

REPORT ON THE VERMILION RIVER PLACER PROPERTY METEOR-OPIKINIMIKA LAKE AREA GARIBALDI, MOFFAT AND BEULAH TOWNSHIPS LARDER LAKE MINING DIVISION, ONTARIO N.T.S. 41P/6

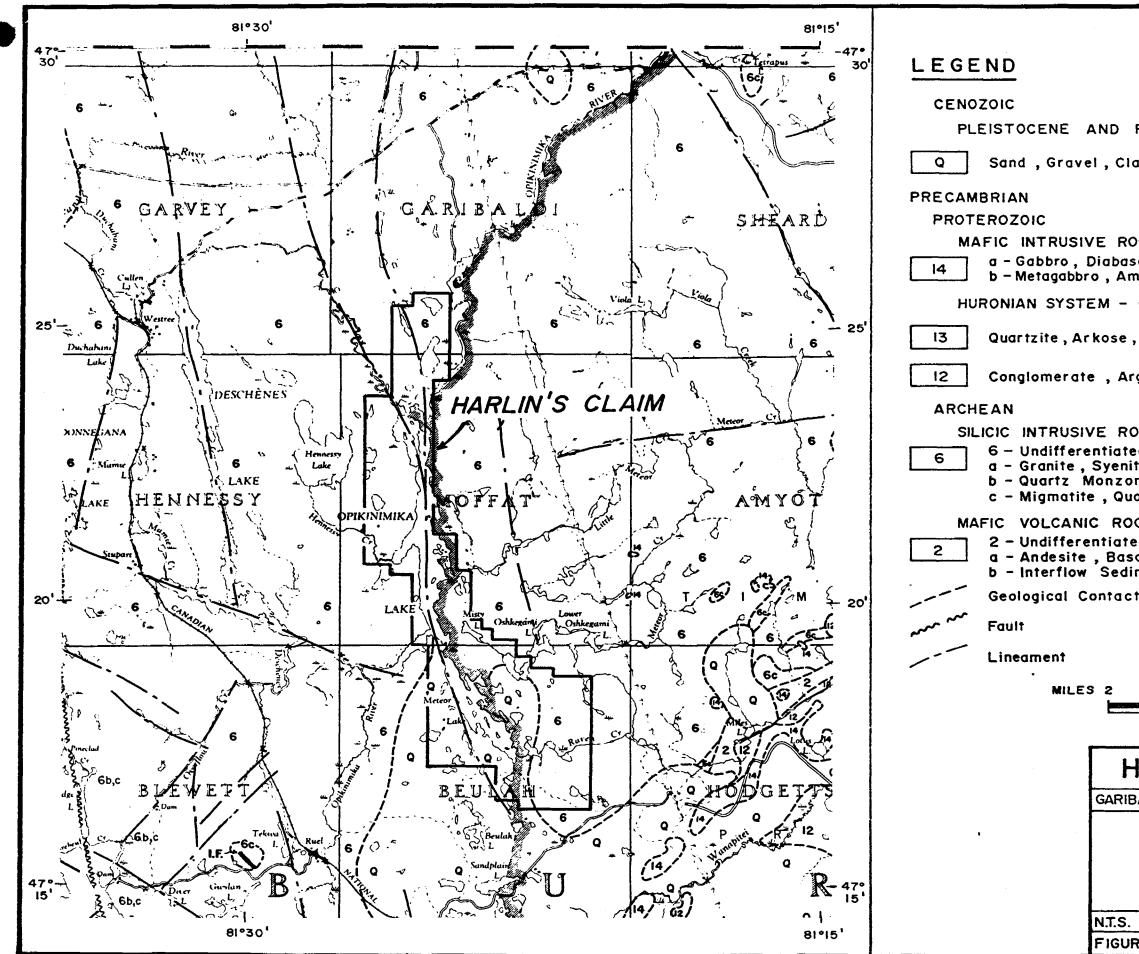
FOR

Harlin Resources Limited Ste. 810 - 625 Howe Street Vancouver, B.C. V6C 2T6

BY

Les Demczuk, M.Sc., Project Geologist Hi-Tec Resource Management Ltd. Ste. 1590-609 Granville St. 1 Vancouver, B.C. V7Y 1C6

RECEIVED


JAN 1 5 1987

Michael D. Philpot, B.Sc., M.B.A., MINING LANDS SECTION

and

September 15, 1986

RECENT
ay
DCKS
se nphibolite
Cobalt Group
, Siltstone , Conglomerate
rgillite , Arkose
OCKS ed te nite , Granodiorite artzo – Feldspathic Gneiss
CKS ed alt mentary Rocks
t A Mineral Occurence
l" = 2 Miles
1 0 2 4 MILES
HARLIN RESOURCES LTD.
BALDI, MOFFAT, BEULAH TWPS, SUDBURY DISTRICT OPIKINIMIKA LAKE PROJECT
REGIONAL GEOLOGY
DATE : SEPT. 1986
RE: 3

Ø10C

TABLE OF CONTENTS

4

• •

	1	Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
2.1 2.2 2.3	Location and Access Property and Ownership History	2 3 5
3.0	GEOLOGY	6
3.1 3.2	Regional Geology Quaternary Geology	6 6
4.0	EXPLORATION PROGRAM	9
4.1 4.1.1 4.1.2	Pit & Bulk Sampling Program Objective Equipment, Location and Sampling	9 9
4.2 4.2.1 4.2.2	Procedure Rotasonic Drilling Program	9 11 11
4.3	Procedure Discussion of Results	12 13
5.0	CONCLUSIONS AND RECOMMENDATIONS	15
6.0	BIBLIOGRAPHY	17

.

1.0 <u>SUMMARY</u>

Hi-Tec Resource Management Ltd. was contracted by Harlin Resources Ltd. to conduct a placer evaluation program on the Vermilion River property in Larder Lake Mining Division, Ontario.

The property consists of 306 mineral claims and was optioned to Harlin by Mssrs. G. Larch and D.McKinnon of Timmins.

The placer evaluation program was conducted in July and August 1986 under the writers supervision and included Rotasonic drilling, pit and bulk sampling programs.

The programs included the excavation of 113 test pits and 35 drill holes (2197 feet), and thoroughly prospected all formations for the presence of gold.

The best samples with visual gold were selected for semi-quantitative spectrographic analysis and amalgamation.

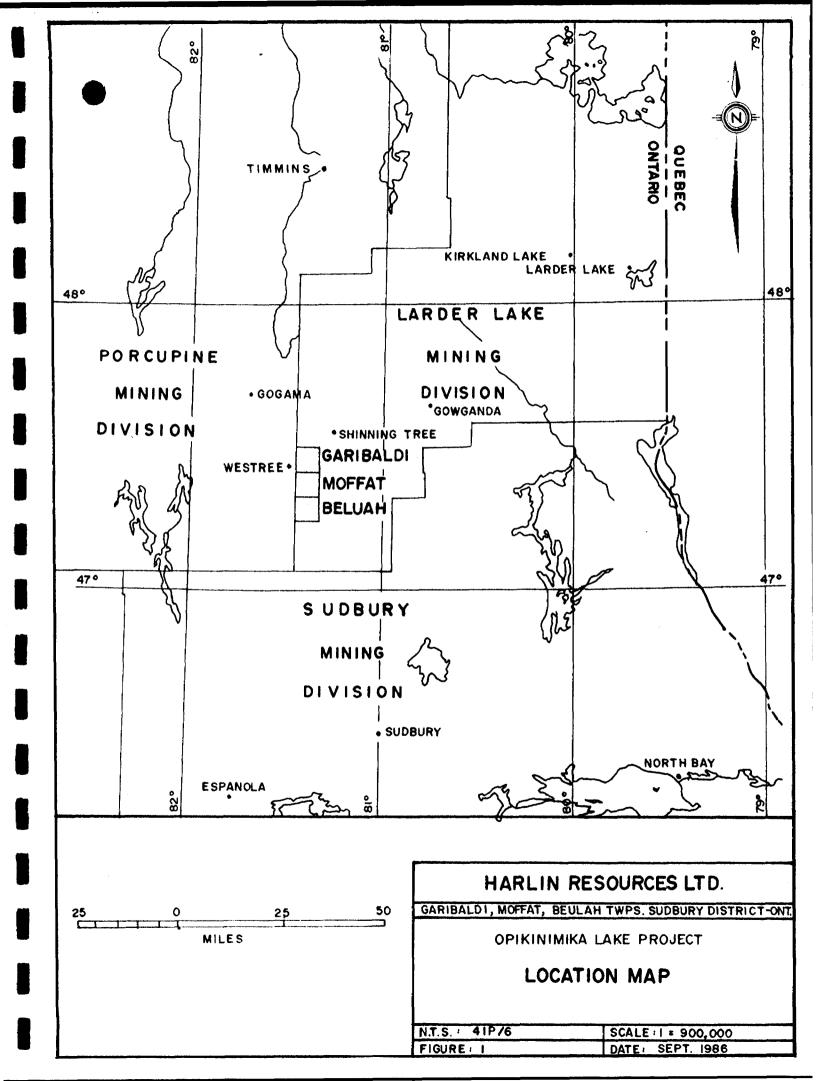
Gold values in the gravels generally are less then .001 ounces per cubic yard with anomalous values ranging from .001 to .004 oz/cu yard.

negative results from the various programs do not The preclude the possibility of locating a pre-glacial channel under the area delineated by Meteor and Opikinimika Lakes. However this would require further drilling during winter. Should a gold-bearing pre-glacial channel be discovered, it is unlikely one would achieve the necessary permits to mine in this area. is unlikely that a major large volume, low grade placer It deposit has been overlooked. For these reasons it is recommended that Harlin does not pursue any further programs on this property.

2.0

INTRODUCTION

The Meteor-Opikinimika placer gold property is 48 kiliometers southeast of Gogama, Ontario. The property consists in the Garibaldi, Moffat and Beulah Townships of of 306 claims Ontario, which cover part of a Pleistocene river system that is known to host placer gold occurrences. Hi-Tec Resource Management Ltd. (Hi-Tec) on behalf of Harlin Resources Ltd. contracted to explore and delineate sufficient (Harlin) was placer qold reserves to warrant further bulk sampling or production.


In July and August, 1986 Hi-Tec carried out a placer gold exploration program on the property consisting of test pit sampling, bulk sampling and overburden drilling. The program was designed to test the distribution of gold values within the different overburden stratigraphies, to confirm values defined by previous exploration programs and to ensure sufficient assessment work is applied for one year credit.

This report, prepared at the request of Mr. A.L. Agostino of Harlin is based on writings listed in the attached bibliography and from the results of the various 1986 exploration programs.

2.1 Location and Access

property is located in Garibaldi, Moffat and Beulah The Townships, Larder Lake Mining Division, Ontario. The property can be reached from Highway 560 which connects to Highway 144 at 110 kilometers south of Timmins or 100 kilometers а junction northwest of Sudbury. Three (3) kilometers east from the junction of Highways 560 and 560A a gravel road parallels a line in a southerly direction providing gravel road transmission access to both the northern and southern portions of the

property. A boat can also be used to reach all portions of the property via Opikinimika River, Opikinimika Lake and Meteor Lake.

Alternative access modes include the C.N.R. railline which runs within 5 kilometers of the southwest corner of the property and by float plane

Secondary road access was constructed from the power transmission line from a point just south of Lower Oshkegami Lake west to Oshkegami Lake and then northwest to the northern part of Meteor Lake. Accessory routes from this road provided the necessary access to Meteor Lake, which was the primary mode for transporting test samples to the processing facilities located at the south end of Meteor Lake.

2.2 <u>Property and Ownership</u>

The property was optioned to Harlin from Messrs. John Larche and Don McKinnon. The Vermilion River placer property consists of 306 mineral claims located in Garibaldi, Moffat and Beulah townships within the Larder Lake Mining Division of Ontario.

Hi-Tec has been retained by Harlin to manage the 1986 exploration program and to ensure necessary work is conducted to maintain the property in good status.

The individual claim numbers and locations are illustrated on Drawing 2. A list of these claims and townships in which they occur is provided in Table 1.

TABLE 1

<u>Garibaldi Township</u>	Expiry Date
L.749632 - 749634 inclusive - 3 claims L.749637 - 749656 inclusive - 20 claims	August 26, 1987 August 26, 1987
Subtotal - 23 claims	
Moffat Township	
L.743421 - 743440 inclusive - 20 claims L.743566 - 743590 inclusive - 25 claims L.749051 - 749065 inclusive - 15 claims L.749552 - 749631 inclusive - 80 claims	August 26, 1987 August 26, 1987 August 26, 1987 August 26, 1987
Subtotal -140 claims	
Beulah Township	
L.748901 - 748957 inclusive - 57 claims L.748959 - 748962 inclusive - 4 claims L.748965 - 1 claim L.748969 - 748972 inclusive - 4 claims L.748976 - 1 claim L.748978 - 748999 inclusive - 22 claims L.749001 - 749024 inclusive - 24 claims L.749026 - 749043 inclusive - 18 claims L.872318 - 872327 inclusive - 10 claims	August 26, 1987 August 26, 1987
L.880165 - 880164 inclusive - 2 claims	August 26, 1987 August 26, 1987

PROPERTY TOTAL - 306 Claims

•.•.

2.3 <u>History</u>

Placer gold was first discovered in the Vermilion River system in 1897. This caused considerable excitement which lead to other discoveries northward in the vicinity of Meteor Lake. Onaping Mining Company was the first organization to seriously explore and develop the area. Onaping worked the surface gravels located on a southeasterly trending peninsula on the Isolated surface workings northern portion of Meteor Lake. suggest the grade was not sufficient to support a small scale No serious work was conducted in the area until operation. however the Onwatin Placer Mining Syndicate performed 1958, considerable test pitting and some drilling south of Meteor Lake at the section of the Vermilion River between Capreol and Milnet.

Interest was revived in the area in 1958 when Casgoran Limited and Kamis Uranium Mines Limited staked a large Mines number of claims in the Meteor-Opikinimika Lakes area. The companies performed geologic mapping, test pitting and Areas drilled included 3 holes in the overburden drilling. northern portion of Opikinimika Lake, 7 holes along the eastern shores of Meteor Lake and 1 hole south of Meteor Lake. Values were reported qualitatively as "good, fair, some and nil" (refer to Drawing 5).

Subsequently the property claims lapsed as assessment work was not performed. In the early 1980's, Mssrs. J. Larche and D. McKinnon staked a large area encompassing the Pleistocene river gravels from Meteor Lake northward to the Opikinimika River drainage. This property was then optioned to Harlin who have since performed airborne magnetics, seismic, and radar surveys prior to this years exploration program.

