REPORT ON ANAIRBORNE MAGNETIC AND VLF-EM SURVEYBENNEWEISS TOWNSHIP
PORCUPINE MINING DIVISION, ONTARIO
for
633881 ONTARIO LTD.
RECEIVEDtitoi 1986MINING LANDS SECTION

by
by
TERRAQUEST LTD. Toronto, Canada
September 29, 1986

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. THE PROPERTY 1
3. GEOLOGY 1
4. SURVEY SPECIFICATIONS 2
4.1 Instruments 2
4.2 Lines and Data 3
4.3 Tolerances 3
4.4 Photomosaics 3
5. DATA PROCESSING 3
6. INTERPRETATION 4
6.1 General Approach 4
6.2 Interpretation 5
7. SUMMARY 6

LIST OF FIGURES
Figure 1 - General Location Map
Figure 2 - Survey Area Map
Figure 3 - Sample Record

LIST OF MAPS IN JACKET

No. A-639-1, Total Magnetic Field
No. A-639-2, Vertical Magnetic Gradient
No. A-639-3, VLF-EM Survey
No. A-639-4, Interpretation

1. INTRODUCTION

This report describes the specifications and results of a geophysical survey carried out for 633861 Ontario Ltd. of 20 Advance Road, Brampton, Ontario L6T 4R7 by Terraquest Ltd., 905-121 Richmond St. W., Toronto, Canada. The field work was performed on June 8, 1985 and the data processing, interpretation and reporting from June 9, 1985 to September 29, 1986.

The purpose of a survey of this type is two-fold. One is to prospect directly for anomalously conductive and magnetic areas in the earth's crust which may be caused by, or at least related to, mineral deposits. A second is to use the magnetic and conductivity patterns derived from the survey results to assist in mapping geology, and to indicate the presence of faults, shear zones, folding, alteration zones and other structures potentially favourable to the presence of gold and base-metal concentration. To achieve this purpose the survey area was systematically traversed by an aircraft carrying geophysical instruments along parallel flight lines spaced at even intervals, 100 meters above the terrain surface, and aligned so as to intersect the regional geology in a way to provide the optimum contour patterns of geophysical data.

2. THE PROPERTY

The property is located in Benneweiss township, in the Porcupine Mining Division of Ontario about 20 kilometres south of the town of Gogama. The claims lie in the centre of the township and can be reached by logging roads.

The latitude and longitude are 47 degrees 32 minutes, and 81 degrees 47 minutes respectively, and the N.T.S. reference is 41P/12.

The claim numbers are shown in figure 2 and listed below:
P 849865-849924 834112-834115

$$
\begin{equation*}
\text {total claims } 64 \tag{4}
\end{equation*}
$$

3. GEOLOGY

Map References

1. Map 4ld: Three Duck Lakes Area. scale 1:47,520. O.D.M. 1932
2. Map 2205: Timmins - Kirkland Lake. scale l:253,440. O.D.M. 1973
3. Map p.2534: Pensyl Lake Area. scale l:15,840. O.G.S. 1982

The property is underlain by medium to coarse grained sodic granitic rocks to the southeast and potassic granitic rocks to the

northwest. They are separated by a northeast trending belt of migmatitic rocks varying in composition from diorite to gabbro. Diabase dykes strike to the north northwest. Minor mafic to intermediate volcanics occur to the north.

4. SURVEY SPECIFICATIONS

4.1 Instruments

The survey was carried out using a Cessna 182 aircraft, registration C-FAKK, which carries a magnetometer and a VLF electromagnetic detector.

The magnetometer is a proton precession type with the sensor element mounted in an extension of the right wing tip. It's specifications are as follows:

Resolution:
Accuracy:
Cycle time:
Range:
Gradient tolerance:
Model:
Manufacturer:
0.5 gamma

One gamma
One second
20000 - 100000 gammas in 23 overlapping steps
Up to 5000 gammas per meter
GSM-8BA
GEM Systems Inc., 105 Scarsdale Rd., Don Mills, Ontario, M3B 2R5

The VLF-EM unit uses three orthoganol detector coils to measure (a) the total field strength of the time-varying EM field and (b) the phase relationship between the vertical coil and both the "along line" coil (LINE) and the "cross-line" coil (ORTHO). The LINE coil is tuned to a transmitter station that is ideally positioned at right angles to the flight lines, while the ORTHO coil transmitter should be in line with the flight lines. It's specifications are:

Accuracy: 1%
Reading interval: $1 / 2$ second
Model:
Manufacturer:
TOTEM 2A
Herz Industries, Toronto
The VLF sensor is mounted in the left wing tip extension.
Other instruments are:
. King KRA-10A Radar altimeter

- UDAS-100 data processor with Digidata nine track tape recorder, manufactured by Urtec Ltd., Markham, Ontario.
- Geocam video camera and recorder for flight path recovery, manufactured by Geotech Ltd., Markham, Ontario.

