

WEST CLAM LAKE PROPERTY YEO TOWNSHIP

2.19743

PROPERTY GEOLOGY

The West Clam Lake Property is situated in the extreme southern part of Swayze Greenstone Belt, approximately 110 km southwest of Timmins, and 140 km northwest of Sudbury.

According to government geological maps, the property area covers the western part an irregular shaped granitic intrusive body which is approximately 10 miles long (in an east - west direction) and up to 4 miles wide (in a north south direction). As documented on the attached geological sketches, this felsic intrusive body separates two metavolcanic-sedimentary limbs. The northern most volcanic limb is located just to the north of the northern boundary of the West Clam Lake property. This northern limb strikes easterly along the Chester - Neville township boundary, into St. Louis and Groves Townships and beyond. This volcano-sedimentary horizon has been commonly interpreted to represent the western continuation of the Kirkland Lake Belt. The southern volcano - sedimentary limb lies just to the south of the southern boundary of the West Calm Lake Property. This southern limb strikes in a southeasterly direction a short distance into Chester Township before it is truncated by felsic intrusive rocks.

The entire West Clam Lake Property is underlain by felsic to intermediate intrusive rocks - ranging from trondjemite to granodiorite in composition. These rocks are Precambrian in age, and are medium to coarse grained, equigranular and weather from white to very light grey in colour. Typically these rocks are generally massive, and quite homogeneous in texture and composition.

A total of 50 samples from the West Clam Lake Property were collected and sent to Swastika Laboratories for gold analysis. Values returned rang from <0.001 to 1.33 oz Au per ton.

Gold mineralization on the West Clam Lake Property was found to occur in either of two distinctly different yet likely related geological settings:

• Periodic quartz and quartz carbonate veins mineralized with variable amount sulphides are hosted within the felsic intrusive body. These are likely crack -seal features, and generally strike in an east - west direction. A grab sample (sample

no. 27755 - Trench A) of white sugary quartz material mineralized with 30 to 40% disseminated and banded pyrite returned a value of 0.290 oz Au per ton.

• Several east -west striking rusty sulphide zones are situated on the West Clam Lake property. These sulphide zones, which likely representing sulfide filled fractures, generally strike in an east - west direction and range from 1 inch to 2 feet in width.. A grab sample of a 10 cm wide semi-massive pyrite seam (sample no. 27780 - trench E) containing 50 to 60% pyrite returned a value of 1.33 oz Au per ton.

EAST SWAYZE AREA

6 12 miles

From: Ontario Geological Survey 1991. Bedrock geology of Ontario, east-central sheet; Ontario Geological survey, Map 2543.

EAST SWAYZE AREA

Vest Clam Lake Property Y-E-0

From: Sirgusa, G.M. 1993, Geology geochemistry and mineralization of the southern margin of the Swayze belt; Ontario Geological Survey. Open File Report 5844, 144p.

Stweps99.cdr Nov/99

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

9W-2309-RA1

Date: SEP-02-99

Company:	R. DUESS GEOLOGICAL SERVICES
Project:	YEO
Attn:	R. Duess

We hereby certify the following Assay of 50 Rock samples submitted AUG-20-99 by .

Sample Number	Au oz/ton	Au Check oz/ton	Au 2nd oz/ton	Cu %	Multi Element	WRA -	
27751	0.061				Results	Results	
27752	0.098	0.102	-	-	to	to	
27753	0.015	-	-	-	follow	follow	
27754	0.029	-	-	-			
27755	0.290	0.274	-	-			
27756	0.009	-	-	-			
27757	<0.001	-	-	-			
27758	<0.001	-	-	-			
27759	<0.001	-	-	-			
27760	<0.001	-	-	-			
27761	0.001	-					
27762	0.008	-	-	-			
27763	0.002	-	-	-			
27764	<0.001	-	-	-			
27765	<0.001	-	-	-			
27766	0.001						
27767	<0.001	-	-	-			
27768	<0.001	-	-	-			
27769	0.001	0.001	-	-			
27770	0.003	-	-	-			
27771	<0.001	-					
27772	0.001	-	-	-			
27773	<0.001	-	-	-			
27774	0.178	0.182	-	-			
27775	0.034	-	-	-			
27776	0.010	-					
27777	0.003	-	-	-			
27778	<0.001	-	-	-			
27779	<0.001	-	-	-			
27780	1.33	1.01	1.31	-			
One assay ton	portion used.			/			

J. Jeby Certified by_____

.

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

9W-2309-RA1

Date: SEP-02-99

Company: R. DUESS GEOLOGICAL SERVICES Project: YEO Autn: R. Duess

We hereby certify the following Assay of 50 Rock samples submitted AUG-20-99 by .

Sample	Au	Au Check	Au 2nd	Cu	Multi	WRA	
Number	oz/ton	oz/ton	oz/ton	%	Element	-	
27781	0.095		-	1.16			
27782	0.087	0.072	-	-			
27783	0.003	-	-	-			
27784	0.010	-	-	-			
27785	0.005	-	-	-			
27786	0.006	-	-	-			
27787	0.001	-	-	-			
27788	0.185	-	-	-			
27789	0.002	-	-	-			
27790	0.004	-	-	-			
27791	0.147	0.161					
27792	0.001	-	-	-			
27793	0.029	-	-	0.96			
27794	0.003	-	-	-			
27795	0.031	-	-	1.17			
27796	<0.001			-			
27797	<0.001	<0.001	-	-			
27798	0.024	-	-	-			
27799	<0.001		-	-			
27800	0.003	-	-	-			

One assay ton portion used.

Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 Fax (705)642-3300

R. DUESS GEOLOGICAL SERVICES

Attention: R. Duess

roject: YEO

ample: Rock

TSL Assayers Swastika 1 Cameron Ave., Swastika, Ontario, POK 1T0

Tel: (705) 642-3244 Fax: (705) 642-3300

 Report No
 :
 9W2309 RJ

 Date
 :
 Aug-30-99

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
27751	30.2	0.27	80	2	0 <0.5	160	0.2	l <1	133	578	4555	11.91	0.10	0.02	100	4	0.01	29	9 1150	234	10	<1	<10	8	0.04	14	<10) E	, 7!	5 19
27752	68.6	0.31	235	3	D <0.5	1180	0.27	7 10	224	112	2483	>15.00	0.20	0.05	710	<2	0.01	1 13	3 480	692	10	< 1	<10	5	0.09	28	10) <1	3634	9 23
27753	6.8	0.04	<5 ا	<1	0 <0.5	25	0.01	1 2	- 4	794	2339	4.35	0.01	<0.01	120	10	0.0	1 19	9 120	26	10	< 1	<10	1	<0,01	5	<10) <1	21/	85
27754	7,2	0.20	200	3	0 < 0.5	70	0.07	7 <1	88	266	232	10.23	0.18	0.01	105	14	0.01	1 15	5 250	82	5	<1	<10	9	0.11	12	<10) 2	20	J 20
27755	30.7	0.40	25	; 31	0 <0.5	120	0.0	5 3	43	192	2499	7.10	0.25	0.02	105	10	0.01	l i	9 430	114	5	< 1	<10	4	0.16	9	10	<i>i</i> 2	63	5 33
27756	2.4	0.33	20	2	0 <0.5	<5	0.28	8 <1	12	209	648	6.18	0.19	0.09	1205	4	0.0	1 11	1 180	24	s	<1	< 10	6	0.13	9	<1() 2	14	7 14
7757	0.4	0.37	/ <5	3	J <0.5	<5	0.5	l 1	22	295	392	6.91	0.25	0.12	650	4	0.01	i 10	390 390	16	5	1	<10	13	0.15	9	<10) 11	. 21!	5 18
7758	0.4	0.48	I <5	31) <0.5	<5	0.1	5 <1	11	186	405	5.10	0.25	0.06	175	6	0.0	1 7	7 320) 14	5	<1	<10	5	0.16	, 7	<10	j //	i 31	1 22
7759	<0.2	0.57	/ <5	4	0 < 0,5	< 5	1.4	7 <1	5	i 350	7	1.74	0.21	0.17	350) 4	0.03	2 7	7 280) 8	5	<1	<10	26	0.15	; 3	< 10) 11	i 3,	4 15
7760	<0.2	0.21	< 5	1	0 <0.5	<5	0.34	• <1	1	441	3	0.79	0.05	0.09	115	6	0.0	2 1	3 60) Z	5	<1	<10	6	< 0.01	1	<10 @) 3	1	94
7761	1.4	0.41	< 5	2	0 < 0.5	< 5	0.3) <1	12	264	590	4.75	0.16	0.05	160	6	0.0	1 10	0 170) 12	5	<1	<10	3	0.05	; 5	<1(י נ	i .	5 27
7762	2.8	1.08	s <5	2	0 <0.5	<	0.0	5 <1	. 4	316	2257	3.72	0.08	0.40	195	6	0.0	3 8	8 200	26	5	i <1	<10	3	<0.01	. 4	<10	з ;	2 '8'	6 16
7763	0.4	0.32	2 <5	3	0 < 0.5	; <5	0.7	5 <1	. 9	377	439	2.34	0.19	0.06	225	i 4	0.0	1 9	9 380	0 10	5	i 1	<10	12	0.12	2 3	< 14) i:	i 1	6 17
7764	0.4	0.50) <5	3	0 < 0.5	i <5	0.2	5 <1	. 11	197	170	2.91	0.17	0.08	120) 4	0.0	3	7 240) 10	< 5	· <1	<10	4	0.09) 4	<11) <u>'</u>	5 1	8 19
7765	<0.2	0.50) <5	3	0 <0.5	< 5	0.4	9 <1	. 8	163	47	2.09	0.09	0.09	165	; 2	0.0	z (5 140) 6	< 5	i <1	<10	5	0.12	! 3	<10	, נ	/ 1-	4 19
7766	0.6	0.13	3 50	1	0 <0.5	; 5	0.1	1 <1	27	477	133	3.21	0.02	0.05	5 5 5	; e	0.0	z 2:	3 50	34	5	i <1	< 10	2	< 0.0		<11	o :	i 3	2 5
7767	<0.2	1.7	< ۲	3	0 <0.5	i <5	0.2	7 <1	. 7	7 211	248	6.61	0.11	0.40	250) 4	0.0	1 Ì-	4 280) 10	<	; ;	2 <10	5	0.10	5 12	< 10	.) 10) 2.	6 18
