2.2085

10165W9149 2.2085 MARION

ſ

(

Ċ,

FORM NO. LAZALLA REPORT PAPER . GRAND & TOV

010

RECEIVED

APR 1 5 1976

PROJECTS UNIT

REPORT

ON

PART I

WOMAN RIVER PROJECT PORCUPINE MINING DIVISION DISTRICT OF SUDBURY, ONTARIO

12 December 1975

W. G. Wahl Limited

.

Ø10C

TABLE OF CONTENTS

	Page
GENERAL	1
LOCATION	l
PROPERTY	l
TOPOGRAPHY AND DRAINAGE	6
TRANSPORTATION	7
HISTORY	8
REGIONAL GEOLOGY	12
MAP AREA "A"	16
RECONNAISSANCE PROGRAM	18
ANOMALY 1	19
ANOM7.LY 2	19
DETAILED PROGRAM	19
GEOLOGY	20
ELECTROMAGNETIC SURVEY	21
Anomaly 1	22
Anomaly 2	22
TOTAL MAGNETIC FIELD GRADIENT STUDY	23
GEOCHEMICAL INVESTIGATION	24
CONCLUSIONS	28
RECOMMENDATIONS	29

.

FORM NO. L42-811-P REPORT PAPER . GRAND & TOV

CONTENTS continued:

MAP AREA "B"	34
RECONNAISSANCE PROGRAM	34
ANOMALY 3	37
ANOMALY 4	37
ANOMALY 5	37
DETAILED PROGRAM	38
GEOLOGY	38
ELECTROMAGNETIC SURVEY	39
Anomaly 3	40
Anomaly 4	40
TOTAL MAGNETIC FIELD GRADIENT STUDY	41
GEOCHEMICAL INVESTIGATION	42
CONCLUSIONS	46
RECOMMENDATIONS	47
' MAP AREA "C"	50
RECONNAISSANCE PROGRAM	52
ANOMALY 6	53
ANOMALY 7	53
ANOMALY 8	53
DETAILED PROGRAM	54
RIDGE BACK GRID	54
GEOLOGY	54

Page

FORM NO. L42-811-P REPORT PARES - GRAND & TOY

CONFENTS continued:

	Page
ELECTROMAGNETIC SURVEY	56
Anomaly 7	57
TOTAL MAGNETIC FIELD GRADIENT STUDY	57
GEOCHEMICAL INVESTIGATION	58
CONCLUSIONS	60
RECOMMENDATIONS	60
FOOTHILL GRID	60
GEOLOGY	60
ELECTROMAGNETIC SURVEY	61
Anomaly 8	.61
TOTAL MAGNETIC FIELD GRADIENT STUDY	62
GEOCHEMICAL INVESTIGATION	63
CONCLUSIONS	64
RECOMMENDATIONS	64
MAP AREA "D"	73
RECONNAISSANCE PROGRAM	75
ANOMALY 9	76
ANOMALY 9a	76
ANOMALY 10	76
ANOMALY 11	77
ANOMALY 12	77

CONTENTS continued:

FORM NOULIAZED DEPORT PAPER - GRANDALON

· · · ·				Page
DETAILED PROGRAM	٠	•	•	77
CLAIM LAKE GRID				78
GEOLOGY	•	•	•	78
ELECTROMAGNETIC SURVEY	•	•	•	79
Anomaly 9	•	•	•	80
Anomaly 9a	•	•	•	80
Anomaly 10	•	•	•	81
TOTAL MAGNETIC FIELD GRADIENT STUDY	•	•	•	81
GEOCHEMICAL INVESTIGATION	•	•	•	83
CONCLUSIONS	•	•	•	84
RECOMMENDATIONS	•		•	84
BOUNDARY GRID				84
GEOLOGY	•	•	•	85
ELECTROMAGNETIC SURVEY	•	•	•	85
Anomaly 11	•	•	•	86
Anomaly 12	•	•	•	86
TOTAL MAGNETIC FIELD GRADIENT STUDY	•	•	•	87
GEOCHEMICAL INVESTIGATION	•	•	•	88
CONCLUSIONS	•	•	•	90
RECOMMENDATIONS	•	•	•	90

-

CONTENTS continued:

FORM NOL LED BILLE REPORT PARER - GRAND & TOY

MAP AREA "E"	92
RECONNAISSANCE PROGRAM	94
ANOMALY 13	95
ANOMALY 14	95
ANOMALY 15	95
DETAILED PROGRAM	96
GEOLOGY	96
ELECTROMAGNETIC SURVEY	98
Anomaly 13	98
TOTAL MAGNETIC FIELD GRADIENT STUDY	99
GEOCHEMICAL INVESTIGATION	101
CONCLUSIONS	102
RECOMMENDATIONS	103
COST ESTIMATE - PHASE II - DIAMOND DRILLING .	105
APPENDIX I - ELECTROMAGNETIC VLF TECHNIQUE	i
APPENDIX II - FRASER FILTRATION METHOD	ii
APPENDIX III - TOTAL MAGNETIC FIELD GRADIENT STUDY	iii
APPENDIX IV - GEOCHEMICAL INVESTIGATION	iv
APPENDIX V - REPORT BY W. G. WAHL LTD. 1967 .	v

Page

Suite 1101, 302 Bay Street Toronto, Ontario M5H 2P3

12 December 1975

Mr. J. F. Machamer Manager of Exploration - Canada U.S. Steel International Ltd. 12th Floor 7 King Street East Toronto, Ont.

Dear Mr. Machamer:

PEPORT PAPUL

L41 8 1 - D

ON NOO-

Submitted herewith is our final report on:

PART I

WOMAN RIVER PROJECT PORCUPINE MINING DIVISION DISTRICT OF SUDBURY, ONTARIO

Part I consisted of a two phase exploration program covering seventy-four mineral claims and five patented mineral claims located in the four corners area of Mallard, Benton, Heenan and Marion townships. For ease of presentation only, the claims have been divided into five map areas lettered clockwise from the southeastern claims. This area is underlain by assorted acid to intermediate volcanic rocks, banded iron formation and younger granite and diorite. These rocks are folded into an anticlinal structure whose axial plane strikes and plunges steeply to the west-southwest and dips steeply to the north-northwest.

The first phase of this exploration program consisted of the establishment of a reconnaissance grid followed by an electromagnetic survey, the purpose of which was to define the regional extensions of known anomalous areas. Sixteen anomalous, conductive zones were mapped during the reconnaissance program, twelve of these zones were further defined during the second phase of the exploration program.

The <u>second phase</u> consisted of a detailed, systematic evaluation of these twelve zones. This entailed the development of a grid system normal to the regional strike of the conductor followed by an electromagnetic survey with Fraser Filtration Plots, a total magnetic field gradient study and a geological survey. As an integral part of the geological investigation, whole rock and soil geochemical samples were collected for analysis in an attempt to determine the causative body of the conductive zone.

The following is a breakdown of the twelve anomalous zones as to map area and inferred causative body.

MAP AREA "A"

The causative body of Anomaly 1 is thought to be a zone of sulphide mineralization associated with the contact between the highly chloritic dacite tuff mapped to the south and the sericitic rhyolite lapilli tuff mapped to the north.

The causative body of Anomaly 2 is thought to be a zone of disseminated sulphide mineralization associated with a dacite tuff horizon.

Anomalous rock geochemical results in zinc and copper are associated with both these anomalies.

MAP AREA "B"

FORM NO. LA2 811 P REPORT PAPER

The causative body of Anomalies 3 & 4 is thought to be a zone of sulphide mineralization associated with a chloritic andesite tuff. Anomalous rock geochemical results in zinc and copper are associated with both these anomalies.

MAP AREA "C"

The causative body of Anomaly 7 is thought to be the contact zone between the white to light-grey, banded chert and the overlying andesite.

The causative body of Anomaly 8 is a thinly banded iron formation containing numerous grey chert bands, with considerable pyrrhotite and pyrite.

In general, Goodwin has estimated the iron content to be 30 - 40 percent at the base of the formation and 5 - 10 percent at the top. The following table, after Goodwin, illustrates these relationships in descending stratigraphic sections. Iron Formation, Underlying the Large Ridge in Claims WS 8 & 9 White to light-grey, banded chert 70 - 200 feet Dark-grey, banded chert with jasper zones 300 - 600 feet Dark-grey, banded chert with magnetite zones 100 - 600 feet 470 - 1400 feet

MAP AREA "D"

The causative body of Anomaly 9 is the contact zone between the thinly banded jaspery iron formation and the overlying andesite.

The causative body of Anomaly 9a is thought to be a modestly mineralized grey chert horizon lying within the iron formation.

The causative body of Anomaly 10 is thought to be the southeastern contact zone between the iron formation and the underlying rhyolite breccia.

MAP AREA "E"

FORM NO. URTAILE PEPORT PARKH - GRAND &

The causative body of Anomaly 11 is a banded jaspery iron formation containing numerous grey chart bands, with considerable disseminated pyrite.

The causative body of Anomaly 12 is a heavily pyritized grey chert containing up to 10 percent total sulphides.

It is recommended that the causative bodies of the twelve aforementioned anomalies be delineated by diamond drilling. It is also recommended that the iron formation be investigated by diamond drilling, in order to determine the tenor of iron present and thereby assess the economic significance of the iron range.

The total cost for Part II - Diamond Drill Program, is estimated to be \$316,890.00.

GENERAL

TOCVLION

The Woman River Property is located in northeastcentral Ontario within the Porcupine Mining Division in the District of Sudbury in Heenan, Marion, Mallard and Benton Townships. The property lies about 120 miles northeast of Sault Ste. Marie about midway between the towns of Chapleau and Gogama. Provincial Highway 101 passes 25 miles to the northwest and Provincial Highway 144 linking Timmins and Gogama passes about 30 miles to the east. Access to the property at the present time is via chartered air service out of Chapleau or Timmins. Private timber roads approach to within 2 miles of the property. (For index maps, see pages 2 through 4).

PROPERTY

ACVARTE LATING TO A CARDA

The property consists of a group of five patented and seventy-four unpatented mining claims which encompass a total area of 3920 acres of 6.125 square miles. These claims are contiguous with two exceptions. The first is the claim block in Mallard Township which is separated from the main block by a set of six unpatented mining claims (410615 - 410619, 410657) held by Noranda Mines Limited. The second exception is a set of two claims which were staked over ground previously held by Woman River Gold Mines Ltd. to the south of the main block. A breakdown of claims by township is as follows:

CLAIM LOCATION SKETCH

5.

HEENAN TOWNSHIP

	Claim	Date of Patent or Recording	Area				
Patented:	WS8 WS9 WS10 WS11 WS12	Dec. 1, 1908 Dec. 1, 1908 Nov. 26, 1908 Dec. 1, 1908 Dec. 1, 1908 Total:	320 acres 160 acres 320 acres 80 acres 80 acres 960 acres				
Unpatented:	428776-428795 (20 claims) 429837 428957-56	April 15, 1975 July 22, 1975 April 15, 1975	800 acres 40 acres 80 acres				
	(2 claims) 428963	April 15, 1975 Total:	40 acres 960 acres				
MARION TOWNS	SHIP						
Unpatented:	428796-428810 (15 claims)	April 15, 1975	600 acres				
BENTON TOWNS	SHIP						
Unpatented:	428948-428955 (8 claims)	April 15, 1975	320 acres				
	428958-428962 (5 claims) 428964-428965 (2 claims)	April 15, 1975	200 acres				
		April 15, 1975	80 acres				
		Total:	600 acres				
MALLARD TOW	MALLARD TOWNSHIP						
Unpatented:	428930-428947 (18 claims) 429838-429839 (2 claims)	April 15, 1975	720 acres				
		July 22, 1975	80 acres				
	• • • • •	Total:	800 acres				

GPAND A TO

ADAT PAPER

iel a car Cr 1

FORM NO

SUMMARY

Heenan Twp.		5	patented c	laims	960	acres
		24	unpatented	claims	960	acres
Marion Twp.	-	15	unpatented	claims	600	acres
Benton Twp.		15	unpatented	claims	600	acres
Mallard Twp.		20	unpatented	claims	800	acres
				Total:	3920	acres

6.

TOPOGRAPHY AND DRAINAGE

The area in which the property is located has a mean elevation of 1300 feet above sea level and is generally an area of very low relief. Consequently large portions of the property are very poorly drained and are usually covered by extremely thick alder or cedar swamps making access very difficult and in a few cases impossible. Nevertheless, some topographic highs do occur on the property in the form of ridges underlain by iron formation. These ridges attain a maximum height of 280 feet above the local mean elevation, an example being the ridge in the central portion of the property in Heenan Township.

In some parts of the property, particularly in the south, there occurs an undulating topography of low relief caused by the presence of sandy knolls, the remnants of a glacial outwash plain.

The property lies north of the divide between the Great Lakes and Hudson's Bay watersheds and consequently all of the rivers flow in a northerly direction. The major link between the various portions of the property is the Woman River which roughly bisects it. This river is approximately 150 to 200 feet wide and in some places is suitable for landing a float plane. The level of the river varies during the year and drops about 4 to 5 feet from break-up to the end of the summer season. TRANSPORTATION

Railway lines pass to the east and to the south of the property. To the east is the CNR line which runs through Stackpool and passes within 23 miles of the property. Stackpool is approximately 150 miles by rail from the ore docks at Key Harbour on Georgian Bay. To the south is the main line of the CPR which runs through Bowden and passes within 20 miles of the property. Bowden is approximately 160 miles from Byng Inlet on Georgian Bay.

P REPORT PAPEN

A rail line running from the property to the CNR line would traverse an area covered by ground moraine composed of silty to sandy till. This route would cross numerous rivers and ridges since it would run perpendicular to the regional glacial pattern. On the other hand, a rail line running from the property to the CPR line would traverse an area covered by lacustrine deposits composed of varved or massive clay, silt, and fine sand. This route would run sub-parallel to eskers occurring in Esther and Edith Townships and would also pass end moraines composed of sand, gravel and boulders in Edith Township. The right-of-way would run sub-parallel to the regional glacial pattern. This route would cross the divide between the Hudson Bay and Great Lakes watersheds near Bowden. All factors taken into consideration it would seem that the route via Bowden on the CPR line would prove to be the most advantageous of the two barring unforeseen difficulties.

8.

HISTORY

The earliest recorded documents show that the property was examined in 1906 by F.J. Katz and subsequently staked by a syndicate including such well known mining men as C.K. Leith and C.R. Van Hise of Madison, Wisconsin. During the latter part of the 1906 season and the entire 1907 season this group, under the field management of R.C. Allen, undertook an extensive evaluation of the Woman River iron range with respect to the iron ores. This evaluation incorporated reconnaissance dip-needle surveys, and regional and detailed geological mapping conducted in conjunction with surface trenching. During the 1907 season, 9344.2 feet of trenching and pitting was completed with the majority of the work being confined to mineral claims WS 7, 8, and 9. The trenches were extensively sampled, and the samples were analysed for Fe, P and S. These results were published by A.M. Goodwin in Geological Report No. 38 entitled Geology of Heenan and Marion Townships and the Northern Part of Genoa Township by the Ontario Department of Mines. Original comments by R.C. Allen are presented in the eighteenth annual report of the Ontario Bureau of Mines 1909 volume XVIII, Part 1, an excerpt from which reads as follows:

"Iron Ores: Locally, particularly in claims WS 11 and

12, iron ores occur. On these claims the ore is low grade, running as high as 43 per cent iron and, as shown by an average of 16 analyses, carrying a phosphorous content of .018. On claim WS 8, the most highly ferruginous areas coincide with those that are abundantly amphibole-bearing. Samples from these areas show an iron content varying up to 43 per cent, with an average phosphorous content of .0127. A small amount of sulphur is present as pyrite. An average of 8 determinations gave 1.184 per cent, but these samples were selected for analysis because of their relatively high sulphur content, which makes it certain that the figure stated is higher than the general average."

In 1908, encouraged by the initial work undertaken by the Leith-Van Hise syndicate, W.E. Smith of Sudbury staked 23 mineral claims covering the northeastern extension of the iron formation into Marion and Genoa townships. In 1910, about 4000 feet of diamond drilling was completed on this portion of the iron formation in the search for iron. During this drill program a little sphalerite, galena and chalcopyrite was intersected lying within the banded iron formation. Two years later a test pit was sunk to a depth of 8 feet on the best lead-zinc showing, at which depth a vein of almost solid galena, assaying 73.44 per cent lead and 6.01 per cent zinc, was encountered. The vein at the surface was 18 inches wide at the east side of the shaft and 6 inches wide at the west side. In the bottom of the shaft, the vein is 36 inches wide at the east side. Fifty feet east of

FORMING, LATING REPORT RANCE - CRANNEL

the test pit there is an irregular band of sphalerite, galena and chalcopyrite in the iron formation, and another irregular band of stringers, 25 feet north of this point, in the same formation. This occurrence is described in greater detail in a paper by E. S. Moore, A Lead and Zinc Deposit in Keewatin Iron Formation, Trans. Can. Inst. Min. and Met., Montreal meeting March 1926. Despite considerable work done at that time, no continuity could be established to the vein.

During the late 20's and 30's the iron range received little if any attention except for isolated reports of gold occurrences lying within the iron formation. One such occurrence is located just east of Claim Lake and was examined by the well-known Canadian prospector Bob Campbell during the early 30's.

In 1946, the Fummerton Mining and Development Co. Ltd. staked a 16 claim block lying immediately south and west of Claim Lake in an attempt to trace the strike length extension of the gold occurrence previously mapped east of Claim Lake. During the summer of 1946 a detailed geological and magnetometer survey was completed with recommendation for a more intensive examination of the property; however, no additional work was undertaken on the property.

In 1950, renewed interest in the Genoa Township lead-zinc occurrence was expressed by Central Sudbury Lead-Zinc Mines Limited who carried out an extensive diamond drill program in the vicinity of the original high-grade discovery completing

23 holes for a total of 5,000 feet. Values of up to 5.6 per cent Pb and 12.56 per cent Zn over a core length of 8.8 feet were intersected during the course of the diamond drilling. A more complete tabulation of the diamond drill results are presented by A.M. Goodwin in Geological Report no. 38 by the Ontario Department of Mines.

042/d9

FORMING, 142 841 P. REPUILT REFU

11.

During the 1950's little attention was being paid to the western end of the iron range in Heenan Township; all of the exploration activity was being concentrated on that portion of the iron range lying east of the Woman River. The main reason for this was that a good percentage of the original Leith-Van Hise syndicate ground was still held by Madison Mining Trustees under the old 1908 land patent.

In 1957 and 1958 Stackpool Mining Company Limited undertook an extensive diamond drill program consisting of 50 holes on that portion of the iron formation lying immediately east of the ground presently held by United States Steel International Limited. According to A. M. Goodwin, nine of the holes contained lead, zinc and copper mineralization one of which returned an 11-foot core-section running 1.55 percent Cu, 3.30 percent Zn and 0.44 ounces Au per ton.

In 1959, W. G. Wahl Limited acquired the rights to a portion of the old Leith-Van Hise ground, patented claims WS 8 through WS 12, from Madison Mining Trustee.

In January 1967, W. G. Wahl Limited staked the

remaining portion of the iron range lying west of Woman River. During the 1967 summer season, W. G. Wahl Limited conducted a detailed vertical field magnetometer survey over the original 5 patented claims as well as the newly acquired ground to the north. In conjunction with the ground magnetics, several test pits were established in the iron formation to provide "bulk material" for metallurgical testing. The results of the limited test work showed that an acceptable concentrate can be made with the -325 mesh material. The complete metallurgical data is appended.

12.

In the late 1960's U. S. Smelting, Mining and Refining Co. Ltd. carried out an airborne electromagnetic survey over the entire iron range utilizing the Mark V INPUT system. Geochemical, geological, electromagnetic and magnetic surveys were subsequently carried out on mineral claim WS 8 without the prior knowledge or consent of W. G. Wahl Limited. As a result, all of the data with the exception of the airborne data was not made available to W. G. Wahl Limited.

In 1973, Falconbridge Nickel Mines Limited conducted a detailed vertical field magnetometer survey over that portion of the iron range lying east of Claim Lake.

REGIONAL GEOLOGY

The property is underlain by rocks of Archean age consisting of acid to intermediate volcanic rocks, banded iron formation and basic volcanic rocks which have been intruded by acidic and basic rocks. These rocks are folded into an anticlinal

Ş

structure whose axial plane strikes and plunges steeply to the west-southwest and dips steeply to the north-northwest. Numerous transverse faults transect the area.

The acid to intermediate rock unit consists of rhyolite, dacite and trachyte pyroclastic rocks and flows. Rocks of a rhyolitic composition predominate. These exhibit great heterogeneity in composition and rock type indicating a complex effusive history. The presence of a large wedge of relatively coarse grained acid breccia immediately underlying the iron formation in Heenan Township tends to indicate the proximity of a volcanic centre.

The Woman River Iron Formation is composed of interbanded chert, jasper, and siliceous magnetite with siderite and pyritic chert occurring locally. The iron formation, where completely developed, exhibits a transition from iron rich units at the base of chert rich-iron poor units at the top of the formation.

ORM NO. LAZ SULP REPORT PAPER - GRAND & 3

Intermediate volcanic rocks overlie the iron formation. Within this unit individual flows are massive, pillowed, or brecciated and serve as stratigraphic marker horizons. The pillow structure of these flows has been distorted locally in conformity with the regional shearing in the area.

The detailed geological, geophysical and geochemical data mapped over the claims are presented in the following section

of this report. For ease of presentation only, the claims have been divided into five map areas lettered clockwise from the southeastern claims as shown on the following sketch.

MAPAREA "A"

FORM NO. LEDGILP REPORT PARK - GRAND & TOY

16.

MAP AREA "A"

Map Area "A" pertains to that portion of Mallard Township covered by the following 15 mineral claims:

P 428933 - 428947 inclusive

RECONNAISSANCE PROGRAM

The reconnaissance program consisted of the establishment of a grid system over the entire map area followed by an electromagnetic VLF survey.

The grid system, comprising of 57,800 feet (17,617.44 meters), was established by W. G. Wahl Limited during the period from June 22 through June 25 utilizing the Topofil continuous chain method. The baseline was oriented east-west with grid lines trending due south at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was conducted by R. Bylo, B.A.Sc., G.E.I.T. during the period from June 23 to July 27, 1975 following the format outlined in Appendix I. A total of 1156 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 100.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT tapes.

ANOMALY 1

Anomaly 1 is centrally located within the survey area and was mapped striking N40°W exhibiting an inferred strike length of 2400 feet (730 meters). This bedrock conductor was selected for detailed investigation and will be discussed in the following section of the report.

ANOMALY 2

Anomaly 2 is located in the south central portion of the survey area and lies roughly parallel to and 600 feet (182 meters) southwest of Anomaly 1. This conductor exhibits a strike length of approximately 5000 feet (1524 meters); a portion of which has been selected for detailed investigation and will be discussed in the following section of the report.

DETAILED PROGRAM

The detailed program consisted of the establishment of a grid system normal to the strike of the anomalous zones as defined by the reconnaissance survey, followed by a comprehensive field examination. This comprehensive field examination consisted of a geological survey, an electromagnetic survey with Fraser Filtration Plots and a total magnetic field gradient study. In an attempt to further define the causative body of the anomalous zone, whole rock and soil geochemical samples were collected.

The detailed grid system comprising of 12,200 feet (3718 meters) was established by W. G. Wahl Limited during the

period from July 9 to July 10, 1975. The baseline was oriented N45°W, from a point 1600 feet (480 meters) south along the claim line from the number 1 post of claim 428941, with grid lines trending northeast-southwest at 400 foot (120 meter) intervals along the baseline. One hundred foot stations were established on all lines of the detail grid. Stations were occupied on 50 foot intervals and critical points on 25 foot intervals.

GEOLOGY

0 347 V G

The geological survey was conducted by D. G. Wahl, P.Eng. on July 12, 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Less than 3 percent of the area covered by the detailed grid was outcrop, the remaining 97 percent could be broken down as follows: 40 percent alder-cedar swamp and 57 percent various degrees of open bush. Despite the poor geologic control, two distinct rock units were mapped and their locations are shown on drawing 101.