4.2 Lines and Data

a) Line spacing:
b) Line direction:

100 meters
c) Terrain clearance:

090 degrees
d) Average ground speed:

100 meters
e) Data point interval:

Magnetic: 42 meters

VLF-EM: 21 meters
f) Tie Line interval:
g) Channel 1 (LINE):

2 kilometers
h) Channel 2 (ORTHO): NAA Cutler, 21.0 kHz
i) Line km over total survey area: 126
j) Line km over claim groups: 110

4.3 Tolerances

a) Line spacing: Any gaps wider than twice the line spacing and longer than 10 times the line spacing were filled in by a new line. b) Terrain clearance: Portions of line which were flown above 125 meters for more than one km were reflown if safety considerations were acceptable.
c) Diurnal magnetic variation: Less than twenty gammas deviation from a smooth background over a period of two minutes or less as seen on the base station analogue record.
d) Manoeuvre noise: Approximately $+/-5$ gammas.

4.4 Photomosaics

For navigating the aircraft and recovering the flight path, mosaics of aerial photographs were made from existing air photos.

5. DATA PROCESSING

Flight path recovery was carried out in the field using a video tape viewer to observe the flight path as recorded by the Geocam video camera system. The flight path recovery was completed daily to enable reflights to be selected where needed for the following day.

The magnetic data was levelled in the standard manner by tying survey lines to the tie lines. The IGRF has not been removed. The total field was contoured by computer using a program provided by Dataplotting Services Inc. To do this the final levelled data set is gridded at a grid cell spacing of $1 / 10$ th of an inch at map scale.

The vertical magnetic gradient is computed from the total field data using a method of transforming the data set into the frequency

$$
\square \square \square 69 \rightarrow \Phi
$$

VLF station 1

VLF station 2

HOTES: L EEA O CUT L 5SE O EQ4 16
TM 14
Magnetometer (coarse \& fine scale)

$$
\begin{aligned}
& \text { fine scale) } \\
& \text { fine. }
\end{aligned}
$$

FIGURE 3. Sample of analogue data
domain, applying a transfer function to calculate the gradient, and then transforming back into the spatial domain. The method is described by a number of authors including Grant, 1972 and Spector, 1968. The computer program for this purpose is provided by Paterson, Grant and Watson Ltd. of Toronto

The VLF data was treated automatically so as to normalize the non conductive background areas to 100 (total field strength) and zero (quadrature). The algorithms to do this were developed by Terraquest and will be provided to anyone interested by application to the company.

All of these dataprocessing calculations and map contouring were carried out by Dataplotting Services Inc. of Toronto.

INTERPRETATION

6.1 General Approach

To satisfy the purpose of the survey as stated in the introduction, the interpretation procedure was carried out on both the magnetic and VLF data. On a local scale the magnetic gradient contour patterns were used to outline geological units which have different magnetic intensity and patterns or "signatures". Where possible these are related to existing geology to provide a geological identity to the units. On a regional scale the total field contour patterns were used in the same way.

Faults and shear zones are interpreted mainly from lateral displacements of otherwise linear magnetic anomalies but also from long narrow "lows". The direction of regional faulting in the general area is taken into account when selecting faults. Folding is usually seen as curved regional patterns. Alteration zones can show up as anomalously quiet areas, often adjacent to strong, circular anomalies that represent intrusives. Magnetic anomalies that are caused by iron deposits of ore quality are usually obvious owing to their high amplitude, often in tens of thousands of gammas.

