

$010 c$

TABLE OF CONTENTS

Page
GENERAL 1
LOCATION 1
PROPERTY 1
TOPOGRAPHY AND DRAINAGE 6
TRANSPORTATION 7
HISTORY 8
REGIONAI, GEOLOGY 12
MAP AREA "A" 16
RECONNAISSANCE PROGRAM 18
ANOMALY 1 19
ANOMILY 2 19
DETAILED PROGRAM 19
GEOL,OGY 20
ELECTROMAGNETIC SURVEY 21
Anomaly 1 22
Anomaly 2 22
TOTAL MAGNETIC FIELD GRADIENT STUDY 23
GEOCHEMICAL INVESTIGATION 24
CONCLUSIONS 28
RECOMMENDATIONS 29

CONTENTS continued:
Page
MAP AREA "B" 34
RECONNAISSANCE PROGRAM 34
ANOMALY 3 37
ANOMALY 4 37
ANOMALY 5 37
DETAIIJED PROGRAM 38
GEOLOGY 38
ELECTROMAGNETIC SURVEY 39
Anomaly 3 40
Anomaly 4 40
TOTAI MAGNETIC FIELD GRADIENS STUDY 41
GEOCHEMICAL INVESTIGATION 42
CONCLUSIONS 46
RECOMMENDATIONS 47
MAP AREA "C" 50
RECCNNAISSANCE PROGRAM 52
ANOMALY 6 53
ANOMALY 7 53
ANOMALY 8 53
DETAIJED PROGRAM 54
RIDGE BACK GRID 54
GEOLOGY 54

CONIENTS continued:

Page
ELECTROMAGNETIC SURVEY 56
Anomaly 7 57
TOIAL MAGNETIC FIELD GRADIENT STUDY 57
GEOCHEMICAL INVESTIGATION 58
CONCLUSIONS 60
RECOMMENDATIONS 60
FOOTHILL GRID 60
GEOLOGY 60
ELECTROMAGNETIC SURVEY 61
Anomaly 8 61
TOTAL MAGNETIC FIELD GRADIENT STUDY 62
GEOCHEMICAL INVESTIGATION 63
CONCLUSIONS 64
RECOMMENDATIONS 64
MAP AREA "D" 73
RECONNAISSANCE PROGRAM 75
ANOMALY 9 76
ANOMALY 9a 76
ANOMALY 10 76
ANOMALY 11 77
ANOMALY 12 77

CONTPNIS continued:
Page
DETAITED PROGRAM 77
CLAIM LAKE GRID 78
GEOL,OGY 78
ELECTROMAGNETIC SURVEY 79
Anomaly 9 80
Anomaly 9a 80
Anomaly 10 81
TOTAL MAGNETIC FIELD GRADIENT STUDY 81
GEOCIEMICAL INVESTIGATION 83
CONCLUSIONS 84
RECOMMENDATIONS 84
BOUNDARY GRID 84
GEOLOGY 85
ELECTROMAGNETIC SURVEY 85
Anomaly 11 86
Anomaly 12 86
TOTAL MAGNETIC FIELD GRADIENT STUDY 87
GEOCHEMICAI INVESTIGATION 88
CONCLUSIONS 90
RECOMMENDATIONS 90

CONTENTS continued:
Page
MAP AREA "E" 92
RECONNAISSANCE PROGRAM 94
ANOMALY 13 95
ANOMALIY 14 95
ANOMAIY 15 95
DETAILED PROGRAM 96
GEOLOGY 96
ELECTROMAGNETIC SURVEY 98
Anomaly 13 98
TOTAL MAGNETIC FIELD GRADIENT STUDY 99
GEOCHEMICAL INVESTIGATION 101
CONCLUSIONS 102
RECOMMENDATIONS 103
COST ESTIMATE - PHASE II - DIAMOND DRILLING 105
APPENDIX I - ELECTROMAGNETIC VLF TECHNIQUE i
APPENDIX II - FRASER FILIRATION METHOD ii
APPENDIX III - TOTAL MAGNETIC FIELD GRADIENT STUDY iii
APPENDIX IV - GEOCHEMICAL INVESTIGATION iv
APPENDIX V - REPORT BY W. G. WAHL LTD. 1967 v

Suite llol, 302 Bay Street Toronto, Ontario M5H 2P3

12 December 1975

Mr. J. F. Machamer
Manager of Exploration - Canada
U.S. Stecl International Ltd.
l2th Floor
7 King Strcet East Toronto, Ont.

Dear Mr. Machamer:
Submitted herewith is our final report on:
PART I

WOMAN RIVER PROJECT
PORCUPINE MINING DIVISION
DISTRICT OF SUDBURY, ONTARIO
Part I consisted of a two phase exploration program covering seventy-four mineral claims and five patented mineral claims locatcd in the four corners area of Mallard, Benton, Heenan and Marion townships. For ease of presentation only, the claims have been divided into five map areas lettered clockwise from the sout'reastern claims. This area is underlain by assorted acid to intermediate volcanic rocks, banded iron formation and younger granite and diorite. These rocks are folded into an anticlinal structure whose axial plane strikes and plunges steeply to the west-southwest and dips steeply to the north-northwest.

The first phase of this exploration program consisted of the establishment of a reconnaissance grid followed by an electromagnetic survey, the purpose of which was to define the regional extensions of known anomalous areas. Sixteen anomalous, conductive zones were mapped during the reconnaissance program, twelve of these zones were further defined during the second phase of the exploration program.

The second phase consisted of a detailed, systematic evaluation of these twelve zones. This entailed the development of a grid systom normal to the regional strike of the conductor followed by an electromagnetic survey with Fraser Filtration plots,
a total magnetic field gradient study and a geological survey. As an integral part of the geological investigation, whole rock and soil geochemical samples were collected for analysis in an attempt to determine the causative body of the conductive zone.

The following is a breakdown of the twelve anomalous zones as to map area and inferred causative body.

MAP AREA "A"

The causative body of Anomaly 1 is thought to be a zone of sulphide mineralization associated with the contact between the highly chloritic dacite tuff mapped to the south and the sericitic rhyolite lapilli tuff mapped to the north.

The causative body of Anomaly 2 is thought to be a zone of disseminated sulphide mineralization associated with a dacite tuff horizon.

Anomalous rock geochemical results in zinc and copper are associated with both these anomalies.

MAP AREA "B"
The causative body of Anomalies 3 \& 4 is thought to be a zone of sulphide mineralization associated with a chloritic andesite tuff. Anomalous rock geochemical results in zinc and copper are associated with both these anomalies.

MAP AREA "C"

The causative body of Anomaly 7 is thought to be the contact zone between the white to light-grey, banded chert and the overlying andesite.

The causative body of Anomaly 8 is a thinly banded iron formation containing numerous grey chert bands, with considerable pyrrhotite and pyrite.

In general, Goodwin has estimated the iron content to be 30-40 percent at the base of the formation and 5-10 percent at the top. The following table, after Goodwin, illustrates these relationships in descending stratigraphic sections.

Iron Formation, Underlying the Large Ridge in Claims WS $8 \& 9$ White to light-grey, banded chert 70 - 200 feet

Dark-grey, banded chert with jasper zones 300 - 600 feet Dark-grey, banded chert with magnetite zones 100 - 600 feet
$470-1400$ feet

MAP AREA "D"

The causative body of Anomaly 9 is the contact zone between the thinly banded jaspery iron formation and the overlying andesite.

The causative body of Anomaly 9 a is thought to be a modestly mineralized grey chert horizon lying within the iron formation.

The causative body of Anomaly 10 is thought to be the southeastern contact zone between the iron formation and the underlying rhyolite breccia.

MAP AREA "E"

The causative body of Anomaly 11 is a banded jaspery iron formation containing numerous grey chert bands, with considerable disseminated pyrite.

The causative body of Anomaly 12 is a heavily pyritized grey chert containing up to 10 percent total sulphides.

It is recommended that the causative bodies of the twelve aforementioned anomalies be delineated by diamond drilling. It is also recommended that the iron formation be investigated by diamond drilling, in order to determine the tenor of iron present and thereby assess the economic significance of the iron range.

The total cost for Part II - Diamond Drill Program, is estimated to be $\$ 316,890.00$.

GENERAI.

IOCATTON

The Woman River property is located in northeastcontral Ontario within the Porcupinc Mining Division in the District of Sudbury in Heenan, Marion, Mallard and Benton Townships. The property lies about 120 miles northeast of sault Ste. Marie about midway betwoen the towns of Chapleau and Gogama. Provincial. Highway lol passes 25 miles to the northwest and Provincial Highway 1.44 linking Timmins and Gogama passes about 30 miles to the east. Access to the property at the present time is via chartered air service out of chapleau or Timmins. Private timber roads approach to within 2 miles of the property. (For index maps, see pages 2 through 4).

PROPERRY

The property consists of a group of five patented and seventy-four unpatented mining claims which encompass a total area of 3920 acres of 6.125 square miles. These claims are contiguous with two excepticas. The first is the claim block in Mallard rownship which is separated from the main block by a set of six unpatented mining claims (410615-410619, 4.10657) held by Noranda Minos Limited. The second exception is a set of two claims which were staked over ground previously held by Woman River Gold Mines Ltd. to the south of the main block. A breakdown of claims by township is as follows:

CLATM LOCATION SKETCH

	Claim	Date of patent or Recording	Area
Patented:	WS 8	Dec. 1, 1908	320 acres
	WS 9	Dec. 1. 1908	160 acres
	WS 10	Nov. 26, 1908	320 acres
	WSll	Dec. 1, 1908	80 acres
	WS 12	Dec. 1, 1908	80 acres
		Totai:	960 acres
Unpatented:	428776-428795	April 15, 1975	800 acres
	(20 claims)		
	429837	July 22, 1975	40 acres
	428957-56	April 15, 1975	80 acres
	(2 claims)		
	428963	April 15, 1975	40 acres
		Total:	960 acres

MARION TOWNSHIP

Unpatented: 428796-428810 April 15, $1975 \quad 600$ acres (15 claims)

BENTON TOWNSHIP

Unpatented: 428948-428955 April 15, $1975 \quad 320$ acres (8 claims) 428958-428962 April 15, $1975 \quad 200$ acres (5 claims) 428964-428965 April 15, $1975 \quad 80$ acres (2 claims)

Total: 600 acres

MALLARD TOWNSHIP

Unpatented: 428930-428947 April 15, $1975 \quad 720$ acres (18 claims) 429838-429839 July 22. $1975 \quad 80$ acres (2 claims)

Total: 800 acres

TOPOGRAPHY AND DRAINAGE
The area in which the property is located has a mean elevation of 1300 feet above sea level and is generally an area of very low rolief. Consequently large portions of the property are very poorly drained and are usually covered by extremely thick alder or cedar swamps making access very difficult and. in
a few cases impossible. Nevertheless, some topographic highs do occur on the property in the form of ridges underlain by iron formation. These ridges attain a maximum height of 280 feet above the local mean elevation, an example being the ridge in the central portion of the property in Heenan Township.

In some parts of the property, particularly in the south, there occurs an undulating topography of low relief caused by the presence of sandy knolls, the remnants of a glacial outwash plain.

The property lies north of the divide between the Great Lakes and Hudson's Bay watersheds and consequently all of the rivers flow in a northerly direction. The major link between the various portions of the property is the Woman River which roughly bisects it. This river is approximately 150 to 200 feet wide and in some places is suitable for landing a float plane.

The level of the river varies during the year and drops about 4 to 5 feet from break-up to the end of the summer season.

TRANSPORTATION

Railway lines pass to the east and to the south of the property, To the east is the CNR line which runs through Stackpool and passes within 23 miles of the property. Stackpool is approximately 150 miles by rail from the ore docks at Key Harbour on Georgian Bay. To the south is the main line of the CPR which runs through Bowden and passes within 20 miles of the property. Bowden is approximately 160 miles from Byng Inlet on Georgian Bay.

A rail line running from the property to the CNR line would traverse an area covered by ground moraine composed of silty to sandy till. This route would cross numerous rivers and ridges since it would run perpendicular to the regional glacial pattern. On the other hand, a rail line runing from the property to the CPR line would traverse an area covered by lacustrine deposits composed of varved or massive clay, silt, and fine sand. This route would run sub-parallel to eskers occurring in Esther and Edith Townships and would aiso pass end moraines composed of sand, gravel and boulders in Edith Township. The right-of-way would run sub-parallel to many of the rivers in the area and would also run sub-parallel to the regional glacial pattern. This route would cross the divide between the Hudson Bay and Great Lakes watersheds near Bowden.

All factors taken into consideration it would seem that the route via Bowden on the CPR line would prove to be the most advantageous of the two barring unforeseen difficulties.

HISTORY

The earliest recorded documents show that the property was examined in 1906 by F.J. Katz and subsequently staked by a syndicate including such well known mining men as C.K. Leith and C.R. Van Hise of Madison, Wisconsin. During the latter part of the 1906 season and the entire 1907 season this group, under the field management of R.C. Allen, undertook an extensive evaluation of the Woman River iron range with respect to the iron ores. This evaluation incorporated reconnaissance dip-needle surveys, and regional and detailed geological mapping conducted in conjunction with surface trenching. During the 1907 season, 9344.2 feet of trenching and pitting was completed with the majority of the work being confined to mineral claims ws 7, 8, and 9. The trenches were extensively sampled, and the samples were analysed for $F e, P$ and S. These results were published by A.M. Goodwin in Geological Report No. 38 entitled Geology of Heenan and Marion Townships and the Northern Part of Genoa Township by the Ontario Department of Mines. Original comments by R.C. Allen are presented in the eighteenth annual report of the Ontario Bureau of Mines 1.909 volume XVIII, Part 1, an excerpt from which reads as follows:
"Iron Ores: Locally, particularly in claims WS 11 and

12, iron ores occur. On these claims the ore is low grade, running as high as 43 per cent iron and, as shown by an average of 16 analyses, carrying a phosphorous content of . 018. On claim WS 8, the most highly ferruginous areas coincide with those that are abundantly amphibole-bearing. Samples from these areas show an iron content varying up to 43 per cent, with an average phosphorous content of .0127. A small amount of sulphur is present as pyrite. An average of 8 determinations gave 1.184 per cent, but these samples were selected for analysis because of their relatively high sulphur content, which makes it certain that the figure stated is higher than the general average." In 1908, encouraged by the initial work undertaken by the Leith-Van Hise syndicate, W.E. Smith of Sudbury staked 23 mineral claims covering the northeastern extension of the iron formation into Marion and Genoa townships. In 1910, about 4000 feet of diamond drilling was completed on this portion of the iron formation in the search for iron. During this drill program a little sphalerite, galera and chalcopyrite was intersected lying within the banded iron formation. Two years later a test pit was sunk to a depth of 8 feet on the best lead-zinc showing, at which depth a vein of almost solid galena, assaying 73.44 per cent lead and 6.01 per cent zinc, was encountered. The vein at the surface was 18 inches wide at the east side of the shaft and 6 inches wide at the west side. In the bottom of the shaft, the vein is 36 inches wide at the east side. Fifty feet east of
the test pit there is an irregular band of sphalerite, galena and chalcopyrite in the iron formation, and another irregular band of stringers, 25 feet north of this point, in the same formation. This occurrence is described in greater detail in a paper by E. S. Moore, A Lead and Zinc Deposit in Keewatin Iron Formation, Trans. Can. Inst. Min. and Met., Montreal meeting March 1926. Despite considerable work done at that time, no continuity could be established to the vein.

During the late 20's and 30^{\prime} s the iron range received little if any attention except for isolated reports of gold occurrences lying within the iron formation. One such occurrence is located just east of Claim Lake and was examined by the well-known Canadian prospector Bob Campbell during the early $30^{\prime} \mathrm{s}$.

In 1946, the Fummerton Mining and Development Co. Ltd. staked a 16 claim block lying immediately snuth and west of claim Lake in an attempt to trace the strike length extension of the gold occurrence previously mapped east of claim Lake. During the summer of 1946 a detailed geological and magnetometer survey was completed with recommendation for a more intensive examination of the property; however, no additional work was undertaken on the property.

In 1950, renewed interest in the Genoa Township
lead-zinc occurrence was expressed by central Sudbury Lead-Zinc Mines I,imited who carried out an extensive diamond drill program in the vicinity of the original high-grade discovery completing

23 holes for a total of 5,000 feet. Values of up to 5.6 per cent Pb and 12.56 per cent Zn over a core length of 8.8 feet were intersected during the course of the diamond drilling. A more complete tabulation of the diamond drill results are presented by A.M. Goodwin in Geological Report no. 38 by the Ontario Department of Mines.

During the 1950's little attention was being paid to the western end of the iron range in Heenan Township; all of the exploration activity was being concentrated on that portion of the iron range lying east of the Woman River. The main reason for this was that a good percentage of the original Leith-Van Hise syndicate ground was still held by Madison Mining Trustees under the old 1908 land patent.

In 1957 and 1958 Stackpool Mining Company Limited undertook an extensive diamond drill program consisting of 50 holes on that portion of the iron formation lying immediately east of the ground presently held by United states steel International Limited. According to A. M. Goodwin, nine of the holes contained lead, zinc and copper mineralization one of which returned an li-foot core-section running 1.55 percent $\mathrm{Cu}, 3.30$ percent Zn and 0.44 ounces Au per ton.

In 1959, W. G. Wahl Limited acquired the rights to a portion of the old Leitir-Van Hise ground, patented claims WS 8 through WS 12, from Madison Mining Trustee.

In January 1967, w. G. Wahl Limited staked the
remaining portion of the iron range lying west of Woman River. During the 1967 summer season, W. G. Wahl Limited conducted a detailed vertical field magnetometer survey over the original 5 patented claims as well as the newly acquired ground to the north. In conjunction with the ground magnetics, several test pits were established in the iron formation to provide "bulk material" for metallurgical testing. The results of the limited test work showed that an acceptable concentrate can be made with the -325 mesh material. The complete metallurgical data is appended.

In the late 1960's U. S. Smelting, Mining and Refining
co. Ltd. carried out an airborne electromagnetic survey over the entire iron range utilizing the Mark V INPUT system. Geochemical, geological, electromagnetic and magnetic surveys were subsequently carried out on mineral claim ws 8 without the prior knowledge or consent of W. G. Wahl Limited. As a result, all of the data with the exception of the airborne data was not made available to W. G. Wahl Limited.

In 1973, Falconbridge Nickel Mines Limited conducted a detailed vertical field magnetometer survey over that portion of the iron range lying east of claim Lake.

REGIONAL GEOLOGY

The property is underlain by rocks of Archean age consisting of acid to intermediate volcanic rocks, banded iron formation and basic volcanic rocks which have been intruded by acidic and basic rocks. These rocks are folded into an anticlinal
structure whose axial plane strikes and plunges steeply to the west-southwest and dips steeply to the north-northwest. Numerous transverse faults transect the area.

The acid to intermediate rock unit consists of rhyolite, dacite and trachyte pyroclastic rocks and flows. Rocks of a rhyolitic composition predominate. These exhibit great heterogeneity in composition and rock type indicating a complex effusive history. The presence of a large wedge of relatively coarse grained acid breccia immediately underlying the iron formation in Heenan Township tends to indicate the proximity of a volcanic centre.

The Woman River Iron Formation is composed of interbanded chert, jasper, and siliceous magnetite with siderite and pyritic chert occurring locally. The iron formation, where completely developed, exhibits a transition from iron rich units at the base of chert rich-iron poor units at the top of the formation.

Intermediate volcanic rocks overlie the iron formation. Within this unit individual flows are massive, pillowed, or brecciated and serve as stratigraphic marker horizons. The pillow structure of these flows has been distorted locally in conformity with the regional shearing in the area.

The detailcd geological, geophysical and geochemical data mapped over the claims are presented in the following section
of this report. For ease of presentation only, the claims have been divided into five map areas lettered clockwise from the southeastern claims as shown on the following sketch.

MAP AREA "A"

Map Area "A" pertains to that portion of Mallard Township covered by the following 15 mineral claims:

$$
\text { P } 428933-428947 \text { inclusive }
$$

RECONNAISSANCE PROGRAM

The reconnaissance program consisted of the establishment of a grid system over the entire map area followed by an electromagnetic VLF survey.

