REPORT ON PROSPECTING. VLF-EM AND MAGNETIC SURVEYING
CLAIM 1150697
MacMURCHY TOWNSHIP
OPAP GRANT No. OP92-136
LARDER LAKE MINING DIVISION

TABLE OF CONTENTS

Page No.

1. INTRODUCTION 1
2. SURVEY GRID AND COVERAGE 2
3. FIELD PROCEDURE 3
4. GEOPHYSICS 4
5. DISCUSSION OF RESULTS 5
6. RECOMMENDATIONS 7

APPENDICIES

Appendix 1	ASSAY RESULTS	
Appendix 2		

INTRODUCTION

Between April 17 and November 23, 1992, the writer carried out prospecting, magnetometer and EM-16 surveying over the land portion of claim 1150697 in the Shiningtree area of northeastern Ontario as part of an exploration program under the Ontario Prospector's Assisstance Program, grant No. OP92-136. The area examined straddles the eastern end of Houston Lake and can be reached by travelling west a distance of approximately 30 km from Gowganda along Hwy 560 . The claim is comprised of approximately 15 claim units, the northern portion of which is easily accessible by canoe from Houston Lake and the Montreal River. Hwy 560 crosses the southeast quadrant of the claim (refer to FIG.'s $1,2 \% 3$).

The claim was staked following the lifting of the Bear Island Land Claim Caution which withdrew lands within a 134 township area from staking or prospecting since May, 1978. As a result, the area received very little attention during the peak years of gold exploration in the late $1970^{\prime} s$ and the $1980^{\prime} s$ despite its recognized gold potential as well as existing infrastructure and access. With the Fort Knox Resources' copper-nickel discovery 6 km to the SW of the claim, immediately following the lifting of the Land Caution, the base metal potential of the region was also considerably enhanced. During the period $1939-42$, two gold mines in Tyrrell and MacMurchy Townships produced over 34,000 ounces of gold from vein-type deposits.

FIG. 1

LOCATION MAP

$$
\begin{aligned}
& \text { OPAP No. OP 92-136 } \\
& \text { MACMURCHY TOWNSHIP }
\end{aligned}
$$

SURVEY GRID AND COVERAGE

The area south of Houston Lake (bisected by Hwy 560) was covered by foot traverses run at approximatwely 100 m intervals in a N - S direction. with considerable departure from a rigid grid system in an attempt to find outcrop in an area of relatively deep overburden cover (refer to FIG. 6).

North of Houston Lake both "random" traverses and a partially cut metric grid were employed to achieve coverage over an area that exhibits magnetic characteristics similar to the area covering the Fort Knox discovery based on published magnetic data following the 1990 Airborne Electromagnetic and Magnetic Survey released by the Ministry of Northern Development and Mines.

A 900 m NW base line was established with $\mathbf{2 5 m}$ stations and NE trending survey lines were roughly cut and flagged at 100 m intervals with 25 m stations. Following the completion of the magnetic survey and concurrent with the VLF-EM survey, 50 m fill-in survey lines were

The grid consists of approximately 9 km of partially cut and flagged lines over which 358 VLF-EM readings, and 340 magnetic readings were taken. The Magnetic data are plotted on FIG. 4. and the VLF data are plotted on FIG. 5: both maps at a scale of 1:2000.

FIELD PROCEDURE

Prospecting traverses were run at aminal 100 m spacing south of Houston Lake trending approximately N-S, however additional lines were walked along shoreline and roads to locate outcrop.

North of the lake traverses were run on the grid. as well as along lakeshore, and along the Montreal River. Although the topography is relatively rugged and largely lacking in swamp, outcrop exposure is not good. Lakeshore and riverbank provide some of the best exposure. Rock samples were collected from areas exhibiting alteration, sulphide mineralization, or quartz veining. Samples were assayed for gold, and one sample was assayed for nickel due to the presence of sulphide mineralization believed to be pyrrhotite.

A brief description of the samples, and assay results can be found in appendicies $1 \& 2$.

GEOPHYSICS

Magnetometer Survey

The magnetometer survey was completed using a McPhar M-700 fluxgate magnetometer. This measures variations in the vertical component of the earth's magnetic field. Readings were taken at 25 mintervals along the survey lines and base line for a total of 340 stations covering 9 km of line. A base station was established on the base line at 900W which had a value of 56,356 gammas. A plot of the results of the magnetic survey (FIG. 4. scale 1:2000) is included in the rear cover of this report. A base value of 55.000 gammas was subtracted from the actual readings before plotting. Contouring is at 500 gamma intervals.

Electromagnetic Suryey

The electromagnetic survey was completed using a Geonics EM-16 VLF unit. The VLF method is passive in that it employs the radiation of powerful military radio transmitters as arimary signal. For this survey, the station at Cutler, Maine was used, operating at a frequency of 24.0 KHz . The EM-16 receiver is used to measure the vertical components of the secondary fields created by the primary signal. Readings of both in-phase and out-of-phase were taken at 25 m intervals for a total of 358 stations covering 9.7 km of line. FIG. 5 (scale 1:2000) illustrates the results of the VLF EM-16 survey and is included in the rear cover of this report.

