010

MAGNETIC
AND
HORIZONTAL LOOP ELECTROMAGNETIC
SURVEYS
FOR
ESSEX MINERALS COMPANY
HALIIDAY PROJECT
GRASSY RIVER WEST GRID

GRASSY RIVER WEST GRID

Introduction

The following report describes the results of ground geophysical surveys completed for Essex Minerals Company, Halliday Project, Ontario. Line cutting was completed during the period January 4 to February 26 , 1978. Geophysical surveys were completed during the period February 4 to April 15, 1978.

Property Description
The property consists of eight contiguous, unpatented mining claims designated as follows:

L500530 to L500532 inclusive
L504868 to L504872 inclusive

Property, Location and Access
The property is located in the northwest sector of Halliday Township west of the Ontario Hydro powerline along the HallidayHutt township line. Access to the property is via the Papakomeka Lake road south from Timmins to the Matachewan road then east along the Matachewan road to the Ontario Hydro line that crosses the west side of Hutt Township. The hydro line lies immediately east of the property boundary approximately six miles south of the Matachewan road.

Geophysical Surveys

Magnetic and horizontal loop electromagnetic surveys were completed on the property.

The magnetic survey was carried out utilizing a Scintrex MP-2 Proton Magnetometer capable of reading total field values to an accuracy of ± 1 gamma. Readings were taken at 50 foot intervals on all base lines and cross lines. Base stations were established at 100 foot intervals along all base lines and tie lines. Diurnal variation was corrected for by tieing in to the base stations at time intervals generally less than half hour and in no case greater than one hour.

The horizontal loop electromagnetic survey was carried out utilizing an Apex Parametrics Max Min II HEM. The HEM unit measures the in-phase and Quadrature components of the secondary field developed in the vicinity of conductive material. The measurements are accurate to \pm l\%. Readings were taken at 444 Hz and 1777 Hz frequencies utilizing a 400 foot reference cable.

Conductivity-width and depth of overburden determinations are presented on the 444 Hz HEM maps.

Regional Geology

The regional geology of the area is presented on Ontario Department of Natural Resources Compilation Map 2205 (TimminsKirkland Lake).

The area is underlain by an Archean volcanic-sedimentary complex locally referred to as the Halliday dome. The general stratigraphic sequence in the area is as follows:

A thick sequence of mafic volcanic rocks is overlain by a felsic volcanic complex consisting of flows, pyroclastics and volcaniclastic sediments. Ultramafic flows or sills are common in the general stratigraphic interval marked by the felsic volcanicmafic volcanic contact zone. Sedimentary rocks occur intercalated with the volcanic rocks and also occur at the top of the stratigraphic sequence.

Folding in the area is complex but generally occurs about fold axes having an east-west trend. Some large scale cross folding has occurred about north-south trending fold axis.

Two major sets of faults occur in the area. One set has a northeasterly strike direction and the other has a north to northwesterly strike direction.

Three sets of diabase dikes occur in the area. Dikes having a northerly strike direction are probably Matachewan-type. Dikes having a northeasterly strike direction are probably Sudburytype.

A thin veneer of generally flat lying early Proterozoic sedimentary rocks unconformably overlies the Archean rocks in parts of the area.

Geology and Previous Work

Dowa Mining and AMAX Exploration both have conducted geophysical surveys in the area covered by the present grid and both companies reported one drill hole on the property.

The property is underlain by mafic and felsic volcanic rocks. The strike is generally east-west and stratigraphic tops are to the south.

Geophysical Results
Magnetic Survey:
Maximum magnetic relief on the property is 170 gammas. The low magnetic relief outlines a number of narrow 100 to 150 gamma magnetic anomalies with an east-west strike trend. The anomalies may be due to disseminated pyrrhotite or magnetite within the volcanic strata.

HEM Survey:

Two electromagnetic anomalies were located during the survey.

Anomaly A
Anomaly A occurs from line 36 W to line 48 W . The best response is on line 40 W where the data indicates a zone with a conductivitywidth of 15 mhos. The depth of burial varies from 40 to 80 feet along strike and the zone has a maximum thickness of 30 feet. The zone is non magnetic.

Previous drilling indicates that a graphite-pyrite horizon is the cause of the conductivity.

Anomaly B
Anomaly B occurs as a weak single line response on line 48 W . The anomaly may be caused by conductive overburden as it correlates with the centre of the Grassy River.

Conclusions and Recommendations
No significant new exploration tragets were located during the surveys.

No further work is recommended on the property.
Respectfully submitted,

Peter T. George, P.Eng. Consulting Geologist

Type of Survey (s) Mag., HEM, Line Cutting
Township or Area \qquad Hocemay Te
Claim Holder (s) Essex Minerals Company

$$
91 \text { Pine St., South, Timmins, Ont. }
$$

Survey CompanyGeoex Ltd., P.O. Box 70, Timmins, Ont
Author of Report Peter T. George, P. Eng.
Address of Author Geoex Ltd., P.O. Box 70, Rimming
Covering Dates of Survey_ MBARCN1- PMOY 30,1975 : (lin cutting to office)
Total Miles of Line Cut. \qquad
es:

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad

DATE: \qquad June 8,1978 SIGNATURE: claim) \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GROUND SURVEYS - If more than one survey, specify data for each type of survey

\qquad
Instrument
Scale constant \qquad
Corrections made \qquad
Base station valuc and location
Elevation accuracy__

Instrument \qquad

旁
 iv

 j_{1}^{\prime}

b-

