

010

GEOLOGICAL REPORT

ON

PROPERTIES OF MURGOLD RESOURCES INC. including the "#20 Zone"

] N

NORTHERN PART OF CHESTER TOWNSHIP PORCUPINE MINING DIVISION

 $\mathbf{B}\mathbf{Y}$

JOHN R. BOISSONEAULT, B.Sc., P.ENG.

OCTOBER 15, 1984

125W0061 63 4436 CHESTER

Ø10C

TABLE OF CONTENTS

	Page
INTRODUCTION	l
RESULTS OF EXPLORATION	2
GEOLOGY AND MINERALIZATION	3
CONCLUSIONS AND RECOMMENDATIONS	6

APPENDIX

(1) "#20 Zone" (a) Section A

۰ ا

- (b) Section B
- (c) Longitudinal Section
- (d) Surface Plan

(2) Preliminary map, Filtered V.L.F. Data

INTRODUCTION

The following report has been prepared for Murgold Resources Inc. of Toronto, Ontario. Its subject is the company's "#20 Zone", which lies on claim P-515328, in the northern part of Chester Township, in the Porcupine Mining Division. Previous reports written by P. G. Lalande of Watts, Griffis, McQuat Limited and N. Firth of Hill, Goettler, De Laporte Limited, both in 1983, cover the location, accessibility, history, geology and mineralization of the holdings of Murgold Resources Inc., in the region.

The purpose of this report is as follows:

- (1) To summarize the results of the exploration work which has been done to date on the "#20 Zone".
- (?) To describe briefly the geological environment in which the zone occurs and the nature of the mineralization, including geological tonnage and grade estimates.
- (3) To discuss the potential of a number of geophysical anomalies on the company's claims in the vicinity and to recommend further development and exploration work on this segment of the company's holdings.

The report is based upon information supplied to me by the project geologist, Donald Hoy, the results of exploration work on the neighbouring property, as well as my personal knowledge of the site, since I was involved

in the exploration of the area since its inception in 1981, and have visited the site several times.

RESULTS OF EXPLORATION

The "#20 Zone" was discovered in the summer of 1981, by bulldozer stripping, on the edge of a ridge, where a V.L.F. electromagnetic anomaly had been previously indicated on the property, which is now owned by Kidd Resources Inc. A rusty area of secondary mineralization, which appeared to be in excess of 50 feet wide, had an east-west strike and contained visible gold in several places, was exposed.

Subsequent stripping and trenching, which was done by Murgold Resources Inc., showed that the zone extended across the boundary on to its property for about 120 feet at the surface. Because of the thin overburden cover, the subcropping of the mineralized area was soon almost completely exposed by further stripping, except for a strip along the boundary. The area was extensively sampled on both sides of the boundary with the results indicating grades between .30 oz./ton and .40 oz./ton over widths between 40 feet and 50 feet.

Since then, Murgold Resources Inc. has done a substantial amount of V.L.F. electromagnetic surveying on its claims, in the vicinity. In the summer of 1984, the company put down four diamond drill holes on the "#20 Zone"; these include:

(1)	M84-16	Southward	-45°	depth	327'
(2)	M84-17	Southward	-62°	11	4171
(3)	M84-18	Northward	-46°	11	1721
(4)	M84-19	Northward	-45°	11	189'

The first of these holes were drilled along a section about 60 feet east of the boundary (Section A) while the fourth hole was drilled about 110 feet east of the boundary (Section B). The results of the drilling program were as follows:

- (1) M84-16 mineralized zone 148'-167' & 211'-221' .137 oz./ton 4 2'
- (2) M84-17 mineralized zone 332'-370' (.225 oz./ton)(VG) 38'
- (3) M84-18 mineralized zone 30'-65' (<u>.215 oz./ton</u>) 35'
- (4) M84-19 mineralized zone 97'-157' (<u>.33 oz./ton</u>)(sludge) 60'

The locations of these holes, the intersections and the grades are shown in cross section, long section and plan, in the Appendix of this report.

GEOLOGY AND MINERALIZATION

The mineralized area, known as the "#20 Zone" lies in a highly metamorphosed section of Archean rocks,

-3-

near the eastern end of a large Precambrian Structure, known as the Swayze Syncline. To the east and south of the property, this metasedimentary-metavolcanic belt has been intruded by granitic plutons, and the mineralized area lies in a transition zone where there has been considerable metamorphism, and remelting of the original formations, along with the mobilization of their component minerals. The original mafic tuffs, volcanic flows and pyroclastics now resemble intrusive rocks or migmatites although remnant structures, such as clasts have been preserved along with remnant tuff horizons.

-4-

The host rocks, in which the mineralization occurs, have been named according to their constituent minerals as Quartz Diorite and Granodiorite. These are medium grained and sometimes porphyritic, the Quartz Diorite containing prominent bluish "quartz eyes". Numerous volcanic remnants. generally mafic tuffs, are commonly found in these rocks; these, along with the foliation have a general east-west trend. The mineralized area is found within a highly altered section of the Quartz Diorite, which has been extensively sheared. The alteration consists of a large zone of strong carbonatization and chloritization, with minor sericite, which extends some 30-40 feet beyond the margins of the mineralization. The inner zone which contains the gold values is intensely silicified with patches of quartz and pervasive disseminations of pyrrhotite, pyrite and minor chalcopyrite, along with less mineralized carbonated and chloritized sections.

The gold values are found in and near thin quartz carbonate stringers of varying orientation and in associated sulphide mineralization, mainly pyrrhotite, pyrite and chalcopyrite, which have filled shears in the quartz diorite. The mineralized area gives the impression of being a linear zone of brecciation which has developed along a siliceous unit in the Quartz Diorite. Since this rock was originally a pyroclastic, with volcanic tuff interbeds, and since the orientation of the mineralization is parallel to the stratigraphy, there is a possibility that the mineralized area lies along a carbonate silica sulphide facies of a former exhalite formation, whose components have been remobilized by metamorphism, and may in fact be the source of the mineralization.

-5-

The mineralization area has a horizontal width of about 50 feet at the surface, and has been exposed for a length of about 120 feet on the Murgold side of the boundary. Although it appears to "finger out" to the east, narrower bands of mineralization have been found in several places, in that direction for some 600 feet. The results of the drilling program, carried out by the company show that the main zone plunges eastward at about -65° and dips southward at -75° . From surface to a depth of 100', the zone narrows down to a width of about 10 feet, but then it maintains this width to a depth of below 330 feet. An auxiliary zone, somewhat narrower, but of similar grade, has been indicated on the south (hanging wall) side, by the drilling. Two estimates of grade and tonnage have been made for the main zone, based on the results of the surface sampling and diamond drilling. One of these includes material within a depth of 100 feet, and another includes material which lies between depths of 100' and 400'. These are as follows:

- (1) Upper Section (surface to -100') 25,000 tons
 grading .24 oz./ton gold (block dimensions 75 feet
 long x 40 feet wide x 100 feet deep = 300,000 cu.ft.)
- (2) Lower Section (-100' to -400') 30,000 tons grading .22 oz./ton gold (block dimensions 120 feet long x 10 feet wide x 300 feet deep = 360,000 cu.ft.)

These estimates may be classed as "geological reserves" and are not proven ore. However, similar estimates, made on the portion of the mineralized zone, on the Kidd Resources side of the boundary, were proven to be reasonably accurate by subsequent close pattern drilling.

CONCLUSIONS AND RECOMMENDATIONS

The results of the V.L.F. electromagnetic survey, which was conducted over the area by the company, are presented on a plan entitled "Preliminary Map, Filtered V.L.F. Data". These show that a zone of anomalous conductivity coincides with the mineralized area (#20 Zone) and extends eastward for some distance. Furthermore, similar linear anomlies occur on the company's claims, in the vicinity. Of these the following merit special attention.

- A discontinuous conductor, about 600 feet north of the "#20 Zone", and having a similar strike.
- (2) A long curving conductor, which passes to the north of Weeduck Lake, and may be the extension of an anomaly associated with the Kidd Resources "#1 Zone".
- (3) A strong conductor which appears to cross the southern half of Weeduck Lake, in a direction of 280°.
- (4) A conductor of moderate strength, which has the same strike as the one coinciding with the "#20 Zone", and lies about 600 feet to the south of it.

It is apparent that only a small portion of the gold bearing potential of the claims held by Murgold Resources Inc., in the northern part of Chester Township, has been tested. In addition to the anomalies mentioned in the previous paragraph, there are several others which warrant closer examination.

Since the V.L.F. survey has been conducted along paced compass lines, the locations of the anomalies are only approximate, and it is now necessary to establish a better control grid of cut-out picket lines. These could then be used to carry out the following:

(1) A V.L.F. electromagnetic survey, using an eastern source of transmission.

-7-

(2) A magnetometer survey.

(3) Detailed geological mapping.

Both of the geophysical methods recommended have proved responsive to the mineralized shears of the "#20 Zone" in test surveys, and should therefore be effective exploration methods in this area. The geological mapping is recommended because both the character of the lithology and the presence of cross structures seem to have some influence on the localization of the auriferous mineralization in the "#20 Zone" and the mineralized areas on the Kidd Resources property.

It may become necessary to conduct detail geophysics over the V.L.F. anomalies, if these should prove to be too numerous, in order to filter out those which are not caused by bedrock sources. Although the induced polarization method will accomplish this, the high frequency horizontal loop method (H.E.M.) might serve the same purpose, and is much cheaper. I therefore suggest that a test survey, using the latter method be conducted over the "#20 Zone", before the selection is made.

The anomalies selected should be tested by power stripping where this is possible and by diamond drilling where it is not. In addition to this, the company should consider a close pattern, percussion drilling program on the "#20 Zone", in order to better delineate and

-8-

evaluate this deposit. This type of program can be carried out at relatively low costs, and has proven to be quite effective.

Respectfully submitted,

and states a log NR BOHBONT MUM

John R. Boissoneault, B.Sc., P.Eng.

CERTIFICATE

I, JOHN R. BOISSONEAULT, hereby certify

- that I am an exploration and mining geologist residing at 670 Spruce Street North, Timmins, Ontario;
- (2) that I am a member of the Association of Professional Engineers of the Province of Ontario;
- (3) that I am a graduate of McGill University, 1960, and Northern College, School of Mines, 1956;
- (4) that I have been engaged in the practice of my profession for fourteen years.
- (5) that I have no interest, direct or indirect, nor do I expect to receive any such interest in the properties or securities of Murgold Resources Inc.

gtu phofessioway BOISSONEAU , B.Sc., P.Eng. Beissor Geolog 8 NCE OF ON October 15, 1984

41P12SW0061 63.4436 CHESTER

020

File 63 - 143-6

REPORT

••

ON

THE 1984 DIAMOND DRILLING PROGRAM

MURGOLD RESOURCES INC.

CHESTER, BENNEWEIS & ST. LOUIS TOWNSHIPS,

PORCUPINE MINING DIVISION

ONTARIO

Donald Hoy, B.Sc.

January 1985

020C

TABLE OF CONTENTS

х.,

	I	Page
Summa	y	1
Intro	uction, Property & Title	3
Synop	is of Recent Work	3
The 1	84 Diamond Drilling Program	6
Prope	ty Geology & Nature of Mineralization	7
Resul	s of the 1984 Diamond Drilling Program	10
Geopt	'sics	17
Concl	isions & Recommendations	19
Cost	stimate	21
Refer	nces	22
	Tables	
Table	1 Claims Status	5
Table	2 Summary of Diamond Drilling - No. 3 Vein Central	
Table	Portion	11
	Portion	14
Table	4 Summary of Diamond Drilling - No. 20 Zone	16
	Figures	
F :		л
Figu		4
	Mads	
	(in back pockets)	
Man	Dian of the No. D. D. A. 9 5 Voine Foot Check	
Map {	Plan of the No. 2, 3, 4, & 5 Veins, East Sheet Plan of the No. 2, 3, 4, & 5 Veins, West Sheet	
Map	Longitudinal Section of the No. 3 Vein System, East Sheet	
Map	Geology of the No. 20 Zone	
Map	Longitudinal Section of the No. 20 Zone & Kidd No. 2 Zone	
map	riellining map, illered vel bala	
	الله المراجع ال المراجع المراجع المراجع المراجع المراجع	

Summary

ι.

Murgold Resources Inc., carried out a diamond drilling program during the 1984 field season, for a total footage of 4,560 feet comprising 19 ho es.

The recent drilling was centred on 3 zones of concentration. These inclue the central and western portions of the No. 3 vein system in addition to the No. 20 zone.

The property is situated on the south-eastern portion of a large struc ure known as the Swayze syncline. The structure consists of 2 broad east- est trending belts of mafic metavolcanics, overlain by a sequence of intermedia e pyroclastics. This assemblage is intruded by a large granitic body centr d around Chester Township, and contains large inclusions of migmatitic mater al. The bodies of migmatite are usually accompanied by shearing and assoc ated quartz veining, and appear to be important from a geological and struc ural point of view.

There are two types of gold occurrences on the property which include; 1) na row quartz veins associated with shearing accompanied by erratic visible gold nd 2) in association with disseminated to semi-massive sulphides in broad alter tion zones proximal to shearing and fracturing. There appears to be a good patial relationship between the location of diabase dykes, which cross-cut the n gional structural 100-120° trend, and the gold occurrences. This is evide t along portions of the No. 3 vein system and in the locale of the No. 20 zone.

A total of 8 holes were drilled along the central portion of the No. 3 vein system. The drilling has delineated significant mineralization along a strik length of 400 feet and down to a vertical depth of 300 feet. A total of 7 holes probed beneath the western portion of the No. 3 vein system at relatively shallo depths. Initial test drilling of the No. 20 zone was restricted to 4 hole. Significant mineralization was intersected over a true width of 12 feet a d at a depth of 330 feet.

Geophysical surveys conducted on Murgold ground and the adjacent claims held by Kidd Resources Ltd. respond favourably to zones where gold is associ ted with disseminated to semi-massive sulphides proximal to shearing. The ge physics indicates that the best targets for discovering this type of minera ization are those areas where VLF anomalies are coincident with I.P. anomal es.

Fill-in drilling along the No. 3 vein system showed encouraging results and confirmed the existence of the vein system at depth. Initial test drilling on the No. 20 zone proved to be highly successful. The zone is still open (long strike and additionally at depth.

A program of detailed geophysics and geological mapping is recommended to fu ther investigate the Weeduck Lake area and in the locale of the No. 20 zone. The estimated cost of the program is \$71,500.

. .

Introduction, Property & Title

Following the conclusion of the 1983 field season, diamond drilling was recommended as a follow-up to the exploration work conducted on the 291claim old prospect in the Gogama area of Northern Ontario. The recommended drilling was carried out during the 1984 field season in an effort to assist in est blishing vertical and lateral continuity of the gold-bearing quartz veinshear systems. This report outlines the results of the drilling program, and also makes additional recommendations to further evaluate the gold occurrences.

The property consists of a group of 291 mining claims in Chester, Bennew is and St. Louis Townships, in the Porcupine Mining Division of Northern Ontari (Figure 1 & Table 1). Of the 291 mining claims, 2 are patented (S19992 and S2 1009) and 8 are mining leases (S121594, S515048-515052, S515055-515056 inclus ve). At the present time an application for lease has been made for claim P51532 , which should be forthcoming shortly. This will effectively increase the number of mining leases on the property to 9. The remaining 280 claims are unsurvised and unpatented, however all are in good standing with sufficient work recorded on them for application to lease.

Synopsis of Recent Work

The Company carried out a fairly extensive exploration program during the 15 33 field season. The program was concentrated largely on investigating the No. 3 and the No. 1 vein systems, in addition to the No. 20 zone. The exploration techniques employed during the program included relogging of diamond drill core, trenching and sampling, geochemical soil sampling, VLF-EM 16 and magnet pmeter surveys in addition to geological mapping.

The western portion of the No. 3 vein known as the Watts trenches were system system stically chip sampled during the course of last year's investigations.

- 3 -

Figure 1

4

MURGOLD PROPERTY CLAIMS STATUS

				NUMBER			NUMBER			NUMBER
	CLAIM N	IBERS	⁺ ANNIVERSARY DATE	CLAIMS	CLAIM NUMBERS	+ANNIVERSARY DATE	CLAIMS	CLAIM NUMBERS	⁺ ANNIVERSARY DATE	CLAIMS
	S 19992		Patented	1	P 515059	May 10, 1985	1	P 539319 - 539322	October 31, 1985	4
	S 20009		Patented	3	P 515328 *	June 20, 1985	1	P 539323	October 31, 1985	1
	S 121594		Mining Lease	1	P 515329 - 515330	June 20, 1985	2	P 539324 - 539328	October 31, 1985	5
	s 515048 - 51	052	Mining Lease	5	P 515335 - 515336	June 20, 1985	2	P 539404 - 539414	October 31, 1985	11
	s 515055 - 51	056	Mining Lease	2	P 528680	October 23, 1985	1	P 539415	October 31, 1985	1
	P 471952 - 4	958	March 15, 1985	7	P 546980	November 7, 1985	1	P 539416 - 539421	October 31, 1985	6
	P 473667 - 41	669	October 23, 1985	3	P 546981 - 547000	November 7, 1985	20	P 543818	October 31, 1985	1
	P 473670 - 4	671	October 23, 1985	2	P 549001 - 549002	November 7, 1985	2	P 543819	October 3, 1985	1 L
	P 473672 - 4	695	October 23, 1985	24	P 549003	November 7, 1985	1	P 543820 - 543824	October 3, 1985	5
	P 473696 - 4	697	October 23, 1985	2	P 549004 - 549014	November 7, 1985	11	P 543993	October 3, 1985	1
	P 473698 - 4	1699	October 23, 1985	2	P 549015	November 7, 1985	1	P 543994	October 3, 1985	1
	P 473700		October 23, 1985	1	P 549016	November 7, 1985	1	P 543995 - 543996	October 3, 1985	2
	P 473701 - 4	1703	October 23, 1985	3	P 549017 - 549019	October 23, 1985	3	P 543827	October 3, 1985	1 1
1	P 473704 - 4	1708	October 23, 1985	5	P 538055 - 538059	October 3, 1985	5	P 548092	November 13, 1985] U
3	P 473709		October 23, 1985	· 1	P 538082	October 3, 1985	1	P 549108 - 549114	October 23, 1985	7 1
	P 473710 - 4	1715	October 23, 1985	6	P 538523 - 538525	October 25, 1985	3	P 549115	November 7, 1985	1
	P 473716 - 4	1717	October 23, 1985	2	P 539105 - 539129	October 25, 1985	25	P 549116	October 23, 1985	1
	P 473718 - 4	1737	October 23, 1985	20	P 539136 - 539155	October 25, 1985	20	P 549117	November 7, 1985	1
	P 473738 - 4	1742	November 7, 1985	5	P 539181 - 539183	December 14, 1985	3	P 549294	November 7, 1985	ı
	P 473743		November 7, 1985	1	P 539279 - 539298	October 31, 1985	20		TOTAL CLAIMS	291
	P 473744		October 23, 1985	1	P 539308	October 31, 1985	1			
	P 473745	•	November 7, 1985	1	P 539309	October 31, 1985	1	* Mining Lease appl	ied for.	Ì
	P 473746		October 23, 1985	1	P 539310 ~ 539312	October 31, 1985	3	+ Claim must be bro	ught to lease or Relie	ef
	P 507667 - 5	1669	December 14, 1985	3	P 539313	October 31, 1985	1	Against Forfeitur	e must be applied for	
	P 515053 - 5	i054	May 10, 1985	2	P 539314 - 539317	October 31, 1985	4		U.	
	P 515057 - 5	1058	May 10, 1985	2	P 539318	October 31, 1985	1			

Sampling of the trenches indicated a mineralized structure attaining a total strike length of 290 feet averaging 0.49 oz/ton Au over a sampling width of 3.1 feet. This locale was the site of 22 diamond drill holes, all of which were drilled previous to Murgold acquiring the property, and extensive trenching.

The central portion of the No. 3 vein system was investigated during the 14 st period of diamond drilling conducted by Murgold in 1982. The drilling by Mur gold delineated a significant zone of mineralization with a strike length of approximately 400 feet and drill intercepts down to a depth of approximately 200 feet. Values ranging from .002 to 4.08 oz/ton Au were encountered over relatively narrow widths. The uncut average for the 1982 drilling in this locale assay(\$ 1.44 oz/ton Au over an approximate true width of 0.7 feet.

The No. 20 zone was geologically mapped and sampled during the course of the 1983 program. Chip sampling over the widest section of the mineralized zone ssayed 0.40 oz/ton Au over 30.0 feet and in recent sampling, 0.168 oz/ton Au over 60.0 feet (including 0.25 oz/ton Au over 30.0 feet). A number of smaller paral e1 and en-echelon shears located along strike to the east assayed from .002 p .084 oz/ton Au over sampling widths ranging from 2.5-5.0 feet.

The 1984 Diamond Drilling Program

The recent drilling was centred around 3 zones of concentration. These zones include the central and western (Watts trenches locale) portions of the N(. 3 vein system, in addition to the No. 20 zone adjacent to the Kidd No. 2 zone (f Kidd Resources Ltd.

A total of 4,560 feet comprising 19 holes were carried out by Triangle Diamond Drilling of Coppercliff, Ontario, from June 8 to August 4, 1984. A Longy ar 38 drill rig was employed utilising BQ size drill rods. Core recovery

- 6 -

was excellent, with recovery virtually being 100%. Where ground conditions permitted, sludge samples were collected at 10 feet intervals and sent in for assay to supplement the core samples.

Selected portions of the core were split and sent to Bell-White Labor tories in Haileybury for assay. Rejects obtained from the No. 20 zone cores were retained and sent to Swastika Laboratories for checks on Bell-White results. The results of the No. 20 zone as reported herein are representative of the average obtained from both laboratories.

Property Geology & Nature of Mineralization

The geology of the claims area has been most recently described by G.M. { iragusa on the Precambrian Geology of Chester & Yeo Townships, Preliminary map P. 2449, and earlier by H.C. Laird in the Geology of the Three Ducks Lake Area, D.D.M. Volume 41, Part 3, 1932.

The area of the claims is situated on the south-eastern portion of a large Precambrian structure known as the Swayze greenstone belt. The Swayze belt in this area, is characterized by the occurrence of 2 broad east-west trending belts of mafic metavolcanics, overlain by a sequence of intermediate pyroclastics forming a broad synclinal-like structure. The metavolcanic assemblage is intrueed by a large oval shaped mass of granite centred largely around Chester Township. This large intrusive is dominantly trondhjemite and contains large remnant is of highly altered migmatite, probably representative of partially and comple cely digested precursor metavolcanic material. The large inclusions of migma ite material are lenticular in nature and strike in a general east-west direct ion, usually accompanied by shearing and associated quartz veining. The inclusions of migmatite are important from a structural point of view, as they represent areas of relatively less competence than the surrounding trondhjemite,

- 7 -

and an thus favourable for shearing, fracturing and subsequent quartz veining. The mi matite rocks are interpreted by Siragusa to be representative of partially to completely recrystallized volcanic flows, tuffs and pyroclastics.

Lamprophyre and diabase dykes are the youngest rocks on the property, largel trending in a northwesterly and north-northwesterly direction. The influe ice of the diabase dykes with the mineralization process is not yet understood, however there is an apparent good spatial relationship between the location of gol I occurrences in Chester Township with these diabase dykes. The fracturing associated with the emplacement of the diabase represent cross-structures with the regional 100-120° shearing and fracturing, and may be responsible for concertrating the mineralization.

Previous work by Murgold and other companies in the area have clearly indicated that the gold occurs in; a) quartz veins associated with shearing accompanied by erratic visible gold and sulphides and b) in association with disser inated to semi-massive sulphides in alteration zones proximal to fracturing and sparing.

The first mode of mineralization is characterized by the occurrence of discolution and lensy quartz veining occupying through-going shear and fracture systems. The veins are relatively narrow and commonly form vein network systems and p rallel veins, as is the case on the central portion of the No. 3 vein system. The gold occurs largely as free gold, erratic in distribution, and is usually accompanied by pyrite, pyrrhotite and chalcopyrite.

Structurally, the dominant trend of the veins is at an azimuth of 90-110° nd 270-290°, following the regional structural trend. There is an apparent close spatial relationship between the higher grade drill intersections with the locat on of lamprophyre and diabase dykes, is as evident along the central portion of the No. 3 vein system, and also at the No. 20 zone. In addition, based on the

- 8 -

diamon drill intersections, there is some suggestion of possible rakes and plunge of oreshoots, resulting from contouring of grades and widths from the drill ntersections. The shoots on the No. 3 vein system would appear to plunge in a w sterly direction, however additional diamond drilling data is clearly needed to substantiate this hypothesis.

The mineralized area of the No. 20 zone occurs in a transition zone where ranitic intrusive rocks have assimilated with precursor metasedimentary and me avolcanic rocks. Geological mapping of the zone has indicated that the minera ization lies within a moderate to highly metamorphased section of tic rocks from resultant brecciation, recrystallization and remobilization of com ionents from the original rock formation. Remnant structures resembling tuffac ious horizons are evident in diamond drill core and on surface, indicating that the original rock formation may have been pyroclastic in origin.

The host rocks mapped as quartz diorites (Map 5), are probable recrys allized volcanic rocks. They contain large bluish quartz eyes, are intensily carbonatized, and are commonly porphyritic in appearance. Within the quartz diorites, tuffaceous horizons and what appear to be volcanic remnants, are present.

The mineralization is intimately associated with strong shearing and intense, pervasive alteration, within the quartz diorite host rocks. Alteration includes propylitisation, silicification and carbonatisation. The gold occurs in association with discontinuous quartz veining within the shear zones and in dissent inated to semi-massive pyrrhotite, pyrite and chalcopyrite in wallrock enveloping the shears. The shearing and associated quartz veining in the area mapped, appear to be parallel and en-echelon in nature.

The alteration zone and associated mineralization attain a maximum width of about 50 feet nearest the claim boundary and finger-out substantially

- 9 -

ι.

to the east (Map 5). The concentration nearest the claim boundary may be the result of transverse fracturing and shearing transecting the dominant east-west trend, thus providing suitable cross-structures.

It appears that the mineralization is structurally controlled. The shearing and fracturing occur in metavolcanic migmatite which represent rocks of relative less competence than the surrounding intrusives. These less competent units would be favourable rocks promoting shearing and the emplacement of quartz veining.

RESULTS OF THE 1984 DIAMOND DRILLING PROGRAM

Central Portion - No. 3 Vein System

A total of 8 holes were drilled in the locale of this portion of the No. 3 vein system during the recent program (Maps 1, 2, 3 & 4). The drilling was in tended to intersect the structure at greater depths, to follow-up the relatively shallow intersections obtained during the 1982 drill program. With the experior of holes M84-8 and M84-9 the structure was intersected in all of the dillholes. The structure intersected were relatively narrow quartz veins, (4-6 hohes in true width) containing appreciable chalcopyrite, pyrite and pyrrh tite in addition to minor amounts of visible gold. Minor to appreciable sulph des were encountered in the alteration zones enveloping the veins, although in most cases they returned low values in gold. The following briefly summarizes the di ill intersections (Table 3):

M84-8

۰.

