

41P125W0037 63.4897 CHESTER

• ,

010

GEOLOGICAL REPORT

ON

TYSTAR PROPERTY CHESTER TOWNSHIP, ONTARIO

PREPARED FOR THE BOARD OF DIRECTORS

0F

KING ERRINGTON RESOURCES LTD.

BY

NEIL D. NOVAK, B.SC., F.G.A.C. EXPLORATION GEOLOGIST

JUNE 1, 1987

OH 86-5-C-125

INTRODUCTION

This report is a geological report presenting the results of a work program carried out under the Ontario Mineral Exploration Program (O.M.E.P.) during the period May, 1986 to January, 1987. This report has been compiled to fulfill the requirements of the O.M.E.P. grant system and is presented to the Board o Directors of King Errington Resources Ltd. The work program carried out enc mpassed trenching, powerstripping, sampling, diamond drilling, mapping and bu < sampling of a previously located mineralized shear zone. The propert of King Errington Resources has been termed the lystar property and consist of six patent claims located in north eastern Chester lownship near the Vil age of Gogama, Ontario. The claims are ideally located in the Swayze synclin rium of the Abitibi greenstone belt, very proximal to several areas current y undergoing detail investigations with respect to mine development. The cortents of the report are based on the author's overall supervision of each po tion of the work program and comments are based on 5 years experience working as a geological consultant in and around the specific property area. All fats mentioned herein are accurate being based on material and informa ion gained in the field.

. (i)

.....

41P12SW0037 63.4897 CHESTER

(ii)

TABLE OF CONTENTS

	Page
Introdu tion	(i)
lable o Contents	(ii)
Propert Description	1
Flora a d l'auna	1
Locatio , Access, and Facilities	1
History of Exploration	2
Mineral Occurrences	5
General Geology	6
Propert Geology	7
Propert Geophysics	8
1986 Work Program	9
Field P rsonnel	9
Details of Work Programs	10
Conclus ons	12
Recomme dations	12
Certifi ate	14
List of Figures	
Fig. Property Description (Chester Township, Ontario) Fig. Location Plan (Northcentral, Ontario) Fig. Geological Compilation (Chester Township, Ontario) Fig. Sample Location Plan, Diamond Drill Hole Location Plan Fig. Bulldozer Stripping, Sample Location Plan	
List of Appendices	
Appen ix IWork Program May 12 to June 8, 1986Appen ix IIWork Program August 19 to September 24, 1986Appen ix IIIWork Program December 3 to December 17, 1986Appen ix IVWork Program January 6 to January 8, 1987	

Ø10C

PERTY DESCRIPTION

This property consists of six patent claims, which are currently held outright by King Frington Resources Ltd. of Vancouver B.C. All claims are situated in Chester Dwnship, within the Porcupine Mining Division of the Province of Ontario. The six claims cover an area of approximately 228.8 acres and consist (² the following claim numbers: S.32044, S.32033, S.32034, S.32035, S.32036, S.32037.

The clair; have received a perimeter survey and are classified as patent land in accordance with the Ontario Mining Act, therefore, having no assessment requirements or other encumberances, save an annual taxation commitment for the pater: land.

FLORA ANI FAUNA

This clain area is covered with a thin layer of overburden consisting of sand and grave, providing an excellent soil base for the growth of a mixed forest. Typical coniferous trees are of the spruce, pine and balsam varieties. The low lying areas are well populated in black spruce, cedar and tagalder.

This type of forest cover provides an excellent habitat for a variety of animals including moose and bear, as well as smaller fur bearing animals including muskrat, beaver, lynx, mink, marten, fisher and squirrels. The numerous livers and small lakes in the general area provide excellent locations for all types of fishing enthusiasts, with typical fish being northern like, walleye, bass, and several varieties of trout.

LOCATION, ACCESS AND FACILITIES (See Fig. 2)

The "King Errington" property is situated in north-central Ontario, mid-way between S dbury and limmins. Gogama, the nearest town is situated 186 kilometre north of Sudbury. This small town provides several services including transportation (rail line), lodging (3 motels - hotels), groceries, mail etc. Gogama is a base for the Ministry of Natural Resources (forestery division) and also a base for the Canadian National Railway (line crews). The actual pr perty is located some 19 kilometres south of this small town via King's Hi hway Number 144 which passes within one quarter mile of the property. A well maintained gravel road (highway 560) provides access to the

(1)

ntra and western portion of the property. Access to the property can be accomplished by any type of motorized vehicle.

Facilities present within the limits of the property include the main Ontario Hydro power line, which services Gogama, passing through the northern portion of the property adjacent to the gravel road (Highway 560). A tourist and fishing camp is located 2 km south of the property providing adequate lodging to any personnel involved in exploration or development of the property, at moderal? cost.

HISTOR' OF EXPLORATION

The Kirj Errington property lies in the southeast extension of the Swayze syncliprium. The general area around Chester and Yeo Townships has seen intermittent exploration since the turn of the century. The first gold discovery in the area was in 1912 near Moore Lake in central Yeo Township. A few years later, in a search for copper to assist the war effort, this partice ar prospect was discovered. A small sixty ton bulk sample was procurred and shipped, which graded 7% copper and \$3.50/ton in gold. An estimate of the gold value assuming \$20.67 per ounce for gold in 1916 is 0.169 c.p.t. Au, making the current (March 29, 1986) value/ton of this ore to be estimated at \$160.00 U.S. (Cu @ \$.64/1b, Au @ \$415/oz).

The area saw little exploration activity until just prior to the depression of 1929 when another gold showing was encountered on the east shore of Clam Lake, near the Chester-Yeo border, initiating a moderate staking spree. Several other showings were encountered in the years 1927 to 1930, all in the general vicinity of Clam Lake, and Three Duck Lake in Central Chester Township, as well as in northern Yeo Township around Schist Lake. Exploration activity carried on at a slower pade for the next decade, as most prospects were now undergoing developmental work, with small shafts being sunk on the more premising sites. Exploration and production shafts are scattered throughout the entire area, with some sites approaching "economic conditions" for a viable thort-terms mining operation.

All of these prospects, when closely looked at, prove that the area is a note-we thy gold-belt within a metallogenic province, note-worthy enough to

NOMINEX

(2)

Falcontridge, Inco and Kerr Addison. Several juniors have acquired major land-heldings in the area, more or less tying up all the ground of any economic potential, and then some.

The recent activity (post 1980) has included such surface drilling in Chester Township by Murgold Resources, Kidd Resources, and Canadian Gold Crest. Murgolc Resources has gone on to do some underground evaluation and sampling of their main one zones (the Gomak and Watt's vein) as accessed by an old shaft and surface trenches and the Gomak Shaft; located along the main vein systems. The Gomak shaft has been dewatered (Oct. 1985) and assays of the "shaft /ein" material ran as high as 0.266 o.p.t. Au over 24 inches (at 41 vertical feet) and 0.723 o.p.t. Au over 15 inches (at 48 vertical feet).

Murgolc Resources has subsequently entered into an agreement with Chesbar Resources Inc., by which Chesbar can earn up to a 60% interest in the landholdings of Murgold by the expenditure of some \$2.5 million by the end of 1987. Chesbar has collared a ramp and are currently exploring the Watt's vein by a 12.5% decline to the 184 vertical foot level. Underground diamond drilling as accessed by this ramp has proven up a gold bearing zone within the Watt's vein system averaging 5 feet in width grading 0.30 o.p.t. Au over a strile length of 300 feet. With this encouragement Chesbar has decided to continue the ramp at the same angle to explore the minus 300 foot level. The president of Chesbar Resources, Mr. J. T. Flanagan, has indicated that the potential exists for a medium sized, high-grade gold mine which may be as large a; 500,000 tons with an average grade of 0.30 o.p.t. Au.

Kidd Resources had their main No. 2 zone re-evaluated in 1984 by Pamour Mines Itd., tring percussion drill techniques for sampling. Pamour's exploration of this zone indicated ore reserves in the "probable" category to be approximately 20,000 tons averaging 0.19 o.p.t. Au. This zone has been closely examined by this author as well as Murgold Resources, and it is evident that there is some potential for along strike and down dip extensions of this deposit. The deposit is currently amenable to a small open-pi: operation, negotiations have taken place to proceed with this mining

NOMINEX -

meration in the summer of 1987.

A short powerstripping program was conducted in 1981 on the property immediately south of claim number S.32034, by which a sulphide bearing quartz-rein was uncovered which reportedly gave an assay of 2.05 o.p.t. Ag, and 0.4 o.p.t. Au over a width of 8 feet. In the latter part of the same year arother powerstripping program was conducted over an area 700 feet by 400 feet located on claim S.32044, which uncovered an area 12 feet wide contairing several parallel sulphide (chalcopyrite, quartz-carbonate)veins in a granitic (trondhjemitic) country rock, which yielded assays in grab samples as high as 0.4 o.p.t Au and 13% Cu.

The Kirj Errington claims have recently undergone a short geophysical program during the summer of 1984 under the auspices of this author. Four high priorit / VLF electromagnetic conductors have been selected which display coincidental magnetic expression.

Another, fifth conductor is expected in the vicinity of the main showing on the preperty, but the electromagnetic response of this zone is masked by the overwhe ming response of the powerline adjacent to this zone.

More recently lystar received results from an airborn VLF, magnetic survey flown even the area in the summer of 1985. This survey, essentially, confirmed the presence of coincidental electromagnetic conductors and magnetic responses, and enhanced the regional geological overview of the surrour ling area.

It is thought, by this author that the two southern exposures of sulphide mineral zation indicate a continuity of the main zone to extend for nearly 2000 fest. Government assays of the northern exposure yielded assays of 20.44% copper and 6.02 o.p.t. silver in a grab sample of the dump material.

The group of claims held by King Errington Resources Ltd. are in a very stratec cland position, within the Swayze syncline and over an area which has see some (minimal) production in the early 1900's and they definitely warrant further investigations.

(4)

MINERAL OCCURRENCES

"No.] " lexasgulf Canada indicated presence of iron sulphides and chalcop rite as fine-grained disseminations, drilled nine short holes over zone, a sayed for Cu, Zn, Au, Ag. Out of 90 samples selected 12 samples assayed higher than 0.48% Cu. Government geologists selected grab samples from ex osed zone, yielding similar results to Texasgulf, with the exception of two amples yielding 0.11 and 0.18 o.p.t. Au. Kidd Resources the current owners valuated this zone at depth with 26 diamond drill holes, significant gold mi eralization was encountered in several holes, indicating the presence of a g ld-copper enriched zone, currently requiring more evaluation by diamond drilling.

"No. 17 Pyrite, pyrrhotite and chalcopyrite disseminations and seams in chlorit zed shear planes in a silicifed greywacke. Ken Lytle, previous owner reports significant gold in this environment. Consolidated Silver Butte Mines L d. is the current owner. Recent work has been completed, results have not bee disclosed.

"No. 18 Pyrite, pyrrhotite and chalcopyrite are reported in logs of diamond drill h les drilled by Chesgo Gold Mines. Assays up to 0.10 o.p.t. Au were obtaine in this drill program. Murgold Resources the current holder of showing reports that this zone is a portion of the main Watt's vein system.

"No. 21 Silicified and sericitized alteration zones usually contain minor pyrite, pyrrhotite and chalcopyrite.

"No. 24 Trondhjemite is locally sheared and silicified by subhorizontal quartz veins. Mineralization consists of disseminations of pyrite, pyrrhot te, hematite and chalcopyrite as well as malachite. Grab sample yielded assays of 1.94% Cu, O.1 o.p.t. Au, 0.48 o.p.t. Ag.

"No. 25 Mineralization consists of pyrite-chalcopyrite within or adjacent to a quart vein. Grab sample of vein material assays 1.62% Cu, 4.11 o.p.t. Au and 0.5 o.p.t. Ag.

NOMINEX

• 26" In 1936, 1,387 tons of ore were milled by Gomak Mines Ltd. yielding 98.31 ou ces of gold and 23 ounces of silver. Grab sample by government geologis s assays 1.79% Cu, 0.65 o.p.t. Au and 0.33 o.p.t. Ag. Visible gold is commo within the vein material. Murgold Resources the current holder conducte dewatering and underground evaluation of the zone in 1985 with encouraging results, have entered into an underground evaluation of the zone with Che bar Resources Inc. as operator.

"No. 36" Lies within the limits of the property held by King Errington. Minerali ation consists of pyrite and chalcopyrite in a quartz-carbonate vein three feat wide and 200 feet long along a five foot wide share zone striking N 30° W and dipping 70° NE. Sixty tons of one were shipped in 1916 averaging 7% copper and 0.169 o.p.t. Au. Selected grab sample by government geologist assayed (0.44% Cu and 6.02 o.p.t. Ag.

"No. 37" The property is currently held by Murgold Resources and contains the old Strathmore shaft, with workings at the 100 foot level. A channel sample of vein material 2 feet wide is reported to have assayed 0.51 o.p.t. Au. Underground bulk sampling was done by Murgold in 1982 which brought a bulk sample to surface. Half was sent to Timmins for processing and half was sent to a local mill for processing; results were as follows: "656 tons ore processed averaged 0.34 o.p.t. Au". Murgold and their joint venture partner Chesbar Lesources are currently evaluating this occurrence by underground exploration.

"No. 39" Mineralized zone is a north-trending quartz vein in a coarse granodiomite containing pyrite, chalcopyrite and visible gold. Channel sample reported to have yielded 0.5 o.p.t. Au over an undisclosed length, while grap samples are reported to be up to 1.0 o.p.t. Au.

GENERAL (EOLOGY (after Siragusa, 1981) (Fig. 3)

The area occupied by the King Errington property is commonly called the southeast extension of the Swayze Syncline. The area is crossed by two broadly prallel Early Precambrian (Archeon) belts of locally pillowed tholeitic basalts trending west-northwest and dipping sub-vertically. Near the western boundary of Chester Township the basalt grades to rocks of

NOMINEX

No.

obroit to dioritic composition which represent recrystallized derivatives of the ormer basalt and of an agmatitic migmatite. (migmatite breccia with angular fragments within a crystalline granitic matrix). Local conditions of incompl te recrystallization within the gabbroicdioritic rocks is commonly represe ted by the presence of basaltic domains of relatively low grade metamor hic rock still retaining some primary depositional features.

The agm titic migmatite consist of variable proportions of leucocrotic trondhj wite neosome and of paleosome which includes dominantly gabbroic and dioriti rocks (recrystallized basalt), hornblendite, and basalt that is virtual y unrecrystallized. The gabbroic, dioritic and agmatitic rocks reflect variable conditions recyrstallization, metasomatism of and migmati. ation affecting the marginal formations of the southern belt. The area be ween the two basaltic belts is underlain by intermediate pyroclastic metavol anics. Regional granitic rocks flank the northern and southern basaltic belts. All of the above-mentioned Archean formations are cut by basic 1 approphyre and diabase dikes of Proterozoic age.

Three sits of structural disruption appear to be evident in the area. These consist of faults trending at 040° azimuth, 160° azimuth and 120° azimuth. The later set being shear faulting. The 160° and 120° sets appear to control the mineralization with "poddy" type mineralization found within the 120 degree azimuth shears, concentrated at the juncture of these two sets. It is a parent that the intensity of tenor of the mineralization wanes with distance from the intersection of these structures.

PROPERT GEOLOGY

The property has seem some reconnaissance ground geological investigations by this autor and it is apparent from the mapping that the six claims straddle an intrusive contact between intermediate pyroclastic metavolcanics to the north and an intrusive rock of dominant trondhjemitic character to south as presented on the accompanying geologic compilation (Figure 1). The pyroclastic metavolcanics consist of tuffaceous members varying from ash size clasts (2 cm) to lapilli size clasts (.2 cm), and locally of derives schist. Cutting the metavolcanics near the northeastern boundary is a diabase dike trending at 135° azimuth. The intrusive rock to the south is

NOMINEX

(7)

inan ly trondhjemite is light-coloured, medium to course grained and has a low con ent of mafic minerals.

A mine alized occurrence is located within the trondhjemite near the intrusi e contact with the pyroclastic member. The showing consists of pyrite, chalcopyrite, bornite and malchite in a quartz-carbonate vein averaging three feet in width with an exposed length of nearly 300 feet, within five foot wide shear zone striking at 120° azimuth and dipping 70° NE. This site saw limited production, represented by a small elongated pit 8 feet wile and 75 feet long, along the eastern bank of a small creek. Sixty tons of one was removed in 1916 which is reported to have averaged 7% copper and 0.119 o.p.t. gold. A grab sample by government geologists in 1981 yielded 20.44% copper and 6.02 o.p.t. silver. This shear zone has been traced by this author for a distance of nearly 2000 feet to the south, but could mit be traced north due to the presence of a small lake, and extremely marshy conditions.

