

Summary

lienmetk holcs 25 urpatentes mining claime in Chester Twp.

Tha late renolen grende which uncerdies the property is a known host for golo ont copper. The gold veine commonly include concuctive eulphices, who en col6 survey ie most appropriate.

Somb fifty concuctors weze loceted and are cetegorized into gioups, thee metural ane one men-made, (powerlines). The natural consuctors oppear likely to rach bectozik surface and recommenciatione are mave for stripping the overturcon with bulloozer or sampling the various categoriae of concuctor with a binkie arili. prior to eny more exhauetive drill programbe.

Introciuction

inenmark Explorations holds 15 contiguous unpatented mining cledme in Chester Twp. ifotrjet of sudibury, Ontarlo numbered os follows: 52.59405 to 5209419 incluaive, total 15 clasme.

Tho property narrowe from tior of the coe cleins in the aset to fou of single claims in the west. The nestern tier is followoo by Huy. 560 which terminates at Cogeme, about 15 milee to the rorth and joins the area to Gowgande, EIk Lake and hence New Liekserc on huy. 11, some 120 miles to the eest. Huy. 144 which vill ehortly join Subury anc limmins, 11 ee few hundred feet to the fast of the property. The ald Korthern evolopment Company roed into the Thwe wok Lakes ares bisecte the enstern part of the proparty and zuns atout thowsend feat south of the wegtarn row of claimis.

All claitne except scu9412, which is a watar clesm, were surveyec, unt the logults in much of the oastern tier were nullifiec by power dinas.

The property it not known to heva bean survayed geophysically, anc the only known previous work it the prospecting for gold 40 youts ago.

General Gaology
H. C. Lairc includec the area in his report ano map "Crology of the Three Duck Lakes Areat, Unt. bept. of Minea, Vol. 41 , pert 3 1932 and tap 410. I have dane considerable geological and geophysicel work on bijacent prdpertigs to the west, ene finci that Laird's cescriplion is still valio (op.citop 20). Tho erea is within Whet he ceacilies as younger garite (it might be described foe lete tectonic gienite of the kenozefi orogeny.) "As might be
expected in a grenite mase of this oxtent many varistiona in the type ere founc from plece to place. Normel pink to grey oranite end quertz syende are the procominent types". Lairc goes on to cebcrite "s characteristic and rather uncommon type of rack which is thought to be closely aseocieted with the granita, if not, indeed, phase of it". The zone is exposed near the briuge at the neirche un fesonikenct lake and on Weacuck Lake. "In most cases, the rock is almost white on the weathereo surface, and yellowish-gray on fresh surfaces. The texture varies from granulose polphyritic. In some places it bear a strong resembiance to highly metamorphosed arkose, while in othore it hat the eppearance of a quartz porphyry phase of the grenite. for this reason some difficulty was experienced in the fieldin trying to cecion whether this rock was of eedimentery or igneous origin". A debcription of microscopic cherecters followad, from which "In generel, therefore, it bay be sadu that this rock borders on a type of grenite known alaskite".

Economic Ceology

At the time Ladrd was writing (1931), gold was of prime interest. Copper is also known in the area, but the type of occurrences ie still open to question. of gold, on the other hand, laire urote (1 24, op. cit. paras. 1, 3 und 4). "The main showings of gold occur within the erea mapped ab "younger" grenite and close to the contact with the fidout sadiments. from this aesociation it seems obuious thet the gold is genetically associated with the more acio pheses of this intrusives the natere of whech has bean noted in a previous saction. Tha gald occurs in narrow quartz veins occupying well-ciefinec frectures or "breaks" in the intrusive rock, or in quartz veing along the contact between the ecio intrusive anc besic dike, commondy lamprophyre. The majority of the fractures strike in e direction faw degrees aouth of east, and, in general, they show regional paralleliam. Athough the rractures for the most part seam to be cether persistent in iength. the vain material pocupying tham in any one place of ten pinchas out efter having been traced for a short distance. This condition is not unexpected, since in fissure veins of this kino the vein material commonly occurs at interval separatad by barren stratches. Uncier these conditions, the writar wishes to point out that work ghaule not be abernoned beceuse of the dscontinuance of vain matter, but rathar that tha fracture should be followad as far as possible in the hope of locating other golumearing quartz lensea.