- drilled to a depth of 237 feet at an angle of -48°.

- the down-dip extension of the No. 3 structure was obliterated by a diabase dyke.
- the No. 2 vein was intersected at a depth of 45.0 45.8 feet and returned a gold value of .016 oz/ton.

NO. 3 VEIN - CENTRAL PORTION

HOLE	LATITUDE		DEPARTURE	ELEVATION	AZ IMUTH	ANGLE	HOLE	HOLE	DRILLED		BETTE	R GRADE CORF.	INTERSECTIO	NS]
No.		-		(ft)	(°)	(°)	STARTED	COMPLETED	(ft)	FROM (ft)	TO (ft)	LENGTH (ft)	Au oz/ton	SL	UDGE oz/ton/ft.	
M84-8	29,388N		169,744E	9991.30	200	-48	24/6/84	26/6/84	237	43.0 77.5	44.0 78.0	1.0 0.5	.016 .014			
M84-9	29,389N		169,743E	9991.30	200	-65	26/6/84	27/6/84	120	88.0 90.0	90.0 92.0	2.0 2.0	.006 .048		87.0-97.0/.044	
M84-10	29,349N		169,900E	9987.11	200	-61	3/7/84	5/7/84	317	262.7 263.7 264.7 267.0 269.0 272.0	263.7 264.7 267.0 269.0 272.0 273.5	1.0 1.0 2.3 2.0 3.0 1.5	.148) .146) .002) .002) .002) .722)	.129 10.8'	107.0-117.0/.184	
M84-11	29,350N		169,900E	9987.11	200	-75	5/7/84	8/7/84	388	135.0 304.0 305.5	135.6 305.5 305.7	0.6 1.5 0.2	.046 .058) .982)	. <u>167</u> 1.7'	297.0-307.0/.311 Visible Gold	
M84-12	29,302N		169,959E	9973.77	200	-46	9/7/84	10/7/84	237	203.0 205.3 206.0	205.3 206.0 207.0	2.3 0.7 1.0	.002) .797) .058)	. <u>155</u> 4.0'		-
M84-13	29,305N		169,960E	9973.77	200	-61	11/7/84	11/7/84	267	231.0 232.8 233.2	232.8 233.2 236.0	1.8 0.4 2.8	.006 .301 .002			1
M84-14	29,265N		170,039E	9965.77	200	-46	12/7/84	17/7/84	267	78.0 191.0	79.0 192.0	1.0 1.0	.626 .496		Visible Gold	
M84-15	29,2741		170,026E	9967.00	200	-61	18/7/84	20/7/84	267	194.0 215.0	194.7 216.0	0.7 1.0	.042 .060			
	{													{		

• . ,	
·	- 12 -
• M84-9	 drilled to a depth of 120 feet at an angle of -65°. the No. 2 vein was intersected at a depth of 70.3 - 71.6 feet assaying .008 oz/ton Au. the hole was stopped in diabase.
M84-1	 this hole was drilled to a depth of 317.0 feet an an angle of -61°. the No. 3 structure was intersected at a depth of 262.7 - 273.5 feet. the intersected zone returned values of 0.129 oz/ton Au over 10.8 feet which includes a higher grade zone assaying .722 oz/ton Au over 1.5 feet.
M84-1	 drilled to a depth of 388.0 feet at an angle of -75°. the No. 3 vein structure was intersected at a depth of 304.0 - 305.7 feet returning an assay of .167 over 1.7 feet including .982 over 0.2 feet.
M84-1	 drilled to a depth of 237.0 feet at an angle of -46°. the No. 3 vein structure was intersected at a depth of 203.0 - 207.0 feet assaying 0.155 oz/ton Au across 4.0 feet, including .797 oz/ton Au over 0.7 feet.
M84 - 1	 drilled to a depth of 267.0 feet at an angle of -61°. the No. 3 vein structure was intersected at a depth of 231.0 - 233.2 feet, assaying 0.060 oz/ton Au, including .301 over 0.4 feet. an additional smokey quartz vein was intersected at 236.0 - 236.5 feet assaying .006 oz/ton Au.
M84-1	 drilled to a depth of 267.0 feet at an angle of -46°. the No. 2 vein was intersected at a depth of 78.0 - 79.0 feet, returning an assay of 0.626 oz/ton Au over 1.0 feet. the No. 3 vein structure was intersected at a depth of 191.0 - 192.0 feet assaying 0.496 oz/ton Au over 1.0 feet.
M84-1	 drilled to a depth of 267.0 feet at an angle of -61°. the No. 3 vein structure was intersected at a depth of 215.0 - 216.0 feet assaying 0.060 oz/ton Au.
	The recent drilling conducted on the central portion of the No. 3 vein

has clearly indicated that the structure consists of a system of narrow, sub-

paral el veins following a structural linear. The veins dip to the north at an angle of -60 to -80° and may represent a stockwork-like system at depth. Intense, pervasive carbonatisation, chloritisation and silicification comprise alteration zones enveloping the quartz vein-shear zones.

The 1982 drilling combined with the most recent drilling have indicated a zone of mineralization which may be classified as a geological reserve. The parameters are a strike length of approximately 400 feet, a depth of 300 feet and a width of 4 feet. Based on the above the geological reserve as defined by the diamond drilling, is 40,000 tons grading 0.20 oz/ton Au over a 4 foot width and 30,000 tons grading 0.25 oz/ton Au if the in-situ width is reduced to 3 feet.

Wester Portion - No. 3 Vein System (Watts Trenches)

A total of 1,357 feet of drilling comprising 7 holes were carried out oh this section of the No. 3 vein system. These holes were intended to test the No. 3 vein at relatively shallow depths (70-80 feet vertically). This drilling was conducted beneath the Watts trenches which yielded chip sample assays of 0.49 c:/ton Au across an average sampling width of 3.1 feet along a strike length of 290 0 feet. Although the structure was intersected in all of the drillholes, only 2 of the holes returned significant results. They were as follows (Table 2):

M84-4 || - drilled to a depth of 217.0 feet at an angle of -48°.

- the No. 3 structure was intersected at a depth of 111.0 121.0 feet assaying 0.199 oz/ton Au, including a higher grade section assaying 0.828 oz/ton Au over 2.0 feet.
- M84-5

- this hole was drilled to a depth of 217 feet at an angle of -67°.

 the structure was intersected at a depth of 160.8 - 163.0 feet returning a value of .226 oz/ton Au, including a higher grade section assaying 0.968 oz/ton Au over 0.5 feet.

- 13 -

Table 3

NO. 3 VEIN - WEST PORTION

HOLE		-		FLEVATION	A7 IMUTH	ANGLE		HOLE	DRILLED	BETTER GRADE CORE INTERSECTIONS				
No.				(ft)	(°)	(°)	STARTED	COMPLETED	(ft)	FROM (ft)	70 (ft)	LENGTH (ft)	Au oz/ton	SLUDGE oz/ton/ft.
M84-1	29,600		168,963E	9979.00	198	-49	6/6/84	8/6/84	215					
M84-2	29,623		168,918E	9979.19	197	-47	9/6/84	10/6/84	137	84.0	85.0	1.0	.006	
M84-3	29,647		168,873E	9979.20	197	-47	10/6/84	11/6/84	217	41.0 44.0 47.0 112.5	44.0 47.0 47.6 115.5	3.0 3.0 0.6 3.0	.034 .002 .598 .010	
M84-4	29,660		168,830E	9983.00	200	-48	12/6/84	13/6/84	217	110.0 113.0 115.0 117.0 119.0	113.0 115.0 117.0 119.0 121.0	2.0 2.0 2.0 2.0 2.0	.115) .002) .002) .046) .828)	107.0-117.0/.196 117.0-127.0/.322 10' 127.0-137.0/.064 10' 137.0-147.0/.150
M84-5	29,665		168,836E	9983.00	198	-67	13/6/84	20/6/84	217	160.8 161.3	161.3 163.0	0.5 1.7	.968) .008)	.226 137.0-147.0/.020 2.2' 147.0-157.0/.019
M84-6	29,578		169,004E	9976.00	200	-48	21/6/84	21/6/84	137					
M84-7	29,553		169,051E	9976.19	200	-48	22/6/84	23/6/84	217	46.0 66.5	47.0 67.5	1.0 1.0	.026 .023	
	1]				1						

4

* ۰. No. 2(Zone

A total of 1,103 feet comprising 4 holes were drilled in the immediate vicinity of the No. 20 zone (Maps 5 & 6). The drilling was the first Murgold had conducted on the showing, although Kidd Resources have drilled significant footage on the adjacent Kidd No. 2 zone since its discovery back in 1981.

The drilling was carried out beneath a trench which had returned values of 0.4 oz/ton Au across 30.0 feet and an adjacent sample which assayed .201 oz/tor Au over 60.0 feet. The results of the drilling are summarized below (Table 4).

M84-1(

- drilled to a depth of 327 feet at an angle of -45°.

- a zone of significant sulphide mineralization was intersected at a depth of 148.0 - 167.0 feet assaying .003 oz/ton Au across 19.0 feet.
- a narrower hanging wall zone was cut at a depth of 217.0 221.0 feet returning a value of .123 over 4.0 feet.
- M84-11 drilled to depth of 417.0 feet at an angle of -62°, beneath M84-16.
 a zone of significant sulphide mineralization was intersected between 332.0 370.0 feet (290-330 feet vertically). The zone assays .237 oz/ton Au over 38.0 feet, and includes 2 higher grade sections which assay .334 over 9.0 feet and .919 over 6.3 feet.
 - the estimated true width of the zone is 12 feet.
 - sludge samples obtained from the interval of 327 367 feet assayed
 0.285 oz/ton Au.
- M84-1{ this hole was drilled to a depth of 172.0 feet at an angle of -46°.
 - the main sulphide zone was out at a depth of 30.5 65.2 feet (35.0 60.0 feet vertically).
 - the zone as a whole assays .205 oz/ton Au over 34.7 feet and includes a higher grade zone which assays .510 oz/ton Au over 13.0 feet.
 - sludge samples were not obtained from this hole due to the fractured nature of the ground near surface.

HOLE	LATITUDE	DEPARTINE	ειενατιον	AZIMUTH	ANGLE	HOLE	ноге	DRILLED		BETTE	R GRADE CORF	INTERSECTIO	NS
No.		Dermitune	(ft)	(°)	(°)	STARTED	COMPLETED	(ft)	FROM (ft)	10 (ft)	LENGTH (ft)	Au oz/ton	SLUDGE oz/ton/ft.
M84-16				188	-45	23/7/84	24/7/84	327	217.0 219.0 291.0	219.0 221.0 293.0	2.0 2.0 2.0	.120) .124) .010)	$\frac{122}{4.0}$
									293.0 295.0 297.0 299.0	295.0 297.0 299.0 301.0	2.0 2.0 2.0 2.0	.062) .006) .005)	. <u>032</u> 10.0'
M84-17				188	-62	25/7/84	31/7/84	417	332.0 333.0 335.0 337.0 341.0 343.0 345.0 347.0 349.0 351.0 353.0	333.0 335.0 337.0 341.0 343.0 345.0 345.0 347.0 349.0 351.0 353.0 355.7	1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	.059 } .279 } .029 } .241) .970) .004 } .002) .025) .001) .017 } .001)	327-337/.068 337-347/.500 347-357/.130 357-367/.440 367-377/.130 377-387/.123 387-397/.094 .237 38.0' 397-407/.086 407-417/.084
M84-18				008	-46	1/8/64	2/8/84	172	355,7 358.0 359.0 365.0 367.5 30.5 31.5 33.0 35.5	358.0 359.0 362.0 365.0 367.5 370.0 31.5 33.0 35.5 38.0	2.3 1.0 3.0 2.5 2.5 1.0 1.5 2.5 2.5 2.5	1.28) .144) .900) .004) .001) .001) .001) .003) 2.56)	
									38.0 41.0 43.5 44.5 50.5 52.5 54.5 56.0 58.0 61.0 65.7	41.0 43.5 44.5 47.0 48.5 52.5 54.5 56.0 58.0 61.0 63.7 65.2	3.0 2.5 1.0 2.5 1.5 2.0 2.0 2.0 1.5 2.0 3.0 2.7 1.5	.043) .003) .05) .004) .033) .001) .001) .003) .190) .003) .001) .007) .088)	.205 34.7
M84-19				014	-45	3/8/84	4/8/84	187	95.5 98.0	98.0 100.0	2.5 2.0	.016) .001)	$\begin{array}{c} .010\\ \hline 4.5^{\circ}\\ \hline 17-27/.008\\ 27-37/.018\\ 37-47/.000\\ 47-57/.076\\ 57-67/.042\\ 67-77/.122\\ 77-87/.060\\ 87-97/.060\\ 97-107/.136\\ 107-117/.250\\ 117-127/.126\\ 127-137/.152\\ 137-147/.558\\ 147-157/.760\\ 157-167/.086\\ 167-177/.082\\ 102.002\\ 102.$

- 16 -

M84-19

drilled to a depth of 187.0 feet at an angle of -45°.

- a sulphide zone of considerably narrower width than the previous holes was intersected at a depth of 95.5 - 100.0 feet assaying
 .010 over 4.5 feet.
- sludge samples obtained indicate an interval assaying 0.330 oz/ton
 Au from 97.0 157.0 feet.

The limited drilling that has been conducted on the No. 20 zone area indice es that the main zone of sulphide mineralization dips to the south at approvement mately 75-80°. Based on the drilling carried out by Kidd Resources in earlier years and that conducted by Murgold recently, there is some suggestion of an easterly rake to the oreshoot (Map 6). In addition to the main sulphide zone, the diamond drilling indicates that there are 2 somewhat narrower sulphide horizer hs present in the hanging wall, which contain significant gold values. It is apparent that the higher grade sections associated with the main zone are closer associated with shearing and quartz veining. There is however, appreciable disser inated sulphide present in the wallrocks which contain in some cases, significant values in gold.

Geophysics

A geophysical compilation and review of past geophysics conducted on the M rgold property and the adjacent claims held by Kidd Resources Ltd. was recen ly undertaken by F.L. Jagodits of Excalibur International Consultants Ltd. The p rpose of the compilation was threefold; a) to search for common geophysical signa ures over known zones of mineralization, b) the establishment of specifications for further geophysical work and c) to assist in establishing additional drill targets.

The surveys that have been carried out on the claims to date include 1) a rborne electromagnetics, VLF-EM and magnetic surveys and 2) ground VLF-EM 16, magnet meter and limited induced polarization surveys.

The review clearly indicates that the narrow quartz veins such as the No. 1 and No. 3 vein systems do not elicit a geophysical response. The geophysics did ho ever, respond very favourably to the second style of gold mineralization present on the property, that of gold associated with semi-massive and disseminated sulphi les proximal to shearing. This style of mineralization is characteristic of the No. 20 showing, the Beaverbridge showing, in addition to the Kidd No. 1 and No. 2 rones.

The airborne VLF-EM responses dominantly strike in an east-west and west-r prthwest and east-northeast direction. Examination of the maps indicate that the No. 20 zone and the adjacent Kidd No. 2 zone have associated VLF-EM responses. The airborne magnetics readily defined the north-south and northwest striking younger diabase dykes in addition to northeast and northwest striking regional faults and shear zones.

Murgold conducted ground VLF-EM 16 surveys over the entire claim block in 198 ?. The results of the survey delineated a number of prominent east-west trending conductive zones, subparalleling the trend of the stratigraphy and also the trend of known zones of mineralization (Map 7). The results clearly show the association between the No. 20 zone and the VLF-EM 16 responses. Of further significance is that the trend of the anomaly defined by the filtered data extends for an additional 2,000 feet in an easterly direction. In addition, there are a number of sub-parallel VLF anomalies in the locale and also in the Weeduck Lake area v nich require follow-up.

Murgold conducted ground magnetometer surveys in conjunction with the VLF-EN 16 surveys. The results of the survey indicate a rapidly varying field, with { nomalous trends being generally east-west, which is consistent with the known jeology. The magnetics also defines the position of two sets of diabase

- 18 -

dykes crending in a north-south direction and also at a west-northwest and east-southeast direction.

Kidd Resources Ltd. conducted a detailed I.P. survey over the Kidd No. 1 zone and what is referred to as the North Kidd No. 1 zone. The results of the survey indicate that the zones of highest chargeability are very closely related to the location of the showing itself. Additionally, a number of prominent east-west trending EM-16 anomalies delineated by a concurrent VLF survey were noted to correlate fairly closely with the location of the mineralization and the areas of highest chargeability. It appears that the location of coincident VLF anomalies, delineating conductive structures such as shears and faults and locally enhanced by sulphide mineralization, with that of I.P. anomalies, which are responding to disseminated to semi-massive sulphides, constitute the best exploration targets as defined by the geophysics.

Conclusions & Recommendations

The additional fill-in drilling along the central portion of the No. 3 vein ystem yielded encouraging results. The structure was intersected in most of the holes to a maximum vertical depth of approximately 310 feet. Past drilling (1982 in conjunction with the 1984 drilling define a 400 foot strike length, consi ting of a vein system averaging 1.04 oz/ton Au over a true width of 0.7 feet.

Initial test drilling on the No. 20 zone proved to be highly successful. The d ill results confirm the existence of significant gold mineralization down to a epth of 330 feet vertically, over a true width of approximately 12 feet. The m in zone is still open along strike to the east and additionally at depth. Hole 84-18 encountered significant mineralization at a depth of approximately 50 fe t confirming the existence of open pit material. Additional diamond drilling

- 19 -

is war anted, however this should not be carried out until detailed geophysical survey, are conducted over the showing.

Geophysical methods have responded favourably in surveys conducted across the No. 20 zone. Geophysical work conducted by Kidd Resources and Murgold indica e an excellent correlation between the location of VLF-EM 16 anomalies with t e Kidd No's 1 and 2 and the No. 20 zone. The prime targets for gold occurr nces are those areas where VLF anomalies are coincident with I.P. anomalies.

It is therefore recommended that detailed VLF-EM 16 and magnetometer survey be conducted in the areas of Weeduck Lake and the No. 20 zone. Selected induce polarization surveys should be carried out in favourable targets delineated by the magnetic and EM 16 surveys, following initial I.P. orientation surveys over the No 20 showing. Following spring break-up and the spring thaw, detailed geolog cal mapping should be undertaken on the above two areas to supplement the geophy ics and also to obtain a better understanding of the structural controls govern ng the mineralization. It is also recommended that further diamond drilling on the No. 20 zone and in the Weeduck Lake area be postponed until the geophysical result have been examined and scrutinized by a professional geophysicist. At that s age, selective drill targets can be made based on the newly acquired geophy ical data in conjunction with previous geological and geophysical results obtair id in these two key areas. Favourable results will warrant bulldozer stripp ng and diamond drilling. Cost Estimate

For a program of approximate 6 week duration:

Linecutting	\$ 5,000
VLF EM-16 & Magnetometer Surveys	5,000
I.P. Survey	30,000
Personnel & Administrative Costs	10,000
Camp Support Costs	5,000
Consulting & Engineering	5,000
Report & Map Preparation	5,000
Subtotal	65,000
Plus contingencies @ 10%	6,500
Total	\$ <u>71,500</u>

Donald Hy

Donald Hoy, B.Sc. Project Geologist

Toronto, Ontario January 1985

•

References

- Bo ssoneault, J.R., 1984. Geological Report on Properties of Murgold Resources Inc. including the No. 20 Zone, In Northern Part of Chester Township, Porcupine Mining Division.
- Hi l, Goettler, De Laporte Ltd., 1983. Report on Murgold Resources Inc. Property, Chester, Benneweis & St. Louis Townships, Porcupine Mining Division, Ontario.
- Ho, D., 1983. Report on the 1983 Exploration Program, Murgold Resources Inc. Property, Chester, Benneweis & St. Louis Townships, Porcupine Mining Division, Ontario.
- Ja odits, F.L., 1984. Notes on the Compilation of Airborne & Ground Geophysical Surveys, Part of Chester Township, Ontario.
- La rd, H.C., 1932. Geology of the Three Duck Lakes Area, D.D.M. Volume 41, Part 3.
- No minex Ltd., 1981. Report on Fraser Filtered Data, Murgold Resources Inc., Gogama, Ontario.
- Si agusa, G.M., 1981. Precambrian Geology of Chester and Yeo Townships and parts of Neville and Potier Townships, Sudbury District, Ontario Geological Survey Preliminary Map P. 2449, Geological Series.
- Walts, Griffis & McOuat, 1983. The Chester, Benneweis & St. Louis Townships Prospect of Murgold Resources Inc., in Porcupine Mining District at Sudbury, Ontario.
| } | |
|---------------|---|
| OM | |
| TH (| SUBMITTAL CONSISTED OF VARIOUS |
| REPORTS | SOME OF WHICH HAVE BEEN CULLED FROM |
| THIS F | LE. THE CULLED MATERIAL HAD BEEN |
| PREVIOU | SLY SUBMITTED UNDER THE FOLLOWING |
| RECORD | SERIES (THE DOCUMENTS CAN BE VIEWED |
| IN TH | SE SERIES): DDH #184-17 to 84-19
-1 see chester Tp D.D.R #32 |
| | |
| | |
| · · · · · · · | |
| | |
| | |
| | |
| | |
| | • |
| | |

	DIAMONDO	COR	D			
	PROPERTY duster, Bennowies & St. Louis Townships	но	DLE No	1-84-1		
SHEET NUMB	R / 0 3 SECTION FROM_ 2+ 181 TO	14/	STA	RTED	Tene 8,	-78 (
	29.600N DATIM Vitts Trenches forale		CON		June 8. 1	·9·/
					DT (1) 7 (
DEPARTURE			ULI	IMATE DE	PIH	, ,
ELEVATION	<u>9979.00'</u> DIP		PRC	POSED D	EPTH	2.15'
DEPTH FE	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	
0 -10	î a xnig			—		
10 - 5	Mignatile; moderate to interact alties you, appears to be					
	injulion of intrusive into basic chloretic volcarie, variable				·	
	testine from fine to ward granid, massin to pliated					
	interestion phases appear to be relatively impliced deside-					
	quarty diorite, instaining disseminated py sopy					
· · · · · · · · · · · · · · · · · · ·	- finily lessinerated are apy throughout in addition to this					<u> </u>
	scons of suppliede natural. Q75; this scon of gay @ 70° to c.A.	24001	17.0-18.0	1.0	Trace	
<u> </u>	@ 24.0.260': for prained chloritic phase, relatively sharp contacts	24002	42.0 - 47.0	5.0	.002	┦───┤──┼
	@ 32.0- 325 i Small fault gauge	24003	47.0 - 52.0	5.0	Trace	
57.0-5	5 Quo: ty carbonate vin; light grey to white contains	24004	57.0-57.0	5.0	Time	┨───┤──┤
·	algundant delaite, gradational contacto @ ~ 600 to C.A.	24005	570.57.5	0.5	.006	╡
	findly deponished pl. cop 1 pr., calcareous, activite.					┼───┼
57.5- 4	allitication zone; fine gramice . choute sitecone - calcaneous	24006	57.5-60.0	2.5'	Trace	┨───┤──┤-
	Minster gove, remains crossenting calita visites, provisit			- <u>-</u>		
·	- quarty up, containe disconsisted py " cpf (-11), gradation					<u> </u>
	alute with upper + lower units	- 10			11000	
	U Words; relatively unalled, weaken to course grand	24001	60.0 65.0	3.0 5.1	Train	+ + +
	princes are preare. Dense quarty eyes, smell selliged	24009		<i>c.c</i>	TRAIN	<u>↓</u>
	accurate gour an proor locally males of dissipyrated	24010	75.0 40.0	5.0	Trace	
	py pright colony	λ	10 shills -	Samples -ile	~ .	<u> </u>
8	DRILLED BY Triangle Disting & Dulling	SIGNED	e of	Per	edity ?	35.

.