PROPERT GEOPHYSICS

In the pring and summer of 1984 the property underwent a reconnaissance geophysical program consisting of ground electromagnetics (VLF) and ground magnetics. Lines were cut perpendicular to the base line which had an azimuth of 135[°]. Offsets were established every 200' along this base line and extended to the edge of the property. Four intense electromagnetic conductors were encountered in the VLF survey, with numerous secondary weak conductors. The strong conductors have magnetic coincidence suggesting bedrock sources for the positive electromagnetic reponses. Although no electromagnetic conductor is indicated resultant from the main sulphide occurrence it is thought that this zone is responsive, but has been masked by the presence of "cultural noise" being a power line passing within a few hundred feet of the actual showing. The zone, does however, have a magnetic express on associated with it, being a magnetic anomaly in the order of 500 gammas. This zone would therefore be categorized with a quite high priority with respect to any follow-up program.

In the 1985 the area underwent an airborne survey consisting of VLF electromagnetics and magnetics. This survey confirmed the presence of the

NOMINEX

(8)

ound onductors with magnetic association and assisted in the regional interpr tation of geologic structures which are thought to influence mineral zation. The survey was flown in an east-east fashion to evalute the respons veness of the various occurrences in north-trending structures.

1986 WO K PROGRAM

The Kin Errington property underwent a detailed investigation during 1986, under t e O.M.E.P. grant system the following work was completed during this program

May 11 to May 28	Geophysical checks on lines, backhoe trenching, powerwashing, blasing, sampling, assaying
May 29, to June 8	Report preparation
August 19 to Sept. 12	Diamond drilling
Sept. 13 to Sept. 24	Report preparation
Dec. 3 to Dec. 17	Bulk sampling of main zone continued trenching and mapping

Jan. 6 to Jan. 8 (1987) Transport sample to Lakefield Research

FIELD P RSONNEL

The following personnel were involved in the various work programs completed over the King Errington property:

May 11 o May 28 Neil Novak, Project Geologist (Nominex Ltd.) 1121-6599 Glen Erin Drive, Mississauga, Ontario Bob Leliever, Backhoe operator, Labourer (Bobex Resources Ltd.) 14 Pinecliff Dr., Mississauga, Ontario

NOMINEX

May 29 b June 8

Neil Novak, Project Geologist (Nominex Ltd.) (as above)

August 1) to September 12 Neil Novak, Project Geologist (Nominex Ltd.) (as above) 4 drillers, Bradley Bros. Ltd., limmins, Ontario

December 3 to December 17 Joe Bankowski, Project Geologist 611 Sweetwater Cres., Port Credit, Ontario Bob Leliever, (Bobex Resources Ltd.) labourer (as above) Dozer operator (Pioneer Excavating) Sudbury, Ontario.

January 5 to January 8, 1987 Neil Novak, Project Geologist (Nominex Ltd.) (as above) Bob Leliever, Labourer, (Bobex Resources Ltd.) (as above)

DETAILS <u>JF WORK PROGRAMS</u> Period N up 12 to June 8 (Fig. 4, Appendix I)

In preparation for an anticipated diamond drill program, a short orientation program vas initiated. Previously encountered geophysical responses were verified and re-identified in the field, using an E.M. 16 (VLF) hand unit. Each conductive response was exposed where possible using a John Deere Backhoe nounted on a Bombardier Muskeg Carrier. Trenched areas were powerwashed using a Wajax Mark 75 water pump. The newly exposed areas were then pligged using a Pionjar plugger and then basted using C.I.L. Forcite 75%

NOMINEX

(10)

th 4 rinute delay caps connected to B-line cordite.

All samples procurred from this survey are detailed in Appendix I, locations of each trench with respect to the sample description is illustrated in Figure 4.

Period / Jgust 19 to September 24 (Fig. 4, Appendix II)

As a result of the encouraging results in the previous work program a 2500 foot diamond drill program was initiated with the contract being awareded to Bradley Brothers Diamond Drilling, contractors from Timmins, Ontario. Drill sites were selected to test the main mineralized trench located on line 18400' south at 500' West and its geophysically inferred extension to the south, a; well as another very strong conductor located to the east of the baseline coinciding with a stream bed, crossing the baseline at 27400'S then heading further south towards the #2 post of claim S.32034. A third geophysical response was obtained in the vicinity of trenches T-9 and T-10 with surface showings of a narrow vein (shear) 1.4' wide. A total of 11 diamond Irill holes were completed over this property totalling 2,531 feet. Diamond Irill logs, and assay certificates of all samples taken are presented as Appen Iix 11, while the drill hole locations are indicated on Figure 4.

Period D-cember 3, 1986 to January 8, 1987 (Fig. 5, Appendix 111, 1V)

After the less than encouraging diamond drill program executed in the late summer the data was reviewed and plotted to ascertain why the excellent results ecceived in the surface investigations did not continue to depth. To determine this another powerstripping program was initiated by which the extire a eal around the main shear exposure was stripped using a D-7 bulldozer accompaned by the same backhoe used in the initial program. The shear zone was expoled for a total length of 350 feet and blasted and sampled throughout its length. A larger bulk sample was selected in the vicinity of the old workings along its northern exposure, which was shipped to Lakefield Research for an elauation. Results of this program are presented as Fig. 5 and as Appendix III and IV.

NOMINEX

CLUSII VS

King Errington Resources Ltd. has carried out a very detailed geologic evaluation of their land holdings in Chester Township, Ontario. This invesitgation has included three main phases of activity which encompassed trenching, powerstripping, sampling, diamond drilling, mapping and bulk sampling.

The overall project yielded some very exciting results during the onset of the program which included grade samples of 0.126 o.p.t. Au, 3.15 o.p.t. Ag, 8.32% Cu and a channel sample across 3.5 feet of 0.424 o.p.t. Au, 1.55 o.p.t. Ag and 3.12% Cu. Further investigations of the main shear system along strike and to depth by diamond drilling and trenching failed to substantiate these local anomalous values.

It appears from the exploration completed to date, that economic "grade" minerali; ation occurrs locally within the shear system examined. This minerali; ation is podiform and is not expected to be continuous along this shear zor?. One could expect to find several of these pods throughout the entire shear system, each pod would have to be evaluated for its own merit, presenting a very tough exploration problem.

Several other areas are present within the limits of the property which have some geophysical responses which remain untested. These areas should be explored in the same manner which the main shear zone was evaluated.

RECOMMENT ATTONS

A follow up program is definitely warranted on this property!

Encourage ent exists within a structural geologic feature, respondable to simple electromagnetic prospecting, transecting the property in a 150° to 160° azim ath, parallel to the main shear system in the region termed the Mesomiker la Lake Fault (Fig. 3). All other economic concentrations of gold currently being evaluated and exploited by other companies in the area are located ϵ ; the juncture of this main shear trend (150° to 160°) with offsets in the 04)° and 120° azimuthal directions. The work program carried out on this project is to date, has only identified conductors (shear zone) trending

The 1 0° to 160° azimuth direction due to the orientation of the present grid sys em. A grid system oriented perpendicular to the present system would id ntify conductors located in the acute directions to the main trend. The junc ion of the two geophysically responsive shear zone would be an area which wuld be prime for locating Murgold-Chesbar or Kidd type minerali ation.

The prop rty has not as yet been adequately geologically mapped or prospected for othe areas similar to that which King Errington has evaluated. This could be done simultaneously with the geophysical program recommended over the prop rty.

This rep rt is respectfully submitted this 1st day of June, 1987.

Neil Novak, B.Sc., F.G.A.C.

NOMINEX

(13)

CERT1F1CATE

(14)

- 1, Neil Novak, do hereby certify:
- tha: 1 am an exploration geologist residing at 1121-6599 Glen Erin Drive, Mississauga, Ontario L5N 2X3
- (2) that I am a graduate of the University of Waterloo, Waterloo, Ontario and hold a Bachelor of Science degree as an Earth Scientist dated 1977;
- (3) that I am a fellow in good standing of the Geological Association of Carida;
- (4) that I have been engaged in the practice of this profession since graduating;
- (5) that I have no interest, direct or indirect, nor do I expect to receive any such interest in the properties or securites of "King Errington Resources Inc.".

. G. A. C.

Neil D. Novak, B.Sc., F.G.A. Exploration Geologist

June 1, 1987

APPENDIX I

Work Program May 12 to June 8, 1986 -Sample Description -Assay Certificates

NOMINEX -

NOMINEX

(NOVAK MINERAL EXPLORATIONS)

NEIL D. NOVAK, B.SC., F.G.A.C. CONSULTING GEOLOGIST

Nn. Geonge Fenny President, King Enhangton Resources Inc. 905-837 West Hostings St., Mandouver, B.C.

Dear Georges

F ease find enclosed a copy of Table I, which describes all of the somples which I selected in the field on the Chester Twr. Fromenty of your company. I have sent the samples to Chemex Labs Ltd., ind should be receiving assays soon. I will be sending you selected grob samples representative of each trench location as well so you will have a feel for the type of rock which we are looking of 1 live also enclosed a copy of the Trench Location Flan w ich illustrates the actual trench location with respect to the graphy and specific E.M. conductors as I located in the field. You will note that there are two E.M. conductor types indicored on the maps the 1983 locations were plotted to illustrate to you the old results. The 1986 locations were verified in the field by muself using the old lines and 50 foot station interucle to enoughe more accurate information, which can be used in the next phase of exploration which will hapefully include some diamond drilling and further sampling.

Here you find evenuthing in order with respect to this short program

re lands. Neil

WERE AND A STATE OF A S

81 -60 SOUTHPORT ST., TORONTO, ONTARIO M6S 3N4 • 416-767-8687

and site and a standard same of same and same stand stand stand as a second state and share as see as second as

		Chemex	Labs L	td.	212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1
	Analy	vtical Chemists • Geo		ed Assayers	Phone: (604) 984-0221 Telex: 043-52597
	••••••••••••••••••••••••••••••••••••••		NICE ***		
To : NOVAK, NE	ΈL	t	¢ ‡	Invoice # :	18613259
818 - 60 Torontu, M65 3N4	COUTHPORT S	J.		Date : P.O. # : Project	13-JUN-86 None
		ork reported on		a) A8613259-	001
A Quantity coc	alysed for descrir		unit price	amount	
30 301	- Lu	ž			
	- Ag - Au	07/T 07/T	16.75	502.50	
Sample prepa	ation and	other charges :			
30 207	- Assay -	PULVERIZE	3.75	112.50	
				TOTAL	\$ 615.00
		Plea	ise pay this an	rount>	\$ 615.00 =======
ERMS NET 30 5% per month		annum) charged			
			ch # 34	Jun 23/86	
			1 # 36		
			dr T		
		λ.			
		yd-			
Į		yd-			
:		4y-			
		yd.			

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone:

Analytical Chemists • Geochemists • Registered Assayers

(604) 984-0221 Telex: 043-52597

CERTIFICATE OF ASSAY

TO : NOVAK, N IL

B18	- 60	SCUTHPORT	ST.
TORO	NTO	ONT.	
MGS	3N4		

**		:	A8613259-001-A 18613259 13-JUN-86
	P•0• #		NGNE

Sample	Prep	Cu	Ag	Au		
description	code	2	oz/T	oz/T		
10028	207	0.74	0.36	0.026		
10029	207	17.80	8.17	0.062		
10030	207	8.32	3.15	0.126		
10031	207	0.11	0.11	<0.002		
10032	207	3.12	1.55	0.424		
10033	207	0.02	0.02	<0.002	1	 -
10034	207	11.50	3.62	0.098		
10035	207	0.03	0.03	<0.002		
10036	207	1.92	0.63	0.040		
10037	207	0.07	0.05	<0.002		 -
10038	207	2.95	0.90	0.048		
10039	207	0.08	0.03	<0.002		
10040	207	0.58	0.23	0.006		
10041	207	0.02	0.01	<0.002		
10042	207	0.01	0.01	<0.002		
10043	207	0.01	0.05	<0.002	-	
10044	207	0.05	0.01	0.002		
10045	207	<0.01	0.01	<0.002		 -
10046	207	<0.01	<0.01	0.004		
10047	207	0.()9	0.05	0.002		
10048	207	0.08	0.07	0.004		
10049	207	0.05	0.03	<0.002		
10050	207	9.60	0.54	0.014		 -
10051	207	0.40	0.05	<0.002	6	
10052	207	1.33	0.28	<0.002		
10053	207	0.11	0.03	<0.002		 -
10054	207	3.82	1.14	0.022		 -
10055	207	0.02	<0.01	0.010		
10056	207	4.57	1.20	0.018		 ÷.
10057	207	0.27	0.07	0.006		

Registered Assayer, Province of British Columbia

TABLE I

TRENCE # (Samele #)	SAMPLE DESCRIPTION	WIDTH	ASSAY URLUES Ag Ag (g opt opt %
T-1 10028	Brecciated wein material	erab	.026 0.35 0.74
T-1 10029	vein material with sulphides incl. mal.,az.,bo.,cr.	grab	.062 8.17 17.8
T-1 10030	dark quartz vein material high carbonate content vuggy	grab	.126 3.15 8.32
T-1 10031	hanging wall schistose volcanics	3.0 feet	〈 002 0,11 0,11
7-1 10002	vein material obundant sulphides including bp.,cp.,mal.	3.5 feet	.424 1.55 3.12
7-1 10033	footwall schistose volcanics minor sulphides	2.0 feet	€ 002 0.02 0.02
1-3 10034	vein material with abundant sulphides incl. cp., py.	arab	.089 3.62 (1.5
1-3 10039	handing walf schistose volcanics with minor sulphides	3.0 feet	€002 0.03 0.03
T-3 10036	vein material with abundant sulphiaes incl. cp.,bo.,mol.	1.7 feet	•040 0•52 (•82
7-3 10037	footwall schistose volcanics minor sulphides	2.0 feet	€002 0 05 0 02
7-4 10038	vein material with obundant sulphides incl. cp.,to	prab	.048 0.90 2.95
T-4 10009	tensing woll sheared int. volcanics, minor sulphides	2.0 feet	∢ 062 0.03 0.09
7 - 4 10040	vein plus sheared int. Volconics	2.9 feet	.006 0/23 0.58
T-4 10041	footwall zone sheared int. Volconics	3.8 feet	€005 0.01 0.05
T-5 10042	vein material with abundant sulphides incl. pe.scp.	Brob	<:005 0.01 0.01
1-5 10043	hanging wall extremely schistose volcanics	3.O feet	₹ 002 .05 .01
7 - 5. 1 004 4	vein material with sheared volcanics	S∙3 feet	.002 0.01 0.05

NOMINEX ------

į

IABLE I (cont.)

ASSAY VALUES

Cu 89 Ĥu ort ort. 12 sheared int. volcanics hanging _____14.0 feet* <002 .01 <0.01 7-7 10045 wolls precipted T-7 suartz vein with cp. highly 2.0 feet* .004(0.01(0.01 10046 brecciated. T -- B hanging wall int. volcanics 5.5 feet .002 0.06 0.09 10047 with minor sulphides incl. cp., bo 1-8 brecciated wein material with 2.3 feet .004 0.07 0.08 10048 abundant sulphides incl. cp.,bo 1.2 feet <002 0.03 0.05 footwall sheared volcanics with T ~ 8 10049 minor sulphides .014 0.54 9.60 highly mineralized vein 1-9 grab 10050 moterial with abundant bo., cr., mal. 4.0 feet <002 0.05 0.40 honging wall sheared int. 1-4 volconics the sulphides 10051 8.0 feet <002 0.28 1.33 7 - 9 sheared int. volcanics plus vein material abund FS., CF., bo., mal. 10052 3.5 feet <002 0.03 0.11 7 - 9 footwall zone minor suartz in 10053 sheared int. volcanics abund. CF. .022 1.19 3.82 7-10 highly mineralized vein material grab 10054 with atoma, reashesses. 2.3 feet -010≮0.01 0.02 7-10 banging wall int. volcanics 10055 with minor cs., bo. .018 1.20 4.57 1.4 feet vein moterial with abundant 7 - 10sulphides incl. mal., cp., bo. 10056 1.8 feet .006 0.07 0.27 7-30 footwall sheared volcanics with minor suarty and abund. cr., bo. 10057

Notes

* indicates representative samples of the bedrock across whe specified width

all other samples are classified as channel samples across the specified width except where referred to as grab sample.

