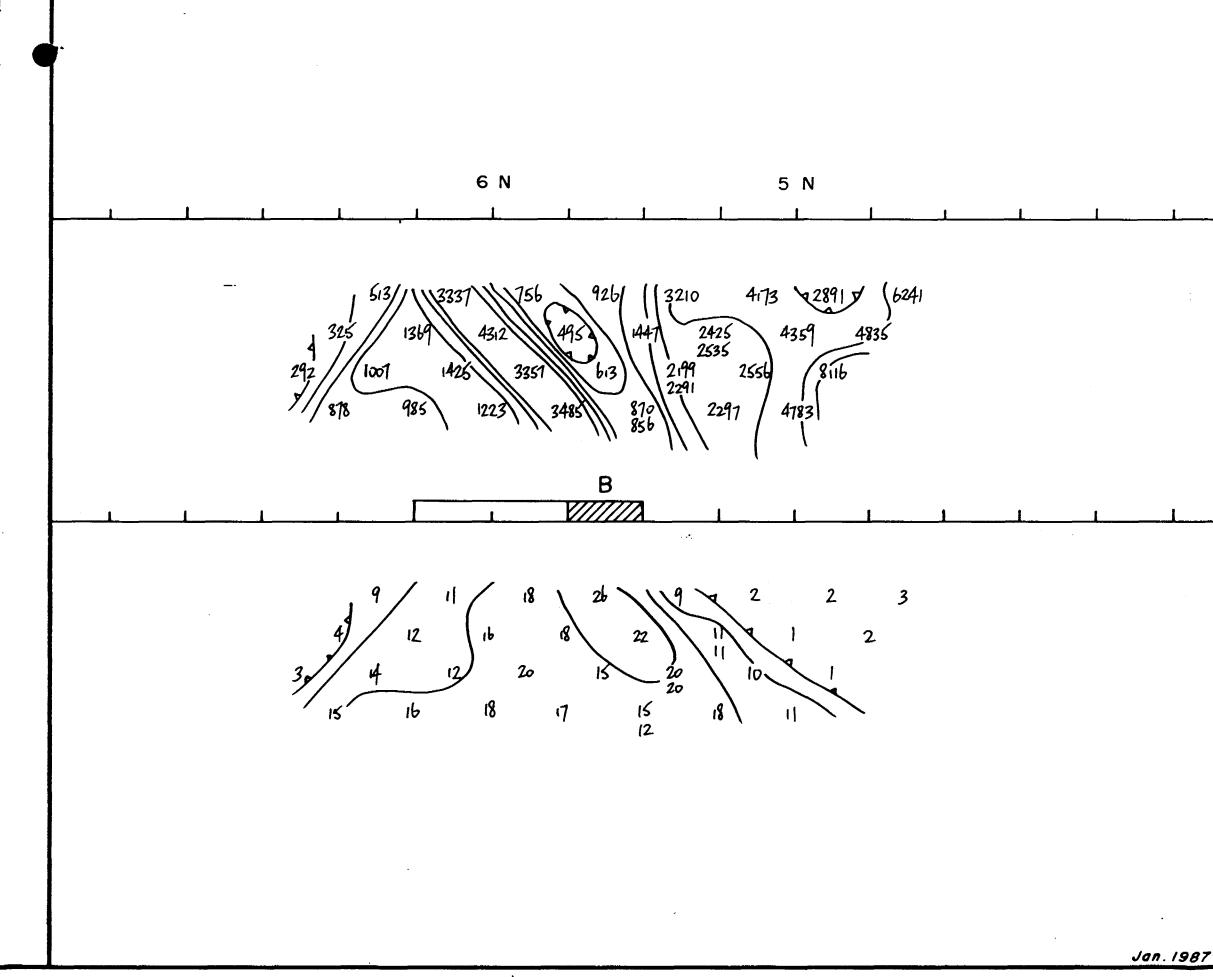

INSTRUMENTS Tx : EDA IP-1 Rx: Phoenix IPT-1


ELECTRODE ARRAY Dipole - Dipole a = 25 m


FIGURE

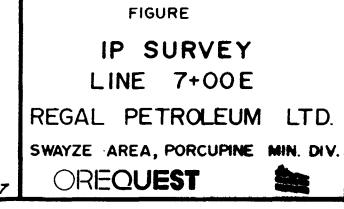
IP SURVEY LINE 4+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

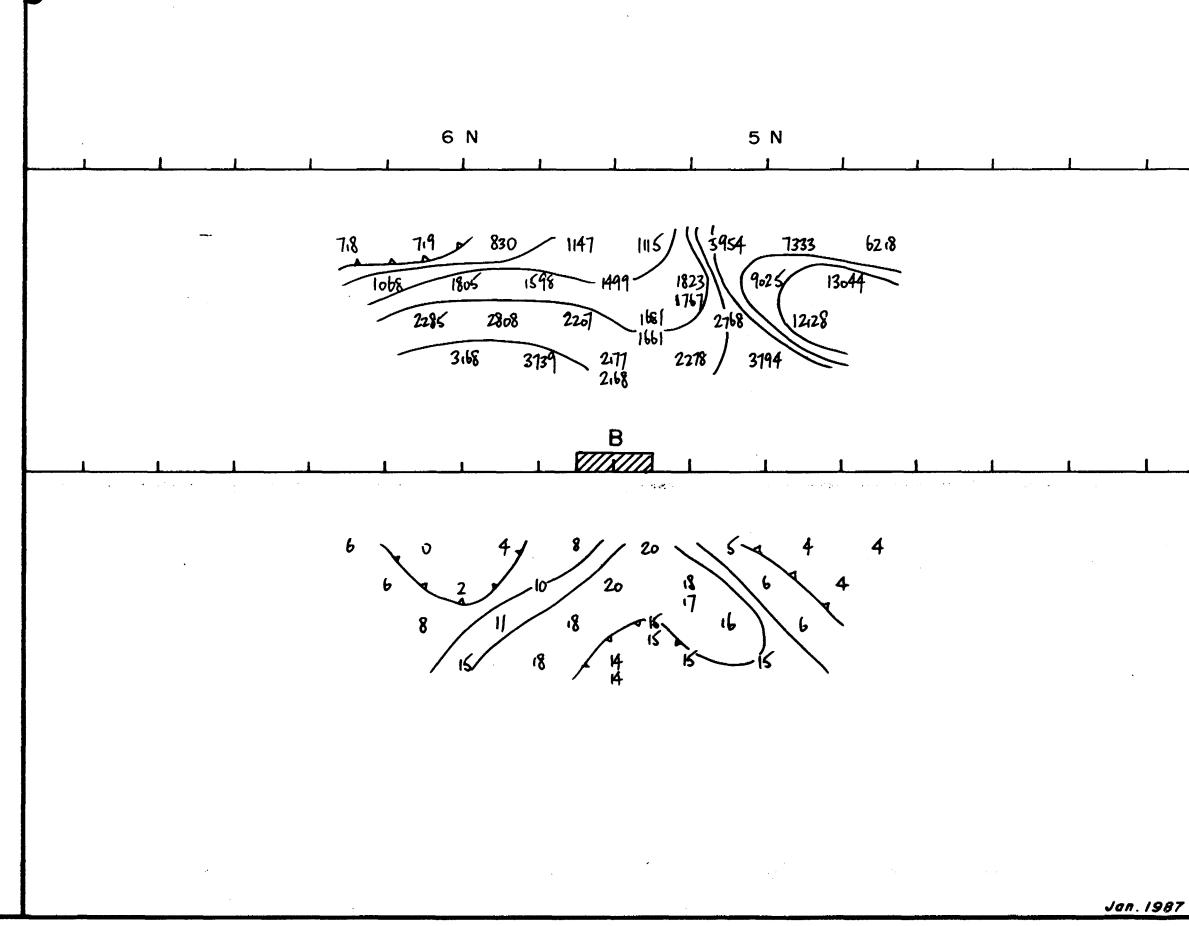




INSTRUMENTS Tx : EDA IP-1 Rx : Phoenix IPT-1

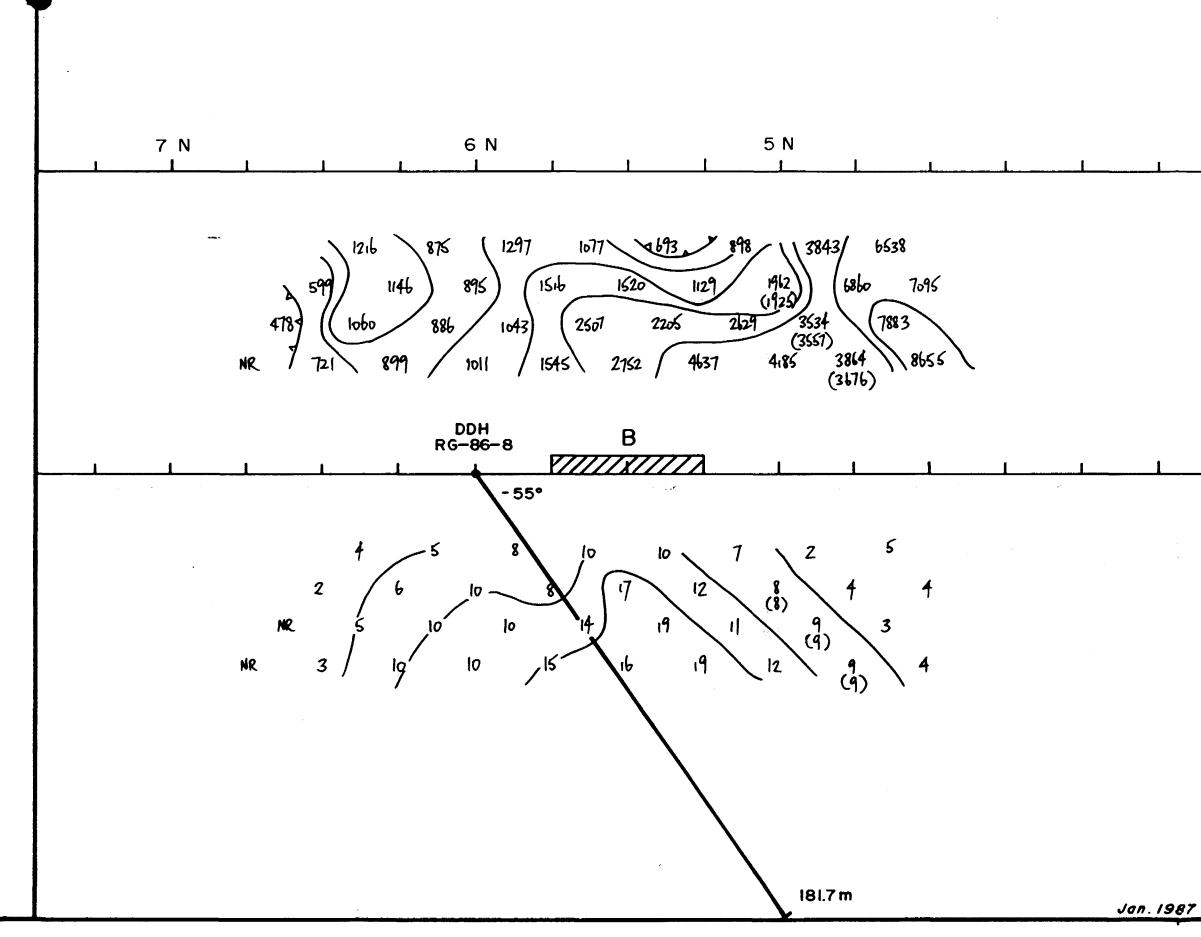
ELECTRODE ARRAY Dipole - Dipole a = 25 m