			LLRECO	D R D	•
	PROPERTY			HOLE No	-
SHEET NUMB	:R2013	SECTION FROM	TO	STARTED	
LATITUDE		DATUM		COMPLETED	
DEPARTURE		BEARING		ULTIMATE DEPTH	
		DIP		PROPOSED DEPTH_	

	DEPARTURE.		BEARING		ULI	MATE DE	PIR	 	•••••
3	ELEVATION .		DIP		PRO	POSED D	EPTH	 	
	DEPTH FE	r	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		
	17.0 - 1	6.0	alteration Zone; pay schelones, calcanone gove, pronomit	24011	97.0-102.0	5.0	.002		
			Joleater, numerous colute vendite " gastes, large	24012	0701-0.501	5.0	, 002		
			quarty ups. desseminates ' stronger py " CPY present	24013	107.0.1120	5.8	Trace	 	
			locally gradulional upper ' lover contacts, locally chloritic	24014	117.0 -1170	5.0	.00Z		
I.			0 97.0; then Stringer of spy	24015	117.0-122.0	5.0	Trace	 	
	<u></u>		@ 102.0; 2" seem of stronger opy and patty calle.	24016	122.0 - 1760	4.0	Trace		
			e 70° to con actes.						
			topotimi, @ 102.0' - 70', @ 117.0'. 70-75' @ 122.0' 75-80'						
			@ 92.0-945'; prik ponter dife. very course gramice					 	
			mon followns patay pale quarter migular uppy						
			+ conver contacts						
			from 109 - 126.0; more silicons quater degree of allisation						
			well developed folicition at high make to cas, appreciate						
			this stringer of pt. pot opp						
	176.0 -	160.0	Mignalite: intruence injudio allerator gove, vanse granid				•		
			swarty devide onlividing fine to meder granied int. volconis						
3			a desite ; propyamation of assimulation of units are cordit						-
1			gradaland cartuels. ; lass bluigh quarte ups, noderate					 	
1			to intense carbonalysten, provined dolly britte locally.						
			chlorte - spidile provinit locally rumerous cross cutting						
1			coluite Ventito						
1		1							

DRILLED BY

• •

Ċ)

SIGNED

i

PROPERTY HOLE No. SHEET NUMB R 3 of 3 SECTION FROM TO STARTED LATITUDE DATUM COMPLETED OCOMPLETED OCOMPLETED DEPARTURE BEARING ULTIMATE DEPTH PROPOSED DEPTH DEPTH FE FORMATION SAMPLE NO OF SAMPLE GOLD S JUDGE FORMATION SAMPLE NO OF SAMPLE GOLD S JUDGE JUDGE GOLD S SLUDGE GOLD S JUDGE JUDGE JUDGE GOLD S SLUDGE JUDGE JUDGE JUDGE JUDGE JUDGE JUDGE JUDGE JUDGE JUDGE JUDGE JUDGE)	DIAMONDO ILL RECORD							
SHEET NUMB :R 3 of 3 SECTION FROM TO STARTED LATITUDE DATUM COMPLETED				DLE No	нс	PERTY			
LATITUDE DATUM COMPLETED DEPARTURE BEARING ULTIMATE DEPTH ELEVATION DIP PROPOSED DEPTH DEPTH FE FORMATION SAMPLE NO WIDTH OF SAMPLE GOLD \$ JUDO- 180 Silveano allification gree: fine to ording granicol, pronumint 24017 100-105.0 5.0 160.0- 180 Silveano allification gree: fine to ording granicol, pronumint 24018 65.0-770.0 5.0 Trace 160.0- 180 Solveano granity, rije, intense carlonalization, pronumint 24019 170175.0 5.0 Trace 160.0- 50-60' to CA., ning to apprecisive settings 4 isoonadize 24019 170175.0 5.0 Trace			RTED	STA		SECTION FROMTO	SHEET NUMB		
DEPARTURE BEARING ULTIMATE DEPTH ELEVATION DIP PROPOSED DEPTH DEPTH FE FORMATION SAMPLE NO. JEPTH FE FORMATION SAMPLE NO. JOID FORMATION SAMPLE NO. JOID FORMATION SAMPLE NO. JEPTH FE FORMATION SAMPLE NO. JOID Stlueges Alleration JOID Stlueges Alleration JOID JOID Stlueges JOID Stlueges Stlueges JOID Join Stlueges JOID JOID Stlueges JOID JOID Stlueges JOID Join Join JOID Join Join JOIN Join Join <				CON		DATUM	LATITUDE		
ELEVATION DIP PROPOSED DEPTH DEPTH FE FORMATION SAMPLE NO. WIDTH OF SAMPLE GOLD \$ SLUDGE GOLD \$ 160.0-180 Scluceno allerativa Zone: fine to ordine granice, pronumint Z4017 Ho-165.0 5.0 Trace 160.0-180 Scluceno allerativa Zone: fine to ordine granice, pronumint Z4018 B5.0-170.0 5.0 Trace 160.0-180 Joliater, pate guerty upo, intense cartonalizator, foliation Z4018 B5.0-170.0 5.0 Trace 160.0-50 50-60 50 CA., nine to apprecisive settings 140000000000 24019 170-175.0 5.0 Trace		РТН	MATE DE	ULT		BEARING	DEPARTURE		
DEPTH FE FORMATION SAMPLE NO. WIDTH OF SAMPLE GOLD S SLUDGE GOLD S 160.0-180 Silicens allenation Jone: file to ording granico, pronumint 24017 160-165.0 5.0 Trace 160.0-180 Joliater: pale quarty age, interse cartonologator, foliation 24018 165.0-170.0 5.0 Trace 160.0-180 100-165.0 5.0 Trace		EPTH	POSED DI	PRO		DIP			
160.0-180 Silicano alleratia Jone: fin to redim granice, pronumint 24017 10-165.0 5.0 Trace joliation palo quarty ages, intense cartonologator, joliation 24018 105.0-170.0 5.0 Trace from 50-60: to CA., nime to appreciate stringe " accompting 1.70-175.0 5.0 Trace		SLUDGE GOLD \$	GOLD \$	WIDTH OF SAMPLE	SAMPLE No.	FORMATION	DEPTH FE		
foliation pale quarty uper intence cartonalizator foliation 24018 15.0-170.0 5.0 Trace from 50-60: to CA. vinor to appreciable ottinger & resonalize 24019 170-175.0 5.0 Trace		Trace	5,0	160-165.0	24017	and alleration fore; five to redian granica, pronumint	160.0 - 180		
from 50-60° to CA. , ninor to appreciate stringe " dissensible 24019 170-175.0 50 Trace		TRACE	5.0	105.0-170.0	24018	en pale quarte user interse carbonatizator delation			
		Trace	5.0	170 175.0	24019	50-60 to CA. Ning to appreciate strong " desaula			
pt. po copy. 24020 175.0-1800 5.0 Trace		Trace	5.D	175.0- Rao	24020	po s cpy.			
@ 1750, appreciate strunger cipy and py.						1, appreciate stronger cipy and py			
1930- 203 0 Mignalite & above; indigenisted & recented to recents						like to above; indegenerated & assemilated units	1970 - 202 0		
of meden grand deside quarty desite with intervidente						reden grand dioide quarty diointe with internedist			

of 3 erregularly willy white

relatively unalleset

Anite

thoughout

porto

rock fragmento, upper

DRILLED	BY				•	,
---------	----	--	--	--	---	---

P 207.6 ;

1 Marty

₹...

minin respected sulphill

with

Alashta, light to midling quy

* massin, mina desseminates

their seem

END

country

N.

inlast shays @ 15-20 to C.A. love unlast inger

coleanoons, nine prosmited

heleppete

OF HOLE @ 215.01

Quarty Vim Zone: consists

wins

County rold quite

t pyphollels Agnatike : 10 star

2.1021

202.0-204.0

z.D

Trace

ţ

702.0.

204.0 -

707.5 -

.

04.0

207.5

15.0

1

	PROPERTY Clester, Benn	enines & St. Louis	Townships	но	DLE No	M-84-2		-	
	/ <u>of _3</u> SEC	CTION FROM 21 Z	<u>37</u> TO/	NW	STA	RTED	Jeni 7.	175	
	29,62.3 N DAT	TUMWatts T	Enches Locale	G COMPLETED June 10, 148					
	168,918 E BEA	ARING /	97°		10 T	IMATE DE	РТН	137'	
	9479.19'	-4	70					30'	
ELEVATION	DIP	· · · · · · · · · · · · · · · · · · ·						1	
DEPTH FE	FORMA	TION		SAMPLE No.	OF SAMPLE	GOLD \$	GOLD \$		
0-911	Choing								
9,0- 1,0	Migmelite Zone: legit to d	ak grey, altern	la goe					ļ]	
	of assimilate quarty desite	intruscie and fine	medicin						
	gramed internatiate volcare (?) and	leate ; preciated	intervels						
	witing trace to ninon sulp	shidles, pale blue g	tzy uze.						
	from 17.0-29.0' preciated interest. s	abronded to angula	fragiento			· · · · · · · · · · · · · · · · · · ·			
	of ent basic volconic continue not	the m c.g. gue	its devite						
	from 25.5	ed ent pasier Ve	cani .		l		 		
	seleticly unallised & massive.								
<u> </u>	Quarte Divite Brandante light	to medican grey	, spuckled					┨	
	apperance, equipanula e smalle	nich, very sharp	upper and						
	lower contecto @ 15-20 10	specificty	-			·		┫┥	
40.0 - 75	· Allered Zone, fine to reduce	granud, ligid re	moderale	24022	480-52.0	<u> </u>	Trace	<u> </u>	
	Jolistan silicious chlastifit - i	Continuityed goe in	a probable	24023	5-0-37.0		Trace	╉────┤	
	Muchilly motion of intrudice	and contreg rock	haule .	24025	17 4.474	<u></u>	Tau	11	
	alle the winit and parter in	all quintation	numbe	24026	27.0-72.0	5.0	Trace		1
	we are pormint to ally the	Take To minon	dical in alter	74027	72.0-75.0	5.0	Trace	11	
	The providence small strength	. chloula nich int	neals						
	for 67.0- 25.0': has altoud rem	and toptare of men	tion gramice						
			1						1

	Truste	Dranoil	Dulling	•
UNILLEU DI				• • • • • • • • • •

æ

SIGNED Don Hay Josephere De Contraction de la contraction de la

				JLE NO			-
	R	z of 3 SECTION FROMTO		STA	RTED		
		DATUM			MPLETED .	•••••	
PARTURE		BEARING		ULT	IMATE DE	PTH	
				PRC		FPTH	
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE	
75.0- 2	10:5	Vich it - Manardenila ' light to welling new modering to loss					
		a soud i massure, interio lara presento o brie-grana					
		bush ned noch as indusions, trace to winor deseminated					
		pyrile " chaliopyrite, strong tower contact @ 70-00' to C.A.	·				
		@ 76.5'; snall "2" gig ven @ 40° to C.A. appreciata pot opy					
		@ 845" then 1.5" gt 2 vin @ 40-45° to C.A. contanio	24078	94.0-85.0	1.0	,006	
		abundlent patchy py, po 2 cpy					
93.5 - 11	6.0'	Silucous - Conternized - Unloute altered nock; largely fine gran	ud.				
		india quy to green, patchy quartz " rumerous uso	-				
		alting calerte winders and gastes.					
		topalin : carbonale ventito largely time @ 60-70° to C.A	·			<u> </u>	
		@ 91.0'; Insil "2" quarty time at 90° to C.A. contains about	t			<u></u>	
		CPY, PY & PO.				<u> </u>	
		from 105.0-1010; you becoming more siteres approaching viv	24029	16.0-101.0	5.0	. 006	
		apprecible descrimited opy	24030	101.0-116.0	5,0	Trace	
106.0-1	,5	Veri Zone; correcte largely of white quarty, with abund	nd 24031	1040-117.5	<i>],</i> S	.002	
	• • • • • • • • • • • • • • • • • • •	calute preculate promisint dats of chlaster uppor?					
		lever conterts are sharp but integration that to minor					
		cpv. collect "propriated at about 50° to C.A.				407	
107.5.3	30.0	Silicino - Contratzio allestala zone; ao alore	24032	107.5 - 1/2.0	4.5		

SIGNED

		LRECOR	D				
	PROPERTY	но	DLE No				
	3 of 3 SECTION FROM	то	STA	RTED	······		
ATITUDE	DATUM		CO	MPLETED _			
					DTU		
PEPARTURE	BEARING		. 011	IMATE DE	PIR		
LEVATION _	DIP		PRC	DPOSED D	EPTH		
DEPTH FE	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD S	SLUDGE GOLD \$		
	with dividenced Alealta @ 45-500 the Con Aris,	pumetors					
	carbonate vintols tronding at 40-600 to c.A. trace	to		·····			
	mine desammated sulphides, higily carlmatized						
	CIZED; colate - quarty stringers (zone alfact 2")	enth					
	associated stringer po and py						
130.0 - 1 7.0'	Altered Dronits. Gablero; largely medium gramia and	macsive					
	maderale to interse interselyaton 1 calvitration,	abondart					
	colucte vendels and starter, placet quarty upa						
		······					
	END OF HOE @ 137.01						
			 				
	Studge Samples						
······	Interval Au (or Hom) Interval Au (or	then)		·····			
	17.0-27.0 .004 97.0-107.0 .00	6	 				
	27.0-37.0 .002. 107.0-117.0 .00	2				┟───┟──	
	37.0-47.0 /race 117.0-127.0 Do	<u>7</u>					
	41.0-37.0 .002 127.0-137.0 .00						
			.				
	6110 11.0 .000 ·			.			
		Ъ.					

DRILLED BY

Ð

SIGNED.....

and a second second

		PROPERTY desta Burewes & St. Louis Torn	velies H	OLE No.	M 8H-3			
HEET NUMB	8	1 9 4 SECTION FROM 2+ 288	TO WNW	STA	ARTED_	Juna 10,	AS	
		29,647 N DATIM Watts Trans	les Locale	- COI		June	1. 1984	
		168,873 E BEADING 197°			IMATE DE	ртц	2171	
EVATION		9979. 20 ¹ DIP -47 [*]	, , , , , , , , , , , , , , , , , , ,					
DEPTH FE	 Г	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$		Studie	
<u>0-7</u>		Canno					2.464415	
7.0-	26.5'	Higwalk: Intrusive injection - alleston and with	d.				7.0-17.0'	
		roccurs to be an este mudrate. Whenie (andester?)	ennat					
		terlures from the volcinic are still retained, moderate	6					
		strenes selectration, some contractionation sugerts, dear	ito					
		integrale appears as wegular & subroyded particles, have	eterie .					
		white senders are present locally, precised intervals						
		7-13.0': moderate to heavy fractionag, trave supposes.					17.0-21.01	
74.5	47.0'	andente: Basalt: Motoverene ; fore to medican gramice					27.0-37.0'	
		somewhat allevier slaged to malurate solucipication of					_	
		carbonalization						
		26.5 - 37.0's course grand phase, small patiens of g	unty					
	•	' continuate ventilles.			. <u></u>	1		
		37.0-47.0: fine gramed phase, more calorite the	n 24034	41,0-44.0	3.0	, 034		
		More, rumenous inospiritory carbonate vendes pres	x 24035	44,-47.0	3.6	.002		
47.0	17.6	View Zone: Breccioled Quarty- carbonate vin (402,	212, 24036	47.0- 47.6	0.6	.598		
		61% calula / will accide readles of activatile, som	24037	47.6 - 50.0	2.4	.002	- 	
		chlorite, contains dessenovated i stringe piquée na	iner 24038	500 - 53.0	3.0	1002		
		cholioppile, relatively sharp upper ! lover contacts @ 3	0-60					
47.6	61.0	Mignatile; smila to 7.0-265' interest, interest	c					
		injutar - alliation you policy quark & colicte	<u> </u>		<u> </u>			
			Some slo	idge scriptes	4 31'; A	he circulater	lest	

ł

į

DIAMOND D ILL RECORD

		PROPERTY	Но	OLE No					
SHEET NUMB	R	z »f4 SECTION FROMTO		STA	RTED				
LATITUDE		DATUM		CO	MPLETED				
DEPARTURE_		BEARING	ULTIMATE DEPTH						
ELEVATION _	EVATION DIP			_ PRC	POSED D	EPTH			
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		Τ	
		Verning pront, show contact with long unit at 70° to C.A.							
		@ 40.0 " small "4" guara string a associated pyrite ip	ø				· · · · · · · · · · · · · · · · · · ·		
61.0- 8	· <i>s</i> '	Assbute - Granodinite; light to ridem grey, largely							
		median granied, equipiquelar and reasine, unaftered,							
		@ 720-79.0; heavily fraction internal trace desconunated							
81.0		supplie							
(76.0	1/7.5	Words Mastrie Dianothere , ranging million grand,						+-	
		carboistration relatives those lowa watact at	1						
		30-40° 15 C.A.							
1/25	185	Alcha - tult: 15 flourns porizon with prominant foliation at	240=9	112.5- 1185	5.0	.010			
		40-50° to O.A. calcarenz with calute stranges, precussa	24040	115.5 - 118.5	3.0	5002			
		horally, appares also to desplay a flow bater							
		112.5-144.0, profile brucesta with calite bricin filing		ļ					
		014410; palety pyrte.							
: 		totalia: @ 115'; 50° @ 116'; 50-55°							
		1165-118.0, Small interval of allered alaskits as abore.							
18.5-	155	allered Droute dark grow to gray, largely median granned							
		wally brecustor, weal folglar seriloped loally, moderate							
,		to interse carbonidezation nuceroy orossculla, white vantels				<u> </u>			

3

3

SIGNED

()

				но	DLE No						
	٦	3 of 4	SECTION FROMT	0	STA	RTED					
			DATUM	DATUM			COMPLETED				
PARTURE			BEARING	BEARING		IMATE DE	РТН				
				<u>, , , , , , , , , , , , , , , , , , , </u>							
	1										
DEPTH FEE			FORMATION	SAMPLE No.	OF SAMPLE	GOLD \$	GOLD \$.		
		@ 136.5 i zmall	scan of pute " pycholale 70-20" to C.A.					ļ	 		
		@ 142.0; snall	sean (10°) pyrde @ 10° to C.A					_	1		
		@ 147.0 - ;	concer granies phase, large splottes of					 	╞		
		quark							+		
		gradalizinal	contact worth the underlying and					 			
/33.0	101.0	Migmalate en	monte rejeter goe y acide musion								
		Amalgamorise (lite cutronal dentre and a dente anciente		· · · · · · · · · · · · · · · · · · ·				-		
		@ 161.6; app	uible splatch & CDI. alt DU	m					1-		
/61.0	11.20	Veni 2me · Ba	uccased and roalthy quark with country	-2441	160.0-1620	7.0	,002		1		
		nock melasons	(60% quarty, 40% comby wed), collorelie.								
		upper content	vlattely sharp at "10" . lours contact								
		very wrighten.	trace chlolopyite and gypete					ļ	_		
162 10	172.0	averty - Carbonate.	alouts allerada zno. moduale 15 intense						<u> </u>		
		altrater up	nerou calcile sens games gradational			· · · · · · · · · · · · · · · · · · ·			┼─		
		contact with	the underlying gos.						╞		
0.77	Z17.E)	aludite - Kran	obloute: nedin grey, largely median					+	-		
		grand with	for grand sugar prade			· · · · · · · · · · · · · · · · · · ·			┢		
		fra. 176.0 - 186.0'	han analid share	<u> </u>		- 18 - 10		<u> </u>	┢		
		@ 190.0' 7	the white and the do sidle much al			·	·	1	\uparrow		

	PROPERTY		Но	DLE No				
	4 of 4	SECTION FROM1	0	STA	RTED			
		DATUM		CON	MPLETED _			
		BEARING		ULTIMATE DEPTH				
		DIP	<u> </u>	PROPOSED DEPTH				
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		
	upper and book	a contento sharp at 45° to c.A.						
	@ MI.O'i nuel (1"	I quenty ver, no viscola noncealization	>				l	
	upper t lover in	mlatto slaps at . 40°						
	e 197.0°. mell se	un of cpt, pt 1 po @ 200 do . ch.						
	from 192 - 217.01; n	unerous haritaire carbonate sembles						
	and gaste in	all overlations				;		
		- 1						
	<i>te</i>	ND OF HOLE @ 217			· · · · · · · · · · · ·			
							-	
		•				· · · · · · · · · · · · · · · · · · ·		

	PROPERTY	- Benneuries & St. Louis Toronstyps	но	DLE No	M 84-4			
HEET NUMB	174	SECTION FROM 2+331 TO M	/NW	STA	RTED_J	me 12, 196	34	
ATITUDE	Z9,660N	_ DATUM Watts Trenches Loule	COMPLETED June 13, 1991					
DEPARTURE	168, 830 E	_ BEARING		ULTIMATE DEPTH				
	9983.00 '	DIP48°		PROPOSED		DEPTH		
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	Startin Interval	
0 - 7.0	Cusiniy	· · ·						
1.0-15.	Drowte - Quarty Des	its median to course gramed, equi-					7.0-17.0	
	jumiler i massure	undland		,,				
	e 10.0': sire of	heavy fracturing	ļ	[
	fron 10.0 - 12.0'; fine	grance quenty - divite phase					_	
	sharp lover contac	et at 30-40° to C.A.	<u> </u>			' 		
15.0 - 1.5	Migmatile: Intersive	injection you, intersure to a					17.0-27.0	
	median to course gr	unid quarty diasto, other will type	<u> </u>				27.0.57.0	
· · · · · · · · · · · · · · · · · · ·	is a finer gravied	more nofic volumie (andestil - basalte?)	<u> </u>				27.0-47.0	
·····	ayatan is in form	of patches and remnants of each	l					
	nock type with grade	timel transtand contacts, humeroas small					- -	
	grante dypes withey	le the smit at second sacks a 20-50-6 c.A	<u> </u>			<u></u>		
	pore is lightly prec	uilit .					+	
	Q 305 Frail de	en (14. 3) of pyrite, pt of					-	
741.0 - 6 -5	Disale, black, speck	lid appearance, largely matin to concer		<u> </u>			D /.0-5 /.0	
	grande, massure,	relating unaltered, though small seans					57.0-61.0	
	for MA- 57.0° 1'	converge	24042	1140-57.0	3,0			
	fine in the func	yours, a core carconarger permater						
	my rumany Nav	in cause verices, inpolence print	·					
	svoiga acoorginal	its man is hadles aforda						

	PROPERTY	· · · · · · · · · · · · · · · · · · ·	H0	OLE No						
HEET NUMB	:R294	SECTION FROMTO_	**************************************	STA	RTED					
ATITUDE		DATUM		CON	APLETED _					
EPARTURE		BEARING		ULTIMATE DEPTH						
				PRO		ЕРТН				
		FORMATION	SAMPLE No.	WIDTH		SLUDGE	Stange	141		
	Quade-			OF SAMPLE		GOLD \$	ntervels	(<i>T</i> 7)		
67.5. 4	" Siturno - Carlon	to alloute detrala Zone: duck green to					(\$0.77.0			
	guz, fine to	redim grand with a faul to moderate file	h	 	<u> </u>		77.0. 87.0			
	diveloped treating	interse cartinalgeta, prominist calabe								
	nemtile & slashin	pensotu diafuda i chore, intervie								
	locally, necretter	highly allered volcand of main desenvaled								
	1 stronge N. ps 19	of , longe pluish questy up pront locally.	·							
	@71.5", snell for	A. fold ous " To" to CA. when folialist @ 11	, 		<u>.,</u>		07.6-77.0			
89.0- 99.	Mignaale Antr	usar injection gone as described above.			<u></u>					
	quarty divite a	truson and what oppears to be			•					
	an interredian	& to basic metaooliani, cartonatypel	·····							
	remenses calert	Menilety 2 gasks.			<u> </u>			 		
	@ 92.0". Snall	pranty Vire @ 50-60° to C.A.					_			
77.0- 108	5 Siliens - Carbo	ate - alorite albiation zone: so per	24043	99.0-102.0	3.0	.002	77.5-101.0	 		
	67.5. 89.0 intern	il above, hus the opplaname of a	24044	1020-1050	3:0	,002				
	basic metunglion	is rock, Inclabased?). highly carlmoligd.	24045	105.0-1085	\$.5	.002				
	prominat patche	, of quarks elemenous carbonate ?								
	quarty ventets,	week plister developed & 50° to C.A.								
	@ 101.5' 2' que	16 - calerta Nim @ 40-50° to CA. No VELLE	:							
	nyviolistion.	trau								
	@ 107 - 109.5: fold	aten beloning more pronormela @ 50-60° to								
]	CA.							ſ		

DRILLED BY

.'

SIGNED.....

DIAMOND D ILL RECORD

		PROPERTY	Но	DLE No						
	:R	3 of 4 SECTION FROMTO		STA	RTED					
		DATUM		COMPLETED						
EPARTURE		BEARING		ULTIMATE DEPTH PROPOSED DEPTH						
		DIP								
DEPTH FE	r	FORMATION Susand	SAMPLE No. WIDT OF SAM	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	iE Surge s Hervals			
1085-12	0	Nete tallacenes Unit; toleater, bunded, scheiter appearance,	Z 4046	1085- 111.0	2.5	.002	107.0-	117.0		
		calcascons and calorta ponding is evident, alcaped with	24047	111.0 -113.0	z.0	115				
		stondart poteks of quark " inigilar shaped vair, appreciable	24048	113.0-115.0	2.0	,002				
	1	subplide puneralgolia as patches stringer I descennalize of	24049	115.0-1/7.0	2.0	.002				
		synte - applitte : deleggete i min galena. rimeralegater	24050	117.0-119.0	2.0	.046				
		appears to be related to the stress portion of the gas	24051	160-121.8	2.0	.828	1			
		1 the quarte sing.			`.					
		1085-109.0"; sidecos - contendo porter with appreciate por py.								
		Q 700 No CA,								
		111-112: Silvers - carbonation gre with appreciate optiporpy								
		"117.0" stronge & patches cpy and py ussociated with patches								
		quartz								
		C 14.15 - 114.5'; wiegular smothy quark vin @ 70' to C.A. abundant								
		py and opy								
		filialin, @ 101'; 70-75', @ 111'; 50-240 , @ 112'; 60'								
		@ 1171'; 60-65'								
		transitional laws contact upper wither sharp & 70° to CA.								
171.0-	26.5	Silver - Carbonate - Chlorik allordo you: as described about	24052	121.0-124.0	3.0	.006	17,0-	127.0		
		@ 990- 108.5' carbonalyon with palety quarty, sligher.	24053	124.0.126.5	2,5	.002				
		with numeral asimate senders, trav to moderate ussenate								
		sulphide.								

DRILLED BY

B

	PROPERTY		Н	OLE No						
	4 84	SECTION FROM	то	STA	RTED			• •		
	۲ 	DATUM			MPLETED _					
PARTURE		BEARING		ULTIMATE DEPTH						
EVATION		DIP		PROPOSED DEPTH						
DEPTH FE		FORMATION	SAMPLE NO.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	-slada rowis	({{		
126.3. 173.4	Droute dark gree	to gay, speckled appearance,	longily				127.0.	137		
	median grained with	fire granied allered phases	presant				137.0 -	137		
	wally sheeped	in places with patting quart	<u> </u>				147.0-	157		
	large quarty eyes,	rejections of quarty desil press	a				157.0 -	167		
	@ 138.3 " Small "2"	sty vin a 55-65' with chaliopy	te 24054	138.0./31.0	1.0	,008		_		
	fron 145.0- 146.6' ; fine	gramed allered phase, sheefield	end 24055	1450-1465	1.5	.024	_	_		
	Monte, prominent	carbonalzation, @ 145.3': small (2")	quarty							
	with gone + chloute	with py poipt								
	from 140.0- 152 0': fine	granise ellerte phase, resolutes a b	applie 24056	148.0-150.0	7.0	,008		<u> </u>		
	ylimic, trave to m	non descripted sulphides harden	colute 24057	150.0-157.0	2,0	.002		 		
	veentite prominit.	,					_	 		
	@ 169.01 heurly frace	week				····		<u> </u>		
	lower confind no	shap @ 50-55, last 2 fe	t					<u> </u>		
	7 entered chlou	the end subscripted, desservable of	»Y•		· · · · · · · · · · · · · · · · · · ·			_		
175.0. 2 1.0	Alaskite, light A	to medium grey, largely medium	gramed				167,0-	177.		
	and respire largely	mallera allhange allered phaces	are				177.0 -	18		
	puson torally tro	a porminant opp					187.0-	197		
	- allass phase for	w cum glower kolonystor of 1	-span				197.0 .	207		
		Re the Prizin					2.07.0 -	p.,,.		
	END	u mue						+		
			1					I		

.