7768	<0.2	0.40	5 <5	i 3	0 < 0.5	i <5	0.1	7 <1	2	2 426	6	1.53	0.11	0.16	170) 8	0.0	2 1	1 240) 2	5	i <1	<10	17	0.0	5 3	/ <1/) <u>5</u>	5 I	99
7769	0.4	0.20	5 5	i 3	0 <0.5	; 5	0.0	3 <1	6	i 186	139	7.31	0.10	0.03	1 65	; 2	0.0	2 14	4 180) 76		i <1	<10	9	0.01	11	. <10) <f< td=""><td>i 1</td><td>2 13</td></f<>	i 1	2 13
1770	0.4	0.13	3 20) <1	0 <0.5	i </td <td>2.5</td> <td>3 3</td> <td>1 2</td> <td>402</td> <td>102</td> <td>1.80</td> <td>0.01</td> <td>0.08</td> <td>370</td> <td>) 6</td> <td>0.0</td> <td>2 10</td> <td>6 60</td> <td>) 38</td> <td></td> <td>5 <!--</td--><td><10</td><td>57</td><td><0.03</td><td>1 3</td><td>< 16</td><td>3 6</td><td>\$ 29</td><td>υ 3</td></td>	2.5	3 3	1 2	402	102	1.80	0.01	0.08	370) 6	0.0	2 10	6 60) 38		5 </td <td><10</td> <td>57</td> <td><0.03</td> <td>1 3</td> <td>< 16</td> <td>3 6</td> <td>\$ 29</td> <td>υ 3</td>	<10	57	<0.03	1 3	< 16	3 6	\$ 29	υ 3
7771	0.4	0.4	1 <9	; 3	0 <0.9	; </td <td>3.6</td> <td>51</td> <td>. 11</td> <td>385</td> <td>170</td> <td>4.54</td> <td>0.18</td> <td>1.22</td> <td>1205</td> <td>5 4</td> <td>0.0</td> <td>1 3</td> <td>7 190</td> <td>0 10</td> <td></td> <td>5 2</td> <td>2 <10</td> <td>149</td> <td>0.0</td> <td>2 10</td> <td>) <1/</td> <td>o :</td> <td>2 5</td> <td>96</td>	3.6	51	. 11	385	170	4.54	0.18	1.22	1205	5 4	0.0	1 3	7 190	0 10		5 2	2 <10	149	0.0	2 10) <1/	o :	2 5	96
7772	<0.2	2 0.93	2 <5	5 14	0 <0.5	5 </td <td>5 0.4</td> <td>7 <1</td> <td>15</td> <td>5 115</td> <td>7</td> <td>3.91</td> <td>0.75</td> <td>0.62</td> <td>365</td> <td>5 7</td> <td>0.0</td> <td>2 1</td> <td>6 1130</td> <td>06</td> <td><</td> <td>5 2</td> <td>? <10</td> <td>46</td> <td>0.3</td> <td>1 37</td> <td><10</td> <td>D !</td> <td>; 9</td> <td>3 36</td>	5 0.4	7 <1	15	5 115	7	3.91	0.75	0.62	365	5 7	0.0	2 1	6 1130	06	<	5 2	? <10	46	0.3	1 37	<10	D !	; 9	3 36
27773	<0.2	2 0.24	4 < 5	57	0 <0.5	; </td <td>5 0.1</td> <td>4 1</td> <td>. 7</td> <td>7 188</td> <td>100</td> <td>1.29</td> <td>0.16</td> <td>0.06</td> <td>6 135</td> <td>5 4</td> <td>0.0</td> <td>6 1</td> <td>6 230</td> <td>3 86</td> <td><</td> <td>5 1</td> <td>i <10</td> <td>) 11</td> <td>0,10</td> <td>) 3</td> <td>1 <11</td> <td>o !</td> <td>5 23</td> <td>4 15</td>	5 0.1	4 1	. 7	7 188	100	1.29	0.16	0.06	6 135	5 4	0.0	6 1	6 230	3 86	<	5 1	i <10) 11	0,10) 3	1 <11	o !	5 23	4 15