Jan. 1987

INSTRUMENTS Tx : EDA IP-1 Rx : Phoenix IPT-1

ELECTRODE ARRAY Dipole - Dipole a = 25 m

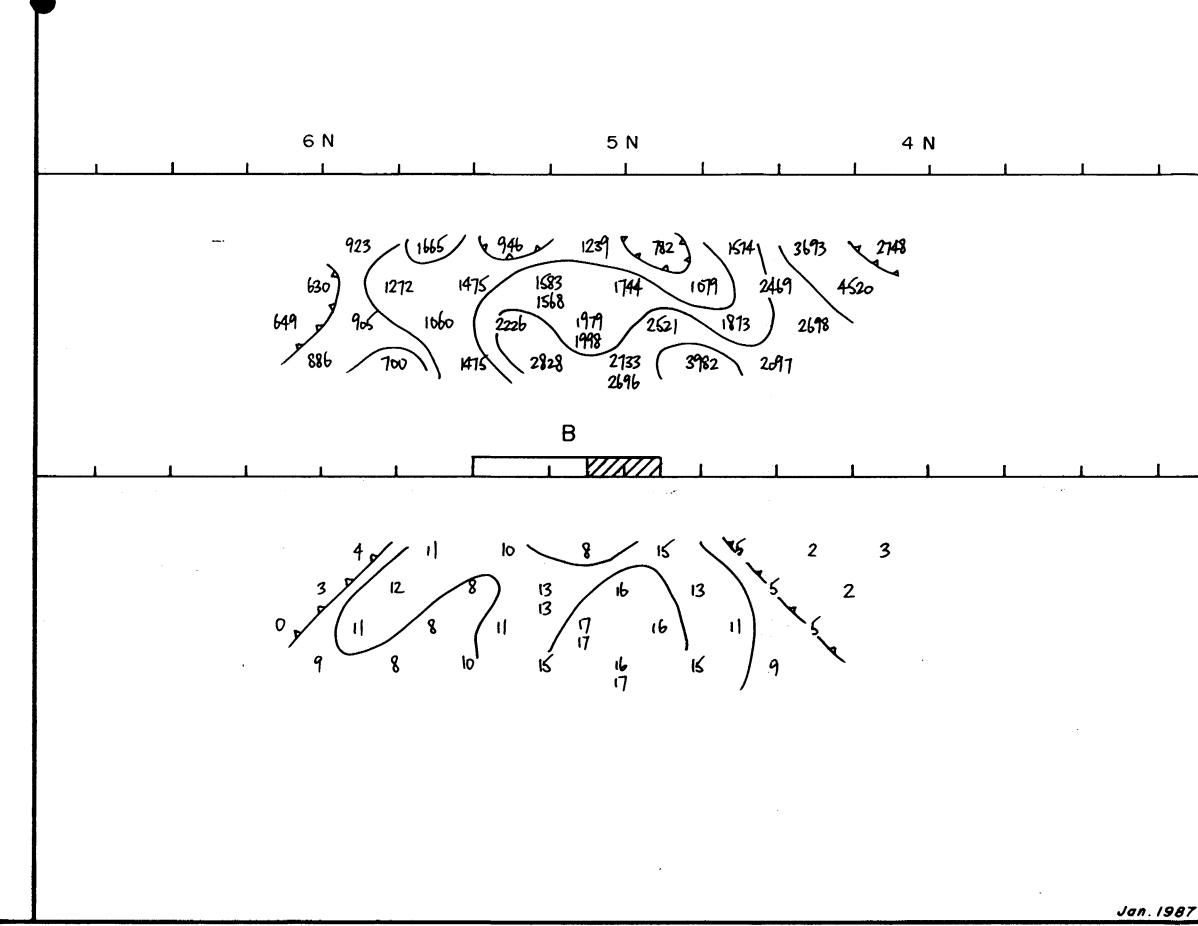


INSTRUMENTS Tx : EDA (P-1 Rx : Phoenix IPT-1

ELECTRODE ARRAY Dipole - Dipole a = 25 m

FIGURE

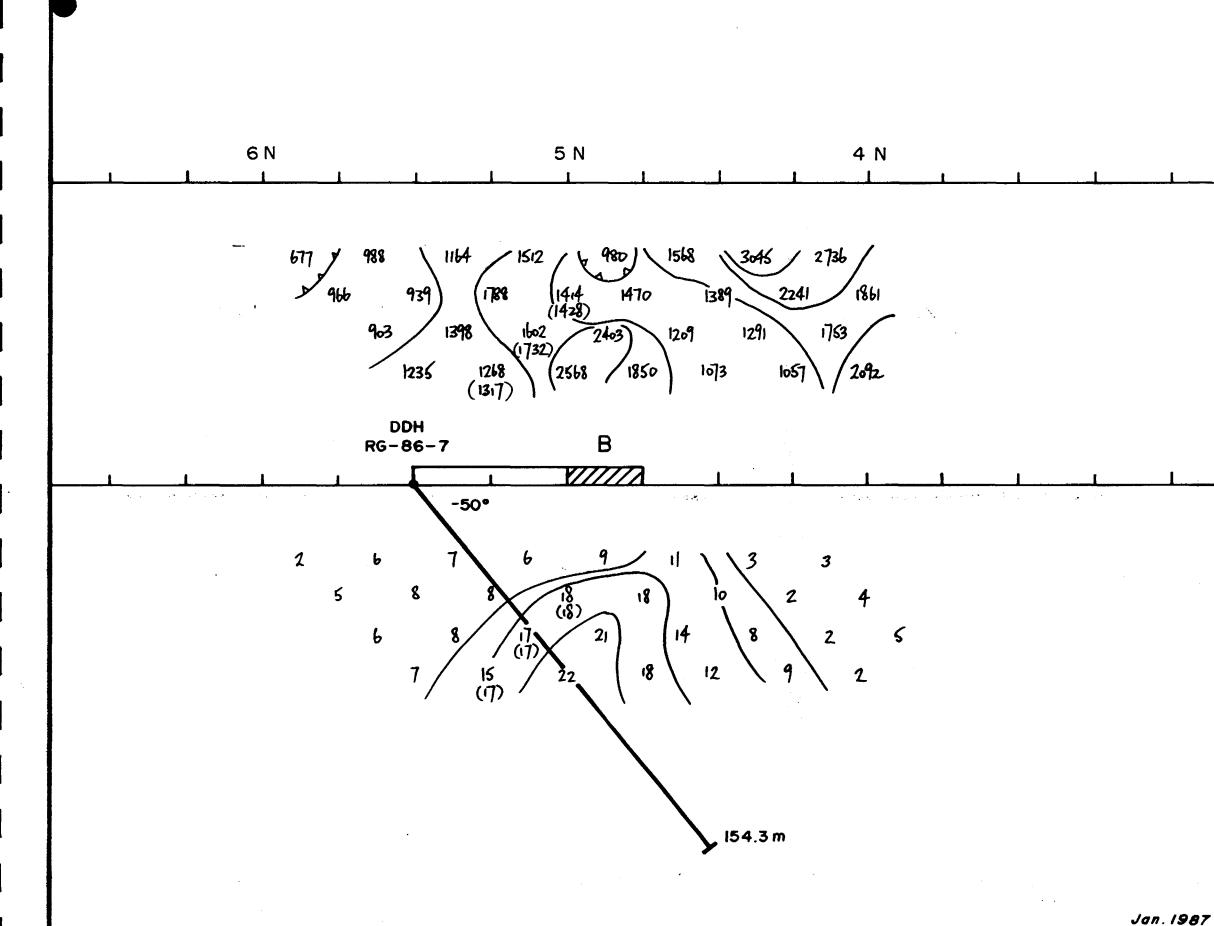
IP SURVEY LINE 8+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST



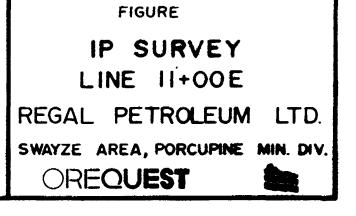
INSTRUMENTS Tx: EDA IP-1 Rx: Phoenix IPT-1

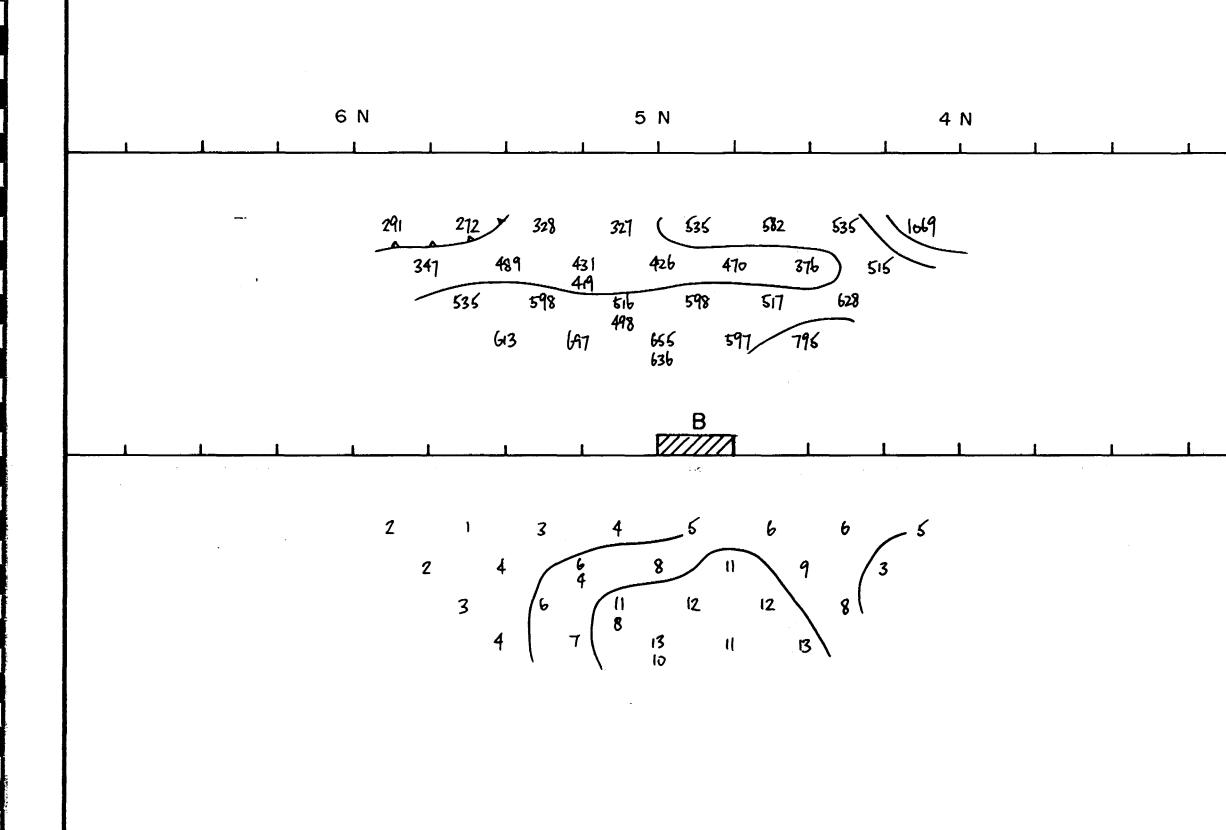
ELECTRODE ARRAY Dipole - Dipole a = 25 m

FIGURE


IP SURVEY LINE 9+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

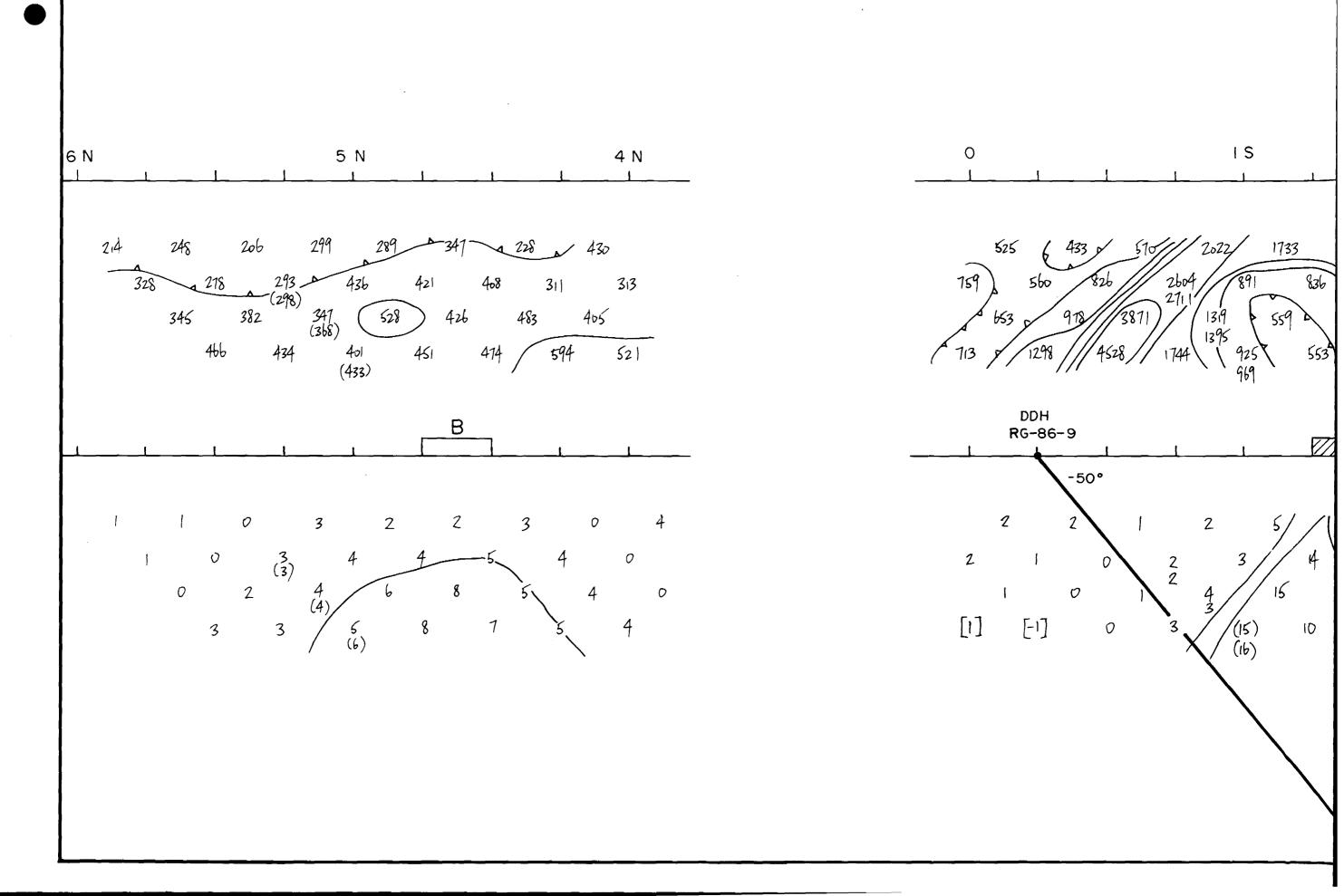
INSTRUMENTS Tx : EDA IP-1 Rx: Phoenix IPT-1