> HI-TEC RESOURCE MANAGEMENT

LIMITED

<u>GEOLOGY</u>

. 0

3.1 <u>Regional Geology</u>

Bedrock consists of the following Precambrian rocks: Keewatin Formation (mafic to felsic metavolcanics), Timiskaming Formation (metasediments), Pre-Algoman Formation (ultramafic to intermediate intrusives), Algoma Formation (intermediate to felsic intrusives), and Matachewan Formation (diabase dikes). Porphyritic granite, gneiss, granodiorite and diorite of the Algoma Formation are the most predominant rock type in the vicinity of the property.

There is approximately 10 percent bedrock exposure as the area has been masked by Pleistocene glacio-fluvial sediments. The Vermilion River system appears to be partly controlled by a north-northwesterly fault system. Within this system lies the following glacial deposits:

3.2 <u>Ouaternary Geology</u>

The quaternary geology of the area is best described by Coleman (1901) and Prest (1948), however the authors have included their interpretations based on the findings of the 1986 exploration program.

Placer gold was first discovered in 1897 on the Vermilion River system near the town of Capreol, 20 kilometers north of Sudbury. Alluvial gold was soon traced northwards up to Meteor Lake - Opikinimika Lake area, a total distance of 100

kilometers.

The Vermilion-Opikinimika river system represents only one of the major outlets from a massive ice-front lake. These materials were transported and partially sorted by ice contact and outwash river flows from melting ice. The river flow appears to have been controlled by a large north-northwesterly fault structure which coincides with the present Vermilion-Opikinimika valley.

The Pleistocene deposits of the Meteor-Opikinimika area include those materials deposited by ice, water and to some extent wind. The primary alluvial unit is glacio-fluvial consisting of cobble-boulder gravels, sand and silt deposited as outwash, deltas and possibly eskers and kame terraces. The quaternary geology of the property is best described by the different stages of deposition.

Throughout the length of the property, running in a strip ranging from 1 kilometer to 5 kilometers in width, is a high energy glacio-fluvial gravel deposit. The irregular and hummocky nature of the surface of the formation is the best guideline for delineating the boundaries of this channel. The gravels consist of water-worn boulders generally less than 25 centimeters in diameter. The matrix is mostly medium to coarse sand, with intermittent layers of silt and clay. The gravels tend to poorly sorted and are composed of cobbles and boulders of lithologies described in the Regional Geology section, though various granites are the most predominant.

Peripheral to the core gravels are distinct outwash deposits comprising of stratified and crossbedded sand and silts. These deposits are most pervasive in the southern section of the property and likely represent flooded or overflow sections of the main channel. The northern portion of the property represents somewhat of a mystery as the main channel

cannot be located. Where this channel should of been situated is either glacio-fluvial sand or silts or glacio-eolian formations. It is hypothesized that the channel abruptly changed directions to the east at the northern end of Opikinimika Lake and has subsequently been eroded from bedrock topographic highs. The channel is easily located in road cuts along Highway 560, approximately 4 kilometers to the north.

In the search for placer deposits in the Meteor-Opikinimika Lake area the primary target is the high energy glacio-fluvial gravels. This environment is more conducive to placer gold deposition than the outwash unit. A secondary target to consider is the possibility of a buried, preserved pre-glacial channel, though it is unlikely considering the number of periods and extent that the area has been glaciated.

4.0 <u>EXPLORATION PROGRAM</u>

4.1 <u>Pit and Bulk Sampling Program</u>

4.1.1 Objective

The prime objective of a placer sampling program is to obtain a representative sample. Samples obtained from rotasonic overburden drilling (4 1/2" diameter hole) are small in volume (estimated 10 kg per meter section), therefore larger more representative samples are obtained from test pits and trenches. However, the primary drawback of sampling from test pits is the limited depth that excavating equipment can reach.

Previous overburden drilling and pit sampling on the property indicated that the top 8 meters of glacial-fluvial gravels tend to be enriched with fine gold. Therefore by sampling gravels of larger volume by means of shallow test pits, 2-4 meters in depth, throughout the property, the lateral parameters of the gold bearing channel would be quantitatively delineated.

4.1.2 Equipment, Location and Sampling Procedure

Selected test pits were excavated with a modified S-1 Bombardier Muskeg Tractor with a John Deer 450 backhoe attachment. This unit ensured that all areas of the property, otherwise not accessible to standard track backhoes due to the swampy nature of ground, would be thoroughly sampled.

Test pit locations were selected to cover a broad area encompassing the favourable gravel unit. Of prime interest is the area southeast of Opikinimika Lake and northeast of Meteor Lake where some mining activity occurred in 1897. Fifty one (51) pits were excavated on 30 to 50 meter intervals on line spacings of 70 to 150 meters covering an area 4.0 square

kilometers.

The second area of interest, delineated by churn 1958 by Concor-Chibougamau Mines Ltd., is on the drilling in east side of Meteor Lake in the area of two northwesterly trending peninsulas. A total of 32 test pits covering an area 1.2 square kilometers were sampled. The last area tested was of to the south and southeast of Meteor Lake where 34 test pits represent a 5.4 square kilometer. Altogether 117 sample locations along the north-south trending gold bearing channel within the Meteor Lake area were sampled and analyzed.

From each test pit a representative channel sample was collected from the top to the bottom of the test pit in plastic 5 gallon buckets. After collecting the sample, pits were filled back in by the backhoe to comply with Ontario Department of Mines regulations. Samples were then transported back to a central processing station located near the camp at the south end of Meteor Lake.

Pit sample numbers 86TR-001 to 86TR-013 and 86TR-061 to 86TR-117 were processed through a longtom. Sample sizes range from 34 kg to 161 kg with the mean size being 85 kg. A longtom is a sample device that washes, classifies to minus 3/8" and concentrates a bulk material into a small volume of material. Material less than 3/8" in size is concentrated over a 4' length of 1/2" expanded metal and interwoven plastic matting. Once the selected sample has been processed the resulting concentrate is washed into a tub where the matting is thoroughly washed. The is then washed into a gold pan for further upgrading. product The resulting high grade black sand concentrate is visually analyzed for free gold particles, with the number of particles size fraction being recorded prior to being stored in a and zip-lock bag. Results of this procedure are outlined in Appendix I and locations are plotted on Drawing 4.

> HI-TEC RESOURCE MANAGEMENT LIMITED

Samples with sufficient free gold content are then amalgamated to obtain a measureable weight of free gold within the black sand concentrate. The amalgamation process includes washing the concentrate in dilute nitric acid to ensure that any residue coating the gold particles is dissolved. The concentrate is then flushed with water prior to the addition of small bead of mercury. Once the mercury has adhered to all а the qold particles the amalgum is removed and retorted, resulting in a bead of gold which is later weighted. The more favourable results from the amalgamation process are outlined in Appendix I.

bulk samples weighting an average 215 Larger kg, numbers 86TR-015 to 86TR-060, were run through a sophisticated processing plant contracted out by Freegold Recovery Inc. The plant consists of a 1' x 3' aries screening unit with a 10 mesh Material less than 10 mesh is laundered into a Salo SPV screen. 181 slurry pump with the slurry feed pumped into a Reichert Mark 7 L.G. spiral concentrator. The Reichert spiral produces three splits; a high grade concentrate, middlings and tailings. Tailings are disgarded out the system, middlings are recycled back into the head feed and the concentrate is fed into a Gemini #250 finishing concentrating table. The table produces 4 splits being; free gold, table concentrate, table middlings and table For the purpose of our analysis the number of grains of tails. free gold were recorded and collected in plastic bags along with the table concentrates.

4.2 <u>Rotasonic Drilling Program</u>

4.2.1 Objective

Due to the backhoes limited reach capability, overburden drilling is required to obtain a continuous sample of alluvium from surface to bedrock. Preference is given to a drill method which is able to recover an in situ sample with

minimal disturbance.

Of importance to the Meteor - Opikinimika Lakes are the hypothesized buried preglacial gold bearing channels that may have been left undisturbed by the last event of Pleistocene glaciation.

4.2.2 Equipment, Location and Sampling Procedure

The overburden drilling was contracted to MidWest Drilling of Winnipeg, Manitoba. MidWest are the forerunners of rotasonic drill method. the The rotasonic drill produces a near continuous undisturbed core of solid and unconsolidated materials. Opposed to other overburden drill methods which utilizes either; rotary, down-the-hole hammer or above-the-hole hammer, or reverse circulation and compressed air to recover the The rotasonic drill transmits resonant and rotary alluvium. power to the drill stem for penetration of overburden. It is the author's opinion that the resonant drill method is the most efficient system for recovery of a continuous unconsolidated sample without disturbing clasts.

Two drill lines were established, one at the northern extreme end of the property where a gravel road traverses the northern portion of Opikinimika Lake and the other from the eastern property boundry to the northeastern point of Meteor Lake. Both drill lines were projected to traverse the north-south trending gold bearing gravel channel which parallels Opikinimika and Meteor Lakes.

Nine (9) holes were drilled at 200 to 400 meter intervals along the north drill line while twenty-six (26) holes were drilled at 50 to 200 meter intervals along the southern drill line (Drawing 4).

Samples were collected at approximately three meter intervals with retrieved cores gently vibrated into a plastic tube-like bag and individually crated for transportation back to the longtom for sample processing.

The sampling procedure for concentrating drill samples is the same as described in the Pit-Bulk Sampling Program. Drill holes 86DH-001 to 86DH-004 were processed through Freegold's portable recovery plant while drill holes 86DH-005 to 86DH-040 were processed through the longtom. Results from the drilling program are outlined in Appendix II.

4.3 <u>Discussion of Results</u>

Of the sample concentrates obtained from the pit testing, bulk sampling and drilling programs, those samples in which anomalous visual observations of gold were made were selected for further analytical tests. These tests include heavy mineral identification, semi-quantitative spectrographic analysis and amalgamation.

The primary heavy minerals from four representative samples of the property indicate that the following minerals, listed in order of abundance, are present:

magnetitie
silica
ilmenite
zircon
gold
± cassiterite

No other minerals of economic importance were identified, though spectrographic analysis indicated minor detections of vanadium, strontium and niobium.

Only one drill hole sample, 86DH-011 interval 10.67 -15.24 m, contained sufficient gold to warrant amalgamation. The free gold content of this sample provided a grade of less than .001 ounces gold per cubic yard.

Thirteen test pits and bulk pit samples were also selected for amalgamation. The quantitative results of these tests are outlined in Appendix I. Calculations were determined in the following manner, whereas:

WAu - weight of free gold content in concentrate (oz)
Ws - weight of sample material (lbs.)
Wa - assumed mean weight of one cubic yard of material
 (2500 lbs/cu. yd)

X - grade of sample (oz/cu. yd)

<u>_X</u>	=	<u>Wa</u>					2	
WAu		Ws	7	x	Ws	45	Waʻ	2500

All anomalous samples were collected within the glaciofluvial gravel channel providing credance to the findings that this unit hosts the more favourable depositional characteristics for alluvial gold. The outwash unit also hosts minor amounts of detrial gold but of no significant grade. In summary values ranged from less than .001 to .004 ounce gold per cubic yard (\$0.55 - \$2.20/cu. yd - Cdn \$550/oz). For those samples not amalgamated because of poor visual gold results it is assumed that the grade is less than .001 oz/cu yd or non-detectable.

It is of interest to note that neither of the two drill lines intersected any evidence of a pre-glacial channel.

CONCLUSIONS AND RECOMMENDATIONS

<u>Conclusions</u>

. 0

- The main alluvial unit overlying much of the property is the glacial-fluvial gravel channel which is flanked by outwash sand and silt.
- The various exploration tests; pit sampling, bulk sampling and drilling thoroughly prospected all formations for the presence of gold, with the exception of the areas overlain by lakes.
- The sampling process utilized included some of the most sophisticated gravity recovery systems available ensuring with the utmost confidence that there was negligible loss of gold throughout testing.
- Anomalous alluvial gold values were only encountered in the high energy glacio-fluvial gravel unit which is present throughout the length of the property with the exception of a portion of the property where it is believed to have been eroded or scoured off bedrock topographic highs.
- Gold values in the gravels generally are less than .001 ounces per cubic yard with anomalous values ranging from .001 to .004 oz/cu. yd.
- These grades are not of sufficient value or consistancy to warrant a large volume, low grade operation which would require a consistant grade of greater than .007 ounces per cubic yard.
- There is no evidence of a buried pre-glacial gold bearing river channel on the portion of the property drilled.

Recommendations

Having conducted such a detailed program on both the surface gravels and potential deep lead gravels, all demonstrating poor results, it is unlikely that a major large low grade placer deposit, which would be amenable to volume, open pit or dredge mining, has been overlooked. However, there is the possibility that a pre-glacial channel does exist in the depression outlined by Meteor and Opikinimika lakes. To test this hypothesis a line of holes could be drilled from the lake during winter. However, the prime drawback to any placer discovery underneath these lakes is that it would be unlikely to be granted the necessary permits to drain the lakes for mining. For these reasons it is recommended that Harlin discontinue further placer evaluation of the Vermilion River placer property.

Respectfully submitted,

L. Demczuk, M.Sc. per: Hi-Tec Resource Management Ltd. and Harlin Resources Ltd.

M. D. Philpot, B.Sc., M.B.A. per:

M.D.P. Management Services

6.0 <u>BIBLIOGRAPHY</u>

- Boyle, R.W. 1979, The Geochemistry of Gold and its Deposits, Dept. of Energy, Mines and Resources, Canada, Bulletin 280, pp. 333-386.
- Clifton, H.E., Hubert, A., and Phillips, R.L. 1967, Marine Sediments Sample Preparation for Analysis for Low Concentrations of Fine Detrital Gold: Geological Survey Circular 545, U.S. Dept. of the Interior, Washington, 11 p.
- Coleman, A.P. 1901, the Vermilion Valley Placers, Ontario Bureau of Mines, vol. X, pp. 151-159.
- Cook, R.J. 1959, Report on Concour-Chibougamau Mines Ltd., June 1959, Progress Report.
- Ferguson, S.A. and Freeman, E.B. 1978, Ontario Occurrences of Float, Placer Gold, and Other Heavy Minerals, Ontario Geological Survey, Mineral Deposits Circular 17, pp. 178.
- Gordon, J.B., Lovell, H.L., deGrijs, Jan and Davis, R.F. 1979, Gold Deposits of Ontario, Ontario Geological Survey, Mineral Deposits Circular Part 2.
- Gracey, A.H. 1898, Placer Gold on Vermilion River, Ontario Bureau of Mines, vol. VII, pt. 3, pp. 256-259.
- Harper, H.G. 1980, Meteor Resources Inc. Meteor-Opikinimika Placer Gold Prospect, Moffat and Beulah Townships, Ontario, May 2, 1980.
- Holbrooke, G.L. 1960a, Report on Vermilion Valley Placer Properties, Sudbury District, Ontario, Toronto.
- Holbrooke, G.L. 1960b, Casgoran Mines Ltd., Report on Placer Holdings, Beulah and Moffat Townships, Ontario.
- McKechnie, D.C. 1958, Report on the Properties of Concor-Chibougamau Mines Ltd.
- Meyn, H.D. 1970, Geology of Hutton and Parkin Townships, Ontario, Department of Mines, Geological Report 80, pp. 35.
- Middleton, R.S. 1983, Report on the Vermilion River Placer System, Meteor-Opikinimika Lake Area, Garibaldi, Moffat and Beulah Townships, Larder Lake Mining Division -Ontario for Harlin Resources Limited, September 16, 1983.