NOMINEX

APPENDIX 11

Work Program August 19 to September 24, 1986 -Diamond drill logs -Assay Certificates

- NOMINEX --

C	C	hen	nex La	abs Li	td.	North V Canada	oksbank Ave. ancouver, B.C. V7J 2C1
A STATE OF AN	Analytic	al Chemists	Geochemis	ts • Register	ed Assayers	Phone: Telex:	(604) 984-0221 043-52597
		CER	TIFICATE C	OF ASSAY]		
D : KING ERR N		RCES	818-60 5 IVRONTO, 0	outhfort st**	CERT. # Invoice		1 8074-001-A 1 8074
905 - 83		S ST.	IURONTO (INC	DATE	: 29-9	SEP-86
VANCOUVE .	9C					:	
V6C 186			1165 3N	Ч	CHESTER		
ATT'N: G D	RGE FERRY	QC .: NE	IL NOVAK				
Sample	Prep	Cu	Ag	Au			
<u>descripti n</u>		2	07/7	07/1			·····
0001	207	<0.01	0.03	<0.002			
0002	207	<0.01	0.03	<0.002			ten den
0003	207	<0.01	0.01	<0.002		-	
0004 0005	207 207	<0.01 <0.01	0.01 0.01	<0.002 <0.002	** ••		- -
0005	207	0.21	0.05	0.002			
0007	207	<0.01	0.03	<0.002			
0008	207	<0.01	0.01	<0.002			
0009	207	<0.01	0.01	<0.002			
0010	207	<0.01	0.01	<0.002			
0011	207	0.02	0.03	<0.002			
0012	207	<0.01	0.01	<0.002			
0013	207	<0.01	<0.01	<0.002		-	
0014	207	<0.01	<0.01	0.002			
0015	207	<0.01	<0.01	<0.002			
0016	207	<0.01	1.01	0.004	**		
0017	207	<0.01	0.01	0.002			
0018	207	<0.01	0.01	0.002			
0019	207	<0.01	0.03	<0.002			
0020	207	<0.01	0.01	<0.002			
0021	207	<0.01	<0.01	<0.002			
0022	207	0.06	0.03	0.002			
0023	207	<0.01	<0.01	C•002			
0024	207	0.04	<0.01	0.002	b		
0025	207	0.01	<0.01	<0.002			
0026	207	0.02	<0.01	<0.002			
0027	207	0.02	<0.01	<0.002		-	
0028	207	<0.01	<0.01	<0.002	** **		
0029	207	0.05	<0.01	<0.002			
0030	207	<0.01	<0.01	<0.002			
0031	207	<0.01	<0.01	<0.002			
0032	207	0.01	<0.01	<0.002	1		
0033	207	<0.01	<0.01	<0.002			
0034	207	<0.01	<0.01 0.01	<0.002 <c.002< td=""><td></td><td></td><td></td></c.002<>			
0035	207	0.03	<0.01	<0.002 <0.002			
0036	207	0.01 0.01	<0.01	<0.002 <0.002			
0037	207 207	<0.01	<0.01	<0.002			
0038 0039	207	0.02	0.01	<0.002	Z I D		
0039	207	0.02	0.01	<0.002	Tit -	/	
0040	201		V • V I	NOBUUZ	II AL I		

Registered Assayer, Province of British Columbia

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists • Geochemists • Registered Assayers

* *

CERTIFICATE OF ASSAY

TO : KING ERRINGTON RESOURCES

÷,

905 - 831 W. HASTINGS ST. VANCOUVEF, BC V6C 186

 CERT. #		:	A8618074-002-A
INVOICE	#	:	18618074
DATE		:	29-SEP-86
P.D. #		:	
CHESTER			

ATT'N: GEDRGE FERRY CC.:NEIL NOVAK

Sample	Prep	Cu	Ag	Au			
description	code	2	oz/T	07/T			
0041	207	<0.01	0.01	<0.002	**		
0042	207	C •02	<0.01	<0.002			
0043	207	0.03	0.01	<0.002			
0044	207	0.02	<0.01	<0.002		-	
0045	207	0.01	0.01	<0.002			-
0046	207	<0.01	<0.01	<0.002			
0047	207	<0.01	<0.01	<0.002	***		-

.... Registered Assayer, Province of British Columbia

VOI rev. 4/85

	-		Geochemis	abs Lt	d .	North N Canada Phone:	ooksbank Ave. /ancouver, B.C. V7J 2C1 (604) 984-0221
the statement and the	Analyticai T	Chemists	• Geochemis	ts • Registered	n Assayers	Telex	043-52597
		CEI	RTIFICATE O	FASSAY			
TC : KING ERRINGTON	RESOUR	CES		\$ \$	J CERT• # INVDICE #		18155-001-A
905 - 83' K. H.	ASTINGS	ST.	818-60 500	STHPORT ST.	DATE		SEP-86
VANCOUVEF BC			TORONTO, DI		P.C. #	: NDN	£
V6C 1B6			M65 3N4		CHESTER		
ATTN: GEORGE	FFRRY	√cc:	NEIL NOVA				
	Prep	U Ĵ	Ag	Au			
	code	2	oz/T	oz/T			
0048	207	0.05	0.01	<0.002			
0049	207	<0.01	0.01	<0.002			
0050	207	<0.01	0.01	<0.002			
0051	207	<0.01	<0.01	<0.002			
0052	207	<0.01	<0.01	<0.002			
0053	207	<0.01	<0.01	<0.002			
0054	207	0.02		<0.002			
0055	207	0.01	<0.01	<0.002		-	
0056	207	0.01	<0.01	<0.002	the last		
0057	207	<0.01	<0.01	<0.002	*** ***		
0058 0059	207 207	<0.01	<0.01 <0.01	<c.002 <c.002< td=""><td></td><td></td><td></td></c.002<></c.002 			
0060	207	<0.01	0.01	<0.002			
0061	207	0.02		<0.002	** •		
0062	207	0.01	<0.01	<0.002			
0063	207	0.21	0.10	0.016	-		
0064	207	<0.01	<0.01	<0.002			
0065	207	<0.01	<0.01	<0.002			
0066	207	0.02	0.01	<0.002			
0067	207	<0.01	<0.01	<0.002			
6900	207	0.02	<0.01	<0.002			
0069	207	C.04		<0.002		· · · ·	
0070	207	0.01	<0.01	<0.002			
0071	207	0.02	<0.01	<0.002			
0072	207	0.01	<0.01	<0.002			100 Min
0073	207	0.01	0.02	<c.002< td=""><td></td><td></td><td></td></c.002<>			
0074	207	0.03	0.01	<0.002			4,000 4000
0075	207	0.04	0.01	<0.002			
0076	207	0.03	0.03	<0.002	~~		
0077	207	<0.01	0.03	<0.002			
0078	207	0.06	0.01	<0.002	* **		
0079	207	0.29		<0.002	-		
0080 0081	207 207	0.03 0.16	0.04 0.08	<0.002 0.021			
0081	207	0.10	<0.08	<0.002			
0083	207	0.03	<0.01	<0.002			
0083	207	<0.03	<0.01	<0.002			
0085	207	<0.01	<0.01	<0.002	• .		
0086	207	0.01	0.01	<0.002	(-) () ,		
0087	207	0.02		<0.002	11-181	1	

Registered Assayer, Province of Britist Columbia

Chemex Labs Ltd. 212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221 Phone: Analytical Chemists • Geochemists • Registered Assayers Telex: 043-52597 CERTIFICATE OF ASSAY ** **TO : KING ERR NOTON RESOURCES** CERT. # : A8618155-002-A INVCICE # : 18618155 905 - E3 W. HASTINGS ST. DATE : 29-SEP-86 VANCOUVE . BC P.C. # : NCNE V6C 186 CHESTER ATTN: G DRGE FERRY CC: NEIL NOVAK Sample Prec Cu Ag Αu descripti n oz/T code 2 oz/T

0.03

0.09

0088

0089

 ~ 1

207

207

0.13

0.48

0.002

0.004

-

- --

VOI rev. 4/85

Registered Assayer, Province of British Columbia

				INCLINATION	TESTS			······································		
KING ER	RINGTOP	N RESOURCES INC.	DEPTH	DIP	DEPTH	DIP	DEPTH	DIP		85-1
			COLLAR	- <u>c</u> <u></u> , ,	<u>cellar</u>					
LOCATION:	04521	TER TWENGRID: 1.185,3+50% ELEVATION:				· · · · · ·			PROJECT:	
LENGTH:	275.0'	HORIZ: 185.01 VERT: 185.01 AZIMUTH225" CORE SIZE: 80							STARTED:	
RECOVERY	: 455	LOGGED BY. M. Manaka PATE Date Of Date	n f			1			FINISHED:	
FROM	TO	DESCRIPTION				· ·			L RESULTS	
				SAMPLE	FROM	TO	LENGTH	Cu(ppm) Zn(ppm) Ag(ppm) Au	(ppb)
<u>[]</u>	<u></u>	- <u>jnerphrieu</u>			·····					
15	81.0	Dionite to granodionite med. grained with poor cry							······································	
		growth, plagioclase feldspar as ragged, white to g	150.4							
		anhedral crystals, comprising 50% of unit, potash								
		feldspars comprise 5-10%, are slightly pink. Occas								
<u> </u>		sional name flek of pyrite as innegular blebs. Uni		- <u></u>		- 1			·	
······		mildly fractured, chloritization evident along fra	·····							
		unes.		- h						
81.0	87.25	Diorite, extremely aphanitic plagioclase feldspar		· · · · · · · · · · · · · · · · · · ·				···	······································	<u></u>
		dominates the unit (50 - 70%) minor potash feldspa	<u>–––––</u>	••••••••••••••••••••••••••••••••••••••				•••••••••••••••••••••••••••••••••••••••		
		comprising 5% and mane irregular blebs of pyrite		·			• • • • • • • • • • • • • • • • • • • •			
1		throughout with minor chloritization along fractur	95.	1						
87.25	100 0			÷				-+	·····	
······································		Rhyolite, tuffaceous with short interbeds of darit	È	÷						
		minor spherulitic texture in rhyolitic beds.			87.25	- 89.2	5-2-0	;		
		<u> 87.25 - 89.25 tr - 12 pg</u> 89.25 - 91.25 tr - 12 pg			89.25					
		111.5 - 115.0 tr - 1% pg			111.5					
		$121 \cdot 0 - 122 \cdot 0 + tr - 1% py+cp(q.corb. vein 1")$		+ <u>0004</u>	121.0	122.	0 1.0	1		
	· · · · · · · · · · · · · · · · · · ·			· •••						
22.0	128.2	Rhyolite breccic and tuff, with short interbeds of								
		dacitic brecciated tuff.				· · · · · · · · · · · · · · · · · · ·				
28.2	100 0			÷						
28.2	130.8		<u>to</u> r			·	· · · · · · · · · · · · · · · · · · ·			
		ate veins and chloritized fractures						·		
		128.2 - 131.2 1 - 2% FM	*. <u></u>	0005	<u>128.2</u>					
30.8	131.2	Quantz vein (bull)		1			••• •	-	· · · · · · · · · · · · · · · · · · ·	
				********		•••••				
31.2	142.0	Brecciated rbso-dacite evroclastic tuff with minor	·····	<u> </u>						
		- Auartz seams and short sinuously folded interbeds ,		; 	· · · · · · · · · · · · · · · · · · ·					
1								<u> </u>		
+-										

				PROJECT:			HOLE NO: K.E. 85-1				
	- <u>-</u>						PAGE 2				
FROM	то	DESCRIPTION	SAMPLE	FROM	 ↓0	ANALYTIC	CAL RESULTS ppm) Zn (ppm)	<u></u>			
:		chenty material, minor sericitization throughout		· 	•	. I		··· •			
	į	giving an overall green trade to a		· ·	•	• •	,				
142.0	151.7	well foliated (30° C.A.) phyo-dacite ash tuff			•	• · · · · · · · · · · · · · · · · · · ·		•			
		with minor fleks of syrite throughout.			· · · · · · · · · · · · · · · · · · ·						
151.7	155.5	physheddcite precciated synoclastic tuff with			<u> </u>	• • • • • • • • • • • • • • • • • • •	·	· · · · · · · · · · · · · · · · · · ·			
		minon sericitization with an occassional flek	·	·····	*	······································	······				
						· · · · · · · · · · · · · · · · · · ·					
155.5	158.2	well foliated (30° C.A.) phyo-dacite tuff.			:	· · · · · · · · · · · · · · · · · · ·					
[58.2	173.0	rhyodacite brecciated pyroclastic tuff, minor		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •				•		
		short quartz filled sections between breccia				•					
		fragments, highly silicified.		· ·		•					
173.0	178.5	chyolitic ash and pyroclastic tuff, well foli-	······		+	·····			· · · · · · · · · · · · · · · · · · ·		
		ated (80° C.P.) occ. minor flek pyrite.			•						
178.5	183.0	diorite, aphanitic slightly precciated.		· · · · · · · · · · · · · · · · · · ·	i	· · · · · · · · · · · · · · · · · · ·	······				
183.0	188.0	granocionite aphanitic highly fractured.		1							
188.0	203-5	granodiorite phaneritic, highly fractured grad-			· · · · · · · · · · · · · · · · · · ·						
		ational contact with appanitic variety at top.									
		Disseminated punite plus chalcopunite throughout 188.0 - 190.0 1-22 pu, cp	none.	1388.0	- Tan.r	2.0			· · · · · · · · · · · · · · · · · · ·		
~		190.0 - 194.0 tr-1% ry, cr		190.0			· · · · · · · · · · · · · · · · · · ·		·		
		<u> 194.0 - 198.0 1-2% pg, cp</u>		194.0					<u>+</u>		
		198.0 - 203.501 - 2 % PH CP	. 0009		203.5				· · · · · · · · · · · · · · · · · · ·		
203.5	205.0	very fine grained intermediate ash tuff with			↓			i			
		MINON PURIté over 3" up to 4% at 204.5		•	• •	·					
205.0	205.5	precciated granodionite with up to 5% pyrite,									
		orthoclase crystals broken		+	+						
		205.0 - 205.5 3-5% PY, CP	. 0010	205.0	205.5	1.5					
				+					· · · · · · · · · · · · · · · · · · ·		
	<u>+</u>			1	±	<u> </u>		·····	<u>+</u>		

				PROJECT:		HOLE NO:	K.E. 85-1
						PAGE g of	°
FROM	то	DESCRIPTION			ANALYTIC	AL RESULTS	
			SAMPLE	FROM	TO LENGTH Cu(p	орт) Zn (ррт) Ag (ррт	a) Au (pp b)
05.5	252.0	very fine grained felsic to intermediate and f		1	· · · · · · · · · · · · · · · · · · ·	1	
	+	with usury tractured relatively featureless.			· · · · · · · · · · · · · · · · · · ·		
		occassional chloritic fragment and chloriti-					
		zation along fracture elanes.			·		
62.0	275.0	brecciated granodionite with winor sulphide			· · · · · · · · · · · · · · · · · · ·		
	1	theoughout.					
		255.3 - 270.0 1% py	-9911	265.0	279.0 4.0		
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	1	275.0 end of hole			• · · · · · · · · · · · · · · · · · · ·		
	······					·····	
			1				
					· · · · · · · · · · · · · · · · · · ·		
	+		! 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	:
	· •			1			
					<u>.</u>		
	1				· · · · · · · · · · · · · · · · · · ·		1
							:
					·	· · ·	
<u></u>					•		
	ŀ						
					•		
····							
	<u>↓ </u>				+	······································	·····
······································							