	PROPERTY	TO TO THE	wilsting H	JLE NO	<u>M84-5</u>	 Tene 18		,	
IEET NUMB	<u> </u>	_ SECTION FROM <u>27 331</u> 10	0	517	RIED	Vana 13,			
	29,665N	_ DATUM _ Notts Ver Locale		CO	MPLETED _	June 2	10, 198	4	
EPARTURE	168,836E	BEARING	t	ULTIMATE DEPTH2/7'					
	9983.001	DIP67°		_ PRO	POSED D	EPTH			
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	Studge Jalesval	5	
0 -5,0	Cosing								
5.0- 5.6	Diorite, fine to a	ing coarse gramed equivalents, relation	4				17.0-	27.0	
	unellere massive	1 equigranular biotita - chlorite re	ih						
	interripto are present.	<i>U</i> •							
	From 5.0-20.0': way co	us granice, trace to minor pyrte	<u> </u>						
	@ 75'; fractioned of	iteral							
	fra: 200-256; largely	medium gravid, sharp lower cont	act						
	a 20° to core appe	5							
25.6. 31	Quartz Disite; fine	to course granied. light grey to ut	ca				27.0 -	37.0	
	specklad appearance.	largez massive 1 equigranulor, run	<u>n</u>						
	patchy quarty							-	
	@ 276'; thin (12')	seam at chokopyite " pyrhottile	24058	27.0-20.0	<i>]</i> ,0 [·]	.002		╂—	
i	gredatizial lower	contact with more descrimedal py.	00	ļ				╂	
	Acpy associated with	contact.			· ·····				
37.0 - 10	Divite, Smiller M	5.0-256 reterval, largely med	uni					(7).0	
	gromer, massive :	equigramilla prominent bluch where	nel				r7.0 -	67.0	
	query upo introtuced	, mon injections of guardy - about	£						
	press as mall by	t it interes accurate day to					-	+	
	share in tack	"						1	
	8 c20'' 411 /3/1		<i>.</i>					<u>†</u>	

		DIAMONDDEILLRE	COR	R D		(
	PROPERTY		H(OLE No				
	2 014	SECTION FROMTO		STA	RTED			
ATITUDE		DATUM		_ coi	MPLETED _	TED		
EPARTURE_		BEARING		ULT	IMATE DEI	PTH		
LEVATION _		DIP		_ PRC	POSED D	EPTH		
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD S	SLUDGE GOLD \$	Sladge Toterva	ls
	from 59.0-64.0"; proix	reit coarse gramid quarta doonts granoclaule						
	lytes @ 20.40° h	& C.A. mina desirbic nterrals.						
	@ 63.0' mail	slip sean with mina poepy.						
	relatively sharp	conce contact @ 5.10" to C.A.						
70.0- 8 0'	Quart 2 Diointe - A	nonrelioite; largely warpe gramed, detrough					67.0 -	77.0
	hed granied equin	Saits are promit locally, moderally allered						
	with some steam	ig sharp inegular lower confact	24659	72.0- 25.0	3.0	,002		
Quarts in ->	from 75.0.75.5' ; quart.	2 vin gov, grey to white, sharp unlacts ?	24060	75.0- 75.5	0.5	. 064		
	shearing @ 40-45°	to CA. appreciate dies py, opy + po	24061	75.5-78.0	2.51	.002		
	tim 25.0- 27.0; 3mas	I shaces trendring a 40-15 to C.A. minion accordiante						
· · · · · · · · · · · · · · · · · · ·	sulphides.							
	110 71.5 . 10.0: shear	gove @ 10-45' & CA. downdant particky po,	24062	19.5 . 80.0	0.5'	. 006		
	" patcher quar	<u> </u>						
87.0 - 4.0	Merea Dionte;	largely median granies, moderate to					77.0-	87.0
	intense deraton.	developed with production of chlarte 1						$\left \right $
	brotile, promining	& shearing with strong foliation developed.						

blatin ishearing @85.0" 40-45", @ 87.0": 35", @ 910'; 20-30"

Quartz-Disite - Granadiaite . redian gramad 1 unaltered

upper I lover contacto are sharp @ 20' to c.A.

largely coarse graniel with medin granied rabins

DRILLED BY

Diorite;

94.0 . 96 .

96.0 - 116,

. \$

87.0- 97.0

107.0

97.0 -

DIAMOND D ILL RECORD

		PROPERTY	но	DLE No				
SHEET NUMB	:R	3 of 4 SECTION FROMTO		STA	RTED			
LATITUDE	.	DATUM	· · · · · · · · · · · · · · · · · · ·	CO	MPLETED _			
DEPARTURE		BEARING		ULT	IMATE DEI	PTH		
ELEVATION .		DIP		PRC	POSED DE	EPTH		
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	Sludge Jatera	ls
		prominant injections of Quarty Drovite gradultinal					107.0-	. 117,0
		lown intait.						
116.5 - 1	3.0	Altered Dionte: moderate to intense contonalization					117-0 -	127.0
		unerous calco ventito, subsciped I calaite them						1
		Stringer po, py & cp. y cossociated worth factores & calute unlets.						
		lour intact is sharp @ - 60".						
123.0- 11	1.0	"slashule Branodenile; langely medicin grained, contense					127.0-	137.0
		iliquater, rumerous small quarty calute veins with					_	
		associated pyrite, p. 1 cpy. Becoming sheared towards the					_	
		not of the interval ; transveral lover inlatt with						
		underlying unit.				•	_	
129.0 - 1		sheared allowed alaskate? ; intense spearing I alteration.					137.0 -	0.7.0
		provinit subception à provincit pality greater locally						11
		very chloula, appreciates (pr, po'py apor with quarty.	24063	129.0-182.0	3,0	. 006		
		nich intervals.	24064	137.0-134.0	2.0	,008		
		fim 129.5. 130.5; white parlong quarty, no visible minaplization	24065	134,0-36.0	2,0	,002		
		@ 136.0'; selected gos opprecises duceninated opp of.	24066	136.0-130.0	2.0	.020		
		From 138.0' 140's silicified - vin? your opprecision than stringer	24067	12 B.O-140.0	2.0'	, 008	_	
		poppiogy uppointed with the quanty		· · · · · · · · · · · · · · · · · · ·				
		sharny foliatin; @ 132.0'i 45.50 to CA. @ 134.0'i 30-40'						
		@ 131.0: 40-50° to CA.						

G)

DRILLED BY

•

 $\leq \lambda$

			LLREC	ORD	
	PROPERTY			HOLE No.	
SHEET NUMB	4 of 4	SECTION FROM	TO	STARTED	U
		DATUM	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	COMPLETED	
DEPARTURE.		BEARING		ULTIMATE DEPTH _	

EPARTURE_	.	BEARING		ULT	IMATE DE	PTH		
LEVATION		DIP	ULTIMATE DEPTH PROPOSED DEPTH SAMPLE NO. OF SAMPLE GOLD S SLUDGE GOLD S SLUDGE I 1770 - 157.0 - 1					
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	study Tateryo	•1
140.0-16	1.0	aloute - Contorrele - Okorta Rich Unit; resemption on allored					147.0 -	157.0
		posie metavollanie, largoly fine grained, mitesse carlons	·	ļ			157.0 -	167.2
	ļ	atysta, promisé colute vins "gastes, appreciale						
		stringer & dissemented py, cpy and po associated with guarg-	24068	1510-154.0	3.0	007		
		a 153.0': small sheen I aparente chile @ 85° to C.A.	24069	154.0 - 1510	3.0	.002		
		from 157.0- 163.0: stringer + diss. cpy, py "por associated with	24070	157.0-159.	2.0	.002		
		quarty + calible vino + gastres.	24071	159.0-160.8	1,0	,002	_	
Q.	->	@ 161.0'; small (1") smally questy view @ 60° to CA. abundant	24072	160.8-161.3	0.5'	. 968	_	
		choleopyrde .	24073	161.3-163.0	1.7'	, 008		
1640 -	17.0	Mignolite: Intruscie sujector zone of guarz-devile					167.0-	177.0
		into what reponder a basis - intermediale instavolcaria.					177.0 -	187.0
		assimilater of units wident with transatoral - continues below	· · · · · · · · · · · · · · · · · · ·				187.0 -	1974
	-	mits, totally breceased with colute precio filling.					147.0 -	2073
		e 177.5' thin sean of pot cpy e 30° to CA.					217.0-	217.
		from 190.0-192.0'; questo deorelo ajoto, sharp contacto @ 35° b CA.						
		from 204.0- 210.0'; an alone quarty deonte ayne shallow			<u></u>		_	
		ingle to core with sherp initials 0204.0; apprecable						
		polity pyscholite, sulphile are associated with estade					_	
		END OF HOLE @ 217.01						

		PROPERTY Che	son, Bennewas 1 St. Louis Town. dilps	Но	OLE No	M 84-6		<u>). <u>4</u> 84-6</u>				
HEET NUMB	R	1058	SECTION FROM_ Z + 142 WNW T	0	STA	RTED	Jene 21,					
ATITUDE		29,578N	DATUM World's Vin Locale		COMPLETED June 21. 1984							
DEPARTURE		169,0004E	BEARING 200 *		ULTIMATE DEPTH							
		9976.001	DIP^ <i>\theta\</i>		PRO	oposed di	EPTH		,			
DEPTH FE	+		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$					
0 - 10.4		Caoing										
10.0 - 1	0'	Diorite; Largely	warse gravid and unaltered .									
		massive + equ	igranular									
12.0- 15	»′	Quarter Vin Zone:	Milky white will county rock inc	lucois								
		no visible nimeraleg	ston, at very shallow gight to con									
		~ 5-10° TA C.A.	instacts are relatedly sharp.	· · · · · · · · · · · · · · · · · · ·								
15.0- 42	,, '	Diorila; as por 10.0- 12.0 foot interval, appears to		2								
		have injution of	more granitic malocal contarria une	kan,								
		moderate to leav	y fracting ;									
		from 15.0-17.0'; heavy	practioning	·····								
		from 19.0 · 21.0: 3000	of heavy fractioning									
		@ 39,0': small p	atta y quarty & celorite.	·								
42.0 - 46	0	Distance Dyke: be	ack, very fin gramish, chilling									
		appen · lover m	argine, upper & lower contacto						<u> </u>			
	+	the sharp @ 45	· & C.A.									
46.0 -	1.0'	Divite , w 1	ton 15.0-42.0'			······		 				
		@ 48.0"; small 1	"S" quarto voir, @ 50° to CA, no visa	per la		·····						
		mineralization Mignet	/ e									
50.0 -	0.0	altered Decite, la	gely needing to coarse gramai	`								
		with frier granied	intervets, prominent silverferator a	na								
		wowerson pluest q	wartz eyes-, stene carbonelizata									

ł

DIAMOND D ILL RECORD

	PROPERTY		Но	OLE No			
	2.43	SECTION FROMTO		STA	RTED		
ATITUDE		DATUM		CON	APLETED .		
EPARTURE		BEARING		ULT	IMATE DE	PTH	
		DIP		_ PRC	POSED D	EPTH	
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	
	@ 575'; this as	bratzed steen zore, moderate dissemuit	24074	57.0-58.5	1.51	.002	
	py & cpy. shearing	at 50-60° A C.A.					
	mit is a pre	sable mignishte, as an inforcanie					
	injection zone.						
	Q73.5; this quart	vir with appreciate po.					
80.0- 82	Quartz Drovita;	largely redien gramice, white with					
	spickled appearan	ie, sharp upper contact @ 600+0.A.					
	From B1.0. 82.0'; 5	happed shear gon @ 70-80° to CA.	24075	81.0-82.0	1.0	.004	
	minior fridy are	Seminated oppos					
82.0- 11.0	" Migmatite · appear	to be an intrusive injection					
	zone. of med gram	it depute into passi intermedicale					
	retarolianies,	· · · · · · · · · · · · · · · · · · ·					
	@ 91.0 - 91.4; Unland	it sheen gone @ 70° is C.A.					
101.0 - 13 7.0	" Chlorito - Carbonat - Quer	12 Rich Rock; moderate to intense					
	alteration, foliatae	to massive, and has undergone					
	intense curbonalyse	lot silverfuedin & chloritysta	· · ·				
	- obmdent calete	is tender @ 60-70 to C.A.					
	from 10,1.0 - 105.0'; course	grande with pronunait quarty ups.	24076	107.0-105.0	5.0	,002	·
Ver Law	2? Fin 105.0 109.0: folial	a ' sheared uppearance , schotope looking	24077	105.0-107.0	2.0	.002	
	provinant quarty my	s, trace to mina pytcpy	24078	107.13 - 109.0	2.0	.002	
	foliation sheavy; 0	010'; 70° @ 106.0'; 60-710 @ 108.0', 70-80° focit	24079	109.0-112.0	3.0	.002	

DRILLED BY

	PROPERTY		Но	DLE No					
SHEET NUME ER_	3.53	SECTION FROMTO		STA	RTED				
LATITUDE		DATUM		CO	MPLETED				
					MATE DE	отц			
DEPARTURE		DEANING		. 011					
ELEVATION	DIP				PROPOSED DEPTH				
DEPTH FE T		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$			
	from 109.0- 137.0"; 60	urser graniel, less of a foliated	24080	1/2.0-115.0	£,0'	,002			
	oppearance, pro	minut dots of allower, minor clots of							
	put py. somdo	we I patchy quarter ' caliton							
	@ 130.0'; Small	shear Q 45° to C.A. ; chlorite							
		•							
	EN	OF HOLE @ 157.01							
	Slua	ige Sample Intervals							
	Interval (1) An (oz/fan)						 	
	17.0-27.0								
	27.0 - 37.0								
	37.0 - 47.0	·						 	
	47.0 - 57.0							<u> </u>	
	57.0-67.0	······			· · · · · · · · · · · · · · · · · · ·			ļ	
	67.0-77.0				· · · · · · · · · · · · · · · · · · ·				
	77.0 - 87.0				······			ļ	
	87.0 - 47.0								
	97.0 - 107.0								
	107.0 - 117.0							<u> </u>	
	117.0- 127.0	· · · · · · · · · · · · · · · · · · ·						 	
	127.0- 137.0								

(9) (1)

DRILLED BY

		esta, Dennuico 1 St. Louis Townships		DLE NO	Manz		.
EET NUMB	1054	SECTION FROM_ Z+ 097 WW/TO		STA	RTED	June 22,	1784
TITUDE	29,553N	DATUM Watts Trenchas how	de	CO	MPLETED	June 23	3, 1.280
PARTURE	169,051E	BEARING 200.		ULT	IMATE DE	PTH2	(7'
	9976.14	DIP	<u></u>	PRO	POSED D	EPTH	
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	
0 - 6.0	Cooma	·					
6.0- 31.5	" Mashile - Drander	ite: largely mossion & medyon graniel	,				
	relatively unaltered	westly fraction					
	100 6.0- 9.0'; mteros	ice fracturing at high angle to core,					
	For staring assor	inted with the fractioner					
	From 9.0 - 19.0 1: gove	of moduale fractions	·····				
	sharp contact with	- inderlying and it 35 to C.A.					<u> </u>
59.5 - 11.0'	allered Devile;	dark green in whom median to coarse					
	grand with fant	foliatear, very chlorate promovit pale	43				
	- why quarty a	Tenso carbonalization with remained calule					
	gustes e Venileto.	win findy accommoded po. pt + cpt.					┨───┤-
	Birtute rich locally		74041			476	<u> </u>
	+10m 46.0 - 41.0, Stron	g shearing full gruge certmatged	19001	460-41.0	7,0	.02p	┟──┼╴
	situated intervie	Solaring (50 00 to C.I., purp decennal					
1/2.0- 4/9	Master - Granadeni	60 ' Switcher 15 6.0-29.5'					· ·
49.5 - 5 0	Fault Gouge: with	at shearing shear and appears to	24082	44.5.52.0	2.5	.002	
	be interest setter	a digite, say dlowly, very poor		· ·	· · · · · · · · · · · · · · · · · · ·		
	one necovery, basily	hordered, low interst @ 40°,					
	Sussing uppens	at Shallow angle ~ 20-30° to CA.					
52.0.5 .0	Marbutte - Granode	note - es par 47.0-49.6					

	DIAMOND	DAILL RECORD	
ŧ			

		PROPERTY			HOLE No						
SHEET NUMB	:R	zot t	SECTION FROM	_TO	ST#	ARTED					
LATITUDE			DATUM		CO	MPLETED					
DEPARTURE			BEARING		UL1	IMATE DE	PTH				
ELEVATION .	DIP				PROPOSED DEPTH						
DEPTH FE		· · · · · · · · · · · · · · · · · · ·	FORMATION	SAMPLE N	o. OF SAMPLE	GOLD \$	SLUDGE GOLD \$	1			
		sharp lower a	ontact at ~ 300 to core after								
58.0 - 4	.0	altered Divide;	languly coarse grained very sen	nilôr							
		16 345 -47.0	nterval								
		for 58.0- 59.0; p	consist patchy quarty & calcite.								
		@ 62.5; Slam of	chaleopapile.								
Ven.	ant/ ->	fim 66.5.675' . bu	rate & quarty with interval, apprece	ove 24003	66.5-67.5	1.0	,023				
		stringer & dessime	led py, porcept, trinding @ 40.700	b cA.				+			
<u> </u>		@74.5; 21 Dan	nd if chalcopyrite with nina quarty	1 24081	74.2-74.8	0.6	.002				
Ven	Zna (?)-	calomate C	50° to C.A.								
		-tomsitional - grad	lational with underlying unit.				<u> </u>				
97.0-0	<u>s'</u>	Quart 2 - arborate -	Chlorite with rok; probable a hig	ng							
		altered divite	intense conformatigation, numerous a	alula	· · · · · · · · · · · · · · · · · · ·						
		verns thend at	high angle to care.	7.10.00			002	+			
	Con 4	Tim 94,0: 48.0; 104	string shearing collection tillal	n 24085	970-44,0	7.0	.002	++			
		Q 43-7-60 C.R.	, numer dessemmette pyrite : coa	24086	1 41. 11- 98.5	2 6	.007				
		pyure prominon	anonara veniz 10 insistent	anca 2900	10.0	<i>F</i> :5		1			
		pliation : A \$4.0- '	45° @ 95': 70° @ 96': 75°								
98.5.	18.5	Alfered - Stackets ;	laracter medicin accounted it to an auti	Ment				++			
		foliation lorally	Contronate alleration alleration								
		it fildrosun is	man aroned interne contained the	cally		· · · · · · · · · · · · · · · · · · ·					
		from port of the	when your and the second				, .	_4,			

Ş

DRILLED BY SIGNED......

.

		PROPERTY		He	OLE No		'		
IEET NUMB	:R	3 of 4	SECTION FROMT	D	STA	RTED		•	
ATITUDE			DATUM		CO	MPLETED _			
EDARTIIRE			BEARING		1)I Т		РТН		
LEVATION _									
DEPTH FE	-		FORMATION	SAMPLE No.	OF SAMPLE	GOLD \$	GOLD \$		
		Alon 105.0- 105.6: 5	build folicitia Atomal 10 65 to ch.						
		Q 1015 " fridland	7 the						
118.6.	48.5	Maskile - branodoid	" , dargely median to warse graned	•					
		mallerer transite	and contact with upper enit						
0.1	>	fran 140.0 - 140.2; milk	y white quarty son @ 46.50° to C.A.						
		no visible moneral	india						
1485.	174.5	Distase dyte bl	ach, very fire gramied to fire gram	id.					
		blothy & fradeau	locally sharp upper contact &			,			
		40-50° to C.A. la	we indeut fractional						
		Hen 152.0-194.5: bud	in Factured at Various angles						
1745 -	147.D	Mar alastici fa	yelf median to course gramich more						
		thlowthe hotally	carbonalized, and situifed ; burtile	punx					
		Quart = Ven 177.0- 177.	6; milley repite no viceble mineralgat	2					
8		upper coulact st	and at 50-60 to . ch, lover contact	·					
		0 65.	/						
		from 175:0- 177; sela	for the chlority promint struge pote	py 24088	175.0-177.0	2.0	.006		
		Aude Van 179.0.179.	o; mille, while, no fisible morally	il.					
i		inlas sharp at	55.	· · · · · · · · · · · · · · · · · · ·					
		@ 183.0; small	string of point						
:		@ 191.0; smeet sheen	soe (21) 65°, alute 1 min 00, pd						

	PROPERTY		НС	DLE No			
	4 of f	SECTION FROMTO		STA	RTED		
		DATUM		CON	APLETED _		
PARTURE		BEARING		ULT	IMATE DE	РТН	
				PBC		ЕРТН	
			SAMPLE NO.	WIDTH	GOLD S	SLUDGE	
	· · · · · · · · · · · · · · · · · · ·			OF SAMPLE		GOLD \$	
197.0- 21 .0	Alasta - Grandiorle	largely rediin gramid & unalload					
	frm 1995 - 201.0";	aboute brotile inflacen shear gove					
	at 80° to C.A. Mar	desseninaled sulphides					
					·		
	ENP	of Hole @ 217.0'	·				
		ye Suples.					
	· · · · · · · · · · · · · · · · · · ·	· · ·					
	Taternal	An (oz/ta)					
	77.0 - 87.0	•					$ \longrightarrow $
	87.0 - 97.0	11					
	127.0-137.0	· · · · · · · · · · · · · · · · · · ·					
	137.0 - 147.0		· · · · · · · · · · · · · · · · · · ·				
	147.0 - 157.0	·					[
	157.0 - 167.0						
	167.0- 177.6	· · · · · · · · · · · · · · · · · · ·					
	177.0 - 1 87.0						
	187:0 - 197.8						
	197.0 - 207.0						┠
	201.0 - 611.0						┨────┤

E)

Ś

DRILLED BY

	PROPERTYClede	r, Bennewiss & st. Aprilo Tourstipo	Но	DLE No/	24-8		_
IEET NUMB IR	1 9 2	SECTION FROM 1+378 WNW TO		STA	RTED	pune 74,	
	29, 388 N	DATUM _ No. 3 Vern Syptem (Contr	al Porty.)	CON	ہ _ IPLETED	Jun 26.	1984
PARTURE	169.744 E	BEARING		ULT	IMATE DE	ртн²	37'
	9991.30	DIP생*		PRO	POSED DI	EPTH	
DEPTH FE T	1	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	
0 - 7	(agenice			}			
7.0 - 4. 0'	Disrite; dark green ,	to black, largely median course					
	granied and unalland,	although sheared inaltere locally					
	@ 10.0'; shearing t	calcile Neuring @ 35-40° to CA					
	from 7.0-17.0; mitense fro	reliency at starious onges.				,	
	from 12.0- 14.0'; sheared m	tenal carbonation of fleaton & shearing					
	al 60.60° to CA.						
	@ 18.5; sheared, folicitar	liteval, carlomate verning a vocorralit					
	P/ pc \$ 35-40 h	<i>C</i> .A .					
42.0- 4 0	Altered Desite ; redien .	to coarse gramid, chloutigen +					
	customatiget, sitrified,	appreciation to abundant descenished					
	+ servin py. pt. + cpy	becoming shared hormands grand vin.	24089	42.0-43.0	1.0	,006	
	C 42.0' 2 small que	nt vins @ 50-60° containy apprecision	24090	43.0 - 44.0	/.0	.016	
	chaleopycle.	· · · · · · · · · · · · · · · · · · ·	24091	44.0- 45.0	,0	,002	
45.0- 5.8 1	Quarky Vien; smoky w	lite to grey, messive, contains appreciate	24092	45.0-45.8'	0.8	,006	
	disseminated & clothy a	A, pr 1 po, sharp upper lower					
	intacts trand Q - 50-	55° b CA.					·
45.8 - 4.0'	Sheared Quart 2 - Carbonate -	Chloste nich smit; strong foliaton ?	24093	45.8- 47.0	2.0	.002	
	shearing forthe deasing	ilox sulphides approvable with shear	24094	47.0-44.0	2.0	,002	
·····	Oreachatin .	,					
	tolacen; Q 47.0; 50°	Q 48.0' 50' Q 44.0' 50°					

DRILLED BY ... Triage Descend

		PROPERTY	НС	DLE No					
IEET NUMB	R	SECTION FROMTO		STA	RTED				
TITUDE	DATUM			CO	MPLETED .				
PARTURE	RTUREBEARING			ULTIMATE DEPTH					
EVATION _					POSED D	EPTH			
DEPTH FE	-	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD S			
49.0 : 53.5		Dialose Dype; black, very fine granich to fire graned.							
		plotty, characteriste sphile lockare, chilled margins.							
		upper contact strap @ 50; lower shap @ 55-650 to CA.							
62.8- 9	;'	Divide; daugely median grania & massim, imallowed							
		for 76.5-77.5; small desilver dype, very fine grained							
		upper interest strap at 55 200 to CA. appears to be	[
		oblerating underlying unit			··				
		77.5.78.0: hugily deloited slight you appears to have	24095	77.5-78.0	05'	.014			
		ber a quarky vin gove, prominist desponsinables py, put cpy							
		from 810- 905; most dialase dypes intering riteral .	· · · · · · · · · · · · · · · · · · ·						
90.5-	<u>99.0.</u>	Diabase syste; black, very fine grained to fine gramiel ,							
		chilled upper margin, upper contact sharp of 25° to C.A.							
		blocky fracturing , locally very heavily findered							
		from 1430-170; very heavy fractions at high angle to see	 						
		t at 0-10° to con-							
		lover intait chilled " sharp of 45"							
M4.0	27.0	Durite OS alque preden grania smallaul	· · · · · ·						
204.0.	31.0	hickory up black, say for grand to fin grand							
		chilles appen margin upper interest stamp & 50 50 in cat	<u> </u>						
		the the C 20201							

ց

,

DRILLED BY والمتهور والحار المراجع والمحافين المراجع والمراجع والم

	PROPERTY		Не	OLE No. M	84-8			
	R	SECTION FROM	TO	START	ED			
	DATUM BEARING			COMPLETED				
				ULTIM	ATE DEPTH			
		DIP	·····	PROPO	SED DEPTH			
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$ SLUDGE GOLD \$	1		
	Studge S	ingles						
	Interval Au (02/ton)	Interval An (02/tm)						
						-		
h	•	· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·				++-		
						+		
						<u> </u>		
\								

I f

				RECO	R D			Ň			
_		PROPERTY	Chester, Bennewics & St. Louis Jourships	2	HOLE No	M 84-9					
SHEET NUMB	:R	1 of 2	SECTION FROM_ 1+ 376 WWW	.TO	ST	ARTED	June 26.	19			
LATITUDE		29, 389N	DATUM No 3 Van Syst	in / Central Por	and Porlian) COMPLETED frome 27, 1984						
DEPARTURE		169, 743E	ι	UL.	TIMATE DE	PTH /2	0.01				
ELEVATION		9.991.30'	DIP65'		PROPOSED DEPTH						
DEPTH FE	r		FORMATION	SAMPLE	No. WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$				
0 - 5.0	·)	Casnig									
<u> </u>	.5	Dinile medin	to course grand, maasine & malter	va,							
		moderate to he	my fracture, transitional intact a	with		ļ					
		the underloying	amit.		·····						
13.5 - 7	.3'	altered Depite:	medium to warse grained to folister, m	indenate							
		to interse dless	aten, very promont subiquistin locally.	<u> </u>							
		very strong shee	ring ? foliation witness carbonatization .	is							
		personin throng	patt prunated totally, Moulis								
		19.0-19.5; siliefud	interoul with decouninglad po,								
		26.5.27.0; chloul	a cheen, wrth shearing @ 35-40" to C.	A							
		270- 32,0'; sting	silverfinters patery quarty lightly buch	unlet		i					
	,	sheuns @ 29.	0'; 40'50' Q 295'; 48 ·	·							
<u> </u>		toliation'i @ 57.0	35°, @ 40'; 40', @ 405'; 35-40'								
		tim 42.0'-70.3': 1"	my prominit Aliaton metator slugerbu 1						 		
	·	anbnulsata	scholose looking min diss po, py icp/								
		tapalani, Q 54.0	50°, <u>C</u> 44°, 44°, C 51', 55°,				. 07				
		@ 665 , 30-33		24096	68.0-703	2.5'	,002				
70.8- 7	6	ghang Vin, wh	re 10 snow grey 1 massin, almdant	2707,	70.5-71.6	1·5 , 4	,000	-			
<u> </u>		petity & Mosenning	atche cholopypite + po, sharp upper coul	24070	11.6- 71.0	1	1002				
	-	e 5º tr C.A. hor	in intait sharp at 60"								
			¥	I		1	<u> </u>	J			