Ontario Geological Survey, 1977, Sudbury-Cobalt Sheet -Geological Compilation Series, 1" = 4 miles.

- Porritt, J. 1980, Report on a Geochemical Gold Reconnaissance Survey of the Vermilion Valley, Ontario prepared for Vermilion Placers Inc., February 1,, 1980.
- Prest, V.K. 1948, The Pleistocene Geology of the Vermilion River System near Capreol, District of Sudbury, Ontario, Ontario Department of Mines, Preliminary Report 1949-2.
- Snobelen, W.R. 1979, Proposal for Exploratory Licence of Occupation; Mississauga, Ontario, 3 p.
- Sorbara, J.P. 1986, Report on the Vermilion River Placer Property, Meteor-Opikinimika Lake Area Garibaldi, Moffat and Beulah Townships, Larder Lake Mining Division, Ontario for Harlin Resources Limited, June 20, 1986.

HI-TEC RESOURCE MANAGEMENT

LIMITED

APPENDIX I

Pit Logs

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Estimated Au Value oz/cu yd
86TR-001A	1.7	0.0-1.7	sand	nil	21	4.5	
-001B	3.5	1.7-3.5	sand	nil	22	4.5	
86TR-002A	1.6	0.0-1.6	sand	1 medium-fine* 2 very fine	18	4.0	
-002B	3.2	1.6-3.2	sand	nil	21	4.25	
86TR-003A	1.5	0.0-1.5	sand	nil	19	4.0	
-003B	3.0	1.5-3.0	sand	nil	25	4.75	
86TR-004A	1.6	0.0-1.6	sand	nil	20	4.25	
-004B	3.0	1.6-3.0	sand	nil	27	5.0	
86TR-005A	1.8	0.0-1.8	sand with gravel	nil	28	4.5	.0040
-005B	3.5	1.8-3.5	coarse gravel	2 very fine	31	4.75	
86TR-006A	1.6	0-1.6	gravel with	l medium, 2 very fine	27	4.75	.0040
-006B	3.3	1.6-3.3	gravel	2 medium-fine, 2 very fine	30	4.75	
86TR-007A	1.5	0-1.5	sand	nil	48	9.5	
-007B	3.2	1.5-3.2	sand	l very fine	45	9.5	
86TR-008A	1.6	0-1.6	sand	1 very fine	46	9.5	
-008B	3.0	1.6-3.0	sand	1 very fine	25	4.5	
86TR-009A -009B	1.7 3.2	0-1.7 1.7-3.2	sand sand	nil nil	47 26	9.5 4.75	

* Gold Size Classification

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Estimated Au Value oz/cu yd
86TR-010A	1.5	0-1.5	sand	nil	25	5.0	
-010B	2.8	1.5-2.8	sand	nil	25	5.0	
-010C	3.6	2.8-3.6	sand	nil	24	4.5	
86TR-011A	1.6	0-1.6	sand	nil	46	9.5	
-011B	3.0	1.6-3.0	sand	1 very fine	23	4.75	
86TR-012A	1.5	0-1.5	sand	nil	49	9.5	
-012B	3.2	1.5-3.2	sand	nil	51	9.5	
86TR-013A	1.4	0-1.4	sand	nil	47	9.5	
-013B	3.1	1.4-3.1	sand	nil	53	10.0	

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Au Colour Concentration	Weight (kg)	Screen +10 mesh (kg)	Estimated Au Value oz/cu yd
86TR-014 -015 -016	3.0 3.0 3.0	0-3.0 0-3.0 0-3.0	sand/gravel gravel/sand gravel/sand	nil	243	125	
86TR-017	2.8	0-2.8	sand/silt	nil	213		
86TR-018	2.7	0-2.7	sand/gravel	nil	215		
86TR-019	3.0	0-3.0	sand/gravel	nil	200		
86TR-020	3.0	0-3.0	gravel	<10-15 colors*	334		
86TR-021	3.0	0-3.0	gravel	<10-15 colors	354	186	
86TR-022	3.0	0-3.0	gravel	<10-15 colors	370	191	
86TR-023	3.0	0-3.0	sand/gravel	81	407	68	
86TR-024	3.0	0-3.0	sand/gravel	11	384	170	
86TR-025	2.5	0-2.5	sand/gravel	88	423	209	
86TR-026	3.0	0-3.0	sand/gravel	89	419	243	
86TR-027	3.0	0-3.0	sand/gravel		372	36	
86TR-028	3.0	0-3.0	sand/gravel	20-25 colors	214	141	
86TR-029	3.0	0-3.0	sand/gravel	5-10 colors	211	181	
86TR-030	3.0	0-3.0	sand/gravel	15-20 colors	190	127	

* General classification of number of gold colors.

							•
Pit #	Depth (metres)	Sample Interval (m)	Lithology	Au Colour Concentration	Weight (kg)	Screen +10 mesh (kg)	Estimated Au Value oz/cu yd
86TR-031	3.0	0-3.0	sand/gravel	45-50 colors	190	43	.001
86TR-032	3.0	0-3.0	sand/gravel	6-10 colors	168	18	
86TR-033	3.0	0-3.0	sand/silt	1 color	151		
86TR-034	3.0	0-3.0	sand/silt	1-5 colors	183	nil	
86TR-035	3.0	0-3.0	sand/silt	nil	187	nil	
86TR-036	3.0	0-3.0	sand/silt	nil	167	nil	
86TR-037	3.0	0-3.0	sand/silt	l color	141	nil	
86TR-038	3.0	0-3.0	gravel	7-10 colors	195	152	
86TR-039	3.0	0-3.0	sand	nil	167	nil	
86TR-040	3.0	0-3.0	gravel/silt	3 colors	211	173	
86TR-041	3.0	0-3.0	silt/sand	2-5 colors	154	nil	
86TR-042	3.0	0-3.0	pebble gravel	35-40 colors	223	154	.001
86TR-043	3.0	0-3.0	pebble gravel	15-20 colors	164	89	
86TR-044	3.0	0-3.0	pebble gravel	15-20 colors	209	54	
86TR-045	3.0	0-3.0	gravel	2-5 colors	220	130	
86TR-046	3.0	0-3.0	silt/sand	nil	163	nil	
86TR-047	3.0	0-3.0	silt/sand	nil	141	nil	

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Au Colour Concentration	Weight (kg)	Screen +10 mesh (kg)	Estimated Au Value oz/cu yd
86TR-048	3.0	0-3.0	pebble gravel	3 colors	211	159	
86TR-049	3.0	0-3.0	sand/gravel	1 color	141	29	
86TR-050	3.0	0-3.0	gravel	3-5 colors	141	100	
86TR-051	3.0	0-3.0	pebble gravel	nil	141	104	
86TR-052	3.0	0-3.0	silt/gravel	nil	145		
86TR-053	3.0	0-3.0	sand/gravel	nil	230	38	
86TR-054	3.0	0-3.0	sand	nil	143	nil	
86TR-055	3.0	0-3.0	sand/gravel	5-10 colors	116	32	
86TR-056	3.0	0-3.0	gravel	nil	134	118	
86TR-057	3.0	0-3.0	sand/gravel	2 colors	79	43	
86TR-058	3.0	0-3.0	gravel	2 colors	93	73	
86TR-059	3.0	0-3.0	gravel	1 color	84	63	
86TR-060	3.0	0-3.0	gravel	1 color	189	123	

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Estimated Au Value oz/cu yd
86TR-061	3.0	0-3.0	gravel	l coarse, 2 medium, 7 fine	84	12.0	
86TR-062	2.8	0-2.8	gravel	2 medium, 2 fine	140	12.0	
86TR-063	3.1	0-3.1	gravel	2 fine, 2 very fine	145	18.0	
86TR-064	3.0	0-3.0	gravel	3 fine, 1 very fine	98	12.0	
86TR-065	2.7	0-2.7	gravel	3 fine, 4 very fine	141	19.0	
86TR-066	2.8	0-2.8	gravel	4 fine, 5 very fine	136	20.5	
86TR-067	3.0	0-3.0	gravel/clay	2 fine, 10	120	19.0	
86TR-067A	3.3	3.0-3.3	gravel	very fine l fine, l very fine	35	5.0	
86TR-068	2.5	0-2.5	gravel	2 fine, 6 very fine	139	19.0	
86TR-069	3.0	0-3.0	gravel	3 medium, 2 fine, 6 very f	127 ine	18.0	.002
86TR-070	3.1	0-3.1	gravel/silt	1 coarse	39	5.5	
86TR-071	3.0	0-3.0	gravel	2 fine, 1 very fine	91	10.0	

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Estimated Au Value oz/cu yd
86TR-072	3.4	0-3.4	gravel/silt	2 fine, 3 very fine	118	15.0	
86TR-073	3.3	0-3.3	gravel/silt	l coarse, 3 medium, 3 fine	108	15.0	.002
86TR-074	3.5	0-3.5	gravel	1 medium	129	20.0	
86TR-075	3.0	0-3.0	gravel	2 medium, 2 fine, 3 very f.	91 ine	14.0	.001
86TR-076	2.8	0-2.8	silt/gravel	l medium, l fine	95	10.0	
86TR-077	3.1	0-3.1	silt/sand	2 very fine	126	16.0	
86TR-078	3.1	0-3.1	gravel	nil	82	12.5	
86TR-079	3.0	0-3.0	gravel	2 fine	152	24.0	
86TR-080	2.8	0-2.8	silt/gravel	l medium	130	20.0	
86TR-081	3.0	0-3.0	gravel	1 very fine	82	12.0	
86TR-082	3.0	0-3.0	gravel	nil	84	14.0	
86TR-083	3.0	0-3.0	gravel	6 very fine	132	19.0	
86TR-084	2.8	0-2.8	gravel	3 fine, 5 very fine	148	20.0	
86TR-085	2.9	0-2.9	gravel	3 fine, 2 very fine	109	15.0	

•

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Estimated Au Value oz/cu yd
86TR-086	2.5	0-2.5	gravel	4 fine, 3 very fine	161	20.0	
86TR-087	2.5	0-2.5	gravel/silt	3 medium, 3 fine, 21 very	95 fine	18.0	.002
86TR-088	2.5	0-2.5	silt/gravel	4 fine, 18 very fine	105	14.0	.001
86TR-089	2.5	0-2.5	gravel/silt	2 fine, 4 very fine	91	15.0	
86TR-090	2.6	0-2.6	gravel/sand	3 fine, 2 very fine	109	16.0	
86TR-091	2.7	0-2.7	gravel	l medium, 3 fine	89	15.0	
86TR-092	2.5	0-2.5	sand/gravel	l medium, 5 very fine	79	15.0	
86TR-093	3.0	0-3.0	sand/gravel	1 medium, 3 fine, 3 very f:	161 ine	23.0	
86TR-094	2.5	0-2.5	gravel/sand	1 medium, 1 fine, 14 very :	105 fine	15.0	.001
86TR-095	2.5	0-2.5	sand/gravel	l fine, 3 very fine	95	14.0	
86TR-096	2.5	0-2.5	sand/gravel	l fine, l very fine	109	13.0	

í

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Estimated Au Value oz/cu yd
86TR-097	3.0	0-3.0	sand/gravel	1 medium, 2 fine	82	13.0	<.001
86TR-098	2.5	0-2.5	sand/gravel	3 fine	66	10.0	
86TR-099	2.5	0-2.5	sand/gravel	nil	132	20.0	
86TR-100	3.0	0-3.0	sand/gravel	l fine, l very fine	74	9.5	
86TR-101	2.6	0-2.6	sand/gravel	nil	111	15.0	
86TR-102	2.5	0-2.5	sand	nil	114	20.0	
86TR-103	3.0	0-3.0	sand/gravel	1 very fine	109	15.0	
86TR-104	2.5	0-2.5	sand/gravel	1 coarse	86	14.0	
86TR-105	2.5	0-2.5	gravel	2 fine	66	10.0	
86TR-106	2.5	0-2.5	sand/gravel	1 fine	86	15.0	
86TR-107	2.5	0-2.5	sand/gravel	1 fine	73	15.5	
86TR-108	2.5	0-2.5	sand/gravel	l medium	91	14.0	
86TR-109	2.5	0-2.5	gravel	1 medium, 2 fine, 1 very f.	168 ine	24.0	.001
86TR-110	2.5	0-2.5	gravel	nil	104	14.0	

Pit #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est.gal	Estimated Au Value oz/cu yd
86TR-111	2.5	0-2.5	gravel/sand	l fine, 4 very fine	102	13.5	
86TR-112	2.7	0-2.7	gravel	2 fine	82	12.0	
86TR-113	2.5	0-2.5	gravel	2 coarse, l fine	127	15.0	
86TR-114	3.0	0-3.0	gravel	6 fine	113	15.0	
86TR-115	2.5	0-2.5	gravel	3 medium, 1 fine	107	15.0	.001
86TR-116	2.5	0-2.5	gravel	3 fine	95	12.5	
86TR-117	2.5	0-2.5	gravel	3 fine	116	15.0	

APPENDIX II

Drill Logs

Drill Hole #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Comments
86DH-001	3.42	0.00- 3.42	sand/gravel	nil	22	4.5	
	6.70	3.42- 6.70	sand/gravel/ bedrock		20	4.0	
86DH-002	3.00	0.00- 3.00	silt/sand	nil	18	3.5	
	6.42	3.00- 6.42	silt/sand	nil	23	4.0	
	9.85	6.42- 9.85	gravel	2 fine*	25	5.5	
	13.05	9.85-13.05	gravel	2 very fine, 2 fine	28	5.5	
	17.82	13.05-17.82	gravel/sand	nil	25	5.0	
	24.05	17.82-24.05	sand	nil	48	8.0	
	31.39	24.05-31.39	sand/bedrock	nil	50	7.5	
86DH-003	3.05	0.00- 3.05	sand	nil	32	6.0	
	4.57	3.05- 4.57	sand	nil	15	3.0	
	8.23	4.57- 8.23	sand	nil	27	5.5	
	10.06	8.23-10.06	sand	nil	24	5.0	
	13.72	10.06-13.72	sand	nil	30	5.5	
	16.76	13.72-16.76	sand	nil	25	5.0	
	18.59	16.76-18.59	sand	nil	28	4.5	
	21.37	18.59-21.37	sand	nil	34	6.0	
	22.86	21.37-22.86	sand	nil	20	3.5	
	24.69	22.86-24.69	sand	nil	29	5.5	
	26.82	24.69-26.82	sand	nil	30	5.5	
	28.65	26.82-28.65	sand	nil	45	6.5	
	30.48	28.65-30.48	bedrock	nil	50	4.0	

* Gold size classification.