The grid system, comprising of 57,800 feet (17,617.44 meters), was established by W. G. Wahl Limited during the period from June 22 through June 25 utilizing the Topofil continuous chain method. The baseline was oriented east-west with grid lines trending due south at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was conducted by R. Bylo, B.A.Sc., G.E.I.T. during the period from June 23 to July 27, 1975 following the format outlined in Appendix I. A total of 1156 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 100.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT tapes.

ANOMALY 1

Anomaly 1 is centrally located within the survey area and was mapped striking $N 40^{\circ} \mathrm{W}$ exhibiting an inferred strike length of 2400 feet (730 meters). This bedrock conductor was selected for detailed investigation and will be discussed in the following section of the report.

ANOMALY 2

Anomaly 2 is located in the south central portion of the survey area and lies roughly parallel to and 600 feet (182 meters) southwest of Anomaly l. This conductor exhibits a strike length of approximately 5000 feet (l524 meters); a portion of which has been selected for detailed investigation and will be discussed in the following section of the report.

DETAIIED PROGRAM

The detailed program consisted of the establishment of a grid system normal to the strike of the anomalous zones as defined by the reconnaissance survey, followed by a comprehensive field examination. This comprehensive field examinution consisted of a geological survey, an electromagnetic survey with Fraser Filtration Plots and a total magnetic field gradient study. In an attempt to further define the causative body of the anomalous zone, whole rock and soil geochemical samples were collected.

The detailed grid system comprising of 12,200 feet (3718 meters) was established by W. G. Wahl Limited during the
period from July 9 to July 10, 1975. The baseline was oriented $\mathrm{N} 45^{\circ} \mathrm{W}$, from a point 1600 feet (480 meters) south along the claim line from the number 1 post of claim 428941, with grid lines trending northeast-southwest at 400 foot (120 meter) intervals along the baseline. One hundred foot stations were established on all lines of the detail grid. Stations were occupied on 50 foot intervals and critical points on 25 foot intervals.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 12, 1975.

The geology as published by the ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Less than 3 percent of the area covered by the detailed grid was outcrop, the remaining $\subseteq 7$ percent could be broken down as follows: 40 percent alder-cedar swamp and 57 percent various degrees of open bush. Despite the poor geologic control, two distinct rock units were mapped and their locations are shown on drawing lol.

The northeastern third of the detailed grid is mapped as highly schistose rhyolite lapilli tuff. A good exposure of this rock unit was mapped on line 480 m E at station 90 m . This particular exposure is extremely good, exhibiting a pronounced bedding of $S 45^{\circ} \mathrm{E}$ which is parallel to the regional schistosity. The dip of the beds appears to be near vertical. Numerous
rhyolitic fragments, up to 15 mm long, lying parallel to the bedding were also noted. The matrix is extremely fine grained and the rock unit as a whole has undergone considerable sericitization.

The southwestern two-thirds of the detailed grid is mapped as an intermediate tuff. Several good exposures of this rock unit were mapped during the course of the survey. The exposure mapped on line 480 m E at station 60 m N is noteworthy because of its close proximity to the rhyolite tuff exposure previously discussed at station 90 m N. This intermediate tuff is thought to be an ash of dacitic composition. The fragments are less than 4 mm in diameter and have a preferred bedding of S45 ${ }^{\circ}$ E exhibiting a near vertical dip. The rock unit as a whole has undergone considerable chloritization and kaolinization.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.SC., G.E.I.T. on July 11, 1975 following the format outlined in Appendix I. Two hundred and forty-four stations were occupied during the course of the survey taking a total of 488 readings. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 102.

The detailed electromagnetic survey further defined the anomalous zones mapped during the reconnaissance survey.

Anomaly 1

This conductor lies roughly parallel to and 100 feet (30 meters) north of the baseline and is characterized by a sharp dip reversal of up to 40 degrees $(+20$ to -20$)$ over 150 feet associated with a relative field strength of up to 240 percent. This figure represents a value of 150 percent above the local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be between 60 and 70 feet wide.

In order to fully assess the inphase dip angle response, these data were reduced by means of the Fraser Filtration Method thereby minimizing the background noise and the topographic effect. A complete discussion of the Fraser Filtration Method is appended in Appendix II. The reduced dip angle data, presented on drawing no. 103, indicates a definite termination of the anomaly on line 0 , with moderate to strong conductivity recorded on lines $120 \mathrm{mE}, 240 \mathrm{~m} \mathrm{E}, 360 \mathrm{~m} \mathrm{E}$, 480 m E and 600 m E . The reconnaissance survey shows that the anomaly pinches at 400 feet (120 meters) southeast of line 600 m E.

Anomaly 2

This conductor lies roughly parallel to and 800 feet (240 meters) south of the baseline and is characterized by a sharp dip reversal of up to 54 degrees (+36 to -18) over 200 feet associated with a relative field strength of up to 260
percent which represents a value of 170 percent above the local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be between 50 and 60 feet wide.

The Fraser reduced inphase dip angle data, presented on drawing no. 103, showed moderate thickening and increased conductivity towards the southeast end of the anomaly.

TOTAL MAGNETIC FIELD GRADIENT STUDY

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July ll, 1975 following the format outlined in Appendix III. A total of 138 stations were occupied during the course of the survey with 276 readings being recorded. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing no. 104 as corrected station values and as a contoured interpretation of these data.

The rhyolite lapilli tuff, previously discussed, has a relatively low uniform magnetic relief in the range of 750 gammas. This figure represents an absolute value above a 59,000 gamma local background.

The dacite tuff occupying the southwestern two-thirds of the survey area is characterized by a moderately low background magnetic relief in the range of 850 gammas. However, the uniform magnetic relicf mapped over the rhyolite tuff is not present over the dacite tuff. Lying within the dacite tuff
are irregular, somewhat lenticular magnetic features in the range of 1000 to 6000 gammas above the local background, which are thought to represent individual tuff horizons containing a higher tenor of magnetite. There also appears to be a definite zoning within the dacite tuff horizon as the contact with the rhyolite is approached exhibiting a pronounced drop-off in magnetic susceptibility as soon as the rhyolite tuff horizon is encountered.

Anomaly 1 , as defined by the electromagnetic survey, lies coincident to a zone of irregular magnetic relief in the range of 62,691 gammas which represents an above background magnetic relief of 3691 gammas. The horizontal and vertical magnetic gradients defined similar width and depth parameters to those defined by the electromagnetic response.

Anomaly 2, as defined by the elfatromagnetic survey, is associated with a zone of moderately high magnetic relief in the range of 60,431 gammas which represents a $450-500$ gamma above background anomaly. The horizontal and vertical magnetic gradients delineate a zone of up to 90 feet wide.

GEOCHEMICAL INVESTIGATION

In an attempt to further define the causative bodies of the conductive zones, whole rock and soil geochemical samples were taken over these zones.

Anomaly 1 is located in a region of well drained relief within a well established regional drainage pattern which flows to the north. The vegetation in the vicinity of this anomaly is extremely sparce consisting of scrub secondary growth and isolated irregular stands of black spruce. The area appears to have been burned over quite recently but there is no supporting evidence for a fire. The area is clean of any dead falls, there are no charred remains of tree stumps and the soil shows no sign of having been scorched.

A total of 27 soil samples and 7 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV along with a description of the sample preparation and analytical procedures used. The geochemical sample locations are presented on drawing no. 101. The soil samples consisted of approximately 8 ounces of that material designated as the B-horizon or that material immediately underlying the humus fraction. The rock samples consisted of random chip samples taken from any rock exposure in the vicinity of a station lovation. In the area of Anomaly 1 , the B-horizon was encountered approximately 4 to 6 inches below the surface, with the sample being taken at an average depth of 8 inches. In the area of Anomaly 2, the B-horizon was encountered at a depth of 10 inches.

Generally speaking the geochemical results were not as significant as one would have hoped due to the depth of the
overburden and the sandy nature of the soil; however, several noticeable trends were established in relation to both the conductors.

In the case of Anomaly l, moderately high zinc values in the soil bear a direct relationship to the conductor axis. These values are in excess of 20 ppm Zn up to a maximum of 35.9 ppm as returned in sample number 312 located on line 480 m E at station 60 m . The regional background for zinc is in the range of 15 ppm . The remaining base metals, Cu and Pb , are not as definitive. The rock geochemical values; however, are extremely anomalous, especially in zinc. Three rock geochemical samples were taken on line 480 m E in the vicinity of the conductor axis, the results of which are tabulated below:

No.	Location	Rock Type	$\frac{\mathrm{Cu}}{\mathrm{ppm}}$	$\frac{\mathrm{pb}}{\mathrm{ppm}}$	$\frac{\mathrm{Zn}}{\mathrm{ppm}}$
$316-\mathrm{R}$	L480mE/90mN	rhyolite tuff	34.6	2	162
$314-\mathrm{R}$	L480mE/75mN	dacite tuff	104.0	<2	226
$313-\mathrm{R}$	L480mE/60mN	dacite tuff	44.3	6	729
	L480mE/45mN	conductor axis			

It can be seen that as the conductor is approached the zinc values climb from 162 ppm at station 90 m to 729 ppm at station 60 m N which is only 15 meters north of the conductor axis. A slight increase is also noted in the lead values as the conductor axis is approached. The copper values are
inconclusive, but they could represent a slight migration of the metal away from the conductor axis.

Rock sample number $333-\mathrm{R}$ was taken on line 120 m E at the baseline. This sample is located 100 feet (30 meters) south of the conductor axis and returned values of 65.1 ppm copper, $<2 \mathrm{ppm}$ lead and 295 ppm zinc. As was the case in samples discussed above, the copper and lead values do not appear to be as definitive as the zinc value.

At Anomaly 2, only limited inconclusive information could be obtained because of the extremely swampy conditions that exist in the southwestern portion of the property. However, two rock samples were taken for analysis which were in close proximity to the conductor axis.

No.	Location	Rock Type	Cu	Pb	Zn
			ppm	ppm	ppm
303	L $600 \mathrm{mE} / 235 \mathrm{mS}$	dacite tuff	244	<2	237
306	L $600 \mathrm{mE} / 260 \mathrm{~ms}$	dacite tuff	201	<2	219

The conductor axis was mapped on line 600 mE at station 240 m . It can be seen that there is an apparent increase in both the zinc and copper values as the conductor axis is approached. The lead values do not show any definitive results.

The two anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

The causative body of Anomaly 1 is thought to be a zone of sulphide mineralization associated with the contact between the highly chloritic dacite tuff mapped to the south and the sericitic rhyolite lapilli tuff mapped to the north. This conductive zone, striking $S 45^{\circ} \mathrm{E}$ is estimated to be up to 70 feet (2l meters) wide and up to 1600 feet (487 meters) long exhibiting a near vertical dip. The total magnetic field gradient study indicates a slight increase in the magnetic susceptibility as the contact is approached. This is thought to be a reflection of an increase in the tenor of magnetite as the contact is approached. The anomalous geochemical results associated with the conductor lends supporting evidence for the existence of base metal sulphides within the mineralized zone.

The causative body of Anomaly 2 is thought to be a zone of disseminated sulphide mineralization associated with a dacitc tuff horizon. This conductive zone, striking approximately $S 45^{\circ} \mathrm{E}$, is estimated to be up to 60 feet (18 meters) wide and lp to 5000 feet (1524) meters) long exhibiting a near vertical dip. The total magnetic field gradient study indicates a slight difference in the magnetic susceptibility along strike
which is thought to reflect a difference in the tenor of magnetite within the zone along strike. The anomalous rock geochemical results associated with the conductor indicate the existence of base metal sulphides within the mineralized zone.

RECOMMENDATION
It is recommended that Anomaly 1 and Anomaly 2 be investigated by diamond drilling as shown on the following drill sections.

MAILARD TOWNSHIP
 ANOMALY NO. 1

MALLARD TOWNSHIP
 ANOMALY NO. 1


```
MALLARD TOWNSHIP
ANOMALY NO. 2
```


$$
\begin{aligned}
& \therefore \\
& M A P A R E A \quad " B "
\end{aligned}
$$

MAP AREA "B"

Map Area B adjoins Map Area A to the west and pertains to that portion of Mallard, Benton and Heenan townships covered by the following 2 mineral claims:

Mallard	P	$428930-428932$	inclusive
Benton	P	$428948-428955$	
	P	$428958-428962$	inclusive
	P	$428964-428965$	
	P	$428956-428957$	inclusive

RECONNAISSANCE PROGRAM
A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system, comprising of 90,840 feet (27,688 meters) was established by W. G. Wahl Limited during the period from June 26 through July 3 utilizing the Topofil continuous chain method. The baseline was oriented east-west with grid lines trending north-south at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was conducted by R. Bylo, B.A.SC. and D. G. Wahl, p.Eng. during the period from July 3 to July 41975 following the format outlined in Appendix I. A total of 1816 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 105.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zone identified on the airborne INPUT tapes.

ANOMALY 3

Anomaly 3 is centrally located within the survey area and was mapped striking $N 58^{\circ} \mathrm{W}$ exhibiting an inferred strike length of 1000 feet (304 meters) before the anomaly trends on to ground held by Noranda. The Noranda ground consists of a 6 claim block occupying the east central portion of the map area. A portion of the anomaly was selected for detailed investigation and will be discussed in the following section of the report.

ANOMALY. 4

Anomaly 4 represents a one line anomaly located approximately 1000 feet (304 meters) west of Anomaly 3. This conductor exhibits a limited strike length of approximately 800 feet (243 meters), a portion of which has been selected for detailed investigation and will be discussed in the following section of the report.

ANOMALY 5

Anomaly 5 is located in the west central portion of the survey area and lies sub-parallel to and 3000 feet (914 meters) northwest of Anomaly 3. This conductor exhibits a strike length of approximately 4000 feet (1219 meters) and is
thought to be caused by a flat lying clay deposit.

DETAILED PROGRAM

A detailed examination of Anomalies 3 and 4 was undertaken in exactly the same manner as that outlined for Map Area A.

The detailed grid system, comprising of 5500 feet (1676 meters) including the baseline, was established by W. G. Wahl Limited during the period from July 11 to July 12 , 1975. The baseline was oriented $\mathrm{N} 65^{\circ} \mathrm{W}$ from a point 1200 feet (365 meters) south along the claim line from the number 1 post of claim 428951, with grid lines trending northeast-southwest at 400 feet (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the detailed grid.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 131975.

The geology as published by the ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping

Less than 5 percent of the area covered by the detailed grid was outcrop with the romaining 95 percent divided equally between alder-willow swamps and dense stands of balsam and spruce.

Two distinct rock units were mapped during the course of the geological investigation and are shown on drawing no. 106. Almost the entire grid area is mapped as an intermediate tuff with a quartz feldspar porphyry occurrence mapped on the northeastern extension of line 116 m E .

The intermediate tuff, thought to be andesitic in composition, is characterized by a visual absence of quartz and a predominance of feldspar. The rock texture of this unit varies from fine-grained to aphanitic. The major alteration noted was chloritization, which appears to be uniform throughout the map area

The quartz feldspar porphyry occurrence mapped on line 116 m E at station 90 m N is characterized by a pale grey appearance on the weathered surface, exhibiting many phenocrysts of quartz, plagioclase and orthoclase in a fine-grained matrix of similar composition. This rock unit is thought to be an intercalated acidic flow lying within the andesite tuff horizon.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.SC., G.E.I.T. on July 13, 1975 following the format outlined in Appendix I. A total of 76 stations were occupied during the course of the survey with a total of 152 readings being recorded. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 107. The detailed electromagnetic survey further defined
selected anomalous zones mapped during the reconnaissance survey.

Anomaly 3

This conductor lies sub-parallel to and 100 feet (30 meters) south of the baseline no. 1 and is characterized on line 236 m E by a sharp dip reversal of 44 degrees (+26 to -18) over 200 feet (60 meters) associated with a relative field strength of 260 percent. This figure represents a value of 160 percent above the local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be between 50 and 60 feet wide.

As was the case in Map Area A, the inphase dip angle data were reduced by means of the Fraser Filtration Method. The reduced dip angle data presented on drawing no. 107 indicate. an apparent increase in the conductivity towards line 360 mE and the eastern boundary with Noranda.

Anomaly 4

This conductor lies roughly parallel to and 50 feet (15 meters) north of baseline no. 2 and is characterized on line 120 m W by a sharp dip reversal of 42 degrees $(+29$ to -13$)$ over 150 feet associated with a relative field strength of 240 percent. This figure represents a value of 140 percent above the local background. The electromagnetic data defined a steeply dipping conductive sheet estimated to be up to 75 feet (22 meters) wide.

The Fraser reduced inphase dip angle data, presented on drawing 107, indicates a relatively short strike length of approximately 600 feet (180 meters).

TOTAI MAGNETIC FIELD GRADIENT STUDY

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July 13, 1975 following the format outlined in Appendix III. A total of 58 stations were occupied during the course of the survey with 116 readings being recorded. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing no. 106 as corrected station values and as a contoured interpretation of these data.

The andesite tuff, previously discussed, is characterized by a moderately low magnetic relief in the range of 900 gammas. This figure represents an absolute value above a 59,000 gamma local background. Associated with this area of low magnetic relief are narrow lenticular magnetic expressions of up to 4000 gammas above local background which are thought to represent individual tuff horizons containing a higher tenor of magnetite.

The intercalated acidic flow mapped on line 116 mE is characterized by low uniform background magneiic relief in the range of 750 gammas. This particular rock unit was not traversed in enough detail to determine if any zoning exists within the flow.

Anomaly 3, as defined by the electromagnetic survey, lies on the southern flank of a zone of irregular magnetic relief in the range of 63,013 gammas which represents an above background magnetic relief of 4013 gammas. On line 236 m E this anomaly lies coincident with an isolated zone of moderately high magnetic relief of 1963 gammas. At this location the horizontal and vertical gradients of the total magnetic field have defined the zone to be up to 75 feet wide.

Anomaly 4, as defined by the electromagnetic survey, is on the southern flank of a zone of moderately high magnetic relief in the range of 61,117 gammas which represents an above background magnetic relief of 2117 gammas. On line 120 m w at station 30 m N the conductor appears to be associated with a zone of extremely low magnetic relief exhibiting total magnetic field intensity of only 2 gammas above the local background of 59,000 gammas. This extremely low relief is thought to be a reflection of a strong magnetic dipole in the vicinity of station 30 m N .

GEOCHEMICAL INVESTIGATION

Whole rock and soil geochemical samples were taken over the conductive zones in an attempt to further define the causative bodies of these zones.

Anomaly 3 is located in a region of moderately well drained relief within a well established regional drainage
pattern which flows to the southeast. The vegetation in the vicinity of this anomaly is extremely varied consisting of dense stands of black spruce and balsam to alder-willow swamps.

A total of 39 soil samples and 11 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the sample preparation and analytical procedures used. The geochemical sample locations are presented on drawing no. 106.

The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. In the area of Anomaly 3, the B-horizon was encountered approximately 6 to 8 inches below the surface with the sample being taken at an average depth of 10 inches. In the vicinity of Anomaly 4 the B-horizon was never ancountered due to the extremely swampy conditions.

As was found to be the case in Map Area A, the soil geochemical results were not as significant as one would have hoped. The whole rock geochemical results on the other hand are significant and several noticeable trends were established in relation to both conductors.