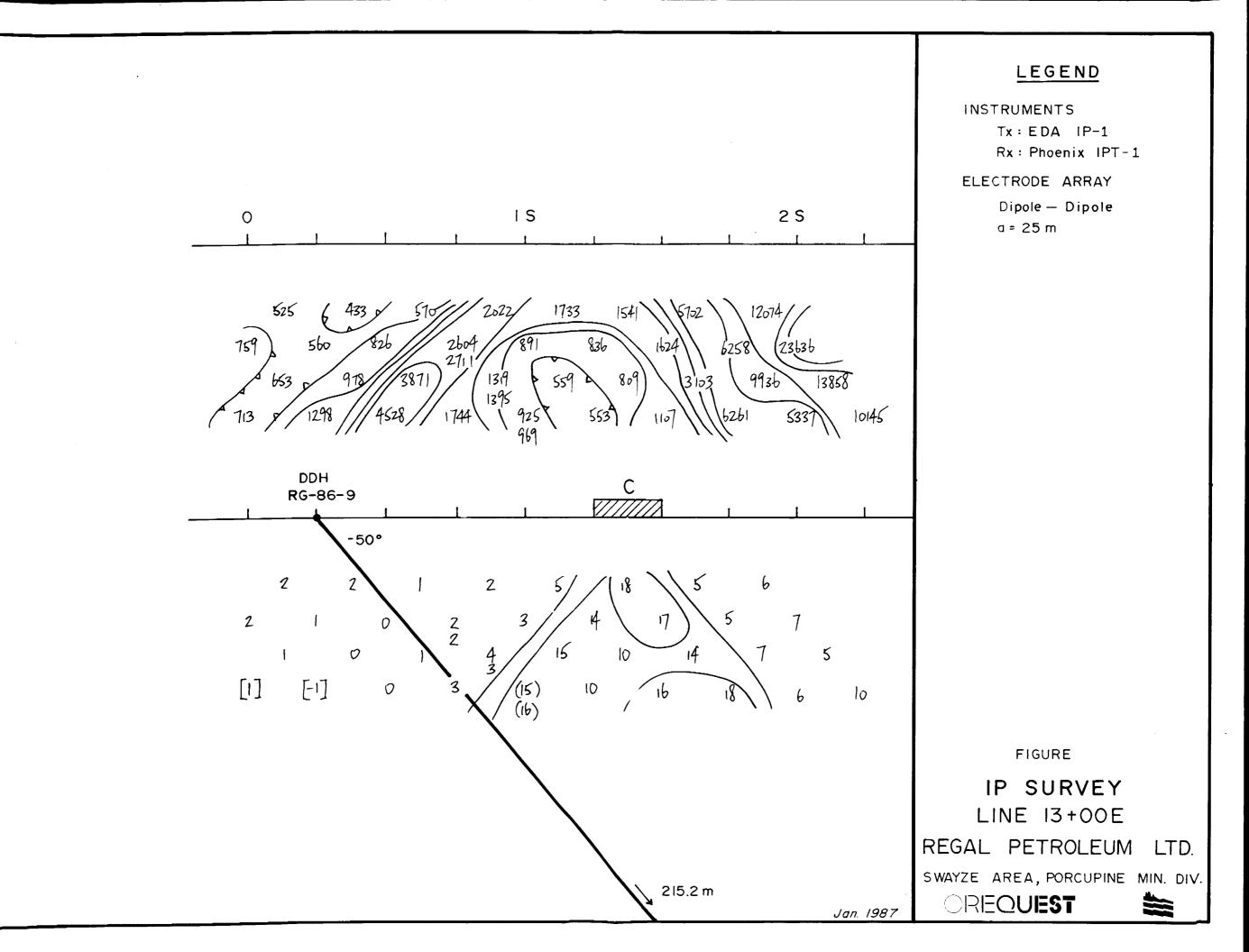

ELECTRODE ARRAY Dipole - Dipole a = 25 m

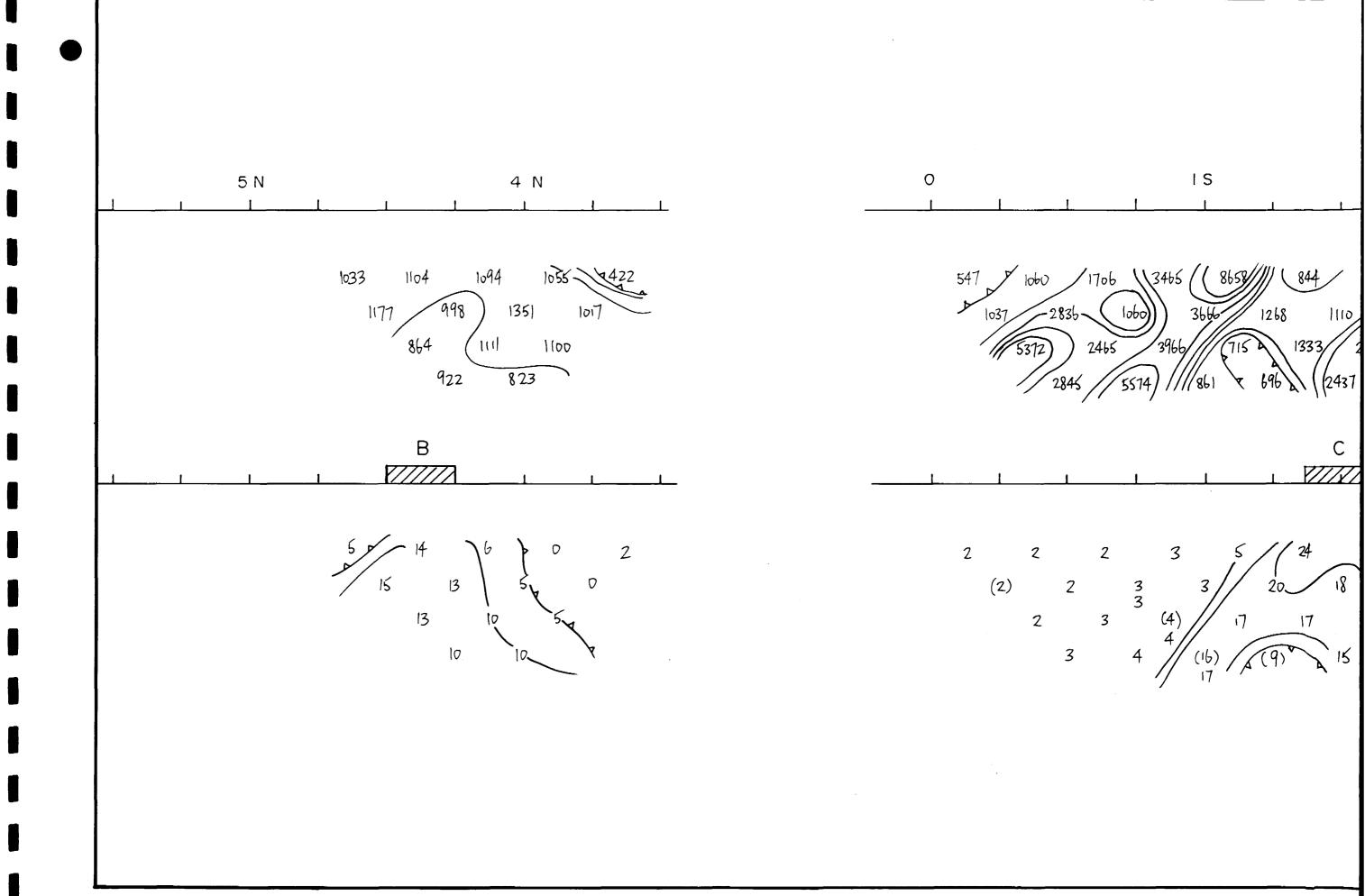

FIGURE IP SURVEY LINE 10+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

INSTRUMENTS Tx : EDA IP-1 Rx : Phoenix IPT-1

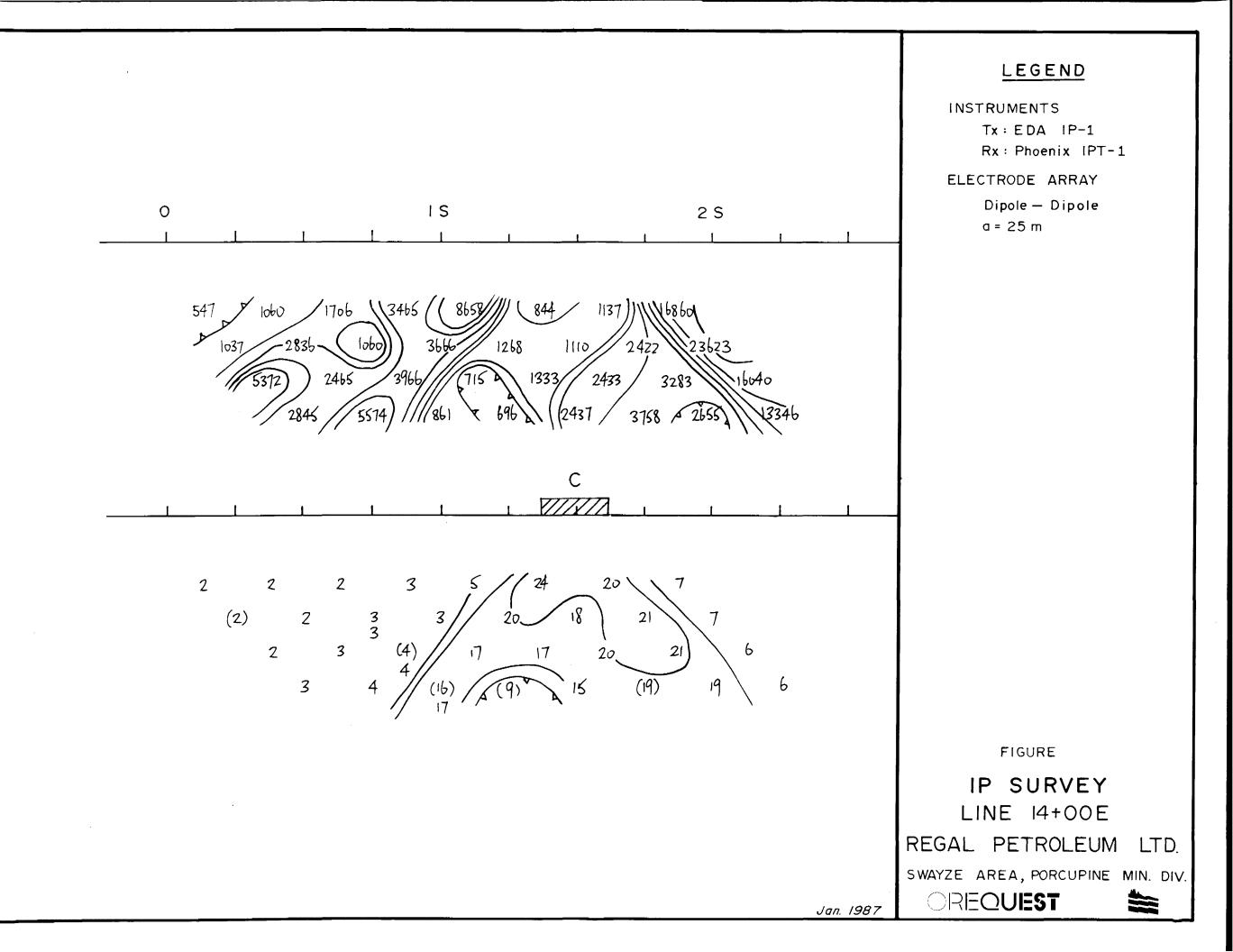
ELECTRODE ARRAY Dipole - Dipole a = 25 m