Although the gold commony accompenies pyrite and chalcopyrite, it occurs in the native state and is seldom found in intimato association with thase aulphicies. Other minarsals oberved in the veins are as foldows aphalerite, gelena, covelifte, malachitespornazurite, molybienite and its yollow oxide molybdite, and tetradymite (bismuth telluriou). Closely asseciated with tatredymite on the Shennon property, Bennerman found a black minerel with o thuish-brour tarnish, which he believed to be mixture of two or more tellurices (gold, silver, mercury). In addition to the quertz anci oilicete minerals alreacy notea, the ordinary gengue minerels consist of calcite, ankarita, and sericite.

An important feature of the vaine here ie the fact that both gold and golphicior commonly penotrate the wall rock for severad feet. The galo is in too fine stete of outiviaian to be een, hut its presence hes bean oetermined by aseay. The ore minerels were introcuced into the kell rock by replacoment process associated uith hot ascending oremearing solutions in the fractures. In occition to elteretion by replacemont, tha wall rack in some places was extensivaly eilicifieds in other places saricitizetion wes the dominant type of altaration.

Tho Eml6 Electromagnetic Survey

The instrument and ita ube are dascribod in en appondix to this report, ens tectinical delails of the survey in efurther oppendid.

It is the prectice of Milmount Explorations Limited, who undertook the survey, to utilize the Efile's adaptability to receive signals from two transmiasions. In practice this means that while travereing on $N-S$ lines one not only surveys in a Nos direction (so intersecting condutiors in the e and wuaciente) ty ufe of a transmitter to the east, NAA, Cutier fiaine, but cen aiso take readinge using e ta angititer to the south, in this caso NiA, balboa, Canal Zona, Panema, and so burvey conductors in the N and S quaciants. Reacings from the two atations are orawn on soparate maps.

Reacinge on the two tranamitar ere taken at oach station, ty oudtching from one recaiving plug to tha othor, and facing bouth for one (NAA) and west for the other (NBA). As the grido pattern is rectengulax rether than aquare, the conductore located in the f-W quacrante may be more procise than those in the N-S quacirants, sind in reading the curvas anc joining up conductore from line to line, this should be borne in mind. Our experience In this ares is that the cill is better eble to loceta the rea latively smeill sulphide-gold (i.e. conductor) veins then other instrunents tested, and in follow-up work, by bulloozing or orilling. l have found it convanient to take the inetrument into the target area anc do very closely spaced survey (say on 10 ft . or 25 ft . stetions) es 1 was epoting orill holes, so that the exact locetion of the crosesover was known, and so dililing or bulldozing affort and cost would be conearvoc.

In interpreting the present date, I first picked up the more evident anomalles, ond es local experience wes gained, knowing that the targets might be small and norrow conductors, went over the profiles in detail, to sharpen up curves anc to check on the continuity of minor variatione in siope from line to line. commonly, smoothing of lines drew out the series of two or three degree flexures which are sufficient to indicate the type of target for which the search is baing made.

In the outcone;, four types of concuctor are apparent. In orcer of concuctivity they ores
A. The povar lines (which mask overything for at loest 200 ft . on each sice).
A. fesomikenca Lake, in which the conciuctor causes readings of about 100 dugrees change.
C. Many readily icentifiable cronsobere, varying from 5 to 75 degr bes change.
0 fiany smallar cross-ovara, in which the 3 or 4 degreas change, is upparent ondy from the curvea and not from the rafding at statione ($A \cdot 0 \cdot$. in passing from etatione readiry -15 to 0,0 , and -5 , it is presumed thet the curve goes up through the first 0 to peak, and down through the aecona 0).

The concuctors are cotegorizec ty these letters (A, B, C and 0) on the accompanying interpratation maps. In many casas, conductors on eojacent lines fall on aimilar curves and are reodily linkod. In mome cases, the linking lina could only be extenden by a reviaw of critical curva, and in such cases both C and betegorias mey he found on the ame line. Minor doviations of the crosemover points may indicate en echelon or curving veins.

In general, good curves were obtained. Two more unueual feetures are listed:

In claim S2u9407, a perticularly sharp crossover on the NAA oheet looks unnatural. The cense may be manmmado - o. g. old telephones.

In the centre of claim S209408 two curves on the NAA sheot overlap. The reason is probably the result of two conductore on ons line as against one on the other.

Several incivioual anomalies do not appar ralateo to any conciuctor on ecjecent lines. Une conciuctor in the northeese of the most uesterly claim, is apperant on both surveys. Its Nw
 ie no coubt responsible, but recognition might have been difficult were it ahort.

