Quantec IP Incorporated

Geophysical Survey Assessment Report

> Regarding the
> GROUND MAGNETIC and GRADIENT TDIP
> INDUCED POLARIZATION SURVEYS over the WHISKEYJACK CREEK PROJECT,

Cairo Township, Matachewan Area, ON, on behalf of NORCAN RESOURCES LTD., Vancouver, BC

RECEIVED

TABLE OF CONTENTS

1. INTRODUCTION 3
2. GENERAL SURVEY DETAILS 4
2.1 Location 4
2.2 Access 4
2.3 Survey Grid 5
3. SURVEY WORK UNDERTAKEN 7
3.1 Generalities 7
3.2 PERSONNEL 7
3.3 Specifications 8
3.4 SURVEY Coverage 9
3.5 Instrumentation 11
3.6 TDIP PARAMETERS 11
3.7 MEASUREMENT ACCURACY AND REPEATABILITY 12
3.8 Data Presentation 12
4. SUMMARY INTERPRETATION 14
4.1 OVERVIEW 14
4.2 Geophysical Results 15
5. CONCLUSION AND RECOMMENDATIONS 21
APPENDIX A: Statement of Qualifications
APPENDIX B: Theoretical Basis and Survey Procedures
APPENDIX C: Production Logs
APPENDIX D: Instrument Specifications
APPENDIX E: Operator Comments
APPENDIX F: List of Maps
APPENDIX G: Plan Maps
LIST OF FIGURES AND TABLES
Figure 1: General Property Location 4
Figure 2: Whiskeyjack Property Location 6
Figure 3: Gradient Array Layout 8
Table I: Gradient Survey Coverage. 9
Table II: Magnetic Survey Coverage 10
Table III: Decay Curve Sampling 12
Table N: Recommended Targets at Whiskeyjack Creek. 16

1. INTRODUCHON

- OIP Project No: P177
- Project Name: Whiskeyjack Creek Project
- General Location: Matatchewan, Ontario
- Survey Period: \quad February $23^{\text {rd }}$ to March $28^{\text {TH }}, 1997$.
- Survey Type: Time Domain Induced Polarization.
- Client:

Norcan Resources Ltd.

- Clients Address: \quad Suite 1500, 89 West Pender Street Vancouver, British Columbia V6C 1H2
- Representative: Michael Zuber, Gino Chitaroni
- Objectives:

1. Exploration objectives:

a) To locate and delineate potential gold (\pm copper) bearing sulphide mineralization, within shear-hosted, subvertical, silicified and carbonatealtered structures, associated with the Matachewan Fault/Larder LakeCadillac Break system, similar to the Royal Oak YoungDavidson/Consolidated Matachewan Deposit.
b) To confirm and re-locate anomalies identified in previous geophysical surveys, notably IPIResistivity targets, as noted in MPH Consulting Ltd. consulting report (July, 1996), and to expand the area of coverage away from the main Newmont workings located in the central portion of the property.
2. Geophysical objectives:
a) Magnetics: To assist in geologic mapping of possible lithologic, structural and alteration features, potentially significant to mineralization.
Furthermore, to differentiate IPIResistivity anomalies relating to magnetite from other higher priority metallic/sulphide mineralization. The "walkingmagnetic" continuous profiling technique was chosen based on its state-of-the-art, high lateral resolution characteristics.
b) IPIResistivity: To detect and delineate potentially gold-bearing, structurally-controlled/qtz-silicified, disseminated sulphide mineralization, based on the combination of a favourable high resistivity association and a discordant EW to NE trend orientations of the targeted axes. Furthermore, to assist in geologic mapping and exploration, to depths up to 300 metres. The gradient technique was chosen based on its high resolution, deep penetration and rapid reconnaissance capabilities.

- Report Type: Summary interpretative, suitable for assessment filing.

2. GENERAL SURVEY DETALLS

2.1 Location

- Township or District:
- Province or State:
- Country:
- Nearest Settlement:
- NTS Map Number:
- UTM Coordinates:

Cairo Township
Ontario
Canada
Matachewan, Ontario
41 P/15
grid centered on approx. $532,000 \mathrm{mE}, 5,311,000 \mathrm{mN}$

2.2 Access

- Base of Operations:
- Mode of Access:
- Nearest Highways:

2.3 SURVEY GRID

- Coordinate Reference System:
- Established by:
- Method of Chaining:
- Line Direction:
- Line Separation:
- Station Interval:
- Claims Covered by Project Area ${ }^{1}$:
- Claims Covered by Survey:

Local cut and picket survey grids (non UTM)
Prior to survey execution by Norcan Resources Ltd. (see Fig. 2)