	-	_ •	- · .
DRILLED BY	Trangle	Damad	Dulling

Don the Donald Hy Brx. SIGNED

(**9**)

,7)

DIAMOND DAILL RECORD

	PROPERTY HOLE No								
	1 of 2	SECTION FROMTO		STA	RTED				
		DATUM	COMPLETED						
EPARTURE BEARING			ULTIMATE DEPTH						
EVATION		DIP	PROPOSED DEPTH						
DEPTH FE T		FORMATION	SAMPLE No.	WIDTH GOLD \$ SLUDGE					
			7 12009	0	7.0	007-			
11.6- 12.0	autoria,	20 ph, 18.5-70.2. Shing maying	74100	82.0 · QUA		002			
	Manse Shlaring	with provenent structure, appreciation	24101	84.0-84.0	2.0	002			
	Lilota : @ 82.0'	45.50° and and line	24102	R.O-88.0	1.0	.002			
	A 87.5; naltin	quart & an	24103	88.0.90.0	2.0	.006			
	from 89.0.97.0; app	custu to about a descanated subplices	24104	90.0 - 97.0	2.0	.048			
	etyc 1 pa								
47.0.47.	Diorde ; medim.	to coarse gramid, massie & unallevel							
	sharp lover	contairt.							
47.0 - 13 1.0	Draban augh								
	<i>t</i>	NO OF HOLE @ 120.0'							
		Studge Sangles ::							
	Interval	Au (02/fm) Interval Au (02/fm)				· · · · · · · · · · · · · · · · · · ·			
	17.0-27.0	87.0-97.0							
	27.0-57.6	97.0- 107.0							
	87.0 - 47.0	107.0 - 117.0							
	47.0 - 57.0								
	57.0- 67.0	·····							
	67.0 - 77.0								
	77.0 - 87.0	;							

DRILLED BY

a contra a processo na magina casa acamatica da matematica

	PROPERTY Chasta, Bennemicis & St. Louis Townships	Но	DLE No	N84-10			
	19 5 SECTION FROM 1+224WNW TO		STA	RTED	July 3. 14	8,	
	29,349N DATUM No. 3 Ven System (Central Porten) COMPLETED July 5, 19						
PARTURE	169,900 ULTIMATE DEPTH 317.0'						
	9987.// DIP 6/* PROPOSED DEPTH						
DEPTH FE	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD S		
0-12.0	(aping						
12.0-627	Droke; largely redien to warse gramed & unablance,						
	massive although small allowed goings are present locally						
	from 12.0- 19.0; badly fractured, oppraise to be an injulie						
	gove of granutice malaural						
	from 28.7- 50.4 shrand allered interval, foliation " stressing at						
	45° @ 20.3' small gre watering oppicies heliopyile	24105	29.9-30.5'	0.6	,008		
	C50-53" to CA, provinced charte i calcite vening						
	C +40- 446: provincit palety quarty & chords with unterval,	24106	44.0-44.6	0.5	.002		
	contains cubic magnetite, vien 2000?		`				
	How 50.6-606's corro grania, granita sys, sharp apport						
	lower intacto @ 40 " 45" to C.A. respectively.						
62.0 - 6 5	Dators Dite: dask gog to black, vay fire granied to fire						
	granid dulled margine upper contact sharp @ So", long						
	shapp Q 45 to C.A.				ł.		
67.5 - 12.0	Dirite; similar to 12.0-62.0 intaval, integet fraction						
	non prominit, shallow & fracting a 0. 10 to CA from 74.1-100.0'						
······	for 82.0-84.0' Some patches of colore 1 colorede in weakly presculated						
	gne.						
	(95.5.96.0: certonoligh sam.						
i	from 107.0. 116.5; varan gramin. I lightly preculated, @117.0 party ca	egeo			<u> </u>		

ŗí

	PROPERTY	H(OLE No							
	z of 5 SECTION FROM	ТО	STARTED							
	DATUM	DATUM				COMPLETED				
ARTURE	BEARING									
		PRC		=ptu						
		1								
DEPTH FEI	FORMATION	SAMPLE No.	OF SAMPLE	GOLD \$	GOLD \$					
	Q 1150: Small steen gove @120:10 C.A. Innor decount	malid								
	p.				·					
	ton 127.0. 147.0' slighty grandezed, digita in colour.				i 					
	1475-1445: firer graniel altered internal, antonalged	= chloritiand				ļ				
	brace decoernealed suppliedes. @ 144.0. Small "s"	sty van								
	C to: maleste py minerelijsten									
	@ 157.0: Smal sheen @ 70°, chlority & trace discon	unisted								
	sulphide.									
	@ 141.0: small collice vin @ 30-35° A . C.A.									
	@ 182.0: small 1/2" quarty vin @ 3"; dandant pyth	ritile				 				
	@ 183.5: Small "he" chloriter show @ 45. pr "py					ļ				
Qual Yei	185.5-186.7: 2" quarty vin contacts sharp @ 30°,	abridant 24107	195.6-185.7	0.2 '	-026					
Ong e Va	2 188.5' Email 1/2" quarte vin @ 30', NU VIERDLE mine	valantin.								
Que 3	1900. 1908; but while quarty sharp upper contact	A 30-35'		·····						
	no visible mineralgolar, migula long context a	with class								
	of chlowte.									
	@ 198.3. MI.S. patty white quary minon cholcoraguet	~								
147.0 147	8 Quark Vin Bul stile massing no visita no	nerolgobr.								
	Iswa intait @ 25.35" upper @: 25.35"	0								
197 1 240	O Dionte: in chone incogine ? imalland									

)

ç,

DRILLED BY

	PROPERTY HOLE No								
	<u>3 of 5</u> SECTION FROMTO		STARTED						
	DATUM	ATUM			COMPLETED				
EPARTURE	BEARING		ULTIMATE DEPTH						
EVATION			PRO	POSED DI	EPTH				
					SLUDGE				
	FORMATION	SAMPLE NO.	OF SAMPLE	GOLD \$	GOLD \$				
	Q 149.8': Small white quarty vie @ 30° (1/2") no V	site							
	mineralyston								
	@ 200.5; small (2144) quark vin @ 50.60°, no vis	mireutizola							
740.0 - 74 0	alloute - Continat. Quarty ruch Unit. probable altered a	ecrito,		· · · · · · ·					
	quarky egs, chlowle, promovist headministed sulpande.	24108	240.0-247.0	0.2	,002				
242.0 - 24 1.0	Disnite Dyte; prohisk whom fore to reduce grame	й,							
	sharp upper contast at 30°, sharp lover contea	e 80°.							
244.0 - 24 3	Dionito; related anallered scept for 244.0-24	S.O' where							
	inve is firse grandet & chloselijet inmin cubic	zynita		·····					
	homostional into anderlying amil				4.47				
249-3- 25 7,0	choute - Carbonate Querky Rich Unit molecules to an	lace 24/09	250.0-2520	2.0	,002				
	allerator promonelly foliated persone scherger	m e 27110	2520-255.0	3.0	.002				
	carbonalizate lace shered foliated promit p	why							
	yearly locally appears the have been intereded	by							
	a granthe intrisive as some assundants to lorder	ndente I.	· · · · · · · · · · · · · · · · · · ·						
254 2 200	Injinta. E 2460 - 60-65 - 2470 - 60 , mig	ides institut with totrafra.							
233.00 2 13.0	Dransource light is medin guy largely reduce to	a for isat		·····					
· · · · · · · · · · · · · · · · · · ·	grame round grand arous reary persone	Saturgeent	<u> </u>						
	preset promone range music guard ago p	ite							
NCZ.	2575- 10-5 Arport grang for in tistle morene	houndary 24/11	1/22.3/22	1.0'	.148				

DRILLED BY

مصوفاتي ويتبدد البيانات التنابي فيتعم وتنتاب المالي والترابي المراجع المراجع

1

<u>}</u>. ٢.

SIGNED.....

÷

		PROPERTY			OLE No			_	
IEET NUMB	R	4 ifs	SECTION FROMTO		STA	RTED			
			DATUM	CON	PLETED				
							DTU		
EPARIURE_				ULTIMATE DEPTH					
LEVATION _			DIP		PRO	PROPOSED DEPTH			
DEPTH FEI			FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		
Vein	en -+	@ 263.7-264.7; 3	quarty sins bonday of 45° to CA.	24112	263.7-264.7	1.0	,14Hp		
1		ipitam minis salp	hides, but wallrock contenes abundant	24/13	264.7- 267.0	2,73 1	.002		
		shinger & decomina	ba ept, p. 1p/	24114	267.0.269.0	2.0 1	1002		
		C 272.0. 273.5; Selini	up pality quarty wer goe, apprecial	vie 24115	269.0-272.0	3.0 '	,002		
		despaninalia cpy	, , , , , , , , , , , , , , , , , , , ,	24116	272.0.273.5	1.5'	.722		
		fim 273.0-275.0; Lamp	sprye, butile site gos, transiticial	24/17	213.5.275.0	1.5'	.014		
		intacto	· · · · ·	24/18	2750-2783	3.3'	,002		
		from 278.3- 279.3; abo	udent disconnation po 1 psy						
		@ 2840' palety qu	and I carlynote, brace sulphide.	24119	278.3-271.3	1.0'	. 022		
245.0-	17.01	Deorf: medin 1	5. course granial & conallored				-		
		appears to have	granite i granodioule phase.						
		proseles intrusio	gre of darils with granochoils	ь 			<u> </u>		
		@ 307.6', fmall	chlorder shear, dessonmâled Sulphide	,			 		
		@ Bo*.							
		END	of Hole @ 317.0'						
					<u> </u>				
					<u> </u>			-+	
	×	Valor circulation	/15t @ 127.0;		++		f		
					┫		<u> </u>		

DRILLED BY

SIGNED.....

		PROPERTY Charles Benninico & St. Louis Journalyos HOLE No. 1184-11							
HEET NUMB	R				STARTED July 5, 148 4				
ATITUDE		29,350N	DATUM No. 3 Vin System (Ce	ntial Porteon)	CON	MPLETED _	D_ July 8, 1984		
FPARTURE		169, 900E	BEARING 200'	EARING 200'				.01	
		9987.11'	DIP -75 ⁴		PRC	POSED	EDTH		
		1		SAMPLE No.	WIDTH	GOLD S	SLUDGE		
		· · · · · · · · · · · · · · · · · · ·			OF SAMPLE		GOLD \$		
0-10-0		Cooring Distance	·						
100 11		Disina Monoraliona La	ingling coarse gramso, very terally						
		Justine coperso in	De granite minute assimulation			· · · · · · · · · · · · · · · · ·			
19.0- 92)	and a cuero goal	time to loge and manying more						
		marie livelle in	huden by small granuta dulas.				, ,		
		@ 25.5.77.0; crause gran	nd granite defer relaticly share			<u>, </u>			
		(nitents @ 60-70°							
		@ 27.6 - 28.6; so above,	coarse gramid gramite dest, contacto			<u></u>			
		sharp & @ high an	ga to one.						
		C 36.7-37.0: Snall core	e granied granitac defen & high						
		angle to C.A. 70-80°.							
		from 47.6.48.6: alleven chos	the material with query I called stringer	24120	47.6 - 48.6	1.01	.008		
		abordant apprented de	services & shing by transione						
		contacts with appent to	ver with stongers band @ 35° to C.A	.					
		fron 66.5 - 67.5; ligitly \$	receivities, granutice clests contained						
		within depile grom	Amers @ 67.0: where fractioning						
		Tatinsan brucan. gove							
		@ 68. 1- 69.0's wave gramid	granita sube, contacto sharp e 60°						
		a cA.							
920-	21.0	Deabase Dike . New A	mit aramid, plack in whom						

.

.

v
	PROPERTY	но	DLE No			
SHEET NUME	R SECTION FROMTO		STA	RTED		
ATITUDE	DATUM	I.	CON	PLETED _		
FPARTURE	BEARING		ULT	IMATE DE	РТН	
	קות		PRC		EDTH	
-IEET NUME IR ATITUDE EPARTURE EPARTURE LEVATION					SLUDGE	
DEPTH FE	FORMATION	SAMPLE NO.	OF SAMPLE	GOLD S	GOLD \$	
	mitense, plocky fracturing , strays upper contact e		Эх.	<u> </u>		
	35°, love @ 30° to core que.	· · · · · · · · · · · · · · · · · · ·				-
101.0- 276	5 Diouter malin to warse gramid, largely massaic	· · · · · · · · · · · · · · · · · · ·				
	* imallated					
	127.0-130." intown fracting at all angles.	: 				
	@ 135.0-135.6: altered chloreter interest fire granied, small	24121	135.0-135.6	0.6'	.046	
	guartz stijo @ 70°, sponiatel po · cpt.	. 				
	@150.0-152.0: fine gramed, carbonatage emit, metavolcane					
	foliation " shared at 60-70" to CA., treve sulphide.					
	displays branchiant contacts					
	from 1705 - 180: ; fine granied, chloriter & pressive carbonatized					
	prose, altered deside, that to mino desseminable pyrete					
	* chalcopyrite .	· · · · · · · · · · · · · · · · · · ·				
	@ 100.; shearing 1 calcute Vening @ 20-30" to cA					
	@185.7. 1/2" gtz Vin @ 2" to CA. NO Visible numeralyabor					
	from 205.0-205.6: fine grand alland interiored delouter, polity			ti tuti di stan a dan ma an d	·····	-
	quarty					
	From 217.0. 2350's granitized interious gons, with denite, assemblet					
	allevition you of extrusores, light bucuston apprualle					
	large desarmations of pyrot & por.					
	Q288.0: small 1/2' gtg ven, no visible inoncrabylon					

. . .

DRILLED BY

SIGNED

		D	IAMONDD	LLRE	COR	D						
•		PROPERTY HOLE No										
HEET NUMB IR	I	3 of 5	SECTION FROM	то		STA	RTED			<u></u>		
			DATUM			CON	APLETED _					
FPARTURE			BEARING	BEARING								
	19 W - ann Lannan an Air an 4		DIP	<u>, , , , , , , , , , , , , , , , , , , </u>								
DEPTH FE		· · · · · ·	FORMATION		SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE				
			L BASCO 7. CA (· · · · · · · · · · · · · · · · · · ·			3010 \$				
2705 270		Anthe Clarke 1	at 100 a cot large discommits	na g po								
	<u>'3</u>	" unsthered ; vlatude	gramer special appearan	a, papense								
		cae,	y - mino m ry-	anga ro								
270.3-27 5		alland Droube: per	sive carbonalista ablorde	contens								
		designmented sulphis	to Slight foliation developses	1. truncherd								
		contact with the	lover mit.									
		@ 276.0'; abridant .	strong query & calette, tre	le sulphile.	······································				 			
277.5 - 217	,	Divite: granitage	intrasur gos, cosmul	ita			- -					
		of granite & Renite	. some alteration .									
787.0 - 308		Querty - Chlonte - Carl	inste Rich Unit: strong	auresiv.					 			
		unimatzata ' suluife	usta hoffacens - foliala	appearance	· · · · · · · · · · · · · · · · · · ·							
		interno hissonnolad	pipele " of maister with	foliation					 	<u> </u>		
		plenes rimesses calu	to vinlets beally vay chlor	de						•		
		from 280.0 - 29/0.0'; N	afferous folicies appearance	c promininto	24122	208.0-240.0	2.0'	.002	├ ──- ├ ─			
		pathy quary	calate, min py, porcpy	·	24/23	290,0-292.0	2,0'	,002	 			
		foliatin; @ 284.0'; 6:	· @ 2400'; 61-65' @ 212	,0', 50°,	2.4/24	292.0-244.0	7.4	,002				
		@ 294.0', 60', (2 245.8. 60.		2412	24.0-246.0	2.01	.002	┟───╂-			
······	<u></u>	tron 304.0-305.0 miles	a fracturing, very chlorite	2	24127	3020 010	1.T	.004 	┠┣-			
	Marte .	305.5-315.1 2	my ver , disconiation ch	ullo t	L4121	2000 000		,050	┠╂			

DRILLED BY

.

SIGNED.....

ł

		PROPERTY		H	OLE No			-
	:R	4 of 5	SECTION FROMTO)	STA	RTED		
TITUDE			DATUM		CON	MPLETED _		
PARTURE		· · · · · · · · · · · · · · · · · · ·	BEARING	·····	ULT	IMATE DE	РТН	
EVATION			DIP		_ PRC	POSED D	EPTH	
DEPTH 4F	т	• ····································	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	
308.5 - 3	9.5	Aplia Dype;	The gramed policie à colore, nasoni	24129	305.7-301.0	1.3	.002	
		e emallend roc	wlody sharp contacts Q to to CA, shringer	24130	317.0-3010	2.0	.002	
		ipt associated.	unth intails			<u> </u>		
309.5 -	0.88	Diorite's media	to warse grand, largely measure					
······		andlevel, allhow	ge small alleration goes prepert loca	llg=				
	*	-10 3410-347.5, f	ne-rudion granich granthic life, vouy					
		stop lowline						
		Et	10 OF the G 808.01			-		
			- -					
						*		
			·····					
		· · · · · · · · · · · · · · · · · · ·						
			······································					
						. <u></u>		
	<u></u>							
			•					

. . .

والمتحدة والمستعر ووالمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

:

	DIAMOND	DAILLRE	CORD
+			

	PROPERTY	· ·	Н	OLE No			•
SHEET NUMB	R	SECTION FROM	TO	_ STA	RTED		
LATITUDE	· · · · · · · · · · · · · · · · · · ·	DATUM		COI	MPLETED _		
DEPARTURE		BEARING		_ ULT	IMATE DE	PTH	
ELEVATION	í -	DIP		_ PRC	POSED D	EPTH	
DEPTH FI	T.	FORMATION	SAMPLE NO.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	•
	foliation: @ 214'; 50	·60', @ 215' : 55! @ 217.5'	: 70*				
	@ 220'; 50'.						
	gradual transit	ingl contact with lower up	it		·		
223.0-2	6.0 altered Denite ; 1	masive contralgator & selecy	healon				
	alundat chlorite	Cargely medin gramia :	massive,				
	moderate stringer.	and banded po, py topy.	24150	228.0-230.0	2.0	, 006	
	@ 231.0' bunded	po t cpy @ 45' A C.A.	24151	230.0-231.0	1.0	,006	
	@ 231.0- 232.0' p	rominant dissoninated opy po " 10	24152	231.0-232.0	1.8	.006	
	Quitz Vein (2") - @ 23	13.0' swhile to onen, alrundant	PU. DO 1 (D) 24153	232.0-233.2	0.4'	, 301	
	2 small speck	2 YISIBLE GOLD	24154	233.2-\$36.0	2,8	.002	
256.0- 23	5 Quarty Vain; while	to smoky grey moderate	CPY PY 24155	236.0-237.0	.1.01	,006	
	monulization, shar	appor i lover contacto e	40. 10 2456	737.0-238.0	1.0'	.006	
	C.A.						
236.5- 26	'.0' Diorita: medicini	to warde gramid large	ly massnie				
]	1 amaltered		0				
	@ 248.0 - 249.0';	five granied, black toffaccon	o horson				
	carbonalise, n	in deseninated opile	- 0				
	Q 256.5' 3AI	quartz ver with resonated	ept 24157	2560-257.0	0.51	.012	
·							
	EA	p of Hole & 267.0'					
	<u></u>		<u>]</u>				

DRILLED BY

1

4

Ð

.

· · · .

. .

)

•

	PROPERTY Church	, Bannewis & A. Laws Tornships		OLE No	M 84-12		-
HEET NUMB	143	SECTION FROM HIST WIN TO		STA	RTED	July 9, 1984	
ATITUDE	29,302 N DATUM No.3 Vein System (Control Portion)			CON	APLETED .	July 10, 192	94
FPARTURE	169.959E	BEARING 200*			IMATE DE	PTH Z	37'
	9973 .77'		<u></u>				
		DIP					1
DEPTH FE T		FORMATION	SAMPLE No.	OF SAMPLE	GOLD \$	GOLD S	
0 - 8.0	Casing						
8.0- 173 -	Diorite: largely o	oarse gramed " massive, granitzed,					
	appears to have	assimilated with a locardy more					
	granitee interiore	locally weak alteration proximal to					
	the more filou rocks.						<u> </u>
	8.0-13.0: 3re	ontonce poeturing					<u> </u>
	10m 28.0.44.0; gre 4 4	and granik granite unit, adsimilating				+	
	with redien gras	well decide, petty guardy promorate	24131	280-29.5	1.5'	002	
	Ress': ende (Voi)	in picky piers discourses py topy					
	fra 12.0-64.0' marel	maker hulteren heren promised	24132	12.0-64.0	2.0'	,002	
	line or a lat	the prominant filiater & -60° . 60 CM.				1	
	@ 845-81.0'; Harse	gramiel granite de relatively					
····	sharp upon in	ad @ 10°, lower 40.50° to a.M.					
	(2935; abridant disc	eninated po.					
	atzo: small (m	-15") gly van Q40° no visible minisalgelon	v				
	@ 105.5: mall (14	") unionato chilante vin @ 30-35" to CA.					
	@11.5; small (""")	pts vin @ 60-65" interis pyrite of					ļļ
	<i>p</i>	··· /·					┨────┤-
<u> </u>	@13.0: 1' pg vin	@ 60-70° to CA. No Visibile more algot	·				
	from 113.0 - 123.6. myden	to alleiata, some chlorilizata locally					

DRILLED BY Triangle Dramond Dullary

I pnty SIGNED

ð

		PROPERTY	но	DLE No			-			
IEET NUMB	:R	2 • F 3 SECTION FROMTO		STARTED						
		DATUM	DATUM			COMPLETED				
PARTURE		BEARING	BEARING							
EVATION .										
DEPTH FE	-	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	GOLD \$				
		trace to mor sulphido								
		C 119.0: mall (1') dialon dyk @ 45°			······································		-			
		from 121:0- 127.5: quanty vin @ shalow unger to core 100								
		Monder ut Vsible mineralgation					Į			
		@ 123.0 - 123.3', small heatings ayke at 70-40 to C.A.								
1235-126	5	Quartz Vein: notice to smoky guy no visible innereligita	24133	1235-1245	פיו	.002				
		shup upper + lower coulds & Do + 60-20 A responsively								
124.5 - 13	.0	Tatfaccois Unit; makin guy to black, intermadiale to myci.					 			
		pronound trotale insided will folisting provisive strong					<u> </u>			
		calmelization trace descrimeter sulpholes, both patery			<u></u>					
		quade a calute proviset, love tranceland contact								
		toleater @ 70-80° to C.A. locally very chlora					┨			
133.0 -	20.0	Choule; languling medium to warse gramid and unallast.					↓↓ -			
		massing Some slight allowler in minuly of shears.								
		and gradures,								
		(1685. 164.5, palay quarte - coluce					+			
		Chief guery collete for (1) with shorp Wagular Contacts								
		It wit								
180.0-11	5.5	allered Derite medin menied " massing. Derivances								
		and the first of the first the first				· · · · ·				

DRILLED BY

SIGNED.....

DIAMOND DOILL RECORD

.)

		PROPERTY		H0	DLE No			•				
	:R	3,13	SECTION FROMTO)	STA	RTED						
ATITUDE			DATUM		CON							
EPARTURE			BEARING		ULT	IMATE DE	PTH					
IEVATION			DIP									
DEPTH FE	T		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD S						
		calute vimility	prominail bluich quarte eyes gradual									
		contact with long	unit unit contain appreciate descening	w								
		sulphilles.	and filter deal of 17 and the	, 24134	1055-108 2	7.5	007-					
/85.5 /	3,0	the in consta	mant source desperaya, memoriale,	24/35	1AR.U- 190.0	2.0	.002					
		suified, trace	to nour py + po as dessemptions	24136	A0.0. 1920	7.0	,002					
		'as narrow shing	us inactal with folielon									
		filiation; @ 186':s	or, @ 187.0'- 50-60°.									
		appens to be	transitional with the lower unit.			- 17 ML						
193.0 - 20	3	allored Devite;	as per 180.0 - 1855 Enterval	24137	203.0-205,3	2.31	,002.					
205.3 - 20	0	Quartz Ven. (7)	Smothy while to guy, minin gay	24138	205.3-206.0	0.7'	.797					
		with sulphides a	promited with contact contacts sharp									
		@ 50-55 A CA										
206.0 - 211	0	Altered Desile;	arbonatiged ' subrafierd descrimated									
		1 small strugger.	septise, totally very chloride'									
		from 206.0 - 707.0: 0	poruale descrimater cps	24139	206.0-2070	1.0'	,058					
		from 208.0 - 200.4 :	guart 1 deservated cay	24140	24.0.201.5	1.5 1	,006					
		manational conto	te with long unit.	24141	2085.2095	1,0 '	.004 -					
211.6 - 2	7.0'	Dionte; medin A	a worse gramail and smallesser.									
		massiie										
		@ 223.0-2240	small for graves chloritie strove, dies op	1 24/42	2230-2240	1.0	.002					
\$)		DRILLED BY	END OF Hole @ 2370' * No Waler refum in the Sayples.	SIGNED								

and the second se	·											
HEET NUME	ER	193	SECTION FRO	M_1+157WNW_TO		STA	RTED	July 11, 1	187			
ATITUDE	2	9,305N	DATUMNo	3 Ven System ((Contral Portion) COMPLETED July 11, 1984							
EPARTURE	/	69, 960E	BEARING	200°		ULT	IMATE DE	PTH2e	57'			
	•	9473.77'	DIP	-61•	PROPOSED DEPTH							
DEPTH F	T	······································	FORMATION	· · · · · · · · · · · · · · · · · · ·	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$					
- 6A		1		<u></u>					T			
8.0- 8.	D	Denita' 1/112.41 medi	in the capacity of	amed & In aller the								
		locally interests of the	anit are intru	ded 1 assimilated								
		with courses gramid	granitic malina	as myertims								
		8.0. 17.0': internal of	entense fratten	E								
		30.0.42.0': socionalation	y course grained of	provide natural promist								
		243.0: small (1") qua	ity vin, intere	ty frolloge								
	. e	253.0: 2" pand of	alute 1 harry a	ecommation of po.								
	3	5.0- 57.0', interest of	poten query :	calate, minor diss.								
		pyile !			ļ							
	Ś	8.0-61.0: altered inter	me, continuityon	with hasline colubi		· · · · · · · · · · · · · · · · · · ·						
		ventito, moder	ate stringer 120	•								
87.5- 85) 	allow Provide Large	y medican gramie	a, minasmy	24143	82.0-85.0	3.0	.002				
	6	chlordupta · contonolizata	, havine colute	ventels unit								
		is proglance ! moderate	shearing is w	idut								
		87.0- 84.0'; sheering "	freeding Q ~ 40,	dessinated py.								
85.0 - B		brande Dyte: larging	medin grands	sharp upper!					· · · · · · · · · · · · · · · · · · ·			
		lown intails @ 70'	to the CA.	•					·			
89.0- 3	<u>n</u>	allhul Dessile; as	pr 82.0. 85.0	gradual								
	/	ransitional contact an	it the enderly	ing conit, personal	ļ				⊦ -			

ų.