Drill Hole #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Comments
86DH-004	3.96	0.00- 3.96	sand	nil	32	5.0	
	8.53	3.96- 8.53	sand	nil	36	5.0	
	12.80	8.53-12.80	sand	nil	34	4.5	
	16.76	12.80-16.76	sand	1 fine	32	5.0	
	19.81	16.76-19.81	sand/gravel	1 fine, 2 very fine	38	5.5	
	22.86	19.81-22.86	sand	nil	36	5.5	
	24.38	22.86-24.38	sand	nil	23	3.5	
	27.43	24.38-27.43	sand	nil	34	5.0	
	29.26	27.43-29.26	sand	nil	20	3.0	
	31.09	29.26-31.09	sand	nil	22	3.0	
	33.22	31.09-33.22	sand	nil	25	3.5	
	35.05	33.22-35.05	sand	nil	21	3.0	
	36.57	35.05-36.57	sand	nil	27	4.5	
	38.10	36.57-38.10	sand	nil	22	4.0	
	39.62	38.10-39.62	sand	nil	25	4.5	
	41.15	39.62-41.15	sand	nil	20	3.0	
	42.67	41.15-42.67	sand	nil	18	2.8	
	44.19	42.67-44.19	sand	nil	26	3.6	
	46.63	44.19-46.63	sand	nil	34	4.5	
	50.29	46.63-50.29	sand/bedrock	nil	36	5.0	
86DH-008	3.35	0.00- 3.35	gravel	1 very fine	29	4.5	
	7.62	3.35- 7.62	gravel	1 medium, 1 fine	36	5.0	
	11.28	7.62-11.28	gravel	nil	25	3.0	
	13.72	11.28-13.72	gravel	1 medium	31	5.0	
	18.59	13.72-18.59	sand/gravel	nil	36	5.5	
	22.55	18.59-22.55	sand/gravel	nil	45	6.0	
	26.82	22.55-26.82	sand/gravel	nil	64	7.8	
	42.37	33.53-42.37	sand	nil	77	9.9	
	47.24	42.37-47.24	sand/bedrock	nil	38	5.2	

and when when the same when the same same same same same same s

Drill Hole #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est.gal	Comments
86DH-011	8.83	0.00- 8.83	sand/gravel	1 medium	82	9.9	
	10.67	8.83-10.67	sand	nil	37	4.4	
	15.24	10.67-15.24	gravel	l coarse, l medium, 2 very fine	43	5.0	<.001
	16.76	15.24-16.76	bedrock	nil	13	2.0	
86DH-012	3.66	0.00- 3.66	gravel/silt	l medium, 2 fine	34	4.0	
	4.88	3.66- 4.88	bedrock	nil	5	1.0	
86DH-013	3.05	0.00- 3.05	gravel/silt/ clay	l very fine	29	5.0	
	5.10	3.05- 5.10	gravel	nil	29	4.5	
	10.97	5.10-10.97	gravel/bed- rock	1 medium	56	6.5	
86DH-014	3.35	0.00- 3.35	clay/silt/ gravel	2 fine	29	5.0	
	10.67	3.35-10.67	gravel/bed- rock	nil	52	5.5	
86DH-015	6.09	0.00- 6.09	silt/sand	nil	41	6.0	
	12.19	6.09-12.19	sand/bedrock	nil	48	5.5	
86DH-016	2.47	0.00- 2.47	silt/gravel/ bedrock	nil	11	4.0	
86DH-017	3.66	0.00- 3.66	silt/gravel	nil	20	4.0	
	7.62	3.66- 7.62	gravel	1 very fine	27	4.0	
	11.89	7.62-11.89	gravel/bed- rock	3 very fine	48	8.0	

Drill Hole #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Comments
86DH-018	3.96	0.00- 3.96	silt/gravel	2 very fine	48	3.5	
	7.62	3.96- 7.62	gravel	1 very fine	23	3.5	
	13.72	7.62-13.72	gravel/bed- rock	nil	39	5.0	
86DH-019	3.96	0.00- 3.96	silt/sand	nil	18	3.0	
	6.40	3.96- 6.40	gravel	nil	14	2.5	
	9.45	6.40- 9.45	gravel	nil	11	2.5	
	13.72	9.45-13.72	gravel	nil	18	3.0	
	16.76	13.72-16.76	clay/gravel	1 very fine	36	5.0	
	20.73	16.76-20.73	gravel	nil	36	5.0	
	25.60	20.73-25.60	gravel/bed- rock	nil	72	8.0	
86DH-020	3.96	0.00- 3.96	gravel	nil	43	5.0	
	9.14	3.96- 9.14	gravel	nil	43	5.0	
	17.37	9.14-17.37	sand/bedrock	3 very fine	72	11.0	
86DH-021	3.66	0.00- 3.66	gravel	2 fine, 1 very fine	36	6.0	
	11.28	3.66-11.28	sand/gravel	nil	48	8.0	
	16.46	11.28-16.46	sand/bedrock		45	6.0	
86DH-022	6.71	0.00- 6.71	sand	2 very fine	61	10.0	
	12.19	6.71-12.19	sand	nil	41	7.0	
	16.76	12.19-16.76	sand/bedrock	nil	38	7.0	
86DH-023	3.66	0.00- 3.66	silt/gravel	nil	31	5.0	
	7.62	3.66- 7.62	sand/gravel	1 fine	43	6.0	
	14.94	7.62-14.94	sand	nil	50	6.0	
	21.33	14.94-21.33	sand/gravel	nil	86	12.0	
	27.43	21.33-27.43	sand	1 fine	84	14.0	
	35.35	27.43-35.35	sand/bedrock	nil	80	13.0	

and and the same same same same same same

1

Drill Hole #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Comments
86DH-024	4.57	0.00- 4.57	clay/gravel	1 very fine	34	5.0	
	11.28	4.57-11.28	sand	nil	47	8.0	
	17.37	11.28-17.37	sand	nil	46	8.0	
	22.86	17.37-22.86	sand	nil	53	9.0	
	28.96	22.86-28.96	sand/gravel	1 fine	54	10.0	
	34.14	28.96-34.14	sand/bedrock	nil	59	10.0	
86DH-025	4.27	0.00- 4.27	sand/gravel	1 very fine	38	7.0	
	8.84	4.27- 8.84	sand/gravel	nil	36	5.0	
	14.63	8.84-14.63	gravel/sand	nil	54	8.5	
	22.55	14.63-22.55	sand	1 very fine	63	10.0	
	30.48	22.55-30.48	sand	4 very fine	72	12.0	
	37.18	30.48-37.18	sand/bedrock	l very fine	70	10.0	
86DH-026	5.49	0.00- 5.49	sand/gravel	nil	53	8.0	
	8.84	5.49- 8.84	gravel	1 fine	32	4.0	
	14.33	8.84-14.33	sand/gravel	1 fine	50	8.0	
	19.81	14.33-19.81	sand	nil	59	9.0	
	26.82	19.81-26.82	sand/gravel	1 fine	84	12.0	
	28.04	26.82-28.04	bedrock	nil	18	3.0	
86DH-027	5.79	0.00- 5.79	silt/gravel	1 fine	50	9.0	
	10.06	5.79-10.06	gravel/clay	nil	50	7.5	
	15.54	10.06-15.54	gravel	nil	59	8.0	
	22.25	15.54-22.25	sand/gravel	4 very fine	69	10.0	
	27.43	22.25-27.43	sand	nil	55	10.0	
	32.00	27.43-32.00	sand/bedrock	nil	48	7.0	
86DH-028	4.88	0.00- 4.88	sand/gravel	nil	43	7.5	
	11.58	4.88-11.58	sand/gravel	nil	50	7.5	
	19.50	11.58-19.50	sand	1 medium	68	12.0	
	23.77	19.50-23.77	sand/bedrock	nil	34	5.0	

und and and the sum and and and and

Drill Hole #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Comments
86DH-029	6.70	0.00- 6.70	silt/gravel/ sand	1 fine, 1 very fine	61	9.0	
	12.80	6.70-12.80	sand/gravel	1 fine	43	7.0	
	18.90	12.80-18.90	sand/gravel/ bedrock	1 fine	41	6.0	
86DH-030	3.35	0.00- 3.35	gravel	1 fine	29	5.0	
	7.01	3.35- 7.01	gravel	nil	32	5.0	
	12.80	7.01-12.80	sand/gravel/ bedrock	nil	50	5.0	
86DH-031	5.49	0.00- 5.49	silt/gravel	1 fine	43	6.0	
	6.40	5.49- 6.40	bedrock	nil	11	1.5	
86DH-032	6.10	0.00- 6.10	silt/gravel	1 fine	52	9.0	
	12.80	6.10-12.80	sand/gravel	nil	50	8.5	
	18.90	12.80-18.90	sand/gravel/ bedrock	nil	57	10.0	
86DH-033	4.57	0.00- 4.57	silt/sand/ gravel	nil	52	7.5	
	9.45	4.57- 9.45	sand/gravel	nil	54	7.0	
	14.02	9.45-14.02	gravel/silt	nil	41	5.5	
	19.50	14.02-19.50	gravel/silt/ sand	nil	61	7.5	
	28.04	19.50-28.04	sand/bedrock	nil	91	13.0	
86DH-034	6.10	0.00- 6.10	gravel	1 fine	57	8.0	
	7.01	6.10-7.01	bedrock	niil	9	1.0	
86DH-035	3.96	0.00- 3.96	sand/gravel	nil	45	8.5	
	4.57	3.96- 4.57	bedrock	nil	5	1.0	

Drill Hole #	Depth (metres)	Sample Interval (m)	Lithology	Gold Description	Weight (kg)	Volume est. gal	Comments
86DH-036	4.57	0.00- 4.57	sand/gravel/ silt	nil	49	8.0	
	10.36	4.57-10.36	sand/gravel	nil	48	8.0	
86DH-037	6.10 10.97 16.76 22.55	0.00- 6.10 6.10-10.97 10.97-16.76 16.76-22.55	gravel gravel gravel/silt sand/silt/ bedrock	l fine nil l very fine nil	66 41 57 57	10.0 5.0 10.0 8.0	
86DH-038	7.01 7.92	0.00- 7.01 7.01- 7.92	silt/sand bedrock	nil nil	66 9	11.5 1.5	
86DH-039	1.52 2.13	0.00- 1.52 1.52- 2.13	sand/silt/ bedrock	nil nil	16 3	3.0 0.5	
86DH-040	3.66 9.75 15.85 16.76	0.00- 3.66 3.16- 9.75 9.75-15.85 15.85-16.76	gravel sand/gravel sand/clay bedrock	l medium nil nil nil	45 52 45 7	7.0 8.0 7.0 1.0	

•

APPENDIX III

Laboratory Results

To:

1523 WEST 3rd AVENUE. VANCOUVER, B.C. V6J 1J8 • TELEPHONE (604) 734-7276 • TELEX 04-54210

MDP Management Services

Queenstake Resources Ltd.

SEMI QUANTITATIVE SPECTROGRAPHIC ANALYSIS CERTIFICATE

File No. 13242F

900 - 850 W. Hastings St.

Sept.12/86

Vancouver, B.C. V6C 1E1 Att'n: Michael

cantest Itd.

Page l of 2

Date

Me hereby Certify that the following are the results of semi quantitative spectrographic analysis made on ______ samples submitted.

			1	2			1	2	Sample Identification
	Alumainum		1.	1.	Carium	0.	ND	ND	
	Aluminum	AI	0.04	0.02	Cerium	Ce	ND	ND ND	
	Antimony	Sb	ND ND	ND ND	Cesium	Cs			
	Arsenic	As	ND	ND	Dysprosium	Dy	ND	ND	Sample 1: 86 TR 92 86 TR 93 Composite #1
	Barium	Ba	TRACE	0.01	Erbium	Er	ND	ND	86 TR 93
	Beryllium	Be	IRACE	0.01	Europium	Eu	ND	ND	
	Bismuth	Bi	ND	ND	Gadolinium	Gd	ND	ND	
~	Boron	В	ND	ND	Hafnium	Hf	ND	ND	86 TR 90
	Cadmium	Cd	ND	ND	Holmium	Ho	ND	ND	Sample 2: 86 TR 86 Composite #2
	Calcium	Ca	3.	2.	Indium	In	ND	ND	
	Chromium	Cr	0.2	0.2	Lanthanum		ND	ND	
	Chromium	Ur	0.2	0.2	Lannanum	La	עא	ND	
	Cobalt	Co	ND	ND	Lithium	Li	ND	ND	
	Copper	Cu	0.004	0.005	Lutetium	Lu	ND	ND	Percentages of the various elements expressed in these analysis
	Gallium	Ga	ND	ND	Neodymium	Nd	ND	ND	may be considered accurate to within plus or minus 35 to 50% of
	Gold	Au	TRACE	TRACE	Praseodymium	Pr	ND	ND	the amount present.
	Iron	Fe	MATRIX	MATRIX	Rubidium	Rb	ND	ND	Semi-quantitative spectrographic analytical results for gold and silver are normally not of sufficient degree of percision to enale
									calculation of the true value of ores. Therefore, should exact values be required, it is recommended that these elements be
	1	D 1-	ND	ND	Demonstrum	0	ND	ND	assayed by the conventional Fire Assay Method. Quantitative and
	Lead	Pb	1.5	1.	Samarium	Sm	ND	ND	Fire Assays may be carried out on the retained pulp samples.
	Magnesium	Mg	0.5	0.4	Scandium	Sc			Silicon, aluminum, magnesium calcium and iron are normal components of complex silicates.
	Manganese	Mn			Selenium	Se	ND	ND	
	Molybdenum	Мо	0.03	0.02	Tellurium	Te	ND	ND	MATRIX — Major constituent MAJOR — Above normal spectrographic range
	Niobium	Nb	TRACE	TRACE	Terbium	Tb	ND	ND	TRACE - Detected but minor amounts N.D Not detected
		• •	0.01	0 000	-		ATT	ND	• - Suggest assay (above 0.3%)
B	Nickel	Ni	0.01	0.008	Thallium	TI	ND	ND	
	Potassium	К	ND	ND	Thulium	Tm	ND	ND	Percent
	Silicon	Si		MATRIX	Ytterbium	Yb	ND	ND	All results expressed as
	Silver	Ag	TRACE	TRACE	Yttrium	Y	ND	ND	Note: Pulps retained one week.
	Sodium	Na	0.1	TRACE	Zirconium	Zr	0.08	0.07	
	Strontium	Sr	0.03	0.02	Iridium	ir	ND	ND	
	Tantalum	Ta	ND ND	ND	Osmium	Os	ND	ND	
	Thorium	Th	ND	ND	Palladium	Pd			
-				9	Platinum	Pa Pt	ND	ND	ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATEMENTS, CONCLUSION OF EXTRACTS FROM OF
	Tin Titopium	Sn Ti		TRACE	Rhenium		ND	ND	REGARDING OUR REPORTS IS NOT PERMITTED WITHOUT OUR WRITTED APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEI
	Titanium	11	1.	0.8	Rhenium	Re	ND	ND	CHARGED.
"	Tungsten	w	ND	ND	Rhodium	Rh	ND	ND	
	Uranium	U	ND	ND	Ruthenium	Ru	ND	ND	
	Vanadium	v	0.09	0.08	1			1	
•	Zinc	Zn	ND	ND				1	CAN TEST LTD.
									Allon Per R.H.
Į	<u></u>		<u> </u>	l	L		<u> </u>		Spectroscopis

1523 WEST 3rd AVENUE. VANCOUVER. B.C. V6J 1J8 • TELEPHONE (604) 734-7276 • TELEX 04-54210

MDP Management Services

To:

SEMI QUANTITATIVE SPECTROGRAPHIC ANALYSIS CERTIFICATE

Queenstake Resources Ltd.