27774	16.4	0.2	i </td <td>5 5</td> <td>0 <0.5</td> <td>5 10</td> <td>0.0</td> <td>92</td> <td>27</td> <td>7 490</td> <td>7901</td> <td>2.78</td> <td>0.20</td> <td>0.04</td> <td>1 60</td> <td>) (</td> <td>0.0</td> <td>21</td> <td>1 360</td> <td>0 16</td> <td>; !</td> <td>5 <</td> <td>l <10</td> <td>) 3</td> <td>0.0</td> <td>L :</td> <td>J <1/</td> <td>0</td> <td>3 10</td> <td>9 11</td>	5 5	0 <0.5	5 10	0.0	92	27	7 490	7901	2.78	0.20	0.04	1 60) (0.0	21	1 360	0 16	; !	5 <	l <10) 3	0.0	L :	J <1/	0	3 10	9 11
7775	0.3	2 0.6	4 < 9	58	0 <0.5	5 </td <td>5 2.2</td> <td>2 1</td> <td>18</td> <td>8 414</td> <td>127</td> <td>3.75</td> <td>0.52</td> <td>0.98</td> <td>3 770</td> <td>) 4</td> <td>0.0</td> <td>1 7</td> <td>2 140</td> <td>36</td> <td>5 !</td> <td>5</td> <td>3 <10</td> <td>) 74</td> <td>0.14</td> <td>4 24</td> <td>×1۱</td> <td>D (</td> <td>2 10</td> <td>8 14</td>	5 2.2	2 1	18	8 414	127	3.75	0.52	0.98	3 770) 4	0.0	1 7	2 140	36	5 !	5	3 <10) 74	0.14	4 24	×1۱	D (2 10	8 14
7776	21.	5 0.3	0 <5	54	0 <0.5	5 !	5 0.3	4 1	. 8	3 247	5347	5.26	0.20	0.13	3 180) ia	0.0	Z 1	3 440	0 18		5 <	I <10) 11	0.0	4 (i <1	0	3 11	.3 18
7777	6.0	5 0.1	7 </td <td>5 4</td> <td>0 <0.5</td> <td>5 9</td> <td>5 0.0</td> <td>2 1</td> <td>1 2</td> <td>2 277</td> <td>3670</td> <td>1.06</td> <td>0.20</td> <td>0.01</td> <td>1 25</td> <td>5 (</td> <td>0.0</td> <td>1</td> <td>6 16</td> <td>9 G</td> <td>3</td> <td>5 <</td> <td>1 <10</td> <td>) 3</td> <td>0.0</td> <td>1</td> <td>· <1</td> <td>0</td> <td>2 2</td> <td>8 18</td>	5 4	0 <0.5	5 9	5 0.0	2 1	1 2	2 277	3670	1.06	0.20	0.01	1 25	5 (0.0	1	6 16	9 G	3	5 <	1 <10) 3	0.0	1	· <1	0	2 2	8 18
7778	0.4	1 0.4	3 </td <td>55</td> <td>0 <0.</td> <td>5 <</td> <td>5 0.0</td> <td>4 <1</td> <td>1 167</td> <td>7 384</td> <td>140</td> <td>7.93</td> <td>0.24</td> <td>0.10</td> <td>) 17(</td> <td>) (</td> <td>0.0</td> <td>21</td> <td>5 34</td> <td>0 16</td> <td>; :</td> <td>5 <</td> <td>1 <10</td> <td>) 7</td> <td>0.1</td> <td>1 1</td> <td>1 <1</td> <td>0</td> <td>5 1</td> <td>9 12</td>	55	0 <0.	5 <	5 0.0	4 <1	1 167	7 384	140	7.93	0.24	0.10) 17() (0.0	21	5 34	0 16	; :	5 <	1 <10) 7	0.1	1 1	1 <1	0	5 1	9 12
7779	0.3	2 0.4	3 </td <td>56</td> <td>0 <0.</td> <td>5 <9</td> <td>5 0.0</td> <td>7 <1</td> <td>1 7</td> <td>7 138</td> <td>118</td> <td>3.73</td> <td>0.28</td> <td>0.09</td> <td>9 190</td> <td>: נ</td> <td>! 0.0</td> <td>2</td> <td>5 37</td> <td>ο θ</td> <td>5 1</td> <td>5</td> <td>1 <10</td> <td>) 5</td> <td>0.1</td> <td>8 1</td> <td>3 <1</td> <td>0</td> <td>52</td> <td>0 10</td>	56	0 <0.	5 <9	5 0.0	7 <1	1 7	7 138	118	3.73	0.28	0.09	9 190	: נ	! 0.0	2	5 37	ο θ	5 1	5	1 <10) 5	0.1	8 1	3 <1	0	52	0 10
7780	10.4	4 0.4	7 7	54	0 <0.9	5 110	0.1	0 <1	L 46	5 282	232	>15.00	0.16	0.13	3 190	י נ	8 0.0	1 2	3 30	0 48	3 10) <	1 <10) 2	0.0	4 2	3 <1	0	71	.4 18