The northeastern third of the detailed grid is mapped as highly schistose rhyolite lapilli tuff. A good exposure of this rock unit was mapped on line 480 m E at station 90 m N. This particular exposure is extremely good, exhibiting a pronounced bedding of S45°E which is parallel to the regional schistosity. The dip of the beds appears to be near vertical. Numerous

rhyolitic fragments, up to 15 mm long, lying parallel to the bedding were also noted. The matrix is extremely fine grained and the rock unit as a whole has undergone considerable sericitization.

The southwestern two-thirds of the detailed grid is mapped as an intermediate tuff. Several good exposures of this rock unit were mapped during the course of the survey. The exposure mapped on line 480 m E at station 60 m N is noteworthy because of its close proximity to the rhyolite tuff exposure previously discussed at station 90 m N. This intermediate tuff is thought to be an ash of dacitic composition. The fragments are less than 4 mm in diameter and have a preferred bedding of S45°E exhibiting a near vertical dip. The rock unit as a whole has undergone considerable chloritization and kaolinization.

ELECTROMAGNETIC SURVEY

FORMINO, LAZ-811 PREPORT PATER - GRAMOLE

The electromagnetic survey was conducted by R. Bylo, B.A.Sc., G.E.I.T. on July 11, 1975 following the format outlined in Appendix I. Two hundred and forty-four stations were occupied during the course of the survey taking a total of 488 readings. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 102.

The detailed electromagnetic survey further defined the anomalous zones mapped during the reconnaissance survey.

Anomaly 1

This conductor lies roughly parallel to and 100 feet (30 meters) north of the baseline and is characterized by a sharp dip reversal of up to 40 degrees (+20 to -20) over 150 feet associated with a relative field strength of up to 240 percent. This figure represents a value of 150 percent above the local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be between 60 and 70 feet wide.

In order to fully assess the inphase dip angle response, these data were reduced by means of the Fraser Filtration Method thereby minimizing the background noise and the topographic effect. A complete discussion of the Fraser Filtration Method is appended in Appendix II. The reduced dip angle data, presented on drawing no. 103, indicates a definite termination of the anomaly on line 0, with moderate to strong conductivity recorded on lines 120 m E, 240 m E, 360 m E, 480 m E and 600 m E. The reconnaissance survey shows that the anomaly pinches at 400 feet (120 meters) southeast of line 600 m E.

Anomaly 2

PORT DAVEN

ž

This conductor lies roughly parallel to and 800 feet (240 meters) south of the baseline and is characterized by a sharp dip reversal of up to 54 degrees (+36 to -18) over 200 feet associated with a relative field strength of up to 260 percent which represents a value of 170 percent above the local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be between 50 and 60 feet wide.

The Fraser reduced inphase dip angle data, presented on drawing no. 103, showed moderate thickening and increased conductivity towards the southeast end of the anomaly.

TOTAL MAGNETIC FIELD GRADIENT STUDY

FORM NO. L42-\$11-P REPORT PAPER - GRAND

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July 11, 1975 following the format outlined in Appendix III. A total of 138 stations were occupied during the course of the survey with 276 readings being recorded. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing no. 104 as corrected station values and as a contoured interpretation of these data.

The rhyolite lapilli tuff, previously discussed, has a relatively low uniform magnetic relief in the range of 750 gammas. This figure represents an absolute value above a 59,000 gamma local background.

The dacite tuff occupying the southwestern two-thirds of the survey area is characterized by a moderately low background magnetic relief in the range of 850 gammas. However, the uniform magnetic relief mapped over the rhyolite tuff is not present over the dacite tuff. Lying within the dacite tuff are irregular, somewhat lenticular magnetic features in the range of 1000 to 6000 gammas above the local background, which are thought to represent individual tuff horizons containing a higher tenor of magnetite. There also appears to be a definite zoning within the dacite tuff horizon as the contact with the rhyolite is approached exhibiting a pronounced drop-off in magnetic susceptibility as soon as the rhyolite tuff horizon is encountered.

Anomaly 1, as defined by the electromagnetic survey, lies coincident to a zone of irregular magnetic relief in the range of 62,691 gammas which represents an above background magnetic relief of 3691 gammas. The horizontal and vertical magnetic gradients defined similar width and depth parameters to those defined by the electromagnetic response.

Anomaly 2, as defined by the electromagnetic survey, is associated with a zone of moderately high magnetic relief in the range of 60,431 gammas which represents a 450-500 gamma above background anomaly. The horizontal and vertical magnetic gradients delineate a zone of up to 90 feet wide.

GEOCHEMICAL INVESTIGATION

FORM NO. L42-611-P REPORT PANER - GRAND &

In an attempt to further define the causative bodies of the conductive zones, whole rock and soil geochemical samples were taken over these zones.

Anomaly 1 is located in a region of well drained relief within a well established regional drainage pattern which flows to the north. The vegetation in the vicinity of this anomaly is extremely sparce consisting of scrub secondary growth and isolated irregular stands of black spruce. The area appears to have been burned over quite recently but there is no supporting evidence for a fire. The area is clean of any dead falls, there are no charred remains of tree stumps and the soil shows no sign of having been scorched.

A total of 27 soil samples and 7 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV along with a description of the sample preparation and analytical procedures used. The geochemical sample locations are presented on drawing no. 101. The soil samples consisted of approximately 8 ounces of that material designated as the B-horizon or that material immediately underlying the humus fraction. The rock samples consisted of random chip samples taken from any rock exposure in the vicinity of a station location. In the area of Anomaly 1, the B-horizon was encountered approximately 4 to 6 inches below the surface, with the sample being taken at an average depth of 8 inches. In the area of Anomaly 2, the B-horizon was encountered at a depth of 10 inches.

FORMINOL L42 w11-P REPORT PROFIL - GRAND

Generally speaking the geochemical results were not as significant as one would have hoped due to the depth of the

overburden and the sandy nature of the soil; however, several noticeable trends were established in relation to both the conductors.

In the case of Anomaly 1, moderately high zinc values in the soil bear a direct relationship to the conductor axis. These values are in excess of 20 ppm Zn up to a maximum of 35.9 ppm as returned in sample number 312 located on line 480 m E at station 60 m N. The regional background for zinc is in the range of 15 ppm. The remaining base metals, Cu and Pb, are not as definitive. The rock geochemical values; however, are extremely anomalous, especially in zinc. Three rock geochemical samples were taken on line 480 m E in the vicinity of the conductor axis, the results of which are tabulated below:

<u>No.</u>	Location	Rock Type	<u>Cu</u> ppm	Pb ppm	<u>Zn</u> ppm
316-R	L480mE/90mN	rhyolite tuff	34.6	2	162
314-R	L480mE/75mN	dacite tuff	104.0	< 2	226
313-R	L480mE/60mN	dacite tuff	44.3	6	729
	L480mE/45mN	conductor axis			

It can be seen that as the conductor is approached the zinc values climb from 162 ppm at station 90 m $_{\rm M}$ to 729 ppm at station 60 m N which is only 15 meters north of the conductor axis. A slight increase is also noted in the lead values as the conductor axis is approached. The copper values are

FORM NOL L42-811-P REPORT PAPER - GRAVILLETON

inconclusive, but they could represent a slight migration of the metal away from the conductor axis.

27.

Rock sample number 333-R was taken on line 120 m E at the baseline. This sample is located 100 feet (30 meters) south of the conductor axis and returned values of 65.1 ppm copper, < 2 ppm lead and 295 ppm zinc. As was the case in samples discussed above, the copper and lead values do not appear to be as definitive as the zinc value.

At Anomaly 2, only limited inconclusive information could be obtained because of the extremely swampy conditions that exist in the southwestern portion of the property. However, two rock samples were taken for analysis which were in close proximity to the conductor axis.

FORM NO. L42 &11-P REPORT PAVER - GRAND &

No.	Location	Rock Type	<u>Cu</u> ppm	Pb ppm	<u>Zn</u> ppm
303	L600mE/235mS	dacite tuff	244	< 2	237
306	L600mE/260mS	dacite tuff	201	< 2	219

The conductor axis was mapped on line 600 m E at station 240 m S. It can be seen that there is an apparent increase in both the zinc and copper values as the conductor axis is approached. The lead values do not show any definitive results.

CONCLUSIONS

NO. LIPALLE REPORT PAPER - GRAND

The two anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

The causative body of Anomaly 1 is thought to be a zone of sulphide mineralization associated with the contact between the highly chloritic dacite tuff mapped to the south and the sericitic rhyolite lapilli tuff mapped to the north. This conductive zone, striking S45°E is estimated to be up to 70 feet (21 meters) wide and up to 1600 feet (487 meters) long exhibiting a near vertical dip. The total magnetic field gradient study indicates a slight increase in the magnetic susceptibility as the contact is approached. This is thought to be a reflection of an increase in the tenor of magnetite as the contact is approached. The anomalous geochemical results associated with the conductor lends supporting evidence for the existence of base metal sulphides within the mineralized zone.

The causative body of Anomaly 2 is thought to be a zone of disseminated sulphide mineralization associated with a dacite tuff horizon. This conductive zone, striking approximately S45°E, is estimated to be up to 60 feet (18 meters) wide and up to 5000 feet (1524) meters) long exhibiting a near vertical dip. The total magnetic field gradient study indicates a slight difference in the magnetic susceptibility along strike

which is thought to reflect a difference in the tenor of magnetite within the zone along strike. The anomalous rock geochemical results associated with the conductor indicate the existence of base metal sulphides within the mineralized zone.

29.

RECOMMENDATION

FORM NO, L42-411-P REPORT PAPER - GRAND 4.

It is recommended that Anomaly 1 and Anomaly 2 be investigated by diamond drilling as shown on the following drill sections.

FORM NO. LIG 811-P. REPORT PARES - GRAND & TOY

MAP AREA "B"

Map Area B adjoins Map Area A to the west and pertains to that portion of Mallard, Benton and Heenan townships covered by the following 21 mineral claims:

Mallard	Ρ	428930 - 428932	inclusive
Benton	P P P	428948 - 428955 428958 - 428962 428964 - 428965	inclusive
Heenan	P P	428956 - 428957 428963	inclusive

RECONNAISSANCE PROGRAM

A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system, comprising of 90,840 feet (27,688 meters) was established by W. G. Wahl Limited during the period from June 26 through July 3 utilizing the Topofil continuous chain method. The baseline was oriented east-west with grid lines trending north-south at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. and D. G. Wahl, P.Eng. during the period from July 3 to July 4 1975 following the format outlined in Appendix I. A total of 1816 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 105. The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zone identified on the airborne INPUT tapes.

ANOMALY 3

Anomaly 3 is centrally located within the survey area and was mapped striking N58°W exhibiting an inferred strike length of 1000 feet (304 meters) before the anomaly trends on to ground held by Noranda. The Noranda ground consists of a 6 claim block occupying the east central portion of the map area. A portion of the anomaly was selected for detailed investigation and will be discussed in the following section of the report.

ANOMALY 4

FORV NO. L12-811-P REPORT PAPER - GRANC & TON

Anomaly 4 represents a one line anomaly located approximately 1000 feet (304 meters) west of Anomaly 3. This conductor exhibits a limited strike length of approximately 800 feet (243 meters), a portion of which has been selected for detailed investigation and will be discussed in the following section of the report.

ANOMALY 5

Anomaly 5 is located in the west central portion of the survey area and lies sub-parallel to and 3000 feet (914 meters) northwest of Anomaly 3. This conductor exhibits a strike length of approximately 4000 feet (1219 meters) and is thought to be caused by a flat lying clay deposit.

DETAILED PROGRAM

A detailed examination of Anomalies 3 and 4 was undertaken in exactly the same manner as that outlined for Map Area A. 38.

The detailed grid system, comprising of 5500 feet (1676 meters) including the baseline, was established by W. G. Wahl Limited during the period from July 11 to July 12, 1975. The baseline was oriented N65°W from a point 1200 feet (365 meters) south along the claim line from the number 1 post of claim 428951, with grid lines trending northeast-southwest at 400 feet (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the detailed grid.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 13 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping

Less than 5 percent of the area covered by the detailed grid was outcrop with the remaining 95 percent divided equally between alder-willow swamps and dense stands of balsam and spruce.

FORM NOL LATALLA REPORT PAPER - GRAND & TO

Two distinct rock units were mapped during the course of the geological investigation and are shown on drawing no. 106. Almost the entire grid area is mapped as an intermediate tuff with a quartz feldspar porphyry occurrence mapped on the northeastern extension of line 116 m E.

39.

The intermediate tuff, thought to be andesitic in composition, is characterized by a visual absence of quartz and a predominance of feldspar. The rock texture of this unit varies from fine-grained to aphanitic. The major alteration noted was chloritization, which appears to be uniform throughout the map area

The quartz feldspar porphyry occurrence mapped on line 116 m E at station 90 m N is characterized by a pale grey appearance on the weathered surface, exhibiting many phenocrysts of quartz, plagioclase and orthoclase in a fine-grained matrix of similar composition. This rock unit is thought to be an intercalated acidic flow lying within the andesite tuff horizon.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.Sc., G.E.I.T. on July 13, 1975 following the format outlined in Appendix I. A total of 76 stations were occupied during the course of the survey with a total of 152 readings being recorded. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 107.

The detailed electromagnetic survey further defined

selected anomalous zones mapped during the reconnaissance survey.

Anomaly 3

This conductor lies sub-parallel to and 100 feet (30 meters) south of the baseline no. 1 and is characterized on line 236 m E by a sharp dip reversal of 44 degrees (+26 to -18) over 200 feet (60 meters) associated with a relative field strength of 260 percent. This figure represents a value of 160 percent above the local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be between 50 and 60 feet wide.

As was the case in Map Area A, the inphase dip angle data were reduced by means of the Fraser Filtration Method. The reduced dip angle data presented on drawing no. 107 indicate . an apparent increase in the conductivity towards line 360 m E and the eastern boundary with Noranda.

Anomaly 4

This conductor lies roughly parallel to and 50 feet (15 meters) north of baseline no. 2 and is characterized on line 120 m W by a sharp dip reversal of 42 degrees (+29 to -13) over 150 feet associated with a relative field strength of 240 percent. This figure represents a value of 140 percent above the local background. The electromagnetic data defined a steeply dipping conductive sheet estimated to be up to 75 feet (22 meters) wide. The Fraser reduced inphase dip angle data, presented on drawing 107, indicates a relatively short strike length of approximately 600 feet (180 meters).

41.

TOTAL MAGNETIC FIELD GRADIENT STUDY

FORM NO. L47-811-P REPORT PAPER - GRAND & TO'

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July 13, 1975 following the format outlined in Appendix III. A total of 58 stations were occupied during the course of the survey with 116 readings being recorded. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing no. 106 as corrected station values and as a contoured interpretation of these data.

The andesite tuff, previously discussed, is characterized by a moderately low magnetic relief in the range of 900 gammas. This figure represents an absolute value above a 59,000 gamma local background. Associated with this area of low magnetic relief are narrow lenticular magnetic expressions of up to 4000 gammas above local background which are thought to represent individual tuff horizons containing a higher tenor of magnetite.

The intercalated acidic flow mapped on line 116 m E is characterized by low uniform background magnetic relief in the range of 750 gammas. This particular rock unit was not traversed in enough detail to determine if any zoning exists within the flow. Anomaly 3, as defined by the electromagnetic survey, lies on the southern flank of a zone of irregular magnetic relief in the range of 63,013 gammas which represents an above background magnetic relief of 4013 gammas. On line 236 m E this anomaly lies coincident with an isolated zone of moderately high magnetic relief of 1963 gammas. At this location the horizontal and vertical gradients of the total magnetic field have defined the zone to be up to 75 feet wide.

Anomaly 4, as defined by the electromagnetic survey, is on the southern flank of a zone of moderately high magnetic relief in the range of 61,117 gammas which represents an above background magnetic relief of 2117 gammas. On line 120 m W at station 30 m N the conductor appears to be associated with a zone of extremely low magnetic relief exhibiting total magnetic field intensity of only 2 gammas above the local background of 59,000 gammas. This extremely low relief is thought to be a reflection of a strong magnetic dipole in the vicinity of station 30 m N.

GEOCHEMICAL INVESTIGATION

FORM NO, L42-411-P REPORT PARUR - WRAND &

Whole rock and soil geochemical samples were taken over the conductive zones in an attempt to further define the causative bodies of these zones.

Anomaly 3 is located in a region of moderately well drained relief within a well established regional drainage

pattern which flows to the southeast. The vegetation in the vicinity of this anomaly is extremely varied consisting of dense stands of black spruce and balsam to alder-willow swamps.

A total of 39 soil samples and 11 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the sample preparation and analytical procedures used. The geochemical sample locations are presented on drawing no. 106.

The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. In the area of Anomaly 3, the B-horizon was encountered approximately 6 to 8 inches below the surface with the sample being taken at an average depth of 10 inches. In the vicinity of Anomaly 4 the B-horizon was never encountered due to the extremely swampy conditions.

As was found to be the case in Map Area A, the soil geochemical results were not as significant as one would have hoped. The whole rock geochemical results on the other hand are significant and several noticeable trends were established in relation to both conductors.

In the case of Anomaly 3, five rock geochemical samples were taken on line 116 m E in the vicinity of the conductor axis, the results of which are tabulated below:

<u>No.</u>	Location	Rock Type	<u>Cu</u> ppm	Pb ppm	<u>Zn</u> ppm	<u>Ni</u> ppm
273-R	L116mE/60mN	acid flow	150	24	172	19
269-R	Lll6mE/B.L.	andesite tuff	190	< 2	208	45
275-R	Lll6mE/30mS	andesite tuff	161	6	303	46
	Lll6mE/35mS	conductor axis				
278-R	Lll6mE/60mS	andesite tuff	165	4	228	98
280-R	L116mE/90mS	andesite tuff	177	< 2	154	32

44.

It will be noted that with the exception of sample 273-R, all of the samples were taken within the same rock unit and these samples represent a traverse normal to the strike of the bedding. As the conductor is approached from the north, the zinc data shows an increase from 172 ppm at station 60 m N to 303 ppm at station 30 m S. The conductor axis is located at station 35 m S from which point the data shows a decrease from the anomalous value recorded just north of the conductor axis, to 154 ppm at station 90 m S. This anomalous asymmetrical relationship also exists for both the lead and nickel values. The copper geochemical values exhibit a similar profile but in a negative sense. That is to say, the copper values show a gradual decrease from 190 ppm obtained at the baseline to a low of 151 ppm at station 30 m S located 5 meters north of the conductor axis. Once the conductor axis is crossed, the copper values show a gradual increase to 177 ppm obtained at station

FORM NO. L42-411-P REPORT PAPER - GRAND & TOY

90 m S. This depressed copper relationship is not unique to Anomaly 3 but has been well documented* at the Brunswick No. 12 massive Pb-Zn deposit of the Bathurst Camp. At this deposit the hanging wall basic volcanics are noticeably deficient in copper immediately overlying the ore zone. This same relationship also exists in the Cu-Zn deposits of Cyprus.

In the case of Anomaly 4, only limited inconclusive information could be obtained because of the extremely swampy conditions which exist in the area. One sample, 255-R, taken on line 120 W at the baseline was either lost in transit or lost at the research laboratory as no record of that sample can be found once it left the field camp. The following three samples however, were taken from what is thought to be the overlying tuïf horizon.

<u>No.</u>	Location	Rock Type	<u>Cu</u> ppm	Pb ppm	<u>Zn</u> ppm
247-R	L240mW/60mN	andesite tuff	229	6	260
258-R	L120mW/60mN	andesite tuff	258	32	289
262-R	L0/30mN	andesite tuff	229	6	279

These data show the strong continuity of the base metal values within a particular tuff horizon. The copper and zinc values only vary 29 ppm along a strike length of 800 feet.

* Wahl, J.L. et al. Anomalous element distribution in rocks around Key Anacon, Heath Steele B-Zone, and Brunswick No. 12 Sulphide Deposits. C.I.M. Annual Meeting, 1975.

FORM NO. L12-811-P REPORT PAVER - GHAND & TC

It seems more than fortuitous that sample no. 258-R, exhibiting the most anomalous conditions of the three samples was obtained just north of the most favourable electromagnetic response recorded over Anomaly 4.

46.

CONCLUSION

The two anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

The causative body of Anomaly 3 is thought to be a zone of sulphide mineralization associated with a chloritic andesite tuff. This conductive zone, striking N58°W is estimated to be up to 60 feet (18 meters) wide and in excess of 1000 feet (304 meters) long exhibiting a near vertical dip before the anomaly was traced into ground held by Noranda. Noranda's field crews also mapped this conductor using a large vertical loop electromagnetic survey unit. In general, the total magnetic field gradient study indicates a flanking relationship relative to the conductor axis, except on line 236 m E where a direct magnetic correlation was observed. The anomalous geochemical results associated with the conductor lends supporting evidence for the existence of base metal sulphides within the mineralized zones.

The causative body of Anomaly 4 is thought to be a zone

of sulphide mineralization associated with a chloritic andesite tuff. This conductive zone, striking N58°W, is estimated to be up to 75 feet (22 meters) wide and of limited strike length exhibiting a near vertical dip. The total magnetic field study indicates a northerly flanking magnetic relationship relative to the conductor. The anomalous rock geochemical results associated with the related tuff horizon indicate the probable existence of base metal sulphides within the mineralized zone.

47.

RECOMMENDATION

FORM NO. L42-811-P REPORT PAPER - GRAND & TOY

It is recommended that Anomaly 3 and Anomaly 4 be investigated by diamond drilling as shown on the following drill sections.

BENTON TOWNSHIP ANOMALY No. 4

MAP AREA "C"

FORM NO. LIZSTLIP REPORT PAPER - GRAND & TOV

MAP AREA "C"

Map Area C adjoins, and lies immediately north of Map Area B and pertains to that portion of Heenan Township covered by the following 5 patented claims and 7 unpatented mineral claims.

Heenan	WS 8 - WS 12	inclusive
	428780 - 42878	2 inclusive
	428776 - 42877	9 inclusive

RECONNAISSANCE PROGRAM

NO. L42-811-P REPORT PART-

A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system, comprising of 55,800 feet (17,000 meters) was established by W. G. Wahl Limited during the period from June 8 through June 16 utilizing the old U.S. Smelting, Refining and Mining Company lines and the Topofil continuous chain method. The U.S. Smelting baseline was established at a slight angle to the Ontario Department of Mines baseline established by A. M. Goodwin in 1961. The grid lines were established at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was initiated by R. Bylo, B.A.Sc. during the period from June 9 through June 12 and completed during the period from June 17 through June 19 1975 following the format outlined in Appendix I. A total of 928

stations were occupied during the course of the survey. The electromagnetic data is presented on drawing 108.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT tapes.

ANOMALY 6

Anomaly 6 is located immediately northwest of Canoe Lake and was mapped striking N45°W with an inferred strike length of 1600 feet (490 meters). This anomaly is thought to be the northwestern extension of Anomaly 5 previously discussed in Map Area B.

ANOMALY 7

ORM NOL L42 &11 P REPORT PAPER - CRAND

Anomaly 7 lies sub-parallel to and approximately 100 feet (30 meters) southeast of the baseline and was mapped on lines 20 S and 24 S. This conductor exhibits a strike length of 1200 feet (360 meters) a portion of which has been selected for detailed investigation and will be discussed in a later section of the report.

ANOMALY 8

Anomaly 8 was mapped on lines W.G.W. 92 S and W.G.W. 96 S lying sub-parallel to and 2500 feet (760 meters) southeast of the baseline. This conductor exhibits a strike length of 1000 feet (300 meters) a portion of which has been selected for detailed investigation.

DETAILED PROGRAM

A detailed examination of Anomalies 7 and 8 was undertaken in exactly the same manner as that outlined for Map Area A. However, to facilitate coverage of these anomalies, two detailed grids were established. The Ridge Back Grid is centrally located within the map area and details Anomaly 7. The Foothill Grid is located in the northeast corner of the map area and details Anomaly 8.

54.