About a thire of the fifty or ao conductars located are in the ESE dixection noted by Laird as goldobearing. Those ESE conductors, enri the ENE ones were loceted one in the N-S survey enc most fall in the clearly evident C category. In contrect, the 0 category is common for $N-S$ concuctors in the aset part of the properiy, porhops because the readinga are 4 times as far apart (200 ft . as compered to 50 ft .) or pertiaps because they aremerely subsidiary faulteparallel to the major masomikende lak fault.

Conclusions änd Recommendationa

boine with gold eccompeniad by conductive auphides are known in the area. Three categories of natural conciuctor have bean located, and each should have its source identified by e sampling procecure. The various directione should also be conm siuereoj $\theta \cdot g$ - the ESE conductors ore in airection in which veine ere known to cerry gold. Where one or all give returne with economic eppeal, a comprehensive exploration programe will be fierited.

A canductor (i) is inoicated et hesomikencia Lake. The eurvey is incampele ovel the jekes uno it shoulo be completed es soon se the jce ie safe.

The distance between high and low on a line is the approximate equel to the effective centre of conouctivity. This is ravaly more than a cuple of huncor fat for category C, lase then luu ft. for category i. most of the concuctore probably reach becreck surfece.

Hearock is nexr surface an much of the property, and where concuctore are known to be near outcrop; the depth of overburcen shoulo be tested with a roc to evaluate the posioility of stripping the ovarturcen vith bullcazer.
where stripping 1 s not resully undertaken, shallow ciriling will suffice to locste the concuctor end particularly where the concuctor is pinpointed by more detaileo readinga, winkie drill may prove most convenient to make farger number of short holee than woule be poseible if the expense of maving a havy orill were ontertaineo.

The continuing guidance of atripping anci cill piogramme is tiest cone by the company' coneulting geologist, anci no phase recommonuatione aric costs ere meds here.

ADDEAGYA

RONKA [K26 (with refarence particulardy to the froperty of Fenmerk Explorations Limitec in Chaeter Tounahip, Ontario).

1. Principle or Iperation

The Uit-xadio etations opereting for communications with eutherines heve everifcal antenne. The antenne curxent is thus vertical, creating concentric horizontal magnetic fielo orouno tham. When thase magnatic fielis meet conductive bodiee in the ground, there will to ececonsicy fialce radiating from thase bodiew. This oquipment measures the verticnl components of these encantary fieleno.

The Efil6 in simily e sensitive recolvor covering the frequency bane of the nes VLF-trensmitting etations, with marrs of masuring the vertical fiald components.

The rbcelvar has two inpute with two recoiving caile buile into the inetrunant. tive coll hes normelly vertirel axis ant tho other for horizontel.

The siune] from one of the colle (vartical exis) is first minimizee by tilting the coil. The tiltaengle is callbrated in porcentages. The remsining slgnal in thia coil is finally belancar out by s moasured percentege of a signel froa the other coll, aftar baing shiftea by 90°. The exis of this coil ieset right aroles to the axis of the first coil. This coil is kapt normally parallel to the orimeny fielc.

Thus, if the ebconciary signala ere amall comporea to the primery horizontol field, the mechanical tiltmangle is en accurate meesure of the vartical real-component, ano the compeneation $11 / 2$ - bignal from tha horizontal coil is a mefsure of the quecireture vertical eignal.
2. Stetion Selection

The selection of a transitting station is done by plug in unit insice the receiver. The equipment tekes two units simultenaously. A switch is provicoo for quick stationchanging.

Themegnetic field lines ere elways at right angies to the riraction of the tranemiting etation. Thus where station is to the eat of the eurvey area, its $N-S$ fisld will make the tost intersection with E-w conductore.

If fractico, in fiortherr firitatio raminge on the following tuo stations couta both E - in enc N-S quactanto of tho compaess Stedion iAh, Cutier, Maini, Frequency 17, BOK ie to the eant
 is to the gouth.

When the caver on top of the instrument is removed, the opmopliteta plugs can ke fnegitec.

