

EXPLORATION REPORT MOND & RAYMOND TOWNSHIPS LARDER LAKE MINING DIVISION, ONTARIO

By

James G. Burns 190 Graye Crescent, Timmins, Ontario

> September 9, 1999 2.20463

RAYMOND

41P14SE2004 2.20463

010

TABLE OF CONTENTS

	Page
LOCATION AND ACCESS	1
PROPERTY	1
PREVIOUS WORK	2
REGIONAL GEOLOGY	2
1999 EXPLORATION PROGRAM	3
RESULTS	
Magnetic Survey	4
VLF Survey	4
Geology	5
Drilling	5
RECOMMENDATIONS	7
CONCLUSIONS	8
REFERENCES	9
CERTIFICATE	10

LIST OF FIGURES

After Page

Figure	1	Property Location Map	1
Figure	2a & 2b	Claim Maps - Mond & Raymond Townships	1
Figure	3	Property Airborne Magnetic & Electromatic Data	2
Figure	4	General Geology	2
Figure	5	Magnetic Data - Property & Area	3
Figure	6	Line Cutting Sketch	4
Figure	7	Profiled Magnetic Survey	4
Figure	8	Filtered Dip Angles	4
Figure	9	Geology	5
Figure	10	TM-99-01 Cross Section	6
Figure	11	Schematic Geological Setting	6

APPENDICES

Page Appendix Boniwell Memo Report..... 11 I Appendix 11 1999 Drill Log 12 Appendix 111 Assay Certificate..... 13

- provide constraining and an

41P14SE2004 2.20463

010C

1

MOND & RAYMOND TOWNSHIPS LARDER LAKE MINING DIVISION, ONTARIO

EXPLORATION REPORT

LOCATION AND ACCESS

The claims straddle the Mond/Raymond township line on the southeast shore of Ferris Lake some 75 km SSE of Timmins, 30 km NW of Gowganda and 35 km WSW of Matachewan (Figure 1). Approximate geographical co-ordinates for the property centre are 47° 48.4' north latitude by 81° 04.5' west longitude. The NTS designation is 41 P/14.

Access is gained by following Pine Street south from Timmins into Kemp Township, and thence continuing northeastward on a logging haul road into central Halliday Township to the powerline. From there, a track suitable for four wheel drive vehicles (summer only) follows the powerline to the northwest end of Ferris Lake. Road distance from Timmins to Ferris Lake is 100 km. A drill road, commencing approximately 2 km south of Ferris Lake, leads to the centre of the property.

PROPERTY

The property consists of two contiguous claims (**Table 1**) of 16 units each in Mond and Raymond Townships, Larder Lake Mining Division (**Figures 2a & 2b**). Both were recorded on April 23, 1999. The writer is the recorded holder of the claims.

TABLE 1

CLAIMS DATA

Claim Number	Units	Date Recorded	Date Work Required	Required Expenditures
1227660	16	April 23, 1999	April 23, 2001	\$ 6,400
1227661	16	April 23, 1999	April 23, 2001	<u>\$6,400</u>
				\$12,800

PREVIOUS WORK

Very little work has been conducted on or in the vicinity of the claims. The only record on file at the office of the Resident Geologist in Kirkland Lake was submitted by Falconbridge Limited in 1991. Data include maps and report for a combined airborne magnetic and electromagnetic survey flown by Aerodat in 1989. Since at that time Falconbridge did not hold any claims in the region about Ferris Lake, no map(s) for that particular area were filed. Nevertheless it was noted in the text that no em anomalies were detected.

No government mapping surveys have been conducted in either Mond or Raymond Township. Both, however, were included in an airborne electromagnetic and magnetic survey flown in 1990 by Geoterrex Limited under contract to the Ontario Geological Survey. Flight lines were oriented north/south, and spaced 200 m apart. The average clearance for the magnetic sensor was 120 m and for the electromagnetic sensor 40 m (OGS, 1990). An isolated, oval, northwest striking magnetic feature was delineated immediately southeast of Ferris Lake (Figure 3). No em anomalies were detected associated with the magnetic feature nor elsewhere on or near the property.

Both Mond and Raymond Townships were included in the Bear Island Indian Land Caution emplaced in 1978. Therefore, despite the high level of exploration in the general region no work was permitted in the township except on patented lands. Following the lifting of the caution (partial in 1995 and complete in 1996) the Mond / Raymond anomaly was staked three time by different parties, but no exploration work was filed. Moreover, during the conduct of the current exploration program no signs of any exploration activities (ie. cut lines, drill roads&/or pads, etc) were noted.

REGIONAL GEOLOGY

As shown on **Figure 4** (OGS, 1991) the property is 100% covered by Proterozoic aged clastic sedimentary rocks of the Cobalt Group of the Huronian Supergroup. Units comprising the group are flat lying, and locally at least, intruded by diabase sills. The Cobalt Group unconformably overlies Archean aged generally east/west striking, steeply dipping ultramafic, mafic and felsic

volcanic, clastic and chemical sedimentary rocks plus intrusions of the Abitibi Greenstone Belt (AGB). Three sets of diabase dykes that partially in-fill deep seated, regional faults/fractures crisscross the region. The oldest north/south set cut only the Archean rocks, whereas the NW/SE and NE/SW cut rocks of both ages. Total thickness of the Cobalt units in the region is unknown, but calculations using the airborne total field magnetic data indicate a depth to the top of the magnetic anomaly of 450 to 500 m.

The magnetic feature underlying the property sits at the intersection of several closely spaced N/S faults, a prominent NW/SE fault and the projected westward extension of the Larder Lake-Cadillac Break (LLCB). Evidence for the first two are best seen on **Figure 5** (Excalibur, 1992), while documentation of the LLCB is more obscure. Its trace has been successfully mapped, although offset progressively southward by cross faults, westward from Kirkland Lake into Yarrow Township before being lost under the Cobalt sediments (**Figure 4**). Its projection into Mond and Raymond Townships is suggested by the right lateral displacement of the NW/SE structure to the east from the magnetic anomaly (**Figure 5**).

1999 EXPLORATION PROGRAM

The primary target on the property and the focus of the 1999 program was the magnetic anomaly. From the magnetic signature the causative body is oval in shape with axial dimensions (estimated from the airborne magnetic data) of 2.7 km NW by 2.0 km NE, and dips steeply to the northeast. A mafic-ultramafic intrusion was considered to be the most probable cause for the anomaly. Intrusions of this type may host massive and/or disseminated sulphide Ni-Cu-PGE deposits, normally located near the stratigraphic footwall of the intrusion, and at the current prices of these metals represent attractive exploration targets. Secondary targets are gold deposits, similar to those at Matachewan, Kirkland Lake and Larder Lake, hosted along the LLCB or splays from it.

The exploration program was conducted during July and August, 1999, and consisted of line cutting (5.38 km), a ground magnetic survey (4.90 km), geological mapping (4.16 km), a ground VLF-em survey (4.16 km), and a 395 m NQ size core hole. Fifty-two (52) core samples for a total length of 69.05 m were sawn and assayed/analyzed for gold by fire assay as well as for 34 additional major and trace elements by ICP. Line cutting and the magnetic survey were contracted to Hussey Geophysics Inc. The core drilling was accomplished by Norex Drilling

Limited. Assaying and analysis was performed by Chemex Labs. All other work was conducted by the writer assisted by A-M Burns.

RESULTS

Magnetic Survey

The two control lines (Figure 6) 200 m apart with a 20 m station interval and oriented at 035° were cut over the heart of the aeromagnetic anomaly. These lines were surveyed (247 stations) with a Gem GM-19 (sensitivity 1nT) in an attempt to more accurately determine the contact locations of, the depth to the top of, as well as the dip of the intrusion. Total field data - base station readings were used to corrected for diurnal drift - are presented in profile form as (Figure 7).

Results were interpreted by J. B. Boniwell of Excalibur International Consultants Ltd (Boniwell, 1999). From the profiles three distinct responses were noted; 1) a broad major anomaly due to the underlying intrusion, 2) a NW/SE striking feature, probably caused by a diabase dyke located on the southwest side of the intrusion, and 3) a series of singular high values interpreted to be responses to glacially transported diabase boulders. The intrusion was calculated to be 380 - 440 m below surface, to be about 900 m wide with the SW contact set at 920 m N on line 0 (+/- 100 m Boniwell, personal communication), and to dip approximately 80° NE. Boniwell's memo report is presented herein as **Appendix I**.

VLF Survey

The sole purpose of the VLF survey was to map structural features. Readings (dip angles \pm 1°) were taken at 20 m intervals (209 readings) with a Phoenix VLF-2 instrument tuned to station NAA located at Cutler Maine. Results are presented as a Fraser Filter plot in **Figure 8**.

Several E/W to NW/SE anomalies of weak to moderate strength were delineated. The one centred at 1100 N coincides precisely with the location of the diabase dyke as interpreted from the magnetic data. Thus, the usefulness of VLF to map structure is confirmed.

Another anomaly at 900 N corresponds to the location of an interpreted diabase boulder, but due to its comparable strength to that at 1100 N may actually also reflect a dyke. Since it also overlies the interpreted position of the contact to the intrusion a re-evaluation of the contact

location is required.

A cliff face on line 2 W is expressed by a weak VLF anomaly at that location. Potential causes for the other anomalies are unknown.

Geology

One day was spent mapping in outcrops along the two lines and searching for evidence for the diabase dykes and for diabase boulders. All outcrops located (Figure 9) were fine to medium grained, light grey to reddish quartzite of the Gowganda Formation of the Cobalt Group. Bedding is poorly developed and not measurable with any degree of certainty. Most boulders examined were also of quartzite although there is the usual glacial mix of lithologies.

Two boulders of diabase were found, one of which was located as predicted from the interpretation of the magnetic data at 875 N on line 2 W. There the rock is medium grained, fine to medium grained, black, weakly magnetic and composed of 50% mafic minerals and 50% feldspar. Another small mafic boulder located at 580 N on line 0 is strongly limonitic, medium grained, strongly magnetic and composed of mafic minerals and feldspar in 40/60 ratio.

Drilling

A single 395 m NQ size core hole inclined at 85° at an azimuth of 215° was drilled into the centre of the magnetic anomaly. The rational for the location of the hole, TM-99-01, (see **Figures 6, 8 & 9** for the location) are as follows:

- The source body for the anomaly, although thought to be a mafic-ultramafic intrusion, was unknown.
- Assuming that the source body was a mafic-ultramafic intrusion, any potential accumulation of sulphide mineralization would be near the structural footwall contact. However, since the position of the contacts could only be estimated to ± 100 m, the possibility of over shooting the contact was considered too great a risk for a first pass drill program.
- The location of the diabase dyke and other possible structures near the contact location also posed a risk to completing the hole. Either the hole could be deflected into and trapped within the structure or if the structure were open the hole could be lost entirely.
- The purpose of the initial inclination was to direct the hole towards the SW contact in the event that a down hole geophysical survey was appropriate at a latter date.