RIDGE BACK GRID

The Ridge Back Grid consists of two detailed profiles established normal to the strike of Anomaly 7 utilizing reconnaissance lines 20 S and 24 S. One hundred foot (30 meter) stations were established on the detail profiles with readings being observed at 50 foot (15 meter) intervals.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 7, 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Approximately 10 percent of the area covered by the detailed profiles is outcrop, the remaining 90 percent consists

of open stands of jack pine and spruce. Three distinct rock units were mapped during the geological investigation, the locations of which are shown on drawings 110 and 102.

The northern extensions of the detailed profiles are mapped as massive intermediate lavas of andesitic composition. The rock unit ranges from a fine-grained, less than 1 mm particle size, to a somewhat massive unit exhibiting an aphanitic texture. The main mineral constituent is greenish hornblende, with actinolite, chlorite, some epidote and carbonate, and small quantities of plagioclase feldspar, and quartz.

FORM NO. LIZENT PERONT PAPUR - GUAND &

The central portion of the profiles are mapped as banded iron formation. The iron formation, where it is completely developed, displays an upward transition from siliceous magnetitesiderite phase at the base, through jaspery chert and grey-banded chert, to light-gray, banded chert with negligible iron content at the top. The jasper zone consists of red hematitic chert bands, up to 1 inch thick, alternating with grey to black interbands, one-quarter to one-half inch thick composed of chert with more or less disseminated magnetite and hematite. The jasper zone grades into and contains zones of dark-grey, banded chert in which grey chert layers, up to two inches thick, alternate either with dark-grey to black, magnetite-rich cherty layers, one-quarter to one-half inch thick, or with thin, magnetite-rich parting seams. The grey chert bands locally contain considerable

disseminated pyrite. In general, Goodwin has estimated the iron content to be 30 - 40 percent at the base of the formation and 5 - 10 percent at the top. The following table, after Goodwin, illustrates these relationships in descending stratigraphic sections.

Iron Formation, Underlying the Large Ridge in Claims WS 8 & 9
White to light-grey, banded chert 70 - 200 feet
Dark-grey, banded chert with jasper zones 300 - 600
Dark-grey, banded chert with magnetite zones 100 - 600
470 - 1400 feet

The southeastern extension of the profiles are mapped as rhyolite breccia which is characterized on line 20 S at station 4 SE by numerous poorly sorted angular to sub-angular acid fragments, up to two inches in diameter, in a dense matrix of the same composition.

ELECTROMAGNETIC SURVEY

The electromagnetic data was recorded by R. Bylo, B.A.Sc. on July 7, 1975 following the format outlined in Appendix I. Thirty stations were occupied during the course of the survey with a total of 60 readings being observed. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawings 109 and 111. The detailed electromagnetic survey further defined the anomalous zone mapped during the reconnaissance survey.

Anomaly 7

This conductor lies sub-parallel to and slightly southeast of the baseline and is characterized by a dip reversal of up to 37 degrees (+8 to -29) over 200 feet (60 meters) associated with a relative field strength of up to 150 percent. This figure represents a value of 40 percent above the local background. The electromagnetic data defined a steeply dipping, poorly conductive sheet estimated to be up to 100 feet (30 meters) wide. The Fraser reduced inphase dip angle data, presented on drawings 109 and 111, indicate a low uniform conductivity associated with this conductor.

TOTAL MAGNETIC FIELD GRADIENT STUDY

The total magnetic field study was not undertaken at this time because of the magnetic data available on file with W. G. Wahl Limited. This ground magnetic data*, presented on drawings 110 and 112, was recorded at 50 foot (15 meter) intervals on all lines of the established grid during the 1967 summer season, employing a Sharpe Fluxgate vertical field magnetometer.

The intermediate volcanic rocks previously discussed are characterized by moderately low uniform magnetic relief in

* The entire report is appended.

FORM NO. L42-611-P REPORT PAPER - GRANOLA 10

the range of 59,000 gammas.

The banded iron formation is characterized by extremely high magnetic relief in the range of 80,000 gammas with localized magnetic intensities in excess of 100,000 gammas.

The rhyolite breccia mapped on the southeastern extensions of the profile lines is characterized by an average magnetic intensity of 6,000 gammas. This figure represents an absolute value above a 59,000 gamma background.

Anomaly 7, as previously defined by the electromagnetic survey, lies on the north flank of a zone of extremely high magnetic relief in the range of 80,000 gammas.

GEOCHEMICAL INVESTIGATION

L42 Billip REPORT PARTS - GRAND &

FORM NO.

Whele rock and soil geochemical samples were taken over the conductive zone in an attempt to further define the causative body of the anomalous zone.

Anomaly 7 is located in a region of extremely well drained relief within a well defined drainage pattern. The vegetation in the vicinity of this anomaly consists of open stands of jack pine and black spruce.

A total of 16 soil samples and 6 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical samples are presented on drawings 110 and 112. The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. The B-horizon was extremely shallow and was encountered approximately three inches below the surface with the samples being taken at an average depth of four inches.

The soil geochemical data maps low, below background base metal content in the soils above the iron formation and exhibits no apparent preferential zoning of metal sulphides within the iron formation.

The rock geochemical data confirms the results concluded from the soil geochemical results. The rock geochemical results also confirm the iron content-stratigraphic relationship examined by Goodwin as shown by the following results.

<u>No.</u>	Location	Rock Type	<u>% Fe</u>
419	L205/35	iron formation banded chert with magnetite	38.8
416	L24S/1S	iron formation banded chert with jasper zones	22.3
426	L24S/1S	iron formation banded chert with jasper zones	16.4

It will be noted that sample 419, taken from the base of the iron formation, exhibits a higher iron content than either samples 416 or 426, taken from different horizons higher up the stratigraphic sequence.

совм но. Церки и верона харее – анаци и то

CONCLUSIONS

The anomalous, conductive zone identified during the reconnaissance survey was further defined during the course of the detailed program.

The causative body of Anomaly 7 is thought to be the contact zone between the white to light-grey, banded chert and the overlying andesite.

RECOMMENDATIONS

ONTRO

FORM NO. L42 SILIP REPORT PAPER -

It is recommended that the iron formation be investigated by diamond drilling, as per the following sections, in order to determine the tenor of iron present and thereby assess the economic significance of the iron range.

FOOTHILL GRID

The Foothill Grid comprising of 4600 feet (1400 meters) including the baseline was established by W. G. Wahl Limited on July 13, 1975. The baseline was oriented N67°E from a point 2700 feet (820 meters) south along W.G.W. line 96 S, with grid lines trending N23°W at 400 foot (120 meter) intervals along the baseline. One hundred (30 meter) stations were established on all lines of the established grid.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 14, 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Approximately 10 percent of the total area covered by the detailed grid is outcrop, the remaining 90 percent can be broken down as follows: 70 percent open stands of black spruce and 20 percent alder-willow swamp.

All of the outcrop shown on drawing 113 is mapped as iron formation, which has been discussed at length in the preceding section of this report.

ELECTROMAGNETIC SURVEY

LATALLE REPORT PAPER - GHAND &

νö Σ The electromagnetic survey was conducted by R. Bylo, B.A.Sc. on July 14, 1975 following the format outlined in Appendix I.

Sixty-eight stations were occupied during the course of the survey taking a total of 136 readings. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing 113.

The detailed electromagnetic survey further defined the anomalous zones mapped during the reconnaissance survey.

Anomaly_8

This conductor lies roughly parallel to and 250 feet (75 meters) north of the baseline and is characterized on line

240 m E by a strong dip reversal of 56 degrees (+26 to -30) over 250 feet (75 meters) associated with a relative field strength of 310 percent. This figure represents a value of 110 percent above local background. The electromagnetic data defined a vertically dipping conductive sheet estimated to be up to 125 feet (45 meters) wide.

The Fraser reduced inphase dip angle data presented on drawing 113 indicates an abrupt termination of the conductivity on lines 0 and 480 m E.

TOTAL MAGNETIC FIELD GRADIENT STUDY

L42-811-P REPORT PAPER - GRAND & TON

ġ

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July 14, 1975 following the format outlined in Appendix III. A total of 68 stations were occupied during the course of the survey taking a total of 136 readings. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing 113 as corrected station values and as a contoured interpretation of these data.

The banded iron formation is characterized on line 240 m E by high magnetic relief in the range of 15,489 gammas which represents an absolute intensity above a 61,000 gamma background.

Anomaly 8 as previously defined, lies coincident to a zone of high magnetic relief in the range of 76,000 gammas.

The magnetic data also defined two major parallel fault zones striking N50°W transecting the detailed grid in a northwestsoutheasterly direction crossing the baseline at station 480 E and 120 E. These fault zones define the eastern and western extent of the iron formation and are characterized by regions of below background magnetic relief.

GEOCHEMICAL INVESTIGATION

*ORM NO. 142-811-P REPORT FAME 4 - GRAND & 10

Whole rock and soil geochemical samples were taken over the conductive zone in an attempt to further define the causative body of the anomalous zone.

Anomaly 8 is located in a region of extremely well drained relief within a well defined drainage pattern. The vegetation in the vicinity of this anomaly consists of open stands of black spruce and balsam.

A total of 23 soil samples and 13 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical samples are presented on drawing no. 113. The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. The B-horizon was extremely shallow overlying the iron formation; however, on line 480 m E extremely swampy conditions made soil sampling impossible. The samples were taken from an average depth of five inches.

Geochemically similar results were obtained over the iron formation in both soils and rocks as were reported over the iron formation mapped and previously discussed on the Ridge Back Grid.

64.

CONCLUSIONS

GRAND& 10

PORM NO. LIPSILP REPORT PAPER

The anomalous, conductive zone identified during the reconnaissance survey was further defined during the course of the detailed program.

The causative body of Anomaly 8 is a thinly banded iron formation containing numerous grey chert bands, with considerable pyrrhotite and pyrite.

RECOMMENDATIONS

It is recommended that the iron formation be investigated by diamond drilling, as per the following sections, in order to determine the tenor of iron present and thereby assess the economic significance of the iron range.

MAP AREA "D"

FORM NO. L42-411-P REPORT PAPER - GRAND & TOY

ŝ

MAP AREA "D"

75.

Map Area D adjoins Map Area C to the south and Map Area E to the east and pertains to that portion of Heenan and Marion townships covered by the following 19 mineral claims:

Heenan 428783 - 428795 inclusive 429837

Marion 428796 - 428800 inclusive

RECONNAISSANCE PROGRAM

FORM NO, L42-811-P REPORT PAPER - GRAND & TO

A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system, comprising of 69,200 feet (21,092 meters) was established by W. G. Wahl Limited during the period from May 29 through June 7, 1975 utilizing the old Falconbridge lines and the Topofil continuous chain method. The Ontario Department of Mines baseline, established by A. M. Goodwin in 1961, was located and refurbished. Grid lines were established normal to the baseline trending S47°E at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. during the period from May 30 to June 8, 1975 following the format outlined in Appendix I. A total of 1384 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 114. The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT map.

ANOMALY 9

Anomaly 9 is located approximately 1000 feet south of Claim Lake and was mapped striking due east, with an inferred strike length of 1000 feet (304 meters) before the anomaly trends off the property. A portion of this anomaly was selected for detailed investigation and will be discussed in the later section of the report.

ANOMALY 9a

Anomaly 9a lies sub-parallel to and approximately 250 feet (76 meters) south of Anomaly 9. This conductor exhibits a strike length of 2200 feet (670 meters) and is thought to be structurally related to Anomaly 9 and will be discussed in a later section of the report.

ANOMALY 10

Anomaly 10 is located approximately 1800 feet (548 meters) south of Claim Lake, and was mapped striking N45°E exhibiting a limited strike length of approximately 800 feet (243 meters). This anomaly has been selected for detailed investigation and will be discussed in a later section of the report.

ANOMALY 11

Anomaly 11 is located in the north central portion of the map area and lies roughly parallel to and 300 feet (90 meters) south of the baseline, and has a strike length of approximately 4000 feet (1219 meters). The northeastern extension of this anomaly strikes due east, parallel to Goodwin's Marion Township baseline. Anomaly 11 will be discussed in a later section of the report.

ANOMALY 12

Anomaly 12 lies sub-parallel to and 600 feet (180 meters) south of Anomaly 11. This conductor, exhibiting a limited strike length of approximately 400 feet (120 meters), has been selected for detailed investigation and will be discussed in a later section of the report.

DETAILED PROGRAM

NO. L42411-P REPORT PAPER - GRAND & TO'

FORM

A detailed examination of Anomalies 9, 9a, 10, 11 and 12 was undertaken in exactly the same manner as that outlined for Map Area A. However, to facilitate coverage of these anomalies, two detailed grids were established. The Claim Lake grid is located just south of Claim Lake and details Anomalies 9, 9a and 10. The Boundary Grid is located in the northeast sector of the map area and straddles the boundary between Marion and Heenan townships. This grid maps Anomalies 11 and 12.

CLAIM LAKE GRID

The Claim Lake Grid comprising of 8525 feet (2598 meters) including the baseline was established utilizing the original reconnaissance lines. One hundred foot (30 meter) stations were established on all lines of the detailed grid with readings being observed at 50 foot (15 meter) intervals.

GEOLOGY

ONTAD

FORM NO

The geological survey was conducted by D. G. Wahl, P.Eng. on July 8, 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Approximately 5 percent of the area covered by the detailed grid was outcrop with the remaining 95 percent divided equally between alder-willow swamps and dense stands of young balsam. Three distinct rock units were mapped during the course of the geological investigation and are shown on drawing no. 115.

The northern one-quarter of the detailed grid is mapped as an intermediate volcanic lava with isolated tuffaceous beds thought to be andesitic in composition. The rock unit ranges from a fine-grained, less than 1 mm particle size, to a somewhat massive unit exhibiting an aphanitic texture. The main mineral constituent is greenish hornblende, with actinolite, chlorite ? and some epidote and a little quartz. Trace amounts of pyrite were also noted in the more tuffaceous areas.

79.

The central portion of the d tailed grid is mapped as a thinly banded, jaspery iron formation. The typical jasper consists of red hematitic chert bands, up to l inch thick, alternating with grey to black interbands, one-quarter to one-half inch thick, composed of chert with more or less disseminated magnetite and hematite. The jasper zones grade into and contain zones of dark-grey, banded chert in which grey chert layers, up to two inches thick, alternate either with dark-grey to black, magnetite-rich cherty layers, one-quarter to one-half inch thick, or with thin magnetite-rich parting seams. The grey chert bands locally contain considerable disseminated pyrite.

The southern one-quarter of the detail grid is mapped as a rhyolite breccia. In general, breccia fragments increase in abundance, size and acidity towards the iron formation. Characteristically, the outcrop mapped on line 8+00 N contains numerous poorly sorted angular to sub-angular acid fragments up to four inches in diameter, which tends to indicate not only a close proximity to the source vents, but also that negligible or limited abrasion has taken place during transportation.

ELECTROMAGNETIC SURVEY

FORM NO. LAPALLA REPORT PAPLA

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. on July 8, following the format outlined in Appendix I. A total of 170 stations were occupied during the course of the survey with a total of 340 readings being observed. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 116.

The detailed electromagnetic survey further defined selected anomalous zones mapped during the reconnaissance survey.

Anomaly 9

CEAND & S

LAPED A EPOAT PAPER

This conductor was mapped cutting diagonally across the northern tip of the detailed grid and is characterized on line 28 N by a modest dip reversal of 17 degrees (+5 to -12) over 250 feet (75 meters) associated with a relative field strength of 210 percent. This figure represents a value of 110 percent above the local background. The electromagnetic data defines a vertically dipping, poorly conductive sheet estimated to be of limited width extent.

Anomaly 9a

This conductor was mapped lying sub-parallel to and 200 feet (60 meters) south of Anomaly 9a and is characterized on line 20 N by a modest dip reversal of 15 degrees (+7 to -8) over 200 feet (60 meters) associated with a relative field strength of 170 percent. This figure represents a value of 70 percent above the local background. The electromagnetic data defines a conductive zone of limited conductivity.

The Fraser reduced inphase dip angle data, presented on drawing no. 117, indicates a slight increase in conductivity towards the west.

81

Anomaly 10

This conductor was mapped lying parallel to and 500 feet (150 meters) southeast of the baseline and is characterized on line 20 N by an inferred dip reversal of 22 degrees (+22 to 0) over 150 feet (45 meters) associated with a relative field strength of 175 percent. This figure represents a value of 75 percent above the local background. The electromagnetic data defined a conductive zone of limited conductivity.

The Fraser reduced inphase dip angle data indicates that Anomaly 10 is of limited strike length extent.

TOTAL MAGNETIC FIELD GRADIENT STUDY

The total magnetic field gradient study was not undertaken at this time because of the excellent vertical magnetic field data available on file with the Ontario Department of Mines. This ground magnetic data, presented on <u>drawing no. 118</u>, was recorded at 50 foot (15 meter) intervals on all lines by Falconbridge Nickel Mines Limited during the 1973 summer season, employing a McPhar M-700 vertical field magnetometer.

The intermediate volcanic rocks previously discussed are characterized by moderately low uniform magnetic relief in the range of 1000 to 2000 gammas. This figure represents an absolute value above a 59,000 gamma background.

82.

The banded iron formation is characterized by high magnetic relief in the range of $\overline{22,830}$ to 43,970 gammas.

The rhyolite breccia mapped in on the southern extension of line 8 N is characterized by relatively uniform magnetic relief in the range of 2000 to 4000 gammas.

The magnetic data also maps a major structural break transecting the southern portion of the map area, crossing the baseline at station 10 N. This structural break is thought to be a major fault zone striking almost due east and is characterized by a zone of extremely low magnetic relief in the range of $\overline{4820}$ gammas.

FORM NOL 142 STILP REPORT PAREN - CRUND-

Anomaly 9, as defined by the electromagnetic survey, lies on the north flank of a zone of extremely high magnetic relief in the range of 30,980 gammas.

Anomaly 9a, as previously defined, lies coincident with a zone of high magnetic relief in the range of 20,000 gammas which represents an absolute value above a background of 59,000 gammas.

Anomaly 10 lies on the southern flank of a zone of high magnetic relief in the range of 20,000 gammas which as mentioned previously represents an absolute value above local background.

GEOCHEMICAL INVESTIGATION

FORM NOL LES SULP REPORT FAPER - SHAN

Whole rock and soil geochemical samples were taken over the conductive zones in an attempt to further define the causative bodies of these zones.

All of the anomalies are located in a region of poorly drained relief within a complex regional drainage pattern which flows to the southeast. The vegetation in the vicinity of these anomalies consists of limited dense stands of young balsam within an extensive alder-willow swamp.

A total of 53 soil samples and 14 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical sample locations are presented on drawing no. 115.

The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. Due to the extremely swampy conditions present throughout the detailed grid area, the B-horizon sample depth varied greatly with each soil sample.

As was found to be the case in Map Area A, the soil geochemical results were not as significant as one would have hoped. Due to the sparce density of outcrop in the vicinity of the anomalous zones, the limited rock geochemical results were unable to shed any light as to the causative bodies of the moderately conductive zones.

CONCLUSIONS

The three anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

84.

The causative body of Anomaly 9 is the contact zone between the thinly banded jaspery iron formation and the overlying andesite as mapped on line 28 N at station 120 m E.

The causative body of Anomaly 9a is thought to be a modestly mineralized grey chert horizon lying within the iron formation.

The causative body of Anomaly 10 is thought to be the southeastern contact zone between the iron formation and the underlying rhyolite breccia.

RECOMMENDATIONS

LA2 11-0 REPORT PARLS

őź

It is recommended that no further work be undertaken on Anomalies 9, 9a and 10 at this time.

BOUNDARY GRID

The Boundary Grid comprising of 7900 feet (2407 meters) including the baseline, was established by W. G. Wahl Limited during the period from July 5 to July 6, 1975. The baseline was oriented due east from Falconbridge line 64 N and the Goodwin baseline with grid lines trending north-south at 400 foot (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the detailed grid.

85.

GEOLOGY

The geological survey was conducted by R. Bylo, B.A.Sc. on July 15, 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Less than 3 percent of the total area covered by the detailed grid is outcrop, the remaining 97 percent consists of dense black spruce and balsam stands with only limited alderwillow swamp encountered in the northwestern sector of the detailed area. The majority of the outcrop shown on drawing no. 119 is located in the southwest quarter of the detailed grid and consists of a finely banded jaspery iron formation. This iron formation is exactly the same in all respects as that mapped on the Claim Lake Grid and which has been discussed at great length in a preceding section of this report.

A small outcrop of andesite was mapped on the southern extension of line 240 m E.

ELECTROMAGNETIC SURVEY

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. on July 16, 1975 following the format outlined in

Appendix I.

FORM NOL LEPED P REPORT RUCCH - GRA

One hundred and fifty-eight stations were occupied during the course of the survey taking a total of 316 readings. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 120.

86,

The detailed electromagnetic survey further defined the anomalous zones mapped during the reconnaissance survey.

Anomaly 11

This conductor lies sub-parallel to and approximately 100 feet (30 meters) north of the baseline and is characterized on line 240 m E by a sharp dip reversal of 61 degrees (+24 to -37) over 400 feet associated with a relative field strength of up to 225 percent. This figure represents a value of 125 percent above the local background. The electromagnetic data defined a vertically dipping moderately conductive sheet estimated to be 200 feet (60 meters) wide.

The Fraser reduced inphase dip angle data presented on drawing 120 indicates uniform conductivity across the entire conductor.

Anomaly 12

This conductor lies approximately 500 feet (150 meters) south of the baseline and was mapped between lines 240 m E and 360 m E. The orientation of this conductor is such that reconnaissance lines traversed the anomaly normal to the strike; thereby, achieving the most diagnostic geophysical response. This conductor is characterized on reconnaissance line 68 N by a sharp dip reversal of 45 degrees (+42 to -3) over 150 feet (45 meters) associated with a relative field strength response of up to 230 percent which represents a value of 130 percent above local background. On the detailed grid, inferred dip reversals were recorded on lines 240 m E and 360 m E at stations 150 m S and 120 m S respectively. The electromagnetic data defined an arcuate shaped, near vertical conductive sheet estimated to be up to 50 feet (15 meters) wide and up to 400 feet (120 meters) long.

87.

The Fraser reduced, inphase dip angle data indicates that this anomaly lies south of, and does not appear to be directly related to the main iron formation mapped by Anomaly 11.

TOTAL MAGNETIC FIELD GRADIENT STUDY

50 - 33

ORMNO, LAVELLA REPORT PA

A total magnetic field gradient study was not undertaken, as was the case for the Claim Lake Grid, because of the excellent vertical magnetic field data available on file with the Ontario Department of Mines. This ground magnetic data, shown on drawing no. 119, was recorded at 50 foot (15 meter) intervals on all lines by Falconbridge Nickel Mines Limited during the 1973 summer season, employing a McPhar M-700 vertical field magnetometer.

The banded iron formation is characterized by high

magnetic relief in the range of 20,000 to 30,000 gammas recorded above a local background of 59,000 gammas.

A large magnetic dipole was mapped lying immediately north of the iron formation. This area is thought to be underlain by an intermediate volcanic lava similar to that mapped overlying the iron formation on the Claim Lake Grid.

GEOCHEMICAL INVESTIGATION

CARACTER HERONEL MANCE - GAMAR

FORM NO.

Whole rock and soil geochemical samples were taken over the conductive zones in an attempt to further define the causative bodies of these zones.

Both Anomalies 11 and 12 are located in a region of well drained relief. The vegetation in the vicinity of these anomalies consists of dense stands of young balsam. The sand ridges in the eastern one-half of the grid area are covered with open stands of black spruce and jack pine.

A total of 52 soil samples and 8 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the analytical procedures used. The geochemical sample locations are presented on drawing no. 119.

The soil and rock geochemical samples were collected in exactly the same manner as that described for Map Area A. However, due to the great thickness of sand present in the eastern sector of the grid, soil samples were collected at 200 foot (60 meter) intervals instead of the normal 100 foot (30 meter) intervals.

