

INTRODUCTLON

During the period of February 1 to Augutt 31, 1970 a combined exploration program was carrled out on a group of olaims held by Canex Aerial Exploration Ltd. The property comprieen 32 contiguou: claims numbered 242415-242432 inclusive, 213549-213550 inclusive, and 242900-242911 incluaive.

The program started by cutting 18.96 line mile at 400 -foot intervals with stations at 100-feet. A combined electromagnotio and magnetometer survey was carried out followed by a gravity survey, geological mapping and diamond drilling.

Location:
The property is located in Sothman Townhin, Larder Lake Mining Division, approximately 30 miles west of Katachewan and 40 miles south of Timmins, Ontario.

Access:
Access to the area is either by vehicle from Timmins or Mataohewan via local lumber roads or by air service from South Poroupine.

TOROORAPHX

In general the area is flat. Sand hille and gabbro outcrops comprise the only relief of any oignificance. Much of the property is underlain by Sothman and Little Reading lakes.

GEOLOCX
Mapping was carried out at times between June 13 and August 4, 1970 on 14.4 míles of line cut at 400 -foot intervais. Whore outcropping was more numerous, compass lines were run at 100-100t pacings.

Overburden in the region is very thick (136' vertically in one drill hole) and rock exposure limited to about 2%. As a result much of the geological interpretation is based on:

1. The geology of Sothman Township by E.M. Abraham, O.D.M. Vol. LXII, Part 6, 1953.
2. A ground magnetometer survey by Canex Aerial Exploration Ltd., 1970.
3. A ground magnetometer survey by Dominion Gulf, 1951 (O.D.M. file 63-245).
4. Diamond drilling results from holes drilled by Dominion Oulf, 1951, Kerr Addison, 1966 and Canex Aorial, 1970.

Regional Setting:
Geologically the property is situated on the western rim of a thick sequence of volcanic rooks. These rocks are folded into a broad anticiline plunging to the west (Abraham).

Table of Formations
Cenozoic: Unconsolidated sediments - clay, sand, gravel, boulders. Great unconformity.
Precambriani Intrusions - gabbro, serpentinized dunite and peridotite.

Intrusive contact. Acid Volcanics - massive, locally chloritic.

Ultrabasic bodies intrude the volcanic sequence.

ROCK DESCRIPTLONS

Acid Yolcanica:
Oenerally the rock is light grey-green, fine grained, locally chioritic and massive. It is found as inclusions in the basic intrusivos and here it is chloritized, highly shoared and dark grey.

Dunite:
Typically this rock is granular, medium grained (1-2 mome), olive green and serpentinized. The rock was only seen as drill oore. In the Kerr Addison hole a considerable amount of picrolite fibre and some chrysotile cross and slip fibre were noted.

Peridetite:
Two areas of peridotite exist on the property and of the two, the one to the southeast is best exposed. The rock is magnetic, fine grained, green-black, highly fractured and serpentinized. On weathered surfaces it is white and slippery. Sulfides are found disseminated throughout, picrolite is common in fractures and one outcrop was seen to have a i/4" chrysotile filled fracture.

Gabber:
This rock is the most resistant rock on the property. It is light grey, medium grained ($1-2 \mathrm{~m}_{\cdot} \mathrm{m}_{+}$) and composed of pyraxene ($20-30 \%$ and plagioclase ($70-80 \%$). In D.D.H. 119-3 small pegmatitic gabbroic dykes cut the main gabbro.
hock nesceriprions (contd.)
Concluaions:
The area presents multiple possibilities that deserve checking. These aro:
(a) Ni-Cu mineralization in the ultrabasics (a amall deposit is known in the southern part of the township.)
(b) Asbestos in the ultrabasics.
(c) Strata bound masilve sulfides in the felsic volcanics.

croptistics

A total of 18.96 line milen were surveyed by E.M. and magnetic methods from 826 E.M. stations and 1383 magnetometer stations on out and chained pioket lines at 400-font intervals with 100-foot station spacing. over anomalous areas, station intervals were reduced to 50 -feet.