Figure 10 is the cross section for hole TM-99-01, and **Figure 11** is a schematic drawing for the geological setting. The drill log follows in **Appendix II** and the assay certificate in **Appendix III**. A mixed sequence of flat lying quartzite, metawacke, metamudstone and metaconglomerate of the Gowganda Formation was cored from bedrock surface at 33.0 m to 342.8 m. Bedding is poorly to very well developed particularly in the lower part of the sequence. A dark purplish pink quartzite member intersected from 119.15 to 158.60 m could be used as a marker horizon.

Three distinct forms of sulphide mineralization were noted. Detrital pyrite occurs throughout the sequence, but is more abundant (up to 3% over 1.5 m and up to 20% in individual thin beds) in the coarser grit beds. All samples from all units assayed < 5ppb Au. Pyrite (\pm minor chalcopyrite) also occurs throughout the sequence on fractures in association with chlorite and carbonate or albite and carbonate. Again, all samples assayed <5ppb Au. Finally, fractures and vuggy veinlets mineralized with pyrite, galena and chalcopyrite are found in a fine to medium grained, light to mid grey well bedded quartzite from approximately 227.0 to 336.25 m. The section from 328.0 to 336.25 m is strongly anomalous in lead and zinc, including assays of 5440 ppm Pb and 920 ppm Zn each over 1.5 m.

Samples 78504 to 785 13 exhibit anomalous values for barium (values to 1070 ppm over 1.2 m). The nature of the mineralogy is unknown, but some values correspond to samples containing albite-carbonate veinlets.

A moderately to strongly fractured, massive, serpentinized, magnetic, olive green dunite was cored from 342.8 to the bottom of the hole. No regolith is present at the overlying the unit, but rounded to subangular pseudo clasts may have formed from "onion skin" weathering along near surface fractures. Traces of pyrite occur on fractures, but gold values were all low (best 10 ppb). Nickel values from 1905 to 2510 ppm most probably reflect nickel held in the silicate minerals. There are no anomalous copper assays. The lack of disseminated and/or massive sulphides within the dunite is to be expected given the distance from the hole to the contacts, and should not be considered a negative feature.

6

.

.

RECOMMENDATIONS

Now that the source body for the magnetic anomaly has been positively determined the next logical step is to identify drill targets associated therewith. Any tool used, whether geophysical or geochemical, must be applicable to the thick depth and physical properties of the cover rocks. Suitable geophysical techniques include Quantec realsection IP and magnetotelluric (MT) surveys. A modelling exercise undertaken by Quantec indicated that a 30 million tonne deposit of 10% disseminated sulphides hosted within a dunite, which itself would be anomalous compared to the surrounding lithologies, would give a response of 1.5 to 2 times background at a depth of 500 m (J. Warne, personal communication). The magnetotelluric method has been successfully tested in the Sudbury area to detect known bodies of mineralization at depths greater than 500 m. At present the MT method is preferred since station positioning can be accomplished using a GPS thus eliminating the need for a cut grid.

Several geochemical methods, such as Mobile Metal Ion (MMI) and Enzyme Leach (provided by XRAL Laboratories and Actlabs respectively) that involve selective or partial digestion of the sample material have been developed to explore for deeply buried deposits (>700 m in case histories) in a variety of geological settings. Two basic aspects of the hypothesis supporting the method is that metal ions have migrated to surface along fracture pathways, and that at surface these ions are only loosely attached to the sample medium. An orientation survey along line "0" would be useful to determine the practicality of the method. In theory, the method should be applicable for both identified target types.

Archean faults and deformation zones are traceable through Huronian stratigraphy as topographic lineaments, and as structural zones within the sediments (Powell, 1991). Moreover, a study in a similar geological setting in Quebec demonstrated that zones of quartz and quartz-feldspar gash fractures directly overlay the Archean structures and in one instance also coincided with a gold occurrence. Thus, an air photo interpretation of the property and immediate area followed by prospecting of selected areas is an appropriate and cost effective method to search for the trace of the LLCB.

CONCLUSIONS

The 1999 exploration program was successful in that a dunite was determined to be the principal cause for the magnetic anomaly, and that a secondary signature due to a series of NW/SE diabase dykes or a bifurcated dyke was superimposed on the main anomaly. No accumulation of massive nor disseminated Ni-Cu mineralization were cored, but is not considered negative due to the remote location of the hole relative to the interpreted position of the contacts. Samples taken to test for the possible presence of detrital gold in the Cobalt sediments all assayed low. Anomalous concentrations of Pb and Zn hosted in vuggy quartz veinlets in quartzite were cored from the lower portion of the Cobalt sediments.

A deep penetrating geophysical survey such as realsection IP or magnetotellurics and/or a selective leach geochemical survey is/are the next logical step(s) to further evaluate the Ni-Cu-PGE potential of the property. The possibility for the occurrence of Archean lode gold deposits may be assessed by conducting an air photo interpretation and prospecting.

Respectfully submitted,

James Sum

James G. Burns B.Sc. P.Eng. September 9, 1999

REFERENCES

Boniwell, J. B.

1999 Magnetic anomaly, Mond/Raymond Twps.; Excalibur International Consultants, memo report, 4p.

Excalibur International Consultants Ltd.

1992 Airborne magnetic/electromagnetic survey, Shining Tree, Ontario; Excalibur Geoscience Inc., map of reprocessed data of the OGS, scale 1:100,000.

Ontario Geological Survey

1990 Airborne electromagnetic and total intensity magnetic survey, Shining Tree area; Ontario Geological Survey, Maps 81407 & 81413, scale 1:20,000.

Ontario Geological Survey

1991 Bedrock geology of Ontario, east-central sheet; Ontario Geological Survey, Map 2543, scale 1:1,000,000.

Powell, W. G.

1991 The distribution, structural history and relationship to regional metamorphism of high-strain zones forming the Larder Lake -Cadillac deformation zone, Matachewan area, Abitibi Belt; Ontario Geological Survey, Open File Report 5789, 150p.

. .

. . .

CERTIFICATE FOR JAMES G. BURNS

- 1) I am the author of this report.
- 2) I reside at 190 Graye Crescent, Timmins, Ontario, Canada.
- I graduated from Queen's University at Kingston, Ontario in 1969 with a B.Sc. (Honours) in Geological Science. I have been practising my profession continuously since that date.
- 4) I am a member of the Association of Professional Engineers of Ontario, the Canadian Institute of Mining and Metallurgy, and the Prospectors and Developers Association of Canada.
- 5) This report is based upon my personal observations, and discussions with persons familiar with the general region.
- 6) I am the registered holder of the claims being reported upon.

Jame Sum

Timmins, Ontario September 9, 1999

James G. Burns P.Eng

.... **,**

Appendix I

Boniwell Memo Report

a a the second second

· · · ·

.

мемо то	:	Jim Burns	5			
MEMO FROM	1:	J. B. Bor	niwell			
SUBJECT	:	Magnetic	Anomaly,	Mond/Raymond	Twps.,	Ont.
DATE	:	July 27,	1999			

- 1 -

An aeromagnetic anomaly defined in the OGS Shining Tree survey area (1990) straddles the common boundary between Mond and Raymond Townships. On regional geology, it lies under a significant thickness of a gently lying non-magnetic Coleman sediments.

A. <u>Airborne</u>

The anomaly is nearly circular and measures roughly 1.5 kms by 2 kms in plan or 300 ha. It is also buried, estimated from the airborne data to lie 480-530 m below land surface (after allowing 120 m for the sensor height). It appears quasi-isolated in terms of basement (Archean) geology, and stands at the intersection of NW-SE regional faulting (Matagami River structural direction), N-S dyking (Matachewan swarm) and ENE to NE lineaments potentially including the western extension of the Kirkland Lake/Larder Lake break. In these circumstances, there is not much doubt that the anomaly expresses a mafic to ultramafic plutonic plug that has exploited a low pressure point in this structural environment. As such it represents a prospective mineral event, especially for copper/nickel and the platinum group, possibly for diamonds. There is no evidence that it has been explored before.

One of the primary reasons it would have escaped previous attention is the fact that it lies too deep for airborne em detection of any sulphides resident within. Without an AEM anomaly to highlight it, many past exploration programmes would have not been attracted to it.

B. <u>Ground</u>

On the ground, more can be expected. As a start towards establishing some preliminary essentials, two lines 200 m apart oriented 35° true, each 2800 m long have been put across the peak

of the aeromagnetic anomaly. This feature was duly confirmed by total field magnetometer readings every 20 m along both lines.

The resultant profiles however provide three typeresponses, the major one, a gentle long wave length departure due to the buried body of current interest, the other two consisting of much shorter wave length expressions which are superimposed on the underlying principal curve. Of the latter, one is considered due to a diabase dyke striking NW-SE across the two traverses to the south side of buried pluton. Its main peaking is at 1100N on line 00; the companion response on line 200W is at 1060N. These are genuine responses to bedrock which itself lies less than 15 m from surface in this locality. The other or third component is a series of high frequency responses between 800N-920N on line 200W. These appear surficial in cause, likely boulders of diabase which have been transported by glaciation on to the higher ground they now incidentally occupy.

These extra magnetic sources are not seen to relate to the buried body. The dyking is younger almost certainly: there is indication of it passing through the deeper anomaly, and although the chance remains such intrusion could have stemmed from the same magnetic source, it is here regarded highly unlikely. Everything points to two intrusive episodes much separated in time.

The buried body on the basis of the ground profiles tops between 380m-440m from surface. It is projected to be at least 900 m wide with the basal contact set at 920 N on line 00. These are approximations only. Thus it is difficult to lay out with any assurance a minimalist drill hole (<500 m) to intersect this contact with utmost effect. This is the perceived contact of greatest mineral interest for copper, nickel, platinum, and it surely warrants exploration.

However to intersect that contact on present evidence would require at the very minimum a 600 m deep hole (see Dwg. No. EIC-2695) and still retain a fighting chance of reaching the target. Anything less could well miss the intrusive altogether. On the other hand, it is possible to test the nature and composition of the intrusion by a simple hole at the (total field) magnetic peak drilled vertically to 400m-450m. This is the most prudent positioning for a first test, and it could prove quite revealing even so.

- 2 -

A compromise hole could be located at 1000N but drilled vertically to 500 m as shown. It is a riskier hole inasmuch it is close enough to the basal contact as prescribed to miss the intrusive if there are irregularities in its edges. It is not expected to intersect the basal contact but has the virtue of approaching it. A follow-up down-hole em logging might then be undertaken with some reasonable chance of obtaining off-hole anomalies due to sulphides in the contact setting.

.m. Il

- 3 -

Appendix II

1999 Drill Log

.