The geochemical soil results taken on the western half of the grid identified Anomaly 11 as being slightly anomalous in copper and zinc; however, the results have to be considered inconclusive in the light of the rock geochemical results obtained in the same vicinity. The following rock geochemical samples were taken coincident with the conductor axis of Anomaly 11.

<u>No.</u>	Location	Rock Type	<u>Cu</u> ppm	Pb ppm	<u>Zn</u> ppm	Fe %
341-R	Ll2OmE/B.L.	iron formation	46.2	8	129	23.8
358-R	L240mE/60mN	iron formation	39.5	2	146	30.9
365 - R	L360mE/30mN	iron formation	27.3	< 2	216	38.5

It will be noted that all three samples are of the same rock type; that is, a thinly banded iron formation containing differing amounts of pyrite and pyrrhotite. The geochemical data shows that the base metal content within this portion of the iron formation is low but that these values appear to be uniformly distributed along strike. The iron content is high ranging from 23.8 percent in sample 341-R to 38.5 percent in sample 365-R.

A rock geochemical sample taken coincident to the conductor axis of Anomaly 12 returned the following results:

CRM NO. LEDGITE FERURY PURED - GRANDELON

No.LocationRock TypeCuPbZnppmppmppmppmppm433-R68 N/10 Epyritized cherty64.54139iron formation

90.

A five pound bulk sample of this material returned 50 ppb (0.0015 oz/ton) gold.

CONCLUSIONS

STIP REPORT LARD - GRAND

FORMIND, URD

The anomalous, conductive zones identified during the reconnaissance survey were further defined during the course of the detailed program.

The causative body of Anomaly 11 is a banded jaspery iron formation containing numerous grey chert bands, with considerable disseminated pyrite.

The causative body of Anomaly 12 is a heavily pyritized grey chert containing up to 10 percent total sulphides. This zone is thought to be arcuate in configuration exhibiting a near vertical dip and estimated to be up to 50 feet (15 meters) wide and up to 400 feet (120 meters) long.

RECOMMENDATION

It is recommended that Anomaly 12 be investigated by diamond drilling as shown on the following sketch.

MAPAREA "E"

FORM NO. 1.42-5311-P. REPORT PARE 0. - GUAND & TOY

MAP AREA "E"

Map Area E is east of Map Area D and pertains to that portion of Marion Township covered by the following 10 mineral claims:

P' 428801 - P 428810

RECONNAISSANCE PROGRAM

A reconnaissance program was undertaken in a similar manner to that outlined for Map Area A.

A grid system comprising of 49,500 feet (15,087 meters) including the baseline was established by W. G. Wahl Limited during the period from June 7 through June 8 utilizing the Topofil continuous chain method. The Ontario Department of Mines baseline, established by A. M. Goodwin in 1961, was located and refurbished. This baseline trends due east from a point on the east bank of the Woman River, located approximately 7,000 feet (2,133 meters) north of the Opeepeesway River junction. Grid lines trending north-south were established at 400 feet (120 meter) intervals along the baseline. One hundred foot (30 meter) stations were established on all lines of the reconnaissance grid.

The electromagnetic survey was initiated by R. Bylo, B.A.Sc. during the period from June 20 through June 22 and was completed during the period from June 28 through June 30, 1975 following the format outlined in Appendix I. A total of 990 stations were occupied during the course of the survey. The electromagnetic data is presented on drawing no. 121.

The reconnaissance electromagnetic survey further defined the regional extensions of the anomalous zones identified on the airborne INPUT tapes.

ANOMALY 13

This crescent shaped anomaly is centrally located within the survey area and was mapped striking in an easterly direction exhibiting an inferred strike length of 4500 feet (1371 meters). Anomaly 13 appears to be open at both ends. The central portion of this anomaly was selected for detailed investigation and will be discussed in the following section of the report.

ANOMALY 14

Anomaly 14 was mapped on line 120 m NE, 1300 feet (396 meters) south of the baseline. This particular anomaly is of further interest in that it lies within a sheared rhyolite, underlying the main iron formation. However, at the time of the reconnaissance survey the ground was extremely swampy and detailed work was impossible.

ANOMALY 15

Anomaly 15 lies in the southeastern corner of the survey area and was mapped striking in an easterly to southeasterly direction exhibiting an inferred strike length of 2000 feet (609 meters). As was the case with Anomaly 14, the extremely swampy conditions prevented any detailed examination at this time.

DETAILED PROGRAM

A detailed examination of Anomaly 13 was undertaken in exactly the same manner as that outlined for Map Area A.

The detailed grid system, comprising of 8800 feet (2682 meters) including the baseline, was established by W. G. Wahl Limited during the period from July 7 through July 8, 1975. The baseline and grid lines were established in the same configuration as the reconnaissance grid. One hundred foot (30 meter) stations were established on all lines of the detailed grid.

GEOLOGY

The geological survey was conducted by D. G. Wahl, P.Eng. on July 9 1975.

The geology as published by the Ontario Department of Mines was extended and further defined by the geophysical surveys and geological mapping.

Less than 5 percent of the area covered by the detailed grid was outcrop, with the remaining 95 percent consisting of dense cedar swamps and open stands of spruce and balsam. Four distinct rock units were identified during the course of the geological investigation and are presented on drawing no. 122.

The northern one-third of the detailed grid is mapped as intermediate volcanic lava with isolated tuffaceous beds thought to be andesitic in composition. The rock unit ranges from a fine-grained, less than 1 mm particle size, to a somewhat massive unit exhibiting an aphanitic texture. The main mineral constituent is greenish hornblende, with actinolite, chlorite and some epidote, carbonate, small quantities of plagioclase and a little quartz. Trace amounts of pyrite were noted in the more tuffaceous areas.

The central one-third of the detail grid is mapped as a thinly banded, jaspery iron formation. The jasper zone consists of red hematitic chert bands, up to 1 inch thick, alternating with grey to black interbands, one-quarter to one-half inch thick composed of chert with more or less disseminated magnetite and hematite. The jasper zone grades into and contains zones of dark-grey, banded chert in which grey chert layers, up to two inches thick, alternate either with dark-grey to black, magnetiterich cherty layers, one-quarter to one-half inch thick, or with thin, magnetite-rich parting seams. The grey chert bands locally contain considerable disseminated pyrite.

The southern one-third of the detail grid is mapped as an acid flow which has been intruded by a diorite mass.

The acid flow (quartz-feldspar porphyry) occurrence

mapped on line 1080 m E is characterized by a pale grey appearance on the weathered surface, exhibiting many equigranular phenocrysts of quartz, plagioclase and orthoclase in a fine-grained matrix of similar composition.

The diorite intrusive into the acid flow is a grey-green, fine- to medium-grained, mottled textured rock composed of interlocking aggregates of relatively fresh, euhedral oligoclaseandesine and somewhat chloritized amphibole, with accessory ilmenite, pyrite and quartz.

ELECTROMAGNETIC SURVEY

NO LET

The electromagnetic survey was conducted by R. Bylo, B.A.Sc. on July 10, 1975 following the format outlined in Appendix I. A total of 108 stations were occupied during the course of the survey with a total of 216 readings being observed. The electromagnetic data was reduced to a local datum and adjusted for drift. The data is presented on drawing no. 123.

The detailed electromagnetic survey further defined the main anomalous zone mapped during the reconnaissance survey.

Anomaly 13

This arcuate conductor lies sub-parallel to and astride the baseline and is characterized on line 960 m E by a moderate dip reversal of 36 degrees (+18 to -18) over 150 feet (45 meters) associated with a relative field strength of 175 percent. This figure represents a value of 75 percent above the local background. The electromagnetic data defines a steeply dipping moderately conductive sheet estimated to be up to 75 feet (22 meters) wide.

The northwest extension of this anomaly maps a major structural break transecting the western portion of the map area, crossing the baseline station 570 m E. This break has been mapped by A. M. Goodwin as a regional fault zone striking approximately N50°W.

The Fraser reduced inphase dip angle data, presented on drawing no. 124 indicates a relatively broad zone of low conductivity.

TOTAL MAGNETIC FIELD GRADIENT STUDY

FORM NOLLITI CLUP REPORT PAULY NEW

The total magnetic field gradient study was conducted by D. G. Wahl, P.Eng. on July 10 1975 following the format outlined in Appendix III. A total of 108 stations were occupied during the course of the survey with a total of 216 readings being recorded. The magnetic data was reduced to a local datum and adjusted for magnetic diurnal. The data is presented on drawing no. 125 as corrected station values and as a contoured interpretation of these data.

The massive andesite, previously discussed, is characterized by a moderately low uniform magnetic relief in the range of 1000 to 1500 gammas. This figure represents an absolute value above a 59,000 gamma local background. A large magnetic

dipole was mapped lying within the andesite immediately north of the iron formation on the baseline between lines 720 m E and 1200 m E.

The iron formation is characterized by high, extremely erratic magnetic relief in the range of $\overline{938}$ to 13,131 gammas. As previously mentioned these values have been regionally reduced and represent an absolute value relative to a background intensity of 59,000 gammas.

The acid volcanics mapped at station 120 m S on line 1080 m E are characterized by a moderate magnetic relief in the range of 1500 gammas above local background. This unit has been extended to include the southern extensions of line 840 m E and line 960 m E.

The diorite intrusive mapped at stations 90 m S and ... 120 m S on line 1200 m E is characterized by a moderately high magnetic relief in the range of 3500 to 3900.

The magnetic data also defined the fault zone previously mapped by the electromagnetic survey. This fault zone is characterized by a region of below background magnetic relief in the range of 4736 gammas.

Anomaly 13, as defined by the electromagnetic survey, is coincident with the iron formation.

GEOCHEMICAL INVESTIGATION

00000

147 2 144

Whole rock and soil geochemical samples were taken over the conductor in an attempt to further define the causative body.

Anomaly 13 is located in a region of well drained relief within a well established regional drainage pattern which flows to the northwest. The vegetation in the vicinity of this anomaly consists of generally clean open stands of spruce and balsam; however, a dense cedar swamp was encountered on the north extensions of lines 480 m E and 600 m E.

A total of 46 soil samples and 13 rock samples were taken for geochemical analysis, the results of which are presented in Appendix IV, along with a description of the sample preparation and analytical procedures used. The geochemical sample locations are presented on drawing no. 122.

The soil and rock geochemical samples were collected in exactly the same manner as that described for the preceding map area. In the area of Anomaly 13, the B-horizon was encountered approximately four to six inches below the surface with the samples being taken at an average depth of eight inches. Geochemical coverage was impossible in the extremely swampy areas encountered on the northern extensions of lines 480 m E and 600 m E.

As was found in the previous map areas, the soil geochemical results were not as significant as one would have

101

hoped.

The whole rock results, on the other hand, are significant and several noticeable trends were established in relation to the anomalous zone. Of the 13 rock samples collected, the following samples were taken coincident with the conductor axis.

<u>No.</u>	Location	Rock Type	<u>Cu</u> ppm	Pb ppm	<u>Zn</u> ppm	Fe %
188-R	L180mE/60mN	iron formation	77.6	< 2	113	30.0
192-R	L120mE/30mN	iron formation	52.5	< 2	139	30.8
2 05-R	L1200mE/45mS	iron formation	89.0	6	180	26.8
222- R	L960mE/90mS	iron formation	70.7	2	174	14.8
228-R	L840mE/60mW	iron formation	74.8	10	90	13.3

It will be noted that all of the five samples are of the same rock type; that is, a finely banded jaspery iron formation containing varying amounts of pyrite and pyrrhotite. The geochemical data shows that the base metal content within the iron formation is fairly low but that these values are uniformly distributed throughout. In general, the lead values appear to have a slightly higher threshold value within the iron formation than within the basic volcanics of Map Areas A and B.

CONCLUSIONS

The anomalous, conductive zone identified during the reconnaissance survey was further defined during the course of

the detailed program.

The causative body of Anomaly 13 is a finely banded jaspery iron formation containing differing amounts of pyrite and pyrrhotite, estimated to be up to 75 feet (22 meters) wide lying within the stratigraphically thicker Woman River iron range.

RECOMMENDATIONS

It is recommended that Anomaly 13 be investigated by diamond drilling, as shown on the following sketches, in order to fully assess the gold potential of the iron formation.

COST ESTIMATE

PHASE II - DIAMOND DRILLING

Costs based on a total of 8,700 feet of diamond drilling.

PART I

1. PERSONNEL

- 1 geologist
- 2 prospectors

2. PROGRAMME

- i) spot diamond drill holes
- ii) clear drill sites for helicopter moves
- iii) cut snowmobile trails from camp to drill sites

3. COST

BCOME LEOGER

141 8 P

- i) Salaries
 - l geologist 15 days @ \$150/day \$2,250.00
 - 1 prospector 15 days @ \$100/day 1,500.00
 - l prospector 15 days @ \$100/day <u>1,500.00</u> \$ 5,250.00

ii) Field Expenses

food

\$7,890.00

1. <u>P</u>	ERSC	NNEL								i.	
	-	jeolog expedi									
2. <u>P</u>	ROGE	AMME									
	dri	8700	ft. 3	»\$30∕	- 50'/s ft. upport)		1	\$261,000	.00		
3. <u>c</u>	OST										
	i)	Salar	ies								
			ologis days		0/day	\$13,50	00.00				
			pedite days		0/day	13,50	0.00	27,000	.00		
	ii)	Field	Expen	ses							
		(m p i		rgica aphic ng sh	1 &		00.00 00.00	11,000	.00		
i	ii)	_	ct sup dinati t					<u>10,000</u>	.00	<u>309,</u>	000.0
							тот	TAL	Ś	316,	890.0
										<u></u>	

FORM NOT COLOR REPORT BAR UNITED TO MARCH TO V

W. G. WAHL LIMITED

David G. Wahl

106.

Consulting Engineer

APPENDIX IV

iv

GEOCHEMICAL INVESTIGATION

FORM NO. LAT-411-P REPORT PAPER - GRAND & TOY

BARRINGER RESEARCH

ANALYTICAL PROCEDURES FOR W. G. WAHL LIMITED WOMAN RIVER SAMPLES

A. SAMPLE PREPARATION

<u>Soils</u>

- 1. Sample was first sieved to -80 mesh.
- 250 mg. of the -80 mesh fraction was then weighed into a 18 mm test tube.
- 3. 0.5 mls. concentrated HNO_3 and 2.0 mls. concentrated $HClO_4$ were added to the sample.
- 4. The solution was then heated in an aluminum block over medium heat for 4 hours.
- 5. The solution was allowed to cool and then diluted to 5 mls. by the addition of demineralized distilled water.
- 6. The sample was then agitated and allowed to settle for 2 hours.
- 7. The sample was then analyzed.

Rocks

- 1. Sample was first ground and sieved to -80 mesh.
- 2. 250 mg. of the -80 mesh fraction was then weighed into teflon beakers.
- 7.5 mls. concentrated HF and 2.5 mls. of a HNO₃ HClO₄ mixture were added to the sample (3:2 mixture of nitric to perchloric).
- 4. The teflon beaker was then covered with a teflon watch glass and warmed in a sandbath at 60°C for 2 hours.
- 5. The watch glass was then removed and the sample was evaporated to dryness (approximately 4 hours).
- 6. 2.5 ml. of the HNO_3 $HClO_4$ mixture was then added to the residue and evaporated to dryness. This step was taken to remove all traces of HF from the residue (approx. 4 hours).

- 7. The residue was then taken up in 10 mls. of 1M HCl and warmed if necessary to dissolve it.
- 8. The solution was then transferred to a 25 ml. volumetric flask and diluted to 25 mls. using demineralized distilled water.
- 9. The sample was then analyzed.

B. MRFAPE ANALYSIS

- 1. Standard solutions were first run with the instrument in the standardisation mode.
- 2. The solutions from A were analyzed in a radio frequency inductively coupled plasma manufactured by Applied Research Laboratories, Sunland, California, and International Plasma Corporation. (For more information on instrumentation and instrumental parameters see G. F. Larson, Y. A. Fassel et al., "ICPlasma - Optical Emission Analytical Spectroscopy. A Study of some inter-element effects", <u>Analytical Chemistry</u>, 47 (1975): 238-243).
- 3. Data were fed into and processed by a programmable Hewlett-Packard 9821-A calculator. Results were printed out in ppm.

NOTES: 1. Mo, U, W, Se, Te, B, Au, Sn, Rb, Eu, As -- not detected 2. Cd in samples 190 onward probably have a high blank

W. G. WAHL LTD. - SOILS

٠, ۱

MATRIX:	HCL04	ANALYSIS	BATE:	101075	TAPE NO:	27	FILE	NO:
CLIEN SAMPLE		08 	FE X	MG X	CD PPM	NI PPM	SI PPM	ZH PPM
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} .207\\ .179\\ .175\\ .244\\ .302\\ .148\\ .302\\ .148\\ .3022\\ .2248\\ .2254\\ .2254\\ .2256\\ .22$	$\begin{array}{c} 1.36\\.954\\1.88\\1.76\\2.56\\1.24\\.270\\2.66\\4.78\\1.45\\2.08\\1.45\\1.45\\1.45\\1.45\\1.45\\1.45\\1.45\\1.45$.176 .158 .142 .221 .242 .0519 .155 .0854 .549 .155 .220 .210 .164 .208 .229 .200 .164 .208 .229 .200 .164 .208 .229 .200 .189 .145 .161 .148 .176 .145 .161 .148 .176 .231 .131 .236 .247 .237 .237 .237 .237 .237 .236 .247 .236 .247 .236 .247 .236 .247 .236 .247 .236 .247 .236 .247 .236 .247 .237 .236 .247 .236 .247 .236 .247 .236 .247 .236 .247 .237 .236 .247 .237 .237 .237 .237 .237 .237 .237 .23	N.D.D. N.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D	5688499715788499225522512458522498883597 688329537244893542543698881264882395992258 28222313235225542543698881264882395992258	64 45 76 76 76 76 76 76 76 56 56 56 56 56 75 78 76 71 50 71 50	5.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 5

137

RFW0 NO:

	1 C - 22
	172
	174
	176
	177
	172 174 176 177 178 179 180
	170
	112
	180
	181
	182
•	183
	184
	185
	186
	187
	189
	140
	191
	100
	170
	1.24
	150
	197
	198
	199
	200
	201
	1822 1823 1855 1857 1991 1993 1995 1999 1999 1999 1990 2001 2002

204

206

207

209

211

213

214

215

216

218

149

.150

151

• 152

153

154

155

157

159

160

162

164

166

167

168

169

170

1.41 1.68 1.64 1.27 .796 1.41 2.62 1.56	.246 .288 .228 .389 .266 .125 .196 .162	$1.75 \\ 1.82 \\ 1.54 \\ 1.96 \\ 1.78 \\ 1.79 \\ 2.36 \\ 1.27 \\$.197 .246 .209 .237 .241 .189 .241 .241 .173	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
1.73 .874 .514 1.10 1.31 1.25 .866 1.29 1.19	.254 ,299 .2874 .209 .254 .249 .449 .230 .4843	$1.53 \\ 1.04 \\ 4.10 \\ 1.34 \\ 1.32 \\ .814 \\ .617 \\ 1.64 \\ 2.30$.239 .158 .0518 .232 .189 .174 .192 .155	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
.849 1.88 1.51 1.72 1.58 2.34 .987 .916 1.38	.128 .175 .289 .359 .368 .313 .258 .423 .312	1.09 2.86 1.35 . 2.00 1.61 2.06 1.30 .867 1.08	.160 .164 .252 .323 .272 .320 .162 .271 .271	N. D. N. D. N. D. N. D. N. D. N. D. N. D. N. D.
$1.96 \\ 1.50 \\ 1.31 \\ 1.68 \\ 1.41 \\ 1.34 \\ 1.24 \\ 1.83 $.519 .267 .226 .323 .292 .284 .448 .466	1.34 1.45 1.21 1.24 1.99 1.91 1.29 1.92 1.92	.305 .268 .167 .250 .356 .299 .313 .313	N.D. N.D. N.D. N.D. N.D. N.D. 2.1 2.9 2.1
1.44 1.62 1.52 1.91 2.14 1.37 1.75 1.60 1.53	.408 .495 .480 .442 .517 .495 .445 .465 .430	3.28 2.90 1.77 1.67 2.18 1.79 1.65 1.43	.254 .330 .267 .227 .309 .205 .220 .350 .249	4.7 3.8 2.7 2.6 2.8 2.6 2.6 2.4
$1.72 \\ 2.24 \\ 1.71 \\ 1.54 \\ 3.04 \\ 1.98 $.490 .408 .554 .571 .487 .460	$ \begin{array}{r} 1.37 \\ 2.02 \\ 1.57 \\ 1.54 \\ 3.93 \\ 1.56 \\ 1.56 \\ \end{array} $.316 .235 .335 .356 2,41 .260	2.1 2.9 2.4 2.7 6.3 2.2

30.5

37.9

36.7

.482

.276

.333

.461

.859

1.62

1.05

2.02

1.97

1.39

١

1.66

2.50

1.91

2.10

1.28

.299

.150

.213

.311

.372

p. D. D. Β. р. D. D. p. D. (**.** 1 è. 9 . 1 .7 8.8 .7 .6 8.2 6.6 4 .0 2.1 2.9

 $16.7 \\ 21.7$

13.5

102

16.3

18.5

10.8

14.3

20.5

18.8

2.3

3.0

2.4

2.7

2.2

30.0 29.4 29.1 44.9 29.4 38.6 8.6 22.4 31.3 35.1 26.0 24.5 30.1 21.8 21.8 28.7 31.5 34.3 33.4 43.5 30.4 30.0 44.4 31.5 35.1 30.1 38.5 44.9 42.8 19.6 32.7 18.0 26.5 13.9 18.0 27.7 16.5 20.9 27.5 15.4 18.9 24.1 26.1 37.1 46.0

29.6

41.3

26.1

38.3

26.1

31.6

24.0 20.4

39.6

21.3

23.0

27.4

29.5

32.4

35.4

20.3

25.5

29.6

32.? 27.? 27.4

35.1

39.3

68.3

23.5

40.5

32.2

38.6

26.8

21.7

23.6

22.1

22.1

42.5

23.5

63.3

33.2

29.0

42.7

86.0

25.3

25.8

27.9

28.1

42.9

33.0

70

37

64

45

39

35

48

48

38

100

53

50

43

53

50

48

45

50

76

52 75

 $\overline{75}$

70

50

34

50

39

52

72

72

75

71

95

102

117

104

83

118

-94

174

151

-89

106

125

-82

137

-92

-92

104

147

82

90

102

116

32.4

E

25.9 16.4 29.6

220

221

224

225

226

227

229

231

232

233

235

236

237

239

249

241

242

243

245

246

248

249

250

251

252

253

254

256

257

259

260

261

263

276

277 279

281 283

284

285

286

287

· 223

1.02

1.86

1.36

1.81

.787

1.75

1.83

1.45

1.56

1.60

1.36

1.30

1.90

2.04

1.88

1.62

1.42

2.12

1.39

1.81

2.58

1.78

1.21

1.84

1.85

1.52

1.73

1.42

1.24

1.17

3.06

1.42

1.45

1.26

1.26

1.21

1.51

2.58

1.57

1.12

1.64

1.07

1.24

1.89 1.28

1.58

1.28

1.64

2.08

2.10

1.19

.412

1.70

.429

•		

264
265
286
267
268
279
271
272
274

.429 .456	.890 1.92	.189 .230	$1.5 \\ 2.6$	9.2 14.1
.344	3.06	.161	2.6 3.8 4.2	7.9 15.1
.487 .447	3.08.612	.279 .147	4.2 1.2	15.1
.413	2.26	.265	0 G	15.1 7.3 16.7 16.4 16.9
.388	2.40	.257	2.9 2.1 2.4 2.2	16.4
.445 .438	1.49 1.45	.239 .228	2.1	16.9 13.4
.472	1.79	.245	2.4	16.9
.492	1.55 1.20	.245	2.2	14.6 12.3
.480 .494	1.20	.200 .316	1.9	12.3
.409	1.91 2.28	.240	3.4	18.5
.411	1.69	.240 .327 .365	1.9 2.8 3.4 2.6 2.3 3.1	25.2 18.5 23.5 25.8 19.3 24.1
.492 .870	1.92	.365 .373	2.6	25.8
.504	2.06	.304	3.1	24.1
.624	1.47	.311	2.2	17.3
.489 .476	2.30 1.43	.302	3.2	21.5 17.5
.441	2.10	.262	3.2	20.9
.499	2.10 1.66	.230	2.6	20.9 18.0
.364 .796	1.37	.382 .275 .262 .230 .212 .314	2.2 3.2 3.2 2.6 2.0 3.5	15.5 23.9
.478	2.26 1.83	.281	2.8	23.9 18.8 14.3 17.0
.403	2.54	.210	2.8 3.2 3.5	14.3
.415 .473	2.76	.251	3.5 2 c	17.0 13.9
.658	1.61 1.28 1.45	.243 .288	2.0 2.2 2.3 4.9	16.3
.533	1.45	.309 .242	2.3	15.6
.476 .307	2.90 1.42	.242	4.0	27.0
.298	2.08	.189	2.1 3.0	12.2
.365	2.04 2.62	.184	2.9 3.7	27.0 11.2 12.2 11.9 12.1
.363 .597	2.62 1.08	.205 .239	3.7	12.1 10.6
.492 .384	2.10	.287 .219	3.0	15.6
.384	2.14	.219	3.2	15.5
.481 .382	$1.61 \\ 1.50$.341 .189	2.7	$16.8 \\ 11.9$
.321	1 60	.203	2.8	14.1
.523	1.21	.287	2.2	15.9
.329 .399	1.52	.148	2.2	7.5 11.4
.390 .416	1.67 1.21 1.52 2.24 3.29 1.43	.195	1.9 9.2 7.3 8.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3 7 8 0	14.7
.428	1.43	.202	2.3	$10.5 \\ 14.7$
.432 .493	1.83 1.84	.270 .249	2.8 2.8	14.7 12.5 11.4 16.0
.448	1.97	.229	3.0	11.4
.402	1.96	.218	2.7	16.0
.443	1.94	.285	2.9	19.1

.189

.