Linear, Metric
N150 ${ }^{\circ}$ ((Grid N-S)
100 m
25m

1202755	1202873	1203523
1205560	1205572	1205573
1223379	1223380	1223381
1223382	1223383	1223384
1223385	123386	778374
778375	802370	802649
803508	803509	821304
821306	821312	821313
821314	821315	821585
821591	821592	821593
842978	84153	843154
843155	843157	843158
843159	843160	843349
843350	843882	843890
1202755	1202873	1203523
1205560	1205572	1205573
1223380	1223381	1223382
1223383	1223384	778374
778375	802370	802649
803508	803509	821304
821306	821312	821343
821314	821315	821585
821591	821592	821593
843153	843154	843155
843157	843158	843159
843160	843349	843350
843882	843890	(see

[^0]

3. SURVIY WORK UNDERTAKEN

3.1 Generalites

- Survey Dates:
- Survey Period:
- Survey Days (read time):
- Weather Days:
- Mob/Demob Days:
- Survey Preparation/Test Days: TDIP: 1

TFM: 2

- Total km Surveyed:

TDIP: 122.375 km (incl. reconnaissance, overlap and re-surveys)
TFM: 123.925 km (incl. base/tie line, overlap and re-surveys)

3.2 Personnel

- Supervisor:
- Project Manager:
- Field Assistants:
- Data Processing:
- Interpretation:

GR Jeff Warne, South Porcupine, ON
Neil Maukonen, Severn Bridge, ON
David Guthro, Sydney, NS
Rob McKeown, Bracebridge, ON
Jean-Louis Maheux, Kirkland Lake, ON Carmen Vucko, Kirkland Lake, ON
Eric Hotvedt, Ramore, ON
Ryan O'Hare, North Bay, ON Ivan Dalby, Newmarket, ON
N. Maukonen

Christine Williston, South Porcupine, ON
Jean Legault, Timmins, ON
C. Williston

3.3 SpECIFICATIONS

3.3.1 TDIP Surveys

- Array:
Gradient (see Fig. 3)
- AB (Transmitter Dipole Separation):

2000m

- MN: 25m
- Sampling Intervai: 25m
- Total Gradient AB Blocks: 24 labeled A to X
- Arial Coverage:
approximately $10 \mathrm{~km}^{2}$

Figure 3: Gradient Arrav Lavout.

3.4 Survey Coverage

3.4.1 TDIP Surveys

- Reconnaissance:
- Overlap:
92.875 km (not incl. re-surveys)
24.55 km

LINE	Southern Extent	Northem Extent	Length (m)
14+00W	400 S	250N	650
13+00W	4005	350 N	750
12+00W	4505	375N	825
11+00W	425 S	475N	900
10+00W	1025 S	600 N	1625
$9+00 \mathrm{~W}$	10505	900 N	1950
8+00W	10505	1025 N	2075
7+00W	10505	1000 N	2050
6+00W	10505	1100 N	2150
5+00W	10505	1200 N	2250
$4+00 \mathrm{~W}$	1050 S	1200 N	2250
3+00W	1050 S	1125 N	2175
2+00W	10005	1000 N	2000
1+00W	10505	4755	575
-	BL	1250N	1250
0+00E	1050 S	500 S	550
*	750 N	1250 N	500
$1+00 \mathrm{E}$	1050 S	525S	525
"	675 N	1275N	600
$\underline{2+00 E}$	1050S	550 S	500
*	600 N	1275N	675
$3+00 E$	1050S	BL	1050
"	550 N	1275N	725
4+00E	1050 S	BL	1050
"	200N	1250 N	1050
$5+00 E$	1050 S	1250 N	2300
6+00E	10505	1200 N	2250
7+00E	10505	1200 N	2250
$8+00 \mathrm{E}$	10505	1200N	2250
$9+00 \mathrm{E}$	10505	1150 N	2200
10+00E	10505	1100 N	2150
11+00E	10755	1050 N	2125
12+00E	10505	1000N	2050
$13+00 \mathrm{E}$	1050 S	775 N	1825
$14+00 E$	1050 S	700 N	1750
15+00E	10255	750 N	1775
16+00E	1050 S	675 N	1725
17+00E	1050 S	600 N	1650
18+00E	10505	500 N	1550
$19+00 \mathrm{E}$	10505	500 N	1550
20+00E	975 S	525N	1500
21+00E	1025S	475N	1500
22+00E	10255	425N	1450
23+00E	1050 S	375 N	1425
24+00E	10505	325N	1375
25+00E	10505	500N	1550
26+00E	10505	575N	1625
27+00E	1050 S	600 N	1650
28*00E	1050 S	850 N	1900
29+00E	1050 S	900 N	1950

Table l: Gradient Survey Coverage.