Page 1 of 7

JAMES G. BURNS DRILL LOG

HOLE NO.	: TM-99-01	TOWNSHIP : MOND	COF	RE SIZE	:NQ
COORDINATES	: 000E, 1400N	PROPERTY : FERRIS	S LAKE DRI	LLED BY	: NOREX DRILLING LIMITED
COLLAR ANGL	E:-85 ⁰	DIVISION : LARDE	ER LAKE DAT	TE STARTED	: JULY 28 , 1999
ELEVATION	:	CLAIM NO : 122766	0 DAT	E COMPLETE) : AUGUST 5, 1999
AZIMUTH	: 215 °		LOC	GGED BY	: JAMES G. BURNS
LENGTH	: 395 m		PAG	ES	:7
		DEPTH	AZIMUTH	ACID TES	ſ
				DIP ANGL	Æ
		100 m		- 87 ⁰	
		200 m		- 8 6 ^O	
		300 m		- 85 ^O	

REMARKS : 1) CASING PULLED

÷

+

-4

n	^	c	~
Page	· /	ΩŤ.	1
1 440	~	vi	

From	То	Description		Sample No	From	То	Length	Au ppb	Pb ppm	Ni ppm
0	33.00	Overburden	Sand, cobbles, boulders]		}		
33.00	119.15	Metawacke and meta- mudstone	Mid to dark greenish grey, fine to very fine grained, faintly bedded (generally < 1mm), very local & very weak pervasive carbonatization, occasional pebble to cobble of pink granite; poor to moderately (locally only) fractured; chlorite, carbonate, hematite & minor pyrite or fractures; minor (<5%), thin (1mm) pink arkose beds mineralized with up to 5% fine disseminated pyrite; beds weakly pervasively carbonatized; beds increasing in quantity & thickness down hole to about 70m & then diminishing; at about 110m beds become a light pink colour almost white; beds display soft sediment deformation textures (ie. pulled apart, slumping).							
			75° & 42.6 - 42.65 $(@ 80^\circ)$; beds composed of 60% l -2mm, rounded, clast & matrix supported carbonate "granules" in a limy matrix; minor pyrite associated with some granules; minor hematite alteration.							
			@ 97.5m 2.5cm bed of grit with detrital pyrite; grains to Imm of quartz + pyrite, carbonate, granite & possibly syenite.							
			@ 97.4m bedding @ 80°							
			@ 65m bedding @ 80°							
			@ 111.4m bedding @ 80"							
			118.3 to 119.5 rock dark greenish black & very fine grained							
			~ 7cm total of arkose beds	78501	65.0	66.5	1.5	<5	<2	58
			~ 6 cm total of arkose beds	78502	66.5	68.0	1.5	<5	<2	60
			contact @ 119.15 @ 70° at sharp colour change							
119.15	158.60	Quartzite	Dark purplish pink, faintly to finely bedded (beds < 1mm), fine to very fine grained, weakly magnetic, occasional small pebble of pink granite, semi conchoidal fracture; minor thin (< 2cm) weakly pervasively carbonatized grit beds increasing in quantity down hole; weakly fractured with chlorite, carbonate and minor pyrite in the fractures. @ 123.5 bedding @ 70°							

From	Го	Description		Sample No	From	То	Length	Au ppb	Pb ppm	Ní ppm
			@ 142.0 bedding @ 85°			1				
			@ 147.4 5 mm granite granules with interstitial pyrite							
			minor pyrite on fractures	78503	125.0	126.5	1.5	<5	2	62
			minor pyrite on fractures	78504	126.5	128.0	1.5	<5	10	67
			minor grit beds to 1 cm with detrital pyrite	78505	149.0	150.0	1.0	<5	6	63
			minor grit beds to 1 cm with detrital pyrite	78506	150.0	151.0	1.0	<5	6	61
			minor grit beds to 1 cm with detrital pyrite	78507	151.0	152.0	1.0	< 5	6	63
			contact a colour gradation							
158.60	173.05	Metawacke	Mid to dark greenish grey, fine to coarse grained with coarser beds increasing in size and in grain size down hole, numerous pink granite pebbles, cobbles & a boulder from 172.3 to 173.05; granite clasts, dominate & increase in size & quantity down hole; other clasts of basalt, quartz - some angular; very little detrital pyrite. Tops up hole. 60% grit beds contact at base of boulder.	78508	170.0	171.2	1.2	<5	4	54
173.05	176.30	Metawacke and meta- mudstone	Light to mid grey, very poorly bedded to massive, fine to coarse grained; 30% pebbles & cobbles of gabbro, rhyolite tuff & basalt with occasional granite clast; minor detrital pyrite; minor carbonate, albite, pyrite veinlets.							
			minor pyrite	78509	175.0	176.3	1.3	<5	6	72
			contact sharp @ 85°							
176.30	209.80	Quartzite	Light to mid grey, fine to very fine grained, moderately well bedded with beds normally 1-2cm but up to 40cm, locally cross bedded; non to weakly pervasively carbonatized; minor albite, carbonate pyrite venlets.							

Page 4 of 7

From	То	Description		Sample No	From	То	Length	Au ppb	Pb ppm	Ni ppm
			Pink, very fine grained (cherty) and gritty arkose beds increasing in quantity to 191.55 & then decreasing to fade away at bottom of unit; some beds ripped apart or otherwise deformed.							
			191.15 - 191.55 pink arkose bed with $\sim 1\%$ fine pyrite @ 191.55 bedding @ 80°							
			203.1-203.9 grit bed, < 1/2 % pyrite, 5% ripped apart angular cherty arkosic clasts to 5cm.							
			@ 205.1 bedding @ 80°							
			2% albite-carbonate veinlets @ 20°, minor pyrite	78510	194.0	195.5	1.5	<5	20	52
			occasional albite-carbonate fractures with pyrite	78511	203.4	203.9	0.5	<5	8	31
			occasional albite-carbonate fractures with pyrite	78512	206.0	207.5	1.5	<5	6	51
			occasional albite-carbonate fractures with pyrite	78513	207.5	209.0	1.5	<5	6	53
			contact @ 209.8 gradational at last of pinkish beds							
209.80	336.25	Quartzite	Light to mid grey, very fine to medium (locally coarse) grained, well bedded with beds to 80 cm; $> 75\%$ quartz with $\pm 15\%$ mafics, $< 1\%$ pyrite (more pyrite in coarser beds)			1 				
			Sections of more intense quartz-carbonate veins mineralized with pyrite, chalcopyrite & galena; probably some silicification with veins; 2 ages of veins, both of which seem to be mineralized although older with more carbonate.							
			medium grained, beds with $\frac{1}{2}$ % detrital pyrite and 2% quartz-carbonate veinlets at 10-15° with pyrite & chalcopyrite.	78514	219.8	220.7	0.9	<5	8	20
			227.0- 239.0 moderately veined; quartz-carbonate veins mineralized with minor pyrite & galena.							
				78515	227.0	228.5	1.5	<5	40	38
				78516	228.5	230.0	1.5	<5	30	39
				78517	230.0	231.5	1.5	<5	44	53
				78518	231.5	233.0	1.5	<5	20	44

Page 5 of 7

From	Го	Description	Sample No	From	То	Length	Au ppb	Pb ppm	Ni ppm
			78519	233.0	234.5	1.5	<5	14	30
			78520	234.5	236.0	1.5	<5	30	30
			78521	236.0	237.5	1.5	<5	8	40
			78522	237.5	239.0	1.5	<5	24	43
		@ 244.4 bedding at 85°							
		$\frac{1}{2}$ % detrital pyrite; weakly fractured	78523	246.5	248.0	1.5	<5	24	24
		$\frac{1}{2}$ % detrital pyrite; weakly fractured	78524	248.0	249.5	1.5	<5	48	37
		2% detrital pyrite, weakly fractured	78525	249.5	251.0	1.5	<5	42	29
		3% detrital pyrite; weakly fractured (bands to 1 cm with up to 30% pyrite)	78526	251.0	252.5	1.5	<5	48	28
		256.7-270.3 moderately to strongly fractured & veined, with pyrite, galena & chalcopyrite in veins.							
			78527	260.0	261.5	1.5	<5	76	25
			78528	261.5	263.0	1.5	<5	48	28
			78529	263.0	264.5	1.5	<5	28	31
			78530	264.5	266.0	1.5	<5	66	42
		281.15-281.25 mudstone, black, very fine grained, finely bedded							
		@ 281.25 bedding @ 85°							
		~ 280.0-291.3 weak to moderately fractured							
		292.2-292.65 moderately fractured	1				[
		294.0-294.9 moderately to strongly fractured							
		vuggy veins @ 25-35°, ½ % fine pyrite	78531	294.0	294.9	0.9	<5	102	28
		298.5-298.75 breccia @ 15°]						
		298.75-300.5 moderately fractured & veined							
			78532	298.5	299.5	1.0	<5	102	33

+

Page 6 of 7

From	Fo	Description		Sample No	From	То	Length	Au ppb	Pb ppm	Ni ppm
				78533	299.5	300.5	1.0	<5	14	30
			weakly fractured/veined & mineralized	78534	307.0	308.0	1.0	<5	38	53
			@ 309.0 2cm breccia @ 5°							
			@ 309.8 2cm breccia @ 20°							
			weak to moderately veined; @ 314.3 3cm breccia @ 10°	78535	314.0	315.0	1.0	<5	90	29
			weakly fractured & veined	78536	317.0	318.5	1.5	<5	114	31
			328.0-336.25 weakly to moderately to locally strongly veined							
				78537	328.0	329.0	1.0	<5	540	39
				78538	329.0	330.5	1.5	<5	150	31
				78539	330.5	332.0	1.5	<5	1460	35
				78540	332.0	333.5	1.5	<5	358	28
			1/2% galena on fractures 334.3-335.0	78541	333.5	335.0	1.5	<5	5440	34
				78542	335.0	336.25	1.25	<5	216	31
			@ 334.95 minor gouge on fractures							
			contact sharp @ 336.25 at 55°					-		
336.25	342.80	Meta- conglomerate	Light to mid green quartzite matrix containing 40% angular to subrounded pebbles & cobbles of mainly dunite but also intermediate volcanic & gabbro; clasts matrix supported; matrix sulphide poor, unit non radioactive.							
			Weak to moderately fractured; quartz-carbonate and also serpentine veinlets neither with much sulphide							
			@ 340.7 serpentine fracture gouge @ 40°							
			rep. sample	78543	338.0	339,0	1.0	<5	108	817
			contact at 342.8 in broken core: no obvious regolith							

-1

Page 7 of 7

From	Го	Description		Sample No	From	То	Length	Au ppb	Pb ppm	Ni ppm
342.80	395.00	Dunite	Dark green to greenish black (wet), mid olive green (dry); 95% Imm serpentized olivine grains, very magnetic, massive.							
			342.8-343.1 rounded to subangular dunite "pseudo" clasts may represent "onion skin" weathering.							
			Sections of broken core displaying serpentine-carbonate veinlets & fractures at all angles some with minor pyrite smeared above fractions; magnetic borders to some larger veins.							
				78544	344.0	345.5	L.5	<5	14	1995
				78545	345.5	347.0	1.5	<5	8	2010
			representative sample: trace of pyrite in fractures	78546	350.0	351.0	1.0	10	2	2070
			representative sample: trace of pyrite in fractures	78547	351.0	352.0	1.0	<5	4	1990
			representative sample: trace of pyrite in fractures	78548	352.0	353.0	1.0	<5	10	1950
			357.2-357.6 strongly fractured							
			362.0-373.0 generally strongly fractured with short sections only weakly fractured; fracture gouge locally at all angles.							
				78549	362.0	363.5	1.5	<5	4	2510
				78550	363.5	365,0	1.5	<5	2	1925
			369.0-369.1 strongly serpentinized & gouged @ 40°						:	
			(a) 380.0 10 cm fracture gouge & serpentine (a) $0-35^{\circ}$							
			@ 385.85 4 cm serpentine vein @ 55° with weakly developed shear fibre							
			390.0-395.0 strongly fractured							
			representative sample	650101	386.0	387.5	1.5	<5	2	1905
			representative sample	650102	387.5	389.0	1.5	<5	2	1925
	395.00		EOH							

Appendix III

Assay Certificate

Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

A9926059

Mississauga

5175 Timberlea Blvd.,

BURNS, J.