1.5

9.2

12.4

2.1

.890

1,38

.216

73

14.7

22.1

27.5

42.6

11.8

22.8

35.6

37.5

21.5

18.9

18.9

22.1

24.5

27.029.9

24.5

24.9

26.6 32.1

25.7

25.9

23.4 22.5

23.6

23.6

21.1

24.9 29.7

21.9

22.6

24.7

16.8

20.8

15.9

18.4

18.5

21,0

21.i

26.0

16.6

17.6 19.0

15.8

19.3

27.6

19.2

22.9

.

્ડો

109

195

103

132

124

89

125

121

28.0 28.1 21.3 24.3

• • • • • • • • • • • • • •	288 289 291 293 294 295 296 297 298 299 300 301 302 305 307 308 309 310 311 312 315 317 318 319	$\begin{array}{c} 2.46\\ 1.80\\$	$\begin{array}{c} 383\\ .550\\ .481\\ .469\\ .477\\ .486\\ .417\\ .486\\ .417\\ .426\\ .429\\ .426\\ .429\\ .429\\ .429\\ .429\\ .429\\ .239\\ .4468\\ .429\\ .3344\\ .4689\\ .3344\\ .4468\\ .4209\\ .2392\\ .2209\\ .3208\\ .214\\ .2359\\ .2299\\ .3208\\ .214\\ .2359\\ .2359\\ .219\\ .3220\\ .3200\\ .32200\\ .3220\\ .3220\\ .32$	2,899229770899902166204824138464084627106601355700498522677409	$\begin{array}{c} 244\\ 322\\ 208\\ 273\\ 249\\ 195\\ 259\\ 274\\ 229\\ 277\\ 237\\ 277\\ 237\\ 277\\ 237\\ 277\\ 237\\ 277\\ 237\\ 277\\ 237\\ 209\\ 277\\ 237\\ 209\\ 214\\ 2297\\ 237\\ 209\\ 214\\ 2297\\ 2365\\ 209\\ 2295\\ 2085\\$	367637674069652642429272227890836197335534059983662583 32223211122322322322322322232212222221222222
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.61.5561.86.3222.61.30.4841.89.2082.72.96.4811.82.2732.61.50.4682.32.2493.31.94.4191.79.1952.7.766.477.817.2591.61.97.486.000.2741.7.806.456.848.2291.41.25.4061.29.2772.01.39.4091.99.2372.62.34.4142.70.2773.91.63.5261.62.3312.61.49.4871.61.2742.52.14.2941.82.2052.61.61.3341.60.1992.41.13.3951.54.2172.21.53.4472.48.2343.42.28.4402.32.2413.21.94.4632.04.2702.91.65.4691.03.1861.71.94.4231.58.2152.21.65.4051.44.2492.22.26.4201.96.2252.71.76.4411.94.2362.81.09.6431.30.2951.92.64.4112.28.2613.01.36.3201.24.1031.81.09.6431.37.2722.1 <td>5561.86.3222.6.4041.89.2082.7.4811.82.2732.6.4682.32.2493.3.4191.79.1952.7.477.817.2591.6.486.000.2741.7.456.848.2291.4.4061.29.2772.0.4091.99.2372.6.4142.70.2773.9.5261.62.3312.6.4871.61.2742.5.4392.16.2643.2.2941.82.2052.6.3341.60.1992.4.3951.54.2172.2.4472.48.2343.4.4402.32.2413.2.4632.04.2702.9.4681.61.2182.2.4691.93.1861.7.4231.58.2152.2.4461.94.2362.8.6431.30.2951.9.4112.28.2613.0.3201.24.1031.8.340.816.1041.3.5092.02.2292.6.5681.37.2722.1.3691.41.1221.9.2131.30.1481.7.2991.76.2012.3.302.210.1842.3<</td> <td>1.86$.322$$2.6$$1.89$$.273$$2.6$$2.32$$.249$$3.3$$1.79$$.195$$2.7$$.817$$.259$$1.6$$.000$$.274$$1.7$$.848$$.229$$1.4$$1.29$$.277$$2.0$$1.99$$.237$$2.6$$2.70$$.277$$3.9$$1.62$$.331$$2.6$$1.61$$.274$$2.5$$2.16$$.264$$3.2$$1.82$$.205$$2.6$$1.60$$.199$$2.4$$1.54$$.217$$2.2$$2.48$$.234$$3.4$$2.32$$.241$$3.2$$2.04$$.270$$2.9$$1.61$$.218$$2.2$$1.62$$.301$$1.8$$1.61$$.218$$2.2$$1.63$$.168$$1.7$$1.58$$.215$$2.2$$1.61$$.218$$2.2$$1.96$$.225$$2.7$$1.94$$.236$$2.8$$1.30$$.295$$1.9$$2.28$$.261$$3.0$$1.24$$.103$$1.8$$.816$$.104$$1.3$$2.02$$2.2$$2.3$$1.93$$.208$$2.5$$1.75$$.285$$2.3$$1.95$$.205$$2.4$$4.57$$.152$$5.0$$1.90$$.264$$2.5$$2.44$$.170$$2.9$$1.96$</td> <td>322$2.6$$208$$2.7$$273$$2.6$$249$$3.3$$195$$2.7$$259$$1.6$$274$$1.7$$229$$1.4$$277$$2.6$$237$$2.6$$277$$3.9$$331$$2.6$$277$$3.9$$331$$2.6$$277$$2.9$$237$$2.6$$277$$2.9$$237$$2.6$$274$$2.2$$205$$2.6$$199$$2.4$$217$$2.2$$234$$3.2$$270$$2.9$$218$$2.9$$218$$2.9$$218$$2.9$$218$$2.7$$236$$2.8$$295$$1.9$$218$$1.7$$215$$2.2$$225$$2.7$$236$$2.8$$295$$1.9$$261$$3.0$$103$$1.8$$104$$1.3$$229$$2.6$$272$$2.1$$122$$1.9$$205$$2.4$$152$$2.9$$228$$2.5$$205$$2.6$$212$$2.6$$2212$$2.6$$2212$$2.6$$205$$1.8$$225$$2.5$$205$$1.8$</td> <td>67.637.674069.652.642.42927222789083619733553405998366258 2223211112232202223222322223222122221311221122</td> <td></td>	5561.86.3222.6.4041.89.2082.7.4811.82.2732.6.4682.32.2493.3.4191.79.1952.7.477.817.2591.6.486.000.2741.7.456.848.2291.4.4061.29.2772.0.4091.99.2372.6.4142.70.2773.9.5261.62.3312.6.4871.61.2742.5.4392.16.2643.2.2941.82.2052.6.3341.60.1992.4.3951.54.2172.2.4472.48.2343.4.4402.32.2413.2.4632.04.2702.9.4681.61.2182.2.4691.93.1861.7.4231.58.2152.2.4461.94.2362.8.6431.30.2951.9.4112.28.2613.0.3201.24.1031.8.340.816.1041.3.5092.02.2292.6.5681.37.2722.1.3691.41.1221.9.2131.30.1481.7.2991.76.2012.3.302.210.1842.3<	1.86 $.322$ 2.6 1.89 $.273$ 2.6 2.32 $.249$ 3.3 1.79 $.195$ 2.7 $.817$ $.259$ 1.6 $.000$ $.274$ 1.7 $.848$ $.229$ 1.4 1.29 $.277$ 2.0 1.99 $.237$ 2.6 2.70 $.277$ 3.9 1.62 $.331$ 2.6 1.61 $.274$ 2.5 2.16 $.264$ 3.2 1.82 $.205$ 2.6 1.60 $.199$ 2.4 1.54 $.217$ 2.2 2.48 $.234$ 3.4 2.32 $.241$ 3.2 2.04 $.270$ 2.9 1.61 $.218$ 2.2 1.62 $.301$ 1.8 1.61 $.218$ 2.2 1.63 $.168$ 1.7 1.58 $.215$ 2.2 1.61 $.218$ 2.2 1.96 $.225$ 2.7 1.94 $.236$ 2.8 1.30 $.295$ 1.9 2.28 $.261$ 3.0 1.24 $.103$ 1.8 $.816$ $.104$ 1.3 2.02 2.2 2.3 1.93 $.208$ 2.5 1.75 $.285$ 2.3 1.95 $.205$ 2.4 4.57 $.152$ 5.0 1.90 $.264$ 2.5 2.44 $.170$ 2.9 1.96	322 2.6 208 2.7 273 2.6 249 3.3 195 2.7 259 1.6 274 1.7 229 1.4 277 2.6 237 2.6 277 3.9 331 2.6 277 3.9 331 2.6 277 2.9 237 2.6 277 2.9 237 2.6 274 2.2 205 2.6 199 2.4 217 2.2 234 3.2 270 2.9 218 2.9 218 2.9 218 2.9 218 2.7 236 2.8 295 1.9 218 1.7 215 2.2 225 2.7 236 2.8 295 1.9 261 3.0 103 1.8 104 1.3 229 2.6 272 2.1 122 1.9 205 2.4 152 2.9 228 2.5 205 2.6 212 2.6 2212 2.6 2212 2.6 205 1.8 225 2.5 205 1.8	67.637.674069.652.642.42927222789083619733553405998366258 2223211112232202223222322223222122221311221122	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.61.5561.86.3222.616.21.30.4041.89.2082.713.52.06.4811.82.2732.615.91.50.4682.32.2493.313.61.94.4191.79.1952.710.7.766.477.817.2591.611.81.07.496.600.2741.712.8.806.456.848.2291.410.61.25.4061.29.2773.917.61.63.5261.62.3312.617.71.43.4871.61.2742.514.42.14.2941.82.2052.614.21.61.3341.60.1992.411.91.53.4472.48.2343.413.52.28.4402.32.2413.213.51.94.463.64.1778.01.94.463.64.2702.914.51.66.4681.61.2162.29.21.15.4691.63.1861.78.01.94.4231.58.2152.211.91.65.44651.64.2362.714.11.99.4261.96.2252.714.11.94.236.281.411.94.2362.8.4411.94.236.2814.1	.5501.86.3222.616.2.4041.89.2082.713.5.4811.82.2732.615.9.4622.32.2493.313.6.4191.79.1952.710.7.477.817.2591.611.8.486.000.2741.712.5.456.848.2291.410.6.4061.29.2772.012.8.4061.29.2773.917.6.5261.62.3312.617.7.4871.61.2742.514.4.3941.82.2052.614.2.3341.60.1992.411.9.3951.54.2172.210.9.4472.48.2343.413.5.4631.61.2182.29.2.4691.63.1861.78.0.4231.58.2152.211.9.4631.30.2951.912.1.4112.28.2613.017.4.3201.24.1031.86.0.340.816.1041.34.9.5092.02.2292.611.3.5681.37.2722.113.4.5681.37.2722.113.4.3691.41.1221.97.6.2092.02.2292.611.3 <td>1.86$.322$$2.6$$16.2$$1.89$$.208$$2.7$$13.5$$1.82$$.273$$2.6$$15.9$$2.32$$.249$$3.3$$13.6$$1.79$$.195$$2.7$$10.7$$.817$$.259$$1.6$$11.8$$.000$$.274$$1.7$$12.5$$.848$$.229$$1.4$$10.6$$1.29$$.277$$2.6$$12.1$$2.70$$.277$$3.9$$17.6$$1.62$$.331$$2.6$$17.7$$1.61$$.274$$2.5$$14.4$$2.16$$.264$$3.2$$18.1$$1.82$$.205$$2.6$$14.2$$1.60$$.199$$2.4$$11.9$$1.54$$.217$$2.2$$10.9$$2.48$$.234$$3.4$$13.5$$2.32$$.241$$3.2$$13.5$$2.04$$.270$$2.9$$14.5$$1.61$$.218$$2.2$$9.2$$1.63$$.186$$1.7$$8.0$$1.58$$.215$$2.7$$14.1$$1.94$$.236$$2.8$$14.1$$1.30$$.295$$1.9$$12.1$$2.28$$.261$$3.0$$17.4$$1.44$$.249$$2.2$$14.9$$1.44$$.249$$2.2$$14.9$$1.96$$.225$$2.7$$14.1$$1.94$$.236$$2.8$$14.1$$1.30$$.148$$1.7$$9.0$</td> <td>322$2.6$$16.2$$208$$2.7$$13.5$$273$$2.6$$15.9$$249$$3.3$$13.6$$195$$2.7$$10.7$$259$$1.6$$11.8$$274$$1.7$$12.5$$229$$1.4$$10.6$$277$$2.0$$12.8$$237$$2.6$$12.1$$277$$3.9$$17.6$$331$$2.6$$17.7$$274$$2.5$$14.4$$264$$3.2$$18.1$$205$$2.6$$14.2$$.199$$2.4$$11.9$$217$$2.2$$10.9$$.234$$3.4$$13.5$$.241$$3.2$$9.2$$.186$$1.7$$8.0$$.215$$2.2$$14.9$$.225$$2.7$$14.1$$.295$$1.9$$12.1$$.261$$3.0$$17.4$$.103$$1.8$$4.9$$.229$$2.6$$11.3$$.272$$2.1$$13.4$$.122$$1.9$$7.6$$.148$$1.7$$9.0$$.201$$2.3$$11.1$$.184$$2.3$$9.6$$.201$$2.3$$11.1$$.184$$2.5$$12.7$$.264$$2.5$$31.9$$.170$$2.9$$15.5$$.191$$1.9$$15.0$$.228$$1.8$$13.8$$.201$$2.2$$14.9$$.264$$2.5$$25.4$<!--</td--><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c} 16.5\\ 15.6\\ 10.7\\ 10.8\\$</td></td>	1.86 $.322$ 2.6 16.2 1.89 $.208$ 2.7 13.5 1.82 $.273$ 2.6 15.9 2.32 $.249$ 3.3 13.6 1.79 $.195$ 2.7 10.7 $.817$ $.259$ 1.6 11.8 $.000$ $.274$ 1.7 12.5 $.848$ $.229$ 1.4 10.6 1.29 $.277$ 2.6 12.1 2.70 $.277$ 3.9 17.6 1.62 $.331$ 2.6 17.7 1.61 $.274$ 2.5 14.4 2.16 $.264$ 3.2 18.1 1.82 $.205$ 2.6 14.2 1.60 $.199$ 2.4 11.9 1.54 $.217$ 2.2 10.9 2.48 $.234$ 3.4 13.5 2.32 $.241$ 3.2 13.5 2.04 $.270$ 2.9 14.5 1.61 $.218$ 2.2 9.2 1.63 $.186$ 1.7 8.0 1.58 $.215$ 2.7 14.1 1.94 $.236$ 2.8 14.1 1.30 $.295$ 1.9 12.1 2.28 $.261$ 3.0 17.4 1.44 $.249$ 2.2 14.9 1.44 $.249$ 2.2 14.9 1.96 $.225$ 2.7 14.1 1.94 $.236$ 2.8 14.1 1.30 $.148$ 1.7 9.0	322 2.6 16.2 208 2.7 13.5 273 2.6 15.9 249 3.3 13.6 195 2.7 10.7 259 1.6 11.8 274 1.7 12.5 229 1.4 10.6 277 2.0 12.8 237 2.6 12.1 277 3.9 17.6 331 2.6 17.7 274 2.5 14.4 264 3.2 18.1 205 2.6 14.2 $.199$ 2.4 11.9 217 2.2 10.9 $.234$ 3.4 13.5 $.241$ 3.2 9.2 $.186$ 1.7 8.0 $.215$ 2.2 14.9 $.225$ 2.7 14.1 $.295$ 1.9 12.1 $.261$ 3.0 17.4 $.103$ 1.8 4.9 $.229$ 2.6 11.3 $.272$ 2.1 13.4 $.122$ 1.9 7.6 $.148$ 1.7 9.0 $.201$ 2.3 11.1 $.184$ 2.3 9.6 $.201$ 2.3 11.1 $.184$ 2.5 12.7 $.264$ 2.5 31.9 $.170$ 2.9 15.5 $.191$ 1.9 15.0 $.228$ 1.8 13.8 $.201$ 2.2 14.9 $.264$ 2.5 25.4 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c} 16.5\\ 15.6\\ 10.7\\ 10.8\\$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 16.5\\ 15.6\\ 10.7\\ 10.8\\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.61.5561.86.3222.616.21291.80.4041.89.2082.713.5882.06.4811.82.2732.615.9301.50.4682.32.2493.313.6941.94.4191.79.1952.710.737.766.477.817.2591.611.8401.97.496.000.2741.712.5601.25.4061.29.2772.012.81291.30.4091.99.2372.612.11202.34.4142.70.2773.917.6891.43.5261.62.3312.617.7932.4.4392.16.2643.218.1892.14.2941.60.1992.411.9471.13.3951.54.2172.210.9711.53.4472.48.2343.413.5802.28.4402.32.2413.213.5841.94.4631.61.2182.29.2891.15.4691.63.2661.78.01121.94.463.64.216.227914.5822.84.402.324.3413.5802.2614.1.94.463.61.218.229.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.86.3222.616.21291.89.2082.713.5801.82.2732.615.9302.32.2493.313.6941.79.1952.710.737.817.2591.611.840.000.2741.712.562.848.2291.410.6601.29.2772.612.11202.70.2773.917.6891.62.3312.617.7931.61.2742.514.4942.162.643.218.1891.82.2052.614.2681.62.3312.617.7931.61.2742.514.4942.16.2052.614.2681.62.3312.617.7931.61.2172.210.9712.48.2343.413.5802.32.2413.213.5842.04.2702.914.5821.61.2182.29.2891.63.1861.78.01.94.2362.714.1801.94.2362.714.1801.94.2362.714.1801.95.2052.714.1801.96.2252.714.18	.3222.616.2129.2082.713.580.2732.615.930.2493.313.694.1952.710.787.2591.611.840.2741.712.562.2291.410.660.2772.612.1120.2372.612.1120.2773.917.689.3312.617.793.2742.514.494.2643.218.189.2052.614.268.1992.411.947.2172.210.971.2343.413.584.2702.914.582.2182.29.289.1861.78.0112.2152.211.980.2252.714.180.2362.814.189.2951.912.184.2062.311.380.2722.113.473.1841.79.0133.2012.311.191.1842.39.661.07701.53.873.2052.414.460.1525.012.767.2642.531.951.1702.915.591 <t< td=""><td>$2.6$$16.2$$129$$2.7$$13.5$$80$$2.6$$15.9$$30$$3.3$$13.6$$94$$2.7$$10.7$$87$$1.6$$11.8$$40$$1.7$$12.5$$62$$1.4$$10.6$$60$$2.0$$12.8$$129$$2.6$$12.1$$120$$3.9$$17.6$$89$$2.6$$17.7$$93$$2.5$$14.4$$94$$3.2$$18.1$$89$$2.6$$17.7$$93$$2.5$$14.4$$94$$3.2$$18.1$$89$$2.6$$17.7$$93$$2.5$$14.4$$94$$3.2$$18.1$$89$$2.6$$14.2$$68$$2.4$$11.9$$47$$2.2$$9.2$$89$$1.7$$8.0$$112$$2.2$$9.2$$89$$1.7$$8.0$$112$$2.2$$14.9$$60$$2.7$$14.1$$80$$2.8$$14.1$$89^{\circ}$$1.9$$12.1$$84$$3.0$$17.4$$87$$1.3$$4.9$$98$$2.6$$11.3$$80$$2.1$$13.4$$73$$2.5$$31.9$$51$$2.3$$18.1$$72$$2.4$$14.4$$60$$5.0$$12.7$$67$$2.5$$31.9$$51$$2.9$$15.5$$91$</td></t<> <td>16.2$129$$13.5$$80$$15.9$$30$$13.6$$94$$10.7$$87$$11.8$$40$$12.5$$62$$10.6$$60$$12.8$$129$$12.1$$120$$17.6$$89$$17.7$$93$$14.4$$94$$18.1$$89$$14.2$$68$$11.9$$47$$10.9$$71$$13.5$$80$$13.5$$84$$14.5$$82$$9.2$$89$$8.0$$112$$11.9$$80$$14.5$$89$$8.0$$112$$11.9$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$14.1$$80$$13.4$$73$$7.6$$80$$9.0$$133$$11.1$$91$$9.6$$61$$3.8$$73$$15.4$$87$$12.7$$129$$13.8$$116$$12.7$$129$$19.1$$83$$14.2$$72$$14.9$$93$$25.4$$50$$8.9$$73$</td>	2.6 16.2 129 2.7 13.5 80 2.6 15.9 30 3.3 13.6 94 2.7 10.7 87 1.6 11.8 40 1.7 12.5 62 1.4 10.6 60 2.0 12.8 129 2.6 12.1 120 3.9 17.6 89 2.6 17.7 93 2.5 14.4 94 3.2 18.1 89 2.6 17.7 93 2.5 14.4 94 3.2 18.1 89 2.6 17.7 93 2.5 14.4 94 3.2 18.1 89 2.6 14.2 68 2.4 11.9 47 2.2 9.2 89 1.7 8.0 112 2.2 9.2 89 1.7 8.0 112 2.2 14.9 60 2.7 14.1 80 2.8 14.1 89° 1.9 12.1 84 3.0 17.4 87 1.3 4.9 98 2.6 11.3 80 2.1 13.4 73 2.5 31.9 51 2.3 18.1 72 2.4 14.4 60 5.0 12.7 67 2.5 31.9 51 2.9 15.5 91	16.2 129 13.5 80 15.9 30 13.6 94 10.7 87 11.8 40 12.5 62 10.6 60 12.8 129 12.1 120 17.6 89 17.7 93 14.4 94 18.1 89 14.2 68 11.9 47 10.9 71 13.5 80 13.5 84 14.5 82 9.2 89 8.0 112 11.9 80 14.5 89 8.0 112 11.9 80 14.1 80 14.1 80 14.1 80 14.1 80 14.1 80 14.1 80 14.1 80 14.1 80 14.1 80 14.1 80 14.1 80 13.4 73 7.6 80 9.0 133 11.1 91 9.6 61 3.8 73 15.4 87 12.7 129 13.8 116 12.7 129 19.1 83 14.2 72 14.9 93 25.4 50 8.9 73

.

.