2.1

	RECORD

		PROPERTY							
SHEET NUMB	:R	SECTION FROMTO		ST	ARTED				
LATITUDE		DATUM		_ co					
DEPARTURE		BEARING	BEARING			ULTIMATE DEPTH			
ELEVATION _		DIP	DIP			EPTH			
DEPTH FE		FORMATION SAM		SAMPLE No. WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$			
95.0- 11	ซ์	Droule; largely median granied, massive & amallevel							
113.5° · 11	.5	Telfacous Unit: largery fine grammed with a cocat to			· · · · · · · · · · · · · · · · · · ·				
	[. <u></u>	noderate foliada dudoped. quarty ups present proveni							
•	ļ	cartmetaplan, trace to whin deseninated sulphids,							
<u> </u>	, .	including pyrite							
,	ļ	113.5-114,5: provincit culute patitas disconniler	24140	113.5-114.5	1.0	.002			
		pyrile, fojialar @ 50.60° to CA.	5-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						
119.5. 11	7.0	Divile, as above, redien to coarse granies and			•				
······		unattered, wally is Moritar							
147.0 -	4.0	Distase Dyte: viz: fire granest, dark grey to							
		black, chilled margino upper a low contact both							
	ļ	sharp @ 35° f 30° 1espectanty		}					
154.0-	10.0	Divite as above allere tomands bottom of the unit.							
·	,	@ 1500 brack quark sin (34") @ 30.40° to CA. mini	·····						
		porte 'op/							
	ļ	@ 123.5'; paloty po + py.							
210.0 - 22	i.o	Quarty Carbonat - Chloride Traffacens Unit: Caryoly for to	24145	2100-2120	3,0	.002			
		medin granid moderate to storig foliation, personic	24146	213.0.216.0	9.6	,002			
	ļ	conformatagate and selicificate, numerous haveline vendets	24147	2160.219.0	3.0	Tr			
		+ poliches of white quary, were to minon sulphile	24148	21.0-2230	6.9	Tr			
47 UR 449		issociated with the quarty, galatinal upper conloce	24149	720-2240	G,1	Tr			

3.]

; ;

10

Ð

.

DRILLED BY

ł

		COR	D)			
•	PROPERTY Under, Benneines & Se. Louis Franchips	Н	OLE No	M 84-14					
SHEET NUME	ER 1 0/ 3 SECTION FROM_ 1+ 06+ WNW TO		STA	ARTED	July 12 ,1	19			
LATITUDE	29, 265N DATUM Contral Portion (No.3 Vin 3	system)	COMPLETED July 17. 1984						
	170,039E BEARING 200'	,	ULTIMATE DEPTH 267.0						
ELEVATION	9965. 77' DIP46•	· · · · · · · · · · · · · · · · · · ·	PROPOSED DEPTH						
DEPTH FE	T FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		$\overline{1}$		
0-16.0	Caping 1								
16.0- 44	Desile; largely redium to coarse grained inallocal with								
	the enlepton of small alteration goes prosumal to fractions shears, depile is massure								
	16.0- 18.0': extensive fractions		:						
445 53	3 Basic Metavolimic largely medium gramed & displays								
	moderale alterator, recembles a Abolevite volcanie,						- - •		
	The unit is intruded by numerous granitic dyles & veris								
<u> </u>	oumanly at shallow angle to the core.		<u> </u>						
	64.0-65.0' lighty Ducciated with the inderlying depites.						+		
	upper contacts is relatively shop @ 20° to core expo.						+		
	600.61.0'; schafter - Montgel alteration, promining	24158	60.0-61.0	1.0 '	,002				
<u> </u>	ups, moderate diss, py, po moneralizator	· · · · · · · · · · · · · · · · · · ·							
<u></u>	10.0-72.0' gove of interse fracturing								
780- 75	75.5. The game of anona fractioner			•			+-		
	Policie Innaccos Integer, contractor much contract		1						
-	in this and discinated salahear in vite filiting								
	78.6-78.8'; Z" quarte vin with sometimet CPI, por pr	24159	78.0-74.0	1.0'	.626		1		
	1 a few specks at V.G. @ 40-50° to C.A.	7-1-21	4						

DRILLED	BY		 Ţ,	uan	gu	 De.	imn	N.	, • •	2	ha.	U	F.	4 .	 •••
		-										Ì			

SIGNED. Dan Play Denada Thy B'x

G

DIAMOND DEILL RECORD

•	PROPERTY		но	DLE No				
SHEET NUMB	:RZ of 3	SECTION FROMTO		STA	RTED			
LATITUDE	· ·	DATUM		CON	APLETED _	•		
DEPARTURE		BEARING		ULT	IMATE DEI	РТН		
ELEVATION		DIP		PRC	POSED DE	EPTH		
DEPTH FE	r F C	RMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		Τ
	gradational - brinsitional in	tact with the undelying unit.						
79.5. 103	Drovile - Branochionte; as	algue.						
	@ 87.6 ; small the quart	What I shearing @ 60-70 to C.A.						
103.0- 107.0	Bartile - sich Tuffacoro Unit;	rediin grey to black, promout						
	floto of biotice, trace	to moderate descommatist pyre						
	find tolcalon at high as	gu to one 70-80°. Sharp						
	upper " lower contaits @	70° & C.A.					 	
107.0 - 16	20' Disite ; 10 above							
	113.0-114.0. altered chlorite	interne, selicified with						
	trace to minin su	Cphielo						
	132.0 - 138.0; interval in	tan migularly shoped fragmats	· · · · · · · · · · · · · · · · · · ·					
	of fine grance vole	mie material, lighty precession	· · · · · · · · · · · · · · · · · · ·					
	exanactional into the a	enderlying anit.						
167.0 - 1,	7.6' Quartz - conbonate - Chlorite &	Sch Unit; intense pasoasmic						
·	alteration which includes	Alpitystin subcificator 4						
·	corbonalezation provinint of	marty sys, moneroes calcele					 	
,	gastas " venic, unit conte	This appreciable stringer po, py						
	sept, light to modera	te foliator sulphiles accorded						
	with patchy guest 'cale	<u>k</u>	24160	169.0-172.0	3.0	Tr .		
	172.0-1750; prominent ?	Dondat Story CH. po & R.Y	24161.	172.0-173.5	1. 5 0	,008		\perp
	topation; @ 172.0': 50-60° @	175'; 60-70' @	24/68	13.5-175.0	1.5	.002		

Ð

DRILLED BY

DIAMOND DAILL RECORD

	PROPERTY	·	Но	DLE No	_		-	
	3 of 3	SECTION FROMTO)	STA	RTED			
JDE		DATUM	* 91-112 B.11	COMPLETEDULTIMATE DEPTH PROPOSED DEPTH				
RTURE		BEARING	, 					
		DIP						
DEPTH FE T		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		
	unit is huffacenes in	Appenance	2416 \$	175.0 - 177.0	z.0	.002		
16-Z 7.0'	Desile; as abs	e, statury unalland						
	176.6-179.0; unit A	s more delarity is carbonalized						
	111.0 M7.0; pate	a quarty in alloud desite, maderale	2416\$	19.0-192.0	60	.416		
	to algudant	String sulphists quarty lands						
	@-60° 10 CA.							
	@1965': 2' qua	I. ven @ 80° to C.A. appreciate cpy	1 24165	1960-197.0	1.0'	.002	ļ	
	@ 217.0 : 2 small	quarty vins (1/2") @ 50-60", minor assor sulf	Hote. 24166	2170-218.0	1.0'	.002		
	@ 234.0 · 225.0'; fith	cores horson worth maderate chakespyrite	2416.9	7340-235.0	1.0 1	Tr	 	
	sharp ionta	to . to - 80; folialon at high aga to care						
	carlordaged							
	ENL) OF HOE @ 767.0'						
			·····		<u></u>			
			l			l	1	

DRILLED BY

يسيدهم فيستنقد والتابين فالتراج والمراجع

	PROPERTY auter, Bennemico & St. Lows Townships	H	OLE No.	1 84-15		-			
HEET NUME ER		0	ST	ARTED	July 18, 1	18			
	29, 274N DATUM No. 3 Ven System	n (Central Pri	tur) co	MPLETED .	July 2	:0, 1:94			
FPARTURE	170,026E BEARING 200*		ULTIMATE DEPTH						
	9967.00 DIP -611		PROPOSED DEPTH						
DEPTH Ft T	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD S				
0 - 15.0	Cacina								
15.0- 97)	Dessite; largely radium to coarse gramed inactoral								
	disite, alloutin gres preme locally as negmatice	8				· · · · ·			
	in assimilation you unnarry of divide " more granuter	,							
	maloural fine grained chlorater I carbonated horizons also pre	nt.							
	locally								
	15.0-16.0: eitense fractering								
	O MO': questy - continuto Vain "2-1", shays living and	liet							
	24.0. 24.8; coarse gramid granette dyle, sharp contacts								
	Ciliquiar ourtain				467				
	a 273 2-25 grang - calute view, & about the good	y po. 24/68	27.0 - 28.0	1.0'	.002				
	sherps upper intest a 40, contra a 15.00								
	(32.0 processo weins a poly guars, some po.		· · · · · · · · · · · · · · · · · · ·						
	505-52.0' Here france								
	54.0.655' regratting in rating none of associated	÷							
	between desites mar granter material, light precious	tip							
	77.0-80.0; inignation motion volenie clasto veroporates	ı I							
	in coarse grimed devile intrusne		•.						
97.0- 11 1.0	Mafie Volconie; appears to be anderater passite a								
	consportion, for to median grannel provincent		ľ						

		PROPERTY			HOLE No			1			
IEET NUMB	:R	Zofy	SECTION FROM	TO	STA	RTED					
			DATUM		CO	MPLETED _					
EPARTURE			BEARING		ULTIMATE DEPTH						
			DIP		PR	OPOSED D	EPTH				
DEPTH FE	r		FORMATION	SAMPLE	NO. OF SAMPLE	GOLD \$	SLUDGE GOLD \$				
		paintene caluite	vinlets noderate to interse carbon	dyster.							
		contenes desseninates	e papite, gradual transitional cont	ruto			· · ·				
104.0 - 105	5	Denile; medim	granciel as above, numerons m	anor		· · · · · · · · · · · · · · · · · · ·					
		quarte calute	Unielo & 70-80° to core axes. rele	lody							
		sharp untants e	70-40° la c.A.	v							
1055-16	.0	Mofin Metalolianie ?:	Somilar to 87.0 - 104.0', not	a 0							
		interse " carlomatizat	in , paliago a dyle roch , upper .	intact							
		sharp a 50-6	or, lower @ 200 to C.A.								
109.0 - 1	5	Disite; medin	to warse granised interesse, or	rail							
		serms y local	allouter, otherwest smallout.								
		106.6 - 1080; frier	grand altere phase. , selicified	and							
		carlomalized									
		@ 136.5'; smal	l 1/2 shen with minin quarty @ Z)-30°.	·						
		168.0- 172.0";	consel graniel prose								
191.5-	440	Quarty - Carbonate - C	plante such rack; alterator you.	mueloping 24/69	1915-193.0	15	Tr				
		quary ver	sursoive silvifiation ' carlmalitate	, remain 24170	1930-194.0	1.0	.Tr				
		slaste ' mul	vaulets of calada, makenate to .	sling	·····						
		Aleater Nocally	miner dissinctive pricpy, Ma	aitisal							
		upper intact	·····								
194.0- 1	1.7	Quarty Ver; smot	y whole to grey, moderate chalc	pyuta 2417	1940-1947	0.7'	.042				
		i pyrite upper la	test sharp @ 70; lower @ 50.					L			
44.0- /	<u>.</u> . 7	Duartz Vir; smot i pyrite, upp, li	y whole to grey, moderate chalc start sharp 0 70; lower 0 50.	pojute 2417	1940-1947	0.7'	.042				

1.5

		PROPERTY			OLE No			-			
ET NUME	:R	3 of 4	SECTION FROM	то	STA	RTED					
			DATUM		COMPLETED						
PARTURE			BEARING		ULTIMATE DEPTH						
			DIP		PROPOSED DEPTH						
DEPTH FE	T		SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$					
194.7-14	.0'	Quartz - Contonate - C	Monte alletota Zone; as alow the	24172	194.7-197.0	2.3'	Tr				
		quarte var inspec	me pronomied foliala. @ 197.6'; 70°	24173	197.0 - 199.8	20'	.00 2				
		patchy quarty	provinant contrate worlds & gas	Ho.							
		min dess pt + cj	sy associated with paloy quarty 1 co	luce.							
		Q 195.1': 11 M	lite quarty in, trave opp at 70-1	80•							
1071) -		Dir C.A.	· · · · · · · · · · · · · · · · · · ·	~							
14 1.0		alle Ingely	nedim to watch gramen and unalle	ik ;			<u></u>				
l		to such i curta a	to illute and and and								
i		unter large bluich	quarty printy print	24174	213.0-216.0	2.0	Tr				
715.0. 217.	1	Alteren Danke:	prominit large pluces questy use	24175	215.0-216.0	1.0	.060				
		chlorda 5 carbonatz	is, apprusice shings spt, pt 1 pt	24176	216.0-217.0	1.0	,002				
	·	foliaton; @ 216.0 ?	60°, sulphids imposed its foliales	L							
		25.5-25.9; 3"	smoky georg vin C 60-20' to CA	l				}			
		abundant of.	pot of chlorite								
217.0-		Drovile: similar	15 /11.0- 25.0 above					 			
		223.0-225.0	pleased, surged intoone	······································							
		OV 2 2452 . 81 14	when a giz ven Mace supporte	a 24177	2447-2457	101	Tr				
		chloulie in	the new to while remin sulphicks.	· · · · · · · · · · · · · · · · · · ·							
			A har i mine - 1		JI			<u> </u>			

	PROPERTY		H	OLE No			-		
	4014	SECTION FROMTO		STA					
	<i>,</i>	DATUM		COMPLETED					
PARTURE		BEARING		ULTIMATE DEPTH					
		PROPOSED DEPTH							
DEPTH FE		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD S	SLUDGE GOLD \$		<u> </u>	
	247.0-248.0: fine	grand, carbonalized interval, toffaceaus	24178	247.0-248.0	1.0	Tr		Γ	
	in rafer						 	Ļ	
	@ 259.0', Moderate	storge opt, esponated with shared	24179	2585-259.5	1.0	,002		+	
	Chlouter - Carlon	tiget one, tolista @ 45 to C.A.						+-	
	E	UD OF HOLE Q 267.01							
		·							
						· · · · · · · · · · · · · · · · · · ·	+	-	
								╞	
d								+	
							ļ	╞	
								-	
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	}}				┢	
								_	
					i			-	
		· · · · · · · · · · · · · · · · · · ·					 	╞	

المحمول مراجع المراجع المراجع المحمول ا المحمول

	PROPERTY dester. Barreinin & St. Louis Jourships	НС	DLE No	M 84.16	PLTL Nine-	-		
	/ <u>g</u> 7 SECTION FROMTO	, 	STA	RTED	July 23, 1	123		
	DATUM No. 20 Zone		CO	MPLETED	July 2.	1, 148 f		
EPARTIIRE	BEARING 008'		ULT	IMATE DE	' PTH 37	27.0'		

EVATION	DIP		PHC	DPOSED D				
DEPTH F(T	FORMATION	SAMPLE No.	OF SAMPLE	GOLD \$	GOLD \$			
0 - 6.0	Course				•			
6.0- 19.	alastale - branodenite; largely medium grained, light	······						
	grey to pink local alteration, massive & equippinda							
	in nating		· · · · · · · · · · · · · · · · · · ·	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,				
	11.5- 15.0. Light print, more granites yor, blanched allenda							
	of fillapan. gradational contacts with the cont. ton					ļ		
	130 - 14.5: condite alteration at shallow myse to core.					 		
195-255	aloute - Calcanons Tuff: well developed foleaten, dark	24180	195-23.0	3.5	Tioce			
	gran, very chloritic, strong personic carbonaly alion.					 		
	finily discommation sulphides unsident with foliation places.					┠───┤─		
	sharp upper intact & 30° to CA.			,,,,,,,,,,,,	<u> </u>	┨───┤─		
	folalim: @ 20.0'; 25-35°,					<u> </u>		
·	selatively sharp Nova contact & 40-50°. To C.A.			·		<u> </u>		
230- 27)	alteren Droile; Mugly medin granid, personic caston.			•		 		
	alegeter, large, provincent bluck quarty eyo, remension					╂───╂─		
	smail carboyste ventes intimes with the	· · · · · · · · · · · · · · · · · · ·						
270- 200	mones desseminated sulprills himsteant hour intert		*7.0-710	2 (1)	AD7	╂		
- 1.0	interite canonate quera Lite Unit: Similar 15 pyfacens	2410	210 21.0	<u> </u>	,000			
h	and for 110 thept with private personal				<u> </u>			
	alls' and star					<u>}</u> }		

المراجع المراجع المراجع المراجع المراجع والمتحاص والمتحاج والمتحاج المحاجم المحاجم المحاجم والمحاجم المراجع المحاج ا

DIAMOND DOILL RECORD

	PROPERTY		H(DLE No			-	
SHEET NUME	ER2 of 7	SECTION FROMTO		STA	RTED			
LATITUDE		DATUM		CO	APLETED _			
DEPARTURE		BEARING		ULT	IMATE DE	PTH		
ELEVATION		DIP	PROPOSED DEPTH					
DEPTH F	T .	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$		
29.0 - 5	.0 altered Dravels; 5	mita to alone, strong carlonationation						
	promining clotty .	yàthle						
	@ 41.5' small 1/3"	guardy - colect view at 76.80° to C.A.			·····			
.	@ 4415': small 31	pranty calife very at 70° descenarity py						
52.0-	3.3' Distance dele: very	five granied, black in colour, sharp						
	upper and lower	contails trending @ 80-90° to C.A.			·			
58.2. 64.	Alleren Dionte - Bu	too; sumla to intaval of						
	21.0-52.0'							
	63.0.64.7 : enterna	e becoming more Monter, large plaish	24182	63.0-64.7	1.7	.002		
	quanto esto n	advale amonto of discommatic pyrite.			. 9			
64.1.66.5	Chlhile Carlmate	Tuffactors Unit; will foliotor, slowdart	24183	64.7-66.5	1.0	Trace		
	dlonte " automate.	finde deservinated sulphide, Maraligal						
66.5 - 98.0	alland Divite . Early	alyne ' contalying writs	24184	665-67.5	1.0	,002		
	(65-675'; mode	ste monts of absoninated punche						
	locally the unit	altered with shearing accompanying						
	Silveficialon & carlo	ralzelin formalin of spidole is also						
	promenoit localy							
	79.0-07.0: firm g	ramid interval, more interse alteration						
	abordant carbona	te ' large bluich clots of quarty-						
	mina association	I supplied filetin @ 850': 70-85'						

SIGNED

DRILLED BY

ŀ

	HULE NO										
	<u>s.f7</u> SECTION FROM	TO	STA	RTED							
TITUDE DATUM			COMPLETED								
	RTURE BEARING										
EVATION DIP											
LEVATION	DIP		PROPOSED DEPTH								
DEPTH FL T	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$						
43.0 132 5	altered Basic Volenic (?); finer graving the	- slone, mlance									
	alteration which indudes poursaire carlows	lzen abrant									
	bluch quart eyes. Some portions of unit a	somble cosmulater									
	droube with altered whenes, with empregnie	a gt up				 					
	95:0-960; autoration interval foliator 6	40-45' moderate 24185	95.0-96.0	1.01	.002						
	Sulphalles			.,	·,	 					
	104.0- 105.5; darlon frier graniel interest	e upper contact 24106	104.0-105.5	1.5	.004						
	sharp Q 30; unit contenio abordan	ressoniated									
	pyrile, por " nuna opy @ 105.0'; 1'	band of masque				·					
	py, pr " py @ . 60-70. to C.A., with in	, vay dealer.									
	They desamabed sulphides on associate	I will the resonas									
	colute sentelo, mit recentlo a flow	vollani.				_					
	tohelin; @ 112.0 40-45,		149.0-1120	2 11	007						
	10110-112 0, Callud more sometant, promot	granz ky. 24181	101.0 1/22	3.0	.002						
	mourale to unleast strange poure	pa, futraccas									
	120-1185 men delauter at allete	vin at shallow 24190	117.0- 118.5	151	Tr:						
The second secon	and the cost -10-15; compart	sulphise ware.									
	north venue.	· /	1								
132 5- 11.5	alouter · Coleanous Tutt: well developed	tolialon locally. 24189	132.5-135.5	3.0	,002						
	cland neumine alleration praniet	colecte venia: 24190	1355-1385	3.0	.004						

3

Section Sec.

DRILLED BY

.

DIAMOND DAILL RECORD

 $\leq \gamma$

	PROPERTY		не	DLE No			-		
SHEET NUME	R4 of 7	SECTION FROMTO		STA	RTED				
ATITUDE		DATUM		CO	MPLETED				
DEPARTURE		BEARING		ULTIMATE DEPTH					
		DIP		PRC	POSED D	EPTH			
DEPTH FI	r l	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD S	SLUDGE			
	lan anot	are moderate to stondart stringe	24191	138.5-141.5	3.01	,002			
	1 dessemmated	pinile, brace to nino chalcopyut.							
	folialer; OBS'	45°, @ B3.0': 30°, @ 137.0'; 60-70°							
	@134.0; 34' 24	part- calula. ponte viñ & 25-30° to C.A.							
	134.0- 137.0: for	when here provinit large grants my	1						
	1405-142.0; ch	loula, pulling quality about shore pit po							
141.5 - 1	5: altred Depite;	largely medin to ward grand							
	abordant carbon	to locally chlorita. large blucon							
	quarte upo,	inters finder dessenvicely py " Po.							
	148,0-1:500:	fina graniel, chlorite more demdant, abudant	24192	148.0-150.0	20	,002			
	stringe,	lessmatel & eptoldy pyrite with min spy.	24193	150.0-152.5	2.5	.002			
	The cuit is a	whole contenes smaller with of what appear to							
	be tuttacan ?	Villain subrutewed with the allevel dowle							
· · .	152.5- 155	nou continues abondant source marchat	24194	152.5-155.0	2.5'	. 002			
·	de pressio, a	lesinently " struces wit B fin graniel "	24195	155.0-1580	7.0	.004			
	more chlo	the from 153.0-152.3'; quark vie with abordent	24A6	158.0-161.0	3, 0	Tr			
	pinite, Nim	~ challer @ 40-70° to, C.A. @ 154.0; 1" bance	24197	161.0-162.0	1.0	.002			
	A massin	pyrite gunty @ p.							
	156.0-157.0	taffaccary whit bleston @ 70. to CA.							
	162.0-163.0	fuffacenes whit: platel, more chloule	24198	162.0-163.0	1.0	.010			
	Det	the delaporte prode							

SIGNED.....

Q)

DRILLED BY

		PROPERTY	HO	OLE No					
SHEET NUMB	R	5 of 7 SECTION FROMTO		STA	•				
ATITUDE		DATUM	COMPLETED						
		READING							
JEFANIUNE.		BEARING							
ELEVATION		DIP		PRO	POSED D	EPTH			
DEPTH FE	-	FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	suesti check as	ka senjo.	
		@ 1647'; quart & altage, pyrte (1/2') & 50-55"	24199	163.0-166.0	3.0	.002	-	- <i></i>	T
		166.0-167.0: Auffacions submit: callonoons " chloula.	24200	1660-167.0	1.0	.004			
		@ 167.0: small 1/2" gtz win @ 68° to C.A. appreciate							
		pyrte							
176.3 .	77.0	Quarty Vera; smily grey in colour, contains aboundant	24201	Mr3 177.0	0.7	TI			
	-	popule " trace chalcopyrile, upper contact as sharp			<u></u>				
		at 60-63; long contact is badly frontened							
177.0-1	2.0'	Intermediate - Mafic Volionici; largely medin granded.							
		carbonatord, prominant pictule latter, contamo	 						1
		depeninated pytele, remarons calabe verseles towards	ļ	ļļ	· · · · · · · · · · · · · · · · · · ·	ļ		ļ	╞
		the pollow of the intervel.					~		-
182.0-	2910	alletue Denite; as described above	· · · · · · · · · · · · · · · · · · ·						Ļ
		193.7-1940; chloula interval , decominated py 1 po	24202	193.6-1946	110	.004		1	╞
		200.0-2005: us above chlorite external privel quarty -	24203	200.0-201.0	10	.004			Ļ
		caluto vin with diss prete	· · · · · · · · · · · · · · · · · · ·	, 					1
		2115- : fria granied, perhaps is representation of	24201	211.0-213.0	2.0	.004			ļ
		allera volcanic's more chlastic, domanat bander 2	24205	213.0-215.0	2.0	.004			1
		shore my e partaclerly po, moin allopupate.	24206	25.0-217.0	2.0	Tr			\downarrow
		e 212.0 strong a bandad py at 40-450 to CA.	24207	217.0-219.0	2.0	. 170	.07		╀
		ezus; stand opper us so to ch	24208	ZHO - 721.0	Z.0	.163	.145		Ļ
		@ 2145; paldy quarks & strandark musike							

. . .

9

DRILLED BY

' SIGNED.....

.