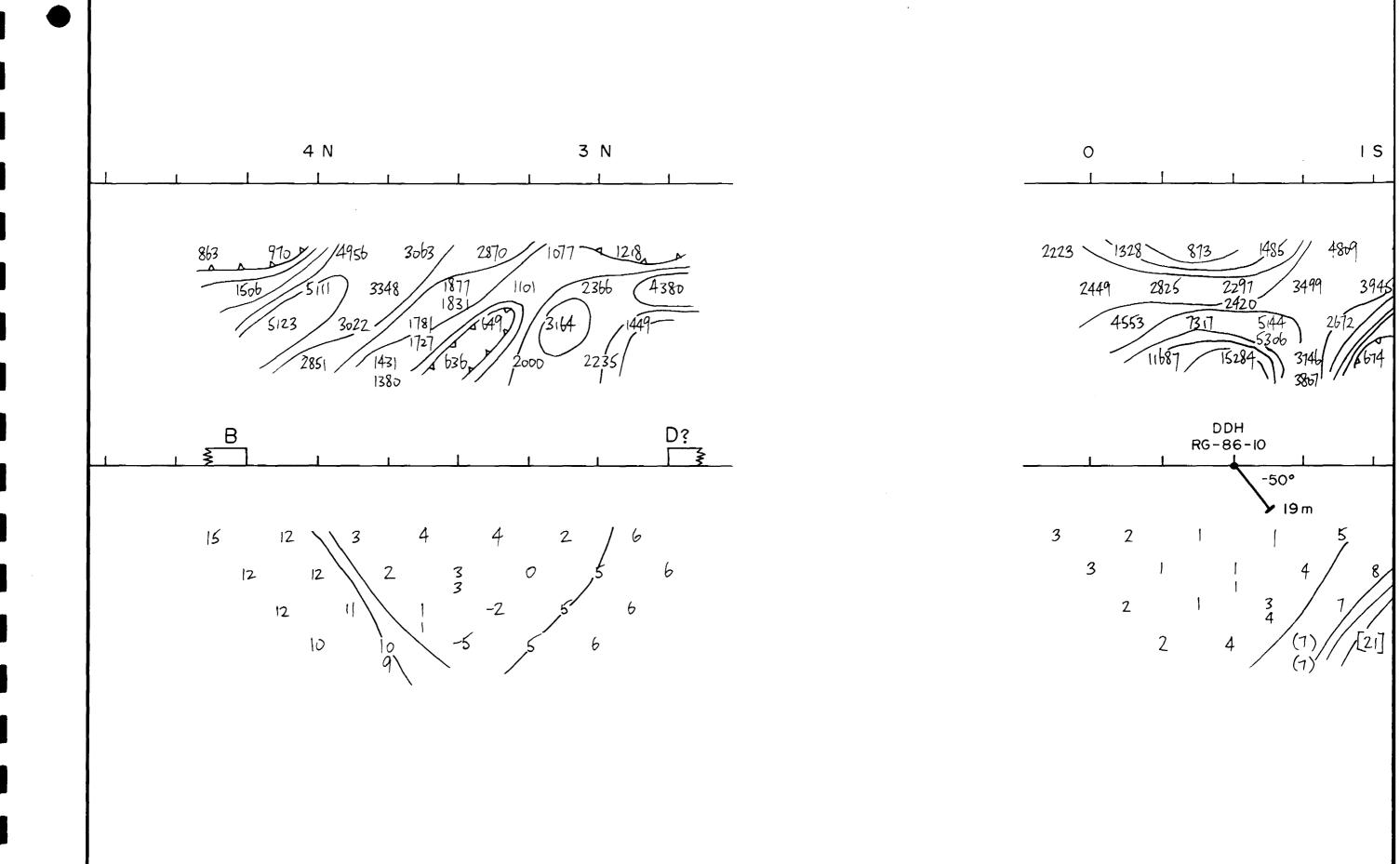

INSTRUMENTS Tx : EDA IP-1 Rx: Phoenix (PT-1

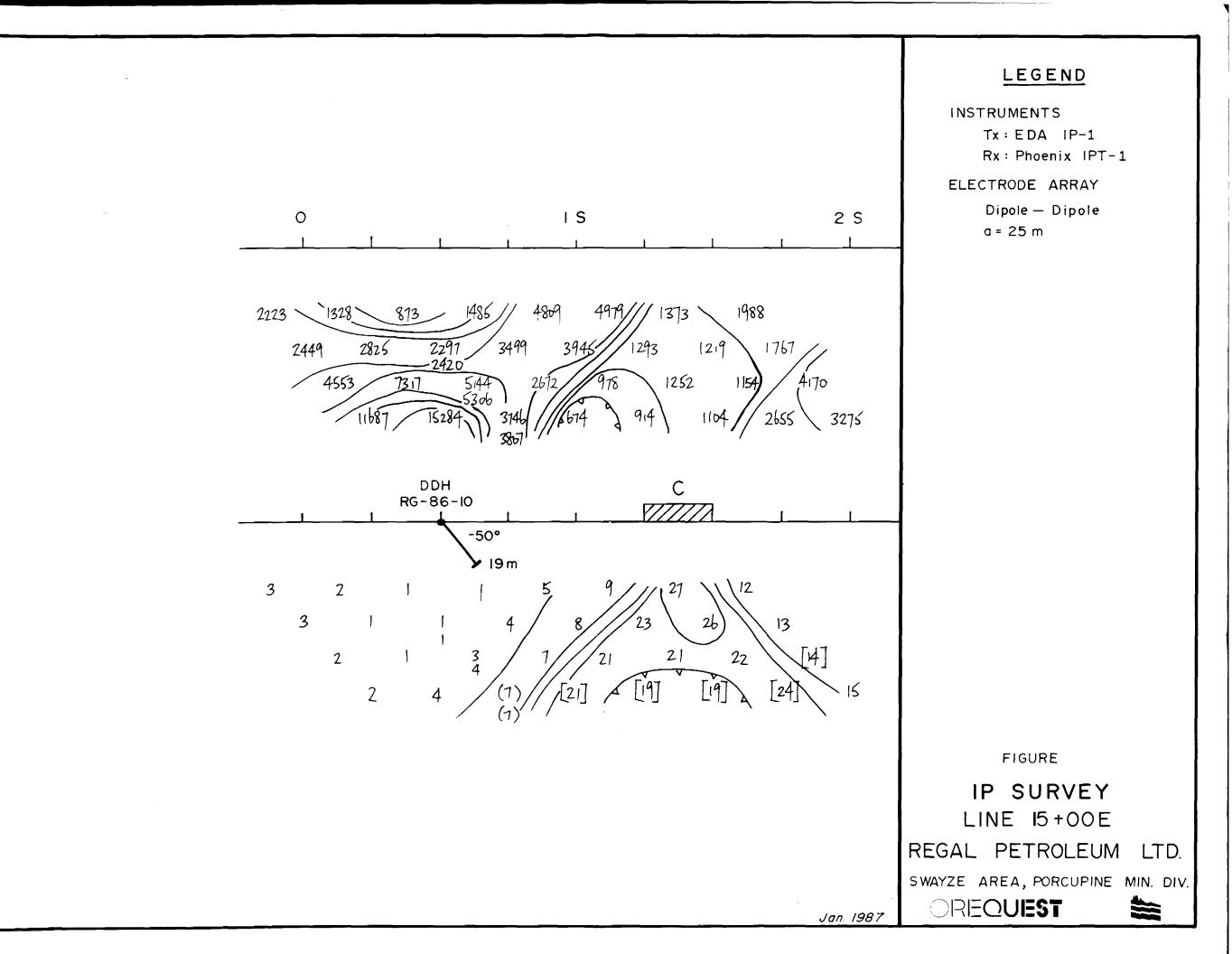

ELECTRODE ARRAY Dipole - Dipole a = 25 m

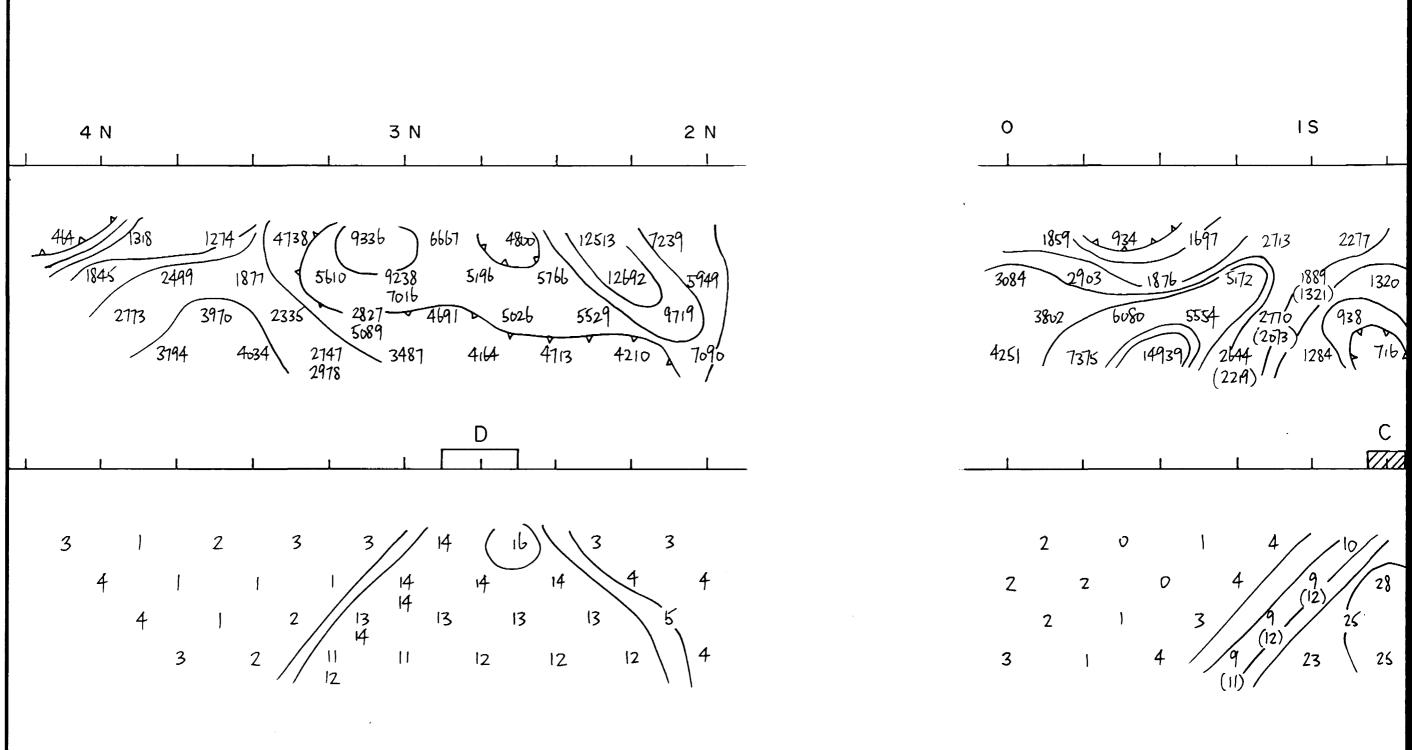

FIGURE

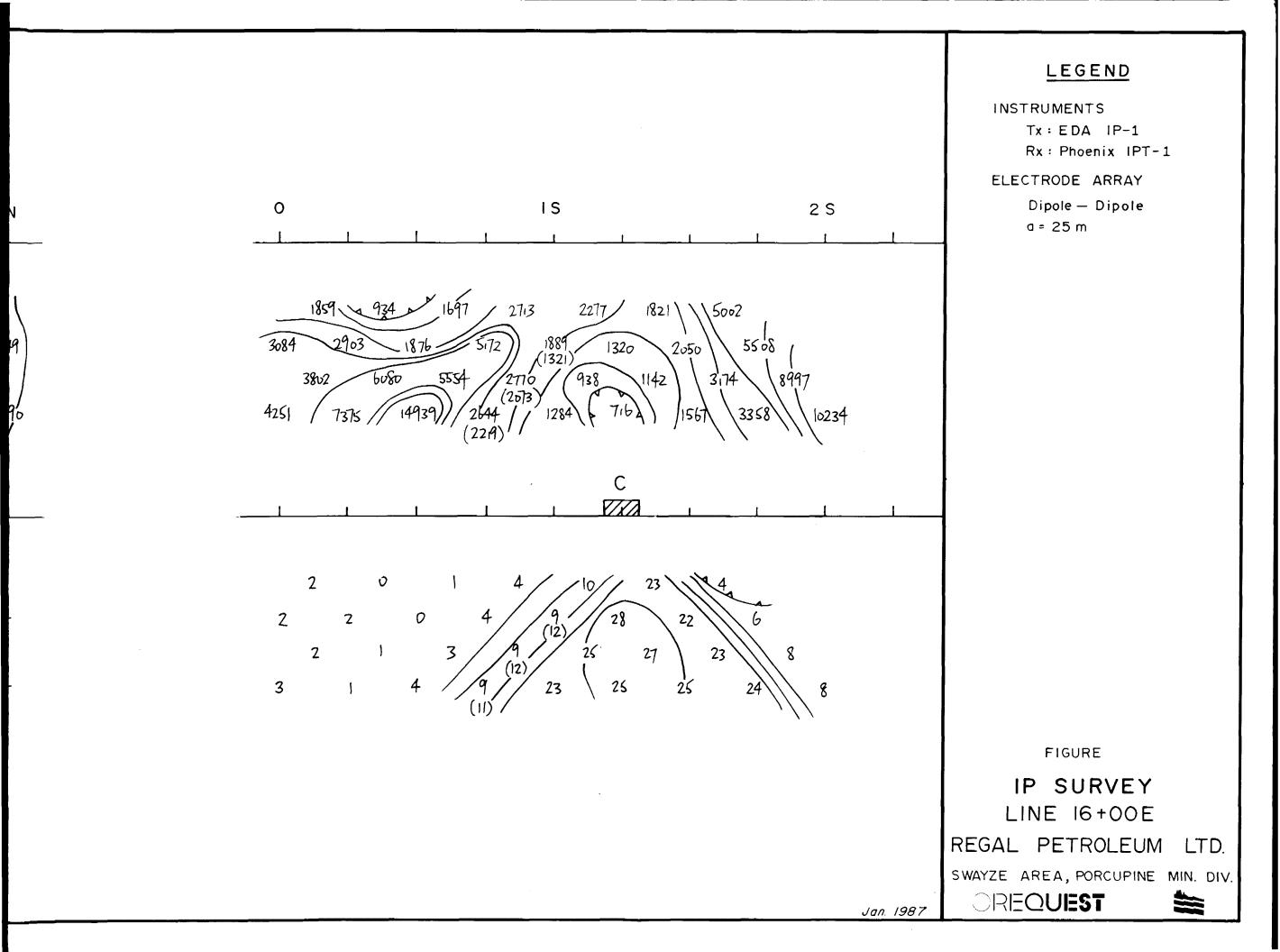
IP SURVEY LINE 12+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