900 - 850 W. Hastings St.

Vancouver, B.C. V6C 1El Att'n: Michael

File No. 13242F

Date Sept. 12/86

Page 2 of 2

Me hereby Certify that the following are the results of semi quantitative spectrographic analysis made on ______ samples submitted.

		3	4			3	4	Sample Identification
Aluminum	AI	1.	1.	Cerium	Се	ND	ND	
Antimony	Sb	0.03	0.03	Cesium	Cs	ND	ND	
Arsenic	As	ND	ND	Dysprosium	Dy	ND	ND	Sample 3: 86 TR 116
Barium	Ba	ND	ND	Erbium	Er	ND	ND	86 TR 107 Composite #3
		0.01	0.02		Eu	ND	ND	
Beryllium	Be	0.01	0.02	Europium	Eu		110	
Bismuth	Ві	ND	ND	Gadolinium	Gd	ND	ND	
Boron	В	ND	ND	Hafnium	Hf	ND	ND	Sample 4: 86 TR 63
Cadmium	Cd	ND	ND	Holmium	Но	ND	ND	86 TR 64 Composite #4
Calcium	Ca	2.	3.	Indium	In	ND	ND	00 TK 04
Chromium	Cr	0.2	0.3	Lanthanum	La	ND	ND	
Cobalt	Co	ND	ND	Lithium	Li	ND	ND	
Copper	Cu	0.005	0.004	Lutetium	Lu	ND	ND	Percentages of the various elements expressed in these analysi
Gallium	Ga	ND	ND	Neodymium	Nd	ND	ND	may be considered accurate to within plus or minus 35 to 50% of
Gold	Au	TRACE	TRACE	Praseodymium	Pr	ND	ND	the amount present.
Iron	Fe	MATRIX	MATRIX	•	Rb	ND	ND	Semi-quantitative spectrographic analytical results for gold an sitver are normally not of sufficient degree of percision to enal
lion							-	calculation of the true value of ores. Therefore, should exact values be required, it is recommended that these elements b assayed by the conventional Fire Assay Method. Quantitative an
Lead	Pb	ND	ND	Samarium	Sm	ND	ND	Fire Assays may be carried out on the retained pulp samples.
Magnesium	Mg	2.	1.5	Scandium	Sc	ND	ND	Silicon, aluminum, magnesium calcium and iron are norm. components of complex silicates.
Manganese	Mn	0.6	0.4	Selenium	Se	ND	ND	
Molybdenum	Мо	0.03	0.04	Tellurium	Te	ND	ND	MATRIX — Major constituent MAJOR — Above normal spectrographic range
Niobium	Nb	TRACE	TRACE	Terbium	Tb	ND	ND	TRACE - Detected but minor amounts N.D Not detected * - Suggest assay (above 0.3%)
Nickel	Ni	0.01	0.01	Thallium	TI	ND	ND	Current acces (acove c.c.s)
Potassium	ĸ	ND	ND	Thulium	Tm	ND	ND	
Silicon	Si		MATRIX	Ytterbium	Yb	ND	ND	Percent
Silver		TRACE	TRACE	Yttrium	Ŷ	ND	ND	All results expressed as
	Ag	0.1	0.5		Zr	0.07	0.06	Note: Pulps retained one week.
Sodium	Na	0.1	0.5	Zirconlum	Zr		0.00	
Strontium	Sr	0.03	0.02	lridium	lr	ND	ND	
Tantalum	Ta	ND	ND	Osmium	Os	ND	ND	
Thorium	Th	ND	ND	Palladium	Pd	ND	ND	ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENT
Tin	Sn	TRACE	TRACE	Platinum	Pt	ND	ND	ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIEN' PUBLICATION OF STATEMENTS, CONCLUSION OF EXTRACTS FROM' REGARDING OUR REPORTS IS NOT PERMITTED WITHOUT OUR WRITT
Titanium	Ti	0.8	1.	Rhenium	Re	ND	ND	APPROVAL ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE F CHARGED.
Tungsten	w	ND	ND	Rhodium	Rh	ND	ND	
Uranium	U	ND	ND	Ruthenium	Ru	ND	ND	
Vanadium	v	0.08	0.1				1	CANTERTITO
Zinc	Zn	ND	ND	1				CAN TEST LTD.
								Allow Per R.H.
		1	1]		1	1	Spectrosco

APPENDIX IV

Statement of Costs

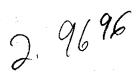
HARLIN RESOURCES LTD.

STATMENT OF COST - VERMILION RIVER PLACER PROPERTY

Power Stripping	\$ 72,675.00
Rotasonic Drilling	59,963.76
Freegold Recovery Systems (upgrading pit and drill samples)	7,747.02
M.D.P. Management Services (placer consultant)	6,948.84
Office, Field Supplies	1,980.22
Room and Board	2,382.20
Travel	6,581.78
Analyses, Report) Office Overheads)	8,721.18
Engineering Supervising and Project Preparation	8,000.00
TOTAL:	\$175,000.00

APPENDIX V

Statement of Qualifications



STATEMENT OF QUALIFICATIONS

I, LES DEMCZUK of the City of Vancouver, Province of British Columbia hereby certify that:

- 1. I am a Mining Geologist Engineer residing at 210-1860 Nelson Street, Vancouver, B.C.
- 2. I graduated from Univesrity of Mining and Metallurgy, Krakow, Poland in 1977 with a Master of Science degree in Geology.
- 3. I have worked in mineral and coal exploration since 1977 and have practiced my profession since 1977.
- 4. I am temporarily employed with Hi-Tec Resource Management Ltd. of Vancouver, B.C. and have been since June, 1986.
- 5. I have no direct or indirect interest in the properties, leases or securities of Harlin Resources Limited nor do I expect to receive any.
- 5. I consent to the use of this report in or in connection with, a prospectus, or Statement of Material Facts relating the the raising of funds for this project.

Les Demczuk, M.Sc.

STATEMENT OF QUALIFICATIONS

I, Michael D. Philpot, principal of M.D.P. Management Services of 2724 Bayview Street, in the Municipality of Surrey, Province of British Columbia, certify as follows regarding the report on the Vermilion River Placer Property, Meteor-Opikinimika Lake Area; Garibaldi, Moffat and Beulah Townships, Larder Lake Mining Division, Ontario dated September 1986.

- 1. I am a consulting geologist having practiced my profession in Canada for the past 8 years.
- 2. I am a graduate of the University of British Columbia with a B.S. degree in Geology obtained in 1978 and of City University with a M.B.A degree in Business Administration obtained in 1985.
- 3. I am a member in good standing of the Geological Association of Canada (F.G.A.C.)
- 4. I have no direct or indirect interest in the properties, leases or securities of Harlin Resources Limited nor do I expect to receive any.
- 5. I was the consulting geologist on the project having organized the sampling programs on site between the dates of July 27 and August 9, 1986.
- 6. I consent to the use of this report, in or in connection with, a prospectus, or a statement of material facts relating to the raising of funds for this project.

Dated this 30 day of September, 1986, Vancouver, B.C.

, last & buliet

Michael D. Philpot, B.Sc., M.B.A.

	• • • • • •	······		••••••••••••••••••••••••••••••••••••••		an ann an t-air an t-air an t-air	l l	11-1
Mjnistr	, Report of Wo	orkar	nder 9); -, 100 000000000000000000000000000000000				
and Mines	(Geophysical, C		S.					
Ontario	Geochemical ar	-	tures)		2.9696 GAR			
W	P608 5		Minin					900
Type of Survey(s) Mining Ad <u>Evaluation</u> OF Pl Claim Holder(s)	ct Section 77(19 lama Potentia) ben sl ne	eficatio Minin	n Study Da Claims	Township o		MOFFAT . R	EULAN
						1	MOFFAT, B	
HARLIN RESOURCE				CROIX (Zcla	ims)	717	107	
810 - 625 Howe	Street , Vai	nouver,	<u>B.C.</u>	Date of Survey	(from & to)		- 726/ Total Miles of line	Cut
HI-TEC RESOURC			LTD.	26 07 2 Day Mo.	86 15 C Yr. Day 1	08 86 Mo. Yr.	NIA	
Name and Address of Author (or LES DEMCZUK and	• •	DHIL PAT		ec RESOURCE 1590 - 609			T LTD (604)	
Credits Requested per Each C			04.7	laims Traversed (L				
Special Provisions	Geophysical	Days per Claim	N Prefix	lining Claim Number	Expend. Days Cr.	Mi Prefix	ining Claim Number	Expend. Days Cr.
For first survey: Enter 40 days. (This	- Electromagnetic		L	749632	16.26	L	749656	16.26
includes line cutting)	- Magnetometer			749633	16.26		743421	16.26
For each additional survey:	- Radiometric		n da se Li Arris ⊈ da Co Li Arris ⊈ da Co	7496 34	16.26		74 3422	16.26
using the same grid: Enter 20 days (for each)	- Other			749637	16.26		743423	16.26
	Geological			749638	16.26		743424	16.26
	Geochemical			749639	16.26		743425	16.26
Man Days	Geophysical	Days per Claim		749640	16.26		743426	16.26
Complete reverse side R and enter total(s) here				749641	16.26		74 3427	16.26
n n	EC- %* %*1986 r			749642	16.26		743428	16.26
	Radiometric			749643	16.26		74 34 29	16.26
MININ	g lands sectio	N		749644	16.26		743430	16.26
	Geological			749645	16.26		74 34 31	16.26
	Geochemical			749646	16.26		743432	16.26
Airborne Credits		Days per Claim		749647	16.26		74 84 33	16.26
Note: Special provisions credits do not apply	Electromagnetic			749648	16.26		74 34 34	16.26
to Airborne Surveys.	Magnetometer			749649	16.26		743435	16.26
	Radiometric			749650	16.26		743436	16.26
Expenditures (excludes power Type of Work Performed Rot		Place		749651	16.26		743437	16.26
Consulting, Concentration		المسعمات	S DIVISION	749652	16.26	696	743438	16.26
Pertormed on Claim(s) See attacked S	head # 5		VIS	749653	16.26		743439	16.26
for list of clair		·····		749654	16.26		743440	16.26
Colculation of Expenditure Days	Credits	101 21-	1036	749655	16.26	and a second	743566	16.26
Total Expenditures		otai Credits	\$ 35	See	atta	ched	sheets	
\$ 74 659.62	÷ 15 = /6	.26	<u>A</u> N			claims cov	ber of mining vered by this	306
Instructions Total Days Credits may be ap	oportioned at the claim h	older's			-	report of	work.	
choice. Enter number of days in columns at right.	s credits per claim selecte	d	Total Day Recorded	For Office Use O		Mining Re		7
Date	corded Holder or Agent (S	ionature)		NOV 2	as Recorded	Branch Di	·	~~
	les Dez	•	4975	.S.		24	work Itil	ement
Certification Verifying Repo		owledge of +	he facts set	forth in the Report	of Work anno	xed bereto	having performed +	hework
or witnessed same during and	l/or after its completion :	-						
Name and Postal Address of Pers		9 Gran	wilk a	Street V	ancouver	-, B.C.	<u> </u>	c6

4 5 4 220 / 16: 16

. 2/7 L.D.

\	T		Mining	Claim	Expend.
Min		Expend	Prefix	Number	Days Cr.
Prefix		Days Cr.	L	749055	16.26
L	743567	16.26	L	74 9056	16.26
L	743568	16.26		74 9057	16.26
L	743569	16.26		74 9058	16.26
L	743570	16.26		749059	16.26
L	743571	16.26		749060	16.26
L	743572	16.26		749061	16.26
L	743573	16.26	1	749062	16.26
L	743574	16.26		749063	16.26
L	743575	16.26		749064	16.26
L	743576	16.26		749065	16.26
L	743577	16.26		749552	16.26
L	743578	16.26		749553	16.26
L	743579	16.26		749554	16.26
L	743580	16.26		749555	16.26
L	743581	16.26		749556	16.26
L	743582	16.26		749557	16.26
L	743583	16.26	L	741558	16.26
L	743584	16.26	L	749559	16.26
Δ.	743585	16.26	L	749560	16.26
L	743586	16.26	L	749561	16.26
L	743587	16.26	L	749562	16.26
L	743588	16.26	L	749563	16.26
L	743589	16.26	L	749564	16.26
L	743590	16.26		749565	16.26
L	749051	16.26		749566	16.26
L	749052	16.26		749567	16.26
L	749053	16.26		749568	16.26
	709054	16.26			

Suite Clairing Churching 32 16:210

Vel banne

(

.3/7 L.D.

.