Qravity was also carried out on 7100-feet of line with stations at 100-foot intervals establishing 71 gravity stationg.

The 2.M. unit used was a Ronka MM-IY horizontal loop instrument using a 200-foot coil separation and operating at 876 cps. Both in-phase and out-of-phase readings are recorded.

A Sharpe MP-1 fluxgete magnetometor was used for the auryey. The accuracy of this instrument varies from $\pm 0.5-1 \%$ fuli acale dopending on range being used.

The gravity survey wan conducted using a Scintrex co-2 gravity meter. Corrections made were drift, elevation and Ingtrument height.

Resulta and Conclusiona:

Eake Suryey - Two weak, one line anomalies were looated on the northern part of the grid. One at $0+00, \mathrm{~L} 36 \mathrm{HOOS}$ is flanked to the northwest by a magnetic high. Drill hole 119-1 intersected shear zones and a water seam.

The second conductor on B.L. "D" L-6+00N resembles the first as it is also flanked by a magnetic high. It shows a definite in-phase response but little or no out-of-phase. D.D.H, 119-3 out gabbro throughout its length with the only posisible explanation being emall dykes of pegmatitic gabbro containing small amounts of pyrrhotite and chalcopyrite on Practures.

Although other anamalous regions were located, conductivity is attributed to topography and overburden offects.

The survey results are inconclusive as only a 200 -foot coil separation was used, and overburden is known to exceed 130 -feet within the area. Also, when drilling, the casing was sunk mainly through sand with some clay layers.

GEORHSICS (contd.)

Magnetion - The main value of the magnetometer survey was in distinguithing areas of basic and ultrabacic rooks from areas of volcanics. Several small highs were located within the broad magnetic feature and are attributed to topographic highe or to concentrations of magnetite within the peridotite (e.g. the lower part of D.D.H. 119-1).

Quarity - Since asbestos was known to oocur within the ultrabasios of the general region, the gravity eurvey was conducted over the thickest part of the peridotite to locate the gravity lows. D.D.H. 119-2, drilled on the gravity low at l-44-00S, 6+00E, was lost in overburden, thus an evaluation of the method is not possible at this time.

General Conolusions:
Horizontal loop E.M. is of dubious merit in this area of thick overburden. Also disseminated mineralization could be missed by the method.

An I.P. survey is suggested to either replace or supplement the E.M. Magnetics and Gravity have their uses as described earlier.

DLAMOND DRTLILNG

Contractors: Markstay Diau.ond Drilling of Markstay, Ontario were contracted with to drill in Sothman Tomohip. A drill was moved onto the property on May 9, 1970 and was moved off the property July 15.

Results:

Hole 119-1 is located on claim 242418 at 1-36+00S, 1+75R and was drilled grid west at -45° to intersect a weak E.M. anomaly flanked to the west by a mag. high.

The E.M. anomaly is the result of a water seam at 240 -feet and two shear zones at 209-217-feet and 288-foet. There was an increasing amount of magnetite down the hole.

Hole 119-2 was lost at 120-feet in overburden.
Hole 119-3 is located near a surface showing of pyrrhotite and chalcopyrite and was planned to cut a weak E.M. conductor. Co-ordinates of this hole on claim 242416 are $56+60 \mathrm{~S}$ and $7+30 \mathrm{E}$ with a bearing of 280° astronomically and a dip of 50°.

Conductor is attributed to sulfides filling fractures, particularly in the coarser grained rock and to the prosence of magnetite in varying amounts throughout the hole.

Holes 119-1 and 119-3 totalled 939-feet. Loge of the holes are attached in this report.