			DEPTH		INCLINATION							
(ing Er	oringto	ton Resources Inc.		DIP -45'	DEPTH DIP DEPT			PIP	HOLE NO: KIEL 86-2			
•									<u> </u>			_
LOCATION	n ^{Cheste}	en Townsh GRID: L-205, 3+50W ELEVATION:							PROJECT:			
LENGTH:	252.4	HORIZ: 190.0' VERT: 190.0AZIMUTH: 225" CORE SIZE 2.8.8.2.							STARTED:			
RECOVER	r: 95%	LOGGED BY: Neil Novak DATE: Rug 31,1985				1			I INISTICU.			
······		DESCRIPTION				······································		MALYTICAL			······································	
3	5.5	Ovenbunden		SAMPLE	FROM	TO	LENGTH	Cu (pp m) Ze(pp=)	Ag (ppm)	Au (ppb)	•
							·			-+		-1 - e - 1 - e - e
5.5	34.5	Felsic well foliated fine grained ash tuff with				•••••				······································	· · · · · · · · · · · · · · · · · · ·	·*···
		short precided cherty sections, highly fract-										
		ured, minor carbonate rich vuggy section at 18.5'										
34.5	55.5	Dionite, grey, highly preciated and fractured,										
		winor chloritization along fractures, acc. flek									· ·	
		eynite, fracture zone at 41.5.								• • • • • • • • • • • • • • • • • • • •		
5.5	55.9	Int. tuff inclusion well foliated.										
55.9	60.0	Diorite, as above (34.5-55.5) highly precciated									+	
22.2	<u> </u>	and fractured.				•	- 					<u></u>
		57.0 - 59.0 1-2% Py/CP		8012	57.0	59.0	2.0					
											· · · · · · · · · · · · · · · · · · ·	-+
50.0	64.3	Int. tuff well foliated with occ. flek Perite,										
		sharp contact at top, tuff partially assimilated,						- -				
		gradational contact at bottom										
34.3	88.8	Medium grained phaneritic diorite, mildly fract-								· • · · · · · · · · · · · · · · · · · ·	- <u>+</u>	
		ured, chlorite filled fractures along with minor					· · · · · · · · · · · · · · · · · · ·		1	1	•	
		sulphides over short sections.										
		54.3 - 67.3 1% Py		9013	64.3	67.3						
		67.3 - 70.3 1%py		0014	67.3	70.3	3.0					
		from 74.5 to 74.9 up to 5% cp, last ten feet		4	· · · · · · · · · · · · · · · · · · ·		·				+	
		gradational contact with next unit.		-								
8.8	95.7	Coarse grained chaneitic granodiorite with numer-		-								+
		ous sericitized fractures with minor (tr.) Pyrite		······································						-		
+		throughout. minor quartz vein at 92.8' %" wide.					:		• • •		+	+
		First 4' of unit has bright salmon orange K-feld-										
		spar then grading into lighter orange to grey K-		-								
		feldspar entire zone highly brecciated.		-								
		+		<u>.</u>	+					4		ļ
				<u> </u>				и и	· · · · · · · · · · · · · · · · · · ·		1	1

		r	PROJECT:		HOLE NO: K.E. 85-2				
			<u></u>			PAGE	2 of 2		
FROM TO	DESCRIPTION	SAMPLE	FROM	То	ANALYTIC	CAL RESULTS opm) Zn (ppm)	A.G. (00.00)	Au (pp b)	
				•=========== }	1 1 1				
5.7 109.0				ļ	8				
	ational contact of top. Nichly hereight ()	<u>µ</u>		·	, [,]	·			
	y out, accasional flek pyrite.						· · · · · · · · · · · · · · · · · · ·		
09.0 135.0	I fine grained aphanitic granodionite, to diorite				<u>.</u>				
	moderately preciated, minor pyite fleks.				· · · · · · · · · · · · · · · · · · ·				
	- 71 fine grained diarite, massive relatively feature-			· · · · · · · · · · · · · · · · · · ·					
	, less, occ fractured zone, winor public section			•		· · · · · · · · · · · · · · · · · · ·			
) at 184.5 for 2".				- 				
			-+	÷	······································				
	medium grained phaneritic granodionite breccia, highly fractured tr-22 py + cp along fractures.		· · · · · · · · · · · · · · · · · · ·	÷	·		·····		
	215.7 - 218.7 th-1% py	·			· · · · · · · · · · · · · · · · · · ·				
	1 218.7 - 221.7 tr-2% py+cp		215.7					i •	
······································	221.7 + 224.7 tr-2% py+cp	<u>• 0716</u>		221.7		·		· · · · · · · · · · · · · · · · · · ·	
	224.7 - 228.7 th-2% py+cp	<u></u>		224.7	the second s			· · · · · · · · · · · · · · · · · · ·	
	228.7 - 231.7 tr-2% py+cp	· 0018		228 7					
·····	231.7 - 234.7 tr-2% py+cp	1.0019		234.7				÷	
	234.7 - 238.7 tr-2% py+cp	• 0020						·	
	extremely blocky from 235.5 to 235.5 (fault zone)	• 0021	234.7	238.4				· · · · · · · · · · · · · · · · · · ·	
			+	4					
38.4 245.6				•	÷				
- <u></u>	tured, mildly brecciated occ. flek py + cp.						+		
46.6 253.6	fine grained aphanitic diorite, highly silicified				······································				
	minor syrite throughout quartz veining at 247.6								
	to 248.5 containing up to 10% cp + py.				1				
	245.6 - 249.5 10% CP + P9		245.5						
	245,6 - 253.6 tr - 2% cr	.0023	249.6	253.6	4.0				
53.6 262.4	fine grained aphanitic diorite, occ. flek pyrite.								
	262.4 end of hole.			÷					
			+						
				1				-	
			· · · · · · · · · · · · · · · · · · ·						
			+	ļ	<u>↓ ↓</u>			-	

· • • •

r			INCLINATION TESTS									
UTNC ED		RESOURCES INC.	DEPTH	DIP	DEPTH	DIP	DEPTH	4 K	HOLE	NO:	K.E.86-1	^
KING ER	FINGION	RESULACES INC.	COLLAR	-45				ī			K.E.80	
LOCATIO	N: Cheste	r Twp. GRID:L.24S, 500'W ELEVATION:				· · · · · · · · ·		A	PROJECT:			
LENGTH:	251.0*	HORIZ: 180' VERT: 175' AZIMUTH: 225 CORE SIZE: BQ			······			· · · · · · · · · · · · · · · · · · ·	STARTED:			
RECOVER	N. 057	IDEAED DV Noil Moust						······	L [FINISHED:]			
				<u></u>								
FRON	то	DESCRIPTION		SAMPLE	FROM	то		NALYTICAL CH (NO IN	Ze (pom)	A. (Au (aab)	· · · · · · · · · · · · · · · · · · ·
0.00	4.2	Overburden										· · · · · · · · · · · · · · · · · · ·
4.2	71.0	Medium to coarse grained diorite, moderately fractured, aphanit									····	
<u> </u>	<u>_/</u>	sodium feldsper crystels being derk grey set in a quertz - pote									<u> </u>	
		<u>feldspar fine grained matrix. Minor shear zone at 39.3 to 39.5</u>										
		<u>55.1 - 59.1 1-2% pv+cp</u>		0024	55.1	59.1	3.0	·····		• 4 ,		<u> </u>
· · · · · · · · · · · · · · · · · · ·		59.1 - 61.6_1-2 [°] pv+cp		0025	59.1	61.6	2.5					
•	· · · · · · · · · · · · · · · · · · ·			<u></u>								
71.0	97.0	granodiorite coarse grained aphanitic potassium feldspar crysta	ls									
		beong light orange set in a quartz-sodium feldspar phaneritic		·••								
		groundmass, mildly fractured with occassional narrow 1" quartz									·····•••••••••••••••••••••••••••••••••	
		veins, minor short 1-2" sections withup to 2" pyrite.										
	*	75.9 - 78.9 1-2% pv+cp	N	0026	75.9	78.9	3.0	H				
		89.8 - 92.8 4-5% py+cp		0027	89.8	92.8	3.0					
······		95.0 - 97.0 1-2% py+cp		0028	95.0	97.0	2.0	-	······································			
97.0	101.6	fine grained intermediate ash tuff, relatively featureless.		**			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
101.6	194.0	fine grained phaneritic diorite, moderately fractured, small		:					· · · · · · · · · · · · · · · · · · ·			ļ
		felsic veinlet at 107.1 to 107.2		**	•			· · ·		- 		
		┿ <mark>╴╋╊╪╫╪╫╗╴╫╊╪╬╪╪╗╪╖╗╴╖╪╴╖╪╴╖╪╪╶╞╄╶╷╖</mark> ┸╵╞ ╸ ╖╷╖╻╺╺╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻								+ -	·····	+ -1
194.0	251.0	medium grained granodiorite breccia, mildly fractured, quartz							···· • ·······························	We don't		
		vein at 248.0 to ^49.0.									1	••••••••••••••••••••••••••••••••••••••
_		205.4 - 207.4 tr-2"/py+cp		0029	205.4	207.4	2.0					
_		212.0 - 215.0 tr-1%py		0030	212.0	215.0	3.0					
		218.6 - 2?1.6 tr-2"py		0031	218.6	221.6	3.0					
		271.6 - 224.6 tr-2%py		0032	221.6	224.6	3.0					
		274.6 - 2?7.6 tr-2"py+cp		0033	224.6							
		227.6 - 230.6 tr-2"py		0034	227.6	230.6	3.0					
		230.6 - 233.6 tr-2"py		0035	230.6	233.6	3.0			;		
		233.6 - 236.6 tr-2%py		0036	233.6		3.0	h L				
		236.6 - 241.2 tr-2 ⁷ py+cp		0037	236.6		4.6	1				
		248.0 - 249.0 1%cp		0038	248.0	249.0	1.0	4		1		
								1				
		251.0 end of hole						T				
				1				d.				

					INCLINATIO	ON TESTS						
ANC F	RFINGTON RESOURCES INC.				DEPTH	DIP	DEPTH	DIP	HOLE	: NO: "	.5. 86-4	
	ar - 60)		:				К	.5. 00-4			
LOCATIO	OCATION: Chester Twp. GRID: L. 1800S, 450 'W ELEVATION: ENCTH: 171 () HOPIZ: 001 VEPT: 1501 AZIMUTH: 225 COPE SIZE: no			-					PROJECT:			
LENGTH	TH: 171.6' HORIZ: 90' VERT: 150' AZIMUTH: 275 CORE SIZE: BQ					·			STARTED:			
RECOVE	RY: 95%	LOGGED BY: Neil Novek DATF. Sentember 1 1986	!		;	1			1			
FROM	то то	DESCRIPTION		WPLE	FROM	то		NALYTICAL	RESULTS			
1	36.0	Highly fractured aphanitic diorite, slightly chloritic with very	JA	MPLE.	FRUM		LENGIN	Ce (pp m				
<u>v</u>		thin cuertz cerbonete veinlets crossing core at verious engles,									÷	
	··••	trace pyrite over short sections (2-3"). Quartz appears almost								······································	<u> </u>	
		<u>chert-like sodium feldspars are grey in appearance set in light</u>										
	1	grey fractured silicious groundmass. Quartz vein at 28.5 to									:	
	·····	29.5 peralleling core angle.									· · · · · · · · · · · · · · · · · · ·	
36.0	41.6	Felsic tuff, slightly breccisted, well folisted at 40 C.A.							:		· · · · · · · · · · · · · · · · · · ·	
	77 /									-	· · · · · · · · · · · · · · · · · · ·	
41.6	77.6	Aphanitic diorite (as above) slight foliation apparent at 40 C.A.									· · · · · · · · · · · · · · · · · · · ·	
	i 	41.6 - 44.0 tr 2% py	003		41.6	44.0	2.4	- n			<u> </u>	
		$60.5 - 63.5 \text{ tr} - 1^{\circ} \text{ py}$	004		60.5	63.5	3.0			! • • • • • • • • • • • • • • • • • • •	·	
	·	63.5 - 65.5 tr - 1° py	004		63.5	66.5	3.0					
		$66.5 - 69.5 \text{ tr} - 1^{\circ} \text{ py}$			66.5	69.5	3.0	· · · · · · · · · · · · · · · · · · ·			+	
		69.5 - 72.5 tr - 1% py + sp	004	.3	69.5	72.5	_3.0_	-				
77.6	82.0	fracture zone 77.6 to 77.8, Felsic ash tuff, moderately foliated			••			*			•	
		fracture zone at 81.5 to 81.7 quartz breccia zone at 81,5 to 82.0						1				
		77.6 - 82.0 1 - 2% py + cp	004	4	77.6	82.0	4.4		_			
32.0	114.5	Highly fractured dioritic breccia aphanitic, mildly chloritic,	pi		<u> </u>							
		occessionel quertz cerbeonate infilling along fractures at ver-								1	+	
	+	ious angles to C.Aoccassional short 6" section with tr 1%			•				······································	- <u>i</u>	+ <u>-</u>	
	+	pyrite, from 103.4 to 103.8 quartz breccia zone with 2 - 3% cp.			• • • • • • • • • • • • • • • • • • • •				····		<u>+</u>	
	+•	99.9 - 103.8 1 - 2% py + cp	004	5	99.9	103.8	3.9					
		<u> </u>			· · · · · · · · · · · · · · · · · · ·					— <u> </u>		
114.5	123.3	Alteration zone, gradational contact between dioritic breccia	1		•		+					
	1	and granodioritic breccia, increase in potassium feldspar over len	gth					- in		+		
	+		<u> </u>								+	
123.3	133.0	Granodiorite breccia with 4-3" quartz veins, moderately chloritic						4				
		along fracture seams.										
		123.3 - 128.3 tr - 1% py	:004	6	123.3	128.3	5.0					
		128.3 - 133.0 tr - 1% py	004			133.9						
	1				1	·						

				PROJECT	:		HOLE	NO : к.	E. 86-4
		d		<u></u>			PAGE 2		
FROM	то	DESCRIPTION				ANALYTICAL	L RESULTS		
	+		SAMPLE	FROM	<u>•</u> <u>•</u> ••	LENGTH Cu(ppm)	Zn (ppm)	Ag (ppm)	Au (pp b)
	• • • • • • • • • • • • • • • • • • •			;			- .	-+	
133.0	171.6	Intermediate to mating in the store veuessional		·	· · · · · · · · · · · · · · · · · · ·				
	<u> </u>	ilative, as indicated by a narrow bedded white quarks wein 3"							
	•	wide with 2 - 3% cp. Occassional flek pyrite throughout.							· · · · · · · · · · · · · · · · · · ·
		171.6 end of hole	<u> </u>						
					·	······································	<u> </u>	····	
	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	<u></u>			······			
					·····			_	······································
_	•								
			······						
				·····			· · · · · · · · · · · · · · · · · · ·		
··· _ ·····									
	••								
					:				
	;			····+···		·····	· · · · · · · · · · · · · · · · · · ·		
							· · · · · · · · · ·		
	+					-			
									+
			1						·····
	ļ								
									<u> </u>
	<u>+</u>							· •	· · · · · · · · · · · · · · · · · · ·
									+
	ļ							+	
	 			·····	·				
	<u> </u>								
- 	<u> </u>			- +					•
	<u> </u>								•
	+								<u> </u>

				INCLINAT	ION TESTS			1			
27.NO 17		DEPT	H DIP	DEPTH	DIP	DEPTH	DIP_		NO:	•E. 86-5	
CING EF	RINGIUN .	RESOURCES INC.	- 45						K	•E• 86-5	-
LOCATIO	N: Cheste	r Twp. GRID: L.2600S, 50'E ELEVATION:						PROJECT:			
LENGTH	333.3	HORIZ: 235.0 VERT: 235.0 AZIMUTH: 045 CORE SIZE: BQ						STARTED:			
RECOVE	RY: 95%	LOGGED BY: Neil Novak DATE: September 7 1986									
SPON	' TO	DESCRIPTION					HALYTICAL				
			SAMP	LE FRON	to	LENGTH	Cu (pp m) Z = (pp#)	Ag (100 m)	Au (ppb)	
)	62.7	Overburden								· · · · · · · · · · · · · · · · · · ·	
52.7	82.4	Diorite, medium grained phaneritic, grey plagioclase (feldspar) in									
		a fine grained aphanitic groundmass of potassium feldspars and									
		biotite, slightly altered to chlorite, minor pyroxenes as dark									
		green to black platy clusters, occassional narrow 2" quartz veins									
		- at verious angles to C.A.									
						······				·	
32.4	83.4	Granodiorite breccia, medium grained phaneritic. Potassium feldspa					····-				
		predominate in unit giving overall orange coloration, minor pyri	te				· · · · · · · · · · · · · · · · · · ·				
33.4	158,5	Diorite to granodiorite potassium feldspars in same abundance with								· · · · · · · · · · · · · · · · · · ·	
		sodium feldspars, quartz eyes (blue) poorly developed, occassional									
		flek pyrite throughout, minor quertz cerbonete veinlets(2") crossi	ng								
		C.A. rendomnly, intermediate tuff xenolith with quartz vein at 116	.6	····							
		to 118.0, fracture zones at 109.5 - 111.0 and 115.0 - 116.5, bioti	te							i	
		altered to chlorite throughout.									
		116.6 - 118.0 2 - 3% cp + py	0048	116.6	1180_	1.4	-			· · · · · · · · · · · · · · · · · · ·	
158.5	162.0	Diorite fine grained aphanitic with quartz wein, entire unit fract	urod		<u> </u>				1	•	
		minor pyrite throughout.			····						
		158.5 - 16?.0 tr - 1% py + cp	0049	.158.5	162.0	3.5					
62.0	189.7	Diorite to granodiorite as above (83.4 - 158.5) slightly more gran	· · · · · · · · · · · · · · · · · · ·								
	10/./	as at 174.0 to 174.5.	L L L C			··········	· · · · · · · · · · · · · · · · · · ·		+	++	
						1					
89.7	212.0	Granodiorite breccia fractured with minor quartz vein infilling 1/2"									
	<u> </u>	fractures with pyrite and chalcopyrite. Fracture zone at 201.8 - 20)3.0				4				
		189.7 - 193.7 tr - 1% py	0050	189.7	193.7	4.0				<u></u>	
		193.7 - 198.0 tr - 1% py + cp	0051	193.7	198.0	4.3					
12.0	259.0	Diorite, fine grained aphanitic, biotite extremely altered to chlored	-							+	
	207.0	itic regged fregments, numerous quertz cerbonete veinlets crossing		e					+	++	
		C.A. Narrow sulphide zone (py + cp) at 221.7 to 222.5 aligned at 30								++	
	-+	C.A. paralleling thin 2" quartz vein.	/				4 		·	++	
	1	i o've hererrervik furn 2. doeres velu.					1			1	