	$\begin{array}{c} 633.5\\ 33.5\\ 33.5\\ 342.4\\ 3175.2\\ 35.23\\ 35.$
ŗ	671194801135938543482556630524266438625771655452491594882 1977998965455663852463862577584654524915948882
	$\begin{array}{c} 17.3\\ 218.4\\ 0.9\\ 5.8\\ 4.0\\ 6.9\\ 5.8\\ 4.0\\ 6.6\\ 2121\\ 16.8\\ 121\\ 121\\ 121\\ 121\\ 121\\ 121\\ 121\\ 12$
	41.0 41.0 10.0 10.0 10.0 10.0 10.0 10.0
	.0436 .211 .101 .209 .272 .0504 .232 .391 .153 .0535 .121 .244 .2211 .0973 .244 .213 .0973 .244 .213 .0973 .244 .2138 .0973 .2441 .2388 .1238 .1238 .2395 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2389 .1288 .2288 .1288 .2288 .1288 .2289 .1288 .2288 .1288 .2289 .1288 .2288 .1288 .2289 .1288 .2288 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1288 .2289 .1289 .2444 .2261 .2461 .2461 .2465 .2177 .136
	$\begin{array}{c} 31.3\\ 4.49\\ 14.62\\ 1.67\\ .942\\ 2.50\\ 4.12\\ 2.50\\ 4.12\\ 2.50\\ 1.72\\ 0.22\\ .772\\ 0.749\\ 1.452\\ 2.53\\ 0.773\\ 1.522\\ 1.53\\ 0.773\\ 1.522\\ 1.53\\ 0.773\\ 1.523\\ 0.773\\ 1.523\\ 1.53\\ 0.273\\ 0.686\\ 0.666\\ 0.772\\ 0.273\\ 0.686\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.666\\ 0.773\\ 0.686\\ 0.666\\ 0.773\\ 0.666\\ 0.773\\ 0.666\\ 0.773\\ 0.666\\ 0.773\\ 0.666\\ 0.773\\ 0.666\\ 0.773\\ 0.666\\ 0.773\\ 0.666\\ 0.666\\ 0.773\\ 0.666\\ 0.666\\ 0.773\\ 0.666\\ 0.666\\ 0.773\\ 0.666\\ 0.66$
	$\begin{array}{c} .0199\\ .3167\\ .367\\ .475\\ .303\\ .196\\ .3390\\ .0253\\$
	$\begin{array}{c} .535\\ 1.75\\ 1.23\\ 2.98\\ 1.32\\ 3.96\\ 1.32\\ 3.96\\ 1.32\\ 3.96\\ 1.32\\ 3.96\\ 1.32\\ 3.96\\ 1.32\\$
	355679012356789012356792468901479002458023345780333333333333333333333333333333333333

.

•

.

1.02 1.52 2.36 1.50 .863	.288 .199 .511 .310	.743 6.54 3.51 1.62	.192 .134 .199	1.4 5.3 4.2	12.8 19.1 26.8	44 44	15.5 24.6 ()
1.52 2.36 1.50	.199.511	6.54 3.51	.134		10.1		24.6 🖓
2.36 1.50	.511	3.51				40	
1,50					<u> </u>	49	20.8
		1.64	.176	2.2	11.5	46	16.6
	.304	.995	.185	1.5	10.3	48	13.5
1.68	.252	2.00	.142	2.7	11.6	45	15.7
							14.4
							16.4
							19.8
							25.3
							21.3
							22.2
							18.9
							24.1
1,58		2.06			18.6		53.2
1.29	.294	2.14	.272	3.6	14.7	73	21.9
1.98	.392	1.85	.315	3.2	27.0	97	21.7
				2.7	. 14.5	71	21.2
							18.1
							24.0
							9.7
	1.03 1.05 1.35 2.14 2.02 3.10 1.76 1.58 1.29 1.29 1.98 1.29 1.43 1.10 .767	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- ·

I. G. WAHL LTD.	- SOIL	ŝ					RFWO NO:	13
HATRIX: HOLO4		ANALYSIS I	ATE:	101075	TAPE NO:	27	FILE N	0:
CLIENT SAMPLE NO	CR PPM	PB PPM	P PPM	AG PPM	TI PPM	CO PPM	NA PPM	B FP
190	34.9	N.D.	176	0.71	940	7.7	100	0.1
101	28.1	N.D.	72	0.61	956	6.7	100	0.1
102	36.3	1	111	0.71	1170	7.0	110	0.1
103	37、9	1	154	1.00	952	7.3	110	0.2
104	49.9	. N. D.	142	1.10	1020	10.2	130	0.2
105	39.9	8	180	1.10	943	12.9	150	0.3
166	10.4	3	41	0.52	783	3.4	90	N. 1
107	53.6	3 2	227	1.10	1180	9.0	130	0.:
108	51.6	2	208	1.19	1180	8.2	120	0.1
109	62.i	1	525	1.58	1820	18.8	230	9.1
110	38.7	H.D.	132	1.00	1020	9.5	150	0.1
. 111	50,0	Ν.Β.	204	1.05	1130	11.3	160	0.
112	40.2	1	354	0.61	918	8.9	160	0.1
113	49,1	ī	276		1040	10,3	130	0.:
115	33.7	i	98		1090	7.4	150	ø.

$\begin{array}{c} 1856\\ 1856\\ 1856\\ 1890\\ 1994\\ 1994\\ 1994\\ 1994\\ 1996\\ 1202\\ 2004\\ 679\\ 134\\ 568\\ 2013\\ 456\\ 202\\ 2013\\ 456\\ 202\\ 202\\ 202\\ 2013\\ 456\\ 203\\ 203\\ 203\\ 203\\ 203\\ 203\\ 203\\ 203$
$\begin{array}{c}1989492869302956057639088695921589790534602932168142\\43352699821689822479823664499284375049459435654545494487\\43452599821689822479823664499284357250494594356564545494487\\54545498224479823664499284357250494594356564545494487\\545454944487\\5454545494487\\54545454545494857\\55454556545454545454444857\\554564545565454545454545454545454545454$
12 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D
154 156 167 126 1275 1275 1275 1275 1275 1275 1275 1275
$\begin{array}{c} 0.71\\ 0.52\\ 0.60\\ 1.10\\ 1.16\\$
1020 1010 1050 1230 1230 1230 1230 1230 1230 1240 1250 1260
8.135241513785771458399552707166555701174505229582510 10.199.1011931899999999780958704008798810120309587519 299.78071665557011745052295829587519 10.1120309587519
$\begin{array}{c} 160\\ 130\\ 130\\ 180\\ 220\\ 220\\ 220\\ 220\\ 220\\ 220\\ 220\\ 2$
5159827282762774287242777244222225724443222226465466771146 0.2282228276277428724277722422222572444322222646546771146

•

								· .	
320 321 322 323 324 325 326 327 328 329 330 331 332 334 332 334 335 337 338 340 342 343 344 345 348 349 351 352 355 356 357 359 360 361 362 364 362 364 362 364 362 364 362 364 362 364 362 364 362 364 365 357 359 360 361 362 364 362 364 362 364 365 357 359 360 361 362 364 362 364 365 357 359 360 361 362 364 365 357 359 360 361 362 364 365 357 359 360 361 362 364 365 357 359 360 361 362 364 365 357 359 360 361 362 364 365 357 359 367 377 378 377 379 360 361 362 364 365 357 359 367 377 378 377 379 360 367 377 377 377 377	318 319	634268696930112595120613280262923552834570584323378 6634268696930112595120613280262923552834570584323378 769532513335160249457546720005225922552834570140388293584 76943324332442444555334554522592255283457504911403884 76944332433244244455533455454458 74266941348384323378 7893384	N.D. N.D. N.D. N.N.N. N.N.N.N.N.N.N.N.N.	281 349 309 242 261 1657 167 163 1635 1635 160 160 160 164 387 164 399 164 308 100 1253 175 1221 1221 1221 1221 1221 1221 1221	$\begin{array}{c} 0.94\\ 0.99\\ 1.18\\ 0.99\\ 1.18\\ 0.99\\ 1.18\\ 0.99\\ 1.18\\ 0.99\\ 1.18\\ 0.99\\ 1.18\\ 0.99\\ 1.19\\ 0.99\\ 1.19\\ 0.99\\$	$\begin{array}{c} 1180\\ 1040\\ 1230\\ 1390\\ 1410\\ 1240\\ 1390\\ 1160\\ 1290\\ 11300\\ 11300\\ 11300\\ 1120\\ 880\\ 1180\\ 1040\\ 1090\\ 1090\\ 11300\\ 1040\\ 1090\\ 1150\\ 11300\\ 1150\\ 11300\\ 11500\\ 11300\\ 11500\\ 1270\\ 12800\\ 1270\\ 12800\\ 1270\\ 1280$	7.3915247241567797174639665577745242108648086287708429 104488445647861108666557745242108648086287708429 13832966999565586	$\begin{array}{c} 250\\ 230\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 140\\ 170\\ 160\\ 170\\ 160\\ 170\\ 160\\ 170\\ 160\\ 170\\ 160\\ 230\\ 230\\ 230\\ 260\\ 240\\ 260\\ 240\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 260\\ 26$	0.429 429 0.4250 0.2250 0.222133 0.0524 0.2250 0.000 0.1224 0.22250 0.000 0.22250 0.000 0.22250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000

.

•

	•					,		
$ \begin{array}{c} 379 \\ 382 \\ 384 \\ 336 \\ 388 \\ 389 \\ 390 \\ 391 \\ 394 \\ 397 \\ 399 \\ 400 \\ 402 \\ 404 \\ 405 \\ 408 \\ 410 \\ 412 \\ 413 \\ 414 \\ 415 \\ 417 \\ 418 \\ 420 \\ 423 \\ 424 \\ 425 \\ 426 \\ 427 \\ 428 \\ 429 \\ 436 \\ 427 \\ 428 \\ 429 \\ 436 \\ 431 \\ 432 \\ 424 \\ 425 \\ 426 \\ 427 \\ 428 \\ 429 \\ 436 \\ 431 \\ 432 \\ 436 \\ 437 \\ 428 \\ 429 \\ 436 \\ 431 \\ 436 \\ 437 \\ 428 \\ 429 \\ 436 \\ 431 \\ 436 \\ 437 \\ 428 \\ 436 \\ 437 \\ 438 \\ 436 \\ 437 \\ 438 \\ 449 \\ 446 \\ 447 \\ 448 \\ 446 \\ 447 \\ 448 \\ 449 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 452 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 453 \\ 453 \\ 456 \\ 453 \\ 456 \\ 451 \\ 453 \\ 456 \\ 453 \\ 456 \\ 456 \\ 451 \\ 456 \\ 456 \\ 451 \\ 456 \\ 456 \\ 451 \\ 456 \\ 456 \\ 451 \\ 456 \\ 456 \\ 451 \\ 456 \\ 456 \\ 451 \\ 456 $	$\begin{array}{c} 6384\\ 4358\\ 4435\\ 88\\ 9622\\ 300\\ 9532\\ 200\\ 8442\\ 315\\ 864\\ 4255\\ 4165\\ 825\\ 200\\ 8442\\ 915\\ 806\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 4165\\ 825\\ 425\\ 835\\ 425\\ 835\\ 434\\ 447\\ 473\\ 815\\ 81\\ 815\\ 81\\ 815\\ 81\\ 81\\ 81\\ 81\\ 81\\ 81\\ 81\\ 81\\ 81\\ 81$	N.D.2 N.D.2 N.D.12 N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	$\begin{array}{c} 139\\ 1476627279343876096567042025205421468543245580152060032\\ 121233552295421468543245580152143734\\ 12212212638015060032\\ 12212212212212212212212213734\\ 122122122122122122122122122122122122122$	0.05740.5570.5777400996999566629676666332222299990	$\begin{array}{c} 1250\\ 951\\ 849\\ 868\\ 1030\\ 1220\\ 939\\ 628\\ 1420\\ 939\\ 628\\ 1420\\ 1010\\ 910\\ 1010\\ 910\\ 1020\\ 1030\\ 1020\\ 10$	849941433444405568548386681086299481743084428148528211 178686671747657588987986681086299481743084428148528211 1087788594143344405568548386681086299481743084428148528211	1200 1200 1150 1150 1150 1150 1150 1150	0.120050080364540517909593455991197783550508659979 20.2222460900000000000000000000000000000000

W. G. WAHL LTD. - SOILS

RFW0 NO: 137

MATRIX:	HCL04		ANALYSIS	DATE:	101075	TRPE	NŪ:	27	FILE	NO:
CLIEN SAMPLE		CU PPM	11년 1919년 1919년	38 199						
	00 01 02 034 056 078 099 111 112 125 221 225 229 023 334 356 790 423 4434 445 444 445 445 445 445 445 445 445 445 445 445 445 456 356 356 356 356 350 356 356 350 445 445 445 445 456 356	16.2788 667839 9646289 6388399 9635258369 16.289 16.289 16398 96339 9635258369 16.222 113167 16887 16378 96339 9635258 1131 12318 1887 15184 9735258 96359 1131 1887 1887 1837 11437 953 1131 1887 1837 11437 153 1131 1988 1938 1937 11437 153 1131 1131 11387 1137 11437 153 133 1131 1133 11387 1137 11437 153 133 <t< td=""><td>$\begin{array}{c} 77.8\\ 62.6\\ 60.7\\ 108\\ 748\\ 23.3\\ 53.59\\ 22.3\\ 125.8\\ 72.38.1\\ 23.6\\ 179\\ 35.6\\ 179\\ 3568\\ 179\\ 80.4\\ 379\\ 80.4\\ 3128\\ 80.4\\ 80.4\\ 3128\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4$</td><td>14.2 15.2 15.2 16.2 17.5 18.5 19.5 11.5 12.1 12.1 12.1 15.5 12.1 15.5 12.1 15.5 12.1 15.5 12.1 15.5 12.1 <t< td=""><td>29.5 7 0 22.7 1 1 4 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 7 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 7 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 8 5 7 5 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 8 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 7 5 5 8 5 7 5 5 7</td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	$\begin{array}{c} 77.8\\ 62.6\\ 60.7\\ 108\\ 748\\ 23.3\\ 53.59\\ 22.3\\ 125.8\\ 72.38.1\\ 23.6\\ 179\\ 35.6\\ 179\\ 3568\\ 179\\ 80.4\\ 379\\ 80.4\\ 3128\\ 80.4\\ 80.4\\ 3128\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4\\ 80.4$	14.2 15.2 15.2 16.2 17.5 18.5 19.5 11.5 12.1 12.1 12.1 15.5 12.1 15.5 12.1 15.5 12.1 15.5 12.1 15.5 12.1 <t< td=""><td>29.5 7 0 22.7 1 1 4 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 7 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 7 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 8 5 7 5 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 8 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 7 5 5 8 5 7 5 5 7</td><td></td><td></td><td></td><td></td><td></td></t<>	29.5 7 0 22.7 1 1 4 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 2 2 9 5 2 5 7 8 9 9 9 2 8 9 5 2 8 5 7 5 5 7 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 7 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 2 8 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 7 5 5 7 5 5 2 8 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 8 5 7 5 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 8 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 8 5 7 5 5 7 5 5 8 5 7 5 5 7 5 5 7 5 5 8 5 7 5 5 7					

157

33.9 39.2 39.8 32.9 33.4 30.2 32.9

48.1 29.5 36.0

30.0 31.2

30.2 30.0

23.9 20.3

32.9 40.2

45.0 46.5 35.2 39.2

35.0 47.3 38.2 28.4

30.0

35.2 33.4 33.2

33.4

44.5 46.8 37.2 48.1

40.7 50.3 70.2 50.6

50.5 43.5 45.4 55.2 40.3 54.5 40.3 54.5 48.2 6

82.0

47.0 48.9 48.7 48.2 44.2

.

· .

$\begin{array}{c} 11.3\\6.7\\0.5\\4.5\\7\\4.5\\3.5\\6.6\\8.8\\1.7\\0.5\\3.5\\6.6\\8.5\\1.2\\0.5\\5.5\\1.2\\0.5\\3.5\\6.8\\0.5\\1.2\\0.5\\5.5\\1.4\\4.4\\4.4\\4.4\\6.8\\2.2\\4.5\\4.4\\3.3\\4.6\\3.2\\6.8\\3.4\\6.3\\2.6\\8.3\\4.6\\7.3\\4.3\\4\\3.4\\5.5\\5.5\\1.2\\1.2\\1.2\\3.5\\5.5\\1.2\\1.2\\3.5\\5.5\\1.2\\1.2\\3.5\\5.5\\1.2\\1.2\\3.5\\1.2\\1.2\\1.2\\1.2\\1.2\\1.2\\1.2\\1.2\\1.2\\1.2$	$\begin{array}{c} 206\\ 94.1\\ 1873\\ 897.2\\ 102\\ 125.2\\ 1$	48.57144348257005409447596986224421418374449568741667252200046 38.5449187688096395118275969862244214183744495688741667252200046 38.5524843556874166725228522133379972244413365953224103363233413310 38.55558324103363323413336593324103363333333333333333333333333333333333
--	--	--

	$\begin{array}{l} 444887743897391161819166147416885178273989892512079563217\\ 444887743919263897391161819166147416885178273989892512079563217\\ 25692717827398989892512079563217\\ 25692727288989892512079563217\\ 25692727288989892512079563217\\ 25692727288989892512079563217\\ 2569272888857887\\ 25692728888578887\\ 25692728888578887\\ 25692728888578887\\ 25692728888578887\\ 25692788885788857888578885\\ 256927888857888578885788855878\\ 256927888855878885587885788855878\\ 256927888855878885587888558788566885585858566866866866686$	
•	443.52 443.736.2730 452.308345.2730 452.308345.2730 452.308345.2730 452.308345.2730 452.30832 453500 457.95632 447.52 447.52 447.52 447.52 447.52 527.730 447.52 447.52 527.730 447.52 527.730 447.52 527.730 447.52 527.7300 527.7300 527.7300 527.7300 527.7300 527.7300	

C

~

. .

030453462193920569514455935550744830853777683364463219717939 845424474434654323344232333411241322066607874449115540463 10463 114744449115540463 1312	$\begin{array}{c} 103\\127\\120\\104\\96.5\\175\\139\\118\\112\\128\\145\\169\\139\\1120\\1294\\129\\129\\120\\1294\\129\\129\\120\\1294\\129\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\129\\120\\120\\120\\120\\120\\120\\120\\120\\120\\120$	424989898971281688577229554882932244845333442868899467986856973 483354449828333336633333461488293822488453334428688899467986856973 4833354449781395233833346146948882932577578514674138899467986856973 1943333222222222222222222222222222222222	$\begin{array}{l} 338598284535543926342444888141374368782784912312935988495\\ 479326528423355435439424448881413743687827849123355423235544354354454433355429554444433355688495\\ 47954232323554454344544544333455542161855423554444433356684844444444444444444444444$
--	---	--	---

.

•

.....

ć

359

360

361

362

363

364

366

367

368

369

370

371

372

373

375

376

377

379

382

384

386

388

389

390

391

394

397

399

400

402

494

405

408

410

412

413

414

415

417

418

420

423

424 425

427

428

429

430

431

432

434

435

436

6.7 179 28.4 46.4 6.1 36.7 240 2.3 19.8 43.4 10.3 222 26.7 97.4 7.6 22.4 14.8 196 30.4 18.2 3770 25.2 45.3 3.9 2.7 7.0 5.4 6610 130 37.2 30.5 79.6 106 35.8 5.3 92.7 30.4 6.0 88.8 27.9 1.5 62.8 17.6 2.5 24.2 126 4.9 25.2 1044.9 83.5 24.3 2.5 104 23.1 169 27.0 7.6 22.3 114 4.1 24.1 221 11.2 1230 21.4 170 139 4.1 24.5 5.1 26.4 2.4 122 20.8 6.7 334 21.9 36.1 1730 10.9 5.1 92.4 19.8 6.5 12.7 99.5 27.4 931 24.7 15.8 19.7 148 2.1 17.3 76.1 40.4 398 23.4 7.5 229 19.1 6.5 162 25.9 3.9 118 21.3 2.5 160 24.7 12.4 573 27.6 9.4 403 28.1 5.9 126 24.4 5.3 768 22.3 5.4 225 26.2 5.8 127 28.1 7.8 7.8 275 25.9 125 28.6 6.7 697 30.7 158 5.2 24.0 25.6 5.3 157 8.6 159 25.3 377 6.4 20.8 5.1 80.5 22.4 9.3 256 19.5 44.8 16.1 24.8 442 28.9 2.5 68.3 24.0 48.9

41.3 39.4 68.8 49.7 98.7 46.2 21.4 34.4 67.7 66.5 52.2 48.4 26.5 31.7 . 26.7 41.9 37.1 40.9 34.8 32.7 29.3 33.0 47.4 30.7 31.6 35.7 45.7 33.3 38.8 29.5 25.6 28.6 39.2 27.1 43.9 34.9 38.8 45.0 36.1 34.4 44.4 37.7 42.6 40.0 36.6 32.1 34.0 38.1 34.0 28.2

E.

104 74.0 71.8 79.3 66.5 7,0569787244 222555588449 105 70.3 47.7 68.0 70.6 85.3 151 70.9 6.0 8.7 55.0 125 92.6 32.1 4.0 5.1 5.8 3.0

28.1 48.3 40.4 65.1 42.7 $\begin{array}{c} 22.0\\ 19.6\\ 20.0\\ 20.7\\ 19.8\\ 22.3\\ 19.8\\ 22.8\\ 19.4\\ 25.5\\ 21.9\\ 26.1\\ 23.7\\ 27.8\end{array}$ 19.8 22.4 27.1 24.2

.

40.0

.

. . .-

42.9 58.8 51.1 35.4

40.0 46.7 35.2 47.2 55.4 59.0 50.4

Please note:

As,An,Sn,Te,Se,U,W,B,Rb,En,Mo - not detected.
 Si values are partial.
 K values are a bit high.