In the case of Anomaly 3, five rock geochemical samples were taken on line 116 m E in the vicinity of the conductor axis, the results of which are tabulated below:

No.	Location	Rock Type	Cu	$\underline{\mathrm{Pb}}$	$\underline{\mathrm{Zn}}$	Ni
			ppm	ppm	ppm	ppm
273-R	Lll $6 \mathrm{mE} / 60 \mathrm{mN}$	acid flow	150	24	172	19
269-R	Lll6me/B.L.	andesite tuff	190	<2	208	45
275-R	Lll $6 \mathrm{mE} / 30 \mathrm{~ms}$	andesite tuff	161	6	303	46
	L116mE/35ms	conductor axis				
278-R	Lll $6 \mathrm{mE} / 60 \mathrm{~ms}$	andesite tuff	165	4	228	98
280-R	$\mathrm{L} 116 \mathrm{mE} / 90 \mathrm{~ms}$	andesite tuff	177	<2	154	32

It will be noted that with the exception of sample 273-R, all of the samples were taken within the same rock unit and these samples represent a traverse normal to the strike of the bedding. As the conductor is approached from the north, the zinc data shows an increase from 172 ppm at station 60 m N to 303 ppm at station 30 m . The conductor axis is located at station 35 m S from which point the data shows a decrease from the anomalous value recorded just north of the conductor axis, to 154 ppm at station 90 m . This anomalous asymmetrical relationship also exists for both the lead and nickel values. The copper geochemical values exhibit a similar profile but in a negative sense. That is to say, the copper values show a gradual decrease from 190 ppm obtained at the baseline to a low of 15 p pm at station 30 m s located 5 meters north of the conductor axis. Once the conductor axis is crossed, the copper values show a gradual increase to 177 ppm obtained at station

90 m S. This depressed copper relationship is not unique to Anomaly 3 but has been well documented* at the Brunswick No. 12 massive $\mathrm{Pb}-\mathrm{Zn}$ deposit of the Bathurst Camp. At this deposit the hanging wall basic volcanics are noticeably deficient in copper immediately overlying the ore zone. This same relationship also exists in the $\mathrm{Cu}-\mathrm{Zn}$ deposits of Cyprus.

In the case of Anomaly 4, only limited inconclusive information could be obtained because of the extremely swampy conditions which exist in the area. one sample, 255-R, taken on line 120 W at the baseline was either lost in transit or lost at the research laboratory as no record of that sample can be found once it left the field camp. The following three samples however, were taken from what is thought to be the overlying tuiif horizon.

No.	Locatiun	Rock Type	$\frac{\mathrm{Cu}}{\mathrm{ppm}}$	$\frac{\mathrm{Pb}}{\mathrm{ppm}}$	$\frac{\mathrm{Zn}}{\mathrm{ppm}}$
$247-\mathrm{R}$	L2 $240 \mathrm{~mW} / 60 \mathrm{mN}$	andesite tuff	229	6	260
$258-\mathrm{R}$	L1 $20 \mathrm{~mW} / 60 \mathrm{mN}$	andesite tuff	258	32	289
$262-R$	LO/30mN	andesite tuff	229	6	279

> These data show the strong continuity of the base metal values within a particular tuff horizon. The copper and zinc values only vary 29 ppm along a strike length of 800 feet.

* Wahl, J.I. et al. Anomalous element distribution in rocks around Key Anacon, Heath Steele B-Zone, and Brunswick No. 12 Sulphide Deposits. C.I.M. Annual Meeting, 1975.

It seems more than fortuitous that sample no. $258-\mathrm{R}$, exhibiting the most anomalous conditions of the three samples was obtained just north of the most favourable electromagnetic response recorded over Anomaly 4.

CONCLUSION

The two anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

The causative body of Anomaly 3 is thought to be a zone of sulphide mineralization associated with a chloritic andesite tuff. This conductive zone, striking $N 58^{\circ} \mathrm{W}$ is estimated to be up to 60 feet (18 meters) wide and in excess of 1000 feet (304 meters) long exhibiting a near vertical dip before the anomaly was traced into ground held by Noranda. Noranda's field crews also mapped this conductor using a large vertical loop electromagnetic survey unit. In general, the total magnetic field gradient study indicates a flanking relationship relative to the conductor axis, except on line 236 m E where a direct magnetic correlation was observed. The anomalous geochemical results associated with the conductor lends supporting evidence for the existence of base metal sulphides within the mineralized zones.

The causative body of Anomaly 4 is thought to be a zone
of sulphide mineralization associated with a chloritic andesite tuff. This conductive zone, striking $N 58^{\circ} \mathrm{W}$, is estimated to be up to 75 feet (22 meters) wide and of limited strike length exhibiting a near vertical dip. The total magnetic field study indicates a northerly flanking magnetic relationship relative to the conductor. The anomalous rock geochemical results associated with the related tuff horizon indicate the probable existence of base metal sulphides within the mineralized zone.

RECOMMENDATION
It is recommended that Anomaly 3 and Anomaly 4 be investigated by diamond drilling as shown on the following drill sections.

ANOMALY NO. 4

MAP AREA "C"

Map Area C adjoins, and lies immediately north of Map Area B and pertains to that portion of Heenan Township covered by the following 5 patented claims and 7 unpatented mineral claims.

Heenan	WS 8-WS 12	inclusive
	$428780-428782$	inclusive
	$428776-428779$	inclusive

RECONNAISSANCE PROGRAM

A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system, comprising of 55,800 feet (17,000 meters) was established by W. G. Wahl Limited during the period from June 8 through June 16 utilizing the old U.S. Smelting, Refining and Mining Company lines and the Topofil continuous chain method. The U.S. Smelting : aseline was established at a slight angle to the Ontario Department of Mines baseline established by A. M. Goodwin in 1961. The grid lines were established at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was initiated by R. Bylo, B.A.Sc. during the period from June 9 through June 12 and completed during the period from June 17 through June 191975 following the format outlined in Appendix I. A total of 928
stations were occupied during the course of the survey. The electromagnetic data is presented on drawing 108.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT tapes.

ANOMALY 6

Anomaly 6 is located immediately northwest of canoe Lake and was mapped striking $N 45^{\circ} \mathrm{W}$ with an inferred strike length of 1600 feet (490 meters). This anomaly is thought to be the northwestern extension of Anomaly 5 previously discussed in Map Area B.

ANOMALY 7

Anomaly 7 lies sub-parallel to and approximately 100 feet (30 meters) southeast of the baseline and was mapped on lines 20 S and 24 S . This conductor exhibits a strike length of 1200 feet (360 meters) a portion of which has been selected for detailed investigation and will be discussed in a later section of the report.

ANOMALY 8

Anomaly 8 was mapped on lines W.G.W. 92 S and W.G.W. 96 S lying sub-parallel to and 2500 feet (760 meters) southeast of the baseline. This conductor exhibits a strike length of 1000 feet (300 meters) a portion of which has been selected for
detailed investigation.

DETAILED PROGRAM
A detailed examination of Anomalies 7 and 8 was undertaken in exactly the same manner as that outlined for Map Area A. However, to facilitate coverage of these anomalies, two detailed grids were established. The Ridge Back Grid is centrally located within the map area and details Anomaly 7. The Foothill Grid is located in the northeast corner of the map area and details Anomaly 8.

RIDGE BACK GRID

The Ridge Back Grid consists of two detailed profiles established normal to the strike of Anomaly 7 utilizing reconnaissance lines 20 S and 24 S . One hundred foot (30 meter) stations were established on the detail profiles with readings being observed at 50 foot (15 meter) intervals.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 7, 1975.

The geology as published by the ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Approximately 10 percent of the area covered by the detailed profiles is outcrop, the remaining 90 percent consists
of open stands of jack pine and spruce. Three distinct rock units were mapped during the geological investigation, the locations of which are shown on drawings 110 and 102.

The northern extensions of the detailed profiles are mapped as massive intermediate lavas of andesitic composition. The rock unit ranges from a fine-grained, less than 1 mm particle size, to a somewhat massive unit exhibiting an aphanitic texture. The main mineral constituent is greenish hornblende, with actinolite, chlorite, some epidote and carbonate, and small quantities of plagioclase feldspar, and quartz.

The central portion of the profiles are mapped as banded iron formation. The iron formation, where it is completely developed, displays an upward transition from siliceous magnetitesiderite phase at the base, through jaspery chert and grey-banded chert, to light-gr?y, banded chert with negligible iron content at the top. The jasper zone consists of red hematitic chert bands, up to l inch thick, alternating with grey to black interbands, one-quarter to one-half inch thick composed of chert with more or less disseminated magnetite and hematite. The jasper zone grades into and contains zones of dark-grey, banded chert in which grey chert layers, up to two inches thick, alternate either with dark-grey to black, magnetite-rich cherty layers, one-quarter to one-half inch thick, or with thin, magnetite-rich parting seams. The grey chert bands locally contain considerable
disseminated pyrite. In general, Goodwin has estimated the iron content to be $30-40$ percent at the base of the formation and 5 - 10 percent at the top. The following table, after Goodwin, illustrates these relationships in descending stratigraphic sections.

Iron Formation, Underlying the Large Ridge in Claims WS $8 \& 9$ $\begin{array}{ll}\text { White to light-grey, banded chert } & 70-200 \text { feet } \\ \text { Dark-grey, banded chert with jasper zones } & 300-600 \\ \text { Dark-grey, banded chert with magnetite zones } \begin{array}{ll} & 100-600 \\ & 470-1400 \text { feet }\end{array}\end{array}$ The southeastern extension of the profiles are mapped as rhyolite breccia which is characterized on line 20 S at station 4 SE by numerous poorly sorted angular to sub-angular acid fragments, up to two inches in diameter, in a derse matrix of the same composition.

ELECTROMAGNETIC SURVEY

The electromagnetic data was recorded by R. Bylo, B.A.Sc. on July 7, 1975 following the format outlined in Appendix I. Thirty stations were occupied during the course of the survey with a total of 60 readings being observed. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawings 109 and 111.

The detailed electromagnetic survey further defined the anomalous zone mapped during the reconnaissance survey.

Anomaly 7

This conductor lies sub-parallel to and slightly southeast of the baseline and is characterized by a dip reversal of up to 37 degrees (+8 to -29) over 200 feet (60 meters) associated with a relative field strength of up to 150 percent. This figure represents a value of 40 percent above the local background. The electromagnetic data defined a steeply dipping, poorly conductive sheet estimated to be up to 100 feet (30 meters) wide. The Fraser reduced inphase dip angle data, presented on drawings 109 and 111, indicate a low uniform conductivity associated with this conductor.

TOTAL MAGNETIC FIELD GRADIENT STUDY

The total magnetic field study was not undertaken at this time because of the magnetic data available on file with W. G. Wahl Limited. This ground magnetic data*, presented on drawings 110 and 112 , was recorded at 50 foot (l5 meter) intervals on all lines of the established grid during the 1967 summer season, employing a Sharpe Fluxgate vertical fiuld magnetometer.

The intermediate volcanic rocks previously discussed are characterized by moderately low uniform magnetic relief in

[^0]the range of 59,000 gammas.

The banded iron formation is characterized by extremely high magnetic relief in the range of 80,000 gammas with localized magnetic intensities in excess of 100,000 gammas.

The rhyolite breccia mapped on the southeastern extensions of the profile lines is characterized by an average magnetic intensity of 6,000 gammas. This figure represents an absolute value above a 59,000 gamma background.

Anomaly 7, as previously defined by the electromagnetic survey, lies on the north flank of a zone of extremely high magnetic relief in the range of 80,000 gammas.

GEOCHEMICAL INVESTIGATION

Whcle rock and soil geochemical samples were taken over the conductive zone in an attempt to further define the causative body of the anomalous zone.

Anomaly 7 is located in a region of extremely well drained relief within a well defined drainage pattern. The vegetation in the vicinity of this anomaly consists of open stands of jack pine and black spruce.

A total of 16 soil samples and 6 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical samples are presented on drawings 110 and 112.

The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. The B-horizon was extremely shallow and was encountered approximately three inches below the surface with the samples being taken at an average depth of four inches.

The soil geochemical data maps low, below background base metal content in the soils above the iron formation and exhibits no apparent preferential zoning of metal sulphides within the iron formation.

The rock geochemical data confirms the results concluded from the soil geochemical results. The rock geochemical results also confirm the iron content-stratigraphic relationship examined by Goodwin as shown by the following results.

No.	Location	Rock Type	\% Fe
419	L20S/3S	iron formation banded chert with magnetite	38.8
416	L24S/1S	banded chert with jasper zones	22.3
426	L24S/lS	banded chert with jasper zones	16.4

It will be noted that sample 419, taken from the base of the iron formation, exhibits a higher iron content than either samples 416 or 426 , taken from different horizons higher up the stratigraphic sequence.

CONCLUSIONS

The anomalous, conductive zone identified during the reconnaissance survey was further defined during the course of the detailed program.

The causative body of Anomaly 7 is thought to be the contact zone between the white to light-grey, banded chert and the overlying andesite.

RECOMMENDATIONS

It is recommended that the iron formation be investigated by diamond drilling, as per the following sections, in order to determine the tenor of iron present and thereby assess the economic significance of the iron range.

FOOTHILL GRIת

The Foothill Grid comprising of 4600 feet (1400 meters) including the baseline was established by W. G. Wahl Limited on July 13, 1975. The baseline was oriented $N 67^{\circ} E$ from a point 2700 feet (820 meters) south along W.G.W. line 96 S, with grid lines trending $N 23^{\circ} \mathrm{W}$ at 400 foot (120 meter) intervals along the baseline. One hundred (30 meter) stations were established on all lines of the established grid.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 14, 1975.

The geology as published by the ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Approximately 10 percent of the total area covered by the detailed grid is outcrop, the remaining 90 percent can be broken down as follows: 70 percent open stands of black spruce and 20 percent alder-willow swamp.

All of the outcrop shown on drawing 113 is mapped as iron formation, which has been discussed at length in the preceding section of this report.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. on July 14,1975 following the format outlined in Appendix I.

Sixty-eight stations were occupied during the course of the survey taking a total of 136 readings. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing 113.

The detailed electromagnetic survey further defined the anomalous zones mapped during the reconnaissance survey.

Anomaly 8
This conductor lies roughly parallel to and 250 feet (75 meters) north of the baseline and is characterized on line

240 m E by a strong dip reversal of 56 degrees (+26 to -30) over 250 feet (75 meters) associated with a relative field strength of 310 percent. This figure represents a value of 110 percent above local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be up to 125 feet (45 meters) wide.

The Fraser reduced inphase dip angle data presented on drawing 113 indicates an abrupt termination of the conductivity on lines 0 and 480 me .

TOTAL MAGNETIC FIELD GRADIENT STUDY

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July 14, 1975 following the format outlined in Appendix III. A total of 68 stations were occupied during the course of the survey taking a total of 136 readings. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing 113 as corrected station values and as a contoured interpretation of these data.

The banded iron formation is characterized on line 240 m E by high magnetic relief in the range of 15,489 gammas which represents an absolute intensity above a 61,000 gamma background.

Anomaly 8 as previously defined, lies coincident to a zone of high magnetic relief in the range of 76,000 gammas.

The magnetic data also defined two major parallel fault zones striking $N 0^{\circ} \mathrm{W}$ transecting the detailed grid in a northwestsoutheasterly direction crossing the baseline at station 480 E and 120 E. These fault zones define the eastern and western extent of the iron formation and are characterized by regions of below background magnetic relief.

GEOCHEMICAL INVESTIGATION

Whole rock and soil geochemical samples were taken over the conductive zone in an attempt to further define the causative body of the anomalous zone.

Anomaly 8 is located in a region of extremely well drained relief within a well defined drainage pattern. The vegetation in the vicinity of this anomaly consists of open stands of black spruce, and balsam.

A total of 23 soil samples and 13 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical samples are presented on drawing no. 113. The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. The B-horizon was extremely shallow overlying the iron formation; however, on line 480 m E extremely swampy conditions made soil sampling impossible. The samples were taken from an average depth of five inches.

Geochemically similar results were obtained over the iron formation in both soils and rocks as were reported over the iron formation mapped and previously discussed on the Ridge Back Gria.

CONCLUSIONS

The anomalous, conductive zone identified during the reconnaissance survey was further defined during the course of the detailed program.

The causative body of Anomaly 8 is a thinly banded iron formation containing numerous grey chert bands, with considerable pyrrhotite and pyrite.

RECOMMENDATIONS
It is recommended that the iron formation be investigated by diamond drilling, as per the following səctions, in order to determine the tenor of iron present and thereby assess the economic significance of the iron range.

HEENAN TOWNSHIP
IRON FORMATION

MAP AREA "D"

Map Area D adjoins Map Area C to the south and Map Area E to the east and pertains to that portion of Heenan and Marion townships covered by the following 19 mineral claims:

Heenan	$428783-428795$	inclusive
	429837	
Marion	$428796-428800 \quad$ inclusive	

RECONNAISSANCE PROGRAM

A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system, comprising of 69,200 feet (21,092 meters)
was established by W. G. Wahl Limited during the period from May 29 through June 7. 1975 utilizing the old Falconbridge lines and the Topofil continuous chain method. The Ontario Department of Mines baseline, established by A. M. Goodwin in 1961, was located and refurbished. Grid lines were established normal to the baseline trending $S 47^{\circ} \mathrm{E}$ at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. during the period from May 30 to June 8, 1975 following the format outlined in Appendix I. A total of 1384 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 114.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT map.

ANOMALY 9

Anomaly 9 is located approximately 1000 feet south of claim Lake and was mapped striking due east, with an inferred strike length of 1000 feet (304 meters) before the anomaly trends off the property. A portion of this anomaly was selected for detailed investigation and will be discussed in the later section of the report.

ANOMALY 9a
Anomaly 9a lies sub-parallel to and approximately 250 feet (76 meters) south of Anomaly 9. This conductor exhibits a strike length of 2200 feet (670 meters) and is thought to be structurally related to Anomaly 9 and will be discussed in a later section of the report.

ANOMALY 10

Anomaly 10 is located approximately 1800 feet (548 meters) south of Claim Lake, and was mapped striking $N 45^{\circ} \mathrm{E}$ exhibiting a limited strike length of approximately 800 feet (243 metcrs). This anomaly has been selected for detailed investigation and will be discussed in a later section of the report.

ANOMALY 11

Anomaly 11 is located in the north central portion of the map area and lies roughly parallel to and 300 feet (90 meters) south of the baseline, and has a strike length of approximately 4000 feet (1219 meters). The northeastern extension of this anomaly strikes due east, parallel to Goodwin's Marion Township baseline. Anomaly 11 will be discussed in a later section of the report.

ANOMALY 12

Anomaly 12 lies sub-parallel to and 600 feet (180 meters) south of Anomaly ll. This conductor, exhibiting a limited strike length of approximately 400 feet (120 meters), has been selected for detailed investigation and will be discussed in a later section of the report.

DETAILED PROGRAM
A detailed examination of Anomalies 9, 9a, 10, 11 and 12 was undertaken in exactly the same manner as that outlined for Map Area A. However, to facilitate coverage of these anomalies, two detailed grids were established. The claim Lake grid is located just south of Claim Lake and details Anomalies 9, 9a and 10. The Boundary Grid is located in the northeast sector of the map area and straddles the boundary between Marion and Heenan townships. This grid maps Anomalies 11 and 12.

CLAIM IAAKE GRID

The Claim Lake Grid comprising of 8525 feet (2598 meters) including the baseline was established utilizing the original reconnaissance lines. One hundred foot (30 meter) stations were established on all lines of the detailed grid with readings being observed at 50 foot (15 meter) intervals.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 8, 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Approximately 5 percent of the area covered by the detailed grid was outcrop with the remaining 95 percent divided equally between alder-willow swamps and dense stands of young balsam. Three distinct rock units were mapped during the course of the geological investigation and are shown on drawing no. 115 .

The northern one-quarter of the detailed grid is mapped as an intermediate volcanic lava with isolated tuffaceous beds thought to be andesitic in composition. The rock unit ranges from a fine-grained, less than 1 mm particle size, to a somewhat massive unit exhibiting an aphanitic texture. The main mineral constituent is greenish hornblende, with actinolite, chlorite ?
and some epidote and a little quartz. Trace amounts of pyrite were also noted in the more tuffaceous areas.

The central portion of the d.tailed grid is mapped as a thinly banded, jaspery iron formation. The typical jasper consists of red hematitic chert bands, up to 1 inch thick, alternating with grey to black interbands, one-quarter to one-half inch thick, composed of chert with more or less disseminated magnetite and hematite. The jasper zones grade into and contain zones of dark-grey, banded chert in which grey chert layers, up to two inches thick, alternate either with dark-grey to black, magnetite-rich cherty layers, one-quarter to one-half inch thick, or with thin magnetite-rich parting seams. The grey chert bands locally contain considerable disseminated pyrite.