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.1.H20.

Signed

*----***JESS GEOLOGICAL SERVICES**

Attention: R. Duess

Project: YEO

Sample: Rock

TSL Assayers Swastika

1 Cameron Ave., Swastika, Ontario, P0K 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300
 Report No
 :
 9W2309 RJ

 Date
 :
 Aug-30-99

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag	A1 %	As	Ba	Be	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	K %	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sc	Sn	Sr	Ti %	V	W	Y	Zn	Zr
(and a c	PP		PP	FF	PP	PP···		PP	PP	PP	PPIII	<i>,</i> .			PPIII	PPm		PP	ppin	ppiii	ppin	ppiii	PPIU	ppm	70	ppin	PPIII	ppin	PP	PP···
27781	3.2	0.63	10	40	<0.5	<5	0.11	4	4	269	>10000	4.44	0.28	0.11	200	72	0.01	7	840	20	<5	1	< 10	3	0.19	6	<10	8	448	10
27782	0.8	0.59	< 5	10	< 0.5	315	0.13	<1	180	299	361	>15.00	0.02	0.19	410	2	0.01	29	380	40	10	< 1	< 10	3	0.03	26	<10	5	27	17
27783	<0.2	0.28	10	50	< 0.5	<5	0.07	<1	38	211	243	3.66	0.25	0.02	145	4	0.01	7	310	8	5	<1	< 10	3	0.12	5	<10	14	7	12
27784	0.2	0.31	<5	50	< 0.5	< 5	0.14	<1	17	223	242	5.36	0.25	0.04	190	10	0.01	8	700	10	5	1	<10	11	0.26	8	<10	14	3	21
27785	<0.2	1.25	5	60	<0.5	<5	0. 19	<1	14	233	426	5.32	0.28	0.44	255	4	0.02	10	510	8	5	3	<10	6	0.14	10	<10	31	44	13
												4				_					-	_		-						
2//86	2.0	0.95	<5	90	<0.5	<5	0.46	1	11	205	828	4.07	0.34	0.36	350	2	0.05	12	530	16	< 5	3	< 10	8	0.27	13	<10	22	62	11
27787	<0.2	1.39	5	20	<0.5	<5	1.51	<1	9	119	19	7.00	0.09	0.58	575	4	0.07	9	780	12	<5	6	<10	26	0.36	25	<10	47	97	13
27788	0.4	0.37	15	40	<0.5	25	0.09	<1	27	392	324	3.42	0.31	0.05	165	4	0.01	15	370	8	5	< 1	< 10	2	0.18	5	<10	8	15	11
27789	< 0.2	0.43	85	50	<0.5	<5	0.05	<1	8	195	254	4.06	0.36	0.06	80	4	0.01	9	270	10	5	< 1	< 10	2	0.10	6	<10	3	8	14
27790	<0.2	0.52	<5	50	< 0.5	<5	0.62	1	4	251	88	2.58	0.30	0.14	325	2	0.03	10	310	8	5	<1	<10	9	0.13	6	¹⁰	7	36	12
27791	1.4	0.36	15	50	< 0.5	60	0.04	<1	17	212	487	3.30	0.32	0.04	80	4	0.01	9	220	12	< 5	<1	<10	2	0.08	5	<10	2	10	11
27792	0.2	0.45	<5	40	< 0.5	5	0.27	2	7	208	199	10.74	0.26	0.04	610	<2	0.01	10	250	20	5	<1	<10	2	0.04	13	<10	5	984	52
27793	19.6	0.37	695	10	<0.5	<5	0.10	<1	14	340	>10000	3.38	0.13	0.22	165	6	0.01	18	450	18	5	1	<10	2	0.01	6	<10	3	157	7
27794	1.8	0.30	15	30	< 0.5	5	0.05	<1	11	370	1413	3.78	0.21	0.04	100	4	0.01	19	220	10	5	<1	<10	3	0.05	5	<10	10	9	18
27795	21.2	0.80	970	20	< 0.5	<5	0.65	<1	14	255	>10000	4.93	0.38	0.62	620	2	0.01	24	610	22	10	1	<10	5	0.02	14	<10	6	198	13
27706	~0.2	0 6 9	5	50	~0.5	~5	0 1 1	<i>r</i> 1	c	218	160	211	0.21	0.15	110	2	0.04		100		c		~ 10	6	0 1 7	7	<10	0	14	17
27707	1.0	0.05	ر ء ہ	10	0.5	20	0.11		275	210	209	- 1E 00	0.21	0.15	805	- 2	-0.04		200	6		1	~10	•	-0.01	45	<10		14	1/
2//3/	1.0	0.03	< J -	10			0.09	2 	223	30	300	>15.00	0.02	0.02	003	< 2	<0.01	91	390	00	15	~ ~ 1	< 10	1	<0.01	45	<10	<1		20
2//98	1.4	0.40	5	40	< 0.5	5	0.02	<1		450	806	3.03	0.26	0.06	80	4	0.01	10	130	12	5	<1	<10	2	0.01	4	<10	3	9	15
27799	0.2	2.25	<5	20	0.5	<5	0,10	<1	27	155	18	7.53	0.09	1.52	185	4	0.03	16	310	12	5	5	<10	3	0.01	40	<10	3	36	25
2/800	U.8	0.62	< 5	50	<0.5	5	0.02	<1	5	262	175	4.54	0.27	0.05	70	4	0.01	10	110	12	5	< 1	<10	1	0.03	6	<10	1	11	19

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed

									# L	1111110	Saye	19 01	in dott	17.01												
R. DUESS G	EOL	OGIC	AL SE	CRVI	CES			1 C	amero	n Ave.,	Swas	tika, C	Ontario	, P0K	1T0						R	leport	No	: 91	W2309) RL
Attention: R. Due	ess							T	el: (70	5) 642-3	3244	Fax: ((705) 6	542 - 33	00						D	ate		: /	Aug-3()-99
Project: YEO																										
Sample: Rock									I I	C P W l Lithium	h ole] Metal	Rock borate	Assa Fusio	ny n												
Sample Number	SiO₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	CaO %	MgO %	Na₂O %	TiO₂ %	K₂O %	MnO %	P ₂ O ₅ %	LOI %	Ba ppm	Sr ppm	Zr ppm	Sc ppm	Y ppm	Be ppm	Co ppm	Cr ppm	Cu ppm	Ni ppm	V ppm	Zn ppm	Rb %	Nb ppm	Total %
27758	71.80	12.16	7.63	0.21	0.33	0.09	0.40	3.74	0.02	0.06	3.33	390) <10	300	5	35	5	10	215	310	10	15	40	0.02	<10	99.92

210

240

10

60

210

5

5

10

65

15

45

<5

5

5

5

15

10

140

120

205

<5

<5

795

20

15

15

5

105

25

10 0.01

50

0.02

45 0.01

<10 99,66

<10 99.58

<10 99.57

κ.

TSI Accovere Swastika

Ö

75.82

61.71

69.66

12.38

16.99

13.54

3,39

6.15

5.80

0.72

0.73

1.36

0.26

1.41

0.63

2.15

4.56

5.12

0.28

0.71

0.52

2.57

3.59

1.24

~

0.02

0.05

0.05

0.01

1.94

0.23 3.23

0.10 1.34

340

400

1130

27765

27772

27786

ι

.

Sample is fused with Lithium Metaborate and dissolved in dilute HNO3

•

Febr Signed

.