Surway lines ahould he made approximetely miong lines at ifint angles to the diraction of the etetion being used. i.e. rum the sulvey north ar bouth then using $N A A_{\text {, }}$ and onst of uast when using fils. On the fanmask property 4 roedings ytijo takgn at adl staiions in phase enc quadrature facing south on IfiA, wost on WisA.
3. Takang a foarime

To tiake a bading, fixst oriant the fefarence coil on the lover ent of the hancle oleng the magetic lines. Rock the instiunont tack and forth for minimum sound intensity in the howdonone. Vas fhe valusa contral to set the sound level fos comortable listening. Then use your laft hand ta odjugt the quarirature component dial on the front left comer of the insitrumant to fur ther minimize the sound. After finding tho mindmum sicnal strenyth ori both ajojustments, rean the incilnongios by jooking into the smell lene. Alsu mark doan the guaciotura roocing on the front edoe of the jnstrunent.

Wh. de trevolling to the noxt locetion you car. if you wish, kece the instrument in operating position. If abrupt changes in the position occurs while trevelling, you might take extra stations to kceurately pinpoint the aetaile of the anomaly.

The diale jneice the inclinamater are calibreted plus anc minus parcontages, and in cegrees. fither ones can be uad. If tho ingtrument is facing 180° from the original diection of truvel, the polarities of tha raadinge will be reveratac. when plotting the readings, care should be taken to correct the polarities. The jimportant thing is to know tho actuad physical tiltangle of the instrument. The lower eno of the hencile will, es a ruie, point towerde the conductar. The instrumont ie so calibretec that whan approaching the concuctor the angles ere positive in the inmphese component.
4. Ploting the fosults
for easy intarpretation of the resulte, it 16 good practice to plat the actued curves on the pepar, using suitable ecalen fox the percentege rescings es well ze harizontal uistences.
5. Iriterprotation

The deternination of depth cen be dione with fair accurecy ujth thia lastrumant by noticing the horjzontal distence batween the deximum pouitive and negative readings. Thie should tie the seme the actuel depth from the ground surface to the conter of the effective ares of the conductive boiy. This point is nut the canter of the uctued booy, but somberneit closer to the upper edge.

A vertical sheet type of concuctor, if it comes close to the furfme, ajves a ehalp crossabor of lerge emplitude rand alow roll.ent on both wiats.
then looking at the plotiod curves, one notices thet two ecjecent boncuctors hay mocify the shape of the enowaliee fos oech one. fo, cress like this, ono has to look for the
 than the ectusj zoro-crosainge.

Sometinics tha quaciature-component shows a roversad polarity
 concurtsua averburcian on top of the eres of reeper (better) concuctor. Tho vertical suconciary filld peritroting through the ovextur oen hes negative quecirature ramponent.
gurialia arka phoierty.
REVIEV OF GEOLOGY \& GEOPHYSICS.

REFERENCES.

1. Geology of the Three Duck Lakes area by H.C. Laird, 4lst Annual Keport of Ontario Department of Mines, Vol. 4l, part 3, 1932.
2. Sualifying report by Michael Ogden, August 1969.
3. Ronka EM-16 Electromagnetic Survey by W. Wälker, Dec. 1969.

SUMMARY
The detailed Konka EM 16 electromagnetic survey of the whole property, on lines 200 feet apart, has located some 50 anomalles. Of these, five reflect significant conductors in depth and four of them should be further explored. (One is a major unmineralized fault.)

All four areas of conductors lie within the broad contact zone of granite and sediments which has been host to some spectacular showings of copper and gold to the east of the property and also to the west.

Some of the conductors are expected to be caused by iron and copper sulphides carrying gold and silver. Others may be magnetic iron formation or graphitic argillites.

A detailed geological investigation of all four areas is recommended with further check electromagnetic work on at least one anomaly. This, at a cost of about $\$ 1,000$ would be followed by a drilling program of 4 to 6 holes which would probe each conductive anomaly for a total cost of $\$ 20,000$.

BCURUAIC GFOLOGY

The interest in the property lies in the fact that it straddles the contact between granite and sediments and this contact a rea has been host to good showings of copper and gold within a few miles of the property.

The old "Lawrence" on "Errington" showing is 500 feet east of the claim group. An average specimen from the mack pile here was assayed by Laird (Hef. 1) ran 20% copper and 6 ounces of silver. The pit exposes a well mineralized eone, some 200 feet long, by 3 feet wide, striking 152° in altered granite. 60 tons of rock is reported to have been shipped to New' York in 1916 from here. It assayed 7% copper and about 0.175 ounces of gold. Other exposures of lesser interest were found on strike toward the south.