The southern one-quarter of the detail grid is mapped as a rhyolite breccia. In general, breccia fragments increase in abundance, size and acidity towards the iron formation. Characteristically, the outcrop mapped on line $8+00 \mathrm{~N}$ contains numerous poorly sorted angular to sub-angular acid fragments up to four inches in diameter, which tends to indicate not only a close proximity to the source vents, but also that negligible or limited abrasion has taken place during transportation.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. on July 8, following the format outlined in Appendix I.

A total of 170 stations were occupied during the course of the survey with a total of 340 readings being observed. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 116.

The detailed electromagnetic survey further defined selected anomalous zones mapped during the reconnaissance survey.

Anomaly 9

This conductor was mapped cutting diagonally across the northern tip of the detailed grid and is characterized on line 28 N by a modest dip reversal of 17 degrees (+5 to -12) over 250 feet (75 meters) associated with a relative field strength of 210 percent. This figure represents a value of 110 percent above the local background. The electromagnetic data defines a vertically dipping, poorly conductive sheet estimated to be of limited width extent.

Anomaly 9a

This conductor was mapped lying sub-parallel to and 200 feet (60 meters) south of Anomaly 9 a and is characterized on line 20 N by a modest dip reversal of 15 degrees (+7 to -8) over 200 feet (60 meters) associated with a relative field strength of 170 percent. This figure represents a value of 70 percent above the local background. The electromagnetic data defines a conductive zone of limited conductivity.

The fraser reduced inphase dip angle data, presented on drawing no. 117, indicates a slight increase in conductivity towards the west.

Anomaly 10

This conductor was mapped lying parallel to and 500 feet (150 meters) southeast of the baseline and is characterized on line 20 N by an inferred dip reversal of 22 degrees (+22 to 0$)$ over 150 feet (45 meters) associated with a relative field strength of 175 percent. This figure represents a value of 75 percent above the local background. The electromagnetic data defined a conductive zone of limited conductivity.

The Fraser reduced inphase dip angle data indicates that Anomaly 10 is of limited strike iength extent.

TOTAL MAGNETIC FIELD GRADIENT STUDY

The total magnetic field gradient study was not undertaken at this time because of the excellent vertical magnetic. field data available on file with the Ontario Department of Mines. This ground magnetic data, presented on drawing no. 118, was recorded at 50 foot (15 meter) intervals on all lines by Falconbridge Nickel Mines Limited during the 1973 summer season, employing a McPhar M-700 vertical field magnetometer.

The intermediate volcanic rocks previously discussed are characterized by moderately low uniform magnetic relief in
the range of 1000 to 2000 gammas. This figure represents an absolute value above a 59,000 gamma background.

The banded iron formation is characterized by high magnetic relief in the range of $\overline{22,830}$ to 43,970 gammas.

The rhyolite breccia mapped in on the southern extension of line 8 N is characterized by relatively uniform magnetic relief in the range of 2000 to 4000 gammas.

The magnetic data also maps a major structural break transecting the southern portion of the map area, crossing the baseline at station 10 N . This structural break is thought to be a major fault zone striking almost due east and is characterized by a zone of extremely low magnetic relief in the range of $\overline{4820}$ gammas.

Anomaly 9, as defined by the electromagnetic survey, lies on the north flank of a zone of extremely high magnetic relief in the range of 30,980 gammas.

Anomaly 9a, as previously defined, lies coincident with a zone of high magnetic relief in the range of 20,000 gammas which represents an absolute value above a background of 59,000 gammas.

Anomaly 10 lies on the southern flank of a zone of high magnetic relief in the range of 20,000 gammas which as mentioned previously represents an absolute value above local background.

GEOCHEMICAL. INVESTIGATION

Whole rock and soil geochemical samples were taken over the conductive zones in an attempt to further define the causative bodies of these zones.

All of the anomalies are located in a region of poorly drained relief within a complex regional drainage pattern which flows to the southeast. The vegetation in the vicinity of these anomalies consists of limited dense stands of young balsam within an extensive alder-willow swamp.

A total of 53 soil samples and 14 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical sample locations are presented on drawing no. 115.

The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. Due to the extremely swampy conditions present throughout the detailed grid area, the B-horizon sample depth varied greatly with each soil sample.

As was found to be the case in Map Area A, the soil geochemical results were not as significant as one would have hoped. Due to the sparce density of outcrop in the vicinity of the anomalous zones, the limited rock geochemical results were unable to shed any light as to the causative bodies of the
moderately conductive zones.

CONCLUSIONS
The three anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

The causative body of Anomaly 9 is the contact zone between the thinly banded jaspery iron formation and the overlying andesite as mapped on line 28 N at station 120 m E.

The causative body of Anomaly 9a is thought to be a modestly mineralized grey chert horizon lying within the iron formation.

The causative body of Anomaly 10 is thought to be the southeastern contact zone between the iron formation and the underlying rhyolite breccia.

RECOMMENDATIONS

It is recommended that no further work be undertaken on Anomalies 9, 9a and 10 at this time.

BOUNDARY GRID

The Boundary Grid comprising of 7900 feet (2407 meters) including the baseline, was established by W. G. Wahl Limited during the period from July 5 to July 6, 1975. The baseline was oriented due east from Falconbridge line 64 N and the Goodwin
baseline with grid lines trending north-south at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the detailed grid.

GEOLOGY

The geological survey was conducted by R. Bylo, B.A.Sc. on July 15, 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Less than 3 percent of the total area covered by the detailed grid is outcrop, the remaining 97 percent consists of dense black spruce and balsam stands with only limited alderwillow swamp encountered in the northwestern sector of the detailed area. The majority of the outcrop shown on drawing no. 119 is located in the southwest quarter of the detailed grid and consists of a finely banded jaspery iron formation. This iron formation is exactly the same in all respects as that mapped on the Claim Lake Grid and which has been discussed at great length in a preceding section of this report.

A smali outcrop of andesite was mapped on the southern extension of line 240 m E.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. on July 16, 1975 following the format outlined in

Appendix I.
One hundred and fifty-eight stations were occupied during the course of the survey taking a total of 316 readings. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 120.

The detailed electromagnetic survey further defined the anomalous zones mapped during the reconnaissance survey.

Anomaly 11
This conductor lies sub-parallel to and approximately 100 feet (30 meters) north of the baseline and is characterized on line 240 m E by a sharp dip reversal of 61 degrees (+24 to -37) over 400 feet associated with a relative field strength of up to 225 percent. This figure represents a value of 125 percent above the local background. The electromagnetic data defined a vertically dipping moderately conductive sheet estimated to be 200 feet (60 meters) wide.

The Fraser reduced inphase dip angle data presented on drawing 120 indicates uniform conductivity across the entire conductor.

Anomaly 12
This conductor lies approximately 500 feet (150 nieters)
south of the baseline and was mapped between lines 240 m E and 360 m E. The orientation of this conductor is such that
reconnaissance lines traversed the anomaly normal to the strike; thereby, achieving the most diagnostic geophysical response. This conductor is characterized on reconnaissance line 68 N by a sharp dip reversal of 45 degrees (+42 to -3) over 150 feet (45 meters) associated with a relative field strength response of up to 230 percent which represents a value of 130 percent above local background. On the detailed grid, inferred dip reversals were recorded on lines 240 m E and 360 m E at stations 150 m S and 120 m S respectively. The electromagnetic data defined an arcuate shaped, near vertical conductive sheet estimated to be up to 50 feet (15 meters) wide and up to 400 feet (120 meters) long.

The Fraser reduced, inphase dip angle data indicates that this anomaly lies south of, and does not appear to be directly related to the main iron formation mapped by Anomaly 11.

TOTAL MAGNETIC FIELD GRADIENT STUDY

A total magnetic field gradient study was not undertaken, as was the case for the Claim Lake Grid, because of the excellent vertical magnetic field data available on file with the ontario Department of Mines. This ground magnetic data, shown on drawing no. 119, was recorded at 50 foot (15 meter) intervals on all lines by Falconbridge Nickel Mines Limited during the 1973 summer season, employing a McPhar M-700 vertical field magnetometer.

The banded iron formation is characterized by high
magnetic relief in the range of 20,000 to 30,000 gammas recorded above a local background of 59,000 gammas.

A large magnetic dipole was mapped lying immediately north of the iron formation. This area is thought to be underlain by an intermediate volcanic lava similar to that mapped overlying the iron formation on the Claim Lake Grid.

GEOCHEMICAL INVESTIGATION

Whole rock and soil geochemical samples were taken over the conductive zones in an attempt to further define the causative bodies of these zones.

Both Anomalies 11 and 12 are located in a region of well drained relief. The vegetation in the vicinity of these anomalies consists of dense stands of young balsam. The sand ridges in the eastern one-half of the grid area are covered with open stands of black spruce and jack pine.

A total of 52 soil samples and 8 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical sample locations are presented on drawing no. 119.

The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. However, due to the great thickness of sand present in the eastern sector of the grid, soil samples were collected at 200
foot (60 meter) intervals instead of the normal 100 foot (30 meter) intervals.

The geochemical soil results taken on the western half of the grid identified Anomaly 11 as being slightly anomalous in copper and zinc; however, the results have to be considered inconclusive in the light of the rock geochemical results obtained in the same vicinity. The following rock geochemical samples were taken coincident with the conductor axis of Anomaly 11.

No.	Eocation		Rock Type	$\frac{\mathrm{Cu}}{\mathrm{ppm}}$	$\frac{\mathrm{pb}}{\mathrm{ppm}}$	$\frac{\mathrm{Zn}}{\mathrm{ppm}}$	$\frac{\mathrm{Fe}}{\%}$
341-R	Ll20mE/B.L.	iron	f formation	46.2	8	129	23.8
358-R	L $240 \mathrm{mE} / 60 \mathrm{mN}$	iron	n formation	39.5	2	146	30.9
365-R	L $360 \mathrm{mE} / 30 \mathrm{mN}$	iron	n formation	27.3	<2	216	38.5

It will be noted that all three samples are of the same rock type; that is, a thinly banded iron formation containing differing amounts of pyrite and pyrrhotite. The geochemical data shows that the base metal content within this portion of the iron formation is low but that these values appear to be uniformly distributed along strike. The iron content is high ranging from 23.8 percent in sample $341-\mathrm{R}$ to 38.5 percent in sample 365-R.

A rock geochemical sample taken coincident to the conductor axis of Anomaly 12 returned the following results:

No.	Location	Rock Type	$\frac{\mathrm{Cu}}{\mathrm{ppm}}$	$\frac{\mathrm{Pb}}{\mathrm{ppm}}$	$\frac{\mathrm{Zn}}{\mathrm{ppm}}$
$433-\mathrm{R}$	$68 \mathrm{~N} / 10 \mathrm{E}$	Eyritized cherty iron formation	64.5	4	139

A five pound bulk sample of this material returned $50 \mathrm{ppb}(0.0015 \mathrm{oz} / \mathrm{ton})$ gold.

CONCLUSIONS
The anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

The causative body of Anomaly 11 is a banded jaspery iron formation containing numerous grey chert bands, with considerable disseminated pyrite.

The causative body of Anomaly 12 is a heavily pyritized grey chert containing up to 10 percent total sulphides. This zone is thought to be arcuate in configuration exhibiting a near vertical dip and estimated to be up to 50 feet (15 meters) wide and up to 400 feet (120 meters) long.

RECOMMENDATION

It is recommended that Anomaly 12 be investigated by diamond drilling as shown on the following sketch.

MARION TOWNSHIP
ANOMALY NO. 12

MAP AREA "E"

Map Area E is east of Map Area D and pertains to that portion of Marion Township covered by the following 10 mineral claims:

$$
\text { P } 428801-\mathrm{P} 428810
$$

RECONNAISSANCE PROGRAM

A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system comprising of 49,500 feet (15,087 meters) including the baseline was established by W. G. Wahl Limited during the period from June 7 through June 8 utilizing the Topofil continuous chain method. The ontario Department of Mines baseline, established by A. M. Goodwin in 1961, was located and refurbished. This baseline trends due east from a point on the east bank of the woman River, located approximately 7,000 feet (2,133 meters) north of the Opeepeesway River junction. Grid lines trending north-south were established at 400 feet (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was initiated by R. Bylo, B.A.Sc. during the period from June 20 through June 22 and was completed during the period from June 28 through June 30, 1975
following the format outlined in Appendix I. A total of 990 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 121.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT tapes.

ANOMALY 13

This crescent shaped anomaly is centrally located within the survey area and was mapped striking in an easterly direction exhibiting an inferred strike length of 4500 feet (1371 meters). Anomaly 13 appears to be open at both ends. The central portion of this anomaly was selected for detailed investigation and will be discussed in the following section of the report.

ANOMAIS 14
Anomaly 14 was mapped on line 120 m NE, 1300 feet (396 meters) south of the baseline. This particular anomaly is of further interest in that it lies within a sheared rhyolite, underlying the main iron formation. However, at the time of the reconnaissance survey the ground was extremely swampy and detailed work was impossible.

ANOMALY 15

Anomaly 15 lies in the southeastern corner of the survey area and was mapped striking in an easterly to southeasterly
direction exhibiting an inferred strike length of 2000 feet (609 meters). As was the case with Anomaly 14 , the extremely swampy conditions prevented any detailed examination at this time.

DETAILED PROGRAM

A detailed examination of Anomaly 13 was undertaken in exactly the same manner as that outlined for Map Area A.

The detailed grid system, comprising of 8800 feet (2682 meters) including the baseline, was established by W. G. Wahl Limited during the period from July 7 through July 8, 1975. The baseline and grid lines were established in the same configuration as the reconnaissance grid. One hundred foot (30 meter) stations were established on all lines of the detailed grid.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 91975.

The geology as published by the ontario Department of Mines was extenaed and further defined by the geophysical surveys and geological mapping.

Less than 5 percent of the area covered by the detailed grid was outcrop, with the remaining 95 percent consisting of dense cedar swamps and open stands of spruce and balsam. Four distinct rock units were identified during the course of the
geological investigation and are presented on drawing no. 122. The northern one-third of the detailed grid is mapped as intermediate volcanic lava with isolated tuffaceous beds thought to be andesitic in composition. The rock unit ranges from a fine-grained, less than 1 mm particle size, to a somewhat massive unit exhibiting an aphanitic texture. The main mineral constituent is greenish hornblende, with actinolite, chlorite and some epidote, carbonate, small quantities of plagioclase and a little quartz. Trace amounts of pyrite were noted in the more tuffaceous areas.

The central one-third of the detail grid is mapped as a thinly banded, jaspery iron formation. The jasper zone consists of red hematitic chert bands, up to 1 inch thick, alternating with grey to black interbands, one-quarter to one-half inch thick composed of chert with more or less disseminated magnetite and hematite. The jasper zone grades into and contains zones of dark-grey, banded chert in which grey chert layers, up to two inches thick, alternate either with dark-grey to black, magnetiterich cherty layers, one-quarter to one-half inch thick, or with thin, magnetite-rich parting seams. The grey chert bands locally contain considerable disseminated pyrite.

The southern one-third of the detail grid is mapped as an acid flow which has been intruded by a diorite mass.

The acid flow (quartz-feldspar porphyry) occurrence
mapped on line 1080 m E is characterized by a pale grey appearance on the weathcred surface, exhibiting many equigranular phenocrysts of quartz, plagioclase and orthoclase in a fine-grained matrix of similar composition.

The diorite intrusive into the acid flow is a grey-green, fine- to medium-grained, mottled textured rock composed of interlocking aggregates of relatively fresh, euhedral oligoclaseandesine and somewhat chloritized amphibole, with accessory ilmenite, pyrite and quartz.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.SC. on July 10, 1975 following the format outlined in Appendix I. A total of 108 stations were occupied during the course of the survey with a total of 216 readings being observed. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 123. The detailed electromagnetic survey further defined the main anomalous zone mapped during the reconnaissance survey.

Anomaly 13
This arcuate conductor lies sub-parallel to and astride the baseline and is characterized on line' 960 m E by a moderate dip reversal of 36 degrees (+18 to -18) over 150 feet (45 meters) associated with a relative field strength of 175 percent. This
figure represents a value of 75 percent above the local background. The electromagnetic data defines a steeply dipping moderately conductive sheet estimated to be up to 75 feet (22 meters) wide. The northwest extension of this anomaly maps a major structural break transecting the western portion of the map area, crossing the baseline station 570 m E. This break has been mapped by A. M. Goodwin as a regional fault zone striking approximately $\mathrm{N} 50^{\circ} \mathrm{W}$.

The Fraser reduced inphase dip angle data, presented on drawing no. 124 indicates a relatively broad zone of low conductivity.

TOTAL MAGNETIC FIELD GRADIENT STUDY

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July 101975 following the format outlined in Appendix III. A total of 108 stations were occupied during the course of the survey with a total of 216 readings being recorded. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing no. 125 as corrected station values and as a contoured interpretation of these data.

The massive andesite, previously discussed, is characterized by a moderately low uniform magnetic relief in the range of 1000 to 1500 gammas. This figure represents an absolute value above a 59,000 gamma local background. A large magnetic
dipole was mapped lying within the andesite immediately north of the iron formation on the baseline between lines 720 m E and 1200 m E .

The iron formation is characterized by high, extremely erratic magnetic relief in the range of $\overline{938}$ to 13,131 gammas. As previously mentioned these values have been regionally reduced and represent an absolute value relative to a background intensity of 59,000 gammas.

The acid volcanics mapped at station 120 m S on line 1080 m E are characterized by a moderate magnetic relief in the range of 1500 gammas above local background. This unit has been extended to include the southern extensions of line $840 \mathrm{~m} E$ and line 960 m E .

The diorite intrusive mapped at stations 90 m S and 120 m S on line 1200 m E is characterized by a moderately high magnetic relief in the range of 3500 to 3900 .

The magnetic data also defined the fault zone previously mapped by the electromagnetic survey. This fault zone is characterized by a region of below background magnetic relief in the range of 4736 gammas.

Anomaly 13, as defined by the electromagnetic survey, is coincident with the iron formation.

GEOCHEMICAL INVESTIGATION

Whole rock and soil geochemical samples were taken over the conductor in an attempt to further define the causative body.

Anomaly 13 is located in a region of well drained relief within a well established regional drainage pattern which flows to the northwest. The vegetation in the vicinity of this anomaly consists of generally clean open stands of spruce and balsam; however, a dense cedar swamp was encountered on the north extensions of lines 480 m E and $600 \mathrm{~m} \mathrm{E}$.

A total of 46 soil samples and 13 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the sample preparation and analytical procedures used. The geochemical sample locations are presented on drawing no. 122.

The soil. and rock geochemical samples were collected in exactly the same manner as that described for the preceding map area. In the area of Anomaly 13, the B-horizon was encountered approximately four to six inches below the surface with the samples being taken at an average depth of eight inches.

Geochemical coverage was impossible in the extremely swampy areas encountered on the northern extensions of lines 480 m E and 600 m E .

As was found in the previous map areas, the soil geochemical results were not as significant as one would have
hoped.
The whole rock results, on the other hand, are significant and several noticeable trends were established in relation to the anomalous zone. Of the 13 rock samples collected, the following samples were taken coincident with the conductor axis.

No.	Location		Rock Type	$\frac{\mathrm{cu}}{\mathrm{ppm}}$		$\frac{\mathrm{pb}}{\mathrm{ppm}}$	$\frac{\mathrm{zn}}{\mathrm{ppm}}$	$\frac{\mathrm{Fe}}{\%}$
188-R	L $180 \mathrm{mE} / 60 \mathrm{mN}$	iron	formation	77.6		2	113	30.0
192-R	$\mathrm{L} 120 \mathrm{mE} / 30 \mathrm{mN}$	iron	formation	52.5	$<$	2	139	30.8
205-R	L $1200 \mathrm{mE} / 45 \mathrm{~ms}$	iron	formation	89.0		6	180	26.8
222-R	L960mE/90ms	iron	formation	70.7		2	174	14.8
228-R	L $840 \mathrm{mE} / 60 \mathrm{~mW}$	iron	formation	74.8		10	90	13.3

It will be noted that all of the five samples are of the same rock type; that is, a finely bandud jaspery iron formation containing varying amounts of pyrite and pyrrhotite. The geochemical data shows that the base metal content within the iron formation is fairly low but that these values are uniformly distributed throughout. In general, the lead values appear to have a slightly higher threshold value within the iron formation than within the basic volcanics of Map Areas A and B.