Page 1 of 1

41P12SW2004 2.19743

WEST CLAM LAKE PROPERTY: YEO TOWNSHIP

SAMPLE DESCRIPTION - LOCATION SHEET

Date: 27 AUGUST 1999

Sample No.	Au (oz/ton)	Description
27751	0.061	TRENCH A Grab sample of blasted muck pile from main blasted area. Rusty quartz carbonate vein material mineralized with 10 to 15% coarse pyrite.
27752	0.102	TRENCH A Grab sample of muck pile from main blasted pit. Rusty, massive seams and bands of pyrite. 95% pyrite
27753	0.015	TRENCH A Grab sample of blasted muck pile from main blasted area. Large sample of quartz carbonate vein material mineralized with 3 to 5% fine to coarse pyrite.
27754	0.029	TRENCH A Grab sample of blasted muck pile from main blasted area. White sugary quartz material mineralized with 30% pyrite. Partially rotten - gossanous.
27755	0.290	TRENCH A Grab sample of blasted muck pile from main blasted area. White sugary quartz material mineralized with 30 to 40 % disseminated and banded pyrite.
27756	0.009	TRENCH A Grab sample of blasted muck pile from main blasted area. Rusty, silicified trondhjemite. Strongly silicified - very hard and dense, with minor Fe carbonate alteration. Mineralized with 5% finely disseminate and clotted pyrite.
27757	<0.001	TRENCH A Grab sample collected from middle blasted area. Localized rusty - gossanous zone. Fine grained, strongly silicified white to light gray trondhjemite

2.19743

a second

Sample No.	Au (oz/ton)	Description
27758	<0.001	TRENCH A Grab sample collected from west end blasted area. Small localized gossanous - rusty zone. Weakly silicified trondhjemite, mineralized with 2 to 3% pyrite.
27759	<0.001	TRENCH A: Whole Rock Analysis Representative sample of outcrop. Relatively unmineralized, medium grained, equigranular felsic intrusive rock - trondhjemite. Homogeneous in texture and composition, mineralized with odd speck of pyrite. Weathers to a dull white - light gray.
27760	<0.001	TRENCH A Grab sample from extreme east end of trenched area. Grab sample of bull white quartz vein material hosted within trondhjemite. Only odd speck of pyrite.
27761	0.001	TRENCH B Grab sample from muck pile from main blasted area, west end of trenched area. Grab sample of rusty - gossanous, silicified trondhjemite mineralized with 10 to 15% disseminated pyrite
27762	0.008	TRENCH B Located 2 metres west of blasted area. Grab sample of rusty quartz vein material mineralized with 2 to 3% pyrite. Sample consists of 40 to 60% quartz carbonate vein material and 30% rusty wall rock - weakly altered trondhjemite.
27763	0.002	TRENCH B Grab sample from muck pile from main blasted area, west end of trenched area. Rusty - gossanous, weakly schistose, silicified felsic intrusive - trondhjemite. Mineralized with 10% disseminated pyrite.
27764	<0.001	TRENCH B Located at east edge of trenched area. Grab sample of various gossanous - rusty sulphide splashes varying in size from cm blebs to 25cm in diameter. Sample consist of trondhjemite, variably unmineralized with pyrite.
27765	<0.001	TRENCH B: Whole Rock Analysis Relatively homogeneous, unmineralized trondhjemite. Only odd speck of pyrite.

Sample No.	Au (oz/ton)	Description
27766	0.001	TRENCH C Located at east end of trenched area. Rusty quartz vein material form pit, mineralized with 5 to 7% coarse cubic pyrite.
27767	<0.001	TRENCH C Located near midpoint of trenched area. Rusty - gossanous wall rock adjacent to quartz vein. Altered trondhjemite mineralized with 5% pyrite.
27768	<0.001	TRENCH C Located near midpoint of trenched area. White, rusty quartz vein material associated with sample no. 27767. Mineralized with 2 to 3% pyrite.
27769	0.001	TRENCH C Located at west part of trenched area, near road. Grab sample of rusty quartz vein material. Mineralized with 2 to 3% pyrite.
27770	0.003	TRENCH C Located from historical blasted pit at extreme east end of trenched area. Large sample of rusty quartz vein material mineralized with 5 to 7% coarse cubic pyrite.
27771	<0.001	TRENCH D Located at south part of trench, near Clam Lake trail. Grab sample of multiple boudinaged quartz veinlets within trondhjemite. Minor sulfides.
27772	0.001	TRENCH D Whole Rock Analysis Grab sample of crosscutting lamprophyryr dike - striking at 330.
27773	<0.001	TRENCH D South portion of trenched area - near Clam Lake trail. Grab sample of rusty flyrock material. Silicified trondhjemite mineralized with 2 to 3% pyrite.
27774	0.182	OUTCROP SAMPLE Grab sample of rusty sugary quartz vein material. Mineralized with 5% pyrite, trace chalcopyrite.
27775	0.034	OUTCROP SAMPLE Grab sample of bull white quartz vein, approx. 1 m wide. Trace pyrite.

Sample No.	Au (oz/ton)	Description
27776	0.010	OUTCROP SAMPLE Grab sample of rusty - gossanous rock associated with sample no. 27775. Weakly schistose - sheared.
27777	0.003	OUTCROP SAMPLE Grab sample of rusty quartz vein material, partially rotten with sulfides. White to yellow in colour.
27778	0.001	TRENCH E Located at extreme west end of trenched area. Grab sample of multiple rusty - gossanous zones - sulfide rich bands - fractures in white weather trondhjemite. Sulfidized bands vary in width from 1 to 10cm wide and strike at 260 degrees.
27779	0.001	TRENCH E Located at extreme west end of trenched area. Grab sample of multiple rusty - gossanous zones - sulfide rich bands - fractures in white weather trondhjemite. Sulfidized bands vary in width from 1 to 10cm wide and strike at 260 degrees.
27780	1.33	TRENCH E Located near midpoint of trench. 7 to 10 cm wide seam of semi massive pyrite hosted within relatively massive trondhjemite. Sample contains 50 to 60% pyrite.
27781	0.095	TRENCH E Located near midpoint of trenched area. Grab sample of rusty - gossanous trondhjemite, mineralized with 1 to 2% pyrite, 5% chalcopyrite.
27782	0.087	TRENCH E Located near midpoint of trenched area. Grab sample of sulfide rich fractures, dipping 80 degrees south. Mineralized with 60 to 70% pyrite.
27783	0.003	TRENCH E Located approx. 1 m north of sample no. 27782. Parallel band of semi massive sulfide - pyrite.
27784	0.10	TRENCH E Located approx. 15 m north of sample no. 27783. Grab sample of rusty - gossanous trondhjemite. Partially rotten with sulfide.

