Three Duck Gold Mines Limited
Arethusa Lake, Chester Township, Ontario
by
W. Walker, F.G.A.C.

Summary

A Ronka Eml6 survey on the Three Duck Cold Mines Limited property has delimited a series of major and minor conductors. The major ones appear to be related to faults, but of the several smaller conductors, those in the northeast of the property are near or at known gold veins.

Introduction

The property comprises four unpatented claims, Sll8910 to 118912 inclusive and Sl21594 in Chester Township, Sudbury Mining Division, Untario.

The present Emi6 survey is aimed at locating further gold bearing veins on the Three Duck Gold Mines property. Drilling, under the supervision of A. L. Reading, was performed on the No. 2 vein in the northeast of the property in 1948, and the No. 3 and 4 veins, 300 and 400 feet closer to Arethusa Lake were channel sampled at that time. These veins should be relocated and tied into the present grid system.

A short drilling programme to check faults evident on the aerial photographs was undertaken in December 1967 and January 1968. Several of the present conductors are near to and parallel to these faults, and differences are probably the result of the scale difference between the aerial photographs (1320ft. to the inch) and map (l00ft to the inch). This lack of control may also be reflected in the drill siting. A magnetic survey in 1965 was at a wider spaced grid (400ft) than is suitable, to judge from the results.

General Geology

The property has not been mapped geologically. H. C. Laird mapped the Three Duck Lakes area and published his results as Ontario Dept. of Mines Vol. 41, part 3, 1932. By present geological considerations, we would consider the Three Duck area as part of a late Archaean (3200-2500 m.y.) island arc or volcano-sedimentary tectonic basin complex, with syntectonic granite in the core of the belt occupying much of Chester and Benneweiss townships. The
gold of the Threo Duck Camp is associated with this syntectonite (iranite. t.asly Niw faults havo controlled dyke emplacement and are known to be mineralised at Weeduck Lake, a mile or so to the northmest. most gold veins in the camp strike within a few degrees of east-mest however.

Equiment and Technique.

Any electromanmetic aduipment is based on measurjng how much conductars jn tho ground affect an electromagnetice sional. A transmitter and receiver are therefore required. The penetration, ar der: to which conductors can be detected, is a function of the difeterice betwoen the transmiter and receiver. The Eml解 utilises the 16.5 . Bavy's Very Low Frequency (VIF) transmitters, in the present case MAA, Cutler, Maine, and NSS, Annapolis, maryland, and so a) fiocs away with the need for a transmitter on the property, b) can penetrate to areater depth, and c) gives readings in ald four quandanis of the compass by utilising both transmitters, rather than two as is usual: in other words there is no noed to assume that ary are bady must. Ife in say the $E-W$ quadrant. On the present survey, tma maps were propared, one for the E-W survey based on the Amamolis tramsmitter, the other on the N-S survey, based on the Cut]er tramimiter. As may be seen from these maps, the N-S survey picked un the main t-W conciuctor, and the E-W survey picked up the majn N-S conductar: with either one on its own, half the information would be misising.

The distance between the maximum positive and negative readings is atomt the same as the distence from the ground surface to a pajnt sonombat atove the centre of the effective area of the conductive body.

In orantioc, readings ware taken on both stations every 100 feed alome linos spaced 200 feet apart. Two readinos are taken on each station, fur in-phase and quadrature. In qeneral in-phase readinos are redated to conductors in the bedrock, whereas from quadrature one may interpret some idea of conductive overburden.

Survey Results

A cheracteristic of the EM16 is that it readily detects conductors. ldentificetion of these conductors is a prime concern of the qeolonist. In the fresent instance, a couple of years ago I intorpreted E-G rault systems in the north and south of the Su alaim, fallting at Arethusa l ake, and a NNul fault leading north from the Pest and af the lake. None of these faults, evident as depressions has been traced out on the around, but the systems are closely follawed by concouctors. With the exception of thet undor Arethuse lake, each manductor hes an effective centre of comductive at a depth of bu to ?ull feet and so musit have its top at or near the bedrock surface. The reversed response of the quadrature also indicates that the feature roletes to bedrock rather than overburden. while 1 woul wish to ascertaif relatjonships on the ground, my present inclination, basied on limited drilling, is to doungrade the ore potential of these: features.

A number of lesser conductors remain, in both $N-S$ and $E-W$ quadrants. Three north of Arethusa Lake must be very close to the gold veins, and 1 therefore regard these small conductors as guides to veining, en ci all similar structures have priority for further work. The $[$-W conductors are all near surface and can probably be tested toy stripping (test first for bedrock) or short hole (Winkie) dialling. The $E-W$ conductors are not as clearly defined because the 200 foot equating ($\mathrm{E}-\boldsymbol{W}$) is double that of the station spacing ($\mathrm{N}-\mathrm{S}$) .