CONCLUSIONS

The anomalous, conductive zone identified during the reconnaissance survey was further defined during the course of
the detailed program.
The causative body of Anomaly 13 is a finely banded jaspery iron formation containing differing amounts of pyrite and pyrrhotite, estimated to be up to 75 feet (22 meters) wide lying within the stratigraphically thicker woman River iron range.

RECOMMENDATIONS
It is recommended that Anomaly 13 be investigated by diamond drilling, as shown on the following sketches, in order to fully assess the gold potential of the iron formation.

MARION TOWNSIIIP
ANOMALY No. 13


```
Costs based on a total of 8,700 feet of diamond drilling.
```

PART I

1. PERSONNEL

1 geologist
2 prospectors
2. PROGRAMME
i) spot diamond drill holes
ii) clear drill sites for helicopter moves
iii) cut snowmobile trails from camp to drill sites
3. $\cos T$
i) Salaries

1 geologist
15 days @ \$150/day
$\$ 2,250.00$

1 prospector
15 days @ $\$ 100 /$ day $1,500.00$
1 prospector
15 days @ $\$ 100 /$ day $\quad 1,500.00 \$ 5,250.00$
ii) Field Expenses
food
3 men 15 days @ $\$ 12 / \mathrm{d} / \mathrm{man} 540.00$ mob. \& demob. (Toronto/

Timmins/Base camp return) 1,500.00 misc. (heater fuel, etc.) 100.00 skidoo rental - 2 months $\quad 500.00 \quad 2,640.00$

PART 2

1. PERSONNEL

1 geologist
1 expediter
2. PROGRAMME

$$
\begin{aligned}
& \text { drilling (2 drills - 50'/shift) } \\
& 8700 \text { ft. @ } \$ 30 / \text { ft. } \\
& \text { (helicopter support). }
\end{aligned}
$$

3. $\cos T$
i) Salaries

1 geologist
90 days (@ \$150/day $\$ 13.500 .00$
1 expediter
90 days @ $\$ 150 /$ day $13,500.00 \quad 27,000.00$
ii) Field Expenses

```
Assay & testing
    (metallurgical &
        petrographical)
        including shipping 10,000.00
Misc. & contingencies 1,000.00 11,000.00
```

iii) Project supervision \& co-ordination \& final report
$10,000.00309,000.00$

$$
T O T A L \quad \$ 316,890.00
$$

All of which is respectfully submitted.

APPENDIXIV

GEOCHEMICAL INVESTIGATION

A. SAMPLE PREPARATION

Soils

1. Sample was first sieved to -80 mesh.
2. 250 mg . of the -80 mesh fraction was then weighed into a 18 mm test tube.
3. 0.5 mls . concentrated HNO_{3} and 2.0 mls . concentrated HClO_{4} were added to the sample.
4. The solution was then heated in an aluminum block over medium heat for 4 hours.
5. The solution was allowed to cool and then diluted to 5 mls . by the addition of demineralized distilled water.
6. The sample was then agitated and allowed to settle for 2 hours.
7. The sample was then analyzed.

Rocks

1. Sample was first ground and sieved to -80 mesh.
2. 250 mg . of the -80 mesh fraction was then weighed into teflon beakers.
3. 7.5 mls . concentrated HF and 2.5 mls . of a $\mathrm{HNO}_{3}-\mathrm{HClO}_{4}$ mixture were added to the sample (3:2 mixture of nitric to perchloric).
4. The teflon beaker was then covered with a teflon watch glass and warmed in a sandbath at $60^{\circ} \mathrm{C}$ for 2 hours.
5. The watch glass was then removed and the sample was evaporated to dryness (approximately 4 hours).
6. 2.5 ml . of the $\mathrm{HNO}_{3}-\mathrm{HClO}_{4}$ mixture was then added to the residue and evaporated to dryness. This step was taken to remove all traces of $H F$ from the residue (approx. 4 hours).
7. The residue was then taken up in 10 mls . of 1 M HCl and warmed if necessary to dissolve it.
8. The solution was then transferred to a 25 ml . volumetric flask and diluted to 25 mls . using demineralized distilled water.
9. The sample was then analyzed.
B. MRFAPE ANALYSIS
10. Standard solutions were first run with the instrument in the standardisation mode.
11. The solutions from A were analyzed in a radio frequency inductively coupled plasma manufactured by Applied Research Laboratories, Sunland, California, and International plasma Corporation. (For more information on instrumentation and instrumental parameters see G. F. Larson, Y. A. Fassel et al., "ICPlasma - Optical Emission Analytical Spectroscopy. A Study of some inter-element effects", Analytical Chemistry, 47 (1975): 238-243).
12. Data were fed into and processed by a programmable Hewlettpackard 9821-A calculator. Results were printed out in ppm.
```
NOTES: 1. Mo, U,W, Se, Te, B, Au, Sn, Rb, Eu, As -- not detected
2. Cd in samples 190 onward probably have a high blank
```


Whtras HELEA
HमHLधE GFTE: 1 O1ET
THFE FH:
FFWB NO: 19
I.I. IEHI

EMPIE HO

EHi	Hin	18	$F E$	$1 \mathrm{~Hz}$	$\underset{\mathrm{PFH}}{\mathrm{CH}}$	HFI	$\frac{8 \mathrm{I}}{\mathrm{FFH}}$	$\begin{array}{r} 21 \\ 5+1 \end{array}$
1106	.948	. 254	1.36	.202	H.I.	36.5	37	29.9
161	1.68	. 297	. 954	. 176	H.II.	38.6	43	E. 3
102	1.32	.179	1.88	. 156	H.II.	23.9	37	26.9
16	1.63	175	1.77	.142	14.11.	2.a	39	21.3
104	1.43	.244	2.56	. 21	H.II.	29.4	42	41.
10.5	j. i	. 867	1.24	.242	H.II.	35.9	515	41.5
106	. 57	.162	. 270	. 0513	H.II.	13.9	64	$1 \% 6$
167	Ere	-143	2.82	- 15	H. II.	37.7	45	99.8
108	.96	. 6848	4.86	. 884	H. II.	22.	\because	\%\%.
149	1.46	. 345	4.78	. 549	H.11.	34.5	50	46.3
110	1.76	- 2 c	1.45	. 18	H. II.	34.7	80	45.3
1) 1	1.28	. 271	2.65	. 26	H. In.	30.8	72	5 5 \%
112	1.69	.254	1.45	. 2eb	H, I.	29.8	64	4. 3
113	2.2	.24:	1.81	.210	H.I.	53.4	5	3. ${ }^{\text {a }}$
115	. 56e	.226	1.46	-164	H.In.	55 9	6.4	-', ${ }^{2}$
11%	1.10	. 297	2.06	. 296	H. II.	34.9	53	6月4
119	1.6.E	. 256	1. 84	. 220	H.J.	42.2	51	9,
120	1.30	. 2.26	1.33	. 268	H.I.	65.2	5	11.3
121	. 97	. 24	1.91	. 187	H. I.	34.5	54	$4{ }_{4}$
124	1.62	. 24	1.36	.189	H. H:	23.5	5	24.1
12 F	1.30	. 213	1.87	.145	H.I.	46.2	7	25.9
1 E	2. 0^{2}	.259	1.73	.161	H. $\mathrm{HO}^{\text {\% }}$	39.2	84	$29+$
12 E	1.32	. 256	1.06	. 148	H. It.	98.5	76	9.8
129	1. St	. 259	1.82	.176	H. D.	33.1	71	2.
130	1.63	. 236	1.50	.179	H. D.	2 E 2	74	90.4
13	1.12	. 280	1.85	, 21	H.D.	21.4	50	2. 8
13	. 954	. 16	1.65	. 131	1. 11.	295	42	5
124	1.33	- 27	1.74	. 260	H.I.	26.0	4	24.1
135	1.Es	.254	1.95	.217	N. J.	24.5	9	2ex
196	1.19	.300	1.36	. 227	H.1.	19.ت	64	et. 6
197	. 75	, ae	. 841	.197	H. TI.	18.2	96	16. 2
139	1.91	. 271	1.19	.197	H. II.	2-4	71	25.6
140	. 947	. 354	1.43	. 211	H. II.	18.8	52	\%.
142	1. 10	.39	1.63	. 236	H. II.	19.3	64	21.9
143	. 964	. 87	. 996	. 285	H. II.	15,3	45	18.6
144	1.21	-2ez	1.58	. 247	H. II.	19.3	58	19.1
145	1.09	. 248	1.98	. 309	H. II.	19.3	22	21.t
146	. Be	.158	. 650	. 668 c	H. In.	22:	50	18.4
147	1.75	.214	2.94	.261	H.II.	55.9	53	$3 \mathrm{~B}, \mathrm{~s}$
140	1.24	.211	1.53	. 1.9	H.IH.	2 E .7	5	$2 \% 1$

HL	14	FE	HI_{2}	CH1	$\underset{\mathrm{FFW}}{\mathrm{HI}}$	$\frac{\mathrm{EI}}{\mathrm{FFH}}$	$\begin{gathered} \mathrm{O} \\ \mathrm{FH} \end{gathered}$
. 918	. 254	1.36	. 292	H. In.	36.5	37	25.9
1.68	. 297	.954	. 176	N. II.	38.6	43	\%6. 3
1.12	.179	1.89	. 156	H.T.	23.9	37	25.9
1.63	.175	1.77	.142	14.11.	2. ${ }^{\text {a }}$	39	31.3
1.43	.244	2.5	. 2 l	H.T.	29.4	42	41.8
1. y	. 867	1.24	.242	H.II.	35.9	59	41.5
. 57	.162	. 270	. 0518	H. II.	13.9	64	$1 \because 6$
$2 \cdot 9$. 143	$2 \cdot 2$. 15	14.11.	37.7	45	99.8
. 96	. 9848	4.36	. 0 gat	H.13.	2 2 .1	TB	36.
1.46	. 345	4.78	. 549	H.11.	34.5	50	49.3
1.79	- 28.	1.45	\% 18	H. In.	34.7	9.	45.5
1.88	.27	2.05	. 2 e	H. II.	30.8	72	55.3
1.69	. 254	1.45	. 2 ec	H, II.	29.6	64	31.9
2 a	. 24	1.81	.210	H.I.	$5 \% 4$	5	3.8
. 96	. 26	1.46	. 164	H. $\mathrm{IN}^{\text {a }}$	¢59	54	$\varepsilon_{1} \cdot 8$
1.76	. 297	2. 60	. 296	H.II.	44.9	53	204
1.6	. 256	1.86	. 225	H.J.	42.2	519	\% ${ }^{\text {a }}$
1.9	. 2 ee	1.33	. 268	H. H .	65.2	5	31.3
.97	. 24	1.91	.187	N. II.	34.5	64	
1.62	. 24	1.36	.189	N. H.	23.5	5	24.1
1.36	. 213	1.07	.145	H.I.	46.2	7	25.9
$2.0{ }^{\circ}$. 259	1.73	- 161	H. $\mathrm{IV}^{\text {a }}$	89.2	9	$29+$
1.32	.256	1.8E	. 148	H. D.	98.5	76	9.8
1.6\%	. 259	1.32	.175	H. D.	38.1	71	2. 3
1. 63	.236	1.50	. 179	H. I.	2 Ba	74	20. 4
1. 12	. 260	1.88	, 231	H.D.	21.4	50	2
.854	. 1 E	1.65	.131	1. 1.	295	42	5 F
1.33	. 217	1.74	. 260	H. II.	26.0	84	24.1
1. 0.6	. 254	1.98	. 21.7	H. D.	24.5	9	E2, 7
1.19	.300	1.36	. 2 z	H. $\mathrm{I}_{\text {a }}$	18,	04	20. 6
. 75	, 2e	. 841	. 197	H. Ti.	18.2	90	16. ${ }^{2}$
1.31	.271	1.19	.197	H. II.	2 a 4	71	29.6
. 947	. 354	1.43	.211	H.IT,	13.8	52	20.
1. 10	.379	1.83	. 236	H. H .	4.3	64	2.9
. 964	. 87	.996	- 285	H. 1.	15, 3	45	18.6
1.21	. 2 c	1.58	. 247	H. Ji.	19.3	58	19.1
1.95	. 248	1.98	. 309	H.II.	19.3	$2{ }^{2}$	210 1
. 76	.158	. 650	. 6688	H. II.	22.	59	16.4
1.75	.214	2.94	. 2 E 1	H.J.	3.9	53	$3 \mathrm{~B}, 8$
1.24	.211	1.58	. 17	H.I.	25.7	5	24.1

FILE NO:

144	1.4.	. 246	1.75	197	H.IT.	90, 5	70	29.6
. 150	1.68	. 2 es	1.82	.246	H.T.	97.9	37	41.36
15j	1.64	, 2ec	1.54	. 269	H. 1.	96.7	64	\%e. 1
- 158	1.2\%	. 309	1. 1.6	. 27	N. 1.	30.0	45	24.1
158	- 9	. 266	1.78	.241	H. 1.	29.4	39	26.
154	1.41	. 125	1.79	. 185	H.1.	e9.1	35	3'. 1
155	2.re	.196	2.36	.241	N.I.	44.9	45	46.6
157	1. 56	.162	1.27	. 173	H.J.	29.4	48	32.4
1.59	1.7	.254	1.53	.239	H.IV.	38, 6	35	25.
164	. Sa^{4}	. 29.	1. 64	.153	$\mathrm{H.I}$.	E.E	190	16.4
162	. 514	. 1974	4.19	. 618	H.IV.	2 za 4	5%	29世
164	1.10	. 289	1.34	. 164	H.II.	21.3	50	38.3
166	1.31	. 054	1.32	. 2 c	H.I.	35.1	43	E. 1
167	1.25	.249	. 814	.169	H.I.	$\therefore 6.6$	53	31.E
168	- E6t	. 449	- E17	.174	H. Ti.	24.5	59	21.4
169	1.29	. 230	1.64	.152	H.II.	30.1	46	$29+$
178	1.19	. 6143	2.30	.155	H. II.	21.3	45	30
13	. 849	.128	1.09	.160	H. I.	21.6	50	21.3
174	1.89	. 175	2.86	.164	H. In.	28.7	76	2\%"11
176	1.51	. 289	1.35	. 252	N.II.	$3 \pm .5$	5	27:
1%	1.72	.359	- 2.600	. 323	H.II.	34.3	75	29.5
176	1.58	. 368	1.E1	.272	$\mathrm{H} . \mathrm{I}$.	33.4	75	32.4
179	2.34	. 313	2.06	. 320	M. II.	43.5	70	354
180	. 96	- 256	1.30	.162	H. D.	30.4	59	24.
181	.916	. 423	.867	.271	N. In.	30.0	34	25,
182	1.35	.312	1.08	.271	N. D.	44.4	56	$29:$
185	1.96	. 519	1.34	.805	N. D.	31.5	39	Q.
184	1.50	. 2 E ?	1.45	. 268	14.0.	35.1	52	27
185	1.31	. 226	1.21	. 167	N. D.	30.1	72	$27+$
186	1.8E	.323	1.24	.258	H. I .	38.5	72	85.1
187	1.41	.292	1.99	.556	H.II.	44.9	75	89.9
169	1.34	. 284	1.91	.299	H.D.	+2,8	71	68.
196	1.24	.445	1.29	.313	2.1	19.6	95	23.5
191	1.83	. 466	1.92	. 315	2.5	32.7	102	49.5
193	1.44	. 406	1.29	.254	2.1	15.5	11.7	32.2
194	1.62	.495	3.28	.350	4.7	26.5	104	36.6
195	1.52	.480	2.90	. 267	3.8	13.9	89	26.8
197	1.91	.442	1.77	. 2.27	2.7	18.9	11 E	21. ${ }^{\text {a }}$
198	2.14	. 517	1.67	. 369	2.6	27.7	94	23.6
199	1.37	.495	2.18	.205	2.6	16.5	174	22.
290	1.75	. 445	1.79	. 220	2.6	20.9	151	2.1
201	1. 6.8	. 465	1.E5	. 350	2.4	27.5	89	42.5
ege	1.59	. 436	1.43	. 249	2.6	15.4	106	23.5
203	1.82	. 496	1.37	. 316	2.1	18.9	125	63.3
204	2.24	. 468	2.62	.235	2.9	16.7	8 E	39.2
20	1.71	. 554	1.57	. 295	2.4	21.7	137	29.1
29	1.54	. 511	1.54	. 565	2.7	13.5	92	4 C
209	3.64	.487	3.93	2.41	6.3	162	32	86. ${ }^{\text {a }}$
211	1.98	. 460	1.56	.260	2.2	16.3	164	25.3
213	1.E2	.482	1 1.66	.299	2.3	18.5	147	25.8
214	1.65	. 276	12.56	.156	3.6	10.8	82	27.9
215	2.62	. 335	1.91	.213	2.4	14.3	98	28.1
216	1.97	. 461	2.10	.311	2.7	26.5	162	42.9
213	1.33	. 85	1.28	. 372	2.2	18.8	116	33.0

1.02	. 429	. 690	.189
1.85	. 456	1.92	.230
1.36	. 344	3.66	.161
1.81	. 487	3.95	.279
. 78	.447	.612	. 147
1.75	. 413	2.26	.265
1.83	.383	2.46	. 257
1.45	. 445	1.49	. 236
1.56	. 433	1.45	. 22 e
1.66	.472	1.79	. 245
1.36	.492	1.55	. 245
1.30	.485	1.20	. 206
1.90	. 494	1.91	. 316
2.64	. 199	2.28	. 240
1.88	. 411	1.69	. 327
1.62	.492	1.92	. 365
1.42	.879	1.31	.373
2.12	. 594	2.86	. 304
1.39	. 624	1.47	. 311
1.71	. 489	2.36	.362
1.81	.476	1.43	. 275
2.58	. 441	2.10	. 262
1.78	. 498	1.66	. 2.50
1.21	. 364	1.37	.212
1.84	.796	2.2E	. 314
1.85	. 478	1, 83	. 281
1.52	. 463	2.54	.216
1.73	.415	2.76	. 251
1.42	. 473	1.61	.243
1.24	. 688	1.28	. 248
1.17	.533	1.45	. 265
3.66	.476	2.90	. 242
1.42	. 307	1.42	. 167
1.45	. 298	2.08	.189
1.26	. 265	2.04	.184
1.26	. 363	2.62	. 268
1.21	. 597	1.68	. 239
1. 51	. 492	2.10	. 297
2.53	.384	2.14	.219
1.57	. 481	1.61	.341
1.76	. 382	1.56	.189
1.12	. 221	1.69	. 262
1.64	-523	1.21	. 28 F
1.077	. 229	1.52	.148
1.24	. 396	2.24	.155
1.85	. 415	3.29	. 235
1.25	. 428	1.43	. 202
1.58	. 432	1.83	. 270
1.25	. 493	1.84	.245
1.64	.448	1.97	. 229
2.08	.402	1.96	.218
2.10	.443	1.94	. 285
1.19	.412	1.38	.216

1.5	9.2
2.6	14.1
3.8	7.9
4.2	15.1
1.2	7.3
3.0	16.7
2.9	16.4
2.1	16.9
2.1	13.4
2.4	16.9
2.2	14.6
1.9	12.3
2.8	25.2
3.4	18.5
2.6	23.5
2.6	25.8
2.3	19.3
3.1	24.1
2.2	17.5
3.2	21.5
2.2	17.5
3.2	20.9
2.6	18.0
2.0	15.5
3.5	23.9
2.8	19.8
3.2	14.3
3.5	17.080
2.6	12.9
2.2	16.3
2.3	15.6
4.6	27.6
2.1	11.2
3.6	12.2
2.9	11.9
3.7	12.1
1.9	10.6
3.61	15.6
3.2	15.5
2.7	16.8
2.3	11.9
2.8	14.1
2.2	15.9
2.2	7.5
3.2	11.4
5.1	14.7
2.3	10.5
2.7	14.7
2.8	12.5
3.6	11.4
2.7	16.919
2.9	19.1
2.1	12.4