LRNE	Southem Extent	Northem Extent	Length (m)
$30+00 \mathrm{E}$	1050 S	850 N	1900
$31+00 \mathrm{E}$	1050 S	850 N	1900
$32+00 \mathrm{E}$	1050 S	800 N	1850
$33+00 \mathrm{E}$	1050 S	700 N	1750
$34+00 \mathrm{E}$	1050 S	675 N	1725
$35+00 \mathrm{E}$	1050 S	100 N	1150
$36+00 \mathrm{E}$	1050 S	75 N	1125
$37+00 \mathrm{E}$	1050 S	150 N	1200
$38+00 \mathrm{E}$	1025 S	400 N	1425
$39+00 \mathrm{E}$	850 S	550 N	1400
$40+00 \mathrm{E}$	700 S	725 N	1425
TOTAL			92875

Table I: Gradient Survev Coverage. (cont.)

3.4.2 TFM Surveys

- Line Coverage:
- Base/Tie Line Coverage:
10.4 km

LINE	Southern Extent	Northerm Extent	Length (m)
BLO+00N	1600W	4025E	5625
TL10+50S	975W	3800 E	4775
14+00W	600 S	250 N	650
13+00W	7255	350 N	1075
12+00W	9005	375 N	1275
11+00W	9505	475N	1425
10+00W	1000 S	650 N	1650
$9+00 \mathrm{~W}$	10505	900 N	1950
8+00W	10005	1000 N	2000
7+00W	10505	1000 N	2050
6+00W	10505	1200 N	2250
5+00W	10505	1200 N	2250
4+00W	10755	1175 N	2250
3+00W	10505	1125N	2175
2+00W	975S	1000 N	1975
1+00W	BLON	1350 N	1350
-	1050S	475S	575
0+00E	775N	1250 N	475
$\stackrel{\square}{*}$	10505	5005	550
1+00E	700 N	1275N	525
\square	1050S	$525 S$	600
$2+00 E$	1050S	5505	500
"	650 N	1275N	625
$3+00 E$	1050S	275N	1325
-	600 N	1275N	675
4+00E	1050 S	1275N	2325
5+00E	1050S	1275N	2325
6+00E	10505	1250 N	2300
7+00E	10505	1200 N	2250
$8+00 E$	1050 S	1200 N	2250
9+00E	1050S	1150N	2200
10+00E	10505	1100 N	2150
11+00E	10755	1050N	2125
$12+00 \mathrm{E}$	10505	1000 N	2050
13+00E	10505	775 N	1825
14+00E	1050 S	725 N	1775

Table II: Magnetic Surver Coverage.

LINE	Southem Extent	Northem Extent	Length (m)
15+00E	1050S	700 N	1750
$16+00 \mathrm{E}$	1050S	675N	1725
17+00E	1050 S	625 N	1675
18+00E	10505	500 N	1550
19+00E	1050 S	525 N	1575
20+00E	10005	525 N	1525
$21+00 \mathrm{E}$	1000S	475N	1475
22+00E	1025 S	425 N	1450
23+00E	10505	375N	1425
24+00E	1050S	675 N	1725
25+00E	1050 S	500 N	1550
$26+00 \mathrm{E}$	10505	575 N	1625
27+00E	1050 S	625 N	1675
28+00E	1050 S	925 N	1975
29+00E	1050S	900 N	1950
30+00E	1050 S	875 N	1925
$31+00 \mathrm{E}$	1050 S	850 N	1900
32+00E	1050 S	800 N	1850
$33+00 \mathrm{E}$	10505	725 N	1775
34+00E	1050 S	675 N	1725
$35+00 \mathrm{E}$	1050 S	100 N	1150
$36+00 \mathrm{E}$	10505	75N	1125
37+00E	1050S	150 N	1200
$38+00 \mathrm{E}$	1025S	400N	1425
$39+00 \mathrm{E}$	8505	575 N	1425
40+00E	7005	725N	1425
TOTAL			105725

Table II: Magnetic Surver Coverage. (cont.)

3.5 Instrumentation

3.5.1 TDIP Surveys

- Receiver.
- Transmitter:
- Power Supply:
3.5.2 TFM Surveys
- Magnetometers:

BRGM/IRIS ELREC IP-6 (6 channel / Time Domain)
Huntec Mk4 ($7.5 \mathrm{kWatt} / 100-3200 \mathrm{~V}$)
Honda 20 HP / Bendix 18 kVA (400Hz @ 120V) motor generator system.

Two (1 base-station 1 mobile transceiver) GEM Instruments Ltd., GSM-19 model (Overhauser-type proton precession)

3.6 TDIP PARAMETERS

- Input Waveform:

Square wave @ $0.0625 \mathrm{~Hz}, 50 \%$ duty cycle.