L 749569 16.26 L 749597 16 L 749570 16.26 L 749597 16 L 749570 16.26 L 749598 16 L 749571 16.26 L 749599 16 L 749572 16.26 L 749601 16 L 749573 16.26 L 749601 16 L 749573 16.26 L 749601 16 L 749573 16.26 L 749603 16 L 749577 16.26 L 749607 16 L 749577 16.26 L 749607 16 L 749577 16.26 L 749607 17 L 749580 16.26	end,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	s Cr.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.26
L 749572 16.26 L 749600 16 L 749573 16.26 L 749601 16 L 749573 16.26 L 749603 16 L 749575 16.26 L 749603 16 L 749575 16.26 L 749603 16 L 749575 16.26 L 749603 16 L 749576 16.26 L 749603 16 L 749577 16.26 L 749603 16 L 749577 16.26 L 749603 16 L 749577 16.26 L 749607 16 L 749577 16.26 L 749607 16 L 749583 16.26 L 749607 16 L 749583 16.26 L 749607 16 L 749583 16.26 L 749613 16 16.26	.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.Z6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.26
L 749593 16.26 L 749621 1 L 749594 16.26 L 749622 1	6.26
L 749594 16.26 L 749622 1	6.26
L 749594 16.26 L 749622 1	6.26
	6.26
L 749595 16.26 L 749623 1	6.26
	6.26

of Mining Claims GARIE

ч/₇ L.D.

Mining Cl	r(m)	Expend.	Mining (Claim	Expend.	
Prefix	Number	Days Cr.	Arefix	Number	Days Cr.	
L	749625	16.26	L	748922	16.26	
L	749626	16.26	L	748923	16.26	
L	749627	16.26	L	748924	(6.26	
L	749628	16.26	L	748925	16.26	
L	749629	16.26	L	748926	16.26	
L	749630	.16.26	L	748927	16.26	
L	749631	16.26	L	748928	16.26	
L	74 8901	16.26	L	748929	16.26	
L	748902	16.26	L	748930	16.26	
L	748903	16.26	L	748931	16.26	
L	748904	16.26	L	748932	16.26	
L	748905	16.26	L	748933	16.26	
Ĺ	748906	16.26	L	748934	16.26	
L	748907	16.26	L	748935	16.26	
Ĺ	748908	16.26	Ļ	748536	16.26 16.26 16.26	
L	748909	16.26	I	748936 748937 748938	16.26	
Ĺ	748910	16.26	L	748939	16.26	
L	748911	16.26		748940	16-26	
L	748912	16.26	L	748941	16.26	
C	748913	16.26		748942	16.26	
٢	748914	16.26		748943	16.26	
(748915	16.26	L	748944	16.26	
L	748916	16.26	L	748945	16.26	
L	748917	16.26	L	748946	16.26	
L	748918	16.26	L	748947	16-26	
Ĺ	748919	16.26		748 948	14.26	
L	748920	16.26	L	748949	<i>[6.26</i>	
L	748921	16.26	L	748950	16.26	

horr, B.C. 16C 210 Total Miles

Ľ

5/7 L.D.

.

Mining	Claim	Expend.	Mining	Claim	Expend.
Prefix	Number	Expense. Days Cr.	Prefix	Number	Days Cr.
L	748951	16.26	L	748989	16.26
L	748952	16.26	L	748 990	16.26
L	748953	16.26	L	748 991	16.26
1	748954	16.26	L	748 992	16.26
L	748955	16.26	L	748 993	16.26
L	748956	16.26	L	748994	16.26
L	748957	16.26	L	748 995	(6.26
L	748959	16.26	L	748996	16.26
L	748960	16.26	L	748997	16.26
Ĺ	748961	16.26	L	748 998	16.26
L	748962	16.26	L	748999	16.26
L	748965	16.26		749001	16.26
L	748969	16.26	L	749002	16.26
L	748970	16.26	L	749003	16.26
L	748971	16.26		749004	16.26
L	748972	16.26	L	749005	16.26
L	748976	16.26	L	749006	16.26
L	748978	16.26	L	749007	16.26
L	748979	16.24	4	749008	16.26 16.26 16.26
L	748980	16.26		749009 749010	16.26
L	748981	16.24	L	749011	16.26
L	748982	16.26	L	749012	16.26
L	748983	16.26	L	749013	16.26
L	748984	16.26	L	749014	16.26
L	748985	16.26	L	749015	16.26
L	748 986	16.26	6	749016	16.26
L	748 987	16.26	L	749017	16.26
L	748 988	16.26	L	749018	16.26
	ſ	1	4	а I	

· · · · · · · · · · · · · · · · · · ·					L.D.
Mi	ning Claim	Expend.	Mining	Claim	Expend.
efix	Number	Days Cr.	Prefix)	Number	Days Cr.
Ļ	749019	16.26	L	872322	16.26
L	749020	16.26	L	872323	16.26
L	749021	16.26		872324	16.26
-	749022	16.26	L	872325	16.26
-	749023	16.26	L	872326	16.26
•	749024	16.26	L	872327	16.26
	749026	16.26	L L	880165	16.26
- .	749027	16.26	L	880164	16.26
-	749028	16.26			
<u> </u>	749029	16.26			
-	749030	16.26			
/	749031	16.26			
-	749032	16.26			
•	749033	16.26			
-	749034	16.26			
-	749035	16.26			
-	749036	16.26			
	749037	16.26			
	749038	16.26	•		
	749039	16.26			
	749040	16.26			
	749041	16.26			
	749042	16.26			
	749043	16.26			
	872318	16.26			
	872319	16.26			
	872320	16.26	р. ^{с.} (
-	872321	16.26.			
LES	DEMCZUK 1590	-609 Granville	Date Certified Nou 10 1986	Certified by (Sig	nature)

,

7

Work was performed on the following Claims:

748915	743429	
748916	743430	
748917	743431	
748918	743437	
748919	743438	
748931	743439	
748932		
748933	749005	
748935	74 9006	
748936	749007	
748938	749008	
748939	749012	-
748940	749013	
74894/	749014	
748946	749015	
198790	210771	• - • •
748951	670210	
· · ·	872318	
748952	872320	
748953	872321	
748954	872322	
748955	872323	
748956	872 324	
748957	872 325	
748965	880164	
748976		

Ministry of Northern Development and Mines

,

1

Geophysical-Geological-Geochemical Technical Data Statement

Ontario	File
TO BE ATTACHED AS AN APPENDIX TO TECHNIC FACTS SHOWN HERE NEED NOT BE REPEATED I TECHNICAL REPORT MUST CONTAIN INTERPRETATION,	N REPORT
Type of Survey(s) Benefication Study - Potential of Mini	reer ing Claim S
Township or Area Garibaldi, Moffat, Beulah	MINING CLAIMS TRAVERSED
Claim Holder(s) Harlin Resource Ltd.	List numerically
810-625 Howe Street, Vancouver, B.C.	
Survey Company <u>HI-TEC Resource Management Ltd.</u>	L 749632 - 749634 incl. (prefix) (number)
Author of Report Les Demczuk and Michael D. Philpot	L 7496 37 - 749656 incl.
Address of Author 1590 - 609 Granville Street VIY ICL	L 743421 - 743440 incl.
Covering Dates of Survey August 5 to August 16, 1986 (linecutting to office)	L 743566 - 743590 incl.
Total Miles of Line Cut	L 749051 - 749065 incl.
SPECIAL PROVISIONS DAYS CREDITS REQUESTED Geophysical per claim	L749552 - 749631 incl.
<u>CREDITS REQUESTED</u> Geophysical Electromagnetic	L748901 - 748957 incl.
ENTER 40 days (includes	L748 959 - 748962 incl.
line cutting) for firstMagnetometer surveyRadiometric	L748965 - 748
ENTER 20 days for each —Other	l l l l l l l l l l l l l l l l l l l
additional survey using Geological	L748969 - L748972 ind.
same grid. Geochemical	L748976 -
AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)	L748978 - L749024 ind.
MagnetometerElectromagneticRadiometric (enter days per claim)	6749026 - 749043 ind.
	L872318 - 872327 ind.
DATE: Nov. 14, 1986 SIGNATURE: Author of Report or Agent	L 880/65 - L880/64
	<u> </u>
Res. Geol Qualifications _ This file	
Previous Surveys	
File No. Type Date Claim Holder	
	TOTAL CLAIMS 306

OFFICE USE ONLY

	GEOPHYSICAL	TECHNICAL	DATA	•
9	<u>GROUND SURVEYS</u> – If more than one survey, specif	fy data for c ach	type of survey	••
N	umber of Stations	Numbe	r of Readings	
	tation interval		•	
	rofile scale	-	-	
C	ontour interval			
r 14	Instrument			
MAGNETIC	Accuracy – Scale constant		·····	
Z	Diurnal correction method			
MA	Base Station check-in interval (hours)			
	Base Station location and value		·····	
2	Instrument		1	
	Coil configuration			
AG	Coil separation	<u></u>		
MO	Accuracy			
I.K	Method:	Shoot back	🗔 In line	🗆 Parallel line
<u>ELECTROMAGNETIC</u>	Frequency(sr	ecify V.L.F. station)		
늬	Parameters measured			·
	Instrument			
	Scale constant			
Z	Corrections made			
KAV				
3	Base station value and location			
		<u></u>		
	Elevation accuracy			
	Instrument			
	Method 🔲 Time Domain		Frequency Domain	
	Parameters – On time		Frequency	
Ħ	- Off time		Range	
Ä	– Delay time	······		
RESISTIVITY	- Integration time			
ESI	Power			
2	Electrode array			
	Electrode spacing		· · · · · · · · · · · · · · · · · · ·	
	Type of electrode		, <u>, , , , , , , , , , , , , , , , , , </u>	

,

1

INDUCED POLARIZATION

•

SELF POTENTIAL	
Instrument	Range
Survey Method	
Corrections made	
• • • • • • • • • • • • • • • • • • •	
RADIOMETRIC	
Instrument	
Values measured	
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden	
(1)	ype, depth — include outcrop map)
	planer channel, gold content of channel sults)
AIRBORNE SURVEYS	
Type of survey(s)	
	pccify for each type of survey)
Accuracy(s	necify for each type of survey)
Aircraft used	
Sensor altitude	
Aircraft altitude	Line Spacing
	Over claims only

GEOCHEMICAL SURVEY - PROCEDURE RECORD

,

L

Numbers of claims from which samples taken_____

Total Number of Samples	ANALYTICAL METHODS				
Type of Sample(Nature of Material) Average Sample Weight	p. p. m. □ p. p. b. □				
Method of Collection	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)				
Soil Horizon Sampled	Others				
Horizon Development	Field Analysis (tests)				
Sample Depth	Extraction Method				
Terrain	Analytical Method				
	Reagents Used				
Drainage Development	Field Laboratory Analysis				
Estimated Range of Overburden Thickness	No. (tests)				
	Extraction Method				
	Analytical Method				
	Reagents Used				
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing)	Commercial Laboratory (tests)				
Mesh size of fraction used for analysis					
	Extraction Method				
	Analytical Method				
	Reagents Used				
General	General				

Ontario	y of rn Development nes	Geotechnical Report Approval		File 2. 96	96)an. 23/87
Mining Lan	ds Comments	Carence K	ustra:	C C	·
	O landy				this
+	fuel	that there is	Al +'s R	the the A	· 4.
ente		^	/ .		
<u>S</u> a	ay from	der selation 77 (1		D: H-	
			······	Denis King	
				····	
		• 			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·				
To: Geoph	γsics 			······································	
			<u></u>		
			·····		
		۹۳۳۹			
	ed 🚺 Wish to i	see again with corrections	Date	Signature	
To: Geolog	y - Expenditures				······
Comments					
		·····	·		
			······		
		۵۰۰ <u>۵</u> ۰۰۰ - ۲۰۰۰ ۵۰٬۵۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰			······
				·	
	- <u></u>		Date/		
Approv	ed Wish to a	see again with corrections	7.08.3/8	7 Signeture Kustra	
To: Geoche	emistry				
Comments					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			· · · · · · · · · · · · · · · · · · ·	······································	
		/#	<u></u>	Farmer 6	
	<u> </u>		······		
1					
	d 🗌 Wish to r	see again with corrections	Date	Signature	

· ·

.

بالوقيقين بداد الوالية

and the data state of the state of the second state of the

•

•

P
Ontario

and mines

Ministry of Notice in Development

Technical Assessment Work Credits

	File 2.9696	
Date	Mining Recorder's Report of Work No. 524/86	
March 13, 1987	524/86	

Recorded Holder HARLIN RESOURCES_LI	MITED & DANIEL LACROIX
Township or Area BEULAH, GARIBALDI &	
Type of survey and number of Assessment days credit per claim	Mining Claims Assessed
Geophysical	
Electromagnetic days	
Magnetometer days	\$74,659.62 SPENT ON A CONSULTANT'S REPORT AND BENEFICIATION STUDY TAKEN FROM MINING CLAIMS:
Radiometric days	1. 742420 21
	L•743430 - 31 •743437 to 39 inclusive
Induced polarization days	• 748915 to 19 inclusive
Other days	• 748932 - 33
	 748938 to 41 inclusive
Section 77 (19) See "Mining Claims Assessed" column	• 748946
	• 748951 to 57 inclusive
Geological days	748976749006 to 15 inclusive
Coophamiaal	• 749008 CO 15 Inclusive
Geochemical days	• 749634 •
Man days 🗍 Airborne 🗍	• 749637 •
	•749641 to 43 inclusive
Special provision 🗌 Ground 🗌	• 872318
_	• 872320 to 25 inclusive
Credits have been reduced because of partial coverage of claims.	• 880164
Credits have been reduced because of corrections to work dates and figures of applicant.	4975.56 ASSESSMENT WORK DAYS ARE ALLOWED WHICH MAY BE GROUPED IN ACCORDANCE WITH SECTION 76(6) OF THE MINING ACT.
pecial credits under section 77 (16) for the following mi	ining claims
lo credits have been allowed for the following mining cla	ilms
not sufficiently covered by the survey	insufficient technical data filed
	,
	:

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 60.

March 13, 1987

Your File: 524/86 Our File: 2.9696

Maning Recorder Ministry of Northern Development and Mines 4 Government Road East Kirkland Lake, Ontario P2N 1A2

Dear Sir:

RE: Consultant's Report and Beneficiation Study submitted on Mining Claims L 743430, et al, in Beulah, Garibaldi and Moffat Townships

The enclosed statement of assessment work credits for Consultant's Report and Beneficiation Study have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

J.C. Smith, A/Manager Mining Lands Section Mineral Development and Lands Branch Mines and Minerals Division

Whitney Block, Room 6610 Queen's Park Toronto, Ontario M7A 1W3

Telephone: (416) 965-4888.

DK/mc

cc: Harlin Resources Limited Daniel Lacroix Suite 810 625 Howe Street Vancouver, B.C. V6C 2T6 Hi-Tec Resource Management Ltd Suite 1590 609 Granville Styeet Vancouver, B.C. V7Y 1C6

Resident Geologist Kirkland Lake, Ontario

Encl.