				PROJECT:						•E. 86-5
								PAGE 2		
FROM	TO	DESCRIPTION	SAMPLE	FROM	TO		Cu(ppm)	RESULTS Zn (ppm)	Ag (ppm)	Au (pp b)
259.0	283.4	Granodiorite medium grained phaneritic potassium feldspars are	1							
		predominate giving overall -i-1		1	1	1	19			
		to chlorite, numerous quartz veins throughout, assimilative dioritic			;					
	••••••••••••••••••••••••••••••	masses throughout, along with disseminated sulphides.					·····			
	•••••••••••••••	259.0 - 264.0 tr 1% py + cp (1 Q.V.)	0052	259.0	264.0	5.0				
	•	264.0 - 269.01 - 3% py + cp (8 Q.V.)	0053		1269.0		÷			
	i	$269.0 - 274.0 1 - 3\% \text{ py} + \text{cp} + \text{mo} (6 \text{ Q} \cdot \text{V} \cdot)$	0054	269 0	275.0	5 0				
		274.0 - 280.0 tr - 1% py + cp (4 Q.V.)	0055		280.0					
·	•	$\frac{274.5 - 285.0 \text{ cf} - 17.59 - \text{cb} (4.9.7)}{280.0 - 283.4 \text{ tr} - 1% \text{ py} + \text{cp}}$	0055	280.0					· - +	
		200.0 - 200.4 CI - 17 BV - CB	0000	200.0	203.4	.4			·	
83.4	233.3	Diorite medium grained phaneritic sodium · feldspars dominant over								
·····	· · · · · · · · · · · · · · · · · · ·	potassium feldspars giving overall grevish appearance, minor chlor-		· · · · · · · · · · · · · · · · · · ·						
		itization of biotite fleks, minor brecciation with occassional								:
	•	quartz veins, no sulphides	•							
		323.3 end of hole								
······································	• • • • • • • • • • • • • • • • • • •									· · · · · · · · · · · · · · · · · · ·
										1
	·		*			÷		-		
							÷	· · · · · · · · · · · · · · · · · · ·		
							:			
				_		1	4			· · · · · · · · · · · · · · · · · · ·
				-+	+					
						• •	H			······································
							1			
										· · · · · · · · · · · · · · · · · · ·
					L					·
<u></u>					·					
									·	· · · · · · · · · · · · · · · · · · ·
						-			+	
	ii-			····•						·
·····			and the second				Name of the second			
					+					
				-+		+	·			·
			↓					- E -		1

<u></u>				INCLINATI	ON TESTS			1			
ł		DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE	NO: T	K.E. 86-6	
KING EF	RRINGTON	RESOURCES INC. COLLAR	- 45							(*************************************	
LOCATI	ON:Cheste	r Twp. GRID: L. 2600S, 460'W ELEVATION:						PROJECT			
LENGTH	: 254.1'	HORIZ: 185.0' VERT: 185.0' AZIMUTH:225 CORE SIZE: 3Q	••••••	· · · · · · · · · · · · · · · · · · ·		·		STARTED:			
RECOVI	FRY 95%	LOGGED BY: Neil Novak DATE. Sentember 0 1006	1					I FINISHED:			
L			4			A	NALYTICAL				
FROM	то	DESCRIPTION	SAMPL	E FROM	TO) Z = (pp=)	Ag (ppm)	Au (apb)	
0	16.5	Overburden						·····	-+		
16.5	53.2	Felsic pyroclastic tuff, well foliated with numerous cherty quartz								· · · · · · · · · · · · · · · · · · ·	
İ		beds which are very thin, mildly fractured at 36.0 feet minor car-		·····					-		
		bonate beds (tuffaceous) which are highly brecciated, with individua	1						·		
ļ	·····	beds crenulated and warped, extremely cherty at 41.0 to 42.2							· · · · · · · · · · · · · · · · · · ·		
53.2	87.9	sharp contact with above unit, medium grained diorite breccia, with							-i	· · · · · · · · · · · · · · · · · · ·	
		occassional narrow quartz vein with sodium feldspar prevalent. frac-									
		ture zone at 74.3 to 78.2 with minor sulphides.					······································	••	···		
		61.0 - 67.0 1 - 2% cp + pv (Q.V. + ank)	0057	61.0	67.0	6.0	•	· · · · · · · · · · · · · · · · · · ·			
		67.0 - 71.0 1 - 2% cp + pv (2 Q.V. + enk)	0058	67.0	71.0	4.0					
	-	74.3 - 78.2 1 - 2% py	0059	74.3	78.2	3.9	1				
87.9	90.0	Quartz vein with tr 1% cp, plus assimilated diorite, highly									
		chleritic	· · · · · · · · · · · · · · · · · · ·				·	· · · · · · · · · · · · · · · · · · ·			
		87.9 - 90.0 tr - 1% cp	0060	87 .9	90.0	2.1					
							· · · · · · · · · · · · · · · · · · ·			-	
90.0	110.5	Diorite, medium grained phaneritic, mildly chloritic along fractures				<u> </u>					
		98.5 - 103.0 1 - 2% py + cp + asp	0061	98.5	103.0	4.5	4				
									•		
116.5	110.7	mefic tuff inclusion		·····							
110.7	111.0	brecciated fractured diorite with 2-3% cp	· · · · · · · · · · · · · · · · · · ·	. <u> </u>	· · · · · · · · · · · · · · · · · · ·					1	
111.0	112.3	very fine grained aphanitic diorite									
					······				÷		
112.3	119.8	medium grained phaneritic dioritic breccia with abundant sulphides						····	ļ	+	
		throughout, highly silicious, quartz vein at 118.0					+		÷		
		<u>112.3 - 117.0 2 - 3% cp + py</u>	0062	112.3	117.0	4.7				++-	
		117.0 - 119.8 5 - 10% cp + py	0063	117.0	119.8	2.8			i	<u> </u>	
					·····				+	+	
119.8	127.8	Intermediate pyroclastic tuff, well foliated, bedding slightly								+	
		disrupted extremely chloritic on both assimilative contacts top					+		<u>+</u>	<u>∔</u> ↓	
	<u> </u>	and bottom.	i i i i i i i i i i i i i i i i i i i					<u> </u>	1		

______ _ _____ _ ____ .

				PROJECT:				HOLE	NO:K.	E. 86-6	
								PAGE 2	of 2		
FROM	то	DESCRIPTION	1				ALYTICAL				
	*****		SAMPLE	FROM	TO	LENGTH	Cu(ppm)	Zn (ppm)	Ag (ppm)	Au (pp b)	
127.8	140.3	Medium grained phaneritic dioritic breccia, with minor pyrite as individual fleks, slightly chloritic	i I "		;	,	*				
140.3	141.2	Intermediate pyroclastic tuff well foliated with minor carbonate				······					
141.2	185.7	Medium grained phaneitic diorite, bleached (altered) at top of unit, generally increasing in chlorite alteration and crystal size Short granodioritic section at 150.1 to 151.2, occassional flek pyrite throughout and along fractures.									
185.7	196.1	Intermediate pyroclastic tuff inclusion with highly contorted carbonate rich beds.				÷					
196.1	212.0	Medium grained phaneritic diorite, moderately fractured, and slightly chloritic, one 2" quartz vein at 201.8 with speck cp. 201.0 - 203.0 tr cp (Q.V.)	0064	201.0	203.0	2.0	· · · · · · · · · · · · · · · · · · ·				
212.0	219.0	medium grained granodiorite, moderately fractured with three minor 2" guartz veins and an occassional flek of pyrite throughout.								· · · · · · · · · · · · · · · · · · ·	
219.0	254.1	Medium grained phaneritic diorite, mildly fractured throughout with an occassional flek pyrite. 234.3 - 239.3 1 - 2% py 239.3 - 244.6 4 - 5% py + cp (last 6" 20% cp + py in Q.V.) 244.6 - 248.6 1 - 2% py + cp 248.6 - 251.6 2 - 3% py + cp	0065 0066 0067 0068		1	5.0 5.3 4.0 3.0					
		254.1 end of hole									
								· · · · · · · · · · · · · · · · · · ·			

					INCLI	ATION	TESTS			<u> </u>		
			PTH	DIP	DEPT	H	DIP	DEPTH	DHP	HOLE	NO: K.	E. 86-7
KING E	FRINGION	PESOURCES INC.		- 45	1							
LOCATIO	N: Cheste	E TWD; GRID: L. 2800S, 140W ELEVATION:			1					PROJECT:		
LENGTH:	264.0'	HORIZ: 190 . VERT: 190 . AZIMUTH: 045 CORE SIZE: BQ							•	STARTED:		
RECOVER	RY: 95%	LOGGED BY: Neil Novek DATE: September 9, 1986	i						1			
	10						· · · · · · · · · · · · · · · · · · ·		HALYTICAL			
FRUM		DESCRIPTION		SANPL	E FI	ION	TO	LENGTH	Cu(ppm)	Z = (pp=)	Ag (ppm)	Au (998)
	50.0									·		• • • • • • • • • • • • • • • • • •
_0	52.0	Overburden										
52.0	142.5	Medium grained phaneritic diorite, mildly fractured, slightly		.		*	<u></u>				~ <u>~</u>	
		chloritized along fracture , most biotite altered to chlorite		······································								
		Sodium feldspars dominant as grey ragged crystals, potassium										
		feldspars forming aphanitic groundmass, minor quartz carbonate										
		veinlets plong fractures. Trace of pyrite at 56.3 to 56.4, minor		<u>.</u>			• • • • • • • • • • • • • • • • • • •					
.		<u>shear zone at 83.0 to 84.5, }" quartz vein at 111.0, 113.1, &</u>		-					••••		· · · · · · · · · · · · · · · · · · ·	!
<u> </u>	·	113.8, no sulphides apparent. Tr. pyrite at 136.0					······································				• • • • • • • • • • • • • • • • • • • •	
4/0 5	470.0	n () 1 () la siti dissita madagatala ablaniti									······	· · · · · · · · · · · · · · · · · · ·
142.5	173.0	Brecciated medium grained phaneritic diorite, moderately chloriti potassium feldspars becoming more dominant, numerous fractures cr					•		······································	·····		
		cutting core exis. From 171.0 to 173.0 highly fractured shear zon		·		••	······································	······	····			
		CULLING COLE FXIS. FIOM 1/1.0 CO 1/0.0 HIGHLY HICCORCE SHOFT ZON	10.									
173.0	177.7	Altered intermediate tuff, well foliated aligned parallel to C.A.	•	•••••							-	
		extremely fractured, with minor quartz (175'), and tuffaceous bed		· · · · · · · · · · · · · · · · · · ·	···		- 4	······································				
		which are slightly crenulated.		*								
177.7	226.8	Medium grained phaneritic diorite, with short silicified granodic		<u>.</u>								
<u></u>		sections, moderate to strong chloritization throughout. Occassion	191	+		- <u></u>		: 	1			
		flek of pyrite, mildly breccipted.					+107-0	_ + a _ /			<u></u>	
······································	·	191.8 - 194.2 tr - 1% py		0069	191	• 8	194.2	2.4				
226.8	227.3	Intermediate tuff xenolith		1		·	<u> </u>		<u> </u>		+	
220.0	221.3	Incermentate curr Xenorith		·*·····					1. ••••••••••••••••••••••••••••••••••••		+	
227.3	233.3	Medium grained diorite (as above 177.7 to 226.8)		<u>+</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>			- ii		+	
<u> </u>									-+			
233.3	234.6	Intermediate tuff xenolith		- Heren ova - 1								
						•••••••		······				
234.6	264.0	Medium grained diorite, chloritic along fractures.										
										_		
		264.0 end of hole	<u> </u>	4. 						_		
• •	ļ											· · · · · · · · · · · · · · · · · · ·
				÷		·····-	- <u>-</u>		+			
				1								

		, Construction of the second			ON TESTS					
KING EP	RINGTON	PESOURCES INC.		DEPTH	DIP	DEPTH	DIP	HOLE	NO:	K.E. 86-8
		COLL	AR -60				···	· · · · · · · · · · · · · · · · · · ·		
LOCATIO	N: Chest	er Twp. GRID: L.2600S, 940'W ELEVATION:		· -+				PROJECT:		
LENGTH:	194.7	HORIZ: 95' VERT: 165.0' AZIMUTH: 225 CORE SIZE: BQ						STARTED:		
RECOVE	RY: 95%	LOGGED BY: Neil Novek	1			,		FINISHED:		
FROM	то	" DESCRIPTION					NALYTICAL			····
			SAMPL	E FROM	TO	LENGTH	Cu (pp m)) Z#(ppm)	Aş (ppm)	Au (ppb)
)	13.2	Overburden				·····			·····	······································
13.2	43.5	Medium grained phaneritic diorite with numerous fractures near ton								· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	oxide stained (surface weathering) unit slightly brecciated and								
	·	chloritized, small clots chalcopyrite at 18.5' over 2", narrow							••••••	
	; 	quertz vein et 31.3, minor sulphides along fractures nerrow 1"							1 	
		quartz vein at 41.3' with minor chalcopyrite.					- -			`
		$17.5 - 19.5 \text{ tr} - 1^{\circ} \text{ cp}$	0070	17.5	19.5	2.0				
43.5	54.0	eltered felsic to intermediate pyroclastic tuff mildly fractured,	·····					·····		
		poorly foliated, mildly chloritic.							+	
54.0	85.8	medium grained phaneritic diorite breccia with short fine grained						1		
		aphanitic diorite sections (63.0 to 66.0) short granodioritic	· · · · · · · · · · · · · · · · · · ·					: 		
		sections, 2" quartz vein at 56.1 with 1%chalcopyrite.						· - · · · · · · · · · · · · · · · · · ·		····
		54.0 - 56.4 tr - 1% cp	0071	54.0	_56.4	2.4				
<u> </u>		79.7 - 84.8 1 - 2% cp	0072	79.7	84.8	5.1			+	
35.8	86.1	Mafic tuff inclusion, with abrupt assimilative contacts.								
36.1	87.7	Medium grained phaneritic diorite breccia as above (54.0 to 85.8)					+	••••	+	
37.7	88.5	Mefic esh tuff xenolith	· · · · · · · · · · · · · · · · · · ·							
38.5	139.0	Intermediate to felsic pyroclastic tuff, poorly foliated, individu	2]							
	1.57.00	quartz clasts appear aligned along individual beds, first ten feet				···-+				
	1	altered (sericitized) and mildly fractured, narrow 2" chert bed at								
		90.6 with minor chelcopyrite.						al the sale		
		105.0 - 108.4 tr - 1% cp	0073	105.0	108.4	3.4	81 (FF)			
		125.0 - 128.0 2 - 3% py + cp	0074	125.0	128.0	3.0	1			
		128.0 - 132.0 2 - 3 ¹ / ₂ py + cp	0075	128.0	132.0					
		136.4 - 139.0 3 - 5 ^{°′} py + cp	0076	136.4	139.0	2.6		-		
139.0	151.0	Intermediate ash tuff with contorted carbonate interbeds with			·				+	
									+	- <u>+</u> <u>+</u>

			and the second se	PROJECT:				HOLE	NO: K	.E. 86-8
			-					PAGE 2	of 2	
FROM	то	DESCRIPTION	SAWPLE	FROM	T 0	AA LENGTH	Cu(ppm)	RESULTS Zn (ppm)	Ag (ppm)	Au (pp b)
	•	sulphides evident in some beds with minor carbonate rich interbeds.	- 	14/.8	151.0	3.2	n			
151.0	167.0	Medium grained phaneritic dioritic breccia, moderately chloritized.	-+	· · · · · · · · · · · · · · · · · · ·						
167.0	171.0	Intermediate tuff, highly brecciated, charty quartz bed at 168.0 to 169.0, highly chloritic and brecciated. 167.0 - 171.0 3 - 4% cp + py	0078	167.0	171.0	-4.0			1	
171.0	194.7								:	
		194.7 end of hole.								· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·	•			
			1 							
									-	
			-							
									-	
									-	