- Receiver Sampling Parameters: QIP custom windows (see Table II)
- Measured Parameters:

1. Chargeability in mVN across max. 10 time-gates, plus area under decay curve.
2. Primary Voltage in millivolts and Input Current in milli-amperes for Resistivity in Ω-m calculated according to Gradient Array geometry factor ${ }^{2}$.

Slice	Duration (msec)	Start (msec)	End (msec)	Mid-Point (msec)
T_{d}	60	0	60	
T_{1}	60	60	120	80
T_{2}	60	120	180	150
T_{3}	60	180	240	210
T_{4}	60	240	300	270
T_{5}	360	300	660	480
T_{6}	360	660	1020	840
T_{7}	360	1020	1380	1200
T_{8}	720	1380	2100	1740
T_{9}	720	2100	2820	2460
T_{10}	720	2820	3540	3180
Total T_{p}	3540			

Table III: Decav Curve Sampling

3.7 Measurement Accuracy and Repeatabilty

- Chargeability:
- Resistivity:
- Magnetics:
generally less than $\pm 0.5 \mathrm{mVN}$ but acceptable to $\pm 1.0 \mathrm{mVN}$.
less than 5\%cummulative error from Primary voltage and input current measurements.
instrument accuracy $= \pm 0.1 \mathrm{nT}$
survey accuracy $= \pm 5 \%$
base/tie line repeatability $=<10 \mathrm{nT}$ in areas of low magnetic gradient

[^1]
3.8 Data Presentation

3.8.1 TDIP Surveys

- Maps:

Geophysical Survey Plan Maps:

Geophysical Compilation Plan Map:

Posted and contoured (unleveled) Total Chargeability and Apparent Resistivity compiled from all gradient AB blocks, plotted at 1:5000 scale.

Interpreted chargeability axes, according to strength (strong, moderate, weak) and resistivity association (high, nil, low), and magnetic lineaments (major, minor) with claim/line locations identified, plotted at 1:5000 scale.

- Digital:

Raw data:
Processed data:

IP-6 digital dump file (See also Appendix D)
ASCII Geosoft .XYZ format.
using the following format:
Column $1=\mathrm{EW}(\mathrm{X})$ line position (m)
Column $2=\quad \mathrm{NS}(\mathrm{Y})$ station position (m)
Column $3=\quad$ Apparent Resistivity $(\Omega-\mathrm{m})$
Column $4=$ Total Chargeability (mVN)
Column $>5=$ TDIP Spectral Estimates, derived using IPREDC ${ }^{\text {M }}$

3.8.2 TFM Surveys

- Maps:

Total Field Magnetics:

- Digital:

Posted and contoured plan map of Total Magnetic Field (diurnally corrected), plotted at $1: 5000$ scale.

Daily raw files and processed data (Geosoft .XYZ format) on $3.5^{\prime \prime} \mathrm{HD}$ (1.44 Mbytes) diskette(s)
a) raw data files, according to acquisition date (DDMMYYk.dmp), where DDMMYY are the day, month and year and k represents either B (base station), or C (diurnal corrected), in GSM-19 format (refer to manual)
b) processed XYZ ASCII data file, according to grid (whiskey.xyz) using the following format:

Column 1: \quad EW line or base/tie station position (m)
Column 2: \quad NS station or base/tie line position (m)
Column 3: \quad Station position (m)
Column 4: Time
Column 5: Total magnetic field - uncorrected (nanoTeslas)
Column 6: Total magnetic field - diurnal-corrected (nanoTeslas)

4. SUMMARY INTERPRETATION

4.1 Overview

The gradient IPIResistivity and ground magnetic surveys over the Whiskeyjack Creek Property were designed to help detect potential gold mineralization associated with disseminated sulphides, from surface to 300 m depths. The target mineralization is the Cadillac-Larder Lake Breaktype, where $<5 \%$ disseminated Au-bearing pyrite (\pm chalcopyrite) occurs in silicified to carbonate altered mafic intrusives and volcanics, along discordant, subvertical structurally-controlled shears, associated with the Matachewan Fault, a splay of the CLLB ${ }^{3}$. The Gradient IP and "walking " ground magnetic surveys were chosen based on their rapid reconnaissance, high resolution and deep penetration characteristics.