Sample No.	Au (oz/ton)	Description
27785	0.005	TRENCH E Located approx. 15 m north of sample no. 27783. Grab sample of rusty - gossanous trondhjemite. Partially rotten with sulfide
27786	0.006	TRENCH E: Whole Rock Analysis Representative sample of outcrop. Relatively unaltered and unmineralized trondhjemite.
27787	0.001	TRENCH F Located at west end of trench area - near Chester road Grab sample of weakly altered, gossanous - rusty trondhjemite. Mineralized with 1 % pyrite. 2 to 5cm wide east west striking sulfide rich band- possibly sulfidized fractures.
27788	0.185	TRENCH F Located near midpoint of trenched area. Grab sample of rusty - gossanous trondhjemite with 10 to 15% quartz carbonate vein material. Mineralized with 10% pyrite
27789	0.002	TRENCH F Located near east end of trenched area. Grab sample of rusty - gossanous band, approx. 10 cm wide.
27790	0.004	TRENCH F Located near east end of trenched area, approx. 5 m south of sample no. 27789. Grab sample of rusty - gossanous band, approx. 10 cm wide.
27791	0.161	TRENCH F Located near east end of trenched area, approx. 5 m south of sample no. 27790. Grab sample of rusty - gossanous band, approx. 10 cm wide.
27792	0.001	TRENCH H Grab sample of localized rusty - gossanous splash within trondhjemite. Weakly altered and mineralized with 1 to 3% pyrite. Non directional fabric.
27793	0.029	TRENCH K Located at east end of trench - near Chester Road. Grab sample consisting of 50% rusty quartz vein material mineralized with 10% pyrite. Contains some green malachite staining.

Sample No.	Au (oz/ton)	Description
27794	0.003	TRENCH K Located at west end of trenched area. Grab sample of rusty silicified trondhjemite. Mineralized with 5 to 10% disseminated sulfides. Rusty sulfide seam approx. 25 cm wide.
27795	0.031	TRENCH K Located at east end of trenched area, near Chester Road. Very large grab sample of quartz vein material. Mineralized with 10 to 15% coarse pyrite and some malachite staining present. Extremely rusty and gossanous.
27796	<0.001	M-1 Located along Clam Lake trail. Grab sample of outcrop. 30% quartz vein material mineralized with 1 to 2% pyrite.
27797	<0.001	M-2 Located near intersecting of Clam Lake trail and Chester road. Grab sample of rusty angular boulder of trondhjemite, mineralized with 2 to 5% disseminated pyrite.
27798	0.024	M-3 Located on east side of Chester Road, just south of trenched area F. Grab sample of localized rusty - gossanous zone, mineralized with 2 to 3% pyrite and up to 1% chalcopyrite.
27799	<0.001	M-4 Located west of intersection of Clam Lake trail and Chester Road. Grab sample of rusty - gossanous trondhjemite. Mineralized with 1 to 3% disseminated pyrite.
27800	0.003	M-5 Located west of intersection of Clam Lake trail and Chester Road. Grab sample of rusty - gossanous trondhjemite. Mineralized with 1 to 3% disseminated pyrite.
Note 1:	All sample 18, 19 & 2	s were collected by R. Duess, J. Duess and Ed. Korba on August 0th, 1999.
Note 2:	All assayir	ng performed by Swastika Labs, Swastika, Ontario.

TRENCHED AREA "A"

MAIN BLASTED PIT - TRENCH A

Extensive gossanous - rusty felsic intrusive (trondhjemite) variably mineralized with pyrite and chalcopyrite and cut by mineralized quartz veins.

GRAB SAMPLES (samples numbed 27751 to 27756 from the main blasted area (trench A) returned values ranging from 0.01 to 0.29 ounces gold per ton.

SAMPLE NUMBER 27755, taken from gossanous, sugary textured quartz material mineralized with up to 50% pyrite returned a value of 0.29ounces gold per ton.

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

2.19743

41P12SW2004 2.19743 Y

...

900

bsection 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, esment work and correspond with the mining land holder. Questions about this hern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury,

Client Number

Instructions: - For work performed on Crown Lands before **recording** a claim, use form 0240. - Please type or print in ink.