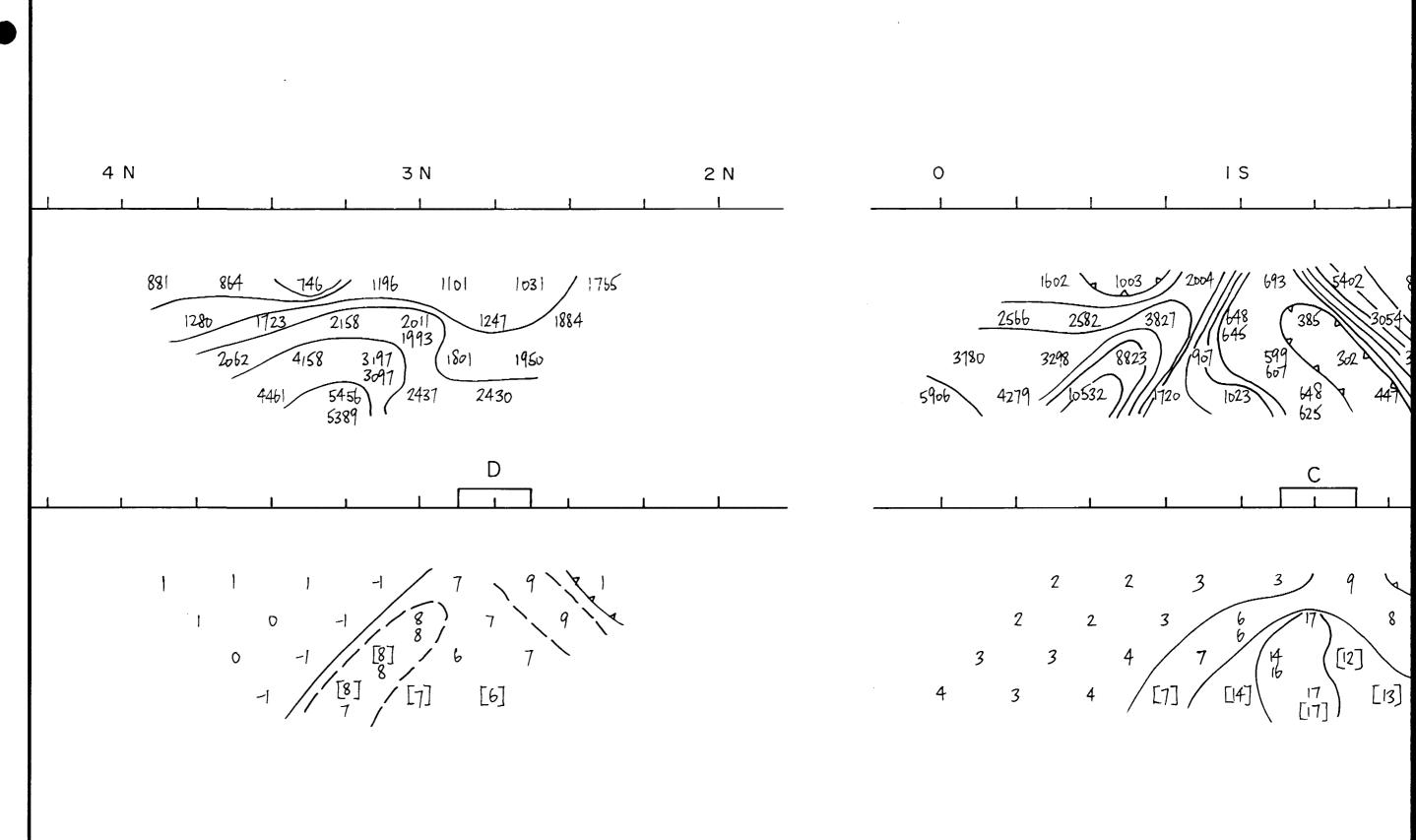

Jan. 1987

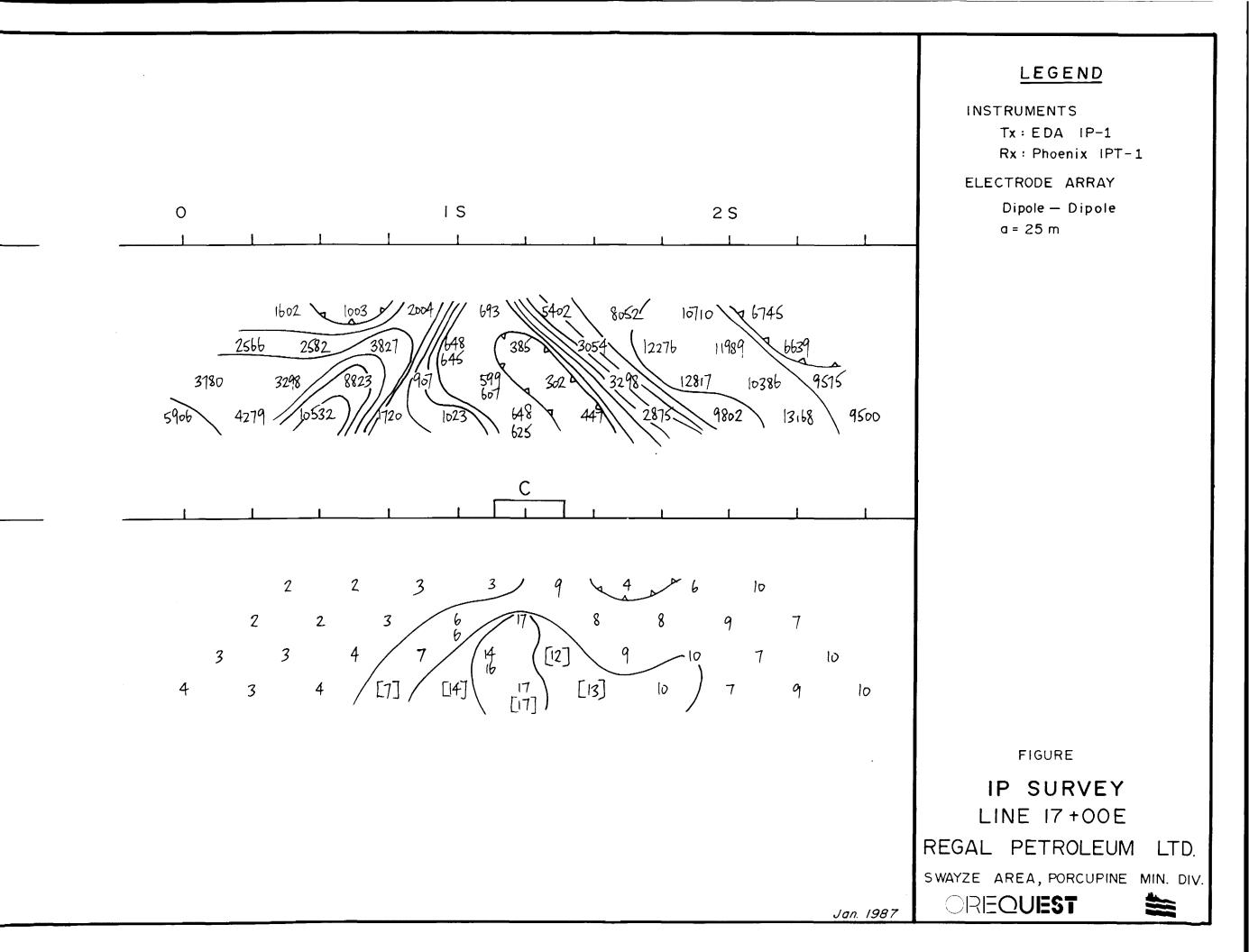


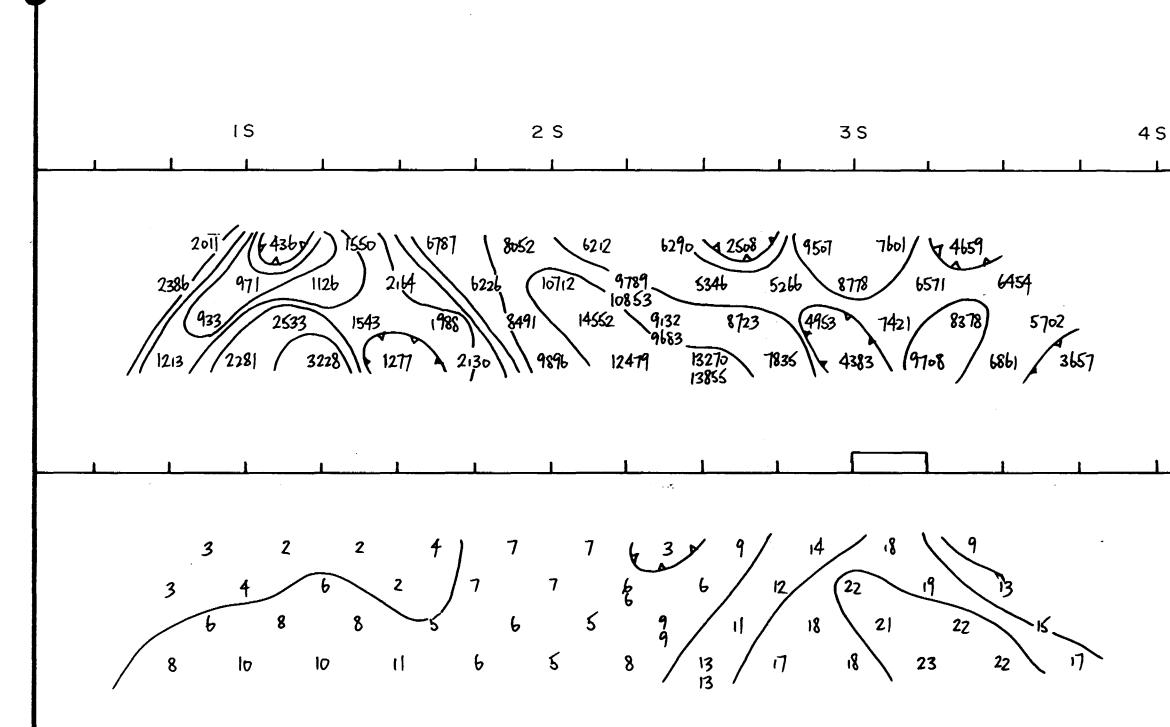






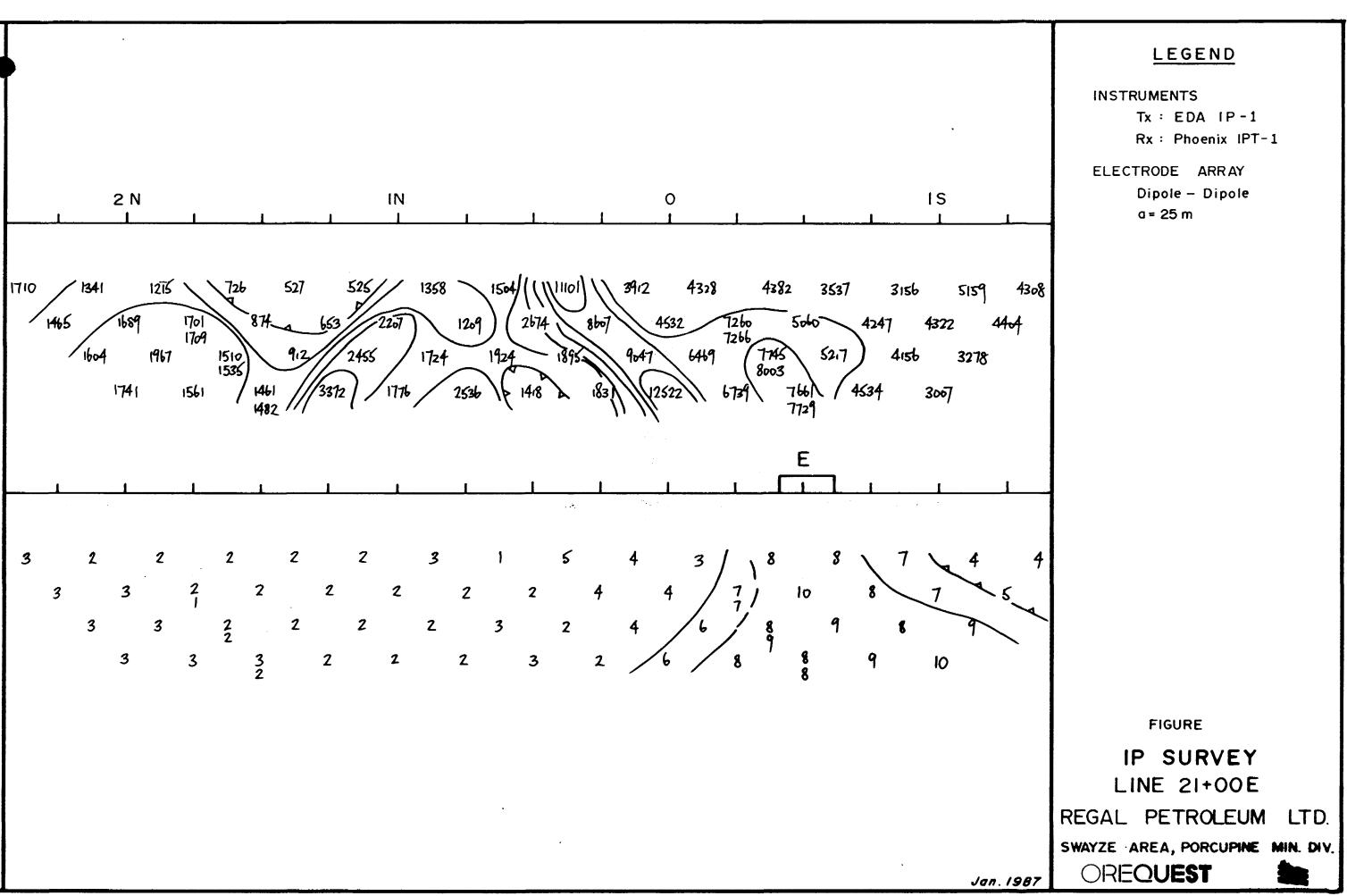






N

Jan. 1987


LEGEND

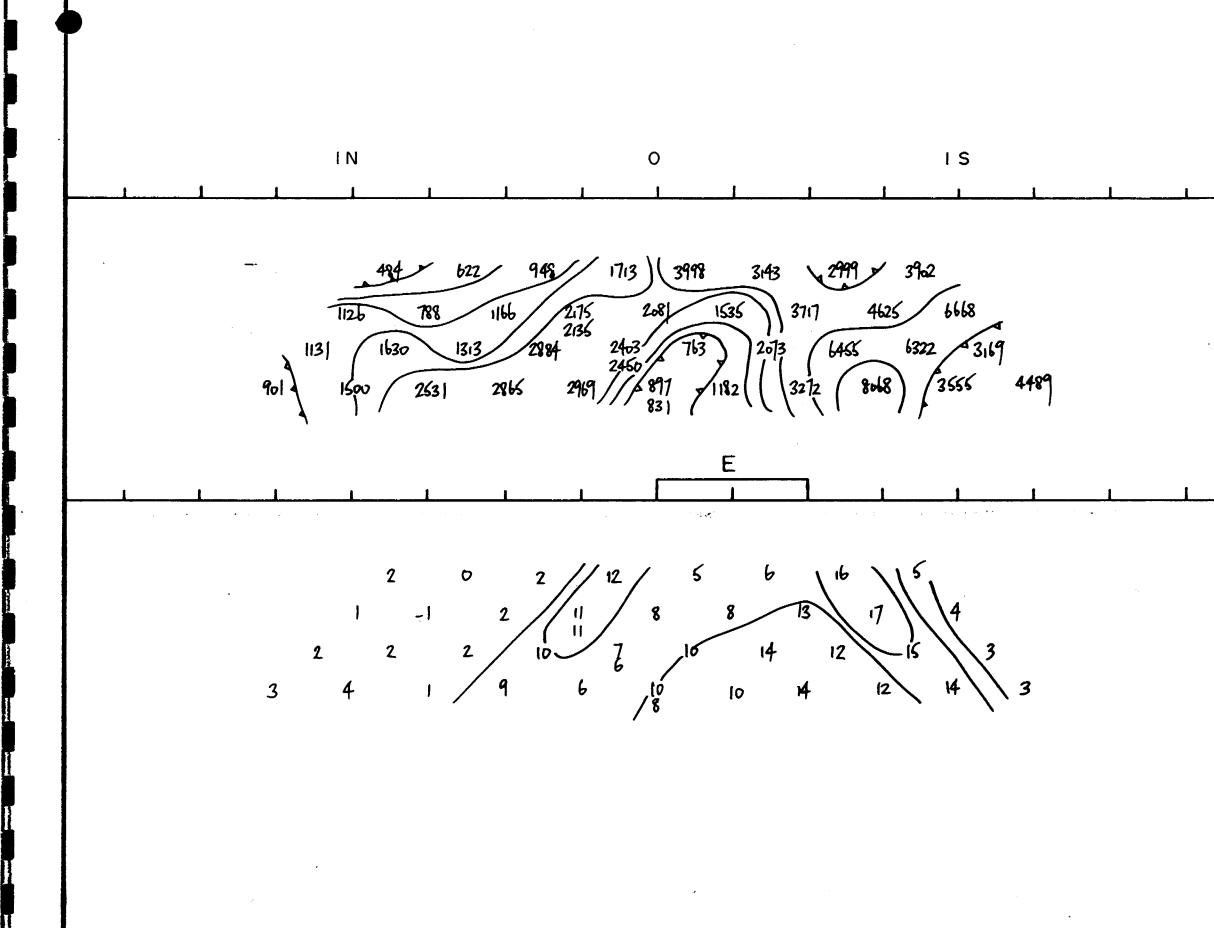
INSTRUMENTS Tx : EDA IP-1 Rx: Phoenix IPT-1

ELECTRODE ARRAY Dipole - Dipole a = 25 m

FIGURE

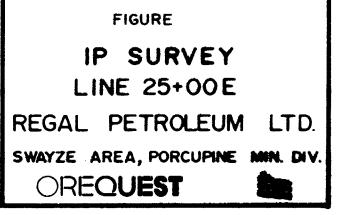
IP SURVEY LINE 18+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

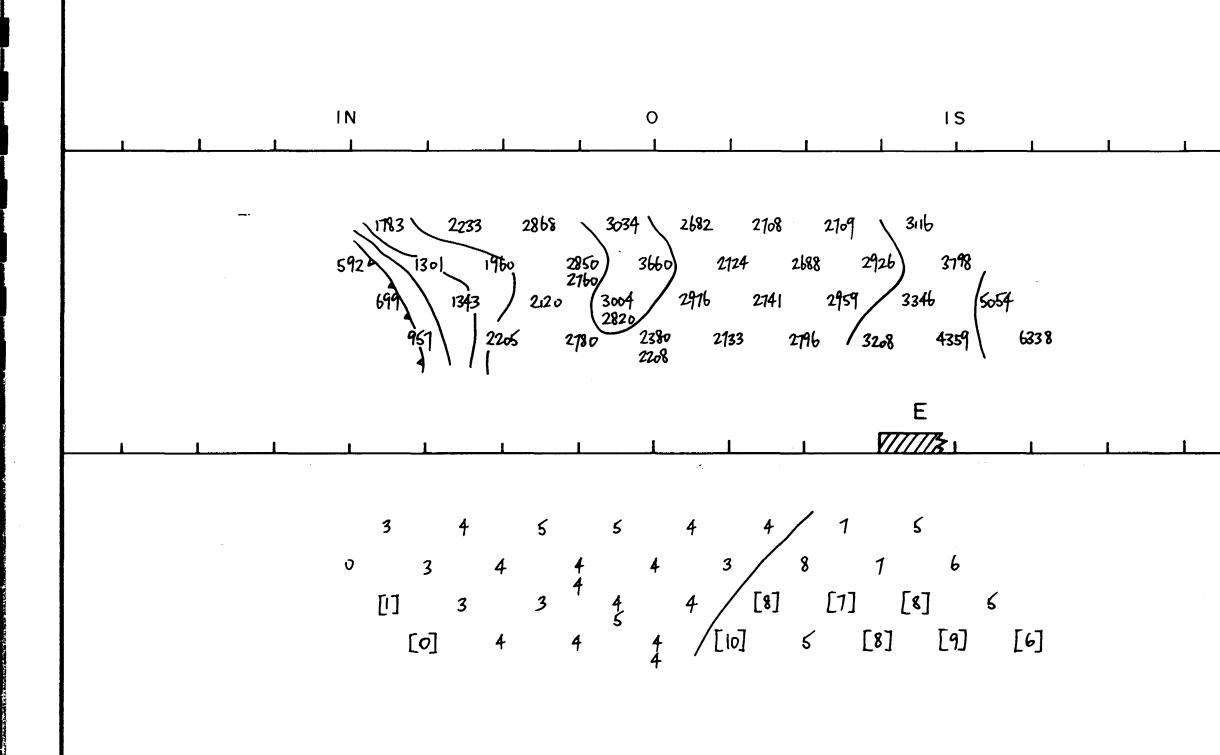
15 IN 0 2834/ 3427 / 2209 3036 3644 637 980 915 (1947 2182 5933 (29.9 2962) 4320 713_ 432b 2182 1340 2168 2760 4995 6493 4164 3542 1437 1012 SID 1555 5953 7325 5862 6 4760 426 / 1548 201 1465 Ε 5 5 3 1 5 3 3 3 6 Ø Ø 6 -1 0 2 3 0 2 2 s 9 10 0 8 7 10