190 GRAYE TIMMINS, ON P4N 8K8

Comments:

CERTIFICATE

(QNC) BURNS, J.

Project. P.O. #

Samples submitted to our lab in Timmins, ON. This report was printed on 08-SEP-1999.

	SAM	PLE PREPARATION
CHEME X CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	52 52 52 52 52	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W

Chemex Code	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100	52	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
2118	52	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	52	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	52	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	52	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	52	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	52	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	52	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	52	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	52	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	52	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	52	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	52	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	52	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	52	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	52	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	52	K %: 32 element. soil & rock	ICP-AES	0_01	10.00
2151	52	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	52	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	52	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	52	Mo ppm: 32 element, soil & rock	ICP-AES	ĩ	10000
2137	52	Na %: 32 element, soil & rock	TCP-AES	0 01	10.00
2138	52	Ni nom: 32 element, soil & rock	TCP-AES	1	10000
2139	52	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	52	Pb ppm: 32 element, soil & rock	TCP-AES	20	10000
551	52	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
2141	52	Sb ppm: 32 element, soil & rock	TCP-AES	2.02	10000
2142	52	Sc ppm: 32 elements, soil & rock	TCP-AES	ī	10000
2143	52	Sr ppm: 32 element, soil & rock	TCP-AES	1	10000
2144	52	Ti %: 32 element, soil & rock	TCP-AES	0 01	10.00
2145	52	T1 ppm: 32 element, soil & rock	TCP-AES	10	10000
2146	52	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	52	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	52	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	52	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

A9926059

: BURNS, J.

190 GRAYE TIMMINS, ON P4N 8K8 ••

Page N¹ r : 1-A Total Pa :2 Certificate Date: 26-AUG-1999 Invoice No. : 19926059 P.O. Number : Account :QNC

11

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Project : Comments:

Г

											CE	RTIFI	CATE	OF A	NAL	YSIS	A	9926	059		
SAMPLE	PRE	P E	Au ppb FA+AA	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со рр п	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
78501 78502 78503 78504 78505	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	2.61 2.77 2.39 2.64 2.40	4 6 6 4	10 < 10 10 10 < 10	50 60 70 110 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.62 0.54 0.31 0.34 0.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 21 26 26 27	104 110 82 93 86	53 71 47 56 54	4.54 4.73 5.77 6.16 5.35	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.16 0.18 0.32 0.41 0.38	30 30 30 40 40	1.73 1.81 1.08 1.12 1.08
78506 78507 78508 78509 78510	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 0.2 0.2 0.2 0.4	2.33 2.44 2.39 2.62 2.40	6 < 2 10 8 12	10 10 < 10 10 10	110 120 1070 120 940	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre>< 2 < 2</pre>	0.36 0.41 0.75 0.43 0.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	26 27 21 21 18	83 85 110 130 125	31 46 22 30 66	5.23 5.36 4.66 4.10 3.69	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.36 0.37 0.20 0.13 0.11	40 40 10 30 40	1.06 1.10 1.33 2.02 1.88
78511 78512 78513 78514 78515	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 0.2 0.2 0.2 0.2 0.2	1.44 2.42 2.51 0.77 1.73	6 < 2 < 2 6 20	< 10 < 10 < 10 < 10 < 10 < 10	230 180 170 30 60	< 0.5 0.5 0.5 < 0.5 0.5	<pre> < 2 < 2</pre>	0.41 0.50 0.51 0.57 0.72	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 17 17 8 14	124 122 131 137 137	59 36 21 9 16	2.36 3.62 3.79 1.44 2.76	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.09 0.12 0.12 0.06 0.08	30 30 30 10 30	1.12 1.88 1.96 0.54 1.42
78516 78517 78518 78519 78520	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 0.2 0.2 0.2 0.2	1.68 2.78 2.31 1.34 1.32	16 24 12 10 12	< 10 < 10 < 10 < 10 < 10 < 10	50 70 60 30 30	<pre>< 0.5 0.5 0.5 < 0.5 < 0.5</pre>	<pre> < 2 < 2</pre>	0.33 0.63 0.79 2.22 0.64	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 18 16 10 11	142 145 138 143 142	73 62 193 58 28	2.75 4.27 3.56 2.09 2.14	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.08 0.08 0.08 0.05 0.06	10 10 10 20 10	1.35 2.31 1.91 1.10 1.06
/8521 78522 78523 78524 78525	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 0.2 < 0.2 0.2 0.2 0.2	1.87 2.09 0.90 1.66 1.28	10 18 14 54 38	<pre>< 10 < 10</pre>	50 50 20 30 20	<pre>< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	<pre>< 2 < 2</pre>	0.27 0.31 0.51 0.37 0.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 15 11 14 11	129 133 127 131 144	49 10 10 56 21	2.95 3.31 1.69 2.75 2.22	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.09 0.10 0.06 0.06 0.06	10 10 10 10 10	1.52 1.71 0.69 1.38 1.04
78526 78527 78528 78529 78530	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	0.2 0.2 < 0.2 0.2 0.2 0.2	1.08 1.14 1.45 1.51 2.28	36 14 10 16 22	<pre>< 10 < 10</pre>	20 20 20 20 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre> < 2 < 2</pre>	0.45 0.37 0.27 0.24 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 11 11 12 16	141 142 140 140 139	8 58 17 15 47	2.06 2.00 2.29 2.39 3.55	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.06 0.06 0.07 0.06 0.05	10 10 20 20	0.87 1.00 1.23 1.32 1.99
78531 78532 78533 78534 78535	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 0.2 0.2 0.2	1.28 1.55 1.44 2.47 1.38	10 16 10 16 16	<pre>< 10 < 10</pre>	10 10 10 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2</pre>	0.19 0.24 0.31 0.32 0.21	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 18 16 22 12	141 157 151 171 143	107 222 60 89 74	2.26 2.64 2.39 4.03 2.29	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.05 0.05 0.05 0.05 0.05	10 10 10 30 10	1.09 1.35 1.23 2.13 1.20
78536 78537 78538 78539 78540	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	0.2 0.4 0.2 0.4 0.2	1.61 1.42 1.27 1.48 0.94	12 52 36 38 38	< 10 < 10 < 10 < 10 < 10 < 10	10 30 30 20 40	< 0.5 0.5 0.5 0.5 0.5	<pre></pre>	0.25 0.29 0.43 0.28 0.24	0.5 3.5 0.5 3.5 3.0	12 17 13 14 12	146 159 142 137 141	50 20 6 11 11	2.58 2.43 2.22 2.59 1.67	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.07 0.07 0.06 0.05 0.06	10 20 20 10 10	1.39 1.13 1.04 1.25 0.80

CERTIFICATION:

BURNS, J.

190 GRAYE TIMMINS, ON P4N 8K8

**

Page Ni r :1-B Total Pa, :2 Certificate Date: 26-AUG-1999 Invoice No. : 19926059 P.O. Number : QNC Account

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

											CE	RTIFI	CATE	OF A	NALY	/SIS	A	49926059	!
SAMPLE	PRI COI	EP DE	Mn ppm	Mo ppm	Na %	Ni ppm	P pp m	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	D D	V ppm	W pp m	Zn ppm	
78501	205	226	560	3	0.05	58	580	< 2	0.06	< 2	6	17	0.18	< 10	< 10	49	< 10	80	
78502	205	226	580	2	0.05	60	610	< 2	0.06	< 2	6	18	0.19	< 10	< 10	50	< 10	82	
78503	205	226	605	2	0.02	62	710	2	0.04	< 2	3	19	0.09	< 10	< 10	28	< 10	56	
78504	205	226	625	1	0.03	67	760	10	0.04	< 2	4	21	0.11	< 10	< 10	33	< 10	60	
78505	205	226	600	1	0.03	63	720	6	0.02	< 2	3	21	0.12	< 10	< 10	30	< 10	54	
78506	205	226	580	1	0.03	61	690	6	0.02	< 2	3	21	0.12	< 10	< 10	30	< 10	52	
/850/	205	226	605	1	0.03	63	/10	6	0.03	(2)	4	23	0.14	< 10	< 10	32	(10	54	
1/8508	205	226	610	1	0.04	54	650	4	0.08		4	44	0.11	< 10		35		56	
18509	205	220	620	2	0.05	72	530	20	0.08		0	25	0.18	(10	(10	48	(10	/0	
	205	220	570		0.00	52	630	20	0.12	× 2	•		0.22	<u> </u>	× 10	57	(10	82	
78511	205	226	350	1	0.06	31	420	8	0.09	< 2	5	22	0.12	< 10	< 10	43	< 10	46	
78512	205	226	550	2	0.06	51	580	6	0.06	< 2	8	61	0.22	< 10	< 10	59	< 10	78	
78513	205	226	580	2	0.07	53	620	6	0.05	< 2	9	65	0.23	< 10	< 10	64	< 10	80	
78514	205	226	205	1	0.08	20	350	8	0.21	< 2	4	11	0.09	< 10	< 10	34	< 10	34	
/8515	205	226	425	3	0,05	38	550	40	0.09	<u> </u>	/	15	0.13	< 10	< 10	55	< 10	4.0	
78516	205	226	390	2	0.05	39	580	30	0.12	< 2	6	11	0.10	< 10	< 10	56	< 10	38	
78517	205	226	615	4	0.05	53	640	44	0.08	< 2	7	18	0.15	< 10	< 10	73	< 10	50	
78518	205	226	515	3	0.05	44	530	20	0.11	< 2	6	15	0.15	< 10	< 10	60	< 10	42	
78519	205	226	375	7	0,06	30	540	14	0.08	< 2	6	16	0.11	< 10	< 10	50	< 10	28	
/8520	205	226	315	3	0.07	30	460	30	0.11	< 2	5	11	0.09	< 10	< 10	46	< 10	30	
78521	205	226	420	3	0.06	40	530	8	0.11	< 2	5	11	0.10	< 10	< 10	56	< 10	30	
78522	205	226	470	2	0.06	43	560	24	0.11	< 2	5	12	0.11	< 10	< 10	56	< 10	34	
78523	205	226	245	1	0.07	24	410	24	0.30	< 2	4	9	0.06	< 10	< 10	40	< 10	52	
78524	205	226	430	1	0.06	37	470	48	0.16	< 2	6	9	0.11	< 10	< 10	55	< 10	90	
78525	205	226	330	1	0.07	29	440	42	0.25	< 2	5	9	0.09	< 10	< 10	47	< 10	78	
78526	205	226	295	1	0.07	28	470	48	0.34	< 2	5	10	0.10	< 10	< 10	47	< 10	42	
78527	205	226	265	1	0.08	25	460	76	0.35	< 2	4	9	0.06	< 10	< 10	47	< 10	24	
/8528	205	226	355	1	0.08	28	500	48	0.15	< 2	5	9	0.08	< 10	< 10	52	< 10	36	
/8529	205	220	370	1	0.08	31	510	28	0.12		5	9	0.09		(10	54	(10	84	
/8530	205	220	540		0.00	42	510	00	0.13	< 2	/	10	0.11	(10	< 10	60	< 10	80	
78531	205	226	315	1	0.07	28	430	102	0.19	< 2	5	7	0.08	< 10	< 10	50	< 10	48	
78532	205	226	390	2	0.07	33	50 0	102	0.18	< 2	6	9	0.10	< 10	< 10	59	< 10	52	
78533	205	226	355	2	0.07	30	440	14	0.16	< 2	6	10	0.09	< 10	< 10	56	< 10	52	
78534	205	226	605	2	0.06	53	570	38	0.13	< 2	9	12	0.16	< 10	< 10	86	< 10	54	
/8535	205	226	375	1	0.07	29	440	90	0.12	< 2	6	8	0.09	< 10	< 10	55	< 10	28	
78536	205	226	470	< 1	0.10	31	520	114	0.07	< 2	6	10	0.10	< 10	< 10	63	< 10	238	
78537	205	226	525	1	0.10	39	530	540	0.13	< 2	7	10	0.11	< 10	< 10	66	< 10	852	
78538	205	226	535	2	0.08	31	490	150	0.04	< 2	6	10	0.11	< 10	< 10	58	< 10	200	
78539	205	226	560	1	0.07	35	480	1460	0.09	< 2	7	9	0.13	< 10	< 10	64	< 10	920	
/8540	205	226	445	1	0.08	28	440	358	0.09	< 2	5	9	0.10	< 10	< 10	54	< 10	898	
																	181	-	
																	11		فليستحق بالمتعلم
														(CERTIFIC	ATION:	Pg-		and the second second