	PROPERTY		Н	OLE No			
HEET NUME IR	6 of 7	SECTION FROM	ТО	STA	RTED		
ATITUDE		DATUM			APLETED _	······	
EPARTURE		BEARING		_ ULT	IMATE DE	PTH	
LEVATION	ATION DIP			PROPOSED DEPTH			
DEPTH FE T		FORMATION	SAMPLE No.	WIDTH OF SAMPLE	GOLD \$	SLUDGE GOLD \$	
	216.5- 221.0;	you of abordant massion ban	lo y				
	po e pe y o	but 1-2" in wordth also your	ano				J
	dessiminated	" stringe pt, po "spy		ļ			
	@ 222.0; b	march prute (14-1/2") & 50-55	to CA.				
	e 2235; b	inder pyrte disconnister pyrile	at 21/209	2=3.0-224.0	1.0	.002	i
	45° /ta	CA.					
	Alterator of felds	pars ordered to epiclole					
	@ 235.0'; pa	the queits & popule & 60° to c	л	· ·			
	@ 256.5'; 107	access intertal; calcarcous for	hola				
	2570	: @ 70" to C.A,					
			· · · · · · · · · · · · · · · · · · ·				
	2680-282.0;	his granist phase, although so	all				
	albited, conto	I possibly be a whenic of an	dølt				
······	conprosta	umenous calcula vencal lesseni	atel				
	pyrule pre	sut throughout internal					
	francitional wito	the underlying imit.					
299.0 - 3 1.0	Intermediale Volcain	? recomples a floro as sertice	ß		······		
	indeate, poor	bly of andraita compation, free	10				
	medum gramid.	educareous and more chlorite	e havely				
	dessonirates selpt	ide throughout and about supplied	a locally				
	torally Foliation ,	@ 3000'; 50'	l				

•

 ${\bf g} \in {\mathbb P}$

	PROPERTY	H(OLE No				
	R 1 JF7 SECTION FR	ОМТО	STA	RTED			
TITUDE	DATUM		CON	APLETED _			
PARTURE	BEARING		ULT	IMATE DE	РТН		
EVATION	DIP						
DEPTH FE	FORMÁTION	SAMPLE No.	WIDTH OF SAMPLE	GOLD S	SLUDGE GOLD \$	Swastika Check As	
	299.0 " 307.0"; the of moderate to	abundant sulphice 24210	294.0-54,0	2.0	,010	.01	
	mouraizate, banded & Stringe on	1 po on abudant 2421	301.0-3030	2.0	.074	.675	
	in this internet accorponied by	min stringer + 24212	34.0-9050	2.0	,064	.06	
	desserimated challoppite.	24213	3050-307.0	20	,006	.005	
	@ 302.0': small (11/2 ") gtg. Vi	~ @ 45° to CA. 24214	307.0-309.0	2.0	.004	.005	
	abmdart palay papula " pr.	, minin cpy					
	bundary of Sulphills ranges from	30-70° to C.A.					
	C 3.2.5 patchy grang inth	Silphids					
	314.0-318.5; Abundent descrimated p	y pt, large 2423	316.0-310.5	2.5'	,002		
	Aluist quasta : eye						
321.0 - 32	0 allered Deorste; largely median	grained allase,			· · · · · · · · · · · · · · · · · · ·		
	prosine carbonelysta, dings alas	à verles present				_	
	trace to reno- desermated suppose	·					
			•	·			
						-	
	· · · · · · · · · · · · · · · · · · ·		<u> </u>				

na na sana ang kana kana kana kana na sana na s

13 $\mathbf{t}^{(a)}$

÷.

Ì 11

١,

.

030

NOTES ON THE COMPILATION OF AIRBORNE AND GROUND GEOPHYSICAL SURVEYS, PART OF CHESTER TOWNSHIP, ONTARIO

.....

for

MURGOLD RESOURCES INC.

by

Frank L. Jagodits, P. Eng., Consulting Geophysicist November 1984

EXGALIBUR

INTERNATIONAL GONSULTANTS LTD.

41P125W0061 63.4436 CHESTER

030C

- i -

TABLE OF CONTENTS

1 2

3 4

,

Introduction		1
The Surveys		2
2.1 General Comments		2
2.2 Airborne Surveys		2
2.3 Ground Surveys		3
Conclusions and Recommendations		8
Appendix]	10
- Specifications	J	11

LIST OF ACCOMPANYING MAPS

D	AWING NUMBER	TITLE	SCALE
E	C - P102	Preliminary Geophysical Compilation Overlay	l" = 800 ft.
	- P103	Preliminary Map - Proposed Ground Geophys- ical Grids	1" = 800 ft.
s	pport Map	Preliminary Map - Filtered VLF Data (Norminex)	1" = 800 ft.

1. INTRODUCTION

-] -

Murgold Resources is planning detailed exploration drilling during the coming month. Part of the drilling programme will be based on results oprevious geologic information (from drilling, trenching and stripping), he wever further drill targets will be selected from detailed geophysical s rveys to be conducted contemporaneously with the drilling. During the past y ars the Murgold ground and the holdings of Kidd Resources which is surrounded the Murgold claims have received considerable ground geophysical coverage. The compilation of the previous geophysical results, reported on herein intends t search for common geophysical signatures over the known mineralizations a ding the selection of geophysical methods to be applied, the establishment t these specifications and last but not least to help to select the drill t rgets based on the newly acquired data.

2. THE SURVEYS

- 2 -

General

2.1

The following paragraph discusses the surveys used for the compilation with appropriate comments on the results.

2.2 Airborne Surveys

In 1980 Geophysical Surveys Inc. of Quebec City conducted a multisen or helicopter-borne survey covering the 'Gogama Area'. The following ors were flown: (a) Geonics EM-33 airborne electromagnetic system, (b) Hertz Industries TOTEM 1-A VLF-EM system (transmitter: NAA, Cutler, Mai e, f = 17.8 kHz) and (c) Geometrics G803 proton precession magnetometer. The nominal separation between the north-south survey lines is 660 ft. It would appear that the survey was conducted on behalf of a consortium and and the map sheet entitled: 'Part of Neville and Chester Township' was used for the compilation.

The Geonics EM-33 system employs a vertical, co-axial, transmitterre eiver coil-pair operating at a frequency of 736 Hz. The map sheet is si gularly lacking of em anomalies, hence the single 'guestionable' anomaly ne r the No. 20 Showing is significant. The lack of em anomalies is not entirely su prising when the low operating frequency is taken into account. However, it is believed that careful analysis of the analogue records would result in ad litional weak anomalies, perhaps only expressed in the quadrature component.

The larger amplitude airborne VLF-EM responses are associated with likes, but extending beyond the confines of the lakes indicating structural or itrol. The careful analysis of the profiles indicated other lower amplitude r sponses. The dominent strike is nearly east-west (west-northwest and eastn rtheast). The Murgold No. 220 Showing and the Kidd Resources deposit to the

we t of the showing have associated airborne VLF-EM responses, however the Ch ster Zone No. 1 lacks in airborne response. Later ground surveys generally co firmed the airborne conductors.

Valuable regional information was gained from the airborne magnetics. In the vicinity of the area of immediate interest two lithological units standou clearly: (a) the north-south striking younger dykes and (b) a nearly no thwest striking magnetic horizon which is off-set by north-northwest shears an /or faults. Northeast and northwest striking regional faults and/or shear zo es are also suggested by the aeromagnetics.

2. Ground Surveys

2.3.1 VLF-EM Surveys

Norminex Ltd. of Sudbury conducted surveys on behalf of Murgold in 1981 and 1983. The surveys were carried out along nominally northsouth lines, which were 600 ft. apart. Observations were made at intervals of 100 ft. using the Geonics EM 17. The survey lines and stations were located using pace and compass technique, hence their location is uncertain.

The survey has outlined numerous nearly east-west conductors of which one shows close correlation with the No. 20 Showing. Two other conductors VI and V2 are significant. Conductor VI could be considered as a westerly extension of Conductor V4 associated with the Chester Zone 1. The correlation between Conductor V2 and Conductors V6 and V7 associated with the North Chester Zone 1 is not as persuasive.

VLF-EM surveys by Rockwell Mining Corporation cover the central area now held by Kidd Resources and an area west of Weeduck Lake. The

- 3 -

survey line interval varies from 200 ft. to 400 ft. (in some instances it is larger) with stations at every 50 ft. or 100 ft. The Geonics EM17 unit was employed.

- 4 -

IP anomalous zones and the preliminary interpretation of the magnetic surveys by Rockwell (to be discussed later) were transferred to the VLF-EM map for the compilation. The only reasonable control for the compilation is provided by the claim post just west of the No. 20 Showing, hence the location of these data is in doubt to a certain degree.

Nearly east-west striking VLF-EM conductor complex V3 correlates with the Chester Zone 2, just west of the Murgold No. 20 Showing. Conductors V4 and V5 show close correlation with the Chester Zone 1. The correlation between the North Chester Zone 1 and Conductors V6 and V7 is not as clearly established.

The most recent survey is by Murgold Resources covering Grid 1 located over the No. 20 Showing extending to the west as well as to the east. The line interval is 200 ft. with 100 ft. observations. The survey instrument was a Geonics EM17. It is noted here that the Cutler, Maine (NAA) VLF transmitter was used for all the above surveys. During periods when the Cutler transmitter was off the air the Jim Creek (Seattle, Washington NLK) was used.

The results of the detailed survey of Gridl closely resemble that of the Rockwell results, although local discrepancies are observable. The results clearly show the association between the No. 20 Showing and the VLF responses.

TERNATIONAL INSULTANTS LTD.

2.3.2 Induced Polarization Surveys

- 5 -

A report (for Kingbridge Mines Ltd.) dated February 4th, 1971 by McPhar Geophysics Ltd. describes the results of a frequency domain survey covering the area between Mill Pond and Arethusa Lake. An electrode separation of 400 ft. was used which is considered too large for the targets now sought. Two anomalous zones were outlined. The northern Anomaly A suggested to be caused by a narrow (less than 400 ft. wide) tabular source at an approximate depth of 200 ft. Shallow northerly dip was interpreted by McPhar. The depth of the narrow body causing Anomaly B in the south was given as about 200 ft. The interpreted dip is to the south.

Norman Paterson and Associates Ltd. have conducted time domain IP surveys for H. B. & O Engineering Ltd. over the 'Rock Zone Property' covering the area just west of Weeduck Lake. The report is not available hence the data and specifications of the survey are not known. Judging from the notes on the available map, the survey may have taken place during 1972.

Four east-west anomalous zones were outlined. The north and south zones exhibit a strike length of about 1200 ft. The northeast trending zone (the third one from the north) appears to extend into Weeduck Lake and beyond albeit the amplitudes are lower ('weak anomalies'). Clear correlation between VLF conductors and IP anomalies is not in evidence, except in two cases, but associated VLF conductors are recognized (e.g. the southern IP anomalous zone).

The results of a detailed IP survey over the Chester Zone 1 are given on a contour map of chargeabilities. It is assumed that the work was conducted by Rockwell. The lines are 100 ft. apart and the chargeability values are shown at every 50 ft., suggesting that an

electrode separation of 50 ft. was used. It is further assumed that the values shown were obtained at a dipole separation of n = 1 (50 ft.). The anomalous zones outlined on the Compilation Map cover chargeabilities exceeding 40 msec(?).

Four east-west striking zones were outlined. The southern, most continuous zone correlates with the Chester Zone 1 and it is in direct correlation with VLF Conductor V4. Conductor V5 is along the northern interpreted limit of the shorter IP anomalous zone just north of the southern main zone. The northernmost, somewhat discontinuous zone referred to as the North Chester Zone 1 contain the highest chargeabilities (greater than 100 msec(?)). The western two segments of this zone are open to the north. Conductors V6 and V7 are associated with this northernmost zone. It is significant that the eastern and western members of the northernmost IP zone are situated along the northeast and northwest striking shear zones (interpreted from airborne magnetics) F1 and F2 respectively. Furthermore, the westernmost end of the Chester Zone 1 occurs at the intersection of the above mentioned two interpreted faults and Conductor V4. Implication that the mineralization is being structurally controlled is further enhanced by the north-south trending dykes to the north and to the south (indicated by airborne as well as ground magnetics) which may also intersect the mineralized horizon.

2.3.3. Ground Magnetic Surveys

Norminex(?) conducted ground magnetic surveys in conjunction with the VLF-EM surveys. The results are not contoured; partial contouring of the data is now progressing.

The Rockwell(?) 1981-1982 detailed magnetic survey covers the Chester

- 6 -

Zone 2. The lines are 20 m apart with stations at every 20 m. The magnetic contour map clearly shows the numerous north-south trending younger dykes which cut the eastern parts of the Chester Zone 2. The northwest striking magnetic horizon delineated by the airborne magnetics is also well defined.

- 7 -

,

3. CONCLUSIONS AND RECOMMENDATIONS

- 8 -

Previous work by Murgold and other companies indicate that the gold occu s (a) in association with quartz veins and (b) in association with semimass ve but mainly disseminated sulphides near shear zones. The sulphide include otite, pyrite and minor chalcopyrite. Searching for the first kind of gold occurrence with geophysical surveysis a very difficult if not impossible task unless other factors come into play, e.g. conductive contact on the quar z veins. However, the search for the second kind of occurrence is amenable to c ophysical approach as testified by the results of the geophysical work to date

The compilation of the geophysical data indicate that the prime targets for gold occurrence are the locations where VLF anomalies, which are interpreted to be caused by current channelling along conductive structures and locally enhanced by induction due to sulphide mineralization are coincident with JP anomalies due to disseminated and semi-massive sulphide mineralization. The influence of the later dykes on the mineralizing process is not understood. Nevertheless they appear to be spatially related to the known occurrences. Hence magnetic data can provide useful additional criteria by loce ling the younger dykes, by indicating additional structural controlswhich are non-conductive and by outlining horizons rich in pyrrhotite.

Therefore it is recommended that the areas of most interest, namely the vicinity of the No. 20 Showing and the area west of Weeduck Lake should be overed with detailed VLF-EM and magnetic surveys. Based on the above rest its, selected induced polarization surveys should be conducted after initial orightations surveys over the No. 20 Showing.

Detailed VLF-EM and magnetic surveys covering the area between Mill

NTERNATIONAL CONSULTANTS LTD. Pon and Arethusa Lake would establish relationships with the old IP results and would locate sites for detailed IP surveys. The fourth area of interest wou d be along Conductor V9 defined by the Norminex survey.

The survey of the area south of the No. 20 Showing would explore the pot ntial of Conductor V8 (which may be related to Conductors V1, V4 and V5) and Con uctor V10.

Detailed specifications for the surveys are given in the Appendix.

Respectfully submitted,

Frank L. Jagodits, P. Eng.,

FLJ sb Nov mber 14, 1984

Consulting Geophysicist.

- 9 -

SPECIFICATIONS

- 11 -

Ground Magnetic and VLF-EM Surveys

1.

1.1 Survey Grids, Line Interval, Pickets

There are two grids to be surveyed which are shown on the enclosed ma

- (1) No. 20 Showing Grid

- (2) Weeduck Lake Grid

The basic survey line interval is 200 ft., which is increased to 400 ft. south of the trail in the No. 20 Showing Grid. Base lines and tie-lines are to be ablished as shown. Survey lines, base lines and tie-lines are picketed at every 50 ft. In addition the east-west claim lines of the Weeduck Lake Grid and the most northern claim line of the No. 20 Showing Grid will have to be picketed at 50 ft. intervals.

1.2 Line Cutting

The base lines and tie-lines are to be established using a transit. Ba k-chaining will not be acceptable. The pickets are to be numbered using lu per crayons. The line cutting contractor will provide line cutter's map(s) sh wing the chainages along the base line(s), tie-lines and survey lines. This ma will also show major planimetry (lakeshore, roads, trails, etc.) with the ch inages appropriately indicated.

1.3 Magnetic Survey

1.3.1 Specifications

The total magnetic field will be measured at stations 25 ft. along lines, base-lines, tie-lines and east-west claim lines (indicated on the enclosed map) employing a proton precession magnetometer with a sensitivity of $\frac{1}{2}$ one gamma.

The diurnal variations of the magnetic field will be monitored by a recording base station magnetometer system. The survey data will be corrected for the day-to-day and diurnal variations of the field using the output of the base station.

The first observations made with the base station system will serve as the reference value for the surveying of both grids ensuring that the results of the two grids are tied together.

Surveying will have to be suspended during magnetic storms.

1.3.2 Presentation of the Data

(i) Base Maps

The geophysical contractor will prepare base maps on stable-based material using the data provided by the line cutter's map. The map will show base lines, tie-lines, survey lines, the surveyed (by geophysics) claim lines, stations and major planimetry. The scale will be 1 inch = 200 ft.

(ii) In-Field

The rapid, day-to-day presentation of the data is necessary for planning drilling locations. Two formats will be required: (a) if an EDA instrument package is used: profile plots using the HP85 printer and (b) preliminary field map at a scale of 1 inch = 200 ft. showing the corrected data.

A constant can be subtracted from the corrected field data. This constant is to be clearly marked on the map together with the reference value at the base station. If the base station is situated within the grid, the location will also be shown.

- 12 -

(iii) Final Presentation

The final magnetic data will be presented in two formats on stablebased copies of the base maps: (a) the corrected magnetic observations at each station, (b) as contours, the basic contour interval being 10 gammas (nT) with suitably larger intervals in areas of steep magnetic gradient.

- 13 -

Both maps will show the constant subtracted from the corrected field data as well as the reference value at the base station. The location of the base station should be also indicated if the station is within the grids.

1.4 VLF-EM Surveys

1.4.1 Survey Specifications

The in-phase and quadrature components of the VLF magnetic field will be observed at stations 50 ft. apart employing the Geonics EM16 instrument. The operator will have to clearly indicate the direction into which the operator was facing while making the observation. This direction is to remain constant during the survey.

1.4.2 Transmitter
Cutler, Maine, NAA; Azimuth: 101^OT,
distance: 970 km., f: 24 kHz

1.4.3 Presentation of the Results

(i) In-Field

The day-to-day plotting of the in-phase and quadrature profiles is imperative for the planning of the induced polarization surveys. The profiles are to be plotted on maps at a scale of 1 inch = 200 ft. If

the final base maps are not completed, the profiles are to be plotted on an idealized grid. An appropriate vertical scale will be selected. The map will have to show the direction into which the operator was facing.

- 14 -

(ii) Final Presentation

The presentation will be on stable-based copies of the base maps. The data will be presented in two formats: (a) as profiles of the in-phase and quadrature components and (b) as contours of the filtered in-phase component. The filter to be used will be decided upon after the inspection of the profile data. The filtered values will also be shown on this map, positive and negative values being written on opposite sides of the survey line to facilitate easier contouring. The contour interval will depend on the amplitude of the filtered anomalies. Both maps will show the direction into which the operator was facing.

Induced Polarization Surveys

2.1 Instrumentation

2.

The survey will be conducted employing either a time domain or phase IP system. If a phase IP system is utilized, the phase should be observed at two frequencies as a minimum.

2.2 Survey Specification

2.2.1 Orientation Survey

At the commencement of the survey two lines will be surveyed over the No. 20 Showing to establish the electrode spacing to be used. These lines will be surveyed with electrode separations (a) of 50 ft. and 100 ft. using the dipole-dipole electrode array. Observations

will be made at dipole separations (n) of 1 to 6. The length and the locations of the lines will be determined in consultation with the Murgold representatives and the Consulting Geophysicist.

2.2.2 Routine Survey

The specification regarding "a" and "n" will be decided upon the results of the Orientation Survey. The locations of the lines to be surveyed will be determined on the basis of the VLF-EM and magnetic survey results in consultation with the representative of Murgold and the Consulting Geophysicist.

2.3 Presentation

2.3.1 In-Field

The results will have to be plotted in the form of pseudo-sections of the apparent resistivity, apparent chargeability (slice to be selected) or apparent phase (frequency to be selected) and apparent metal factor equivalent every day at a scale of 1 inch = 200 ft.

2.3.2 Final Presentation

The final presentation will be in pseudo-section format. These may be generated by a mechanical plotter on reproduceable material.

- 15 -

+

•

41P125W0061 63.4436 CHESTER

3406 .002/3.0' 0.001 13.0 ,014/2.5' .000/5.0 NO KEEP CONTINU Ton the tiad TIMA Track Then shared Supplide Barring Zonis Showed Supplier Bearing Zons 100 LEGEND inad Drill Hole 0 An Survey Dissund Did Talassation Plane of the Moine ል Kild Z- No. 20 July --- 200 Kild Barners Dramad Dillim 30-1 Mugeld Resources Desine Drilling 1184-17 az/to the feel .34/17.0' -250 AT OP AZ MUTH SECTION LOOKING MURGOLD RESOURCES INCORPORATED Christer, Bunnesis 4. St Louis Touritip SECTION LONGITUDINAL (3,44436 OF THE NO ZO BONE Map No. 1" =50' Seale Done By. sptenda 1984 Deta: DH.

230

-

LEGEND

Disbase Dile Alastile - Granodiorite

Intrustile Diorite. Divite Divide (protable recrystational volicing tubberous units) Intermethole to Matic TAt Intermetrie to Miric Vilcours Suppliede Etre (Armyon A committee & borded pr. py sepy. accelerally sand massing

KEY - Godanial Contacts Fototion & Sharing Quartz Vens **Q**.√.

py Spy

pyile chappyile pauholite

40 ft. zo

MIRGOLD RESOURCES THEORPORATED

CHESTER SENNEWER & ST. LOUIS TOWNSHIPS PORCOPINE MININE DIVISION, ONTARIO

NO. 20 ZONE

DIAMOND DRILL SECTION

HULE NO. M 84-19

TCR, C. AVI, K		63,	4436	
NTS.; 41 - P/12	GACIOSY	BY.	b 4.	
DRAWN BY	DATE	Ausust	M84	
<u>مەر مەر ئەسلامە بىغان بەر بەر مەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب</u>			4.2 4.4	

"SECTION B"

		·

		¢	•	
				!
9 800' N	- · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	•			
				_=((N))

30 000**'**

29 600' N

٠

29 600

280

.

_

١

	10.000' ELEVATION		· · · · · · · · ·	No.2 Vein Surface Trench	Elevation 9992.5'	LEGEND
				Surface Grab 0.78 oz/ton Au	,9	
						18' ESE Collar (projected from ESE 18'onto section)
			OVERBURDEN	3		1.1/0.2' Fire assay (Au oz troy/ton/sample length
				.006/1.0'		
				.002/1.0 .006/0.8' .002/2.0' 4 pp		M 35 Pierce point of D.D.H. M 35 on section
				.002/2.0 7		
				014 /0.5' 3		Sample with ≥ 0.1 oz troy/ton gold
				4 .002/2.3/		
			i de la companya de l	3 .002/1.4' qv(70.3 - 71.6') abundant cpy		18' WNW End of hole
				.002/2.0 / 4 .002/2.0 / 4 .002/2.0 /		
			Projected Location of No.3 Vein	.002/2.0 .006/2.0' .048/2.0'		DIAMOND DRILL HOLE IDENTIFICATION
	9 900'		· · · · · · · · · · · · · · · · · · ·			M Drilled for Murgold G Drilled for Comak
K Book III III III III III III III III III				7 No. 2 Vein		R Drilled for Rinaldi
	_		l Î	7		K Drilled for Kingbridge
						O Drilled for Olympia -
And And And And And And And And And						ROCK TYPES
*10 *10 *10 *10 *10 *10						1 Andesitic - Basaltic Metavolcanic (?): Moderately altered, may
LINE CONTRACT ON LOOKING WAY CHOSE-SUCTION LOOK	-	:	PROPOSED DRIFT			fine grained intrusive.
105						Snearea Luttaceous Unit: Intense alteration, strongly foliated, silicified & carbonatized, massive to foliated.
197			[3]			3 Diorite - Quartz Diorite: Largely medium to coarse grained, relatively unaltered
CPOSS-SECTION LOOKING WW CPOSS-SECTION LOOKING WWW CPOSS-SECTION LOOKING WWW			7			4 Silica - Carbonate - Chlorite Alteration Zone: Moderate to inten
			l l l l l l l l l l l l l l l l l l l			propylitization, massive to foliated.
SPD Image: Section in the section of the section o						usually unaltered.
ADS						6 Migmatite: Intrusive injection zone, dioritic intrusive intruding intermediate volcanics, moderate alteration.
MINERALZATION COLUMN CONTROL OF VEN Statistical Control Distance Mineral Control Dista	9 800'	: 				7 Diabase Dyke
Assessed on the second of the			l l			ININERALIZATION POSITION OF VEIN cpy chalcopyrite
Normality Normality Normality Normality						po pyrrhotite Approximate
Note that the second se						
Ander rein Image: Provide rein <						py pyrite as a a a interred
2.60° NOTA 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backets re. 2.60° Settion wave prepared ban data schedulted by Margin backetschedulted by Margin backets re.<						asp arsenopyrite qv quartz vein (or veinlets)
			PROPOSED DRIFT			asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein
		۰. ۱	PROPOSED DRIFT			asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold
amm MUTE Sectors was presented from plug subwrited by Murphil Research in 9 007 9 007 0 007			PROPOSED DRIFT 250' LEVEL			asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold
NOT: Sectars, one arranged from data subwritter by Marged Resources from			PROPOSED DRIFT			asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold Proposed D.D.H.
3.700 Soft mere are area de from deta subritede by Mergiel Resources luc 9.507 Image: Section Looking Whw Multing Griffins & McOult Limited Witting Griffing & McOult Limited Witting Gri			PROPOSED DRIFT 250' LEVEL			asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold Proposed D.D.H.
Augebi Pescuces Inc. Mugebi Pescuces Inc. Mugebi Pescuces Inc.			PROPOSED DRIFT			py pyrite interred asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold Proposed D.D.H.
CROSS-SECTION LOOKING WNW WILLING Griffins & McOuat Limited Willing Griffins & McOuat Limited Willing Griffins & McOuat Limited MURGOLD RESOURCES INC. NO 3 VEIN SYSTEM SECTION 1 + 378 WNW DDH. MH4.8,9 Control 1 - 378 WNW Control 1 - 378 W	9.700'		PROPOSED DRIFT (250' LEVEL			py pyrite asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold •
Proof Pr	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold •
9 soor 9 soor CROSS-SECTION LOOKING WNW CROSS-SECTION LOOKING WNW Walls, Grijfis & McOual Limited MURGOLD RESOURCES INC. Nº 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 700'		PROPOSED DRIFT 250' LEVEL			by pyrite asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold •
Second Second	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite Interred asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold ← ← Proposed D.D.H. NOTE Sections were prepared from data submitted by Murgold Resources Inc.
Partor CROSS-SECTION LOOKING WNW Watts, Griffis & McOuat Limited Museum Watts, Griffis & McOuat Limited Museum	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold
9 000'	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite interred asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold V.G. visible gold Proposed D.D.H. NOTE Sections were prepared from data submitted by Murgold Resources Inc.
9 son' CROSS-SECTION LOOKING WNW 2 1 Review Date 1984, Geology by D.H. Draw by M. B. 1 Review Date 1984, Geology by D. H. Draw by M. B. 1 Review Date 1984, Geology by D. B. 1 Review Date 1984, Geology by D. 1 Revie	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite merred asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold ✓ ✓ ✓ Proposed D.D.H. NOTE Sections were prepared from data submitted by Murgold Resources Inc.
9 500' CROSS-SECTION LOOKING WNW 2 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite interred asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold
9 600' CROSS-SECTION LOOKING WNW 20 10 0 10 20 30 40 reti D.D.H. M84-8, 9 CROSS-SECTION LOOKING WNW 20 10 0 20 30 40 SECTION 1 + 378 WNW D.D.H. M84-8, 9 CROSS-SECTION 1 + 378 WNW D.D.H. M84-8, 9	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold
9 600' CROSS-SECTION LOOKING WNW 20 10 0 10 20 30 40 FfCT CROSS-SECTION LOOKING WNW 20 10 0 10 20 30 40 FfCT CROSS-SECTION LOOKING WNW 20 10 0 10 20 30 40 FfCT SECTION 1 + 378 WNW D.D.H. M84-8,9 SECTION 1 + 378 WNW D.D.H. M84-8,9 SECTION 1 + 378 WNW D.D.H. M84-8,9 SECTION 1 + 370 WINKOULD 1 ABBENUED POL	9 700'		PROPOSED DRIFT 250' LEVEL			$\frac{p_{y}}{p_{y}} \frac{p_{y}}{p_{y}} \frac{p_{y}}{p_{$
9 600' CROSS-SECTION LOOKING WNW 20 10 0 10 20 30 40 FEET CROSS-SECTION LOOKING WNW 20 10 0 10 20 30 40 FEET SECTION 1 + 378 WNW D.D.H. M84-8,9 SCALE 11 - 201 SUBJECT MILEGOLD SCALE 11 - 201 SUBJECT MILEGOLD SUBJECT MILEGOLD SCALE 11 - 201 SUBJECT MILEGOLD SCALE 11 - 201 SUBJECT MILEGOLD SUBJECT MILEGOLD SUBJECT MILEGOLD SUBJECT MILEGOLD SUBJECT MILEGOLD SCALE 11 - 201 SUBJECT MILEGOLD SUBJECT MILEGOLD	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold •
9 600' Watts, Griffis & McOuat Limited 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite miterred asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold
CROSS-SECTION LOOKING WNW 20 10 0 10 20 30 40 FEET DECTION 1 + 378 WNW D.D.H. M84-8, 9 SCALE: 11- 201 SUBVEY MURGOLD ARROVED PGL	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite
20 10 0 10 20 30 40 FEET SECTION I + 378 WNW D.D.H M84-8, 9	9 700'		PROPOSED DRIFT 250' LEVEL			py pyrite mitered asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold • — • Proposed D.D.H. NOTE Sections were prepared from data submitted by Murgold Resources Inc. Murgold Resources Inc. 0 5 2 4 3 2 1 Revised Dec. 1984, Geology by D.H. Drown by M.B. Watts, Griffis & McOuat Limited
20 10 0 10 20 30 40 SECTION I + 378 WNW D.D.H M84-8, 9 SCALE: 11'- 201 SUBVEY, MURGOLD APPROVED PGL	9 700'		PROPOSED DRIFT 250' LEVEL		CROSS-SECTION LOOKING WMW	py pyrite Intered asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein VG. visible gold Image: specific constraints VG. NOTE Sections were prepared from data submitted by Murgold Resources Inc. Murgold Resources Inc. Image: specific constraints Image: specific constraints Visit constraints Image: specific constraints Visit constraints Image: specific constraints Murgold Resources Image: specific constraints Visit constraints Image: specific constraints Visit constraints Murgold presources Murgold D resources Inc.
D.D.H. M84-8,9	9 700'		PROPOSED DRIFT		CROSS-SECTION LOOKING WNW	py pyrite
	9 600'		PROPOSED DRIFT		CROSS-SECTION LOOKING WNW	py pynte Intered asp arsenopyrite qv quartz vein (or veinlets) sv siliceous vein V.G. visible gold • Proposed D.D.H. NOTE Sections were prepared from data submitted by Murgold Resources Inc. Murgold Resources Inc. I Revised Dec. 1984, Geology by D.H. Drawn by M. B. Watts, Griffis & McOuat Limited MURGOLD RESOURCES INC. NO 3 VEIN SYSTEM SECTION I + 378 WNW
	9 600'		PROPOSED DRIFT 250' LEVEL		CROSS-SECTION LOOKING WNW	py pynte mierred asp arsenopyrite quartz vein (or veinlets) sv siliceous vein V.G. visible gold V.G. visible gold