RFW0 NO:

137

<u>د</u> (

W. G. MAHL LTD. - ROCKS

								NEWO NO.	Lor
	GEO-HNO3			DATE:	41175	TAPE NO:	28	FILE NO:	З
CLIEN SAMPLE		NI PPM	CU PPM	ZN PPM	CR PPM	CO PPM	V PPM	CD PPM	
11111111111111111111111111111111111111	56 39 41 54 54 58 55 24 78	413641030287915028539987930765845300596827542149138599532260 5766122678111124122265162122423444149075536148722294302360	42.0 29.2 34.8 170 52.0 112 74.0 69.3 107 85.5 92.8	$\begin{array}{c} 144\\ 165\\ 136\\ 759\\ 1387\\ 1266\\ 196\\ 969\\ 1267\\ 1266\\$	$\begin{array}{c} 162\\ 126\\ 128\\ 198\\ 76.6\\ 45.7\\ 94.5\\ 1127\\ 94.6\\ 97.5\\ 96.$	100 13 91	$\begin{array}{c} 225\\192\\233\\99\\4\\225\\8\\24,99\\4\\225\\8\\24,99\\24,99\\24,99\\24,99\\24,99\\24,99\\24,99\\24,25\\25\\24,25\\24,25\\25\\24,25\\23\\23,26\\29,49\\24,25\\23\\23,26\\29,49\\24,25\\23\\23,26\\29,49\\24,25\\23\\29,49\\44,29\\24,25\\23\\29,49\\44,29\\24,25\\23\\29,49\\44,29\\24,25\\20\\23\\29,49\\44,29\\23\\29,49\\44,25\\20\\23\\29,49\\44,25\\20\\23\\29,49\\44,25\\20\\22\\20\\29,49\\22\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\$	1.9057262907389396986544688153362240389906965713299273111636 2.122222222222222222222222222222222222	

•	181	30	70.2	101	81.5	20	77.0	1.2	· .
	· 380	32	92.8 26.7	240	218	39 35	23.3 15.4	7.5	
	385 201	35	20,7 00 5	153 [°] 188	221	30	10.4	8.1 7.6	
•	1961) 1961 - 19	33 17	23.5 60.9	188	280	15	16.0	1.0 5 C	
	392 393	11	00.7 38.3	154	81.8 137	23	12 4	L.U 5 A.	
	· · · · 승규요	ал 28	00.0 55,4	179	13, 173	23 30	12.4 16.2	5.0	
•	000 056	20 30	00.4 53.5	188	173	· 35	19.7	2.6 5.0 6.1 7.2	
	398	20 32	175	234	216	30 25	16.2	0.0	
	481	92 18	105	234 163	93.2	35 18	11.8	2.0	
	403	18 18	34.6	113	92.8	10	7.6	2.0	
	466	13	89.4	139	98.8	10	11.4	2.0	
	407	+¢ 36	67.6	224	231	14 38	18.5	8.2	
	409	27 27	28.5	162	183	29	13.4	5.7	
	411	93	172	211	206	105	194	2.2	
	416	19	109	124	103	18	12.0	2.6	
	419	31	36.4	137	214	33	20.3	8.6	
	421	19	31.3	139	73.4	19	37.1	2.2	
•	344 A A 2 2	2-2- 2-4	94.0 84.0	221	1217	25	5a 7	2.6	
	1944 1944		49.6	71	77.5	1.3	11.2	2.5	
	422		64 5		204	ŽĚ	40.0	6.5	
	422 426 433	24 14 40	86.0 49.6 64.5	221 71 139	· 77.3 77.5 204	25 13 76	54.7 11.2 40.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

						· ·			
								•	
Ы. I	G. WAHL LTD	- RUCKS						RFWO NO:	137
MATI	RIX: GEO-HNOS	8 A	NALYSIS	DATE:	41175	TAPE NO:	28	FILE NO:	0
	CLIENT MPLE NO	AG PPM	BE PPM	SR PPM	МН РРИ	TI %	P %		
	114 116 119 122 123 127 131 138 141 158 160 160 160 160 160 160 160 160 160 160	27932154872579057426682107391233070 432322433244113234444334242245435556	0.61091480618821065189096177998395487 1.01180618821065189096177998395487	$\begin{array}{c} 106\\ 80.1\\ 28.4\\ 49.5\\ 12.8\\ 34.9\\ 175\\ 105\\ 97.8\\ 12.0\\ 54.7\\ 12.0\\ 65.2\\ 97.8\\ 6.2\\ 2145\\ 51.2\\ 91.2\\ 25.1\\ 14.2\\ 99.8\\ 25.0\\ 134\\ 81.2\\ 134\\ 81.2$	$1620 \\ 1320$.517 .339 .364 .490 N.D. .228 .181 .410 .778 .340 .0210 .0031 .0054 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .9024 .200 .199 .0271 .0672 .6311 .474 .196 .931 .0054 .931 .0054 .931 .0054 .931 .0054 .931 .0054 .0054 .931 .0054 .0054 .0057 .0057 .0057 .00590 .931 .0054 .0054 .0054 .0057 .0057 .0057 .0057 .00590 .0054 .0054 .0054 .0054 .0057 .0057 .0057 .0057 .0057 .0057 .0057 .0057 .0057 .0057 .0057 .0057 .0054 .0054 .0054 .0054 .0054 .0057 .0057 .0057 .0057 .0057 .0054	$\begin{array}{c} .066\\ .062\\ .063\\ .0640\\ .053\\ .0640\\ .073\\ .0625\\ .0625\\ .0625\\ .0625\\ .0625\\ .0625\\ .0625\\ .0625\\ .0625\\ .0625\\ .0625\\ .06461\\ .0683\\ .0883\\ .0883\\ .0884\\ .0467\\ .061\\ .061\\ .061\\ .061\\ .011\\ .097\\ .114\\ .134\\ \end{array}$		

	-	,		1
-				
۰.		Ł.		
		K.		

.

406 407

135612318546854365995977978489775488884746367 354354455242433347484623655344552222553262324 4	 	-
.0561231054605436599507797240977548804746367 54354455242439347484623655944552222553262324 	3.	1
35612318546854365995277972489775488884746367 54354455242438347484628655344552222553262824 54354455242438347484628655344552222353262824	_	*
4354455242433347484623655344552222553262324 4354455242433347484623655344552222553262324 435445522225532623247	5.	З.
0612318546854365995877978489775488844746367 43544552424233347484623655344552222553262324 43544552424233347484623655344552222553262324	4	
612318546854365995077972489775488884746367 354455242439347484628655944552222553262824 2024	4.	<u> </u>
012318546854365995077978489775488884746367. 554455242438347484623655344552222553262324 2024	0	e
1231054605436599507797240977548804746367 54455242433347484628655344552222553262824	ာစ	<u> </u>
12318546854365995077978489775488844746367. 34455242439347484623655344552222553262324	£.,	1
23105460543655995077972409775488884746367 4455242433347484628655344552222553262824 4		7
4318546854365995077978489775488844746367. 7455242439347484623655344552222553262324	a l	2
310546054365995277972409775488884746367. 4552424333474846236553445522225532623247	T K	line.
18546854365995077972489775488884746367 55242439347484623655344552222553262324	4.	Э.
10546054365995077972409775488844746367. 552424333474846236553445522225532623247		Υ.
054605436599507797240977548804746367 5242439347484623655344552222553262324 	5.	1
054605436599507797240977548804746367 524243334748462365534455222253262324 7242433347484623655344552222353262324		
2424333474846236553448977548884716367 242433347484623655344552222553262324	Э.	Ю.
046054365995077972409775488844746367 442433347484623655344552222553262324 		
4605436599507797240977548884746367. 42433347484623685344552222553262324	in e	0
+60543659950779724097754888447+6367+ +24333474846236553445522225532623247	.4	4
60543659950779724097754888447+6367 2433347484623685344552222553262324	4.	•••
0054365995077972409775488844746367. 1433347484623655344552222553262324 1433347484623655344552222553262324		en -
0543655995077972409775488047+6367 433347484623655344552222553262324	ka k	Ф.
-33347484623655344552828532623247 -3334748462365534455282353262324 -3334748462365534455282253262324	đ	1.4
54365599507797240977548804746367 33347484623655344552222553262324	"î s	•
0436599507797240977548804716367 334748462365534455202353262324 4552222324		с;
436599507797240977548804746367 3347484623655344552222553262324	2.5	-
-3659950779724097754888447+6367 -347484623655344552222553262324 	З.	4
365995077972409775488047+6367 347484628655344552222553262324		-
47484628655344552928884746867.	З.	
659.9507797240977548804716367. 47484623655344552223553262324	2.	
599527797248977548884716367. 748462865534455222853262824	4.	÷.
099527797240977548804716367 (48462360534455222853262324		277
99507797240977548804746367. 48462365534455222853262324 70224	Т a	Ο.
**************************************	.4	C3
9527797242977548884716367. 84623655344552222553262324	· • •	2
,507797240977548884716367 ,4623655344552222653262324	Ω	Či –
507797240977548804746367. 4623655344552222553262324	O a	
007797240977548884716367 623655344552228884716367 7623655344552228884716367	4	£.,
07797240977548804746367 623655344552222553262324	т e	
17797240977548884716367 23655344552228884716367 237522288884716367	Б.,	- 11 - E
7797240977548804746367 23655344552222553262324		*
.79,72,409,775,4880,471,6367 .86553,445522230,532,62324	2.	7
797240977548804746367 3655344552222553262324	A.m. 8	1
655344977548884716367 655344552228884716367	З.,	77
57248977548884746367. 55534455222553262324		
55344552228884716367 534455222853262324	ъ.	9
5.344552228884746367. 5344552228553262324	<u> </u>	
5344977548884716367 344552228884716367 3262324	ີ.	1
034455222553262324 234455222553262324 2553262324	-	
344552228884716367. 34455222853262324	ъ.	
44552248884716367. 22553262324	- 2	14
44552223553262324 44552223553262324		4
4552248884716367 45522553262324	A	E4
977548884716367 455282553262324	.т.я	с., i
777548884716367 5522553262324	Ľ۵	Ч.
55222553262324 55222553262324	a	
52248884716367 22553262324		7
5.548894716367 2.2853262324 2.3853262324		
22.5884716367 22.553262324	ъ.	1
498894746367 202553262324 20253262324		È.
225034716367 2503262324	- K 1	1
48894716367 59423267 2010 2010 2010 2010 2010 2010 2010 201	0	A
2.89 5.94 2.63 2.64 2.63 2.4	-12. a	5. je
2.8 5.8 3.4 2.5 2.5 6.5 2.3 6.7 2.3 6.7 2.3 6.7 2.3 6.7	-0	\odot
5.9 5.4 2.7 1 2.6 3.6 7 2.6 7	h 3	С.
5.47.16367. 26.262.067.		ÇL.
5.84 3.47 26.36 2.36 2.36 2.36 2.4 4.7	1.1	ц,
3.4 3.4 2.5 6.3 6.7 8.6 8.6 8.6 7 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	2	14
3.47 32.63 62.367 2.4 	21	<u>,</u>
216267 216267 216224	З.	4
2.1 6.1 3.6 2.6 2.7 2.7 2.7	<u> </u>	
16.23.67 2.3.67 2.4	2.	-7-
6.1 2.6 3.6 2.6 7		1
2.6 3.3 2.6 4.7	ъ.	1
2.6 3.3 2.6 4.7		-
3.3 2.6 4.7	ه شه	÷.
3.3 2.6 4.7	- C -	Ξ,
2.6 4.7	ം ം	<u>ت</u> ،
4.7	·0	i
4.7	1 i i i i i i i i i i i i i i i i i i i	n, C
77 # E	1	
	~î.e	i f
		•

1.1 Ø.7 3.4

1.1 1.0 0.8 1.4

1.9

1.6

1.0

 387	341	.227	.095
84.6	1020	1.04	.103
115	1030	.774	.097
47.8	663	.784	.085
86.7	1020	.475	.100
74.0	1210	.686	.088
85.6	1920	.746	. 899
27.8	3660	.0331	. 100
39.4	1620	.867	. 114
126	772	.214	.086
90.0	869	1.11	. 108
166	889	.232	.079
194	1670	.942	. 106
205	812	.776	0.22
14.2	497	.0085	.030
3.6	4760	.0026	.023
110	3750	.208	. 101
41.1	33608	.0147	.041
18.0	15700	0030	.037
23.1	25100	H.D.	.035
108	2160	.221	.095
22.3	15600	.0118	.055
8.6	2940	.0061	.041
265	981	.298	.068
9.7	11300	.0188	.073
10.9	7750	.0078	.056
9.7	8490	.0025	. 125
7.4	2490	.0159	. 021
11.9	3800	.0051	.071
12.9	7080	.0001	.079
8.1	10360	.0042	.045
10.9	8940	.0042	.118
16.4	1800	.0042	.108
4.4	1690	N.D.	.040
5.2	3050	.0111	.040
14.3	10200	.0042	.086
12.9	3670	N.D.	.000
46.8	3670 2000	.323	.004
3.2	3120		.072
		N.D.	
	10900	.0012	.060
36.4	1730	.128	.079
133	3100	.181	. 084
6.8	2390	.0031	.037
8.3	2670	.0208	.058

И. Б. ИАН	L LTB 800	KS					RFW0 NO:	137
MATRIX:	GEO-H1403	ANALYSIS	DATE:	41175	TAPE NO:	28	FILE NO	: 3
CLIENT SAMELE N			SI PPM	CA X	MG X	NĤ X	K %	
1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2	6 5.09 9 5.40 (2 5.65 (3 .144 (7 5.36)1 5.36 (1 5.36 (3 5.36	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8900 11200 6070 12760 260 5480 10800 10100	$7.16 \\ 9.87 \\ 2.13 \\ 4.35 \\ 0553 \\ 1.31 \\ .351 \\ 7.26 \\ 0.000 \\ 0.00$	3.90 3.29 2.44 3.33 .711 .506 1.21 3.21	.603 .639 .143 .198 .0614 2.09 .882 1.44	7.28 7.93 5.56 6.88 1.09 6.24 6.16 7.48	
1 < 1 5 1 5	ić 5.93	7.16	14109 11500 590	5.92 6.38 .917	3.30 3.89 2.01	1.46 1.28 .0978	7.44 7.60 2.82	

W. G. WAHL LTD. I	RF-137	· · ·	
SAMPLE NUMBER	Pb ppm	SAMPLE NUMBER	Pb ppm
114	Å #+:	. 247	6
116	2	258	32
119	6	262	6
122	< 2	269	< 2
123	< 2	273	24
127	8	275	6
131	< 2 -	278	4
138	4	280	< 2
141	8	282	8
156	< 2	290	4
158	2	303	< 2
161	< 2	304	2
163	2	306	< 2
165	20	313	6
171	8	314	< 2
173	8	316	2
175	6	333	< 2
188	< 2	336	< 2
196	< 2	339	< 2
192	< 2	341	8
205	6	347	< 2
208	. 6	354	< 2
210	2	358	< 2
212	16	365	< 2
217	<u> </u>	. 374	6
222	2	378	< 2
228	10	380	< 2
230	12	381	10
234	2	383	4
238	16	385	< 2
244	2	387	< 2

Contraction of the second second

••••	Pb
AMPLE NUMBER	ppm
392	10 .
393	8
395	< 2
396	< 2
398	< 2
401	14
403	< 2
406	4
407	< 2
409	< 2
411	< 2
416	< 2
419	< 2
421	< 2
422	6
426	2
433	. 4

PAGE 2

.....

•••

SAMPLE NUMBER

.....

Pb

. ppm

. .

Ministry of Natural Resources	File 2:2085
GEOPHYSICAL – GEOLOGICAL – GEOCH	EMICAL
TO BE ATTAC FACTS SHOW TECHNICAL REPORT 1 410165W9149 2.2005 MARION	900
Type of Survey(s) <u>GEOPHYSICAL</u> , <u>GEOLOGICAL</u> , <u>GEOCHEMICA</u> Township or Area <u>Map Area</u> 'B' <u>Benton Township</u> Claim Holder(s) <u>W.G. Wahl Limited</u> , 1101-302 Bay Street, Toronto,	
Survey Company W.G. Wahl Limited. Author of Report David G. Wahl, Consulting Engineer	(prefix) (number)
Address of Author <u>1101-302 Bay Street</u> , Toronto. Covering Dates of Survey <u>July 11 - July 13</u> , <u>1975</u> (linecutting to office) Total Miles of Line Cut <u>1.04</u>	₽
SPECIAL PROVISIONSDAYSCREDITS REQUESTEDGeophysical	
ENTER 40 days (includes Electromagnetic 20 line cutting) for first Magnetometer 20 survey. Radiometric	
ENTER 20 days for each additional survey using same gridOther Geological 40 Rock Geochemical Soil 20	
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer Electromagnetic Radiometric (enter days per claim)	
DATE: April 9/76 SIGNATURE: 1 Author of Report or Agent	
Res. Geol Qualifications 63.2859. Previous Surveys	
File No. Type Date Claim Holder	
	TOTAL CLAIMS

J

OFFICE USE ONLY

If space insufficient, attach list

GEOPHYSICAL TECHNICAL DATA

<u>GROUND SURVEYS</u> – If more than one survey, specify data for each type of survey

N	umber of Stations.	76			Number of	Readings	152	
		50'					<u>120m</u>	
Pr	ofile scale	1" to 200'		and	<u> </u>	<u>20⁰ 20⁰ 20⁰</u>		
С	ontour interval	100-500 - 10	00 as re	quired		•		
ELECTROMAGNETIC	InstrumentG Accuracy - Scale Diurnal correction Base Station chec Base Station locat 	eometric Tota constant n method <u>Base</u> k-in interval (hours) ion and value <u>Al</u> Crone Ra	<u>field</u> <u>i</u> l ga Station 1 baseli dem VLF	Proton i mma - time 1 hr .ne stat Unit	Magnetom	ation		
S	_)					·	
IAG	•	0					•	
NON NON		1 ⁰ of dip and						
E		🔀 Fixed tr				🗆 In line	🗖 Para	llel line
ILE	FrequencyC	utler Maine		17.8 (specify V.L.	KHZ F. station)			
H-1		. din angl	e or inn	haco ro	enonee	Field Str	ength and	Fraser
	Parameters measu	red <u>up ang</u>		Mabe re	aponac,			
•	Parameters measu	Filtrati			aponise			
•			on valve.	95.			· · · · · · · · · · · · · · · · · · ·	
	Instrument	Filtrati	on valve.	25.			······································	
<u>XTI</u>	Instrument Scale constant	Filtrati	on valve.	28.			· · · · · · · · · · · · · · · · · · ·	
AVITY	Instrument Scale constant	Filtrati	on valve.	28.			· · · · · · · · · · · · · · · · · · ·	
GRAVITY	Instrument Scale constant Corrections made	Filtrati	on valve.	98.				
GRAVITY	Instrument Scale constant Corrections made	Filtrati	on valve.	98.				
GRAVITY	Instrument Scale constant Corrections made Base station value	Filtrati	on valve	28.			· · · · · · · · · · · · · · · · · · ·	
GRAVITY	Instrument Scale constant Corrections made Base station value	Filtrati	on valve	28.			· · · · · · · · · · · · · · · · · · ·	
GRAVITY	Instrument Scale constant Corrections made Base station value Elevation accurac	Filtrati	on valve	28.			· · · · · · · · · · · · · · · · · · ·	
GRAVITY	Instrument Scale constant Corrections made Base station value Elevation accurac	Filtrati	on valve	28.				
GRAVITY	Instrument Scale constant Corrections made Base station value Elevation accurac Instrument Method _ Tim	Filtrati	on valve	28.	Free	quency Doma		
GR	Instrument Scale constant Corrections made Base station value Elevation accurac Instrument <u>Method</u> Tim Parameters - On	Filtrati e and location y ne Domain	on valve	28.	Free	quency Doma quency	in	
GR	Instrument Scale constant Corrections made Base station value Elevation accurac Instrument Method □ Tim Parameters - On - Off	Filtrati	on valve	28.	Free Free Ran	quency Doma quency	in	
GR	Instrument Scale constant Corrections made Base station value Elevation accurac Instrument Method [] Tim Parameters - On - Off - Del	Filtrati	on valve	28.	Free Free Ran	quency Doma quency	in	
GR	Instrument Scale constant Corrections made Base station value Elevation accurac Instrument Method [] Tim Parameters - On - Off - Del - Inte	Filtrati	on valve	28.	Free Ran	quency Doma quency ge	in	
RESISTIVITY	Instrument Scale constant Corrections made Base station value Elevation accurace Instrument Method Tim Parameters - On	Filtrati	on valve	28.	Free Free Ran	quency Doma quency ge	in	
GR	Instrument Scale constant Corrections made Base station value Elevation accurac Instrument Method Tim Parameters - On	Filtrati	on valve	28.	Free Free Ram	quency Doma quency ge	in	

INDUCED POLARIZATION

SELF POTENTIAL

Instrument	Range
Survey Method	
Corrections made	
RADIOMETRIC	
Instrument	······································
Values measured	
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden	
(type, de	pth — include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING E	IC.)
Type of survey	· · · · · · · · · · · · · · · · · · ·
Instrument	· • • • • • • • • • • • • • • • • • • •
Accuracy	
Parameters measured	
Additional information (for understanding results)	
AIRBORNE SURVEYS	
Type of survey(s)	
Instrument(s)(specify)	for each type of survey)
Accuracy(specify	
Aircraft used	
Sensor altitude	
	<u>.</u>
Aircraft altitude	Line Spacing
	Over claims only
	·

Numbers of claims from which samples taken P 428951, P 428954

Soil Horizon Sampled B- horizon Others Total 31 elements as per appendix iv. terester appendix iv. t		
Sample Depth10_inches Extraction Method TerrainRegional drainage to the Analytical Method South-east. Reagents Used Drainage Development moderately well drained Field Laboratory Analysis Severe swamp No. (terming, crushing, sashing) SAMPLE PREPARATION NAme of Laboratory (terming, crushing, sashing) Mesh size of fraction used for analysis Commercial Laboratory (terming, crushing, sashing) Mesh size of fraction used for analysis Commercial Laboratory (terming, crushing, sashing) Mesh size of fraction used for analysis Commercial Laboratory (terming, crushing, sashing) Mesh size of fraction used for analysis	Rock 11 Total Number of Samples Type of SampleRock and Soils (Nature of Material) Average Sample Weight_Soils 80z Rock 160z Method of CollectionManual Random rock chips Soil Horizon Sampled	Values expressed in: p. p. m. p. p. b. Cu, Pb, Zn, Ni, Co, Ag; Mo, As,-(circle) Others Total 31 elements as per
South-east. Reagents Used Drainage Development moderately well drained Field Laboratory Analysis Estimated Range of Overburden Thickness No. (Sample Depth 10 inches	Extraction Method
Drainage Development Moderately well drained severe swamp Field Laboratory Analysis Estimated Range of Overburden Thickness No. (TerrainRegional drainage to the	
Estimated Range of Overburden Thickness No. (Reagents Used
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing) Reagents Used te Mesh size of fraction used for analysis Commercial Laboratory (te - 80 mesh Extraction Method 5mls HN03-2.0mls General Reagents Used As above General General General General	Drainage Development moderately well draine severe swamp Estimated Range of Overburden Thickness	No. (tests)
(Includes drying, screening, crushing, ashing) Commercial Laboratory (20 '	Analytical Method <u>N/A</u> Reagents Used
General See Appendix iv for detailed See Appendix iv for detailed	(Includes drying, screening, crushing, ashing) Mesh size of fraction used for analysis	
procedure procedure	See Appendix iv for detailed	General

į.,

in with

and shift at the state of the second

KOND TOP THE LOP ONE

South The second second

Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

APR 1 5 1976

File 2.2085

PROJECTS UNIT

Type of Survey(s) GEOPHYSICAL, GEOLOGICAL, GEOCHEMICAL	J	-
Township or Area <u>Mallard Township Map Area</u> A' Claim Holder(s) <u>W.G. Wahl Limited</u>	MINING CLAIM	
1101-302 Bay Street, Toronto	List num	erically
Survey Company W.G. Wahl Limited.	(prefix)	(number)
Author of Report David G. Wahl, Consulting Engineer	<u>P</u>	
Address of Author <u>1101-302</u> Bay Street, Toronto.	Р	428942
Covering Dates of Survey July 9 - July 12, 1975 (linecutting to office)	P	42894 3
Total Miles of Line Cut 2.3 miles	P	428944
SPECIAL PROVISIONS CREDITS REQUESTED Geophysical per claim	P	428946
Geophysical		
ENTER 40 days (includes		
line cutting) for first —Magnetometer 20	•••••••	
survey. –Radiometric		
ENTER 20 days for each		
additional survey using Geological 40		
same grid. Geochemical Soil	•••••••	
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)		
Magnetometer Electromagnetic Radiometric		
(enter days per claim)) • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
DATE: April 9, 1976SIGNATURE:		
Author of Report or Agent		
12 2000		
Res. GeolQualifications63.2859		
Previous Surveys	***********************************	• • • • • • • • • • • • • • • • • • •
File No. Type Date Claim Holder		
	••••••••••••••	
	• • • • • • • • • • • • • • • • • • • •	••••••
	TOTAL CLAIMS_	

GEOPHYSICAL TECHNICAL DATA

<u>GROUND SURVEYS</u> – If more than one survey, specify data for each type of survey

N	mber of Stations 244 Number of Readings 488				
St	tion interval 50' and 25' Line spacing 400'				
Pr	ofile scale				
	ntour interval 100 - 500 - 1000 as required				
MAGNETIC	Instrument <u>Geometric Total Field Proton Magnetometer</u> Accuracy – Scale constant <u>± 1 gamma</u> Diurnal correction method <u>Base Station - time interpolation</u> Base Station check-in interval (hours) <u>All baseline stations std Base Stations (lhr)</u> Base Station location and value <u>All baseline stations std as check Base Stations</u>				
ol	Instrument Crone Radem VLF Unit				
ETI	Coil configuration				
CN	Coil separation				
MA	Accuracy1 ^o of dip and 1% total relative field strength				
RO	Method: Shoot back In line Parallel line				
ECTROMAGNETIC	FrequencyCutler Maine 17.8 KHz				
EL	(specify V.L.F. station)				
	Parameters measured <u>dip angle or inphase response; Field Strength and</u> Fraser Filtration valves.				
	Instrument				
M	Scale constant				
AVITY	Corrections made				
GRA					
0	Base station value and location				
NO	Elevation accuracy				
	Instrument				
	Method				
AT.	Parameters – On time Frequency				
RIZ	- Off time Range				
LIV	Delay time				
ED POLARIZ RESISTIVITY	- Integration time				
INDUCED POLARIZATION RESISTIVITY	Power				
na	Electrode array				
N	Electrode spacing				
	Type of electrode				