HI-TEC RESOURCE MANAGEMENT LIMITED

STOCK EXCHANGE TOWER , P.O. BOX 10107 1500-609 GRANVILLE STREET, VANCOUVER, B.C. V7Y 1C6 TEL. (604) 669 5559

January 14, 1987

Mr. J.C. Smith Ministry of Northern Development and Mines Mining Lands Section Whitney Block, 6th Floor Queens Park Toronto, Ontario M7A 1W3

Dear Mr. Smith:

Re: Mining Claims L749632 et al., in Garibaldi, Moffat and Beulah Townships

Please find enclosed with this letter, two copies of the reports and maps for the Benefication Survey on the abovementioned claims. I trust you will receive them before January 20, 1987 which is the expiry date for the reports to be filed.

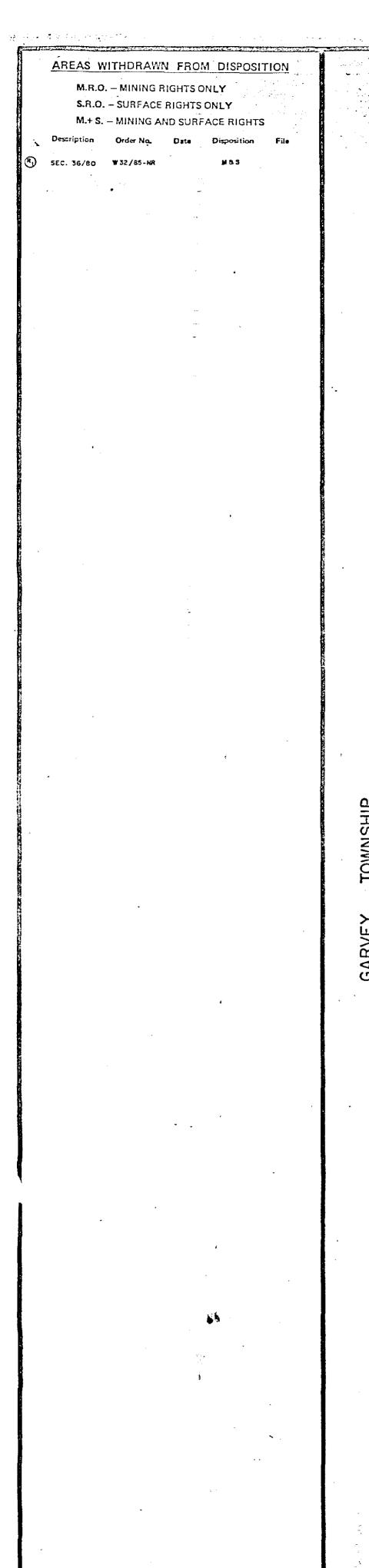
Thank you for your attention to this matter.

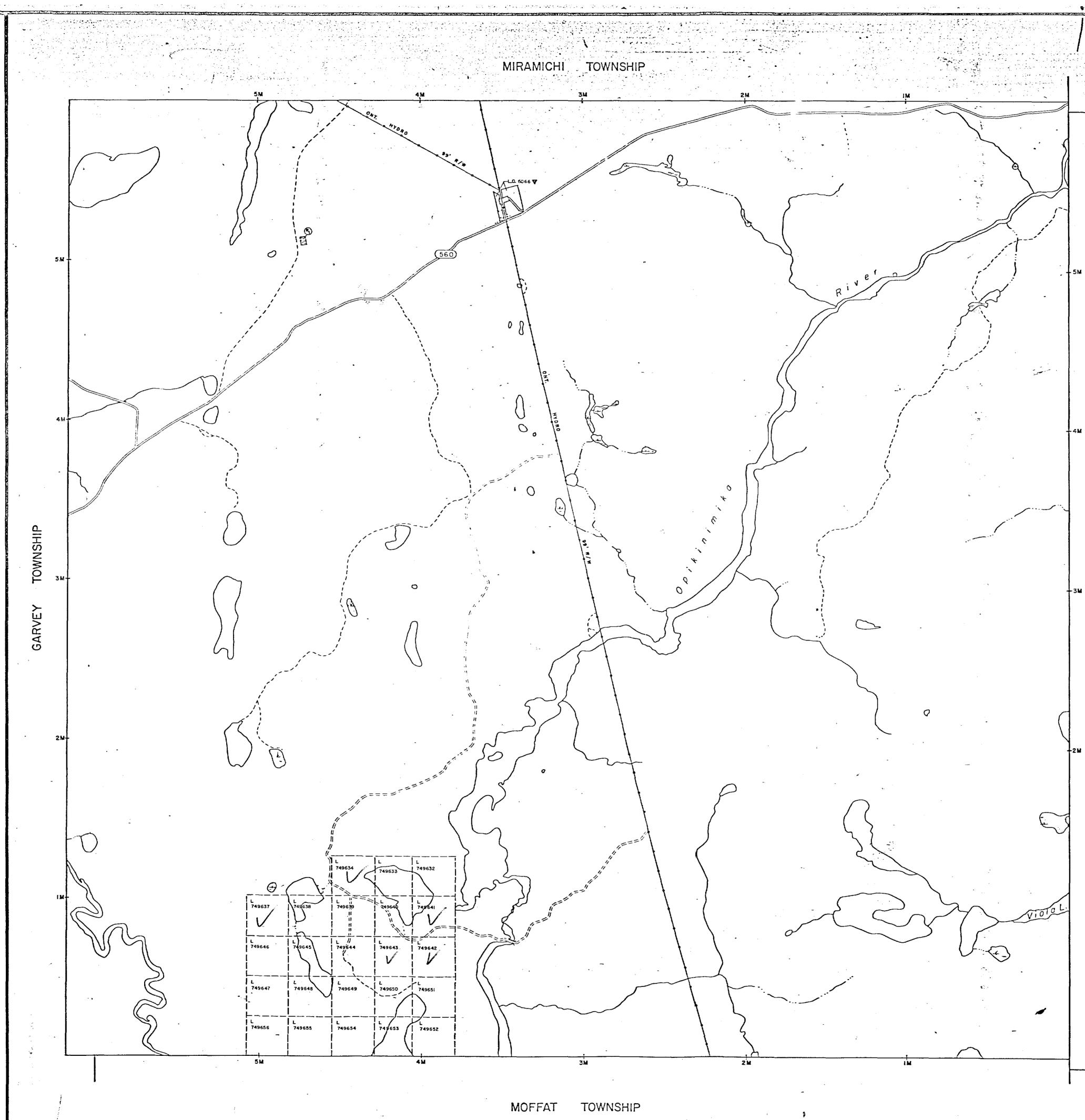
Yours sincerely,

HI-TEC RESOURCE MANAGEMENT LTD.