The property is underlain through its center by EW to ENE trending (grid ESE to EW) nearsubvertically dipping Archean mafic volcanics, and lesser komatiites, felsites and interflow metasediments, which are intruded by nearly concordant/confomable syenites and qtz-diorites to the east and mafic to ultramafic intrusives to the west. The Archean rocks in the far-eastern portion of the property are overlain by flat-lying Huronian Cobalt Group metasedimentary cover rocks. Numerous NS oriented Matachewan diabase dykes are also present throughout the property, Round Lake Batholith gneisses border to the south, and Cairo Stock syenites occur to the north. Structurally, the property is crosscut by ENE to NE (grid EW to ENE) shear/fault zones, which are most significant to mineralization, as they relate to the Matachewan Fault, interpreted to be the south branch of the Ca-dillac-Larder Lake Break, which parallels hwy. 66, just north of the property, and hosts the Royal Oak Young-Davidson/Consolidated Matachewan Deposit, further west in Powell Twp. The NW-SE trending (grid NS) Montreal River Fault is a later/post mineral structure which follows Hwy. 65 in the central portion of the property. Gold mineralization is present in a number of lithologic settings, including mafic to altered volcanics, iron formation, sediments, and mafic to ultramafic intrusives.

Previous exploration work on the property, dating from the 1950's, is considerable but not comprehensive - with limited DDH-drilling, and concentrating in the central and north-central portions of the property near St. Paul Lake, where numerous rich gold showing occur. Geophysical surveys include:

1) VLF-EM and HLEM/Maxmin surveys by Sylva Explorations, in 1979, identified a 300 m strike length EW conductive zone near L13E/BLO (ref. MPH Compilation Map \# 1731-001, 07/96).
II) Dipole-dipole induced polarization survey by Newmont Exploration, in 1979-80, over a limited area $\left(<0.5 \mathrm{~km}^{2}\right)$ which defined five (5) targets, i.e. " A " $=\mathrm{L} 23 \mathrm{E}-25 \mathrm{E} / 050 \mathrm{~S}$, " B " $=\mathrm{L} 21 \mathrm{E}-$ 22E/100S, "C" L23E/450S, "D" $=25.5 \mathrm{E} / 450 \mathrm{~S}$, and " E " $=$ L22E-L25E/50N (IBID).
iii) Airborne magnetics. EM and VLF-EM surveys by Falconbridge Ltd., in 1985-86, which respectively identified the dominant ENE lithologic trends and major NW structural trends, bedrock topographic/lake bottom features, and a bedrock conductive zone, of 300 m length, extending from L25E/200S to L28E/150S (IBID).

Apparently, none of these geophysical anomalies have been DDH-tested or trenched.

[^2]
4.2 Geophysical Results

The present Gradient IPIResistivity and ground Magnetic coverage at Whiskeyjack Creek have systematically explored a large portion of the property, extending the geophysical area of investigation beyond the immediate zone of interest which is limited to the central portion of the property. The results successfully define signatures associated with a wide variety of geologic features, potentially representing lithologies, structures and contacts, chemical alteration and, more importantly, indications of disseminated sulphide mineralization, likely to represent significant drill-targets. The following is a brief description of the salient results of the surveys.

- Ground Magnetics: The ground total field magnetics results display an unusually high range in values, spanning $50 \mathrm{k}-74 \mathrm{knT}$ (59 knT avg.), which is consistent with large variations in magnetic susceptibility, principally related to important concentrations of magnetite. Major and minor magnetic lineaments have been interpreted in the present study and are shown in Appendix G. The diumally corrected magnetic contour map is dominated are a major band of highly magnetic material, largely situated in the north-center of the property, which coincides with the mafic to ultramafic rocks (MPH geologic compilation map) - although it appears to also encompass adjacent volcano-sedimentary units, suggesting possible mixed lithologic(ultramafic flows, banded magnetite \pm pyrrhotite) and intrusive (concordant mafic-ultramafic dykes) sources. This unit trends grid ESE-WNW, and extends more than 3.5 km in strike-length, from beyond the northwest corner of the property and pinching south of BLO near L34E. It is formed by separate multiple, discontinuous, mainly paralleling but occasionally discordant horizons (likely faulted), and numbering as many as six across its $500-600 \mathrm{~m}$ width. The main band also contains numerous short discordant (grid EW to NE) magnetic lineaments, representing either Matachewan dykes, other syn-volcanic mafic dykes, block faulting / displacement and/or magnetite/pyrrhotite mineralization. The band also contains several distinct areas of magnetic low, relating either to remanent magnetism or alteration/magnetite depletion which may be significant to mineralization and which may be better clarified following more extensive geologic mapping. in contrast, a deep ESE-WNW linear band of magnetic low bordering the main magnetic horizon is a source-effect, due to the $\mathrm{N}-55^{\circ} \mathrm{N}$ magnetic field inclination, and is unrelated to geology

Several other strike extensive but thinner and more isolated concordant magnetic lineaments also occur south of the BL and NE of the main magnetic zone, and likely represent closely lithologic/intrusive units similar to those within the main banded zone. Numerous, more weakly magnetic and discordant NNE-SSW trending lineaments occur throughout the property, and likely represent Matachewan dykes, but are generally poorly resolved/defined due to the shallow angle to the profiles - however at least six can be roughly followed across the north to south extents of the survey area. The post volcanic/tectonic granitoid and syenitic intrusive contacts along the northern and southern perimeters of the survey areas are not readily defined - pointing to a lack of mafic material and/or contact-metamorphism in either the surrounding volcanics and intrusives. Of note, the mafic/uitramafic units mapped south of the baseline and west of Hwy. 65 also appear to contain only weak amounts of magnetite - in marked contrast to the main zone.