INSTRUMENTS Tx : EDA IP-1 Rx: Phoenix IPT-1

ELECTRODE ARRAY Dipole - Dipole a = 25 m

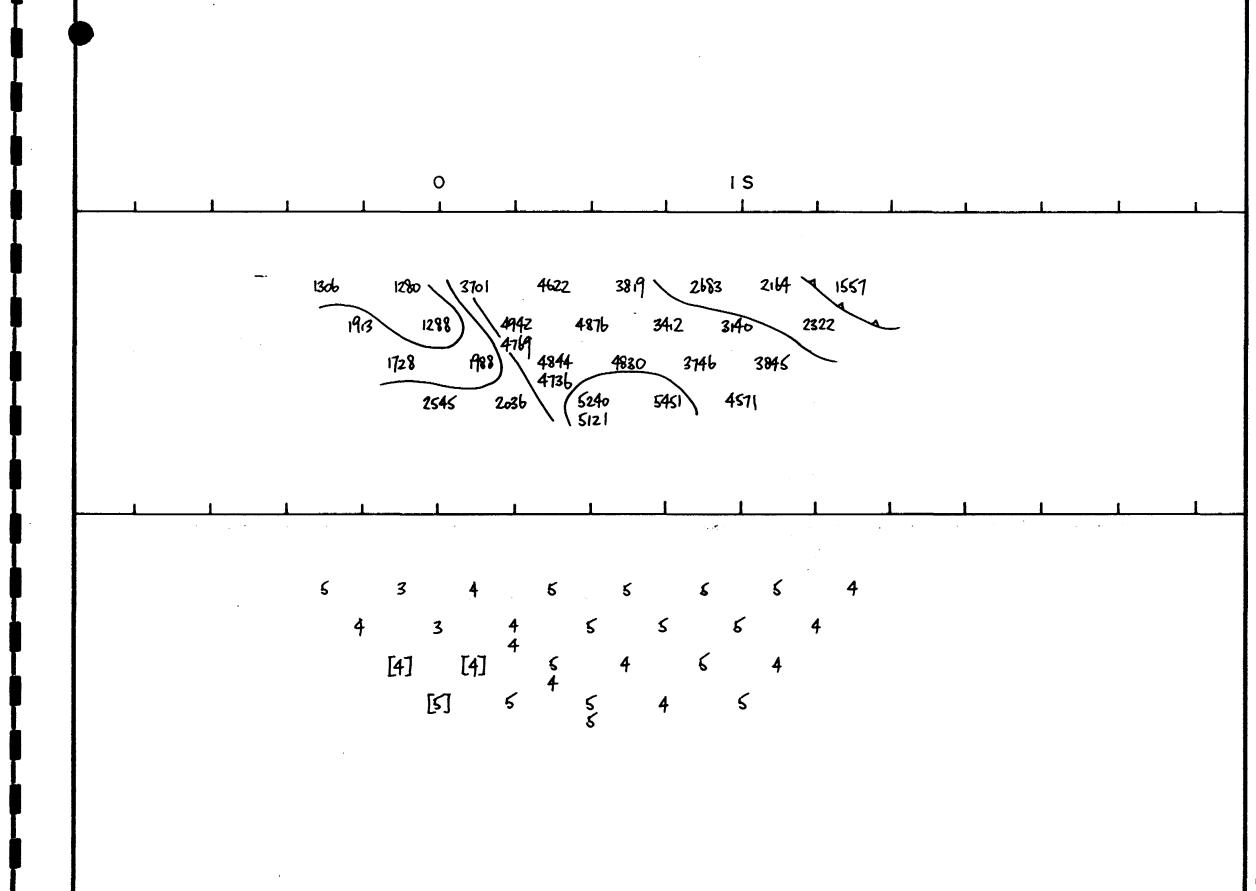
FIGURE


IP SURVEY LINE 23+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST


Jan. 1987

INSTRUMENTS Tx : EDA IP-1 Rx : Phoenix IPT-1

ELECTRODE ARRAY Dipole - Dipole a = 25 m

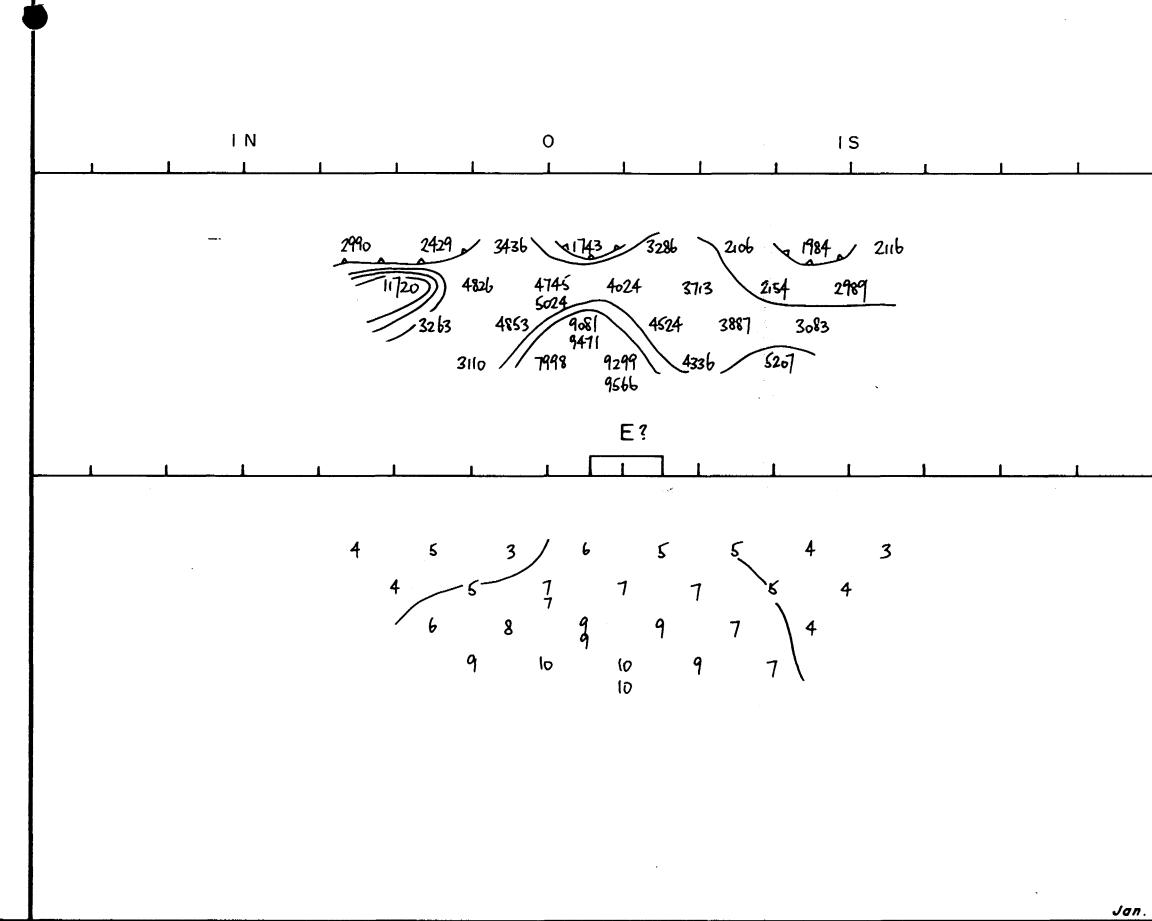


INSTRUMENTS Tx : EDA IP-1 Rx : Phoenix IPT-1

ELECTRODE ARRAY Dipole – Dipole a = 25 m

FIGURE

IP SURVEY LINE 27+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST


Jan. 1987

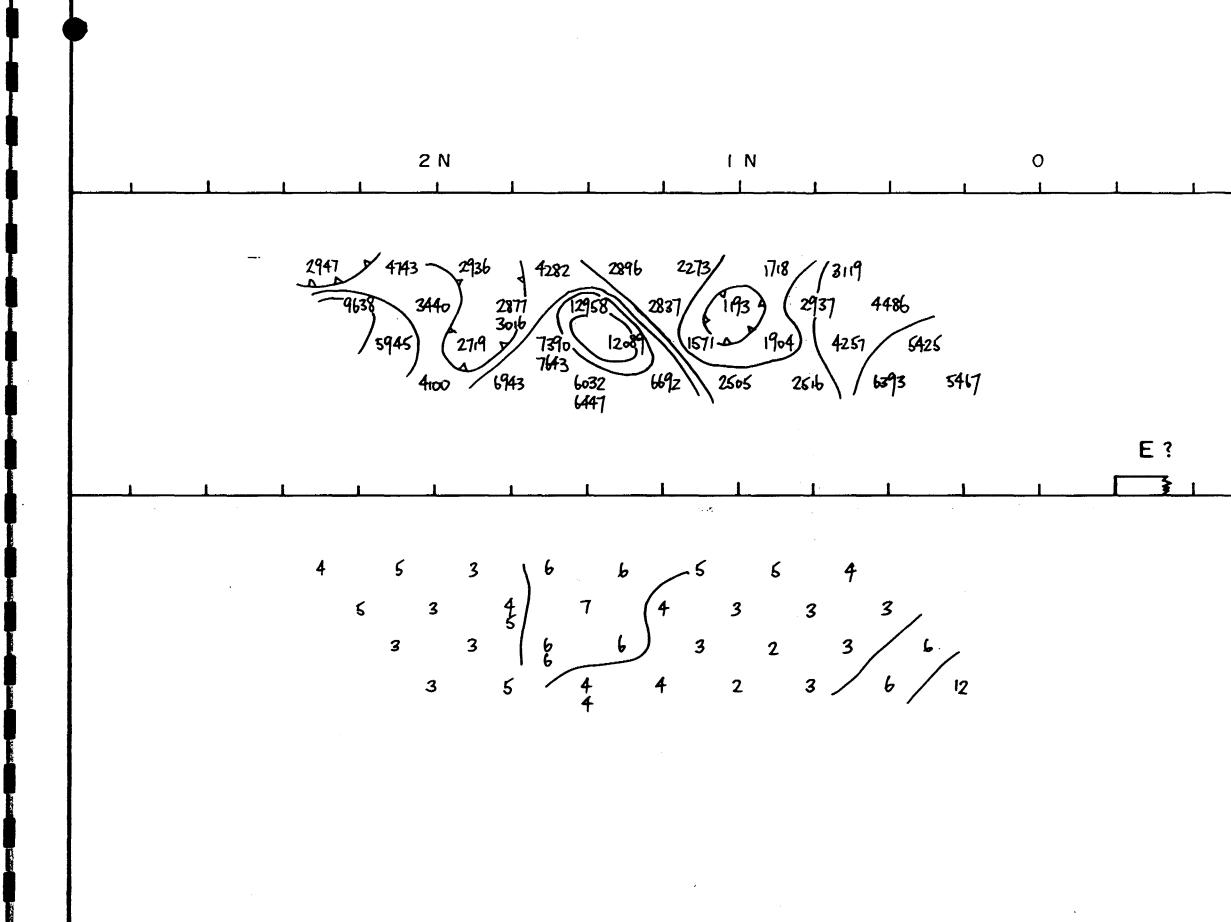
LEGEND

INSTRUMENTS Tx : EDA IP-1 Rx : Phoenix IPT-1

ELECTRODE ARRAY Dipole – Dipole a = 25 m

FIGURE IP SURVEY LINE 29+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

Jan. 1987

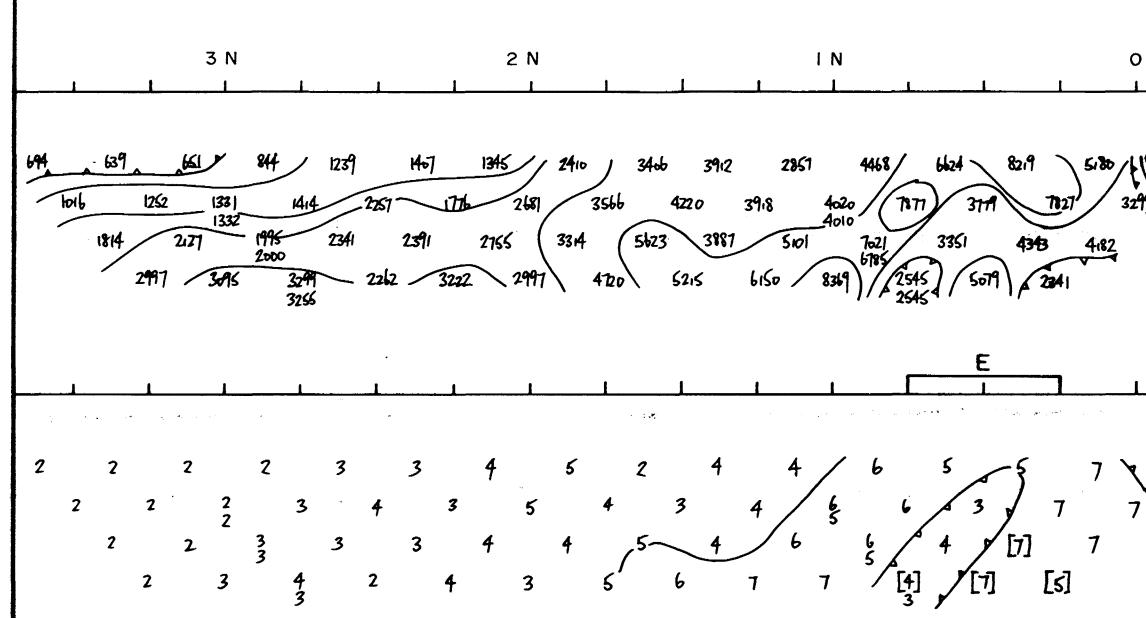

LEGEND

INSTRUMENTS Tx : EDA IP-1 Rx : Phoenix IPT-1

ELECTRODE ARRAY Dipole - Dipole a = 25 m

FIGURE

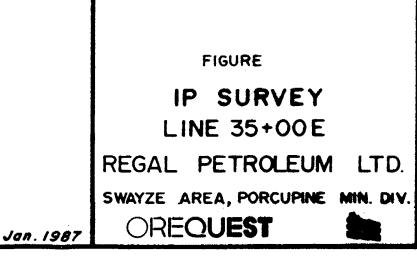
IP SURVEY LINE 3I+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