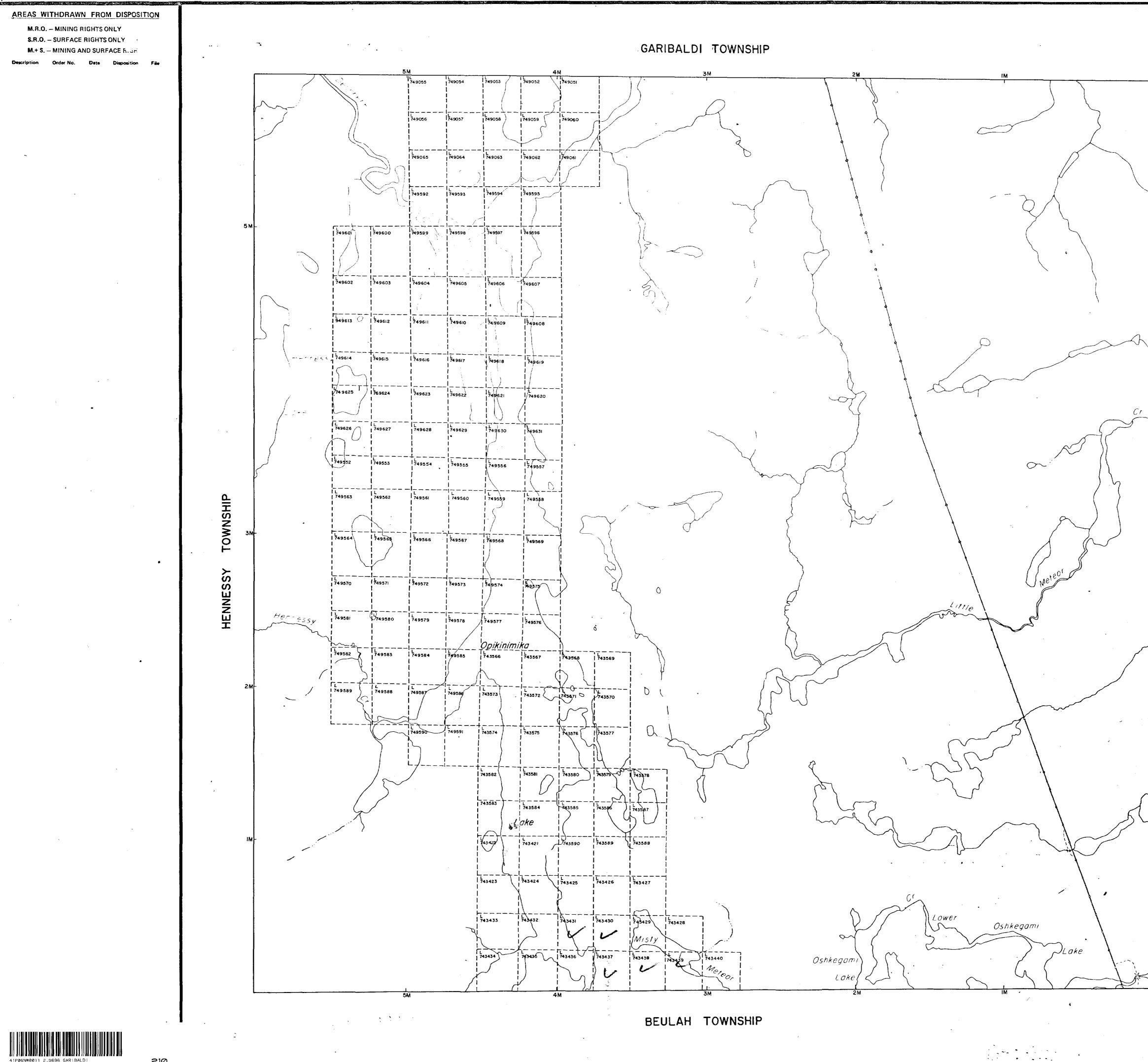
in farm

Virginia Kuran, General Manager

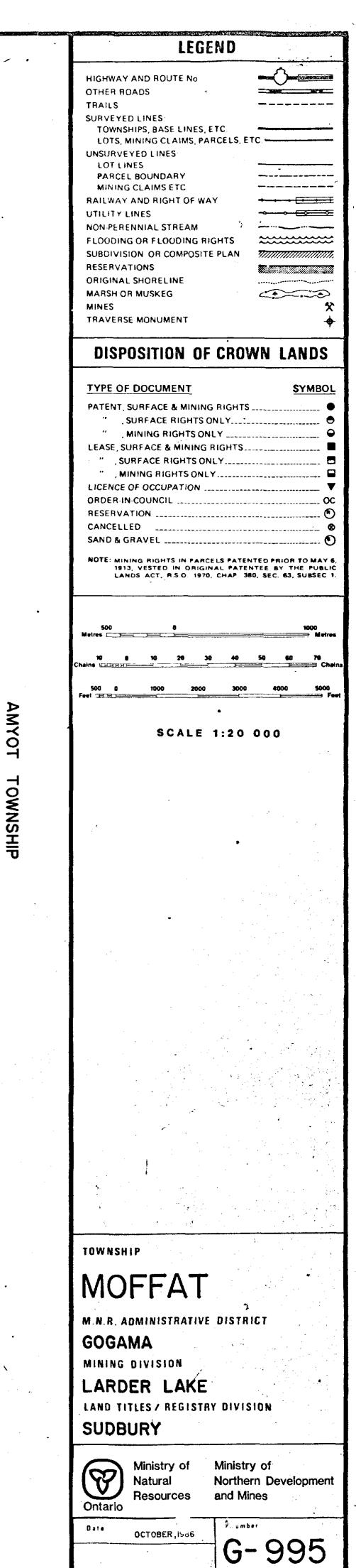

VK:mkm


RECEIVED

JAN 1 : 1987


MINING LANDS SECTION

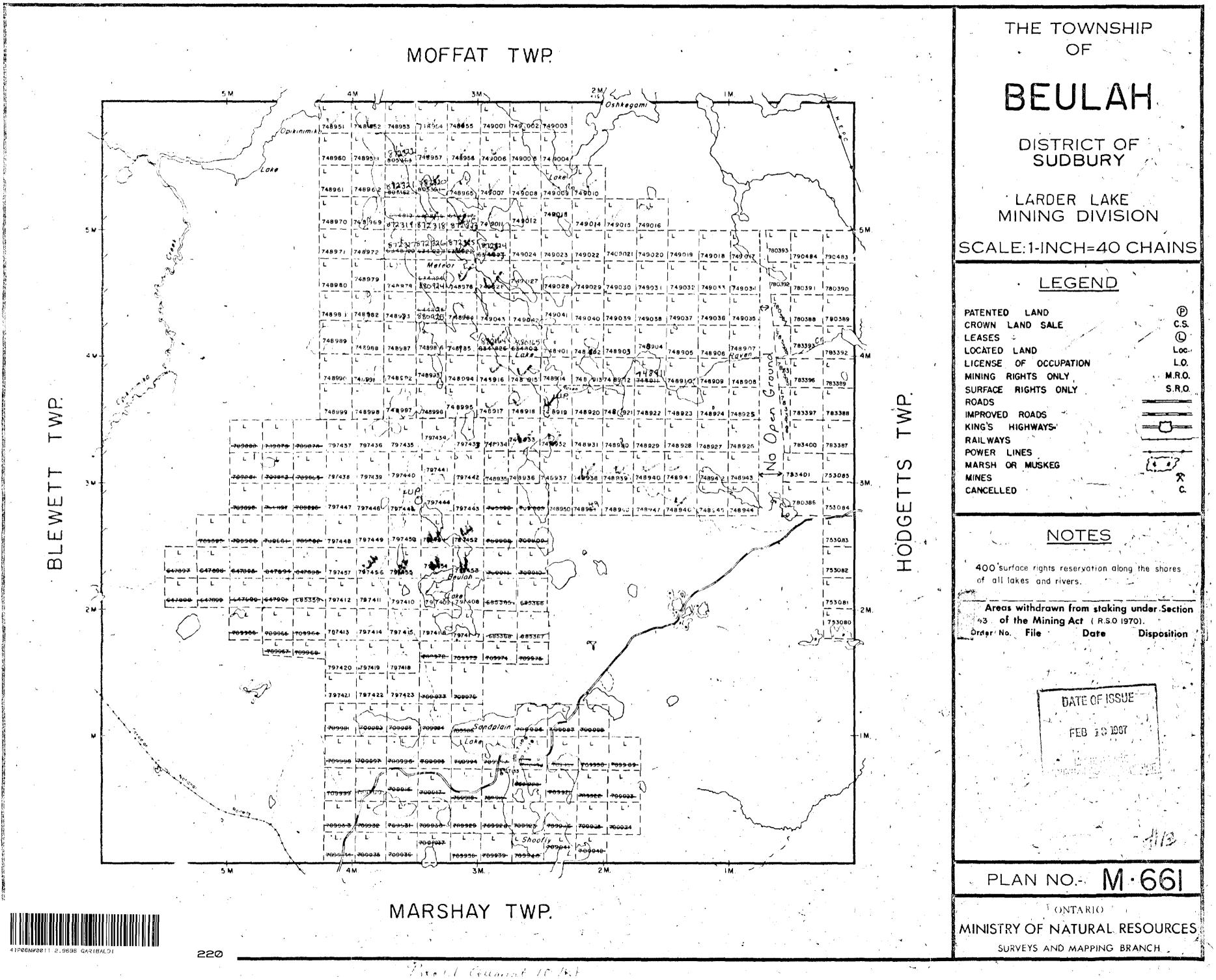
Enclosures

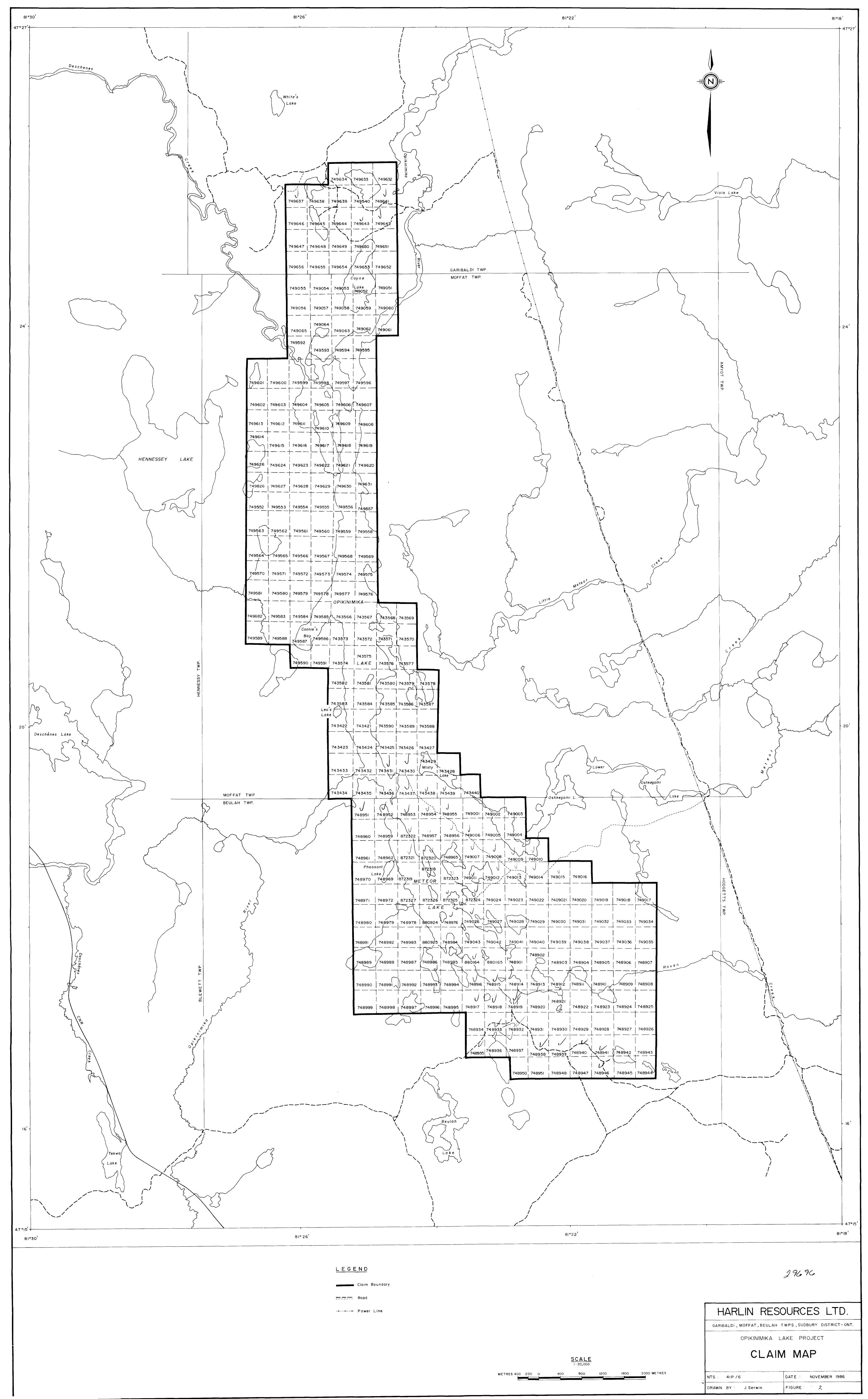


***** 1 LEGEND Same Bach HIGHWAY AND ROUTE No. 3. S 🔶 🔒 OTHER ROADS TRAILS _____* + ----SURVEYED LINES: TOWNSHIPS, BASE LINES, ETC. LOTS, MINING CLAIMS, PARCELS, ETC. UNSURVEYED LINES: LOT LINES PARCEL BOUNDARY MINING CLAIMS ETC. _____ RAILWAY AND RIGHT OF WAY +----UTILITY LINES NON-PERENNIAL STREAM _____ FLOODING OR FLOODING RIGHTS SUBDIVISION OR COMPOSITE PLAN RESERVATIONS ORIGINAL SHORELINE -----MARSH OR MUSKEG MINES TRAVERSE MONUMENT **DISPOSITION OF CROWN LANDS** , | 5₩ TYPE OF DOCUMENT SYMBOL PATENT, SURFACE & MINING RIGHTS _. € . SURFACE RIGHTS ONLY_____ , MINING RIGHTS ONLY _____ LEASE, SURFACE & MINING RIGHTS_ SURFACE RIGHTS ONLY____ MINING RIGHTS ONLY_ LICENCE OF OCCUPATION ___ ORDER-IN-COUNCIL _ OC RESERVATION _ \odot CANCELLED ෙන SAND & GRAVEL \odot NOTE: MINING RIGHTS IN PARCELS PATENTED PRIOR TO MAY 6, 1913, VESTED IN ORIGINAL PATENTEE BY THE PUBLIC LANDS ACT, R.S.O. 1970, CHAP. 380, SEC. 63, SUBSEC 1. 44M 1000 Metres _____ Metres 10 6 10 20 30 40 50 50 70 Chains 500 0 1000 2000 3000 4000 5000 Feet _____ SHEARD SCALE 1:20 000 - \mathbf{O} WNSHIP TOWNSHIP GARIBALDI M.N.R. ADMINISTRATIVE DISTRICT GOGAMA MINING DIVISION LARDER LAKE LAND TITLES / REGISTRY DIVISION SUDBURY Ministry of Ministry of Ontario Natural Northern Development and Mines Resources Date SEPTEMBER 1986 Kamber G-973

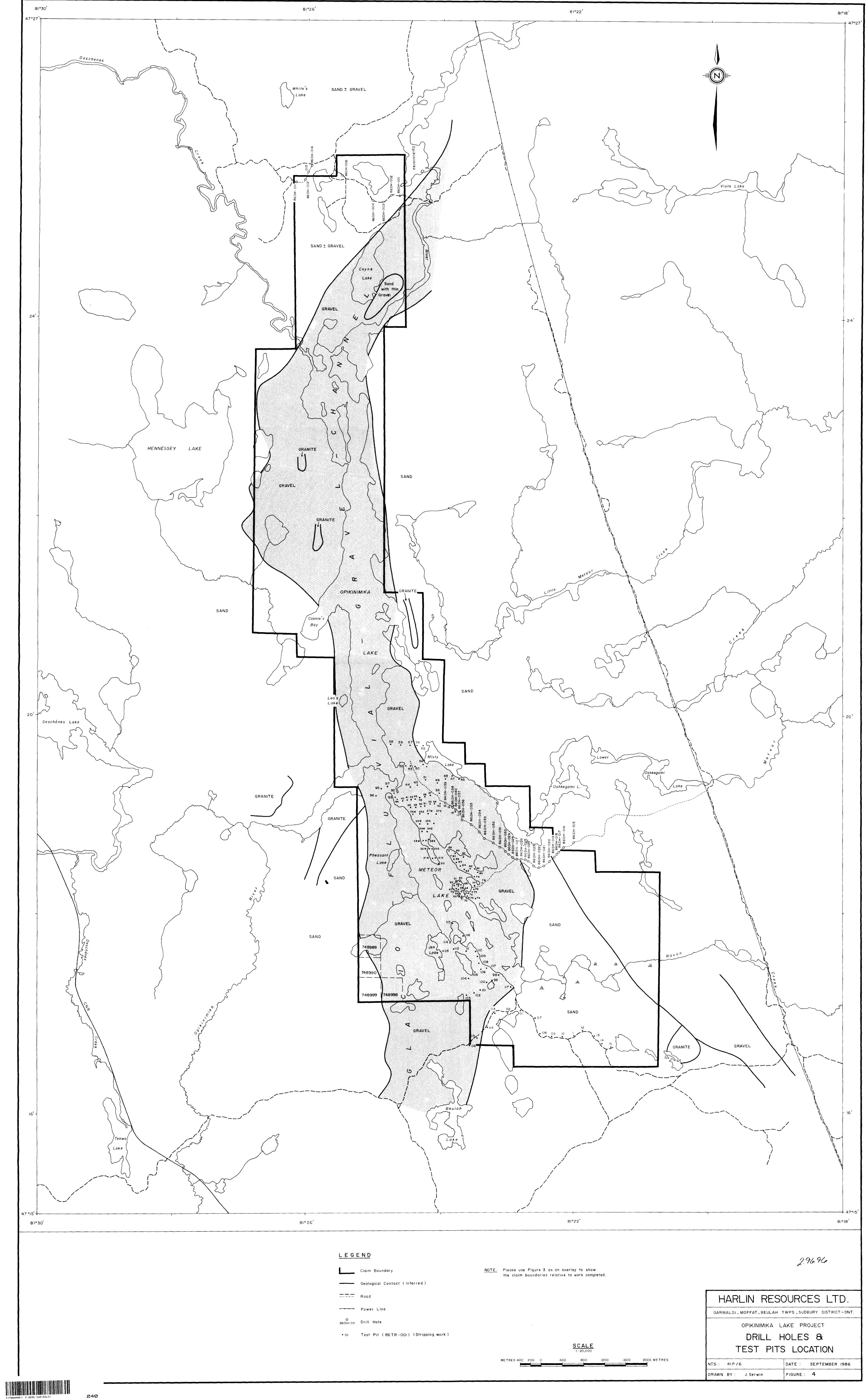
•

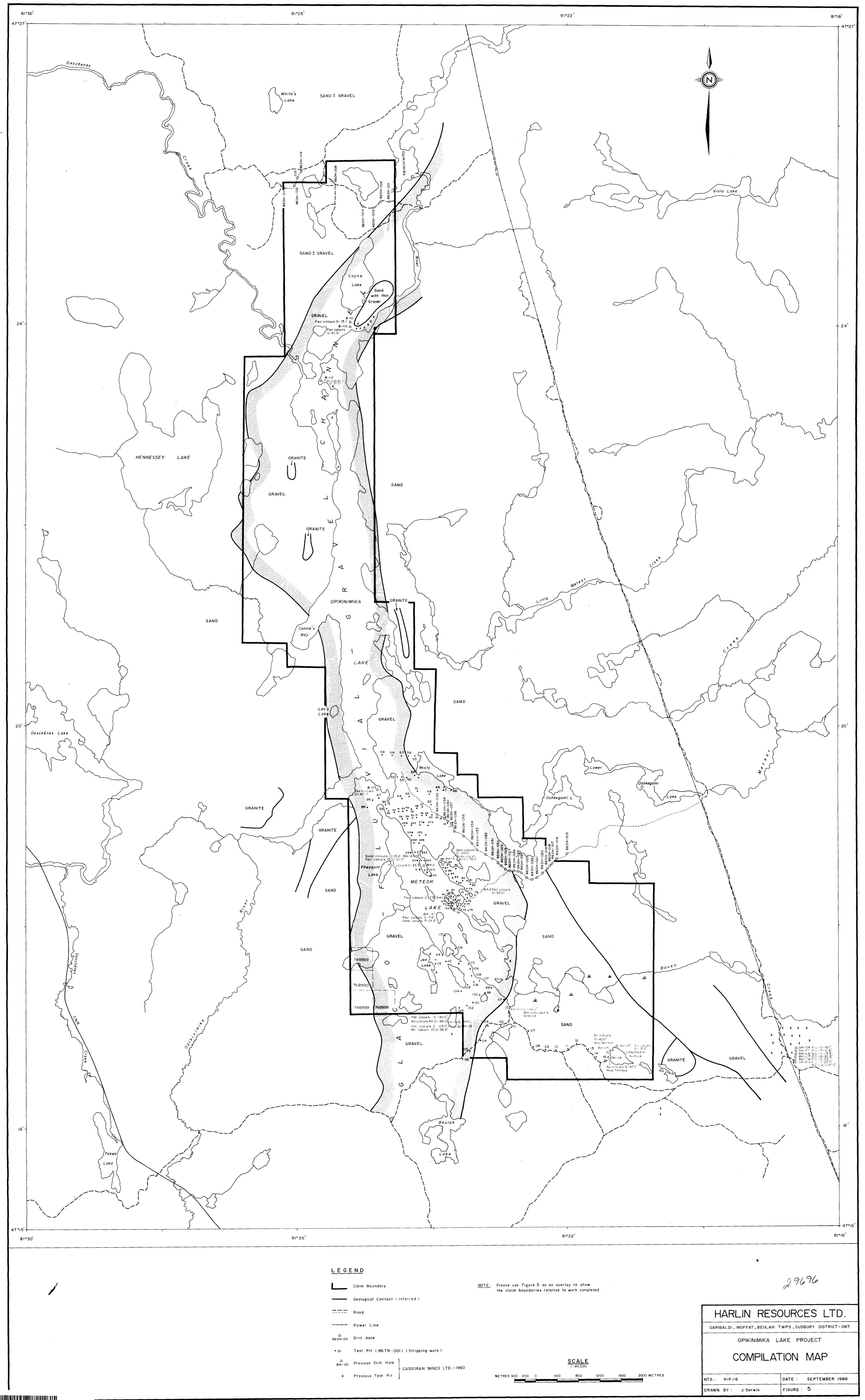
0


0 SNM T


.

.


1


•