CERTIFICATION:

ŧ

-

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

: BURNS, J.

* *

190 GRAYE TIMMINS, ON P4N 8K8 Page N r :2-A Total Pa, :2 Certificate Date: 26-AUG-1999 Invoice No. : 19926059 P.O. Number : Account :QNC

7

5175 I imberiea Bivd.,	Mississauga
Ontario, Canada	L4W 2Š3
PHONE: 905-624-2806	FAX: 905-624-6163

P4N 8 Project : Comments:

Г

											CE	RTIF	CATE	OF A	NAL	YSIS		19926	059		
SAMPLE	PR CO	EP DE	Au ppb FA+AA	Ag ppm	Al %	As ppm	B PP m	Ba pp m	Be pp m	Bi ppm	Ca %	Cd pp n	Co ppm	Cr ppm	Cu ppm	Fe %	Ga p pm	Hg ppm	K ¥	La ppm	Mg %
78541 78542 78543 78544 78545	205 205 205 205 205 205	226 226 226 226 226 226	<pre></pre>	0.6 0.2 < 0.2 0.2 0.2	1.64 1.63 3.43 0.98 0.96	34 20 78 < 2 < 2	<pre>< 10 < 10 < 10 < 10 80 80</pre>	60 70 < 10 < 10 < 10	0.5 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.50 1.45 0.80 0.31 0.41	< 0.5 2.5 0.5 < 0.5 < 0.5	14 13 57 94 100	159 130 889 1455 1435	6 29 36 34 13	2.80 2.50 3.59 5.86 5.74	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.08 0.08 0.01 0.01 0.01	20 20 < 10 < 10 < 10	1.41 1.60 5.14 >15.00 >15.00
78546 78547 78548 78549 78550	205 205 205 205 205 205	226 226 226 226 226 226	10 < 5 < 5 < 5 < 5 < 5	< 0.2 0.2 0.2 0.4 < 0.2	1.05 1.01 0.98 1.01 1.00	<pre>< 2 < 2</pre>	90 90 90 100 100	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.26 0.59 0.94 0.44 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	92 88 98 99 97	1730 1620 1535 1520 1460	<pre>< 1 < 1</pre>	6.03 5.76 5.49 5.81 6.19	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 <</pre>	<pre> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </pre>	<pre>< 10 < 10</pre>	>15.00 >15.00 >15.00 >15.00 >15.00 >15.00
650101 650102	205 205	226 226	< 5 < 5	< 0.2 0.2	1.10 1.11	< 2 < 2	110 110	< 10 < 10	< 0.5 < 0.5	< 2 < 2	0.35 0.24	< 0.5 < 0.5	94 94	1350 1200	< 1 < 1	5.65 5.59	< 10 < 10	< 1 < < 1 <	(0.01 (0.01	< 10 < 10	>15.00 >15.00
																	112				
														C	ERTIFI		// /12~	. (Sanga gart S		Ų.

ŧ

ŝ

1

4

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 : BURNS, J.

**

190 GRAYE TIMMINS, ON P4N 8K8 Page N r :2-B Total Payos :2 Certificate Date: 26-AUG-1999 Invoice No. : 19926059 P.O. Number : Account :QNC

				······						CERTIFICATE OF ANALYS								9926059	
SAMPLE	PREF CODE	2 E	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb pp m	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U meqe	V ppm	W PP m	Zn ppm	
78541 78542 78543 78544 78545	205 2 205 2 205 2 205 2 205 2	226 226 226 226 226 226 226	730 730 805 1200 1150	3 2 2 2 3	0.10 0.10 0.02 < 0.01 < 0.01	34 31 817 1995 2010	500 490 250 90 130	5440 216 108 14 8	0.13 0.05 0.03 0.07 0.07	< 2 < 2 < 2 4 2	8 5 4 4 4	13 24 23 15 14	0.13 0.16 0.14 0.02 0.02	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	67 56 57 32 32	< 10 < 10 < 10 < 10 < 10 < 10	114 638 326 92 58	
78546 78547 78548 78549 78550	205 2 205 2 205 2 205 2 205 2 205 2	226 226 226 226 226 226 226	1155 1100 1120 1025 1060	3 3 4 3 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	2070 1990 1950 2510 1925	80 80 110 200 80	2 4 10 4 2	0.06 0.06 0.06 0.07 0.05	2 2 2 4 2	5 4 5 4	9 12 14 6 6	0.03 0.03 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 33 34 35 32	< 10 < 10 < 10 < 10 < 10 < 10	56 58 126 54 52	
550101 550102	205 2 205 2	226 226	925 925	3 2	< 0.01 < 0.01	1905 1925	70 70	2 2	0.04 0.04	2 4	5 5	4	0.03 0.03	< 10 < 10	< 10 < 10	33 35	< 10 < 10	58 58	
																	,	,	
															ERTIFIC				

BURNS, J.

190 GRAYE TIMMINS, ON P4N 8K8 **

Page Num : 1-A Total Page :2 Certificate Date: 26-AUG-1999 Invoice No. : 19926059 P.O. Number : Account :QNC

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Project : Comments:

												RTIFI	CATE	OF A	NAL	YSIS	4	49926	6059		
SAMPLE	PRE COD	P E	Au ppb FA+AA	Ag ppm	Al %	As ppm	B ppm	Bạ ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co p pm	Cr ppm	Cu ppm	Fe %	Ga ppm	Нд ррт	K Z	La ppm	Mg %
78501 78502 78503 78504	205 205 205 205 205	226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 < 0.2 0.2	2.61 2.77 2.39 2.64	4 6 6	10 < 10 10 10	50 60 70 110	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.62 0.54 0.31 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 21 26 26	104 110 82 93	53 71 47 56	4.54 4.73 5.77 6.16	<pre></pre>	< 1 < 1 < 1 < 1	0.16 0.18 0.32 0.41	30 30 30 40	1.73 1.81 1.08 1.12
78505	205	226	< 5	< 0.2	2.40	4	< 10	110	< 0.5	< 2	0.36	< 0.5	27	86	54	5.35	< 10	< 1	0.38	40	1.08
78506 78507 78508 78509 78510	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 0.2 < 0.2 0.2 0.2 0.4	2.33 2.44 2.39 2.62 2.40	6 < 2 10 8 12	10 10 < 10 10 10	110 120 1070 120 940	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre>< 2 < 2</pre>	0.36 0.41 0.75 0.43 0.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	26 27 21 21 18	83 85 110 130 125	31 46 22 30 66	5.23 5.36 4.66 4.10 3.69	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.36 0.37 0.20 0.13 0.11	40 40 10 30 40	1.06 1.10 1.33 2.02 1.88
78511 78512 78513 78514 78515	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 0.2 0.2 0.2 0.2	1.44 2.42 2.51 0.77 1.73	6 < 2 < 2 6 20	<pre>< 10 < 10</pre>	230 180 170 30 60	< 0.5 0.5 0.5 < 0.5 0.5	<pre> < 2 < 2</pre>	0.41 0.50 0.51 0.57 0.72	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 17 17 8 14	124 122 131 137 137	59 36 21 9 16	2.36 3.62 3.79 1.44 2.76	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.09 0.12 0.12 0.06 0.08	30 30 30 10 30	1.12 1.88 1.96 0.54 1.42
78516 78517 78518 78519 78520	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 0.2 0.2 0.2	1.68 2.78 2.31 1.34 1.32	16 24 12 10 12	<pre>< 10 < 10</pre>	50 70 60 30 30	< 0.5 0.5 0.5 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.33 0.63 0.79 2.22 0.64	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 18 16 10 11	142 145 138 143 142	73 62 193 58 28	2.75 4.27 3.56 2.09 2.14	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.08 0.08 0.08 0.05 0.05	10 10 10 20 10	1.35 2.31 1.91 1.10 1.06
78521 78522 78523 78524 78525	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 0.2 0.2 0.2	1.87 2.09 0.90 1.66 1.28	10 18 14 54 38	<pre>< 10 < 10</pre>	50 50 20 30 20	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.27 0.31 0.51 0.37 0.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 15 11 14 11	129 133 127 131 144	49 10 10 56 21	2.95 3.31 1.69 2.75 2.22	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.09 0.10 0.06 0.06 0.06	10 10 10 10 10	1.52 1.71 0.69 1.38 1.04
78526 78527 78528 78529 78530	205 205 205 205 205 205	226 226 226 226 226 226 226	<pre>< 5 < 5</pre>	0.2 0.2 < 0.2 0.2 0.2 0.2	1.08 1.14 1.45 1.51 2.28	36 14 10 16 22	<pre>< 10 < 10</pre>	20 20 20 20 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre>< 2 < 2</pre>	0.45 0.37 0.27 0.24 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 11 11 12 16	141 142 140 140 139	8 58 17 15 47	2.06 2.00 2.29 2.39 3.55	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.06 0.06 0.07 0.06 0.05	10 10 10 20 20	0.87 1.00 1.23 1.32 1.99
78531 78532 78533 78534 78535	205 205 205 205 205 205	226 226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 0.2 0.2 0.2	1.28 1.55 1.44 2.47 1.38	10 16 10 16 16	<pre>< 10 < 10</pre>	10 10 10 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.19 0.24 0.31 0.32 0.21	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 18 16 22 12	141 157 151 171 143	107 222 60 89 74	2.26 2.64 2.39 4.03 2.29	<pre>< 10 < 10<</pre>	<pre> < 1 < 1 < 1 < 1</pre>	0.05 0.05 0.05 0.05 0.05	10 10 10 30 10	1.09 1.35 1.23 2.13 1.20
78536 78537 78538 78539 78540	205 2 205 2 205 2 205 2 205 2	226 226 226 226 226 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.4 0.2 0.4 0.2	1.61 1.42 1.27 1.48 0.94	12 52 36 38 38	< 10 < 10 < 10 < 10 < 10 < 10 < 10	10 30 30 20 40	< 0.5 0.5 0.5 0.5 0.5 0.5	<pre>< 2 < 2</pre>	0.25 0.29 0.43 0.28 0.24	0.5 3.5 0.5 3.5 3.0	12 17 13 14 12	146 159 142 137 141	50 20 6 11 11	2.58 2.43 2.22 2.59 1.67	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.07 0.07 0.06 0.05 0.06	10 20 20 10 10	1.39 1.13 1.04 1.25 0.80