LEGEND
ESE Collar (projected from ESE 18'onto section)
- P1.1/0.2′ Fire assay (Au oz troy/ton/sample length)
M 35 Pierce point of D.D.H. M 35 on section
Sample with ≥ 0.1 oz troy/ton gold
18' WNW End of hole (projected from WNW18'onto section)
MOND DRILL HOLE IDENTIFICATION
M Drilled for Murgold
G Drilled for Gomak
K Drilled for Kingbridge
O Drilled for Olympia -
C Drilled for Chesgo
CK TYPES
1 Andesitic - Basaltic Metavolcanic (?): Moderately altered, may be fine grained intrusive.
2 Sheared Tuffaceous Unit: Intense alteration, strongly foliated,
silicified & carbonatized, massive to foliated.
relatively unaltered.
4 Silica - Carbonate - Chlorite Alteration Zone: Moderate to intense
5 Alaskite - Granodiorite: Largely fine to medium grained,
usually unaltered.
6 Migmatite: Intrusive injection zone, dioritic intrusive intruding basic- intermediate volcanics, moderate alteration.
7 Diabase Dyke
IERALIZATION POSITION OF VEIN
py chalcopyrite Constant Defined
o pyrnotite Approximate
sp arsenopyrite
v quartz vein (or veinlets)
v siliceous vein
G. visible gold
TE
lurgold Resources Inc.
· · · · · · · · · · · · · · · · · · ·
Revised Dec. 1984. Geology by D.H. Drawn by M.B.
Watts, Griffis & McOuat Limited MURGOLD RESOURCES INC.
NO 2 VEIN EVETENA
RECTION A 370 WAW
SECTION 1 + 3/8 WNW
U.U.H. M84-8,9
1"- 20' SURVEY MURGOLD APPROVED PGL
N BY: FIONA DATE: 1983/01/31 , PROJECT DWG 1 NQ: 308-6 NQ: 1

LEGEND
ESE Collar (projected from ESE 18' onto section)
] 1.1/0.2′ Fire assay (Au oz troy/ton/sample length)
M 35 Pierce point of D.D.H. M 35 on section
Sample with ≥ 0.1 oz troy∕ ton gold
18' WNW
MOND DRILL HOLE IDENTIFICATION
M Drilled for Murgold
G Drilled for Gomak
K Drilled for Kingbridge
O Drilled for Olympia
C Drilled for Chesgo
CK TYPES
1 Andesitic - Basaltic Metavolcanic (?): Moderately altered, may be fine - grained intrusive.
2] Sheared Tuffaceous Unit: Intense alteration, strongly foliated,
silicified & carbonatized, strong shearing.
relatively unaltered.
4] Silica – Carbonate – Chlorite Alteration Zone: Moderate to intense
5 Alaskite - Granodiorite: Largely fine to medium argined.
relatively unaltered.
6 Migmatite: Intrusive injection zone, dioritic intrusive intruding basic- intermediate volcanics, moderate alteration.
7
IERALIZATION POSITION OF VEIN
py chalcopyrite Defined
v pyrite measure Inferred
sp arsenopyrite
v quartz vein (or veinlets)
v siliceous vein
G. visible gold
TE fections were prepared from data submitted by
lurgold Resources Inc.
Revised Dec.1984. Geology by D.H. Drawn by M.B.
Watts.Griffis & McOuat Limited MURGOLD RESOURCES INC.
NO 2 VEIN EVETEM
SECTION 1 + 224 WNW
D.D.H. M-31,32, M84-10,11
D.D.H. M- 31, 32, M84-10, 11 1"- 20' SURVEY MURGOLD APPROVED PGL

10 000' ELEVATION		•	I	
				i
		M-33		
			1	OVERBURDEN
	1			
			M-35 0.195	/0.2'cp,qv
9 900 '				134/1.0 py,cp,po,qv intersec 0.080/1.3 py,cp,qv
				• 1.176/1.0' cp,qv
				,
p.			PROPOSED D	RIFT
				002/2.5 4
			1	.002/2.0 2
			.155/4.0	002/2.3' .797/0.7' 4
			.004	6/1.5 [°] ′1.0
			.002/1.0	3
9800'	•			i
				,
			í L	
				.006 .006 V.G301/0
				.002/2 .006/1.0 1006/1.0
				PROPOSED DRIFT
			-	250'LEVEL
				Ä
				× i
				Į.
		4		1
9 700'				
			1	
]	
	•			
			i !	
9 600'				

.

320

41P12SW0061 63.4436 CHESTER

÷

LEGEND
SE Collar (projected from ESE 18'onto section)
$\gamma_{1.1/0.2'}$ Fire assay (Au oz troy/ton/sample length)
M 35 Pierce point of D.D.H. M 35 on section
Sample with ≥ 0.1 oz troy/ ton gold
18' WNW End of hole (projected from WNW 18' onto section)
IOND DRILL HOLE IDENTIFICATION Drilled for Murgold
Drilled for Gomak
Drilled for Rinaldi
Drilled for Kingbridge
Drilled for Olympia
Drilled for Chesgo
K TYPES
Andesitic - Basaltic Metavolcanic (?): Moderately altered, may be fine grained intrusive.
2 Sheared Tuffaceous Unit: Intense alteration, strongly foliated, silicified & carbonatized, strong shearing.
B Diorite – Quartz Diorite: Largely medium to coarse grained, relatively unaltered.
Silica – Carbonate – Chlorite Alteration Zone: Moderate to intense propylitization, massive to foliated.
5 Alaskite - Granodiorite: Largely fine to medium grained, usually unaltered.
5] Migmatite: Intrusive injection zone, dioritic intrusive intruding basic- intermediate volcanics, moderate alteration.
7] Diabase Dyke
RALIZATION OF VEIN
chalcopyrite Defined
pyrrhotite Approximate
pyrite Inferred
p arsenopyrite
quartz vein (or veinlets)
siliceous vein
G. visible gold
— — — — — Proposed D.D.H.
ctions were prepared from data submitted by incold Resources Inc
• • •
····••
Revised Dec. 1984. Geology by D.H. Drawn by M.B.
$W_{\text{otto}} = 0$ and $\theta_{\text{otto}} = 0$
MURGOLD RESOURCES INC.
Nº 3 VEIN SYSTEM
SECTION 1 + 107 WINW
D.D.H. M33, M84-12, 13
1" - 20' SURVEY MURGOLD APPROVED PGL
BY FIONA DATE 1983/01/31 PROJECT DWG 3 Nº: 308-6 Nº: 3

E	G	E	Ν	D

	A E N D
ESE Collar (projected)	from ESE 18'onto section)
71.1/0.2' Fire assay ()	Au oz troy/ton/sample length)
M 35 Pierce point o	f D.D.H. M 35 on section
Sample with	i ≥ 0.1 oz troy∕ton gold
18' WNW End of I	nole red from WNW 18'anto section)
	CATION
M Drilled for Murgold	
G Drilled for Gomak	
R Drilled for Rinald	
K Drilled for Kingbridge	,
C Drilled for Cheson	
CK TYPES	
1 Andesitic – Basaltic Metavolco fine grained intrusive.	inic (?): Moderately altered, may be
2 Sheared Tuffaceous Unit: Int silicified & carbonatiz	tense alteration, strongly foliated, ed, strong shearing.
3 Diorite - Quartz Diorite: Larg relatively unaltered.	gely medium to coarse gra ined,
4] Silica – Carbonate – Chlorite A propylitization, massiv	Iteration Zone: Moderate to intense e to foliated.
5 Alaskite – Granodiorite: Large usually unaltered.	ly fine to medium grained,
6 Migmatite: Intrusive injection intermediate volcanics,	zone, dioritic intrusive intruding basic – moderate alteration.
7] Diabase Dyke	
IERALIZATION	POSITION OF VEIN
o chalcopyrite	Defined
o pyrrhotite	Approximate
y pyrite	🚗 🚗 🚗 Inferred
sp arsenopyrite	
v quartz vein (or veinlets)	
G. visible gold	
Proposed D.	D.H.
<u>ric</u> ections were prepared from da lurgold Resources Inc.	ta submitted by
r .	$C = \frac{1}{2} \frac{C_{L}}{C_{L}} \frac{C_{L}}{C_{L}} = \frac{1}{2} \frac{C_{L}}{C_{L}}$
Revised Dec 1984 Contary by D.1	
Watts.Griffis & N MURGOLD RESC	DURCES INC.
Nº 3 VEIN	SYSTEM
SECTION +	064 WNW
D.D.H. M13, M14, I	M84-14, M84-15
1" - 20' SURVEY MURG	OLD APPROVED PGL
	······································

LEGEND

SE Coll	ar (projected	from ESE	18'onto se	ction)
\mathcal{I}				₹.
	/ Fire -	Au	Iton 1-	length)
P 1.1/0.2	⊤ire assay (mu oz troy,	/sample	ចារម្ភ៖៧)
M 35	Pierce point	of D.D.H.	M 35 on sec	tion
4	Sample wit	h ≱0.1 oz :	troy/ton gol	d
	\			
18' WNW 1	End of projec) سلا	hole cted_from W	/NW 18' onto	section)
10ND DRILL H	OLE IDENTIF	ICATION		
Drilled	for Murgold			
a Drilled	for Ringhal			
Drilled	for Kingbridg	e		
D Drilled	for Olympia			
C Drilled	for Chesgo			
K TYPES				
1 Andesitic – B	asaltic Metavolco grained intrusive	anic(१): Mod ∖	lerately altered	l, may be
2 Sheared Tuf	faceous Unit: Int Fied & arch	tense alteratio zed. star	on, strongly fol	liated,
silicif 3 Diorite – Qua	rtz Diorite: Larc	gely medium t	o coarse grain	ed,
relati 4 Silica – Carb	vely unaltered. onate – Chlorite	Alteration 7	one: Moderate	to intense
propy	vlitization, massi	ve to foliated	d. medium araina	d,
usual 6 Miamatita	ly unaltered.	n zone. diazio	ic intrusive	trudina basis
intern 7 Diabase Dur	nediate volcanics ke	s, moderate al	teration.	, .u.,
2.0003e Dyi				
		POSITIC	ON OF VE	IN
y chalcopyrite		¢	- Define	d
pyrrhotite			Appro	ximate
pyrite			🛥 Inferre	zu -
quartz vein	(or veinlets)			
siliceous vei	in			
G. visible gold				
· · ·	5			
~	Proposed D	л. D.H .		
E				
ctions were pre urgold Resource	epared from d s Inc.	ata submit	ted by	
U U U U				
			I	
<u>.</u>				
		· · · ·		
Revised Dec. 198	4. Geology bv	D.H. Drawn	by M.B.	
Watte C	riffic & *	McOurse	l imit-	
MURG	$\frac{1}{1} \frac{1}{1} \frac{1}$	OURCES	INC.	•
NO		CVCT		
		J13		
SECT	N 2 4	M04 -	vv IN W	
<u></u>	U.U.H.	11104 -		
1"- 20'	SURVEY: MUR	GOLD	APPROVED	PGL
BY: FIONA	DATE 1983/0	1/31	PROJECT Nº: 308-6	DWG 5

10 000' ELEVATION	~~~	
₹ ×		West Watts Trench
		Chip Sample .126/4.0
		Tr/5.C Tr/5.C Tr/3.0'c
9 900 '		.006/1.0' 5 qv,py,cpy 5 .006/5.0' 4 .002/1.5' 4 .002/5.0' 2! Vein Zone (106.
		4 Tuffaceous She minor cpy,py 3 7.0' ESE
9 800'		
	·	
	·	
		 •
9 700'		
	·	
9 600'	ц	

-

n i F · • M84-2

OVERBURDEN

in Zone (106.0 - 107.5') inor cpy faceous Shear Zone (107.0 - 109.0') nor cpy,py

Tr/4.0

Tr/5.0' Tr/5.0' Tr/5.0'

-

6 5 2 2 2 2 3 2 1 CROSS-SECTION LOOKING WNW FEET

	LEGEND
--	--------

.

18' ESE Collar (projected from ESE 18' onto section)				
1.1/0.2′ Fire assay (Au oz troy/ton/sample length)				
M 35 Pierce point of D.D.H. M 35 on section				
Sample with $> 0.1.07$ trov/top. and				
■ Gample with ≥ 0.1 02 troy/ ton gold				
18' WNW End of hole				
(projected from varava to onto section)				
DIAMOND DRILL HOLE IDENTIFICATION				
M Drilled for Murgold				
G Drilled for Gomak				
R Drilled for Rinaldi				
K Drilled for Kingbridge				
C Drilled for Cheson				
ROCK TYPES				
1 Anderitia Baraltia Matavalancia (a): Madarataly alterations				
fine-grained intrusive.				
2 Sheared Tuffaceous Unit: Intense alteration, strongly foliated,				
Silicitied & carbonatized, strong shearing.				
relatively unaltered.				
4 Silica - Carbonate - Chlorite Alteration Zone: Moderate to intense				
propylitization, massive to foliated.				
usually unaltered.				
6 Migmatite: Intrusive injection zone, dioritic intrusive intruding basic -				
intermediate voicanics, moderate alteration.				
MINERALIZATION POSITION OF VEIN				
cpy chalcopyrite Defined				
po pyrrhotite Appro ximate				
py pyrite en en en Inferred				
asp arsenopyrite				
qv quartz vein (or veinlets)				
sv siliceous vein				
•				
NOTE				
Sections were prepared from data submitted by Murgold Resources Inc.				
ft - Arthur				
7				
6				
2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
T T Revised Dec. 1984. Geology by D.H. Drawn by M.B.				
Watts, Griffis & McOuat Limited				
Nº 3 VEIN SYSTEM				
SECTION 2 + 237 WNW				
D. D. H. M84-2				
SCALE: 1"- 20' SURVEY: MURGOLD APPROVED: PGL				

•

.

LEGEN	D
ESE Collar (projected from ESE	18 ' onto section)
] 1.1/0.2' Fire assay (Au oz troy/t	ton/sample length)
M 35 Pierce point of D.D.H. M	1 35 on section
Sample with ≥ 0.1 oz t	roy∕ton gold
18' WNW (projected from WI	NW18'onto section)
MOND DRILL HOLE IDENTIFICATION	
Drilled for Murgold Drilled for Gomek	
R Drilled for Rinaldi	
K Drilled for Kingbridge	
O Drilled for Olympia	
C Drilled for Chesgo	
Andesitic - Basaltic Metavolcanic(?): Mode fine-grained intrusive.	erately altered, may be
2 Sheared Tuffaceous Unit: Intense alteration silicified & carbonatized, strong st	n, strongly foliated, nearing.
3 Diorite – Quartz Diorite: Largely medium to relatively unaltered.	coarse grained,
4 Silica - Carbonate - Chlorite Alteration Zone propulitization mossive to foliated	e: Moderate to intense
5 Alaskite - Granodiorite: Largely fine to me	edium grained,
6 Migmatite: Intrusive injection zone, dioriti	c intrusive intruding basic
- intermediate volcanics, moderate a	IITERATION.
VERALIZATION POSITIO	N OF VEIN
py chalcopyrite	Defined
o pyrrhotite	Approximate
sp. arsenopyrite	- Inferred
y quartz vein (or veinlets)	
v siliceous vein	
/.G. visible gold	
•	
<u>TE</u>	
Sections were prepared from data submitte Aurgold Resources Inc.	ed by
	1
/ 	
+ ···	· • · · ·
· ····	
Revised Dec.1984. Geology by D.H. Drawn b	у М. В.
Watts, Griffis & McOuat	Limited
NO 2 VEIN EVET	'EW
SECTION OF ACC 1	
D.D.H M84-3	VV IN VV
Image: 1" - 20" SURVEY: MURGOLD N BY: FIONA DATE: 1983/01/31	APPROVED: PGL PROJECT DWG 7 Nº: 308-6 Nº: 7

.

LEGEND
Collar (projected from ESE 18' onto section)
- 1.1/0.2′ Fire assay (Au oz troy/ton/sample length)
M 35 Pierce point of D.D.H. M 35 on section
Sample with ≥ 0.1 oz troy∕ ton gold
18' WNW End of hole (projected from WNW 18' onto section)
ND DRILL HOLE IDENTIFICATION
Drilled for Murgold
Drilled for Gomak
Drilled for Kingbridge
Drilled for Olympia
Drilled for Chesgo
TYPES
Andesitic – Basaltic Metavolcanic(?): Moderately altered, may be fine grained intrusive.
Sheared Tuffaceous Unit: Intense alteration, strongly foliated, silicified & carbonatized, strong shearing.
] Diorite-Quartz Diorite: Largely medium to coarse grained, relatively unaltered.
] Silica – Carbonate – Chlorite Alteration Zone: Moderate to intense propylitization, massive to foliated.
Alaskite – Granodiorite: Largely fine to medium grained,
Migmatite: Intrusive injection zone, dioritic intrusive intruding basic-
intermediate volcanics, moderate alteration. Diabase Dyke
ALIZATION POSITION OF VEIN
chalcopyrite Defined
pyrrhotite Approximate
arsenopyrite
quartz vein (or veinlets)
siliceous vein
ions were prepared from data submitted by old Resources Inc.
evised Dec.1984. Geology by D.H. Drawn by M.B.
Watts, Griffis & McOuat Limited MURGOLD RESOURCES INC.
NO 3 VEIN SYSTEM
SECTION 2 + 331 WNW
D.D.H. M84-4,5
- 20' SURVEY MURGOLD APPROVED PGI
FIONA DATE 1983/01/31 PROJECT DWG 8

•

.

		•		
	~		·	
				181 E
	M84-6	-		
	OVERBURDEN			
Quart	r Vein (12.0-15.0')		· · · · ·	
3				
17				
2/1.5' 5				
6				
Silicified Sharr Zone				
diss. py, cpy				DIAI
	, ,			
Zone :py				
V I				
, ,				ROC
Ń				
•				
			•	
				Ĺ
			· ·	
				po
				py as
				q
ч. 				sv V
			• •	
	1			•
				NOT
				S
				7
			· ·	6
				v 4
				S 3
·····	-			
			CROSS-SECTION LOOKING WNW	
			20 10 0 10 20 30 40	
			FEET	
				SCALE
			· · · · · · · · · · · · · · · · · · ·	DRAWN

-

LEGEND

	llar (projected from ESE 18'onto sec	tion)
1.1/0.2	; 2′ Fire assay (Au oz troy/ton/sample l	ength)
M 35 👌	Pierce point of D.D.H. M 35 on sec	tion
	Sample with ≥ 0.1 oz troy∕ton gold	Ł
١		
18' WNW 1	End of hole (projected from WNW 18' onto s)	section)
MOND DRILL H	HOLE IDENTIFICATION	
M Drilled	for Murgold	
G Drilled	for Gomak	
R Drilled	for Rinaldi	
K Drilled	for Kingbridge	
D Drilled	for Olympia	
C Drilled	for Chesgo	
K IYPES		
1 Andesitic - B fine -	Basaltic Metavolcanic (?): Moderately altered - grained intrusive. ffaceous Unit: Intense alteration zone strong	i, may be
∠ ∋nearea Tuf silici1	fied & carbonatized, strong shearing.	jiy ionatea,
3 Diorite – Qua relati	artz Diorite: Largely medium to coarse grain ively unaltered.	ned,
4 Silica - Carb propy	xonate – Chlorite Alteration Zone: Moderate to ylitization, massive to foliated.	o intense
5 Alaskite - Gr	anodiorite: Largely fine to medium grained,	
6 Migmatite: I	Intrusive injection zone, dioritic intrusive intru mediate volcanics moderate alteration	uding basic-
7 Diabase Dyl	ke	
COAL 17 ATION		
ERALIZATION	POSITJON OF VE	IN
by chalcopyrite	e Defined	t t
pyrrhotite	Approx	timate
y pyrite	Inferre	d
sp arsenopyrite	e	
v quartz vein	(or veinlets)	
v siliceous ve	in	
G visible gold		
	Proposed D.D.H.	
°C		
<u>E</u>	onarod from data submitted by	
urgold Resource	epared from data submitted by	
	$C \sim C/c t$	-2 C.
·		
Revised Dec. 1984	4. Geology by D.H. Drawn by M.B.	
Watts,G	riffis & McOuat Limited	1
MURG	GOLD RESOURCES INC.	
NQ	3 VEIN SYSTEM	
SECT	TION 2 + 142 WNW	
	D.D.H. M84-6	
1"- 20'	SURVEY MURGOLD	GL
BY: FIONA	DATE 1983/01/31 PROJECT № 308-6	N0: 9

-

.

•

CROSS-SECTION LOOKING WNW ----10 20

.

<u>LEGEND</u>					
18 ⁴ ESE Collar (projected from ESE 18 ⁴ onto section)					
] 1.1/0.2′ Fire assay (Au oz troy/ton/sample length)					
M 35 Pierce point of D.D.H. M 35 on section					
Sample with ≥ 0.1 oz troy∕ ton gold					
18' WNW End of hole (projected from WNW 18' onto section)					
DIAMOND DRILL HOLE IDENTIFICATION					
M Drilled for Murgold					
G Drilled for Gomak					
R Drilled for Rinaldi					
C Drilled for Kingbridge					
C Drilled for Chesgo					
ROCK TYPES					
1 Andesitic - Basaltic Metavolcanic (?): Moderately altered, may be					
2 Sheared Tuffaceous Unit: Intense alteration, strongly foliated, silicified & carbonatized, strong shearing					
3 Diorite - Quartz Diorite: Largely medium to coarse grained,					
4 Silica - Carbonate - Chlorite Alteration Zone: Moderate to intense					
5 Alaskite-Granodiorite: Largely fine to medium grained,					
6 Migmatite: Intrusive injection zone, dioritic intrusive intruding basic-					
7 Diabase Dyke					
son chalconwite Defined					
po pyrthotite A oproximate					
py pyrite Inferred					
asp arsenopyrite					
qv quartz vein (or veinlets)					
sv siliceous vein					
V.G. visible gold					
← — — — — — — Proposed D.D.H.					
NOTE					
Sections were prepared from data submitted by					
Murgold Resources Inc.					
5					
1 Revised Dec. 1984. Geology by D.H. Drawn by M.B.					
Watts, Griffis & McOuat Limited MURGOLD RESOURCES INC.					
Nº 3 VEIN SYSTEM					
SECTION 2 + 097 WNW					
D.D.H. M84-7					
DRAWN BY: FIONA II DATE: 1983/01/31 II MOTORS A MARTIN					

		-			·	29 400'N	R Drilled for Rin K Drilled for Kin O Drilled for Of C Drilled for Ch C Drilled for Ch Vein (define Vein (define Vein (inference) Vein (inference) Shaft Pit Trench	naldi ngbridge ympia nesgo rred) ned) roximate) rred)
, ,		· · ·						
						-		•
- 	· ·					· · · · · · · · · · · · · · · · · · · ·	·	29 200 ′ N
	¥							
	CBS WN	4						
	** T	²⁰⁰ W _N I						
		*° 7	NNN 00	MA.				
			70 * 1	939 M	E S			

\$.

¥.