MAGNETOMETER SURVEY

The magnetometer survey indicates a zone of relatively low magnetic relief approximately 200 m wide in contact with a parallel zone of relatively high magnetic relief 100 m wide along its southern flank, both trending NW at the NE corner of Houston Lake. This suggests a zone of felsic to intermediate volcanics in contact with a band of iron formation trending through the central portion of the survey grid. Weak iron formation is found elsewhere on the claim, specifically along the south shore of Houston Lake at the most westerly cottage property. Regions to the NE and SW of this central zone indicate fairly uniform magnetic relief indicating relatively homogeneous intermediate to mafic volcanics. The minor offset of high magnetic relief between lines 700 W and 900 W may indicate an $\mathrm{E}-\mathrm{W}$ dextral fault, or a tight fold. This is a favourable environment for relatively brittle deformation of iron formation with subsequent quartz vein development and hence, potential for gold emplacement. The area is covered by deep overburden, and although a sample collected immediately to the south of the magnetic feature consists of very fine grained cherty volcanics with minor weak iron formation, containing minor gold and nickel values, the feature itself has yet to be identified geologically. It may in fact be an ultramafic intrusive or Nipissing diabase. Additional detailed prospecting is required to make a determination.

ELECROMAGNETIC SURVEY

The VLF EM-16 survey identified one definite conductor with a few other weak isolated crossovers probably the effect of contrasts in overburden depth and clay content. The definite conductor consists of a three line response (in addition to three intermediate lines). with its axis trending westerly and coincides roughly with the offset in mafnetic relief. The EM anomaly is believed to represent a shear zone. or a pyritiferous band of cherty iron formation rather than overburden effect.

Based on limited bedrock observation, it is apparent the area is underlain by felsic to intermediate metavolcanics (refer to FIG. 6), interlayered with pillowed mafic flows and narrow interflow bands of iron formation, all of which trend NW. The metavolanics are well foliated and dip vertically to steeply NE. Minor gold values were returned from sample No. 147 taken from mixture of very fine grained cherty volcanics and weak banded iron formation. The sample lacked significant shearing but exhibited minor quartz veining and pyrrhotite mineralization. It appears iron formation lacking crosscutting structures and alteration are not favourable Au targets. In general, the rocks underlying claim 1150697 are typical of the rocks of the southern part of the Shiningtree Greenstone Belt which extends to Timmins in the north, and east through Kirkland Lake. The only exposure of clastic sediments observed occurs immediately south of the No. 3 post on a neighboring claim.

RECOMMENDATIONS

It is believed the potential for the property is a structurally controlled base/precious metal deposit in a relatively brittle host. most likely iron formation, allowing for the development of shear s.vstems leading to considerable quartz veining \&/or sulphide alteration. For this reason it is recommended that additional detailed prospecting be carried out in the area immediately surrounding the westerly trending conductor to locate bedrock and collect representative samples, particularly for sheared material. Because of excessive overburden depth a program of trenching may not be adviseable at this time; however, the presence of coincident mag and EM features in such a greenstone assemblage is encouraging. and a systematic geochemical soil sampling program of the B horizon is also recommended as a method of locating any mineralization that may be present on the claim.

5

SNPLE	MU PPB	MI PPM
147	2080	48
148	842	--
149	5	-
150	<1	--
151	<1	--
152	<1	-
153	<1	-
154	<1	-

X-RAY ASSAY LABORATORIES

A DIVISION OF SGS SUPERVISION SERVICES IMC.
1885 LESLIE STREET - DOM MILLS, ONTARIO M3B 344 - CAMADA TEL: (416)445-5755 TELEX: 06-986947 FAX: (416)445-4152

CERTIFICATE OF ANAIMSIS
 REPORT 21603

RAY GARVEY CUSTOMER NO. STE. 108 WILLOWDALE, ONTARIO M2P 1T5

DATE SUBMITPED
5-Jan-93

REF. FILE 14030-U3

8 ROCKS Proj. HOUSTON LAKE

AU PPB
NI PPM

METHOD
FADCP DCP

DETECTION LIMIT
1.
1.
*** UNLESS INSTRUCTED OTHERWISE WE WILL DISCARD PULPS IN 90 DAYS *** AND REJECTS IN 30 DAYS FROM THE DATE OF THIS REPORT

APPENDIX 2
 DESCRIPTION OF ROCK SAMPLES

SAMPLE NUMBER

DESCRIPTION

Very fine grained cherty volcanic interbanded with weak iron formation. Minor po and q.v.

Interlayered fine grained siliceous sediment \& iron formation with fine seams of magnetite.

Weakly foliated felsic to intermediate volcanic with minor quartz stringers.

Very fine grained, cherty, intermediate volcanic.

Quartz vein in schistose intermediate volcanic
Very fine grained cherty volcanic.
Massive felsic flow with minor quartz stringers.

Weakly sheared felsic volcanic.

FIG 5
\square