CERTIFICATION:

2

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd.,	Mississauga
Ontario, Canada	I 4W 2S3
PHONE: 905-624-2806	FAX: 905-624-6163

BURNS, J.

**

190 GRAYE TIMMINS, ON P4N 8K8

Page Nurr : 1-B Total Page ::2 Certificate Date: 26-AUG-1999 Invoice No. : 19926059 P.O. Number : Account :QNC

											CE	RTIF	ICATE	E OF A		YSIS		A9926059	
SAMPLE	PF CC	EP DE	Mn ppm	Mo PPm	Na %	Ni ppm	P ppm	P.b ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W Ppm	Zn ppm	
78501	205	226	560	3	0.05	58	580	< 2	0.06	< 2	6	17	0.18	< 10	< 10	49	< 10	80	
78502	205	226	580	2	0.05	60	610	< 2	0.06	< 2	6	18	0.19	< 10	< 10	50	< 10	82	
78503	205	226	605	2	0.02	62	710	2	0.04	< 2	3	19	0.09	< 10	< 10	28	< 10	56	
78505	205	226	600	1	0.03	67	720	10 6	0.04	< 2	4	21	0.11	< 10	< 10	33	< 10	54	
78506	205	226	580	1	0.03	61	690	- 6	0.02	< 2	3	21	0.12	< 10	< 10	30	< 10	52	
78507	205	226	605	1	0.03	63	710	6	0.03	< 2	4	23	0.14	< 10	< 10	32	< 10	54	
78508	205	226	610	1	0.04	54	650	4	0.08	(2	4	44	0.11	< 10	< 10	35	< 10	56	
78509	205	226	620	2	0.05	72	530	6	0.08	< 2	6	25	0.18	< 10	< 10	48	< 10	76	
/8510	205	220	570		0.00	52		20	0.12	<u> </u>			0.22		< 10		· 10	62	
78511	205	226	350	1	0.06	31	420	8	0.09	< 2	5	22	0.12	< 10	< 10	43	< 10	46	
78512	205	226	550	2	0.06	51	580	6	0.06	< 2	8	61	0.22	< 10	< 10	59	< 10	78	
/8513	205	226	580	2	0.07	53	620	0	0.05		9	11	0.23	(10	(10	04	< 10	80	
78515	205	226	425	3	0.05	38	550	40	0.09	< 2	7	15	0.13	< 10	< 10 < 10	55	< 10	40	
78516	205	226	390	2	0.05	39	580	30	0.12	< 2	6	11	0.10	< 10	< 10	56	< 10	38	
78517	205	226	615	4	0.05	53	640	44	0.08	< 2	7	18	0.15	< 10	< 10	73	< 10	50	
78518	205	226	515	3	0.05	44	530	20	0.11	< 2 (2	6	15	0.15	< 10	< 10	60	< 10	42	
78520	205	226	375	3	0.05	30	540 460	30	0.08	< 2	ь 5	16	0.11	< 10 < 10	< 10	50 46	< 10 < 10	28 30	
78521	205	226	420	3	0.06	40	530		0.11	< 2	5	11	0.10	< 10	< 10	56	< 10	30	·····
78522	205	226	470	2	0.06	43	560	24	0.11	< 2	5	12	0.11	< 10	< 10	56	< 10	34	
78523	205	226	245	1	0.07	24	410	24	0.30	< 2	4	9	0.06	< 10	< 10	40	< 10	52	
78524	205	226	430	1	0.06	37	470	48	0.16	< 2	6	9	0.11	< 10	< 10	55	< 10	90	
78525	205	226	330	1	0.07	29	440	42	0.25	< 2	5	9	0.09	< 10	< 10	47	< 10	78	
78526	205	226	295	1	0.07	28	470	48	0.34	< 2	5	10	0.10	< 10	< 10	47	< 10	42	
78527	205	226	265	1	0.08	25	460	76	0.35	< 2	4	9	0.06	< 10	< 10	47	< 10	24	
78528	205	226	355	1	0.08	28	500	48	0.15	< 2	5	9	0.08	< 10	< 10	52	< 10	36	
78529	205	226	3/0	1	0.08	31	510	28	0.12	(2)	5	10	0.09	(10)	< 10	54		84	
/ 6530	205	220	540	2	0.00	42			0.13	<u> </u>			0.11	< 10	< 10 		< 10 	80	
78531	205	226	315	1	0.07	28	430	102	0.19	< 2	5	7	0.08	< 10	< 10	50	< 10	48	
78532	205	226	390	2	0.07	33	500	102	0.18	< 2	6	9	0.10	< 10	< 10	59	< 10	52	
78574	205	220	355	2	0.07	57	440	14	0.10		0	10	0.09	(10	(10	50	(10	52	
78535	205	226	375	1	0.07	29	440	90	0.13	< 2	6	8	0.09	< 10	< 10	55	< 10	28	
78536	205	226	470	< 1	0.10	31	520	114	0.07	< 2	6	10	0.10	< 10	< 10	63	< 10	238	
78537	205	226	525	1	0.10	39	530	540	0.13	< 2	7	10	0.11	< 10	< 10	66	< 10	852	
78538	205	226	535	2	0.08	31	490	150	0.04	< 2	6	10	0.11	< 10	< 10	58	< 10	200	
785 39	205	226	560	1	0.07	35	480	1460	0.09	< 2	7	9	0.13	< 10	< 10	64	< 10	920	
78540	205	226	445	1	0.08	28	440	358	0.09	< 2	5	9	0.10	< 10	< 10	54	< 10	898 7	-
														C	ERTIFIC		l'a-	$\langle \ $	<u>= </u>

. ÷

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

BURNS, J.

**

190 GRAYE TIMMINS, ON P4N 8K8

Page Nun :2-A Total Page. :2 Certificate Date: 26-AUG-1999 Invoice No. : 19926059 P.O. Number : Account QNC

										CE	RTIFI	CATE	OF A	YSIS	ļ	\9926	059			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	B ppm	Ва ррш	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu p pm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
78541 78542 78543 78544 78545	205 220 205 220 205 220 205 220 205 220 205 220	6 < 5 6 < 5 6 < 5 6 < 5 6 < 5 6 < 5	0.6 0.2 < 0.2 0.2 0.2	1.64 1.63 3.43 0.98 0.96	34 20 78 < 2 < 2	<pre>< 10 < 10 < 10 < 10 < 80 80</pre>	60 70 < 10 < 10 < 10	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.50 1.45 0.80 0.31 0.41	< 0.5 2.5 0.5 < 0.5 < 0.5	14 13 57 94 100	159 130 889 1455 1435	6 29 36 34 13	2.80 2.50 3.59 5.86 5.74	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.08 0.08 (0.01 (0.01 (0.01	20 20 < 10 < 10 < 10	1.41 1.60 5.14 >15.00 >15.00
78546 78547 78548 78549 78550	205 220 205 220 205 220 205 220 205 220 205 220	6 10 5 < 5 5 < 5 6 < 5 6 < 5 5 < 5	< 0.2 0.2 0.2 0.4 < 0.2	1.05 1.01 0.98 1.01 1.00	<pre>< 2 < 2</pre>	90 90 90 100 100	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.26 0.59 0.94 0.44 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	92 88 98 99 97	1730 1620 1535 1520 1460	<pre>< 1 < 1</pre>	6.03 5.76 5.49 5.81 6.19	<pre>< 10 < 10</pre>	<pre>< 1 < < 1 < <</pre>	<pre>< 0.01 < 0.01</pre>	<pre>< 10 < 10</pre>	>15.00 >15.00 >15.00 >15.00 >15.00 >15.00
650101 650102	205 220 205 220	5 < 5 5 < 5	< 0.2 0.2	1.10 1.11	< 2 < 2	110 110	< 10 < 10	< 0.5 < 0.5	< 2 < 2	0.35 0.24	< 0.5 < 0.5	94 94	1350 1200	< 1 < 1	5.65 5.59	< 10 < 10	< 1 < < 1 <	(0.01 (0.01	< 10 < 10	>15.00 >15.00
																	٠,			
					arts then											11		\leq		
													с	ERTIFIC		na-				Ø.

4

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

· BURNS, J.