DIAMOND ORILLING (contd.)
Conclutiona:
The two drill holes did not intersect intereating sulfide mineralization. The two holes were drilled on the resulta of horizontal loop E.M. survey using a aeparation of 200 -feet. Since overburden ranges to over $\mathbf{3 0 0 - f e e t , ~ t h e ~ E . M . ~ d a t a ~ i s ~ i n c o n c l u s i v e . ~}$

Respectively Subnitted,

,) He Perallo...
F.H. Faulkner
$\mathrm{JOB} / \mathrm{FHF} / \mathrm{of}$
Canex Aerial Exploration Ltd.

PROPERTY: V. 119 Sirola Option
GRID.
CANEX AERIAL EXPLORATION LTD.
DIAMOND DRILL LOG

HOLE Nal19-1
SHEET 1 OF_ 3
\qquad

BEARING: - 235° DATE COLLAFED JUne 11/70 LOGGED BY: D. Davidson
DIP: $\quad 45^{\circ}$ DATE COMPLETED: JuJy 1 DATE: \qquad
LENGTH: 484°

FOOTAGE	DESCRIPTION	Somple interval	Sample number	\% Ni.	\% Cu.	$\% \mathrm{Zn}$.	$\begin{gathered} \text { OZ.ITOn. } \\ \mathrm{Au} \end{gathered}$	$\begin{aligned} & \text { Oz/TOn. } \\ & \text { Ag } \end{aligned}$	
0-105	Overburden								
108-109.5	Fragments of dunite, minor peridotite, cemented								
	together by grey clay.								
109.5-138	Sere. dunite - light green, med, grained, minor								
	section of peridotite, numerous fractures healed with								
	serpentine, magnetite and some chlorite.								
138-142	Serpentinite with sections of serpentinized dunite,								
	colour varies from a light to dark green.								
142-190	Serp. dunite, light green in colour, numerous								
	fractures filled with mag. chl. and serp., minor x								
	fibre present in some of the fractures, $20-60^{\circ} \mathrm{ca}$.								
190-207	Healed peridotite breccia, perid. Srags. highly								
	serpentinized and healed by serpentinite, varies in	.							
	colour - green - red - black, red due to alteration								
	of nagnetite or olivine.								
207-215	Shear zone, filled by molted qtz., aplitic in texture								
	resemblance to brecoia, various colours, rock is								
									-

PROPERTY: V. 119 Sirola 9ption
CANEX AERIAL EXPLORATION LTD.
DIAMOND DRILL LOG
LOCATION:
LATITUDE:
DEPARTURE
CORE SIZE elevation:

BEARING
DIP: LENGYH

DESCRIPTION
© 431-433.5 shear zone as before END OF HOLE.

HOLE No: $11 \mathrm{Q}=1$ SHEET_3 OF 3
FOOTAGE

PROPERTY: V. 119 Sirola Option
GR

CANEX AERIAL EXPLORATION LTD.
DIAMOND DRILL LOG
LOCATION:
LATITUDE:
DEPARTURE

BEARING:
DIP: LENGTH:

HOLE NO119-3
SHEET_2_OF_3

DATE COLLARED
DATE COMPLETED
DRILLED BY.

LOGGED BY DATE

PROPERTY: V. 119 Sirola Option
:-

CANEX AERIAL EXPLORATION LTD. DIAMOND DRILL LOG

HOLE NO: 119-3
SHEET 3 OF_ 3

LOCATION:
LATITUDE DEPARTURE

CORE SIZE: elevation: elevation.

BEARING:

DIP: LENGTH:

DATE COLLARED date completed DRILLED BY

Somple							
interval	Sumple number	$\%$ Ni.	$\%$ Cu.	$\%$ Zn.	Oz./Ton Au	Oz/ Ton Ag	

LOCATION OF SIROLA CI AIM GROUP
Larder Lake Mining Division
Sothmon Twp, Ont.

$$
\forall^{\prime \prime}=2640^{\prime}
$$

SAMPLES

SAMPLES	From	To	Ni $\%$	Cu $\%$
A 1929	2455°	246.5°	0.01	0.01
A $: 930$	328.5°	329.0°	Tr.	0.12
A 1931	356.5°	357.5°	0.01	Tr.

1