Two and a quarter miles west-southwest of the property is the Bruce Young showing, (Ref. No.1) A well defined shear zone striking 120° is exposed here for 200 reet. The zone is mineralized with pyrite and chalcopyrite and lies in altered granitic rock. Laird took a couple of chip samples and got 1.8 oz . of gold plus 12% copper in one sample and 3.5 ozs . gold, 1.9 ozs. silver and 4.8% copper in the other. In a wide section at a cross fracture, a 9 foot channel is reported to have assayed 5.3% copper and 0.14 ozs. gold.

At Schist lake, some 5 miles west of the property, the character of the sediments is well displayed. They consist mostly of conglomerate, greywacke and arkose but also have some strata that are likely to show as conductors; e.ge there is some banded sulphide iron formation, (with or without copper) some banded magnetic or hematitic iron formation, some sericite schist, and some closely banded black and white argillites which are probably graphitic.

The fifty conducting zones found by the bli-l6 survey can be reduced tc four zones of interest wherein exploration should be concentrated. Nost of the numerous small electromagnetic effects are considered to be caused by conductive overburden; layers of clay or clay filled valleys. However, there are four areas of anomalous results that clearly indicate the presence of buried conductors. In descending order of importance these are: Area ivo. 1 in claim $S-207407$ is a sinuous, east-west, highly conductive zone that varies from about 30 feet deep in the west, to 150 feet or so toward the east. it seems to dip vertical on the west end and toward the north at the east end. The most interesting aspect of this anomaly is that it is crossed by another one in the middle, striking southeast. Thus the anomalous area appears to be an east-west band of mineralization cut by a shear whose movement is mostly vertical. (east side down)

Area 2 in the west part of claim $\mathrm{S}-209406$. Although two anomalies are shown here, there is some doubt as to what the true configuration is. The two or more conducting zones are interfering with each other so that a more detailed survey will have to be done in order to seperate them. Area No. 3 in claim $S-249408$ This curved conductor appears to be the continuation of the No. 1 anomaly and may reflect a conducting strata in the underlying sediments. An interesting feature of the zone is the incipient cross structure near the east end.

5-2094N7

Area inc. 4 in claim This sinuous conductive zone which is about 1,206 feet long is probably a conductive strata in the underlying sediments. It seems to dip toward the south throughout most of it's leneth. CCirchusicivs

1. The four selected conductors must be strong zones because the exposures of pyrite mineralization (see map of anomaly No. 4_{4}) are not even detectable as minor conductors.
2. All the conducting, zones are a geological environment that has been productive of some good copper-gold showings on both sides of the property. Hence they require further exploration.
3. Anomalous area No. 2 should be re-surveyed in detail by the E.M.-l6 to clearly define the configuration of conductors.
4. The four anomalous areas should be examined by a geologist to look for exposed mineralization, seek geological reasons for the conductors, and refine the proposed diamond drill layout.
5. Six drill holes are envisaged to properly test the four conductive zones. Hole No. 1 of 500 ft . in length would test the deep double anomaly in the area 1. Hole No. 2 of 200 ft . would probe the shallow west end of anomaly No. 1 . Hole No. 3 of 300 to 600 ft . would investigate both anomalies in area No. 2. Hole No. 4 of 400 ft . would check anomaly No.3. Hole No. 5. of 300 ft . would check anomaly No. 4 . Hole No. 6 of 300 ft , would check anomaly No. 4 also, but toward the west.
$\triangle C O T \operatorname{SNTANE}$
An examination with geologist and EM-16 operator would cost between $\$ 800$ and 21,200 . The drill program of approximately 2,000 lineal feet is estimated at $\$ 20,000$ to complete.

Michael Ogden, B.A. Sc. P. Eng.

$$
\angle E G E N D
$$

$$
\begin{aligned}
& \text { CONDUCTOR } \\
& \text { DIN VFATICAL } \\
& \text { CONDUCTOR } \\
& \text { DIN TONORTH }
\end{aligned}
$$

$$
\xrightarrow{\longrightarrow}
$$

PROPOSIたD DRIL M MORE

$$
\begin{aligned}
& \text { PENMARK EXPA. } \\
& \text { ANOMALY NE } 1 \\
& \text { CLAIM S-209407 } \\
& \text { SCALE IIN - } 200 \mathrm{PT} \text {. } \\
& \text { OGDEN JAN/TO }
\end{aligned}
$$

[^0]

[^0]: PENNARK EXPLORATION ANOMALY NO 2 CLAIM s-209406

 SCALE: IIN•200 TH
 OGDEN JAN/70