	209	$2 \cdot 46$. 883	2.24	.244	3.3	16.3	80	24.6
	2 eg	1.81	. 550	1.86	.322	2. 6	16.2	129	21.1
	291	1.60	. 464	1.89	. 268	2.7	13.5	80	17.5
,	98	2.16	. 481	1.82	.273	$2 \cdot 6$	15.9	80	21.6
	295	1. 56	. 468	2.32	.249	3.3	13.6	94	20. ${ }^{\text {i }}$
-	24.4	1.94	. 419	1.79	. 195	2.7	10.7	87	17.5
	295	. 760	. 477	. 817	.259	1.6	11.8	40	17.2
	296	1.87	. 486	. 060	.274	1.7	12.5	62	1P.E
	297	.806	. 456	. 848	. 229	1.4	10.6	60	14.2
	299	1.25	. 466	1.29	.277	2.0	12.8	129	18.2
	299	1.35	. 409	1.99	. 237	2.E	12.1	120	19.0
	300	2.34	.414	2.76	. 277	3.9	17.6	89	23.1
	301	1.63	. 520	1.EC	. 331	2.6	17.7	93	23.
	302	1.43	. 487	1.61	.274	2.5	14.4	94	E\%.6
	365	2.24	. 439	2.16	. 264	3.2	18.1	89	26.3
	387	2.14	. 294	1.82	. 2085	2.6	14.2	69	17.8
	ए6e	1.61	. 334	1. 68	. 19%	2.4	11.9	47	29.1
	369	1.12	. 395	1.54	. 217	2.2	10.9	71	17.6
	310	1.53	. 447	2.48	. 234	3.4	13.5	80	18.9
	311	2.20	.440	2.32	. 241	3.2	13.5	84	2. 7
	212	1.94	. 463	2.04	.276	2.9	14.5	82	9,9
	215	1. 58	. 468	1.61	.215	2.2	9.2	89	31.2
	317	1.15	.469	1.63	.156	1.7	8.0	112	$2 \mathrm{E}, 1$
	318	1.94	. 423	1.58	.215	2.2	11.9	80	18.9
	819	1.65	.465	1.44	. 249	2.2	14.9	66	E. 6
320°		2.26	. 420	1.96	. 225	2.7	14.1	80	2 E
21		1.76	. 441	1.94	.236	2.8	14.1	89	15.9
32		1.09	.643	1.30	.295	1.9	12.1	84	176
22		2.64	. 411	2.28	. 261	3.0	17.4	87	玉,
324		1.36	. 320	1.24	.103	1.8	6.0	75	12.4
35		1. 92	. 340	. 816	.104	1.3	4.9	58	10.9
36		1.80	. 569	2.02	.229	2.6	11.3	80	19.3
3 C		1.30	. 568	1.37	.272	2.1	13.4	73	31.4
32		. 6.1	. 369	1.41	.122	1.9	7.6	80	14.3
32.		.625	. 213	1.30	.148	1.7	9, 0	133	10.7
330		1.24	.299	1.76	.291	2.3	11.1	91	16.9
331		1.26	. 302	2.10	.184	2.3	9.8	61	22. 9
32		. 869	. 920	.941	. 0775	1.5	3.8	73	\%'2
334		1.40	.309	1.93	. 209	2.5	15.4	87	16.9
385		1.51	. 338	1.75	.285	2.3	18.1	72	20.3
327		1.36	. 283	1.95	. 265	2.4	14.4	60	28.3
395		1.73	. 211	4.57	. 15	5.0	12.7	67	45.1
346		1.56	.324	1.90	.264	2.5	31.9	51	19.3
342		1.74	. 222	2.44	.170	2.9	15.5	91	51.6
343		1.17	.350	1.29	.171	1.9	15.0	10.5	13.8
344		. 987	.319	1.28	. 228	1.8	13.8	116	14.2
345		. 931	. 276	1.75	.221	2.3	12.7	129	13.8
346		2.15	. 376	1.72	.277	2.6	19.1	83	1.1
346		1.61	. 366	1.96	.212	2.6	14.2	7	21:3
349		1.85	. 328	1.47	. 261	2.2	14.9	9%	243
$3 \mathrm{6b}$		2.62	. 323	1.74	. 258	2.5	25.4	50	ES. 1
351		. 96	. 167	1.40	. 205	1.8	3.9	73	56.9
352		1.27	. 299	1.79	. 202	2.3	17.4	93	20.8

350	． 595	.8199	31.3	.8436	41.9	17.3	62	E3．5
555	1.75	． 215	4.09	． 211	4.8	21.6	71	35， 3
356	1.23	． 167	14.6	． 101	16.8	18．6	61	日于．
95	2.08	． 3 ET	2.62	． 209	3.4	17．4	89	82．4
359	1.80	.478	1．67	． 272	2.2	16.0	64	92．4
Set	1.32	． 175	． 941	． 0504	1.2	3.8	116	日． 6
661	3． 16.	.318	2.92	． 293	3.7	26.6	90	35.9
362	1．76	.367	2．50	.232	3.1	16.9	71	18．
363	2.14	.333	4.13	． 391	5.4	24.5	73	41.3
364	2.72	.196	2.26	.153	2.7	12.8	95	32.0
36.6	.255	． 0.69	24.6	． 0565	25，0	16.4	49	136
$36 i$	1.17	． 486	1.10	． 314	1.6	16.6	78	176
368	1．42	.297	2.16	.121	2.4	E．E	98	15.7
369	1.30	． 438	2.56	.244	3.1	15．6	95	17．8
370	2.24	． 465	2.34	.225	2.9	20.2	84	19．2
371	2.56	.351	2.20	.211	2.6	18， 7	93	18．4
372	1．20	.236	． 777	． 0973	1.4	B． 2	64	13．3
373	1.44	.437	1.23	． 256	1.8	15．6	58	20． 2
375	.911	． 448	.740	.246	1.4	11.7	42	19.5
376	2.30	.390	1.79	.211	2.4	16.4	55	16.3
37	1．56	.321	1.41	.234	2.1	12．3	45	22a
36	2.68	.352	1.52	.215	2.3	17．9	$4 E$	88.2
3 E	1.15	－ 301	2.62	.163	3.3	12.9	43	18．
384	.698	.296	1.53	． 0959	2.0	9.6	30	15， 5
86	1．22	.311	2.80	． 296	3.8	13．0	45	29.
368．	1.45	.391	1.59	． 234	2.3	15.8	72	29.6
9e9	1．55	.493	2.34	.298	3.6	12.8	64	33.9
996	1.23	． 319	1． 06	.185	1.6	12,8	62	21.3
291	1.49	.336	1.97	.185	2.4	15.4	56	276
394	． 996	.152	18,7	． 6768	19.3	18．	46	77
397	1．56	.245	2.12	． 159	2.7	11.8	6.4	24.6
399	1．16	． 483	1.23	． 233	1.9	14.1	56	19.8
406	1.40	． 408	3.54	.159	4.7	14．7	56	41.9
462	1.19	.319	1.68	． 215	2.3	12．5	56	34.1
404	1.17	． 248	． 823	． 124	1.4	9．4	72	14．7
465	． 971	.523	． 874	． 238	1.6	15.1	55	17.1
408	1.58	． 273	3.04	． 202	3.9	15．0	87	90．1
416	.846	． 424	.752	.220	1.3	14.8	47	17×1
412	1.48	.307	1.57	.176	2.1	11．8	61	26．${ }^{\text {a }}$
413	． 763	． 325	.873	.144	1．3	7.4	56	15．3
414	1.35	． 426	2.36	.234	2.9	16.9	45	29.1
415	1.41	． 389	1.68	.247	2.3	15．8	74	19.9
417	1．84	.391	1.46	.279	2.1	27.4	55	20.6
416	1．25	.319	2.48	.197	3.0	13.5	42	25.1
420	1.46	.343	1.74	.153	2.4	10.2	64	36． 3
423	1．25	． 414	1.55	.244	2.3	14.2	59	23．1
$42+$	1.36	.429	1.84	． 261	2.4	17.4	61	25.0
425	1.19	． 488	1.67	.350	2.4	22.5	55	21.6
427	1．83	.483	1.36	.240	2.0	15.1	49	26.4
423	1.85	.869	1.13	.265	1.8	17.4	64	22.0
429	． 87.	． 391	1.13	.217	2.0	13.5	58	29.3
430	1．65	． 436	1．56	.277	2.1	21.3	5%	86． 4
431	.919	． 269	1.29	.136	1.9	i2． 8	32	34.1

432	1.62	.286	. 743	.192	1.4	12.8	44	15.5
494	1.52	.199	E. 5.4	. 134	5.3	1 10.1	44	24.6
485	2.36	. 511	3.51	.199	4.2	26.6	49	26. 6
4,	1. 56	.310	1.62	.176	2.2	11.5	46	16.6
437	. 66	. 304	. 995	.185.	1.5	10.3	48	18.5
435	1.68	. 252	2.09	.142	2.7	11.6	45	15.7
435	. 998	. 317	1.23	.152	1.7	19.6	75	14.4
449	1.05	. 280	2.86	.197	2.6	12.8	82	1E.4
441	1.35	. 271	1.26	. 176	2.3	16.6	92	19.8
442	2.14	.320	1.34	. 22e	2.8	22.7	63	25.3
443	2.62	. 334	1.48	. 248	2.7	18.9	62	21.3
444	3.10	.259	1.98	. 194	3.3	15.0	73	22.2
445	1.76	. 382	1.24	. 260	2.3	20.9	73	18.9
446	1.83	. 366	2.22	. 226	3.8	15.8	84	24.1
447	1.58	. 362	2.06	. 363	3.2	18.6	80	53.2
448	1.29	. 294	2.14	.272	3.6	14.7	73	21.9
449	1.98	. 392	1.85	. 315	3.2	27.0	97	21.7
450	1.48	. 286	1.67	. 264	2.7	14.5	71	21.2
451	1.18	. 22 E	1.83	. 236	2.9	1.4.4	108	18.1
462	1.16	. 352	1.56	.215	2.6	1.1 .6	8	24.6
453	. 767	. 2.5	.821	. 0971	1.3	6.7	92	9.7

H. E. WHHL LTJ. - SOILS

MATES: HOLOM
FHALYSIS JHTE: 101075
THPE NU:
27

CLEHT
189
101
102
193
104
105
166
107
159
169
119
111
112
113
115

CF	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FFH} \end{aligned}$
84.9	H. D.
28.i	H.I.
86.	1
37:	1
49.3	$\mathrm{H}_{\text {W }} \mathrm{II}$,
99.5	8
10.4	3
5.6	3
51.6	2
E. 1	1
38.7	H. II.
50.8	H.In.
$4 \mathrm{E} \cdot 2$	1
49.1	1
33.7	1

F	AG
PFW	FFH
176	0.71
72	0.61
111	0.71
154	1. 10
142	1. 10
189	1.10
41	0.52
227	1.10
208	1.19
525	1.58
132	1.00
204	1.05
354	0.61
276	1.60
96	1.095

TI	00
PFH	PFH
940	7.7
956	6.7
1170	7.8
952	7.3
1620	10.2
94.3	12.3
783	3.4
1186	9.6
1180	8.2
1820	16.8
1820	9.5
1136	11.3
918	8.9
1046	10,3
1090	B. 4

EFHO HO
13
FILE HO:

$\underset{\mathrm{FFD}}{\mathrm{HH}}$	$\begin{gathered} \mathrm{EE} \\ \mathrm{FH} \end{gathered}$
104	7. 16
100	E. 16
110	0.16
116	0.20
130	日. 20
150	9.20
96	H:5.
130	0.29
120	0.13
234	9.25
150	0.22
160	0.18
160	0.22
150	0.29
150	6. 16

117	46.9	1	256	1．19．	962	13.6	200	0.25
119	54.4	5	290	1.90	938	12.3	160	0.29
120	30.4	H．II．	227	0．71	918	8.9	130	Q． 24
121	36.7	2	321	1.00	899	8.3	150	0.20
12.4	8． 7	H． 1.	189	1．56	1040	7.8	159	H．TI．
125	30.5	H．I．	153	0.56	958	$E .4$	156	0.16
12 t	41.3	1	16.7	1.65	1159	7.4	160	0.20
129	29.4	1	197	0.61	955	6.9	16.9	0.16
129	34.9	1	233	1． 05	922	8.4	160	0.2 c
130	36.6	H．II．	271	1.65	1006	9.0	150	0.29
182	43.0	H． 0.	179	0.56	979	9.6	156	9.11
135	31.6	1	169	1.16	824	7.5	120	0.10
134	43.1	H． 1.	165	1.34	945	9.2	160	0.22
135	46.6	1	232	1．5\％	951	11.3	190	0.29
136	36.3	H．H．	98	1.10	1680	8.4	190	0.16
137	32.3	H．II．	216	0．56	794	7.1	160	6.11
139	36.8	1	264	1.00	881	10．1	160	6.13
140	33．8	H．II．	146	0，71	1090	7.1	160	9.16
142	29.4	H． 1.	235	0.61	931	7．6	150	0.16
143	37.9	H．I．	112	0.71	997	E． 3	170	1． 16
144	46.6	H． H ．	102	1.60	911	9，9	130	$\theta \cdot \mathrm{B}$
145	48.5	H． $\mathrm{IN}^{\text {，}}$	90	0.65	869	8．3	80	H． H
146	17．9	1	62	6． 71	656	4.4	71	6． 11
147	58.5	1	228	1.34	976	10.2	150	b． 25
148	33.7	1	197	1.905	1070	7.8	150	6． 20
149	39.8	1	139	1.05	1180	7.8	150	6． 2
150	49.1	1	287	1.16	1080	18． 4	150	0.25
151	43.1 ．	H．Di．	232	0.71	846	10.2	110	B． 28
152	35.5	H．T．	166	0.71	1010	7.6	J6．	4． 16
153	4.4	H．I．	77	1.05	896	7.0	150	b． 26
154	47.4	H． I ．	262	1.10	840	7.8	E6	日． 20
155	59.6	z	336	1.16	1200	13．0	130	9．49
157	36.1	H．II．	256	0.61	884	6.4	120	0．20
159	44.6	H．I．	181	6， 66	1050	9.5	150	－星． 16
160	2G． 2	1	98	6，42	928	6． 6	186	H．
162	39.9	H． 17.	119	1.58	617	6． 7	136	9．15
164	32.2	H．II．	139	0．6．	896	E， 5	150	B，E
165	46.7	H．I．	111	0.71	927	9.7	150	0.16
167	$3 . \%$	2	174	0.61	985	6.5	150	14.10
163	25.6	H．I．	82	0.56	780	4.4	90	Q． 11
169	39.8	H． H ．	202	0． 5.5	822	7.1	100	0.16
176	30.1	5	150	0.71	683	6.3	96	0.13
172	24.1	H．J．	90	0.61	890	4.9	110	月． 11
174	51.3	H．D．	205	1.19	1050	7.6	156	0.43
176	28.7	H． 1.	120	0．61	1050	7.8	186	6． 24
177	48.4	2	183	1． BE_{5}	1160	9.4	208	0.85
176	43.6	H．II．	167	1.10	1090	8． 4	218	日． 2
179	58.5	N．IT．	185	1.16	1220	11.8	216	0.23
180	30.3	H．II．	201	0．56	922	6.4	86	日． 15
181	31.6	H．I．	211	0． 6.1	893	7． 9	129	6． 16
162	33．2	H．II．	132	6． 5.2	875	6.9	50	6． 0
189	43.0	2	175	1.65	1030	9.4	160	0． 43

164	41.1	．	154	0.71	1020	E． 1	168	0.25
185	33．9	2	156	0．82	1610	6.3	130	0.11
165	45.8	N．I．	216	0.61	1050	10.5	180	0.0
187	629	H．I．	167	1． 6.10	1360	10.2	190	0． 20
169	6.6 .4	H．1．	216	0.71	1230	9.4	184	0.18
190	49.9	H． H.	126	1． 11	1110	9.1	206	0.22
191	59.2	H．T．	275	1．1E	1304	12．5	2.0	0.27
193	88．8	1	126	1．11	1300	10．1	210	日． 2 e
194	72．	3	396	1．56	1340	14.3	260	0.48
195	71.9	1	260	1．46	1730	16．7	2 ca	9．32
197	46.3	z	119	1．26	1550	9.3	236	6． 27
198	4 E .0	1	181	1.11	1300	11.5	260	0．46
199	49.2	H．I．	218	1．16	1360	9.7	250	Q．29
200	48.8	z	126	1.11	1540	8.7	259	8.27
201	62． 5	H．II．	16.4	1．06	1210	11.1	200	9．27
20	42.6	1	184	0．66	1129	8.4	206	Q． 24
203	44.01	H．I．	92	1．11	1220	9.5	260	8．32
204	47.5	2	165	1.15	1560	9.8	230	0． 48
206	49.7	U． 1.	112	1.11	1450	9.3	260	8． 2 ＇
207	4 ab	E	433	1.16	1910	9.9	214	日． $2 .$.
269	203	1	344	1.76	2880	29.5	310	0． 4
211	4.9	1	1 Ec	1.11	1390	9.5	250	月．\％
213	45.8	1	106	1.11	1410	9.2	246	日， a^{3}
214	46.8	H．I．	99	1.16	1150	7.7	150	4．19
215	44.9	2	139	1．06	1300	9．0	180	b．\％
215	49.6	1	195	1.11	1280	16.7	250	日． E^{2}
218	49.9	$\mathrm{H} . \mathrm{H}=$	241	0.66	1220	9.1	2 ta	E． 24
219	32．5	1	57	0.66	1310	5.6	200	8.28
220	48.9	H．I．	169	0.76	1330	8.6	210	0．32
221	54.2	1	257	1.11	1420	7.5	260	0． 2 c
29	P． 1	H．II．	493	1． 16	1606	10.5	220	9．32
224	27.5	1	55	0.61	1340	4.7	200	日． 15
225	5.8	1	150	1.11	1360	± 0.0	180	9．27
226	50.9	1	213	1． 16	1270	10.1	200	日． 32
22	44.7	H, II.	165	1.11	1330	E． 1	216	0.24
29	39.9	H．D．	206	0．76	1349	7.7	2 Cb	9． 24
2 E	44.61	z	120	6．56	15619	9.4	230	Q．ts
2e2	45.5	H．II．	103	1． 11	14.46	8.5	230	0.22
25	39．3	14．1．	108	6.76	1246	8． 6	229	$0.2 e$
235	54.4	H． 1.	196	0.66	1249	11.5	230	Q，2e
23	63.6	$\mathrm{H} . \mathrm{J}$.	159	1.26	1996	10.2	2 c	0.92
37	55.6	H．I．	186	1.16	1115	11.2	206	0.20
239	61．2	H． H ．	184	1.16	1380	12.5	210	6． 24
246	45.9	H．T．	278	1.16	1205	18.5	294	0.26
241	54.3	H．J．	187	1.15	1375	13．2	250	6.45
24	45.2	H．T．	160	1．16	1550	10.9	270	6． 24
243	55.1		110	1.46	1669	11.5	280	0.25
245	48.6	N．T．	212	0.71	1320	10.8	269	日． 17
246	49.6	1	328	1．16	1420	11.7	29	6.47
248	44.1	H． 11.	161	1.26	1446	10．5	2 ta	0.31
249	88.4	H．II．	110	1.16	1060	9.1	286	6． 24
2514	57．2	H．II．	215	1.46	1390	13.9	270	6． 6.6