(INCLINATIO	N TESTS					
			DEPTH	DIP	DEPTH	DIP	DEPTH	DIP	HOLE	NO: K.E	06.0
KING ER	RINGTON R	ESOURCES INC.	COLLAR	-60					IIVEE	K.E	. 80-9
LOCATIO)N: Chester	Twp. GRID: L.2500S, 980W ELEVATION:							PROJECT		
LENGTH:	185.0'	HORIZ: 90' VERT: 165 AZIMUTH: 225 CORE SIZE: BQ		······································					STARTED:		
RECOVE	RY: 95%	LOGGED BY: Neil Novak DATE: Sentember 10 1006					,		FINISHED:	-	
	' TO		·			······	A	NALYTICAL	RESULTS		
FROM	10	DESCRIPTION		SANPLE	FROM	TO	LENGTH	Cu (pp m)	Z# (###)	Ag (ppm)	Au (ppb)
······································						·····					·
0	13.2	Overburden		•• ·• ·• ·						•	
13.2	22 5	Medium greined pheneritic diorite breccie wtih sodium feldsper	crvs-					·····			
- <u>L.J. 6</u>		tals dominant throughout, minor fracturing with surface oxidati								· · · · · · · · · · · · · · · · · · ·	
	- •	Plong fractures.								······································	
											······································
23.5	24.2	Fine preined intermediate to felsic ash tuff well foliated at 6	50 C.A.				·	·····		· · · · · · · · · · · · · · · · · · ·	
										· · · · · · · · · · · · · · · · · · ·	
24.3	69.5	Medium grained phaneritic diorite with some evidence of alignme							····		·
		sodium feldspar crystals with small quartz carbonate veinlets 2	? - 3''							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	r	wide totalling four.								+	
											·····
69.5	72.2	medium grained diorite with assimilative contacts with quartz v	vein et		_					+	
		70.0 containing 3 - 4% chalcopyrite.		0079	69.5	72.2	2 7				· · · · · · · · · · · · · · · · · · ·
	+	69.5 - 72.2 2 - 4% cp + py		0079	09.5	12.2	2.7	÷	······································	+	·····
72.2	75.0	Altered felsic to intermediate tuff and breccia with minor pyri	to	•				1. H			
12.2	13.0	throughout with short cherty sections.	LLE	•					_	· · · · · · · · · · · · · · · · · · ·	
		72.2 - 75.0 1 - 2% cp + py		0080	72.2	75.0	2.8		- -	++	
										· · · · · ·	
75.0	78.4	medium greined diorite, mildly chloritized.		****	-•			#			
							· · · · · · · · · · · · · · · · · · ·			·	
78.4	127.4	Fine grained intermediate tuff with poor foliation and contorte	ed								
		carbonate beds, with occassional fleks of euhedral pyrite throu	ighout.								
					·····						
127.4	144.2	Fine grained felsic pyroclastic tuff altered with short sulphid	le	<u> </u>							
		rich breccia zones.									
		127.4 - 131.4 2 - 3 % cp + py		0081	127.4	131.4	4.0			+	
	+		: • • • • • • • •	i		·					
146.2	155.5	Medium grained phaneritic diorite breccia, with biotite being a									
		to chlorite, minor short sections with pyrite and chalcopyrite	1n-		-	· · · · · · · · · · · · · · · · · · ·			-	+	
	+	filling along fractures.	+	0002	1/0 2	152 2	2 0			<u> </u>	
j		149.2 - 157.5 1 - 2% py + cp		0082	149.2	152.2	13.0	+	-+	<u> </u>	
	- -									<u>↓</u> ↓	
L								1	1		

· ·

_		
	~	

-				PROJECT:				HOLE	NO:K.E	. 86-9	
								PAGE 2	of 2		
FROM	то	DESCRIPTION	SAMPLE	FROM	<u>, to</u>		YTICAL		Ag (ppm)	Au (pp b)	
155.5	155.8	Intermediate ash tuff xenolith.	ä		;					<u> </u>	
13.0	101./	" Medium grained phaneritic diorite breccia as above (144.2 to : 17%.%)			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
161.7	165.1	Quartz carbonate vein, abrupt contacts.						·	·		
		161.7 - 165.1 tr - 1% cp	0083	161.7	1165.1	3.4					
165.1	185.0	Medium grained phaneritic diorite with minor white quartz vein at 167.2 to 168.0 crossing core at 20 C.A. approximately 1" wide.	·		-						
		185.0 end of hole.		·····							
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				······································	
			•	1	<u></u>	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	- -			·			
								: •	+		
					-			· ·		· · · · · · · · · · · · · · · · · · ·	
			*						+	· 	
					+			+			
					-						
					+						
					*					+	
			<u> </u>	·						<u>↓</u>	
					+				-	· · · · · · · · · · · · · · · · · · ·	
			1								

Dir Dir HOLE NO: KING EPPINGTON RESOLPCES INC. LOCATION: Chester Twp. GRID: L.2700s, 950 W ELEVATION: LOCATION: Chester Twp. GRID: L.2700s, 950 W ELEVATION: LENDTH: 184.8 MORIZ: VERT: AZIMUTH: 225 CORE SIZE: BQ Adata VICAL RESULTS RECOVERT: 95% LOGGE DRY. Neil Novak DATE: September 11, 1986 Adata VICAL RESULTS PROVECT: To DESCRIPTION Adata VICAL RESULTS PROVECT: Adata VICAL RESULTS PROVECT: TO DESCRIPTION Adata VICAL RESULTS PROVECT: Adata VICAL RESULTS PROVECT: CORE SIZE: BQ Adata VICAL RESULTS Adata VICAL RESU	
LOCATION: Chester Typ. GRID: L.2700s. 950 W ELEVATION: PROJECT: LENGTH: 184.5 HORIZ: VERT: AZIMUTH: 225 CORE SIZE: BQ STARTED: RECOVERY: 95% LOGGED BY: Neil Novak DATE: September 11. 1986 AMALYTICAL RESULTS rnow To DESCRIPTION To LEWATH (RESULTS) As(res) 0 6.6 Overburden To LEWATH (RESULTS) As(res) 6.6 32.4 Medium grained pheneritic slightly chloritic mildly fractured cionine Image: Second fractures for first fifteen feet, writ is mildly breactured cionine Image: Second fractures for first fifteen feet, writ is mildly breactured cionine Image: Second fractures for first fifteen feet, writ is mildly breactured cionine Image: Second fractures for first fifteen feet, writ is mildly fractured cionine Image: Second fractures for first fifteen feet, writ is mildly frac	
LENGTH: 184.8 MORIZ: VERT: AZIMUTH: 225 CORE SIZE: BQ STARTED: RECOVENY: 95% LOGGED BY: Neil Novak DATE: September 11. 1986 Analytical results rnow ro DESCRIPTION EAUPLE reow TO LENGTH Cs(res) Zs(res) As(res) As(res) <t< th=""><th>⁰</th></t<>	⁰
RECOVERY: 95% LOGGED BY: Neil Novak DATE: September 11. 1986 ANALYTICAL RESULTS rRow ro DESCRIPTION SAUPLE rrow TO LENETH Cutage 2 a (pm) Au (pm) 9 6.6 Overburden	
PROM TO DESCRIPTION DAMPLE PROM TO LEMETR Cu(type) Za (yee) As (yee) As (yee) 0 6.6 Overburden	
PROM TO DESCRIPTION DAMPLE PROM TO LEMETR Cu(type) Za (yee) As (yee) As (yee) 0 6.6 Overburden	
0 6.6 Overburden 6.6 32.4 Medium grained pheneritic slightly chloritic mildly fractured diorite. with oxide staining along fractures for first fifteen feet, unit is mildly brecciated with occassional narrow quartz carbonate veinlets as at 24.0 to 24.3 and 31.3 to 31.5. 32.4 59.8 Medium grained granodiorite pheneritic with potassium feldspars dominant over sodium feldspars, occassional quartz carbonate veinlets with a minor plagiclase veinlet at 42.6 transecting core, rock unit 26.4 - 39.6 1 - 27 py 9084 36.4 - 29.6 3.2 57.5 - 59.8 1 - 27 py + asp 0085 57.5 59.8 2.3	
6.6 32.4 Medium grained phaneritic slightly chloritic mildly fractured diorite.	· · · · · · · · · · · · · · · · · · ·
5.6 32.4 Medium grained phaneritic slightly chloritic mildly fractured diorite.	-
 with oxide staining along fractures for first fifteen feet, unit is mildly brecciated with occassional narrow quartz carbonate veinlets as at 24.0 to 24.3 and 31.3 to 31.5. 32.4 59.8 Medium grained granodiorite phaneritic with potassium feldspars dominant over sodium feldspars, occassional quartz carbonate veinlets with a minor plagioclase veinlet at 42.6 transecting core, rock unit changes to diorite over short sections. 36.4 39.6 3.2 57.5 - 59.8 1 - 2% py + esp 92.7 medium grained diorite phaneritic breccia, moderately chloritic with occassional flek of pyrite. From 90.8 to 91.8 minor py along fractures 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds, 	
milely breccisted with occassional narrow quartz carbonate veinlets as at 24.0 to 24.3 and 31.3 to 31.5. 32.4 59.8 Medium grained grenodiorite phaneritic with potassium feldspars dominant over sodium feldspars, occassional quartz carbonate veinlets with a minor plagioclase veinlet at 42.6 transecting core, rock unit changes to diorite over short sections. 36.4 - 39.6 1 - 2% py 57.5 - 59.8 1 - 2% py + asp 0085 59.8 92.7 medium grained diorite phaneritic breccia, moderately chloritic with occassional flek of pyrite. From 90.8 to .91.8 minor py along fractures 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	
as at 24.0 to 24.3 and 31.3 to 31.5. 32.4 59.8 Medium grained granodiorite phaneritic with potessium feldspars dominant over sodium feldspars, occassional quartz carbonate veinlets with a minor plagioclase veinlet at 42.6 transecting core, rock unit changes to diorite over short sections. 36.4 - 39.6 1 - 2% py 0084 36.4 39.6 3.2 57.5 - 59.8 1 - 2% py + asp 0085 57.5 59.8 2.3 59.8 92.7 medium grained diorite phaneritic breccia, moderately chloritic with occassional flek of pyrite. From 90.8 to .91.8 minor py along fractures 0085 57.5 59.8 2.3 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds, 0085 0085 0085 0085	
32.4 59.8 Medium grained granodiorite phaneritic with potassium feldspars dominant over sodium feldspars, occassional quartz carbonate veinlets with a minor plagioclase veinlet at 42.6 transecting core, rock unit changes to diorite over short sections. 0084 36.4 39.6 3.2 36.4 39.6 1 - 2% py 0085 57.5 59.8 7.3 59.8 92.7 medium grained diorite phaneritic breccia, moderately chloritic with occassional flek of pyrite. From 90.8 to 91.8 minor py along fractures 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	
dominant over sodium feldspars, occassional quartz carbonate veinlets with a minor plagioclase veinlet at 42.6 transecting core, rock unit changes to diorite over short sections. 36.4 - 39.6 1 - 2% py 57.5 - 59.8 1 - 2% py + asp 0085 57.5 59.8 2.3	_4
dominant over sodium feldspars, occassional quartz carbonate veinlets with a minor plagioclase veinlet at 42.6 transecting core, rock unit changes to diorite over short sections. 36.4 - 39.6 1 - 2% py 57.5 - 59.8 1 - 2% py + asp 0085 57.5 59.8 2.3	_
with a minor plagioclase veinlet at 42.6 transecting core, rock unit changes to diorite over short sections. 36.4 - 39.6 1 - 2% py 57.5 - 59.8 1 - 2% py + asp 0085 57.8 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	+
changes to diorite over short sections. 36.4 - 39.6 1 - 2% py 57.5 - 59.8 1 - 2% py + asp 0085 57.5 59.8 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds.	
57.5 - 59.8 1 - 2% py + asp 0085 57.5 59.8 7.3 59.8 92.7 medium grained diorite phaneritic breccia, moderately chloritic with occassional flek of pyrite. From 90.8 to .91.8 minor py along fractures 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	
59.8 92.7 medium grained diorite phaneritic breccia, moderately chloritic with occassional flek of pyrite. From 90.8 to .91.8 minor py along fractures 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	
92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	
occassional flek of pyrite. From 90.8 to .91.8 minor py along fractures 92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	
92.7 93.7 Intermediate tuff and breccia well foliated with contorted beds,	
	+
	1
93.7 95.2 Medium grained diorite as above (59.8 to 92.7)	
95.2 97.2 Intermediate tuff, well foliated at 65 C.A.	
97.2 115.0 Medium grained diorite breccia, with a minor sulphide zone.	+
97.2 119.0 Rectain greined diofice breccia, with a minor surprice zone. 97.2 - 100.4 tr - 1% py 0086 97.2 100.4 3.2	
115.0 136.6 Intermediate tuff with carbonate beds contorted and discontinuous,	-
roughly aligned at 60 C.A.	
	+
136.6 149.0 Medium grained dioritic breccia, extremely chloritic with ragged	<u> </u>
chlorite fregments aligned_11.60.C.A. (possible pyroclastic tuff) with occassional flek pyrite throughout.	+
140.8 - 144.0 tr - 1% py 0087 140.8 144.0 3.2	+
	+

ر

.

				ROJECT			HOLE	NO:K.	E. 86-10
							PAGE 2	of 2	
FROM	то	DESCRIPTION	SAMPLE	FROM	<u> </u>		CAL RESULTS opm) Zn (ppm)		
149.0	156.9	Fine grained intermediate tuff with carbonate interbeds which are	ti	;					
	1	contorted and broken.	ļ	,	• • • • • • • • • • • • • • • • • • • •	1			
156.9	160.9	Medium grained diorite breccia.	······		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •			
160.9	178.3	Very fine grained intermediate ash tuff with short carbonate sect-	.		, 	· · · · · · · · · · · · · · · · · · ·			
		ions with an occessional flek of pyrite, carbonate beds are highly							
		contorted and discontinuous, with minor silicious brecciated zones as at 177.8 to 178.3							
			•	·	•				·····
178.3	184.8	Medium grained dioritic breccia with mild chloritization throughout.				1			· · · · · · · · · · · · · · · · · · ·
	•	184.8 end of hole.	*	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·			
······································	• • • • • • • • •		• •	· · · · · · · · · · · · · · · · · · ·	ļ				
	;		•			•	······································		
	; ;								
	·					• • • • • • • • • • • • • • • • • • •			
			·····				· · · · · · · · · · · · · · · · · · ·	······································	
			• •			· · · · · · · · · · · · · · · · · · ·			
						+			
						• • • •			
									-
						<u> </u>			
						·			
						<u>}</u>			
						ļ	·		÷

					INCLINATIO	N TESTS					
KINC FOR			DEPTH	DIP - 45	DEPTH	DIP	DEPTH	DIP	HOLE	NO:	K.E. 86-11
			COLLAR	-45							
		er Twp. GRID: L.2600S, 940W ELEVATION:							PROJECT		
LENGTH:	155.1	HORIZ: 105' VERT: 105 AZIMUTH: 225 CORE SIZE: BQ		:					STARTED:		
RECOVER	Y :957	LOGGED BY: Neil Novak	1	I		1			HINISHED:		
FROM	то	DESCRIPTION					and the second se		RESULTS		
	· · · · · · · · · · · · · · · · · · ·			SAMPLE	FROM	то	LENGTH	Cu(ppm) Zn(pp#)		Au (ppb)
0	13.2	Overburden				······································					
13.2	41.9	Medium greined phaneritic diorite, highly brecciated and fractu	red	•····						-	· · · · · · · · · · · · · · · · · · ·
	·	with surface oxidation down to 26,4 feet core length., occassio	onal	<u></u>	·	· · · · · · · · · · · · · · · · · · ·				+	
.	· · · · · · · · · · · · · · · · · · ·	flek pyrite throughout.	·····	0088	21 0	.37.0	6.0				
	•	31.0 - 37.0 2 - 3% py + cp			31.0	37.0	6.0				÷
41.9	56.3	Altered intermediate to felsic lapilli tuff with quartz clasts	rand-	25							
-	·	_omly oriented in the tuffaceous matrix, slightly sericitic with	small								······
	, j	quartz vein at 52.5 to 52.9 and at 56.2 to 56.3						· · · · · · · · · · · · · · · · · · ·		· + · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
56.3	89.9	Medium grained phaneritic diorite breccia.		- <u> </u>							
		Merom Breinee preneries crotice precess		· · · · · · · · · · · · · · · · · · ·				-			
89.9	110.5	Fine grained felsic to intermediate tuff, foliated at 70 C.A.									i :
		92.0 - 95.0 3 - 4% cp		0089	92.0	95.0	3.0				i
110.5	131.7	Intermediate ash tuff with numerous carbonate beds highly conto	rted	· · · · · · · · · · · · · · · · · · ·	····		·····				-
		and discontinuous.		· • · · · · · · · · · · · · · · · · · ·							
131.7	155.1	Medium grained diorite, mildly chloritic.								· · · · · · · · · · · · · · · · · · ·	
		155.1 end of hole.			···•			4			
				······							
				+						÷	·
				h						+	
				······································			···· i	<u> </u>			
					······································		· · · · · · · · · · · · · · · · · · ·			÷	
				•							
			<u> </u>								+
	· · · · · · · · · · · · · · · · ·			1				1			
`				H							
				+				1			
					·			1 1 1			

APPENDIX 111

Work Program December 3 to December 17, 1986 -Trenching, Mapping, Sampling, Bulk Sampling -Assay Certificates

- NOMINEX --

M MO TO: Mr. George Ferry and Mr. Neil Novak M MO FROM: Mr. Joe Bankowski, B.SC (Geologist) D te: December 20, 1986 R : KING ERRINGTON RESOURCES LTD. TYSTAR PROPERTY, GOGAMA, ONTARIO

PROGRAM DESCRIPTION, DECEMBER, 1986

A short program of bulldozer stripping, rock-trenching, sampling a d geology was conducted by J. Bankowski and R. Leliever during the p riod December 8 to 15 inclusive. A 2 to 3 ton bulk sample was also r moved for metallurgical analysis and will be submitted in the near f ture.