1. Recorded holder(s) (Attach a list if necessary)

ROBERT L. DUESS		127657
Address		Telephone Number (613) 542-8822
62 Kenwoods Circle		
		Fax Number (613) 542-0784
Kingston, Ontario. K7K 6Y1		
Name		Client Number
	RECEIVED	
Address		Telephone Number
	AUG 3 0 1999	Fax Number
	GEOSCIENCE ASSESSMENT	
	OFFICE	
2. Type of work performed: Che	eck () and report on only ONE of the</td <td>following groups for this declaration.</td>	following groups for this declaration.
- Geotechnical: prospecting si	Inveys Physical: dri	lling stripping Rehabilitation
assave and work under section	n 18 (regs) trenching an	id associated assays
Work Type		Office Use
Geological mapping prospecting & san	anling	Commodity
Scological mapping; prospecting a sain	ping	
		Total \$ Value of 9
		Work Claimed 7 STOF
Dates Work From 17 08 1	999 To 22 08 1999	9 NTS Reference
Performed Day Month Y	'ear Day Month Yea	
Global Positioning System Data (if available)	Township/Area: YEO TOWNSHIP	Mining Division
		Willing Division F. D. CURINE
	M or G-Plan Number: G-2481	Resident Geologíst
		District 11 Junio

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

- provide a map showing contiguous mining lands that are linked for assigning work;

- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Telephone Number
(613) 542-8822
Fax Number
(613) 542-0784
Telephone Number
Fax Number
Telephone Number
Fax Number

4. Certification by Recorded Holder or Agent

I, Robert L. Duess, do hereby certify that I have personal knowledge of the facts set forth in

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Deened Nov 28/99

Signature of Recorded Holder or Agent	`	Date: 27 Aug 1999	
Agent's Address	Telephone Number:	Fax Number	-
62 Kenwoods Circle, Kingston, Ont. K7K 6Y1	(613) 542-8822	(613) 542-0784	

0241 (03/97)

5.	Work to be	recorded	and distributed	. Work can	only be a	assigned t	o claims	that are	contiguous	(adjoining) t	o the mining
land	where work	was perform	med, at the time	work was p	erformed	. A map sl	howing the	e contigi	uous link mų	ist accompai	ny this form.

			,		ωqq	60.00345
Minin work minin colum indica	ng Claim Number. Or if was done on other eligible ng land, show in this nn the location number ated on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	P - 1224594	5	\$ 5,702.00	\$ 4,000.00	Ο	\$ 1,702.00
2						
3						
4						
5						
6						
7						
8					·····	
9						
10						
11						
12			DECE	IVED		
13						
14			AUG 3	<u> 1988</u>		
15			GEOSCHAOF	SESSMENT		
<u></u>	Column Totals	1	\$ 5,702.00	\$ 4,000.00	0	\$ 1,702.00

I, ROBERT L. DUESS , do hereby certify that the above work credits are eligible under (Print Full Name)

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim

where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date
111+ Thee	27 August 1999
14:0000	

6. Instruction for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- □ 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Stamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
0241 (03/97)	Approved for Recording by Mir	ning Recorder (Signature)

2.19

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	Depending on the hours/day worked, grid line, number o	Units of work type of work, list the number of metres of drilling, kilometres of of samples, etc.	Cost Per Unit of work	Total Cost
Gelological mapping, prospecting and	R. Duess (Geole	ogist) 5.5 days	\$ 400 per day	\$ 2,200.00
sampling	J. Duess (assista	ant) 5.0 days	\$ 100 per day	\$ 500.00
	E. Korka (Pros	pector) 1.day	\$ 250 per day	\$ 267.50
Assaying (Swastika Labs	50 samples			\$ 1150.25
P. Motgomery	Drafting 4 hrs		\$ 40 / hr	171.20
Associated Costs (e.g. suppli Misc: flagging tape, sample bags, etc.	es, mobilization	and demobilization).		37.73
Transp	ortation Costs	GERSCIENCE ASSESSMENT OFFICE		
Truck and travel (4x4)	2192 km		0.045	\$ 986.40
Food an	d Lodging Costs			
4 nights accomodations				389.51
		Total V	alue of Assessment Work	\$ 5,702.00

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	x 0.50 =	Total \$ value of worked claimed.

Note:

Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I, Robert L. Duess, do hereby certify, that the amounts shown are as accurate as may reasonably

(please print full name) be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

Declaration of Work form as Recorded Holder

Recorded Holder 1 am authorized to make this certification. (recorded holder, agent, or state company position with signing authority)

Date 27 August 1999

Ministry of Northern Development and Mines

December 15, 1999

ROBERT LEO DUESS 62 KENWOODS CIRCLE KINGSTON, Ontario K7K-6Y1 Ministère du Développement du Nord et des Mines **Ontario**

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.19743

Subject: Transaction Number(s):Subject: StatusW9960.00345Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

- 110

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 14423 Copy for: Assessment Library

Work Report Assessment Results

Submission Number: 2.19743

Date Correspondence Sent: December 15, 1999		ber 15, 1999	Assessor:BRUCE GAT	ES	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9960.00345	1224594	YEO	Approval After Notice	December 12, 1999	
Section: 12 Geological GEOL					
The revisions outline	d in the Notice da	ited October 28, 1999, have been corr	ected. The following assessment cr	edit has been allowed:	
Sample collection	\$2,395				
Analyses	\$1,174				
Mileage @ \$0.30/km	\$ 658				
Drafting, accomodation	on, misc(as repoi	rted)			

The assessment credit is being reduced by \$876.00 The TOTAL VALUE of assessment credit that will be allowed, based on the information provided in this submission, is \$4,826.00.

Assessment work credit has been approved as outlined on the attached Distribution of Assessment Work Credit sheet.

Correspondence to: Resident Geologist South Porcupine, ON

Assessment Files Library Sudbury, ON

Recorded Holder(s) and/or Agent(s): ROBERT LEO DUESS KINGSTON, Ontario

Distribution of Assessment Work Credit

The following credit distribution reflects the value of assessment work performed on the mining land(s).

Date: December 15, 1999			
Submission Number: 2.19743	Ingap		
Transaction Number: W9960.00	345		
Claim Number	Value O	f Work Performed	
1224594		4,826.00	
	Total: \$	4,826.00	

Page: 1

.....

41P12SW2004 2.19743