Evidence of fault-fracture structures is indicated by well-defined offsets and disruptions of the main band and the other lineaments, along discordant, NE trends which coincides with the key LLCB fault orientation. The most significant break in the main band is a distinctive grid NE trending disruption and zone of magnetic low centred along L7E/750N, which is an unmapped structure. The Montreal River Fault or its splay which parallels Hwy. 65 also appears to coincide with a grid NNW magnetic contact or break. Other structural features of interest will likely become apparent when comparing more detailed geologic evidence against the ground magnetics data. As a final note, while both powerlines present on the property (grid NNW-trending and paralleling Hwy. 65 ; the other cross-cutting the property and grid ESE-WSW trending) disrupted/precluded magnetic measurements across $>50 \mathrm{~m}$ intervals along each profile surveyed (see operator comments in Appendix $E)$, neither appears to have had an obvious, anomalous influence on the magnetic results.

- Gradient IPIResistivity: The IP survey results are marked by a large number of anomalous axes, having a broad range in resistivity association (high, nil, low), trend-orientation (discordant, concordant) and strength (weak to very strong) - the largest concentration and strongest of which generally coincide with the main, multi-horizon magnetic zone, previously described. Like the magnetics data, display an unusually broad range in values, with apparent resistivities varying between 60 to 80,000 ohm-metres ($4 \mathrm{k} \Omega-\mathrm{m}$ avg.), and chargeabilities ranging up to $65 \mathrm{mVN}(8.5 \mathrm{mVN}$ avg.). These extreme variations in resistivity (>3 decades) are consistent with the presence of strong, contrasting chemical alteration/porosity (high $\rho=$ silicification \pm carbonitization $/$ mod-low $\rho=$ clay/chlorite) associated with fault-fracture structures, and also the contrasting lithologic types (modhigh $\rho=$ felsites $/ \bmod \rho=$ mafites $/$ low $\rho=$ ultramafites). More significantly, the unusually high ranges in chargeability are consistent with sulphide mineralization ranging from disseminated (<1020 mVN) to stringer/semi massive ($>25 \mathrm{mVN}$) and likely also graphite and/or pyrthotite, in the more strike extensive, highly polarizeable, concordant low resistivity horizons. Finally, as in the magnetic survey results, both the IP and resistivity plan maps display two distinctive, cross-cutting anomaly trends: 1) grid WNW-ESE being the dominant trend, relating to stratigraphic/lithologic mineralization, and 2) grid EW to ENE-WSW trend, interpreted to represent discordant, structurally-controlled mineralization, according to the target model.

The chargeability anomalies identified in the Whiskeyjack Creek IPIResistivity results have been categorized according to their relative strength (questionable, weak, moderate, strong, very strong), classified according to their resistivity association (high ρ, low ρ, nil/contact). The anomalies have also been correlated from line-to-line into major, moderate and minor axes on the basis of a) their resistivity association, b) the regional geologic/geoelectric strike-trends, and c) similarities in anomaly character. In order to better visualize the relationships between the IP and Resistivity parameters, contrasting zones of high/low resistivity have also been identified. Based on these results, interpreted zones of discordant high resistivity are also identified, as they potentially relate to key structurally-controlled/hosted quart/carbonate altered shears - some of which also host coincident IP anomalies. IP anomalies retaining the greatest interest, on the basis of the geophysics alone (strength, strike-length) and the target model (high ρ, EW to ENE strike) are described below:

No.	LINE	STATION	MAGNETIC ASSOCIATION	PRIORITY	COMMENTS
1.	$\begin{aligned} & 1400 \mathrm{~W} \\ & 1300 \mathrm{~W} \\ & 1200 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 125 S \\ & 112 S \\ & 088 S \end{aligned}$	Edge Weak None	2	Grid ENE trending, moderate to mod-strong IP axis, coincides with discordant ENE high res. zone, cross-cuts weak concordant magnetic lineament, lies in volcanics, open to SW.
2.	$\begin{aligned} & 900 \mathrm{~W} \\ & 800 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 088 \mathrm{~N} \\ & 112 \mathrm{~N} \end{aligned}$	Edge Strong	2	Grid ENE trending, moderate IP axis, coincides with center of longer, discordant ENE high res. zone, partly coincident with near concordant EW magnetic lineament, lies in mafic-ultramafics.
3.	$\begin{aligned} & 800 \mathrm{~W} \\ & 700 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 738 \mathrm{~N} \\ & 788 \mathrm{~N} \end{aligned}$	None Edge	2	Grid NE trending, mod-strong but short IP axis, coincides with similar short, NE high res. zone, strike extension of magnetic lineament, lies in mafic-ultramafic intrusive.
4.	700W 600W 500W	$\begin{aligned} & 988 \mathrm{~N} \\ & 1025 \mathrm{~N} \\ & 1038 \mathrm{~N} \end{aligned}$	None Strong Strong	2	Grid ENE trending, moderate IP axis, coincides with shorter discordant ENE high res. zone, partly coincident with major near-concordant EW mag. lineament, lies in volcanics, NE ends at powerline
5.	700W 600W 500W	$\begin{aligned} & 388 \mathrm{~N} \\ & 388 \mathrm{~N} \\ & 388 \mathrm{~N} \end{aligned}$	None Strong Edge	2	Grid EW trending, moderate IP axis, lies in nearconcordant EW high res. rocks, on strike between two ENE high ρ zones, cross-cuts SE concordant magnetic lineament, in volcanics but extends from ultramafic-mafic unit.

Table IV: Recommended Targets at Whiskeviack Creek.

No.	LINE	STATION	$\begin{aligned} & \text { MAGNETIC } \\ & \text { ASSOCIATION } \end{aligned}$	PRIORITY	COMMENTS
6.	$\begin{aligned} & 500 \mathrm{~W} \\ & 400 \mathrm{~W} \\ & 300 \mathrm{~W} \\ & 200 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 438 N \\ & 450 \mathrm{~N} \\ & 488 \mathrm{~N} \\ & 525 \mathrm{~N} \end{aligned}$	Strong None Strong Edge	1	Grid ENE trending, strike-extensive, moderate to very strong IP axis, coincides with discordant ENE high res. zone, cross-cuts major nearconcordant NW-SE magnetic lineaments and strongest IP occurs in nileres. and highly mage netic portion (possible carbonate-altered uttramafic?), lies in volcanics but extends between two mapped ultramafic-mafic intrusives.
7.	$\begin{aligned} & 100 \mathrm{E} \\ & 200 \mathrm{E} \\ & 300 \mathrm{E} \end{aligned}$	$\begin{aligned} & 1188 \mathrm{~N} \\ & 1212 \mathrm{~N} \\ & 1238 \mathrm{~N} \end{aligned}$	Strong Low Edge	2	Grid ENE trending, moderate to strong IP axis (or possibly three separate/unrelated anomalies) partly coincides with discordant ENE high res. zone, cross-cuts concordant ESE magnetic fineaments and lies within magnetic low (alteration/depletion?), lies in volcanics.
8.	$\begin{aligned} & 100 \mathrm{E} \\ & 200 \mathrm{E} \\ & 300 \mathrm{E} \end{aligned}$	$\begin{aligned} & 1062 \mathrm{~N} \\ & 1088 \mathrm{~N} \\ & 1100 \mathrm{~N} \end{aligned}$	Strong Edge Edge	1	Grid ENE trending, strike extensive and strong IP axis, coincides with discordant ENE high res. zone, cross-cuts/extends between 2 concordant WNW trending magnetic lineaments, lies along volcanic/silicic intrusive contact.
9.	$\begin{aligned} & 300 E \\ & 400 E \end{aligned}$	$\begin{aligned} & \hline 862 \mathrm{~S} \\ & 825 \mathrm{~S} \end{aligned}$	Edge None	2	Grid NE trending, short, moderate IP axis, lies at NE edge of longer, discordant NE high res. zone and on-strike with weaker, discordant IP axis, cross-cuts weak, concordant ESE magnetic lineament, lies in thin volcanic, north of contact.
10.	$\begin{aligned} & 500 \mathrm{E} \\ & 600 \mathrm{E} \\ & 700 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 362 S \\ & 338 S \\ & 312 S \end{aligned}$	Edge Weak Edge	2	Grid ENE trending, moderate IP axis, coincides with discordant high res. zone, cross-cuts weakly discordant magnetic lineament, lies in mafic-ultramafic, just south of volcanic contact.
11.	$\begin{aligned} & 600 \mathrm{E} \\ & 700 \mathrm{E} \\ & 800 \mathrm{E} \\ & 900 \mathrm{E} \end{aligned}$	$\begin{aligned} & 188 \mathrm{~S} \\ & 175 \mathrm{~S} \\ & 175 \mathrm{~S} \\ & 175 \mathrm{~S} \end{aligned}$	Major Low None None	1	Grid EW trending, strong to very strong and strike extensive IP axis, extends discordantly across a magnetic, high res. unit into a discordant ENE high res. zone, lies in volcanics.
12.	$\begin{aligned} & 600 \mathrm{E} \\ & 700 \mathrm{E} \\ & 800 \mathrm{E} \\ & \\ & 600 \mathrm{E} \\ & 700 \mathrm{E} \end{aligned}$	$\begin{aligned} & 438 \mathrm{~N} \\ & 450 \mathrm{~N} \\ & 488 \mathrm{~N} \\ & 500 \mathrm{~N} \\ & 512 \mathrm{~N} \end{aligned}$	None Edge Major Edge Edge	1	Two paralleling, grid ENE trending, strong IP axes, occur within a longer discordant ENE high res. zone, extend SWi from major, concordant magnetic lineaments, lies in silicic intrusive (?), 300 m NW of Newmont gold showings.
13.	$\begin{aligned} & 500 E \\ & 600 E \end{aligned}$	$\begin{aligned} & 912 \mathrm{~N} \\ & 912 \mathrm{~N} \end{aligned}$	Edge Major	2	Grid EW trending, strong but short strike length IP axis, extends along south contact of weakly discordant high res. unit, cross-cuts concordant magnetic lineament, lies in silicic intrusive rocks.
14.	$\begin{aligned} & \hline 500 \mathrm{E} \\ & 600 \mathrm{E} \end{aligned}$	$\begin{aligned} & 988 \mathrm{~N} \\ & 1012 \mathrm{~N} \end{aligned}$	Edge Edge	1	Grid ENE trending, strong IP axis, occurs between two discordant ENE high res. zones, also forms center of longer nil to high res. axis occuring at contacts. Partly coincident but crosscutting a major near discordant magnetic axis, lies in silicic intrusive, centred on ENE fault.
15.	500 E 600E 700E	$\begin{aligned} & 1088 N \\ & 1112 N \\ & 1112 N \end{aligned}$	Edge Edge Edge	1	Grid ENE trending, strong IP axis, coincides with discordant ENE high res. zone, on strike with similar high priority structure 100 m west, crosscuts two discordant magnetic lineaments, occurs in silicic intrusive, just south of volcanic contact.
16.	$\begin{gathered} 800 \mathrm{E} \\ 900 \mathrm{E} \\ 1000 \mathrm{E} \end{gathered}$	$\begin{aligned} & 888 \mathrm{~N} \\ & 912 \mathrm{~N} \\ & 912 \mathrm{~N} \end{aligned}$	Edge Minor Edge	1	Grid ENE to EW trending, mod to strong IP axis, coincides with similar discordant ENE high res. zone, cross-cuts concordant magnetic linear, lies in silicic intrusive rocks, west of volcanic contact.