251	44.8	H.IN.	199	1.26	1230	11.5	280	E.31
252	52.8	1	113	1.45	1520	16.8	2E6	0.21
259	57.1	1	160	1.41	1500	11.3	269	0.24
294	4.2 .9	1	168	1.26	1446	18. 8	279	日.19
56	46. 1	H.I.	191	1.26	1320	11.2	316	0.24
29	46.5	H.I.	114	1.26	1330	11.1	300	b. 21
25	F\%. 0	H.J.	183	1.56	1440	18.0	290	8. 50
260	36. $\overrightarrow{7}$	1	135	0.99	1109	7.7	140	0.24
261	45.5	2	113	0.94	1340	7.7	180	d. 2
26	4 c .1	H. D.	123	0.99	1410	8.4	210	-.22
264	55.9	2	167	1.18	1730	8.4	206	9.20
25	35.8	1	159	0.99	1280	8.4	246	9.2\%
26e	46.6	H. D.	189	1.16	1370	9.7	250	0.24
267	47.8	1	313	0.99	1370	10.1	2 co	9.45
268	40.6	1	250	0.99	1360	9.7	240	9.24
270	89.7	1	131	0.99	1330	8.1	210	0.2 L
271	49.7	H. I.	121	0.99	1286	7.5	169	1.20
272	4 ba .7	H. II.	155	1.15	1190	9.5	220	4.24
274	34.1	1	93	1.18	1360	E. 2	176	1.20
276	47.7	H. 1.	122	1.18	1449	8.4	220	6.20
277	5.2	2	485	1.42	1960	12.1	210	8.24
279	36.7	2	112	0.99	1430	7.6	200	1. 29
281	41.2	H. 1.	175	1.68	1360	8.9	230	0.29
285	45.5	1	947	0.99	1290	8.9	210	日. 21
284	48.4	H. II.	1150	0.99	1250	E.6	200	0.9
255	47.8	1	391	1.19	1260	10.1	106	9.46
236	46.9	2	349	1.23	1250	11.1	246	0.49
287	36.4	H.II.	182	0.99	1140	$7 \cdot 6$	216	a.z
26s	56.5	2	252	1.23	1450	9.9	230	9.42
2 ga	44.7	$\mathrm{N} . \mathrm{O}$,	192	1.15	1450	11.2	250	b. 24
291	42.3	H. D.	170	1.28	1410	E. 5	220	9.39
292	44.3	1	373	0.99	1290	10.1	246	4.42
293	49.0	N. T.	193	1.23	1506	9.3	240	0. 3 4
294	41.5	H.I.	163	1.68	1389	7.7	230	0.42
295	29.9	H. I.	283	0.85	824	6.3	156	6. 1.8
296	35.6	$\mathrm{H}=\mathrm{IN}$	246	6.99	1039	7.7	210	a.2e
29?	2E.3	H. II.	168	0.89	933	E.E	220	0.29
299	36.8	H. In.	198	0.89	1839	7.5	190	9.ea
299	38.5	H.I.	188	9.95	1394	7.8	246	Q. 24
304	54.5	H, O.	259	1.23	1529	11.5	260	9. 51
301	43.5	$\mathrm{H} . \mathrm{II}$.	171	1.18	1450	9.0	269	D. 24
36	41.6	H. D.	246	1.65	1320	9.7	230	6. 2.4
365	49.6	H.I.	320	1.23	1430	11.5	236	0. 4.44
367	43.6	H. II.	192	0.99	1110	7.8	190	0.42
399	45.6	H.J.	283	1.68	1070	7.7	170	0. 24
309	35.8	H. I .	113	1.08	1349	6.9	236	9.20
310	49.6	H.D.	203	1.18	1350	8.9	245	9. 42
311	49.6	1	317	1.23	1509	9.5	256	19.46
312	45.5	H. 1.	826	0.95	1280	9.1	$2 E$	0.24
315	37.5	H. II.	1136	0.99	1290	7.7	260	Q. 34
317	30.4	H.II.	182	0.89	1180	6.2	234	0.22

	316	36.6	H．I．	281	0.94	1180	7.3	250	1．42
	319	49.3	H．II．	349	0.99	1046	8.9	236	日． 29
320		45.4	H．1．	369	1.15	1230	9.1	220	En 48
321.		43.2	H．II．	242	1.19	1390	8.5	269	0.42
32		32．6	H．II．	277	6.99	1169	8.2	300	0．23
3 S		$4 \mathrm{E}, 8$	2	261	1.15	1410	10.4	260	日． 55
34		S1．6	$\mathrm{H} . \mathrm{DF}$	92	0.94	1248	4.7	226	B． 20
25		23.9	H．I．	63	6.94	1136	4.2	230	0． 0
3 Es		43.6	H．J．	185	1.18	1390	8.4	256	0.29
327		35．9	H．I．	421	6.99	1130	8.1	260	6．22
3 c		31.3	H．I．	169	6.94	1120	4.5	140	0． 15
39		26.6	H．II，	155	6． 61	759	4.6	120	0.13
830		46.1	H． H ．	257	0.89	882	5.7	170	6． 20
391		4 Ca 1	N．D．	167	0.99	1300	6.7	180	1． 20
3 C		24.2	H． B	227	0.99	1586	4.9	150	日． 15
384		49.5	H．T．	155	1.28	1180	7.7	150	1．2．
ES		46.9	H．II．	111	1.98	1130	S． 1	190	6． 2.4
37		45.5	H．D．	175	1.42	1010	6.7	170	0.29
355		67．1	H． 1.	379	2.86	1040	11.4	160	0．42
348		55.2	H． H ，	194	1.26	1090	18.5	169	0．24
342		54.0	H．J．	256	1.76	974	8.3	170	6． 22
343		36.6	H．I．	252	0.89	853	6.9	176	0.20
344		37.1	H．I．	131	0.61	948	6.6	148	E． 1.15
345		4 Ca	H．T．	66	0.94	1180	6.6	196	0． 15
246		50.2	H, H,	273	0.59	1150	9.5	220	0.4 C
346		56.8	H．Ti，	265	0.99	1230	8． 5	230	Q． 2 c
349		45.6	H．II．	254	10．94	1136	7.7	220	1．29
358		5.2	H．I．	210	1.56	1160	9.7	230	b． 44
351		42.8	H． I ．	198	6． 89	1180	5.4	156	0.15
35		45.2	H．II．	162	0.99	1046	7.5	180	日．－2
353		190	1	1100	4.74	718	34.2	350	日． 6.6
355		68．2	H．II．	257	1.47	1346	13.4	246	0.85
355		123	H．II．	449	3.20	796	26.2	280	0． 55
3 t		54.5	H．I．	209	1.23	1376	9.1	236	0.44
359		40.5	H．I．	146	1．18	1270	8.6	246	0.24
360		27.2	H．I．	64	0.89	989	3.8	160	0．20
361		65． 3	H．I．	503	1.43	1480	13．6	240	Q． 60
362		60.3	H．I．	228	6． 98	1230	8.4	196	0.24
36		94.4	1	527	1．5\％	1970	13．6	260	6． 42
364		49.5	H．I．	310	1.90	1970	12.6	2119	9． 69
365		117	H．T．	477	4.31	179	29.8	300	E． 42
37		34.0	1	66	0.99	－150	5.6	270	日． 2 E
360		40.5	H．II．	124	1．28	1640	6.2	210	0.22
369		53.8	H．I．	153	1.28	1620	9.4	250	0.24
370		48.4	H．II．	229	1．18	1350	9.7	250	0.42
371		48.3	H．D．	221	1.68	1260	9.7	230	1． 46
372		19．2	H． I ．	114	0.57	851	$5 \cdot 6$	89	1．23
373		33.3	H．D．	320	6． 96	942	6.8	120	0.23
875		25．3	H．In．	73	0.55	923	5.4	120	E． 10
376		38.7	H．II．	161	0.67	1170	8.2	140	0.29
97		34．6	H．II．	92	0.67	1090	6.9	120	0.18

37.6	H． H ．	133	0.67	1250	8.8	120	0.25
41.3	H．D．	149	1．85	951	7.4	120	0.15
25.8	E	76	9． 5.7	849	5.8	90	6．
35.4	H．I．	166	1.34	868	10.9	120	8． 20
36.4	H．D．	162	0.6 .7	1036	7.4	110	6． 20
46.3	H．D．	197	1．65	1220	6.1	150	0． 2 C
27.5	H． I ．	142	0． 6.7	939	6.4	120	6． 20
31.8	H．II．	117	1． 00	985	8.3	149	9.26
108	1	809	3.36	628	26.3	190	6． 46
36.6	2	123	1.05	1429	6.4	140	6，16
22． 3	H．D．	94	1.05	1076	7.4	150	6.20
52.5	H．II．	303	1.48	1010	11.4	140	6． 6.29
33.1	H．1．	215	0． 5.7	910	7.0	120	9.29
26.5	H．I．	117	0.57	769	4.5	150	9．13
29.4	H．II．	186	1.85	967	7.5	150	6． 26
56.1	H． 1.	139	1.15	10130	16．6	150	19．23
23．7	H．D．	79	0．6．	932	5.8	150	6． 12
29.3	H．D．	126	0.67	1290	7.5	148	6．4．4
20.9	1	85	0.57	1090	5.4	110	日． 18
48.5	H．II．	216	1.44	1056	e． 8	140	9． 44
44.3	H． H	127	1． 06	1120	6.3	150	0.93
42.9	H．I．	170	1． 60	1076	9.8	140	0.25
39.6	H．D．	204	1.89	908	8.6	130	9．3
41.7	H．I．	342	9．9E	1110	7.6	130	9．${ }^{\text {a }}$
39.7	H．D．	369	1.89	1090	9.8	150	0.19
48.1	H．I．	552	1.89	1080	16．1	150	日． 3
51.1	H．II．	255	1.99	1060	10．0	156	0.19
38．2	H．I．	22	1.05	1016	Q．8	150	日． 5
36.4	H． II ．	90	0.96	949	F． 6	150	6.19
34．6	H．II．	135	0.96	978	7.2	130	0.13
41.2	H． 1.	194	1.15	1070	8.9	140	0.21
26.2	H．II．	82	日． 8.8	928	8.9	96	9， 14
25．1	H．II．	61	0.85	880	5.4	90	1． 1.5
55.5	H．II．	194	1.72	1010	9.8	130	日． 3
54.4	H．II．	356	1.39	773	11．1	150	0.49
31.9	H．II．	98	0.85	1320	6.7	120	0.21
24.5	1	75	0．57	846	5.4	120	6．11
35.2	it． 1.	124	日． 86	1220	6.3	120	0.19
28.5	2	273	日． 86	896	6.9	060	6．17
43.4	H．II．	172	0.86	1330	6.8	110	0．17
35.9	H．I．	214	0． 83	1069	7.4	90	0．23
42.7	H． 1.	265	0.83	1070	9.4	120	日．3\％
43.1	H．I．	135	1.02	1590	9.2	120	0．35
44.7	H．I．	208	1.62	1230	7.8	126	0.35
37.7	H．I．	170	1．42	1040	9.1	120	4． 36
44.9	1	191	1． 62	1229	7.4	149	日．35
47.4	H． 11.	535	1．62	1850	8.8	149	0.38
53.8	H． 1.	270	1.12	1688	8.5	140	6． 2 E
48.9	H． D	116	1.62	1296	10．2	149	0.35
41.5	10	340	0， 59	1030	6.8	110	0.19
45.7	N．II．	779	0.59	1220	8． 2	110	0.19
39.7	N．I．	353	0.59	1250	7.1	110	0.17
18.0	H．D．	42	0.40	938	3.1	90	0.09

MHTRA: HELDA AHFLTSIS JHTE: 101075 THPE HO: 27 FILE HO:

148	6.0	89.9	15.9	33.9
149	E.	65.3	15.1	39.2
156	7.7	124	17.8	39.8
151	7, 0	74.4	13.5	32.9
1 ¢	7.6	69.9	22.3	33.4
153	9.6	186	17.1	30.2
154	2 ec 9	1,450	10.4	32.9
155	13.9	151	13.4	48.1
157	12.7	105	12.4	29.5
159	7.6	80,6	17.1	36.6
160	2.5	162	24.6	30.0
162	13.9	144	12.3	31.2
164	7.7	175	15.3	$3 \mathrm{SH}_{2} \mathrm{z}$
166	10.1.	95.7	17.6	30.0.
167	E.E	55.5	19.5	23.9
169	E. 6	49.3	17.3	20.3
169	7.9	68.9	13.8	32. 9
170	13.8	189	9.2	40.2
172	7.6	91.5	12.7	45.6
174	19.8	77.2	13.8	46.5
176	$\overrightarrow{7} \cdot \vec{i}$	90.3	21.6	55.2
177	9.8	166	25.2	39.2
178	P. 3	95.6	23.1	35.6
179	10.5	92.4	21.3	47.8
180	5.8	5.3	13.0	35.2
181	9.8	115	21.9	28.4
182	11.01	96.7	18.7	30.6
183	10.3	225	21.1	35.2
184	9.8	103	18.5	33.4
185	7.3	160	17.4	33.2
186	13.9	146	20.5	33.4
187	27.6	134	17.6	44.5
189	16.4	157	19.8	46.8
190	8. 0	126	32.1	37.2
191	12.5	254	32.4	48.1
193	8.5	544	33.7	40.7
154	25.8	1270	40.1	50.3
195	4.7	160	40.5	T0. 2
197	4.7	118	38.6	56.6
199	F.7	146	38.8	43.5
199	Q.6	294	48.1	45.4
264	10.6	115	38.9	55.2
201	16.9	cgo	34.9	41.2
202	5.9	111	22.0	36.7
203	E.9	362	39.0	46.3
204	4.6	158	35.2	54.5
266	13.0	240	42.8	48.2
207	22.1	291	62.6	S2.6
269	37.6	825	25.6	120
211	4.5	135	37.5	47.5
218	7.6	177	37.2	48.9
214	5.	122	25.4	40.7
215	5.2	107	28.1	43.2
216	20.7	151	35.7	44.2

	\%quger
	A ${ }^{\text {a }}$
	שめ\% masemonn
	-

	289	E．0	139	40.4	47.3
	291	4.3	109	33.2	49.3
	2 a	5.8	127	33.4	43.6
．	293	4.4	120	35.9	5.5
	294	2.5	104	34.8	46．0
－	295	4.3	96．5	24.9	25.8
	296	4.4	175	31.0	32.2
	277	$7 \cdot 6$	139	27.9	28.5
	298	4.2	118	28.7	34.4
	298	4.1	112	21． 1	52.5
	360	3.9	128	35．2	53.3
	361	4.3	145	39.8	49.5
	362	6．9	169	35.1	43.4
	305	5.2	138	32.6	50.3
	317	4.6	83.7	23．0	42.9
	308	3.5	99.1	26.8	39.2
	369	2.6	169	33.5	45.6
	310	3.9	116	33.7	47.3
	311	3.5	120	33.2	54.4
	312	4.1	294	33.2	46.2
	315	4.4	129	84．7	43.4
	317	2.5	170	36.5	34.4
	318	3.5	101	31.4	39.4
	319	2．	189	26.8	34.6
320		3.5	115	29.8	42.6
321		3.5	106	34.2	50.1
玉2		3.5	129	38.9	37.4
玉玉		4.6	167	30.3	50.1
224		1.7	76.4	92．2	41.5
325		1.4	86.9	35.2	32． 7
326		2.8	154	37.4	51.4
327		4.3	286	37.0	36.3
328		1.8	E2．9	25．4	41.6
329		3.5	59.7	17．5	28．61
330		2．8	89，2	20.3	35.7
391		2.7	74.8	25，3	54.8
332．		10．3	76.7	31.4	52.2
334		6.7	231	26.2	4.7
395		6.7	121	27．0	41.8
697		15，	362	24.6	34.4
336		17.8	1010	21.8	44.0
349		40.3	156	23.0	41.1
342		P．E	923	20.9	33.2
343		4.4	130	25.4	33.3
344		4.6	104	24.6	35． 1
345		4.3	84.5	23.7	46.2
346		9.2	143	27.9	4 Ca
340		11.1	155	30.8	48.3
349		5.9	144	28.5	41.5
350		15．7	159	26．6	40.9
351		4.1	257	19，5	41.8
35		10.7	287	24.6	34.8
359		34.0	825	5.9	46.4
355		16．9	982	31.7	49.9
356		23.6	3656	19.3	41.5

359	6.7	179	28.4	46.4
359	6.1	240	36.7	41.3
364	2.3	43.4	19.8	39.4
3\%1	19.3	22	26.7	68.8
Sez	7.6	97.4	22.4	49.7
3te	14.8	196	30.4	98.7
364	18.2	3780	25.2	46.2
	45.3	6610	5.4	21.4
3 E	3.5	136	37.2	34.4
368	2.7	79.6	30.5	67.7
30	7.6	108	35.8	66.5
370	5.3	92.7	30.4	52.2
371	E. 0	88.8	27.9	48.4
32	1.5	62.8	17.85	26.5
373	2.5	126	24.2	31.7
375	4.9	1.4	25.2	2 E .7
376	4.9	83.5	24.3	41.9
377	2.5	164	23.1	37.1
879	3.7	169	27.9	40.9
382	7. 6	114	22.3	34.8
384	4.1	221	24.1	22.7
386	11.2	1236	21.4	29.3
380	4.1	176	24.5	33.6
389	E. 1	139	26. 4	47.4
396	c. 4	122	20.8	50.7
991	6.7	334	21.9	31.6
894	36.1	1730	10.7	35.7
397	5.1	92.4	19.8	45.7
394	6.5	99.5	27.4	33.3
400	12.7	931	24.7	38.8
402	15.8	146	19.7	29.5
494	2.1	76.1	17.3	25.6
405	4 4 .4	398	23.4	28.6
468	7.5	229	19.1	39.2
418	6.5	162	25.9	27.1
412	3.9	118	21.3	43.5
413	2.5	160	24.7	34.7
414	12.4	573	27.6	38.8
415	9.4	463	28.1	45.6
417	5.9	126	24.4	36.1
418	5.3	PES	22.3	34.4
426	5.4	225	26.2	44.4
423	5.8	127	28. 1	37.7
424	7.8	275	25.9	42.6
425	7.8	125	28.6	48.6
427	6.7	697	36.7	36.6
426	5.2	158	24.6	32.1
429	5.3	157	25.6	34.0
436	E. 6	159	25.3	38.1
431	6.4	377	20.8	34.6
42z	5.1	80.5	22.4	28.2
434	9.3	256	19.5	44.8
435	16.1	442	24.8	28.9
436	2.5	68. 3	24.6	48.9

2.	164	2.8	1
2.5	74.8	19.6	49.3
5.5	P9,	20.7	65.1
5.7	165	2.3	40.6
3.7		-2.89	49.9
4.2	66.4	25.5	35.2
4.4	79.6	21.9	47.2
6.	85	86.1	. 4
8.2	30.9	27.8	50.4
1	$5 \cdot 18$	19.8	45.9
5.8	9.6	27.1	51
.	8.1	24.2	35.4

Please note:
1.) As,An,Sn,Te,Se, U,W,B,Rb,En,Mo - not detected.
2.) Si values are partial.
3.) K values are a bit high.
A. D. HBHL L.TA. - FOHES