190 GRAYE TIMMINS, ON P4N 8K8 **

Page Nu⁻⁻⁻⁻:2-B Total Pa Certificate Late: 26-AUG-1999 Invoice No. : 19926059 P.O. Number Account : QNC

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

										CE	RTIFI	CATE	OF A	NALY	(SIS	ł	9926059		
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P Ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	n D D D	V ppm	M M	Zn pp n		
78541 28542 78543 78544 78545	205 226 205 226 205 226 205 226 205 226 205 226	730 730 805 1200 1150	3 2 2 2 2 3 4	0.10 0.10 0.02 0.01 0.01	34 31 817 1995 2010	500 490 250 90 130	5440 216 108 14 8	0.13 0.05 0.03 0.07 0.07	<pre></pre>	8 5 4 4 4	13 24 23 15 14	0.13 0.16 0.14 0.02 0.02	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	67 56 57 32 32	< 10 < 10 < 10 < 10 < 10 < 10	114 638 326 92 58		
78546 78547 78548 88549 88550	205 226 205 226 205 226 205 226 205 226 205 226	1155 1100 1120 1025 1060	3 < 3 < 4 < 3 < 1 <	0.01 0.01 0.01 0.01 0.01	2070 1990 1950 2510 1925	80 80 110 200 80	2 4 10 4 2	0.06 0.06 0.06 0.07 0.07	2 2 2 4 2	5 4 4 5 4	9 12 14 6 6	0.03 0.03 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 33 34 35 32	< 10 < 10 < 10 < 10 < 10 < 10	56 58 126 54 52		
50101 550102	205 226 205 226	925 925	3 < 2 <	0.01 0.01	1905 1925	70 70	2 2	0.04 0.04	2 4	5 5	4 4	0.03 0.03	< 10 < 10	< 10 < 10	33 35	< 10 < 10	58 58		
																1	١		
																20) 		
													С	ERTIFIC		12		- 1	<u></u>

(\mathcal{A})	Ontario	Ministry of Northern Development and Mines

Declaration of Assessment work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

W. COSC CO 290	
Assessment Files Research Imaging	

8

41P14SE2004	2.20463	RAYMOND	

bsections 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this nent work and correspond with the mining land holder. Questions about this collection ment and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

41P14SE2004	2.20463	RAYMOND	900
Instructions:	- For work	performed o	ו Crown Lands before recording a claim, use form 0240
	+ Fiease ly	the or built in	IIIK.

1. Recorded holder(s) (Attach a list if necessary)	A. 204 63			
Name Jomes Burns	Client Number 113825			
Address 190 Graye Crescent	Telephone Number 705-268-4660			
Timmins Ontorio PyN &K&	Fax Number 705-268 - 4660			
Name	Client Number			
Address	Telephone Number			
	Fax Number			

2. Type of work performed: Check (\checkmark) and report on only ONE of the following groups for this declaration.

Geotechnical: prospecting, s assays and work under section	surveys, on 18 (regs)	Physical: drilling strip trenching and associa	ping, C Rehabilitation ated assays				
Work Type	 		Office Use				
Drilling, assays,	reper t	1	Commodity				
		1	Total \$ Value of Work Claimed 30, 956.				
Dates Work From 07 07 Performed Day Month	99 To /º Year Day	09 99 Month Year	NTS Reference				
Global Positioning System Data (if available)	Township/Area Mond	Twp.	Mining Division harder Lake				
	M or G-Plan Number G = 997	2	Resident Geologist District Kizpland habe				
ease remember to: - obtain a work permit from the Ministry of Natural Resources as required;							

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name	James Burns	Telephone Number 705-268-4660		
Address	180, Graye Cresci	+, Timmins, Out	Fax Number 705-268-4660	
Name			Telephone Number	
Address		RECORDED	Fax Number	ì
Name		JUL 1 9 2000	Telephone Number	
Address			Fax Number	
		<u>+</u>		

4. Certification by Recorded Holder or Agent

1	Tana	do hereby certify that I have personal knowledge of the facts set f	orth in
_ ۱, _	James 12	, do hereby certify that i have percental knowledge of the factor	
	(Prin		

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its
completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent	larm	Date July 17/00
Agent's Address 190 Graze Crescent, Timmi	7, Ont 705-268-4660	Fax Number 705-268-4660
0241 (03/97)		
CONCEL RECORDING	RECEIVED	
	JUL 19 2000	
C.E. 10:20 P.M. 716 19 10 11 11 21 31 4 516	GEOSCIENCE ASSESSMENT OFFICE	

JUL 26 102 10:02 FR GEOSCIENCE ASSESSMENT 7056705631 TO 917052684660 P.02/04 May to the time work was performed, at the time work was performed. A map showing the contiguous link must accompany

۰.

 $^{\circ} < <$

	fôrm.		R	actional (1001	1.1 march	NDDQA
	Mining work w mining column	g Cleim Number, Or X as done on other eigible 3 lend, show in this 1 the location number	Number of Clean 7 Units, For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Falue of work applied to this # claim.	Value of work assigned to other # mining claims.	Bank. Value of v to be distributed at a future date
	eg	TB 7827	16 ha	\$20,825	N/A -	\$24,000	\$2,825
		1234567	12	0	\$24,000	0	0
	e g	1234568	2	\$ 8.892	\$ 4,000	D	\$4,892
	1	1227660	16	30,956	15,478	15,448 40	-
	2	1227661	16	0	15.478.	-	_
	3				<i>4</i> 3		
	4				D		
	5				U	PLICATE	
	•						· ·
	"	RECORD	ED				
		JUL-1-9-2220					
	-						
	10						
	11			·		ļ	
	12			<u> </u>	ļ		
	13			<u> </u>	 		
	14			4			
	16			ļ			
		Column Totals	32	10,956	15, 878	15,478	0
2.20	Some prioriti	of the credits claimed in the te the deletion of credits: 1. Credits are to 2. Credits are to 3. Credits are to 4. Credits are to 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	is declaration ma be cut back from be cut back start be cut back aqua be cut back as p be cut back as p	y be cut back. Plea the Bank first, foll ing with the claims ally over all claims dorflized on the att e to be deleted, cre	ase check (*) In the owed by option 2 of listed last, working listed in this declar lached appendix or	e boxes below to show r 3 or 4 as indicated, backwards; or alion; or as follows (describe): k from the Bank first,	v how you wish t
	For Of	lice Use Only	z in necessary,				•
	Kerewed	are the		Deemec	Approved Date	Date Notification	Sent
				Dule Ap	proved	Total Value of Cr	edit Approved
	6541 (23497)	RECE	VED	Approve	d for Recording by Mining	g Recorder (Signature)	·
		GEOSCIENCE AS	ZODJ	JUL	10:55am 26 2000	-	
				GEOSCIEN	ICE ASSESSMENT OFFICE		
	ιt	L 26 '00 10:43		-	7	287 33 0 PAGE	5.02
For Office Use	Only					·	Data Matter at
Received Stamp				Deer	med Approved Dat	e	
				Date	Approved		Total Value of
0241 (03/97)	F	ECEIVE	Di	Арр	roved for Recording	g by Mining Recorde	er (Signature)

JUL 19 2000 GEOSCIENCE ASSESSMENT OFFICE n Sent redit Approved

ଚ୍ଚ	Ontorio	Ministry of Northern Development	Statement of Costs
C	Unitario	and Mines	for Assessment Cre

Credit

Transaction Number (office use) W 0080.00290

Personal Information collected on this for Act, this information is a public record. The collection should be directed to a Provinc 385.	m is obtained under the authority of subsection 6 nis information will be used to review the assess ial Mining Recorder, Ministry of Northern Develop	(1) of the Assessme nent work and corres pment and Mines, 3rd	nt Work Regulation 6/96. Unde bond with the mining land hold Floor 33 Ramser Lake Roa	er section 8 of the Mining er. Questions about this I, Suchury Ontario, P3E
Work Typ e	Units of work Depending on the type of work, list the hours/days worked, metres of drilling, grid line, number of samples, etc.	number of kilometres of	Cost Per Unit of work	Total Cost
Doillins	395 m	ł	57.66 /	22 776.29
Drill supervision, pict	(nis up)			
core logging, sawin	4, 14 days		in clusive	5243.00
review with MNDM, de	liey			
of core & Milor, reportin	/ J			
encys	52 samples	\$	19.26 / sample	1001.52
Associated Costs (e.g. su	pplies, mobilization and demobilization	ation).		
core shed rente	t (6 days)	\$	44.58/d	267.50
telephone trans	chaim maps shit .	nies		189.30
helpt -6 d	au s			900.00
	7			
·				
Tra	Insportation Costs			
miles tax (942 Km)	\$	0.42	395.77
true rental + hul	(t deliver core to MND	H@KL)	- <u>-</u>	183.38
Food	and Lodging Costs			
	RECORDED	Total Value	e of Assessment Worl	30,956.36
Calculations of Filing Discoun	JUL 1 9 2000			
. Work filed within two years of . If work is filed after two years Value of Assessment Work. It	performance is claimed at 100% of t and up to five years after performant this situation applies to your claims,	he above Total ce, it can only be use the calculat	Value of Assessment W claimed at 50% of the ion below:	/ork. Total
TOTAL VALUE OF ASSESSME		x 0.50 =	Total \$ value of	worked claimed.
lote: Work older than 5 years is no A recorded holder may be rec request for verification and/or Minister may reject all or part	t eligible for credit. Juired to verify expenditures claimed correction/clarification. If verification of the assessment work submitted.	in this statement and/or correctio	of costs within 45 days n/clarification is not ma	s of a ide, the
Certification verifying costs:				
Janes Burns	, do hereby certify, that the	amounts shown	are as accurate as ma	y reasonably
(please print full name) e determined and the costs wer	e incurred while conducting assessm	ent work on the l	ands indicated on the a	ccompanying
eclaration of Work form as	holder	1	am authorized to make	e this certification.
(recorded holder, agent, or state company position with	i signing authority)		
	EIVED 19 2000	ames 1	lurn (aly 17/00
GEOSCIEN	CE ASSESSMENT OFFICE			

+

Ontario Ministry of Northern Development and Mines

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Transaction Number (office use) 11 1186 CC 29/ Assessment Files Research Imaging

Personal information collected on this form is obtained under the authority of subsections 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240. - Please type or print in ink.

1. Recorded holder(s) (Attach	a list if necessary)	8.2 0463
Name Jomes Au	irnj	Client Number
Address 150 Graye	Crescent	Telephone Number 705-268-4660
Timmins	Oft. PyNsks	Fax Number 705-268 - 4660
Name	1990 A. S. Charles and A. Lander and A. State and A. Lander	Client Number
Address	RECORDED	Telephone Number
	· JUL 19 2000	Fax Number
2. Type of work performed: Ch	eck (1) and report on only ONE of the following	ng groups for this declaration.
Geotechnical: prospecting, s assays and work under section	surveys, Physical: drilling strip on 18 (regs) I trenching and associ	oping, CRehabilitation Rehabilitation
Work Type		Office Use
Mag, ULF, Galo	gy surveys	Commodity
Line anting Reporting		Total \$ Value of Work Claimed 4279
Dales Work From 07 07 Performed Day Month	99 To /O 09 99 Year Day Month Year	NTS Reference
Global Positioning System Data (if available)	Township/Area Hond + Ray mond typs	Mining Division Acadini to be
	Mor G-Plan Number G-987 + G-3706	Resident Geologist District Kippland baks
Please remember to: - obtain a wo - provide pro - complete a - provide a m - include two	rk permit from the Ministry of Natural Resource per notice to surface rights holders before star nd attach a Statement of Costs, form 0212; nap showing contiguous mining lands that are copies of your technical report.	es as required; ting work; linked for assigning work;
3. Person or companies who p	repared the technical report (Attach a list if	necessary)
Name Jace Burnd		Telephone Number 7017 - 268 - 4660
Address 190 Grane (ne	Traming Out	Fax Number 205-268 - 4660
Name J.B. Boring -1	Excelibur International Concellant	Telephone Number 905 - 271 - 1043
Address 10 Harmtorio St M	Fraissauge, O.t.	Fax Number 905 - 271 - 7259
Name		Telephone Number
Address		Fax Number
4. Certification by Recorded Ho	older or Agent , do hereby certify that I have	personal knowledge of the facts set forth in

1, James

(Print Name) this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent		Date July 17/00
Agent's Address 190 Graye Creo, 7	Emmin, dut Telephone Number 705-268-4660	Fax Number 705-268 - 4660
0241 (03007) PROVINCIAL RECORDING CAFICE - SUDEURY R E C E I V E D JUL 19 2000 A.M. 10:20 P.M. 71519101112111213141516	RECEIVED	

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Transaction Number (office use)

10341 2080

Personal Information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 932 Ramsey Late Hold, Eddburg Ontario, P3E 385.