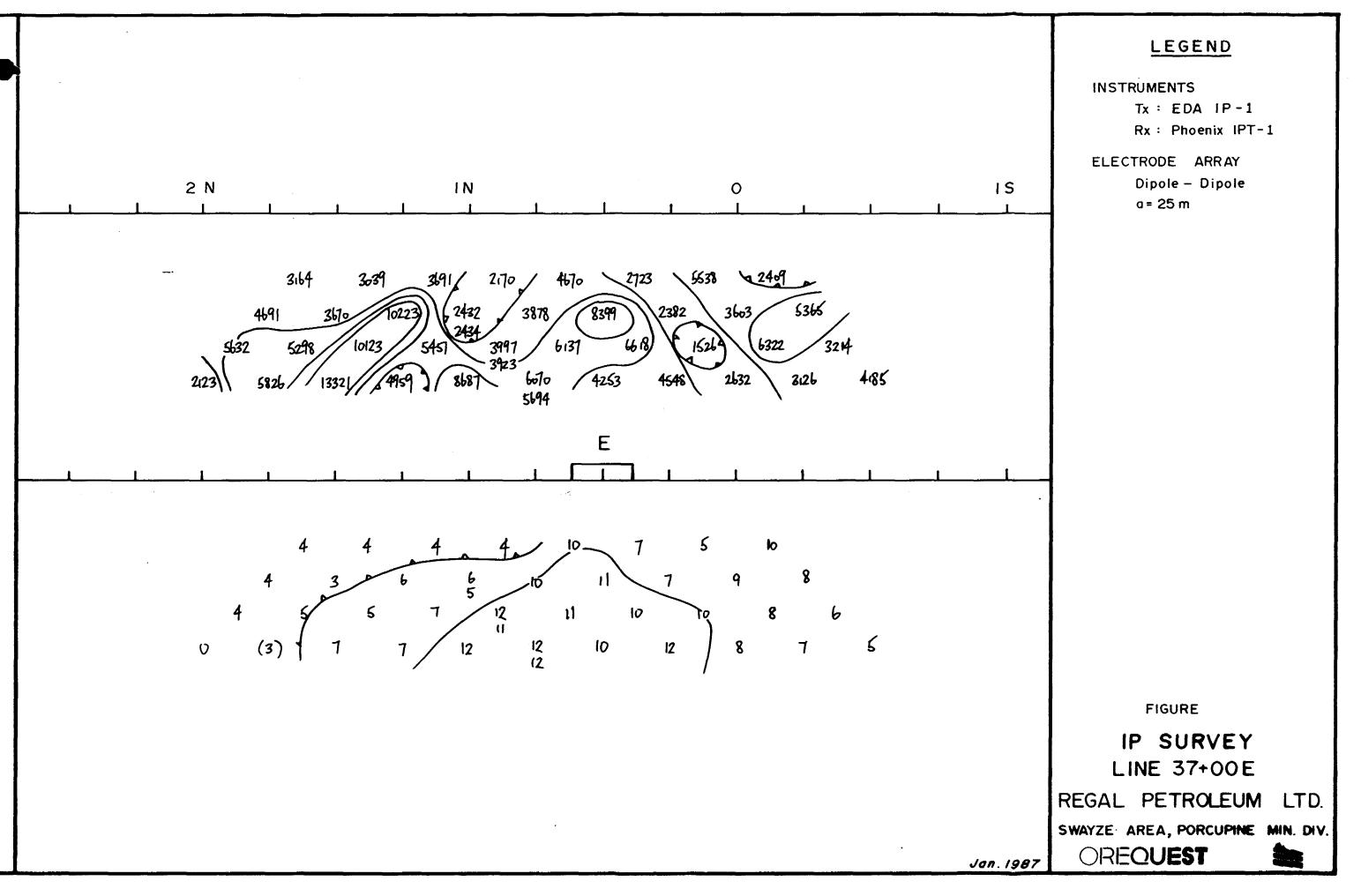

INSTRUMENTS Tx : EDA IP-1 Rx: Phoenix IPT-1

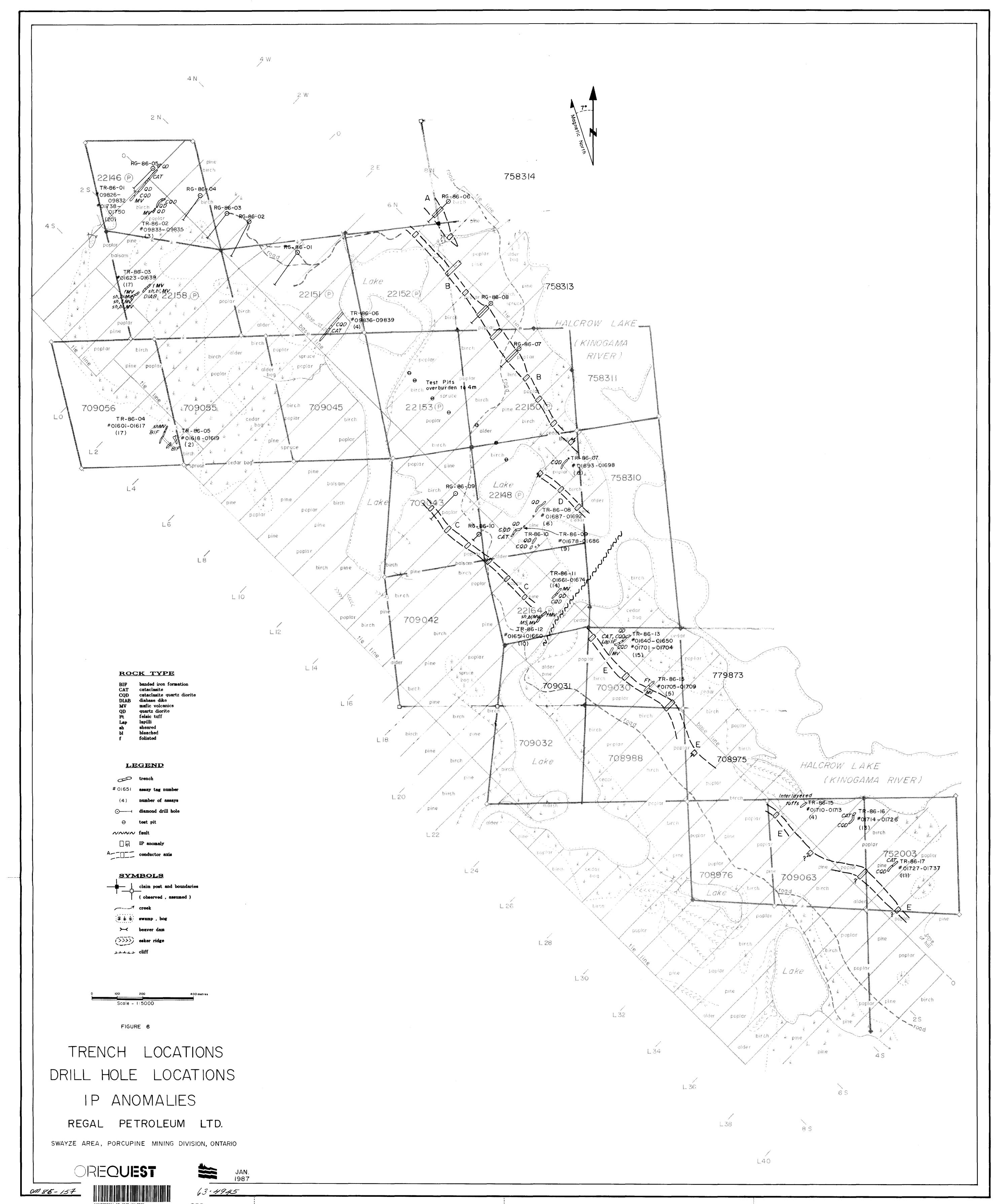
ELECTRODE ARRAY Dipole - Dipole a = 25 m