MATET: GEGHHOS AHALYIS OHTE: $+11 \% 5$
FFHO NO: 137 GHAME

N. E. HAHL. LTM. - FGCRE

161	. 165	36.8	1160	. 0633	3.11	. 1801	2.68
189	.411	11.4	80	. 220	. 327	- 193	1.29
15	06	3.16	140	.219	. 165	. 0465	1.01
171	5.52	16.1	89019	1.60	1.85	3.67	4.86
178	7.30	2.31	7900	2.19	.531	3.98	5.72
1.6	5.96	2.83	9890	2.71	3.13	2.01	5.88
16	. 212	94.0	130	. 167	1.05	. 0971	2. 56
$1 \pm$	8.04	9.91	9490	1.34	. 996	2.15	4.92
195	. 78	30.8	120	. 968	1.33	.0541	2.02
20	. 3 ¢	25.8	160	.183	. 834	.104	1.78
205	E. 16	8.28	13300	4.65	4.13	2.56	6.20
219	5.48	5.16	7445	7.43	3.64	1.61	6.20
212	2, \%	2.69	11406	i. 48	. 535	4.16	6.48
21	5.80	10.1	10100	4.62	3.93	1.48	5.08
22	- 15	14.8	210	.153	1.43	. 9839	1.15
2.	. 2 c	18.3	90	. 218	.397	. 0745	8.99
2.	- 93	21.4	110	.298	1.20	. 0620	1.93
-1	-13	34.5	290	, 181	3.96	. 9652	2.35
236	13. 614	9.86	14500	3.12	3.39	1.72	5.84
24	. 157	23.2	110	. 143	. 562	. 0792	1. 76
27	5.80	13.7	7948	5.29	3.95	2.05	5.56
258	5.64	12.3	9136	5.25	3.64	2.35	5.60
262	5.68	14.5	16906	5.93	2.99	1.59	6.20
26	6, 6.4	13.1	12200	1.52	1.51	2.21	5.80
275	0.64	1.85	17660	. 925	. 569	4.86	5.84
27	5.89	11.8	13304	6.56	3.99	1. 24	6.60
27 b	6.12	11.2	15800	T. 21	5.34	1.20	6.28
280	8.98	7. 26	14086	4.85	1.20	2.53	6.64
\%e	6.24	9.61	22006	7.55	4.75	1.73	E. 69
290	6.60	11.8	13504	1.62	4.64	1.75	4.56
383	5.64	10.4	8736	7.14	3.38	1.16	5.84
904	.73	26.1	200.	. 640	. 694	. 296	2.21
866	6.12	10.6	10560	4.20	3.63	2.42	5.40
313	7.96		11400	.779	.763	3.21	5.44
614	5.44	12.2	14906	3.82	3.73	1.54	5.60
316	8.87	2.55	14600	5.66	. 768	3.19	F. 40
332	8.68	9.80	16500	4.26	2.84	2.67	5.68
356	4.24	13.8	1746	. 398	. 861	1.26	4.20
339	8.37	21.3	270	- 6465	1.28	. 187	1.48
341	656	28.8	269	. 66.5	. 361	. 0411	1.49
347	E.20	19.4	16200	3.98	1.35	1.37	6.64
354	. 46	30.9	140	. 1318	1.25	. 0557	2.19
358	. 168	38.9	90	, 111	. 453	. 9606	1.86
365	0,04	36.5	136	. 6 B 7	. 360	.9912	2.83
374	E.56	4.61	11796	2.15	.462	2.08	E. 84
378	.401	33.2	220	.457	1.60	.134	2.69
360	-179	\%.6	98	.758	. 544	. 95.62	1.37
39	5.68	3.73	2850	1.26	. 626	1.89	5.20
3 e	.316	88, 4	736	1.97	3.29	.101	3.57
385	.231	88.9	7560	. 459	2.74	.134	3,24
397	. 192	\%.	1406	.150	3.12	. 9902	2.52
39\%	. 255	13.6	80	. 349	. 820	. 0705	1. 69
393	.213	26.5	134	. 458	1.14	. 9858	2.09
355	. 28	23.2	284	.587	2.67	. 0765	2.69
356	. 25	25.7	1966	.893	3.56	. 0788	3.21
398	. 249	38. 4	834	. TEE	1. 06	- 1932	3.65
461	. 27	16.6	136	-167	. 688	. 1084	1.26
163	- 0 c c	18.4	156	.158	1.59	- 5352	1.26
496	.198	17.3	120	. 272	1.06	. 6469	1.39
$4{ }^{4}$. $2+5$	43.8	6730	1.47	3.89	.142	4.64
4 Ac	. 104	35.6	400	. 780	1.59	, 0577	3.22
411	6.0.4	F. 89	7370	9.97	3.81	1.16	7.28
416	.173	2.3	140	. 64.9	. 8620	.0450	1.28
419	.11;	SE. 8	1160	1.29	. 575	. 0913	4.12
421	4.76	13.3	2560	. 6.5	.885	2.23	3.35
120	6. 72	13.4	5710	1.38	1.07	2.70	4.80
426	. 127	16.4	69	. 1663	, 9896	. 5460	19.97
48	. 5	6. 0	1410	. 6863	1.16	.124	2.84

W. G. WAHL LTD. RF-137

SAMPLE NUMBER	Pb ppm	SAMPLE NUMBER	Pb ppm
114	4 :	247.	6
116	2	258	32
119	6	262	6
122	$\checkmark 2$	269	<2
123	<2	273	24
127	8	275	6
131	$<.2$	278	4
138	4	280	<2
141	8	282	8
156	< 2	290	4
158	2	303	<2
161	< 2	304	2
163	2	306	<2
165	20	313	6
271	8	314	<2
173	8	316	2
175	6	333	<2
188	<2	336	<2
196	< 2	339	<2
192	<2	341	8
205	6	347	<2
208	6	354	< 2
210	2	358	<2
212	16	365	< 2
217	< 2	374	6
222	2	378	<2
228	10	380	< 2
230	12	381	10
234	2	383	4
238	16	385	<2
244	2	387	< 2

W. G. WAHL LTD. RF-137

SAMPLE NUMBER

PAGE 2

Pb
SAMPLE NUMBER
'ppm

392	10
393	8
395	<2
396	<2
398	<2
401	<24
403	<2
406	<2
407	<2
409	<2
411	<2
416	<2
419	<2

Ministry of Natural Resources

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL
 TERURTIMAT DATA amammamem

900
Type of Survey (s) GEOPHYSICAEA GEOLOGICAL, GEOCHEMICAL Township or Area Map Area (B^{\prime}) Benton Township Claim Holder (s) W.G. Wahl Limited, 1101-302 Bay Street, Toronto,
Survey Company W. G. Wahl Limited.
Author of Report David G. Wahl, Consulting Engineer
Address of Author 1101-302 Bay Street, Toronto.
Covering Dates of Survey July 11 - July 13, 1975
Total Miles of Line Cut \qquad

SPECIAL PROVISIONS
CREDITS REQUESTED

ENTER 40 days (includes
line cutting) for first
survey.
ENTER 20 days for each additional survey using same grid.

Geophysical	DAYs per claim
--Electromagnetic	20
-Magnetometer	20
-Radiometric_-	
-Other	
Geological_ ROCK	40
Geochemical_Soil	20

1

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad Qualifications $63 \cdot 2859$ Previous Surveys

GROUND SURVEYS - If more than one survey, specify data for each type of survey

気

Instrument Geometric Total Field Proton Magnetometer
Accuracy - Scale constant \qquad ± 1 gamma
Diurnal correction method Base Station - time interpolation
Base Station check-in interval (hours)
1 hr
Base Station location and value All baseline stations std as Base Stations.

Instrument
Crone Radem VLF Unit
Coil configuration -

Coil separation \qquad
Accuracy $\quad 1^{\circ}$ of dip and 1% total relative field strength
Method: $\quad \square$ Fixed transmitter \square Shoot back \square In line \square Parallel line
Frequency_Cutler Maine $\quad 17.8 \mathrm{KHz}$
Parameters measured_dip angle or inphase response; Field Strength and Fraser Filtration valves.

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time Frequency \qquad

- Off time

Range \qquad

- Delay time
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POTENTIAL

Instrument \qquad Range
Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument
Values measured
Energy windows (levels)

Height of instrument Background Count \qquad
Size of detector \qquad
Overburden
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)
Instrument(s)
Accuracy
(specify for each type of survey)
Aircraft used
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude Line Spacing
Miles flown over total area Over claims only

Numbers of claims from which samples taken__ P 428951, P 428954

Ontario

Ministry of Natural Resources

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

RECEIVED

PROJECTS UNIT

Township or Area Mallard Township Map Area (A) Claim Holder(s)_W.G. Wahl Limited 1101-302 Bay Street, Toronto
Survey Company W.G. Wahl Limited.
Author of Report David G. Wahl, Consulting Engineer
Address of Author 1101-302 Bay Street, Toronto.
Covering Dates of Survey_uuly 9 (lincoutting to office) 1975

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad Qualifications \qquad Previous Surveys

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Instrument_ Geometric Total Field Proton Magnetometer
Accuracy - Scale constant_ ± 1 gamma
Diurnal correction method Base Station - time interpolation
Base Station check-in interval (hours)_All baseline stations std Base Stations (lhr)
Base Station location and value All baseline stations std as check Base Stations

Instrument Crone Radem VLF Unit

Coil configuration -

Coil separation -
Accuracy $\quad 1^{\circ}$ of dip and 18 total relative field strength
Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back $\quad \square$ In line $\quad \square$ allel line
Frequency_Cutler Maine 17.8 KHz

Parameters measured
dip angle or inphase response; Field Strength and Fraser Filtration valves.

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain Frequency Domain
Parameters - On time ___ Frequency

- Off time \qquad Range
-- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode

SELF POTENTIAL

Instrument Range
Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument
Values measured
Energy windows (levels)
Height of instrument Background Count
Size of detector \qquad
Overburden \qquad
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)	
Instrument(s)	
Accuracy	(specify for each type of survey)
Aircraft used	(specify for each type of survey)

Sensor altitude

\qquad
Navigation and flight path recovery method \qquad

Aircraft altitude \qquad Line Spacing
Miles flown over total area Over claims only

Numbers of claims from which samples taken_P 428943, P 428942, P 428944, P 428946

Total Number of Samples $\begin{array}{lr}\text { Soils } & 27 \\ \text { Rock }\end{array}$ total 34	: ANALYTICAL METHODS
Type of Sample_ Rock \& Soil	Values expressed in: per cent \square
(Nature of Material) Average Sample Weight Soils 80z; Rock 16 oz	per cent \square \square
Method of Collection \qquad Manual - \qquad random rock chips	$\mathrm{Cu}, \ldots \mathrm{Pb}, \ldots \mathrm{Zn}, \mathrm{Ni}, . . \mathrm{Co}, \mathrm{Ag}, \ldots \mathrm{Mo}, \mathrm{As}$,-(circle)
Soil Horizon Sampled__B-horizon	Others Total 31 elements as per
Horizon Development fair	Field Analysis (__ Appendix iv._tests)
Sample Depth 8 inches	Extraction Method
Terrain_gentle slope to the	h Analytical Method__ N/A
	Reagents Used
Drainage Development well established	Field Laboratory Analysis
Estimated Range of Overburden Thickn$20^{\prime}-50^{\prime}$	
	Extraction Method
	Analytical Method_n/A
	Reagents Used
SAMPLE PREPARATION	Commercial Laboratory (__tests)
Mesh size of fraction used for analysis - 80 Mesh	Name of Laboratory-Barringer Research
	Extraction Method 5 mls $\mathrm{HNO}_{3}-2.0 \mathrm{mls} \mathrm{HCL0}$
	Analytical Method_MRFAPE
	Reagents Used_ As above

General
See Appendix iv for detailed procedure

General
See Appendix iv for detailed
procedure

Ministry of Natural Resources

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

RECEIVED

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT	APR 151976
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT	
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC. PROJECTS UNIT.	

Type of Survey(s) GEOPHYSICAI GEOLOGICAL GEOCHEMICAL Township or Area Map Area ('E) MARION TOWNSHIP Claim Holder(s)_W.G. Wahl Inmited Survey Company W.G. Wahl Limited Author of Report David G. Wahl, Consulting Enginee Address of Author 1101-302 Bay Street Covering Dates of Survey July $\quad 9-10 \quad 1975$ Total Miles of Line Cut_used recon lines 1.66

SPECIAL PROVISIONS	DAYS
CREDITS REQUESTED	Geophysical per clai
ENTER 40 days (includes line cutting) for first survey.	-Electromagnetic -
	-Magnetometer__ 20
	-Radiometric
ENTER 20 days for each additional survey using same grid.	-Other
	Geological_ 20
	Geochemical Rock 20

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer \qquad Electromagnetic \qquad Radiometric (enter days per claim)

DATE: April 9,1976 SIGNATURE:
Author of Report or Agent

MINING CLAIMS TRAVERSED
List numerically

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations 108	Number of Readings __ 216
Station interval _ 501 (15 m)	Line spacing - 400^{\prime} (120 m)
Profile scale _ $1^{\prime \prime}$ to 200'	(1) to 20°
Contour interval	

Instrument \qquad
Coil configuration \qquad
Coil separation \qquad
Accuracy
Method:Fixed transmitter
\square Shoot backIn line Parallel line
Frequency (specify V.L. F. station)
Parameters measured

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument
Method \square Time Domain \square Frequency Domain
Parameters - On time___ Frequency \qquad

- Off time ____ Range \qquad
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode
\qquad

SELF POTENTIAL

Instrument___ Range
Survey Method

Corrections made \qquad

RADIOMETRIC

Instrument
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument
Background Count \qquad
Size of detector \qquad
Overburden
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results) \qquad
\qquad
\qquad

AIRBORNE SURVEYS

Type of survey(s)
Instrument(s) (specify for each type of survey)
Accuracy

> (specify for each type of survey)

Aircraft used \qquad
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude \qquad Line Spacing
Miles flown over total area Over claims only \qquad

Numbers of claims from which samples taken_P 428803; P 428804; P 428805; P 428808

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

RECEIVED

| TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT |
| :---: | :---: |
| FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT |\quad APR 151976

Type of Survey (s) GEOPHYSICAI/GFOLOGICAI GEOCHEMICAL.

Township or Area Map Area ('D') HEENAN \& MARION TWPS Claim Holder (s) W, G. Wah1 Limited 1101-302 Bay Street Toronto.
Survey Company W. G. Wahl Limited
Author of Report David G. Wahl, Consulting Engineer

MINING CLAIMS TRAVERSED List numerically

Address of Author 1101 - 302 Bay St. Toronto. 1975 Covering Dates of Survey July $\frac{5 \& 6 / 75-J u 1 y}{\text { (linecutting to office) }}$

Total Miles of Line Cut 1.50

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

Geophysical	DAYs per claim
-Electromagnetic	20
-Magnetometer_	-
-Radiometric_	-
-Other	-
Geological	40
Geochemicalock	20

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. Qualifications \qquad Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Instrument \qquad
Accuracy - Scale constant
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad

Accuracy 1° of dip and 1% total relative field strength

| | \square | Fixed transmitter | \square Shoot back | \square In line |
| :--- | :--- | :--- | :--- | :--- |$\quad \square$ Parallel line

Parameters measured__dip angle or inphase response with reduced Fraser Filtration where needed.

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Frequency Domain
Parameters - On time Frequency \qquad

- Off time Range
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing \qquad
Type of electrode

SELF POTENTIAL

\qquad
Survey Method

Corrections made

RADIOMETRIC

Instrument

\qquad
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument \qquad Background Count \qquad
Size of detector
Overburden
(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \qquad
Accuracy \qquad
Parameters measured \qquad

Additional information (for understanding results) \qquad
\qquad
\qquad

AIRBORNE SURVEYS
Type of survey(s)
Instrument(s) _ـ_ (specify for each type of survey)
Accuracy
(specify for each type of survey)
Aircraft used \qquad
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude \qquad Line Spacing
Miles flown over total area Over claims only

Numbers of claims from which samples taken_P 428792; P 428799

General
See Appendix iv
for detailed procedure.

General
See Appendix iv for detailed procedure.

Ontario

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

RECEIVED

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer \qquad Electromagnetic __ Radiometric
(enter days per claim)
DATE: April 9/76

Res. Geol.
Qualifications \qquad Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations \qquad Number of Readings \qquad
Station interval \qquad Line spacing
Profile scale \qquad
Contour interval \qquad

Instrument \qquad
Accuracy - Scale constant
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad

If Instrument \qquad
Coil configuration \qquad
Coil separation
Accuracy
Method:Fixed transmitter
\square Shoot backIn line
\square Parallel line
Frequency
(specify V.L.F. station)
Parameters measured

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Parameters - On time \qquad
Frequency Domain Frequency

- Off time Range \qquad
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing \qquad
Type of electrode \qquad

SELF POTENTIAL

\qquad
Survey Method

Corrections made \qquad
\qquad

RADIOMETRIC

Instrument
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument \qquad Background Count \qquad
Size of detector \qquad
Overburden (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)
Instrument(s) (specify for each type of survey)

Accuracy (specify for each type of survey)
Aircraft used
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude Line Spacing
Miles flown over total area Over claims only

Numbers of claims from which samples taken_ P - 428784, P - 428787, P - 429837
$\begin{array}{rr}\text { Soils } & 53 \\ \text { Rock } & 14\end{array}$ Todal 67 Type of Sample Rock and Soil
Average Sample Weight_Soils 8 oz, Rock 1602 Method of Collection_Manual Random rock chips
Soil Horizon Sampled_B- horizon
Horizon Development_fair to poor
Sample Depth variable
Tcrrain_low swampy conditions

Drainage Development_poor
Estimated Range of Overburden Thickness_30' - 50'

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis \qquad

- 80 Mesh

General
See Appendix iv
for detailed procedure

ANALYTICAL METHODS

Values expressed in: \begin{tabular}{ll}
per cent

p. p. m.

p.p.b.

\quad

\square

\end{tabular}

$\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Ag}, \mathrm{Mo}, \mathrm{As},-($ circle $)$
Others Total 31 elements as per appendix
Field Analysis (________tests)
Extraction Method
Analytical Method_N/A
Reagents Used
Field Laboratory Analysis
No.
Extraction Method \qquad
Analytical Method___N/A
Reagents Used \qquad

Commercial Laboratory (tests)
Name of Laboratory_Barringer Research
Extraction Method. $5 \mathrm{mls} \mathrm{HNO}_{3}-2.0 \mathrm{mls} \mathrm{HCLO}_{4}$
Analytical Method MRFAPE
Reagents Used As above

General
See Appendix iv for detailed procedure.

Type of Survey (s) ELECTROMAGNETIC
Township or Area Marion-Heenan-Benton-Mallard
Claim Holder (s) W. G. Wahl Limited,
1101-302 Bay St. Toronto.

Survey Company W. G. Wahl Limited.
Author of Report David G. Wahl, Consulting Engineer
Address of Author 1101 - 302 Bay St. Toronto.
Covering Dates of Survey As per attached list.
Total Miles of Line Cut $52.46 \ldots$ miles

SPECIAL PROVISIONS		DAYs Per claim
CREDITS REQUESTED		

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer

DATE: April 9/76
Electromagnetic

Res. Geol.
Qualifications \qquad
Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations__ 5540 ___ Number of Readings _ 5540

Station interval_ 50 feet (15 meters)_ Line spacing_ 400 feet (120 meters)
Profile scale __ $1^{\prime \prime}$ to 400^{\prime} $1^{\prime \prime}$ to 120 m

Contour interval \qquad

Instrument
Accuracy - Scale constant \qquad
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad
\qquad

Instrument
Crone Radem VLF Unit
Coil configuration \qquad
Coil separation
Accuracy $\quad 1^{\circ}$ of dip and 18 total relative field strength
Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back $\quad \square$ In line Parallel line
Frequency_Cutler Maine 17.8 KHz (specify V.L.F. station)
Parameters measured dip angle or inphase response with reduced Fraser _Filtration where needed.

Instrument
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method Time Domain
Parameters - On time___ Frequency \qquad

- Off time _______ Range
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode

MAI ARI)
PORCUPINE Yining Dintion
DISTRIC'I OF SUDBIIRY

DATE OF ISSUE
APR 211976
SURVEYS AND MAPPING
BRANCH

Scale 10(houns - 1 Inch

MARION
NOTE
400 Surtue Rights Reservation
round all : akes and Rivers.

DALE TWP.

MALLARD TWP (M.849)

U.S. STEEL INTERNATIONAL LIMITED					
	WOM	RIVER	PROJECT	${ }_{\text {drawn }}^{\text {dio }}$	REV
	MARION TWP. GRID CONTOURED FRASER FILTERED DIP ANGLES			${ }_{\text {Reaced }}^{\text {R. } \beta^{\text {ar }}}$	REV
				Daprove	dev
				$\underset{\substack{\text { N.T.S. } \\ 410 / 16}}{\substack{\text { a/e }}}$	REV
Clcrel	august	(Wㄷㅐㅐ)		${ }^{\text {owG. No. }} 124$	

[^0]: * The entire report is appended.