SELF POTENTIAL

Instrument	Range	
Survey Method		
		······································
Corrections made		
RADIOMETRIC		
U		4
0	Background Count	
Size of detector		-
Overburden	(type, depth — include outcrop map)	· · · · · · · · · · · · · · · · · · ·
OFWERE (SPICELE DRUL WELL		
OTHERS (SEISMIC, DRILL WELL L		
••		<u></u>
Instrument		
Accuracy		
Additional information (for understand	ding results)	
AIRBORNE SURVEYS		
Type of survey(s)		· ·
Instrument(s)		
Accuracy	(specify for each type of survey)	
Accuracy		
Navigation and flight path recovery me	ethod	
Aircraft altitude	Line Spacing	
	Over claims only	

Numbers of claims from which samples taken P 4289	<u>43, P 428942, P 428944, P 428946</u>
Soils 27 Total Number of Samples Rock 7 Type of Sample Rock & Soil (Nature of Material)	Values expressed in: per cent
Average Sample Weight Soils 80z; Rock 16 0z Method of Collection Manual -	p. p. m. X p. p. b. D Cu, Pb, Zn, Ni, Co, Ag, Mo, As, (circle)
<u>random rock chips</u> Soil Horizon Sampled <u>B-horizon</u> Horizon Development <u>fair</u>	Others. Total 31 elements as per Appendix iv. Field Analysis (tests)
Sample Depth 8 inches Terrain gentle slope to the no:	Extraction Method rth Analytical MethodN/A Reagents Used
Drainage Development well established Estimated Range of Overburden Thickness 20' - 50'	Field Laboratory Analysis No. (tests) Extraction Method Analytical MethodN/A Reagents Used
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing) Mesh size of fraction used for analysis	Commercial Laboratory (tests) Name of Laboratory <u>Barringer Research</u> Extraction Method <u>5mls HNO3-2.0mls HCL</u> 0 Analytical Method <u>MRFAPE</u> Reagents Used <u>As above</u>
General <u>See Appendix iv for detailed</u> procedure	General See Appendix iv for detailed procedure

٠,

OFFICE USE ONLY

Ministry of Natural Resources

File_2.2085

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

RECEIVED

APR 1 5 1976

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC. PROJECTS UNIT

Type of Survey(s) <u>GEOPHYSICAL GEOLOGICAL GEOCHEMICAL</u>	
Township or Area Map Area ('E' MARION TOWNSHIP	MINING CLAIMS TRAVERSED
Claim Holder(s) W.G. Wahl Limited	List numerically
1101-302 Bay Street, Toronto	
Survey Company W.G. Wahl Limited	· · · · · · · · · · · · · · · · · · ·
Author of Report David G. Wahl, Consulting Enginee	(prefix) (number) P
Address of Author <u>1101-302</u> Bay Street	
Covering Dates of Survey July 9-10 1975	₽
(linecutting to office) Total Miles of Line Cut used recon lines 1.66	
Total Miles of Line Cutused_recon_rines_1.00	· · · ·
	£2.8808
SPECIAL PROVISIONS DAYS CREDITS REQUESTED Geophysical per claim	
Ocophysical	
ENTER 40 days (includes – Electromagnetic – –	
line cutting) for first –Magnetometer 20	
survey. –Radiometric	
ENTER 20 days for each –Other	
additional survey using Geological 20	
same grid. Geochemical 20	÷ • • • • • • • • • • • • • • • • • • •
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)	
MagnetometerElectromagnetic Radiometric	
(enter days per claim)	
DATE: April 9,1976 SIGNATURE:	
Author of Report or Agent	
Res. Geol Qualifications 63.2859	
~ ~ ~	X.
Previous SurveysFile No.TypeDateClaim Holder	
••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
	TOTAL CLAIMS 4

<u>GROUND SURVEYS</u> –	- If more than c	one survey, specify	data for each	type of survey

N	umber of Stations		Number	of Readings	216
		50' (15m)		-	
		1" to 200'	-	•	
		as r		-	
-					
ار ت	Instrument	Geometric Total Field	l Proton Magne	tometer	
MAGNETIC	Accuracy - Scale	constant <u><u> </u></u>	umma		
GN	Diurnal correction	n method <u>Base Station</u>	- time interp	olation	
MA	Base Station chec	k-in interval (hours)	<u>1 hr</u>		
	Base Station loca	tion and value <u>All basel</u> i	ne stations s	td as check	base stations.
	* <u>,</u>	·		······································	
IC	Instrument			·	
NET	Coil configuration	n	· · · · · · · · · · · · · · · · · · ·		* ****
AG	Coil separation _				
MO	Accuracy				
TR	Method:	Fixed transmitter	Shoot back	🗔 In line	🖾 Parallel line
ELECTROMAGNETIC	Frequency	,	(specify V.L.F. station)		<u> </u>
	Parameters measu	ared			
					. •
. 3	Instrument				
	Scale constant				······································
Ανιτγ	Corrections made	9			
VAV					
GR	Base station value	e and location		<u></u>	<u></u>
	Elevation accurac	су			
	Instrument				
Z	Method	ne Domain		Frequency Domai	n
Ŭ	Parameters – On	time	l	Frequency	
IZA	– Off	f time]	Range	
AR [V]	- De	lay time			
POI ISI	— Int	egration time			
INDUCED POLARIZATION RESISTIVITY	Power				
INI	Electrode spacing	g			
	Type of electrod	e			

ŝ.

وتوادف بالإبراطليفينوا فلارستماذ بالمعاور الاترار للافان واردا

منتح ديني فيطلقهم م

•		
SELF POTENTIAL		· · · · · ·
Instrument	Range	
Survey Method		4 · · · ·
	a stand for the stand of the stand	
Corrections made		
		·····
		•
RADIOMETRIC		· •
Instrument		
Values measured		
Energy windows (levels)	- 	
Height of instrument	Background Count	
Size of detector		
Overburden		
(type	e, depth — include outcrop map)	•
OTHERS (SEISMIC, DRILL WELL LOGGING	G ETC.)	
Type of survey		
Instrument		
Accuracy		
Parameters measured		
Additional information (for understanding resu	lts)	
AIRBORNE SURVEYS		
Type of survey(s)		
Instrument(s)	cify for each type of survey)	
Accuracy		······································
Aircraft altitude	Line Spacing	•••
	Over claims only	
miles howit over total area		······································

•

Numbers of claims from which samples taken P 428803; P 428804; P 428805; P 428808

Soils 46 Rock 13 Total 59	ANALYTICAL METHODS
Type of Sample <u>Rock & Soils</u> (Nature of Material)	- Values expressed in: per cent
Average Sample Weight Soils 8 oz, 16 oz Roc	p. p. b.
Method of Collection Manual (shovel) Random rock chips	- Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)
Soil Horizon Sampled <u>B-horizon</u>	1. March 1. Mar
Horizon Developmentfair	non annondur du
Sample Depth8"	Extraction Method
TerrainGentle slope to the north	
i chain.	Reagents Used
Drainage Development generally good	
Estimated Range of Overburden Thickness	
20' - 50'	Extraction Method
	Analytical Method <u>N/A</u>
	Reagents Used
SAMPLE PREPARATION	Commercial Laboratory (tests)
(Includes drying, screening, crushing, ashing)	Name of LaboratoryBarringer_Research
Mesh size of fraction used for analysis	Extraction Method .5mls HNO3 -2.0mls HC
- 80 mesh	- Analytical Method <u>MRFAPE</u>
	Reagents Used As above
General See Appendix iv for	General
detailed procedure	See Appendix iv for detailed
	procedure
	-
	-
	·

OFFICE USE ONLY

Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

File 2.2085

RECEIVED

APR 1 5 1976

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC. PROJECTS UNIT.

Type of Sur	rvey(s) <u> </u>	EOPHYSIC	AL GEOLOGICAL	GEOCHEMICAL	,	
Township o	r Area	<u>Map Area</u>	('D')HEENAN &	MARION TWPS	MINING CLAIMS	RAVERSED
Claim Hold	er(s) <u>W</u> .	G, Wahl	Limited		List numer	
	110	1-302 Ba	y Street Toron	to.		
Survey Con	npany <u>W.</u>	G. Wahl	Limited		*****	
Author of F	Report <u>Da</u>	vid G. W	ahl, Consultin	g Engineer	(prefix) P	(number) 428792
Address of .	Author <u>1</u>	101 - 30	2 Bay St. Toro July	nto.		
Covering Da	ates of Surv	ey July		15, 1975 16, 1975	. <u>P</u>	.4.2.8.7.9.9
Total Miles	of Line Cu	t1	.50		·····	
	. PROVISIO S REQUEST		Geophysical	DAYS p e r claim		
· · · · · · · · · · · · · · · · · · ·		a	•	20		
ENTER 4	10 days (inc	ludes	-Electromagnetic.			
	ng) for first		Magnetometer		••••••	
survey.			-Radiometric			
	20 days for 1 survey usi		–Other			
same grid	•	ng	Geological	40		
В			Geochemical Geochemical	20		
		-	sion credits do not apply to ai			
-	•	Electromagn (enter d	netic Radiom lays per claim) ATURE:	she		
			Author of Re	port or Agent		·*
			(2)	2000		
Res. Geol		Qualif	fications <u>63</u>	(037		
Previous Su		Dete				
File No.	Туре	Date	Claim Hold	er		
	.		• • • • • • • • • • • • • • • • • • • •			
•••••			• • • • • • • • • • • • • • • • • • • •			
••••			•••••••••••••••••••••••••••••••••••••••			• • • • • • • • • • • • • • • • • • • •
•••••			•••••••••••••••••••••••••••••••••••••••		•••••	••••••
• • • • • • • • • • • • • • • • • • • •			••••••			
•••••			• • • • • • • • • • • • • • • • • • • •		TOTAL CLAIMS	2

<u>GROUND SURVEYS</u> - If more than one survey, specify data for each type of survey

Nu	mber of Stations.	126	Number of Readings252	—
Sta	ation interval	50' data plotted	Line spacing 400'; 120m	
Pro	ofile scale	1" to 200'	1" to 20 ⁰	
Co	ntour interval	as requir	ed	
a 1	Instrument			,
Ë.	Accuracy – Scale	constant		
MAGNETIC	Diurnal correction	n method		-
WW I	Base Station chec	k-in interval (hours)		
]	Base Station locat	ion and value		
•				
oli	Instrument	Crone Radem VLF Un	ut	
ETI		-		
US (-			
AMO 1	•		elative field strength	e .
IRC 1	Method:	X Fixed transmitter	□ Shoot back □ In line □] Parallel line
ELECTROMAGNETIC	Frequency	Cutler Maine	17.8 KHz	· · · · · · · · · · · · · · · · · · ·
			(specify V.L.F. station) r inphase response with reduced	l Fraser
	i di di meters medsu		where needed.	
]	Instrument		·	
	Scale constant			
RAVITY	Corrections made			
	Base station value	and location		
-	Elevation accurac			
		ne Domain	Frequency Domain	
-			Frequency	
			Range	
RESISTIVITY		ay time		
VII:		egration time		
ESIS		0	·	
	• -			
	Type of electrode			

INDUCED POLARIZATION

addination and an and

SELF POTENTIAL

Instrument	Range
Survey Method	
Corrections made	
RADIOMETRIC	
Instrument	·
Values measured	
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden	(type, depth - include outcrop map)
OTHERS (SEISMIC, DRILL WELL LOG	GING ETC.)
Type of survey	
Instrument	
Accuracy	
	results)
· · · · · · · · · · · · · · · · · · ·	
AIRBORNE SURVEYS	
Type of survey(s)	
Instrument(s)	(specify for each type of survey)
Accuracy	
Aircraft used	
Navigation and flight path recovery metho	.d
Aircraft altitude	Line Spacing
Miles flown over total area	Over claims only

Soils 52 Rock 8 Total 60	
Cotal Number of Samples	ANALYTICAL METHODS
ype of Sample Rock and Soils (Nature of Material)	Values expressed in: per cent p. p. m. x
verage Sample Weight Soils 802, Rock 16 oz.	p.p.m. bx p.p.b.
Method of Collection Manual	
random rock chips	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)
oil Horizon Sampled <u>B - horizon</u>	Others Total 31 elements as per appen
Iorizon Development fair	Field Analysis (tests)
ample Depth8 inches	Extraction Method
Cerrain_ Steep ridges regional drainage	Analytical Method <u>N/A</u>
is to the North	Reagents Used
Drainage Development Well drained	Field Laboratory Analysis
Estimated Range of Overburden Thickness	No. (tests)
10' to 50'	Extraction Method
	Analytical Method <u>N/A</u>
	Reagents Used
SAMPLE PREPARATION	
(Includes drying, screening, crushing, ashing)	Commercial Laboratory (tests)
Aesh size of fraction used for analysis	Name of Laboratory Barringer Research
	Extraction Method <u>5mls HNO3-2.0mls HC</u> L
-80 mesh	Analytical Method <u>MRFAPE</u>
	Reagents Used As above
General	General
See Appendix iv	See Appendix iv for detailed
for detailed procedure.	procedure.
	•

A20702. D A20700 _

OFFICE USE ONLY

Ministry of Natural Resources

File 2.2085

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT

TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

RECEIVED

APR 1 5 1976

PROJECTS UNIT

Type of Survey(s)GEOLOGICAC	EOCHEMICAL		
Township or Area Map Area D He		MINING CLAIM	IS TRAVERSED
Claim Holder(s) W. G. Wahl Limi	ted	7	merically
1101-302 Bay St	reet, Toronto		
Survey CompanyW.G. Wahl Ltd	•		·····
Author of Report David G.Wahl,	Consulting Engineer	(prefix) P	(number) 428784
Address of Author 1101-302 Bay	Street	Р	·
Covering Dates of Survey_July 8,	1975 cutting to office)		428787
Total Miles of Line Cut1.61		P	429837
SPECIAL PROVISIONS	DAYS		N. S.
CDEDITS DEOLIESTED	eophysical per claim		х.
	Electromagnetic		
ENTER 40 days (includes line cutting) for first	Magnetometer		
	Radiometric		
ENTER 20 days for each -0	Other		
additional survey using Ge	eological <u>20</u>		
same grid. Go	eochemical 20		
AIRBORNE CREDITS (Special provision cred	lits do not apply to airborne surveys)		
MagnetometerElectromagnetic_			• • • • • • • • • • • • • • • • • • •
(enter days per	claim)		•••••
DATE: April 9/76 SIGNATUR	E:		
	F Author of Report of Agent		
Res. Geol Qualificatio	ns 63.2859	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
Previous Surveys	•	•••••	
File No. Type Date	Claim Holder		
		TOTAL CLAIMS	3
		IUTAL CLAIMS.	

NT-	umber of Stations	KT 1	- f D !'	
	imber of Stations		-	
	ation interval			
	ofile scale			
Co	ntour interval			
	Instrument			
4	InstrumentAccuracy – Scale constant			
1	Diurnal correction method			
NAU	Base Station check-in interval (hours)			
•	Base Station location and value			
			, [`] ,	
ป	Instrument			
117	Coil configuration			
	Coil separation			
UM	Accuracy			· · · · · · · · · · · · · · · · · · ·
5	Method:		🗆 In line	Parallel line
	Frequency			
1		(specify V.L.F. station)	· · · · / · · · · · · · · · · · · · · ·	
	Parameters measured			
	Instrument			
	Scale constant			
<u>UKA VII I</u>	Corrections made			·····
S				
5	Base station value and location			
		<u></u>		
	Elevation accuracy			
	Instrument			
	Method 🗌 Time Domain		requency Domain	
	Parameters – On time		requency	
IZ	– Off time		Lange	
IXI	– Delay time			
RESISTIVITY	— Integration time			
RES	Power			
. 1	Electrode array			
	Electrode spacing		·····	
	Type of electrode	· · · · · · · · · · · · · · · · · · ·		

INDUCED POLARIZATION

SELF POTENTIAL	
Instrument	Range
Survey Method	
Corrections made	· · · · · · · · · · · · · · · · · · ·
RADIOMETRIC	
Instrument	
Values measured	
Energy windows (levels)	
Height of instrumentBacl	
Size of detector	
Overburden	
(type, depth - include outcrop map)	
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)	and the second
Type of survey	1
Instrument	*
Accuracy	
Parameters measured	
Additional information (for understanding results)	
AIRBORNE SURVEYS	
Type of survey(s)	
Instrument(s)	
(specify for each type of survey)	
Accuracy(specify for each type of survey)	
Aircraft used	
Sensor altitude	
Navigation and flight path recovery method	· · · · · · · · · · · · · · · · · · ·
Aircraft altitudeLin	e Spacing
Miles flown over total areaOve	

Numbers of claims from which samples taken <u>P - 4285</u>	784, P - 428787, P - 429837
	A
Soils 53 Total Number of Samples Rock 14 Type of Sample Rock and Soil (Nature of Material) Average Sample Weight Soils 8 oz, Rock 16oz	ANALYTICAL METHODS Values expressed in: per cent p. p. m. sc p. p. b.
Method of Collection <u>Manual</u> Random rock chips	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)
Soil Horizon Sampled <u>B-horizon</u> Horizon Development <u>fair to poor</u> Sample Depth <u>variable</u> Terrain <u>low swampy conditions</u>	Others Total 31 elements as per append iv. tests) Extraction Method Analytical Method Reagents Used
Drainage Developmentpoor Estimated Range of Overburden Thickness_30' - 50'	Field Laboratory Analysis No. (tests) Extraction Method Analytical MethodN/A Reagents Used
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing) Mesh size of fraction used for analysis	Commercial Laboratory (tests) Name of Laboratory <u>Barringer Research</u> Extraction Method <u>5mls HNO3-2.0mls HCL</u> 04
- 80 Mesh	Analytical Method <u>MRFAPE</u> Reagents Used <u>As above</u>
General See Appendix iv for detailed procedure	General

ġ.

in and a second se

OFFICE USE ONLY

Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

File 2.2085 by land RECEIVED APR 1 5 1976 PROJECTS UNIT

Type of Survey(s)ELECTRON	AGNETIC	
Township or Area Marion-Hee	enan-Benton-Mallard	MINING CLAIMS TRAVERSED
Claim Holder(s) W. G. Wahl	Limited,	List numerically
1101 - 302	Bay St. Toronto.	
Survey Company W.G. Wahl	Limited.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Author of Report David G. W	Vahl, Consulting Engineer	(prefix) (number)
Address of Author 1101 - 302	Bay St. Toronto.	••••••••••••••••••••••••••••••••••••••
Covering Dates of Survey As pe	er attached list.	
Total Miles of Line Cut52.46		
SPECIAL PROVISIONS	5.174	
CREDITS REQUESTED	DAYS Geophysical ^{per claim}	
	-Electromagnetic 40	
ENTER 40 days (includes	-Magnetometer	
line cutting) for first survey.	-Radiometric	
ENTER 20 days for each	Other	As per attached list.
additional survey using	Geological	· · · · · · · · · · · · · · · · · · ·
same grid.	Geochemical	
AIRBORNE CREDITS (Special prov	ision credits do not apply to airborne surveys)	
Magnetometer Electromag		
	days per claim)	
DATE: April 9/76 SIGN	ATURP: 1 Och	
	Author of Report or Agent	The second se
	fications 63.2859	
-	fications 03·2837	
Previous Surveys File No. Type Date	Claim Holder	-
	•••••••	Â
 	+	
••••••	•••••••••••••••••	
	•••••••••••••••••••••••••••••••••••••••	
	•	2.
	<u>+</u>	TOTAL CLAIMS_67

Nı	umber of Stations 5540		Number of	Read	lings	554	0	
St	ation interval <u>50feet (15</u>	meters)	Line spacin	g	400 f	eet	(120	meters
Pr	ofile scale <u>1" to 400'</u>		<u>1" to 1</u>	.20m			·	<u></u>
Co	ontour interval				u			
a	Instrument							
GNETIC	Accuracy - Scale constant							<u></u>
U	Diurnal correction method			·		<u> </u>	·····	
WA	Base Station check-in interval (hou	urs)		-				
	Base Station location and value							
		-10-16-16-16-1-1-1-1-1-1-1-1-1-1-1-1-1-1						
2	Instrument Crone_	Radem VLF	Unit		, <u>, , , , , , , , , , , , , , , , , , </u>			
ELECTROMAGNETIC	Coil configuration							
AGI	Coil separation							<u> </u>
MO	Accuracy <u>1[°] of dip</u>	and 1% tot	al relative fie	ld	stren	gth	· · · · ·	
II	Method: 🛛 🖾 Fixed	transmitter	□ Shoot back] In line			Parallel lin
LEC	Frequency Cutler Maine	17.8 KHz	(specify V.L.F, station)					
ш	Parameters measured	gle or inp	••••	vith	redu	ced	Fras	er
	Filtration where nee	ded.						
	Instrument							
	Scale constant							
Z	Corrections made							
GRAVIT								
GR	Base station value and location							
						_		
	Elevation accuracy							
	Instrument							-
	Method 🔲 Time Domain		🗔 Fre	quen	cy Dom	ain		
	Parameters – On time		Fre	quen	су			
R	– Off time		Ra	nge _				
IN I	– Delay time							
	– Integration time							
S	0			-				<u></u>
ESIS	Power							
RESISTIVITY	Electrode array							····
RESISTIVITY					<u></u>			

HEENAN TP. M. 925

3M.

94805

394806

394812 394810 394808

ESTHER TP. M.793

3M.

I P

410627 410628

0 400 800 1200	1600	1200	00	80	400		400
0 100 200 300 400	METERS	400	300	200	юо	0	100

240

AUGUST 1975

Klork

I INCH TO 400 FEET

N. T. S.

41 0/9

REV.

100

	·
25 130 125 _{BL} 100 95 95 95 95 95 95 95 100 105 115 135 175 190 225 235	NOMALY 1
TIONAL LIM	
PROJECT	DRAWN BY REV R. B. TRACED BY REV
VP. GRID	R. B. APPROVED REV
F SURVEY	N.T.S. REV 41 0/9
IINCH TO 60 METERS 200 FEET	dwg. No. 102

	۱. 		3	
-	<u>-</u>			ļ
-	Ā			
_ 7 סו	9			
- 17	9			
	17 			
- 30 31	0			
C 22	AN	OMALY 1		
20	Ш BL			
16	6			
	19			
10	7			
14	13			
12	13			
0 7	7			
46	.16			
90 -6 -67	89	ANOMALY	2	
	15	ANUMALI	Z	
5				
				2
				•
			-	
		<u>.</u>		
TIONAL		ITED	REV	
PROJEC	; T	R. B. TRACED BY	REV	
P. GRID		R. B.	REV	 ł
SER FILTI Es	-KED	N.T.S.	REV	
		41 079		
I I I M C 🖬 I A	60 METERS 200 FEET	1	03	

CONTOUR INTERVAL : 5, 10 DEGREES (as required)

330

X			
809	7		
LINE BOE	· .		
		-	
	,		
. LIM	ITED		
T	drawn by <i>R. B.</i>	REV	
	TRACED BY	REV	
EMICAL	APPROVED D. W.	REV	
_	N.T.S. 41 0/16	REV	
60 METERS 200 FEET	dwg. no. 12	22	
-			

**	1		
			E
•			
,			
1			
/			
309			
	•		
LINE 180E			
^o r			
			1
LIN	DRAWN BY	REV	
ECT	R.B.		
	TRACED BY	REV	
	APPROVED	REV	1
	N.T.S.	REV	1
60 METERS	41 0/16 DWG, NO.		
200 FEET	1:	24]
· .		· · · · · · · · · · · · · · · · · · ·	