Grant, F.S. and Spector A., 1970: Statistical Models for Interpreting Aeromagnetic Data; Geophysics, Vol 35
Grant, F.S., 1972: Review of Data Processing and Interpretation Methods in Gravity and Magnetics; Geophysics Vol 37-4
Spector, A., 1968: Spectral Analysis of Aeromagnetic maps; unpublished thesis; University of Toronto

VLF anomalies are categorized according to whether the phase response is normal, reverse, or no phase at all. The significance of the differing phase responses is not completely understood although in general reverse phase indicates either overburden as the source or a conductor with considerable depth extent, or both. Normal phase response is theoretically caused by surface conductors with limited depth extent.

Areas showing a smooth response somewhat above background (ie. 110 or so) are likely caused by overburden which is thick enough and conductive enough to saturate at these frequencies. In this case no response from bedrock is seen.

6.2 Interpretation

The total magnetic field possesses a relatively strong relief of approximately 1,250 gammas and displays a broad, strong anomaly in the centre of the map that overwhelms the surrounding responses. The vertical magnetic gradient is very successful in the improvement of the resolution, permitting the identification of detailed lithologies and structure. The relative magnetic intensities were obtained from the total magnetic field data.

The granitic rocks (Unit 6) and the minor volcanics (Unit 1) to the north correlate with weak magnetic responses and make up the quiet magnetic background. Three mafic intrusive trends have been interpreted to intrude the granites. Moderately to strongly magnetic diabase dykes (Unit 9) occur as early, infrequent, northwest trending dykes and as frequent, north-northwest trending dykes. These have been intruded by a Middle Precambrian diabase (Unit 14) which trends to the northeast. This forms a wide, solitary, strongly magnetic dyke or possible sill.

Numerous parallel faults with minimal lateral displacement have been interpreted to strike to the north-northeast.

Weak to moderate strength VLF-EM conductor axes have been identified and follow two main trends. Those of the north-northwest striking set are most common and are probably related to the diabase dykes, either as electrolytic (porosity or overburden) or mineralogic (graphite or pyrrhotite) sources. Four northwest striking conductor axes may be related to the other diabase set or possibly to regional fault systems.

7. SUMMARY

An airborne combined magnetic and VLF-EM survey has been done on the property at line intervals of 100 metres. The total field and vertical gradient magnetic data, VLF-EM data and interpretation maps are produced at a scale of $1: 10,000$.

The magnetic data has been used to modify and update the existing geology and has shown a number of new contacts and faults. A number of VLF-EM conductor axes were found of which some are believed to be related to diabase dykes or faulting.

Charles Q. Barrie, M. Sc. Geologist
 (Geophysical, Geological, Geochemical and Expenditures)

Mining

vpe of Survoris:

AIRbORNE MAG \& VLF-EM

laim Holder(s)

BOB LELIEVER \& GARY CARNOVALE

उउTross

20 ADVANCE BLVD., BRAMPTON, ONTARIO L6T 4R7

IERRAQUEST LTD.
ame and Address of Author (of Geo-Technical report)
C. Q. Barrie 905-121 Richmond St. West, Toronto, Ontario M5H 2K1

ereuerions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.
 ertificationderifyink Report of Work
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto. having pertormed the work or wifnessed same during and/or after its completion and the annexed report is true.
ame and Postial Aadross ot Person Cortifying
C.Q. Barrie Terraquest Ltd. 905-121 Richmond St. West

Mining Claims Traversed (List in numerical sequence)

Mining Claim		Expend.	Mining Claim		$\begin{aligned} & \text { Expend. } \\ & \text { Days Cr. } \\ & \hline \text { Bat } \end{aligned}$
Prefix	Number	Doys Cr.	Prefix	Number	
P	849865		P	849888	
	848866		\cdots	849889	
\cdots	849867			849890	
	849868			849891	
	849869			849892	
	849870			849893	
	849871			849894	
	849872			849895	
	849873			849896	
	849874			849897	
	849875		\cdots	849898	
	849876		-	849899	
	849877			849900	
	849878			849901	
	849879			849902	
	849880			849903	
	849881			849904	
	849882			849905	
	849883			849906	
	849884			849907	
-	849885			849908	
	849886			849909	
	849887			849910	

SEE ATTACHED LIST FOR REMAINING CLAIMS

| Total number of mining
 claims covered by this
 report of work. |
| :--- | | For Office Use Only |
| :--- | :--- |
| Total Davs Cr. Date Recorded |
| Recorded |
| 480 |

P 849911
849912
849913
849914
849915
849916
849917
849918
849919
849920
849921
849922
849923
849924