A total area of approximately 400' by 150' was stripped by a D-7 b lldozer yielding a total exposure of about 350' by 70' centered on the z ne of mineralization (Figure 1). The bulldozer was contracted from P oneer Constr., Sudbury and completed a total of 30 hours machine and o erator time.

Subsequent to the D-7 stripping, a total of 6 trenches were blasted a ross the minerplized structure at a spacing of roughly 75 feet and c vering a section of about 450 feet in length. A total of 23 rock-chip s mples were taken from the trenches and immediate area and were submitted f r assay for Au, Ag and Cu.

A representative bulk sample estimated at 2 to 3 tons in weight w s removed from the northermost trench (T-"A") and stored at the C.G.M. c mp.

A baseline with 50 foot intervals was established on and parallel t the mineralized zone at a bearing of 148° Azimuth (6°W declin.) to a d in accurate trench and sample locations and mapping.

NOMINEX

T ENCH AND SAMPLE DESCRIPTIONS

1 T-"A" (BL-oto6S)

This trench has a total length of about 14 feet at an average depth o 2' and strikes at 64° Azimuth. Four (4) chip-channel samples and 3 s lected samples were taken from this trench as follows:

-2-

S mple #457 - selected sample of quartz with abundant disseminated to m ssive clots of chalcopyrite, arsenopyrite, bornite, pyrite and chalcocite o er the main shear zone and representing a width of about 4".

S mple #458 - same as last sample but with less quartz and more sulphides.

S mple #459 - selected sample of dense, extremely carbonatized material w th abundant sulphides adjecent to samples 457 and 458 in the hanging (ast) well and representing about 8" in width.

S mple #465 - continuous channel sample over 1.6' of main shear zone composed o heavily carbonate and silics altered material with abundant disseminated t massive cpy., arsenopy, born., py and chalcocite. Last 4" (next to h nging-wall) of quartz and sulphides.

S mple #466 - continuous channel sample over 1.8' of hanging-wall, east of 1 st sample. Sample is highly carbonatized adjacent to shear grading to m re silicious, less carbonoceous away from shear. Sulphides are abundant i the carbonaceious material and drop off in quantity with increasing s licification away from the shear.

S mple #467 - discontinuous chip sample over 6.0' of hanging-wall. Moderate s lphides and moderate carbonitization closest to shear grading to siliceous a d with minor sulphides away from shear.

NOMINEX

S mple #468 - discontinuous chip sample over 4.5' of foot-wall west of m in shear (465). Carbonaceous with abundant sulphides grading to s liceous with minor sulphides away from main shear. 2. T-"B" (BL-1+32S)

This trench has a total length of about 17 feet with a depth of about 2 feet and a strike of 56° Azimuth.

One (1) selected sample and 3 chip samples were taken from this trench a: follows:

S. mple #460 - selected sample of quartz with Abundant sulphides from main slear representing e width of about 4".

S mple #469 - discontinuous chip sample over 3.7' of main shear zone. C rbonaceous and silicious with abundant sulphides. Quartz with sulphides a out 4" thick near center of sample.

S mple #470 - discontinuous chip sample over 6.1' of hanging-wall, east of 1 st sample. Carbonaceous with abundant sulphides grading to more s liceous with less sulphides away from min shear.

S mple #471 - discontinuous chip sample over 6.9' of footwall, west of m in shear. Carbonaceous with moderate sulphides grading to more siliceous w th less sulphides away from main shear.

3 T-"C" (BL-2405S)

This trench is about 13.5 feet long, 2 feet deep and trends at 60° A imuth.

One (1) selected sample and 3 chip samples were taken from this t ench as follows:

S mple #461 - selected sample of quartz with abundant sulphides on the main s ear representing a width of about 3-4".

5 mple 472 - discontinuous chip sample over 2.2' of main shear. Carbonaceous
v th abundant to moderate sulphides. Quartz with sulphides over 3-4" near
c inter of sample.

NOMINEX

1 mple #473 - discontinuous chip sample over 4.5' of hanging-wall east of

- 3-

m: in shear. Carbonaceous with moderate sulphides closest to shear grading t: siliceous with minor sulphides away from shear.

- 4-

Simple #474 - discontinuous chip semple over 6.8' of footwallwest of shear. Cirboneceous with minor to moderate sulphides grading to silicious with m: nor sulphides away from shear.

4. T-"D"

This trench is about 14.5 feet long by 2 feet deep and trends at 8^{i} Azimuth.

One (1) selected sample and 3 chip samples were taken from this trench as follows:

Stuple #462 - selected sample of main shear. Some quartz and sulphide.

Stuple #475 - discontinuous chip sample over 2.2' of main shear. Moderate to weak shearing and mineralization.

St ple #476 - discontinuous chip over 2.0' of hanging-wall. Rock has "layered" at learance and abundant ankerite between the layers.

Sr ple #477 - discontinuous chip sample over 10.4 feet of footwall. Mr sive fine-prained, siliceous with minor sulphides.

5. T-"E"

This trench is about 10.5 feet long by 2 feet deep and trends at 48 'Azimuth.

The sheer at this location has weekened considerably and only on sample was taken as follows:

NOMINEX

Sa ple #478 - discontinuous chip sample over 10.4 feet. Shear and sulphide mi eralization fairly weak. Very siliceous with abundant ankerite.

6. T"F" (BL-4+42S)

This trench is about 10.0 feet long by 2 feet deep and trends at 56 'Azimuth.

Again, the shear and mineralization at this area were weak and only two samples were taken as follows:

SF uple #463 - selected sample of main shear and representing about 3" width. Sche quartz with minor sulphides.

Sample #479 - discontinuous chip sample over 9.9 feet. Shear and mineralization weak.

7. Semple #464 - selected sample of mein sheer taken at 0+05E-4+80S shear and mineralization fairly weak. Little quartz, lots of ankerite.

GI DLOGY

The following is a brief description of the geology as noted in T-"A".

The mineralization in T-"A" appears to be related to shearing which s rikes at 148° and dips 65-70° East. Vertical jointing at a strike of 44° w s also noted. Displacement along the shear is hard to establish but the g ometry of the old trench present gives the impression that the hanging w 11 has been slightly uplifted and slickensides were noted.

The host-rock appears to be a quartz-diorite which tends to be medium to coarse grained with heavy quartz and sulphide alteration at the focus of the shear over about 3-4" with a vein-like appearance grading to medium to fine-grained with heavy carbonate and sulphide mineralization for several f et in the hanging-wall and foot-wall of the main shear. Carbonate alteration s ems best developed in the hanging-wall to the shear and in both hanging a d foot-wall, grades to more silicious with less sulphides away from the shear.

IOMINEX

The Au-bearing mineralization appears to be "poddy" and lens-like and could is described as "shoots".

The author has worked in the general area for several years and expirical observation of numerous occurrences suggests that this r ineralization is structurally controlled.

Mineralization is virtually always in shear-zones trending at 90 to 1.0° Azimuth roughly parallel to the regional strike and seems most distense where intersected by faults trending at 150 to 170° Azimuth parallel to the Lake Mesomikenda Fault. These faults are often occupied by diabase dikes.

NOMINEX

ubmitted by:

1

oe Benkowski, B.Sc., Dec. 22, 1986

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments

705 West 15th Street Worth Vancouver, B.C. Canada V7H 1T2

PHONE: (604) 700-5814 DH (604) 988-4524

TELEX: VIA USA 7601067 UC

<u>Certificate of ASSAY</u>

Company:KING- ERRINGION RESOURCES LTD. Project: Attention:G.FIERY File:62-648 Dete:DEC 24/86 Type:RUCK ASSAY

He bereby certify the following results for samples submitted.

Sample Number	AG GZIONME	А9 07/тон	BARO ESO	AU 02710N	CU %	
457	84.0	2.45	1.30	0.038	4.130	
458	80.0	2.33	1.46	0.043	3.680	
459	11.5	0.34	0.68	0.020	0,680	
4 60	28.0	0.82	0.83	0.024	2.240	
461	3.6	0.11	0.26	0.0 08	0.165	
462	0.6	0.02	0.01	0,001	0.113	
433	0,4	0.01	0.02	0.001	0,054	
484	0.2	0.01	0.01	0.001	0.038	
4 e 15	72.0	2.10	0.72	0.021	4.890	
4 Cotto	0.6	0.02	0,01	0.001	0.105	
462	0.2	0.01	0.01	0,001	0.019	
의 X. (+)	3.0	83 J. 1949	0,90	6,026	0.174	
$\mathcal{A}_{\mathcal{L}} (\Phi)$	6.5	4.3 . (1)47) (1)	0.40	0.019	0.600	
4.20	••• B	0.01	0.01	្មុំ ភ្នំ រង្វ	0.061	
471	O . 2	0.0 <u>1</u>	0.01	(թ. մինի)	0,010	
422	3,9	0.11	0,28	0,008	0.195	
473	$O = \frac{1}{2}$	0.01	0.05	0.001	0.057	
474	1.4	0.04	0.02	0.001	0,020	
475	1.50	0.05	0.01	Ö.001	0,0°C	
476	1 . 6	$\dot{O}_{\bullet} O_{\odot}^{m}$	0.01	0.001	$\mathbf{F}_{\mathbf{a}}^{T} = \mathbf{F}_{\mathbf{a}}^{T} + \mathbf{F}_{\mathbf$	
472	0.4	0.01	0.02	0,003	0,020	
47(8)	0.2	0.01	0.01	0.001	0.013	
479	0.2	0.01	0.01	0.001	0.011	

. :

And a manual continued by

MIN-EN LABORATORIES LTD.

APPENDIX IV

Work Program January 6 to January 8, 1987 -Bulk Sample Analysis

- NOMINEX -

DETERMINATION OF

ŧ

THE GOLD CONTENT

of a bulk sample

submitted by

King Errington Resources

Project No. L. R. 3265

NOTE:

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of Lakefield Research.

LAKEFIELD RESEARCH A DIVISION OF FALCONBRIDGE LIMITED February 3, 1987

INTRODUCTION

This report contains the results of gold content determina ions conducted by cyanidation on a bulk sample submitted by King E rington Resources Limited. The testwork was authorized in a lett r dated January 13, 1987 from Mr. G. Ferry.

LAKEFIELD RESEARCH

R. S. Salter

General Manager

K. W. Sarbutt

Chief Project Engineer

Experimen al Work by: R. G. Irwin

SUMMARY

ŝ

The calculated heads obtained from the four cyanide leach tests on the individual 30 kg ore samples are as follows:

0 1 - ⁻ N -	a and desired as for the	A	ssays, g	% Extraction			
Sample No	Calculated Head -			' Res	ldue		
	Au	Ag	Cu	Au	Ag	Au	Ag
1	0.82	19.4	1.00	0.20	10.3	. 75.6	46.8
2	1.15	14.9	0.83	0.17	6.4	85.1	56.9
3	1.43	16.4	0.89	0.17	6.4	88.1	61.0
4	0.90	19.7	1.00	0.25	14.3	72.3	27.6
Average	1.07	17.6	0.93	0.22	9.35	80.3	48.1

The results indicate an average assay of 1.07 g/t Au, 17.6 g/t Ag and 1.93 % Cu.

1.21

The individual cyanide leach test residue assays and total extra tions are tabulated above showing average residue assays of 0.22 g/t Au, and 9.35 g/t Ag with extractions of 80.3 % and 48.1% respectivel.

The reagent consumptions for the four cyanidation tests were similal with average values of 3.86 kg/t NaCN and 0.40 kg/t GPO.

SAMPLE PREPARATION

On January 8, 1987, a sample was received at Lakefield Research nd given our Reference No. L.R. 8727139.

The Sample consisted of two parts: a) A lar e bulk low-grade sample of 2300 kg b) A smal drum containing high grade ore weighing 97.8 kg

The sample was initially crushed to minus 8 cm in a large jaw crush r followed by crushing in a Hazemag impact crusher in closed ci cuit with a 6.7 mm screen.

The crushed sample was mixed well and riffled into halves with one alf riffled down to four samples each containing 1/8 of the original material.

T e 1/8 samples of bulk ore were individually riffled down to produce samples of approximately 50 kg.

The minus 10 mesh samples were mixed individually and a 30 kg tes charge was riffled from each as feed to the bulk cyanidation tests.

- 5 -

DETAILS OF TESTS

Test Nos. 1 t 4

Purpose:	To determine the gold content of ore samples.					
Procedure:	The samples were ground and transferred to large plastic vessels and adjusted to 38 % solids. The pH was adjusted to 11.0 with lime and the cyanide level maintained at 2 g/pL. Activated carbon was contacted with the pulp for the final 16 h. After 77 h the carbon was removed by screening and a representative pulp sample removed.					
Feed:	30 kg Samples No. 1, 2, 3, and 4					
Solution Volume:	50 L Pulp Density 38 % solids					
Solution Composition:	2 g/L NaCN					
pH Range:	11.0 with Ca(OH)2					
Grind:	30 kg for 90 minutes at 65 % solids in large ball mill					
Reagent Balar :e:						

Time		Added	Residual Grams		Const	umed	рН		
	Actual				Equivalent		Gr	ams	7
Hours	NE ON	Ca(OH) ₂	NaCN	CaO	NaCN	СвО	NaCN	CaO	
0 -16	1(5	30	100	22	5	-	95	-	11.0-11.3
16 - 30	1()	-	95	-	50	-	50	-	11.2
30 -48	13	-	50	-	52	2	48	20	11.2
900 grams	of carbo	on (preattr	itioned)	 was added 	d for t	he last	16 hour) 6. 1	
Total			245	-	52	-	193	20	

1

Reagent Cons mption (kg/t of cyanide feed) NaCN: 3.86 CaO: 0.40

ţ

Sample	Prod		Amount	1	As	sayn; mg/	'L, g/t.	x	🗶 Dia	tributi	on
No.	riou		Anount		Au		AR	Cu	Au	AR	Cu
				1	2	Average					
1	Carb Barr Resi	1	807.78 45.71 30.0 kg	22.8	22.7	22.8 0.003 0.20	332 0.08 10.3	0.34 1,030 0.83	75.0 0.6 24.4	46.2 0.6 53.2	0.9 15.8 83.3
	Head	(Calc.)	30.0 kg	•	-	0.82	19.4	1.00	100.0	100.0	100.0
2	Carb Barr Resi	r	897.2 g 50. L 30 kg	33.0 0.20	32.0 0.14	32.5 0.003 0.17	279 0.07 6.4	0.13 700 0.71	84.7 0.4 14.9	56.1 0.8 43.1	0.5 14.0 85.5
	Head	(Calc.)	30 kg	-	-	1.15	14.9	0.83	100.0	100.0	100.0
3	Carb Barr Resi	ı	826.6g 48 L 30 kg	45.7	45.1 0.16	45.4 0.007 0.17	355 0.12 6.4	0.25 962 0.73	. 87.3 0.8 11.9	59.8 1.2 39.0	
	Head	(Calc.)	30 kg	-	-	1.43	16.4	0.89	100.0	100.0	100.0
4	Carb Barr Resi	۱	826.2 g 57.8 L 30 kg	17.5 0.27	17.0	17.3 0.09 0.25	191 0.09 14.3	0.29 760 0.85	53.0 19.3 27.7	26.7 0.9 72.4	0.8 14.6 84.6
	Head	(Calc.)	30 kg	-	-	0.90	19.7	1.00	100.0	100.0	100.0
Average	Head		4		8/t 8/t ≭	1	7.6 -	, 038 eft , 62 0 a, t. 18 6 lbr	15 20 3.41 11.93		<u></u>

Metallurgical Results

.!