Work Type	Units of work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
time cuttury	5.38 Km	\$ 321.00 / Km	\$1726.98
Mag survey	4.9 Km	\$ 85.60/Km	419.44
VLF survey	4.9 Km	\$ 38.21/Km	187.25
Geology survey	4.9 Km	38.21 / Km	187:25
Drathing & reporting	1 day	inclusive	374.50
- Geophysical interp.	4	inclusive	477.49
, ,			
Associated Costs (e.g. supplie	es, mobilization and demobilization).		
OBM maps photoc	pies Purolator batteries		60.85
Lelner - 2 days			300.00
	RECORDED		
	HH 19 0000		
Transpo	ortation Costs		
Work Type Units of work Work Type Depending on the type of work, list the number of hours/days worked, metres of drilling, kilometres of grid line, number of samples, etc. Line cuttury 5.38 Mag Survey Mag Survey VLF Survey Drafting & reporting I day Geology Survey Geology Survey Associated Costs (e.g. supplies, mobilization and demobilization). OBM maps photo copies Purolabor JUL 19 JUL 19 JUL 19 JUL 19 Geology Transportation Costs		\$ 0.37 / Km	170.66
clearing roads of	wind fall		374.50
Food and	Lodging Costs		
		<u> </u>	
	Total V	alue of Assessment Work	\$ 4278.92

Calculations of Filing Discounts:

- 1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
- 2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	x 0.50 ≈	Total \$ value of worked claimed.
	· · · · · · · · · · · · · · · · · · ·	

Note:

0212 (03/97)

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a
 request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the
 Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

_____, do hereby certify, that the amounts shown are as accurate as may reasonably

(please print full name) be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

	•	
Declaration of Work form as	holder	_ I am authorized to make this certification.
	(recorded holder, agent, or state company position with signing authority)	

RECEIVED
JUL 19 2000
GEOSCIENCE ASSESSMENT

OFFICE

amis

Ministry of Northern Development and Mines

August 24, 2000

JAMES GORDON BURNS 190 GRAYE CRESCENT TIMMINS, Ontario P4N-8K8 Ministère du Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Dear Sir or Madam:

Submission Number: 2.20463

		Status
Subject: Transaction Number(s):	W0080.00290	Approval
	W0080.00291	Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact BRUCE GATES by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

a the

ORIGINAL SIGNED BY Steve B. Beneteau Acting Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 15155 Copy for: Assessment Library

.

Work Report Assessment Results

Submission Number: 2.20463						
Date Corresponden	ice Sent: August :	24, 2000	Assessor:BRUC	EGATES		
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date		
W0080.00290	1227660	MOND	Approval	August 23, 2000		
Section: 16 Drilling CORE 16 Drilling PDRILL						
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date		
W0080.00291	1227660	MOND, RAYMOND	Approval	August 23, 2000		
Section: 12 Geological GEOL 14 Geophysical MAG 14 Geophysical VLF	3					
Correspondence to	:		Recorded Hold	er(s) and/or Agent(s):		
Resident Geologist			JAMES GORDO	ON BURNS		
NINATU LAKE, UN			There is a contract of the con			
Assessment Files Lit Sudbury, ON	orary					

Railway; single track..... double track county, towns

INDEX TO LAND DISPOSITION

M.N.R. ADMINISTRATIVE DISTRICT KIRKLAND LAKE NUMING DIVISION LARDER LAKE LANG TITLES/ REGISTRY DIVISION TIMISKAMING

			Scale 1	:20 000				
		• 			1049		 20	a Mata
1466	2000	3848			-	7101		14 684
								Feet
		Ce	niqur Inter	val 18 Me	tras			

	I¢	.	-			•	,		•	•		-	-	,		•	•	,	•	•	•	•	
۱.		•		,	•	•	•		•												,		
	•		-			•	•	-	-	•	-		-	• •	•.		•	•		•		•	\sim
١.					•	-	•			•						-	-	-		-			i
Æ		t	•	•	•	-	•	•	•	•	•	•	•	,	-	•	•	•	•	-	,	•	
• •	•	-	-	•	•	•	•	-	-	•	•		-	,	•			•	•	-	•	•	
•		-			•	•	•	-	-	•	•	•	•		-	-	•	-		•		•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	`	`		•	`	•	•	•	`	•	•	•	•	'	`	•	•	•	•	•	
			-		•			-	-	•		•	•	•	•		`	•	•	•	•	,	
		•			-			-		-	•					•	•	•	'	•		-	
	•	•		•	-	•	•	•	•	•			•		•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	-	•	-	•	•	•	•	•	•	•	•	•	-	•	•	к —
		:			:	:	:				,							:	:	:			-
						•			-	•										-			· · · · ·
,				,									-	-	-	_	-	-		-			Δ
				,							,					_				-			
					_				_			_											
												_	_				_						
		-									;			;		:						:	<u></u>
					•	•			•				-			-	-	-					
h	F	,								-		-		-	-	-			-	-			
•	•	-			-			-	-	-		-			•	•	•		-	-		•	
,	•	•	•	•	•	•	•	•	•	•	•	•	•	4	•	•	•		•	•	•	'	
•	•	•		•	•	•			-	•	•	-	-		•	•	•	•	•	-	•	•	
-	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	,	•	•	•	-	• •
	_																						· · · · · · · · · · · · · · · · · · ·

	INRO - Mining Rights Only SRO - Surface Rights Only													
	M + S - N	lining and S	Surface Rights											
Description	Qualax Na.	Date	Disposition	File										
6		اور اندسی												
(R) Mining 8 Inder Order	l Surfoce Rights Order C-L-1079 W-65783.	i Acopened 93, previou	to prospecting, aly withdrawn un:	saic or der										

AREAS WITHDRAWN FROM DISPOSITION

•		•	•	•	-	-	•		•	•		-	-	•	•	-	-	•	•		•	•	•	•	•	•	•	•		•	•		!	•	
•	-	-	•	-	-				•		-	•	-				•	•	•	•		•	•	•	•		•	•		•				¢	
	•	•	•	•	•		,	•			•	•	•				-		•	•		-		-	-					-	*				
•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•		•	•	•	-	•		•	•		•	•	•		C	5
	-	-			-	-			-			-			•	•		•	•				•						•	•	•	-		Ŧ	,
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-					•	•	•	•	•	-	-	0	к м	
•	-	•	:		•	•	•		•	•	•	•	•	•	•	•	•	:	•	•	:	:	•				•	•					¢	Ď	•
•	-		,		,	,						•			,				,								-		,				(D)

THE INFORMATION THAT APPEARS ON THIS MAP HAS BEEN COMPILED FROM VARIOUS SOURCES, AND ACCURACY IS NOT GUARANTEED. THOSE WISHING TO STAKE MIN-ING CLAIMS SHOULD COM-SULY WITH THE MINING RECORDER, MINISTRY OF NORTHERN DEVELOP-MENT AND MINES, FOR AD-DITIONAL INFORMATION ON THE STATUS OF THE LANDS SHOWN HEREON.

THIS MAP SHOWS THE APPROXIMATE LOCATIC OF THE BOUNDARIES OF THE AREA WHICH IS TH SUBJECT OF CURRENT LITIGATION. THE EXACT LOCATION WILL BE SHOWN FOLLOWING CONFIRMATION BY THE PARTIES TO THE ACTION

ARCHIVED MARCH 7, 1995 CIRCULATED AUG. 18, 1992 B.R.B.

.

The disposition of land, location of log fabric and parcel boundaries on this index was compiled for administrative purposes only.

		200	
		ж Е S	
0000	NODTH	1	0
2800	NURIM	501	455 476 487
2700	NORTH	519 + 529 + 552 + 534 + 542 -	509 + 524 + 534 - 531 + 533 -
2600	NORTH	545 + 551 + 576 + 608 + 613 +	557 + 568 + 572 + 577 - 604 +
2500	NORTH	630 + 644 + 660 + 632 + 613 +	607 + 627 + 626 + 642 + 622 +
2400	NORTH	637 + 647 - 655 + 655 + 684 -	644 + 653 + 693 + 667 + 684 +
2300	NORTH	680 + 696 - 702 + 724 + 701 -	643 + 675 - 694 - 706 - 711 -
2200	NORTH	746 + 741 - 758 + 812 + 712 -	719 + 738 - 753 - 758 - 768 -
2100	NORTH	759 + 792 + 835 + 849 - 870 +	805 + 786 - 812 - 840 - 856 -
2000	NORTH	850 - 867 - 906 - 903 - 921 - 961 -	872 - 872 - 985 - 931 - 919 -
1900	NORTH	968 - 1013 - 1010 - 1033 - 1071 -	954 - 979 - 995 - 1024 -
1800	NORTH	1D93 - 1122 - 1097 - 1112 - 1147 -	1067 + 1092 + 1117 + 1106 - 1146 +
1700	NORTH	1175 + 1197 + 1218 + 1236 + 1274 +	1144 1167 1205 1229 1271
1600	NORTH	1295 - 1306 -	1309 +

BURNS PROPERTY RAYMOND/MOND TWP.

PROFILED MAGNETIC SURVEY

HUSSEY GEOPHYSICS

Profile Scale: 1mm = 50nT

Datum Subtracted = 57000nT

Scole 1:5000

FIGURE 7

.

41P14SE2004 2.20463 RAYMOND

220

+ 035 1 1 3 4 0 1 3 NAA 6 Direction 8 Faced 500 300 007 200 00/ 20 -6 0 1:5000 8 3 Instrument : Phoenix VLF -2 u Station Used : NAA - Cutler Maine

sp po ba cd ma jP up rp	- spru - popl - bals - coda - map - jack - while - red	ce ar le pine pine pine			
		tractor	road		
		claim	line		
п		claim	anst		

GEOLOGY									
J.G BURNS PROPERTY									
MOND & RAYM	MOND & RAYMOND TOWNSHIPS								
41 P/14									
AUGUST 1999	DRAWN : J.G.B.								