Conclusions
Sone small conductors appear to be related to known gold veins There are several similar conductors on the property. Larger condoctors are probably related to faults.

Brecommendations

```
1. binag the y0]d veins.
?. la| the faults.
3. Fill in the: EM16 survey at N-S conductors on l00 foot lines.
4. Reintempret aj] data.
y. Tesit bodrack depth with a rod at conductors.
6. Strip or dirill conductors.
```

$w W / m$

1. Principle of Operation

The ULF-radio stations operating for commanations with sutmarimes have a vertical antema. The antenna current is thus veridicaj, breatimg a concentric horizontal magnetic field around them. When these mannetic fields meet conductive bodies in the around, there will be secondary fields radiating from these bodies. This uquipment measures the vertical components of these secondary fieldis.

The Emi 6 is simply a sensitive receiver coverifg the frequency Hend of tho new VLf-trarismitting stations, with means of measuring the vertical fiej di components.

The receivor has two inputs with two receiving coils built into the jnstsument. lne coil has normally vertical axis and the other is horizontal.

The sional from one of the coils (vertical axis) is first minimized by tijtine the coil. The tilt-anole is calibrated in percentages. The remainimesimal in this coil is finally balanced out by a moasurad percentace of a signal from the other coil, after being stiffted by ga". The axis of this coil is at rioht angles to the axis of the first cojl. This coil. is kept normally parallel to the primary fiedo.

Thus, if the suconciary sionals are small compared to the primary horizontal field, the mechanical tilt-angle is on accurate measure of the vertical real-component, and the compensation II/2 - sjonal from the horizontal coil is a measure of the nuadrature vertical sjonal.
2. Station selection

The sebection of a transmitting station is done by a plug-in unit inside the receiver. The equipment takes two units simultandousjy. A suitch is provided for quick station-chancing.

The mannetio fiold lines are always at rioht angles to the disection of the transmittino station. Thus where a station is to the rast of the survey area, its N-S field will make the best jntersection with $\mathrm{f}-\mathrm{W}$ conductors.

In matidice, in Northorn Ontario readings on the following two stations cover both $E-W$ and $N-S$ quadrants of the compass: Station NAA, Cut]er, Maine, Frequency 17.8 Kc is to the east Station NSS, Annapolis, maryland, frequency 2l. 4 Kc is to the south.

When tho cover on top of the instrument is removed, the appropriate pluns can be inserted.

Survoy lines should bo made aooroximately along lines at rioht angles to tha direction of the station being used, i.e. run the survey north or south when using NAA, and east or west when using riss. Four readinos are taken at each station, in phase and quadratura facirno south on NAA, west an iNS 5 .
3. Jaking a Reading

To take a roading, first orient the reference coil an the lawer enci of the hancile along the magnetic lines. Fock the instrument hack and forth for minimum sound jntensity in the headphone. Use the volume contral to set the sound level for comfortable listening Then use your left hand to adijust the quadrature component dial on the front left corner of the instrument to further minimize the sound. After finding the minimum signal etrength on both adjustments, read the incbinometer by looking into the small lens. Also matk down the quatirature reading on the front edge of the instrument.

While travelding to the next location you can, if you wish, keep the insitrument in operating position. If atrupt changes in the uosjujon occur while travejling, you might take extra syations to accurately pinpoint the detajls of the anomaly.

The dials inside the inclinometer are calibrated plus and minus percentages, and in degrees. Either ones can be used. If the instrument is facjen 180° from the orioinal direction of travel, the folarities of the readings will be reverseci. When plateing the readings, care should be taken to correct the polarities. The impurtant thing is to know the actual physical tilt-angle of the instiument. The lower end of the handle will, as a rule, point towerds the conciuctur. The instrument is so calibrated that when apprachim tho oonductor, the angles are positive in the in-phase comporient.
A. Plotting the fesults
for easy interpratation of the results, it is goad practice to plot the actual curvos on the paper, using suitable scales for the Horcentage readings as well as horizontal distances over the ground.
b. lnterpretation

The detarmination of depth can be done with fair accuracy with thjs instrument by noticing the horizontal distance betueen the maximum positive and negative readings. This should be the same as the actual depth frofi the ground surface to the center of the effective area of tho conciactive bociy. This point is not the conter of the actual body, but somewhat closer to the upper edge.

A vertical sheet type of conductor, if it comes close to the surface, gives a sharp cross-over of large amplitude anc slou rojloff on both sicles.

Whon lackjor at the plote er curves, ane natices that two ari, incont comomotors may modify the shape of the anomalies for rach arie. lo dases like this, ane has to look for the steepest uradionts af the veridoal (ploteded) field, rather than the actual

Somelimes the quadrature-component shows a reversed polarity compared to ihe in-phese readings. This can be due to the concuctive overburder on ton of the area of deeper (better) conductorThe vertical seconciary field penetrating through the overburden fras reseative quaciratura component.