IP SURVEY LINE 33+00E REGAL PETROLEUM LTD. SWAYZE AREA, PORCUPINE MIN. DIV. OREQUEST

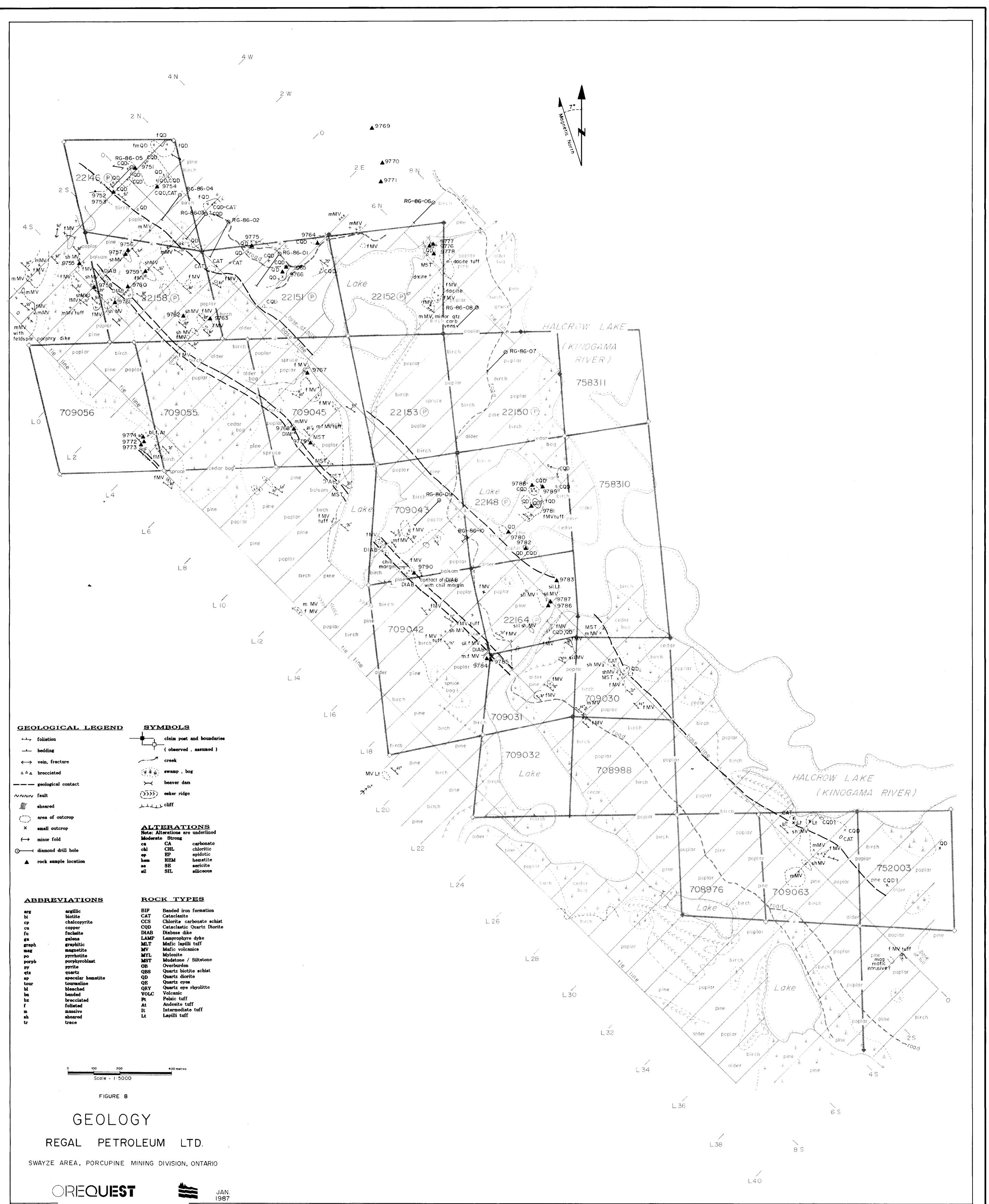
FIGURE


Jan. 1987






INSTRUMENTS Tx : EDA IP-1 Rx: Phoenix IPT-1


ELECTRODE ARRAY Dipole - Dipole a = 25 m

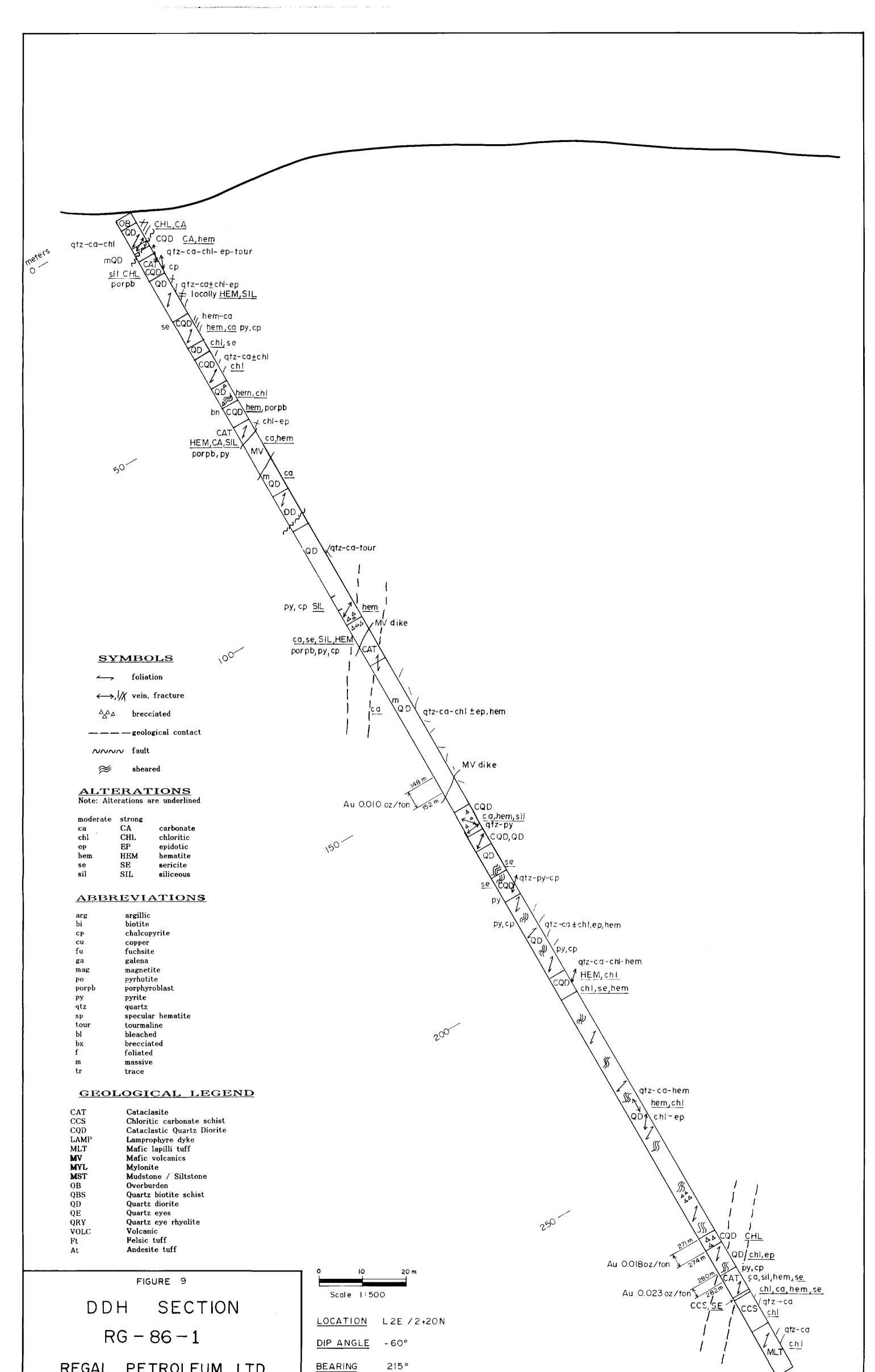
·····

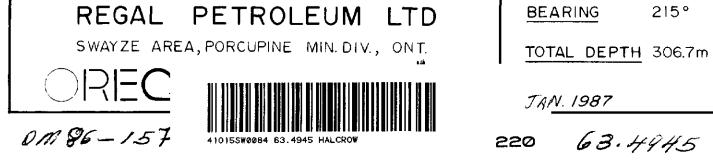
<>	vem, fracti	пе				
<u>م ۵ م</u>	brecciated		: 末末本:	swamp,	bog	
	geological	contact	×	beaver d	am	
NNNN	fault		(111)	esker rid	ge	
M	sheared			cliff ر		
~~~\	area of out	tcrop				
×		-	ALT	ERAT	TIONS	
	small outcrop		Note: A	Note: Alterations are underlined Moderate Strong		
$\leftrightarrow$	minor fold		Câ	CA	carbonate	
<u>о</u>	diamond dri	ill hole	chl op	CHL BP	chloritic epidotic	
	rock sample	e location	hem	HEM	hematite	
-			se sil	SB SIL	sericite siliceous	
AE	BREV	IATIONS	ROC	K TY	PES	
arg		argillic	BIF		on formation	
bi		biotite	CAT CCS	Cataclasi	te carbonate schist	
CP CU		chalcopyrite copper	CQD	-	ic Quartz Diorite	
fu		fuchsite	DIAB	Diabase d	like	
ga		galena	LAMP	Lamproph	-	
graph	,	graphitic magnetite	MLT MV	Mafic lap Mafic vol		
mag po		pyrrhotite	MYL	Mylonite		
porpt	)	porphyroblast	MST		/ Siltstone	
РУ		pyrite	OB QBS	Overburde Overtz bi	en otite schist	
qtz sp		quartz specular hematite	QD QD	Quartz di		
tour		tourmaline	QB	Quartz cy		
ы		bleached	QRY	Quartz ey Volcanic	e rhyolitte	
bn bx		banded brecciated	VOLC Ft	Felsic tu	ff	
f		foliated	At	Andesite	tuff	
m		massive	It	Intermedi		
sh		sheared	Lt	Lapilli tu	II	
tr		trace				
		0 100 2	200	400 metre	\$	
		Scale - 1:	5000			
		FIGURE	E 8			
		GEOL	OGY			

0m86-157

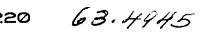


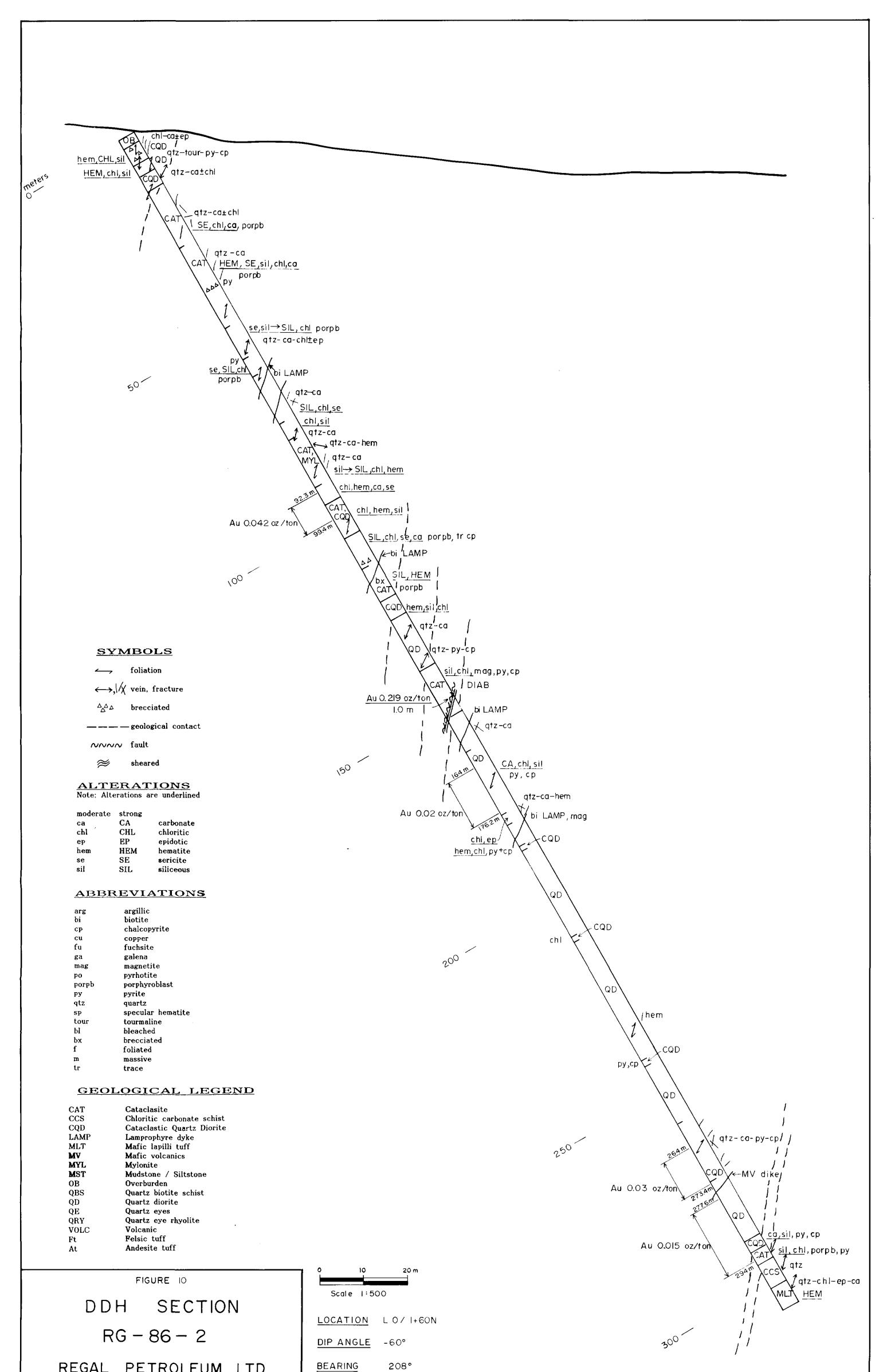
210


.....


~

· .....

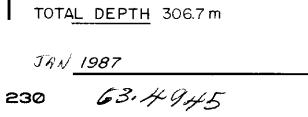

_____

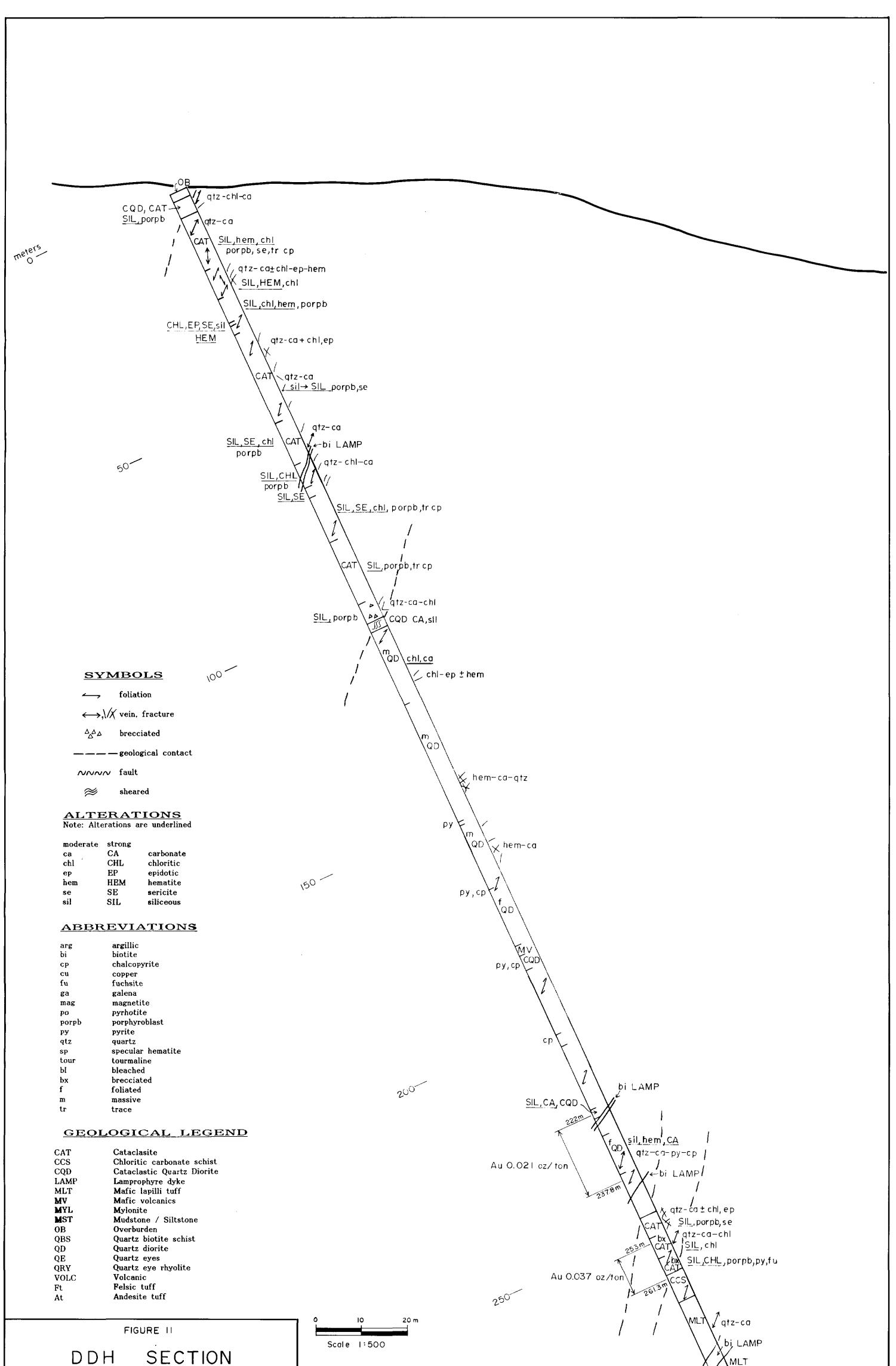










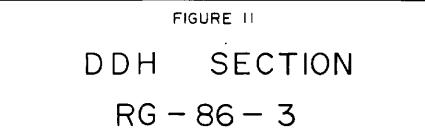



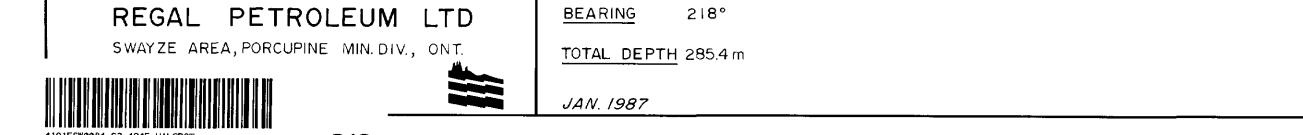



_____.





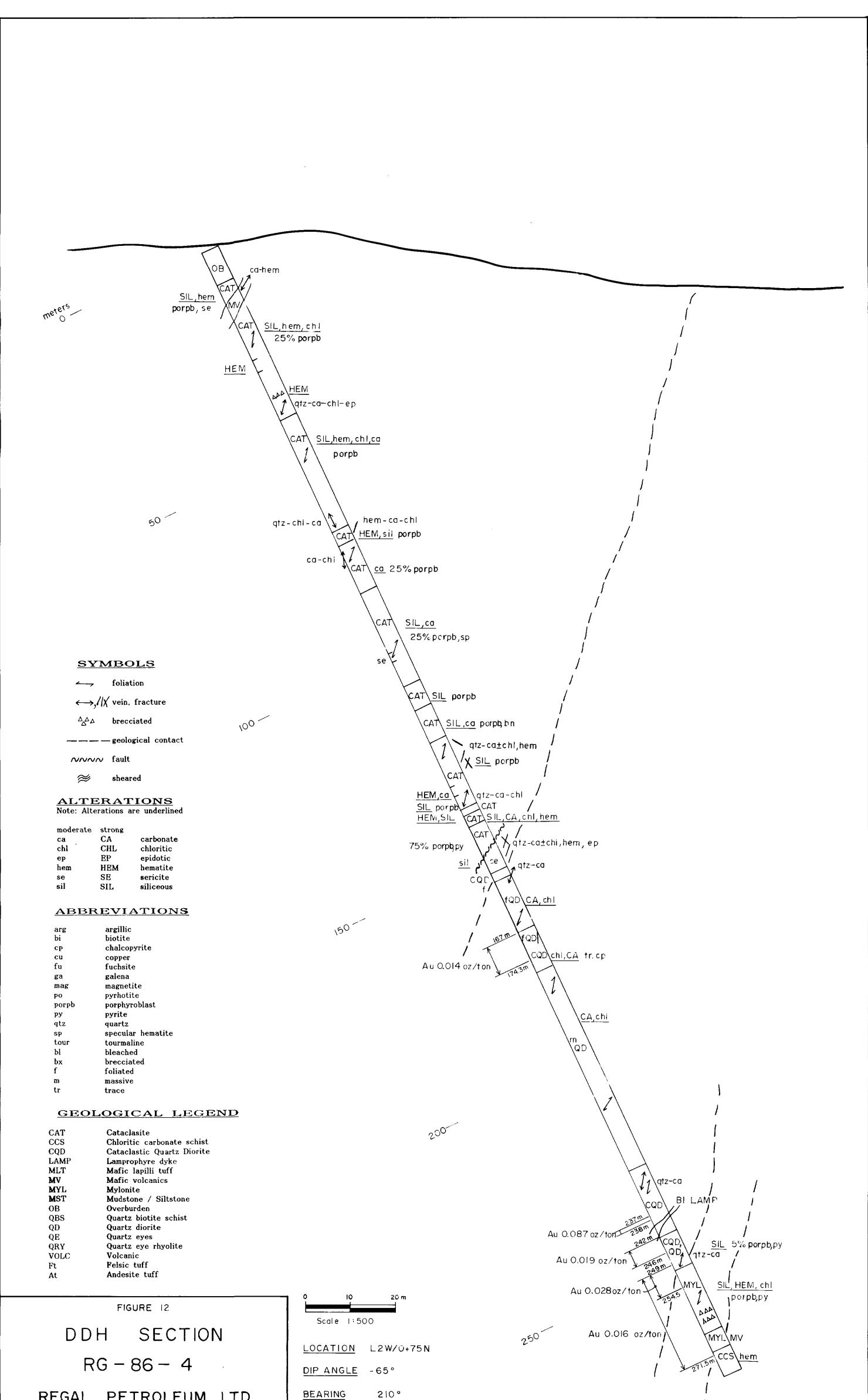




. .

moderate	strong	
ca	CA	carbonate
chl	CHL	chloritic
ер	EP	epidotic
hem	HEM	hematite
se	SE	sericite
sil	SIL	siliceous

arg	argillic
bi	biotite
ср	chalcopyrite
cu	copper
fu	fuchsite
ga	galena
mag	magnetite
ро	pyrhotite
porpb	porphyroblast
ру	pyrite
qtz	guartz
sp	specular hematite
tour	tourmaline
Ы	bleached
bx	brecciated
f	foliated
m	massive
tr	trace

CAT	Cataclasite
CCS	Chloritic carbonate schist
CQD	Cataclastic Quartz Diorite
LAMP	Lamprophyre dyke
MLT	Mafic lapilli tuff
MV	Mafic volcanics
MYL	Mylonite
MST	Mudstone / Siltstone
OB	Overburden
QBS	Quartz biotite schist
QD	Quartz diorite
QE	Quartz eyes
QRY	Quartz eye rhyolite
VOLC	Volcanic
Ft	Felsic tuff
At	Andesite tuff






DIP ANGLE -65°

LOCATION LIW/1+25 N

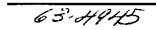




_____

-----




SWAYZE AREA, PORCUPINE MIN. DIV., ONT.





JAN 1987

250



TOTAL DEPTH 276.2 m