.

15 20 3.41 1192_ #30.51/15 ...

LAKEFIELE RESEARCH A DIVISIC OF FALCONBRIDGE LIMITED February , 1987 i

.

•

- 6 -

7 -

i

í

Screen Analys s

Sample No. 1	Barren	Pulp	Residue

Mesh Size	% Re	etained	% Passing
(Tyler)	Individual	Cumulative	Cumulative
100	0.1	0.1	99.9
150	1.1	1.2	98.8
200	4.2	5.4	94.6
270	8.4	13.8	86.2
400	11.6	25.4	74.6
-400	74'. 6	100.0	-
Total	100.0	-	-
Sample No. 2 Bar	rren Pulp Residue		1
65	0.1	.0.1	99.9
100	0.2	0.3	99.7
150	1.1	1.4	98.6
200	4.8	6.2	93.8
270	8.9	15.1	84.9
400	11.6	26.7	73.3
-400	73.3	100.0	-
Total	100.0	-	-
Sample No. 3 Bar	rren Pulp Residue		
65	0.1		99.9
100	0.1	0.2	99.8
150	0.6	0.8	99.2
200	3.1	3.9	96.1
270	7.9	11.8	88.2
400	11.5	23.3	
400	76.7	100.0	76.7
Total	100.0	-	-
Sample No. 4 Bar	rren Pulp Residue		***************************************
100	0.1	0.1	99.9
150	0.7	0.8	99.2
200	3.6	4.4	95.6
270	8.2	12.6	87.4
400	11.9	24.5	75.5
400	75.5	100.0	-
Total	100.0	-	

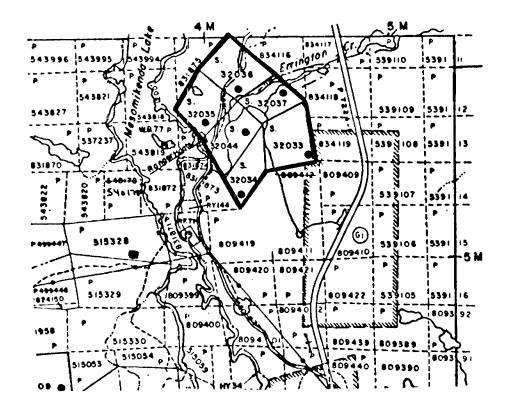
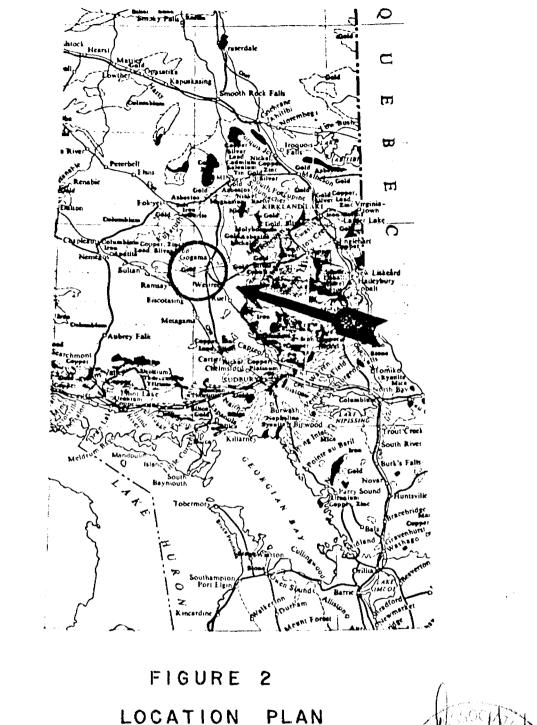


FIGURE I PROPERTY DESCRIPTION

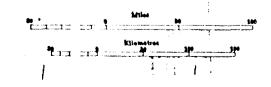
TOWNSHIP

CHESTER

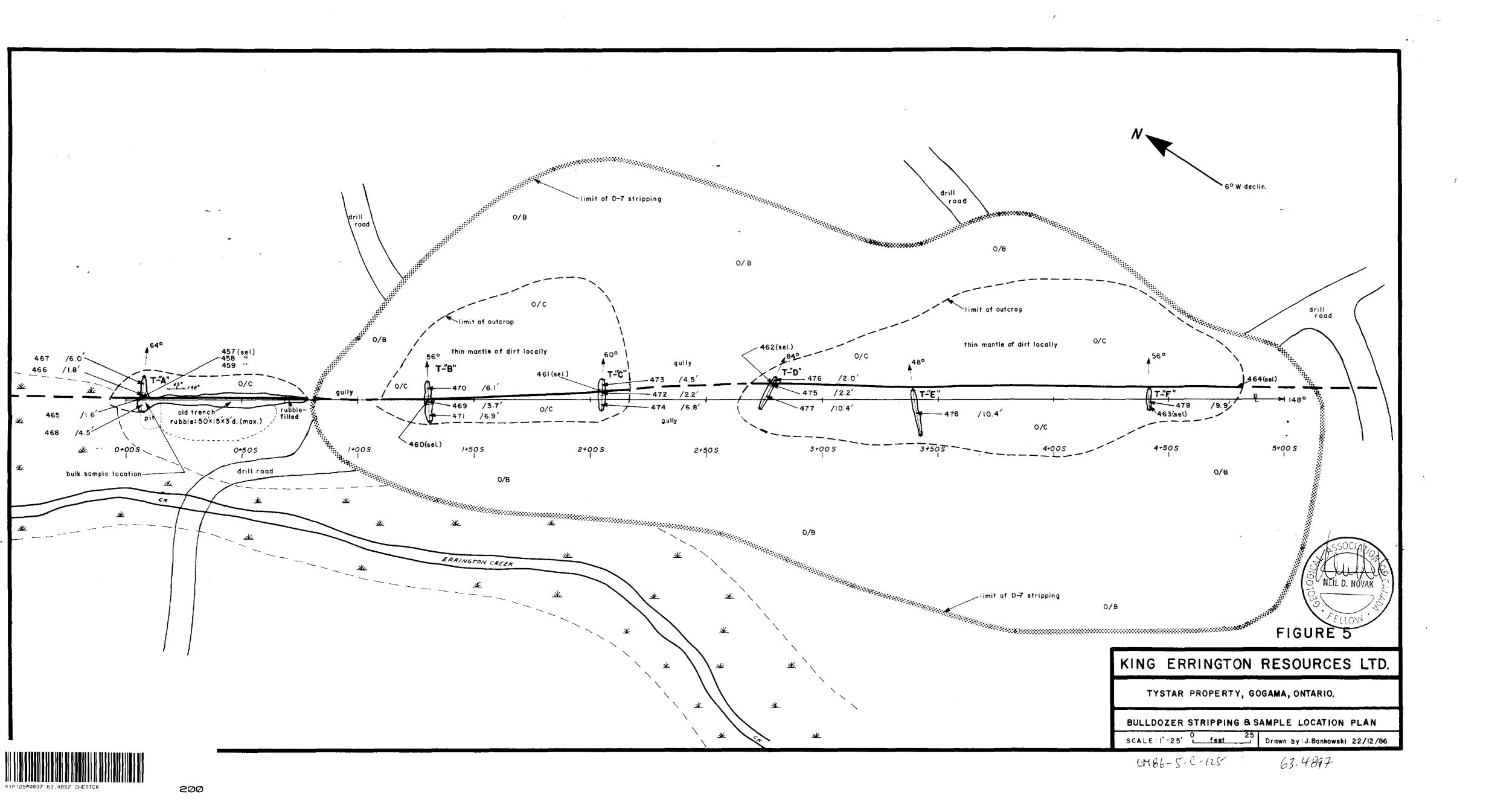

M.N.R. / DMINISTRATIVE DISTRICT

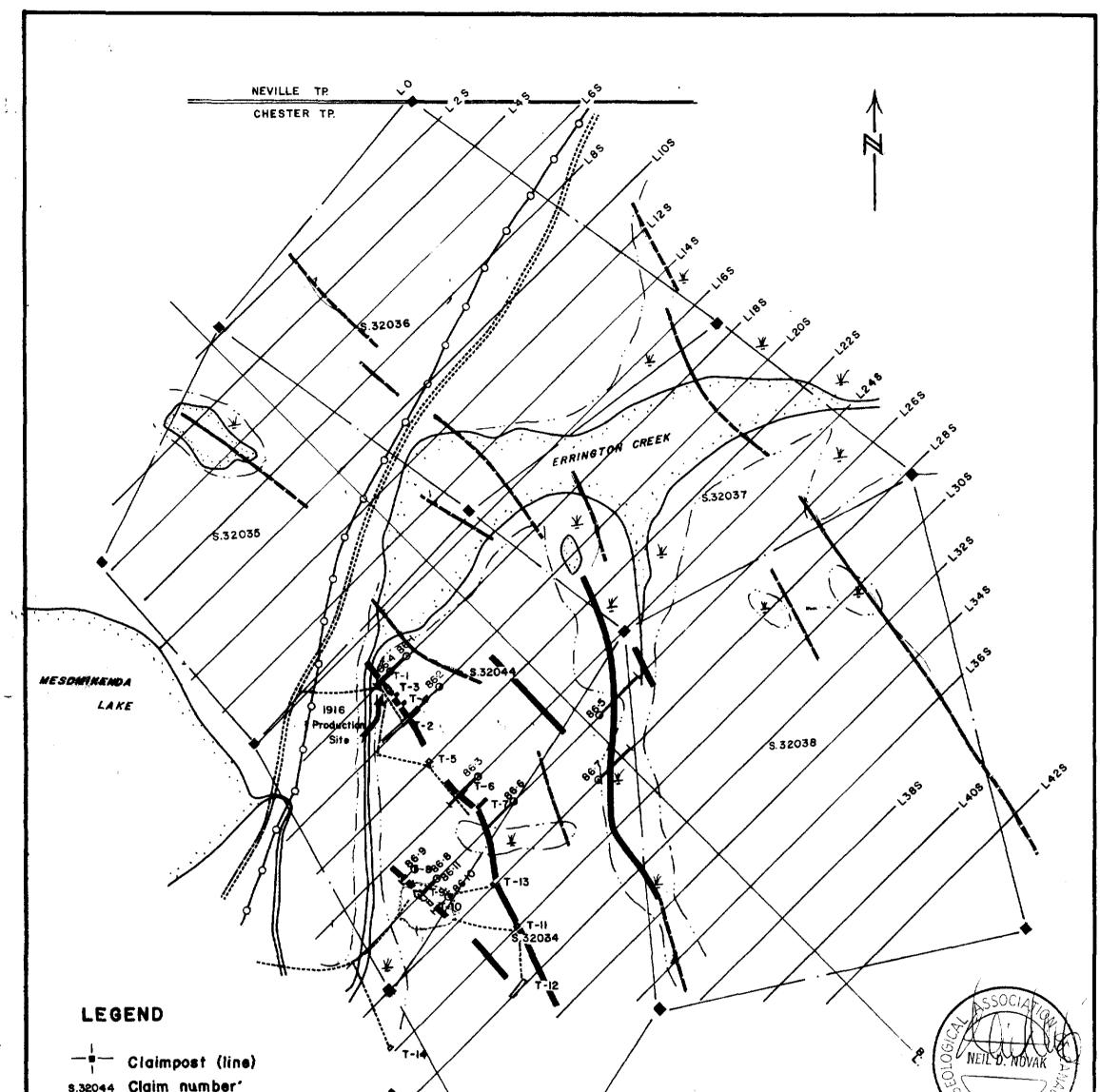
GOGAMA MINING DIVISION POR CUPINE LAND TITLES / REGISTRY DIVISION SUD BURY

SCALE: ' INCH = 40 CHAINS


FEET D	200 2000	000 600 0	8000
0 20	1000	2000)
METRES	(1 K M)	(2 KM	

NOMINEX


Ontaric Geological Survey Map 2389


GEOLOGY AND PRINCIPAL MINERALS

NUP D. ROTAK

- NOMINEX ·

5,32044		
	Lake X \	
(¥)	Swamp	1
	Road	
4	Trail	
-0	Powerline	
	Clearing (1981)	
🗂 T-1	Trench (1986)	
	Production site (1916)	
•	Electromagnetic Conductor (VLF) 1986	5
	Electromagnetic Conductor (VLF) 1983	5
;0 86 · I	Diamond drillhole (summer 1986)	
	{	
- NOTE -	Assays/Width by Trench Location found on accompanying Appendix i	

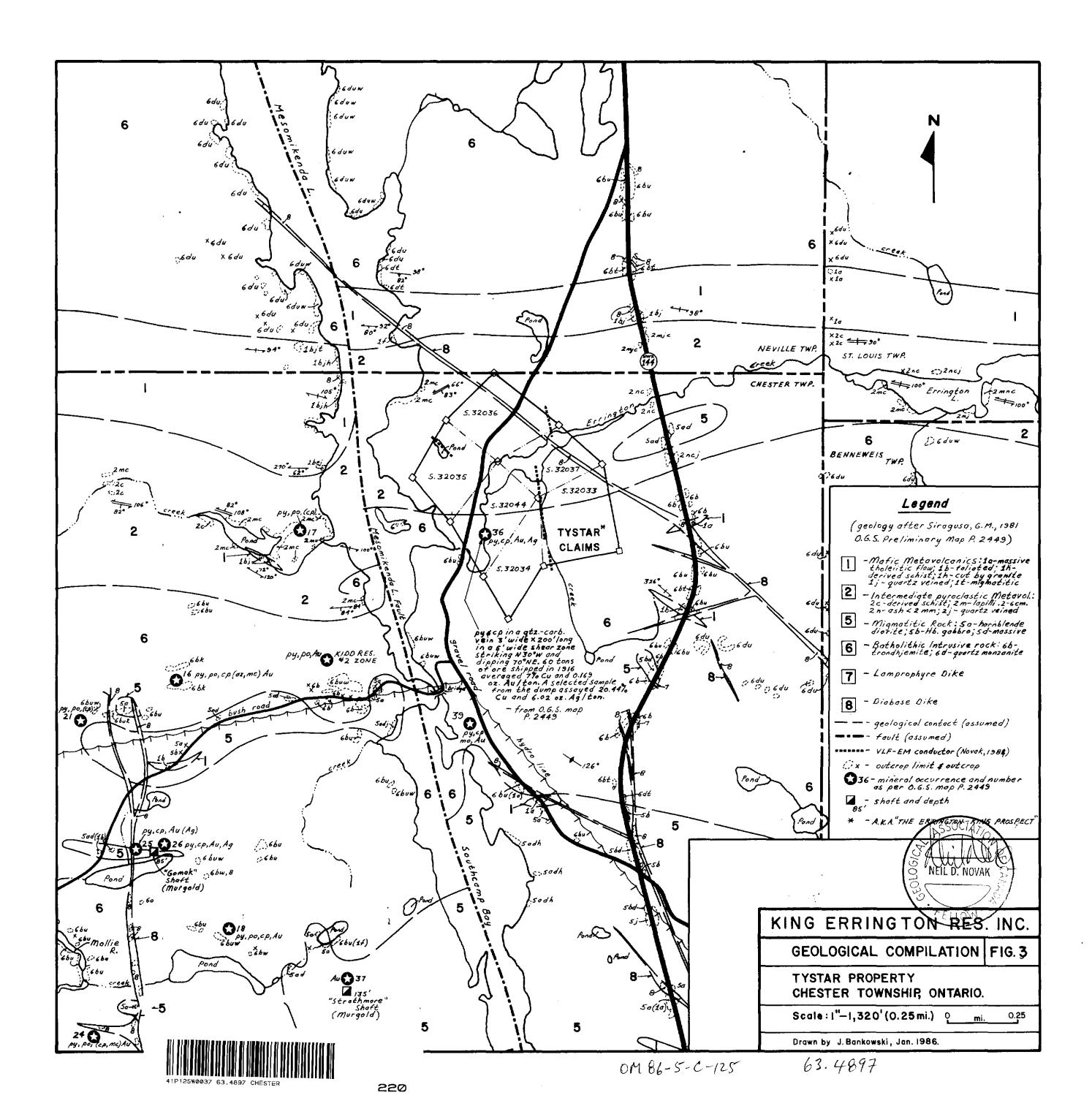

Drill loos, and Assays Appendix II

FIGURE 4 FELLOW KING ERRINGTON **RESOURCES INC.** CHESTER TP. PROPERTY SAMPLE LOCATION PLAN DRILLHOLE LOCATION PLAN (FEET) 200 400 **60**0 800 1000 1200 0 OM 86-5-C-125 DRAWN : N.NOVAK, JUN. 86 63.4897

7

~....