Table II (continued): Recommended Targets at Whiskeviack Creek

\begin{tabular}{|c|c|c|c|c|c|}
\hline No. \& LINE \& STATION \& MAGNETIC ASSOCIATION \& PRIORITY \& COMMENTS \\
\hline 17. \& \[
\begin{aligned}
\& 1000 \mathrm{E} \\
\& 1100 \mathrm{E}
\end{aligned}
\] \& \[
\begin{aligned}
\& 462 \mathrm{~N} \\
\& 462 \mathrm{~N}
\end{aligned}
\] \& Major Edge \& 2 \& Grid EW trending, strong IP axis, crosscuts narrow, longer and strike extensive discordant, ENE high res. lineament, cross-cuts a major concordant ESE magnetic lineament, on strike with other high priority linear 100 m west, in volcanics \\
\hline 18. \& \[
\begin{aligned}
\& 1000 \mathrm{E} \\
\& 1100 \mathrm{E} \\
\& 1200 \mathrm{E} \\
\& \\
\& 1200 \mathrm{E} \\
\& 1300 \mathrm{E}
\end{aligned}
\] \& \(262 S\)
\(250 S\)
\(212 S\)
\(262 S\)
\(262 S\) \& \begin{tabular}{l}
Major \\
Edge \\
Edge \\
Major \\
Edge
\end{tabular} \& 2 \& Two near-paralleling, grid ENE-EW trending, moderate IP axes, coincide with discordant ENE high res. zone, occur on edges of a near concordant EW to ESE magnetic lineament, lies on contact between silicic and ultramafic intrusives. \\
\hline 19. \& \[
\begin{aligned}
\& \hline 800 \mathrm{E} \\
\& 900 \mathrm{E} \\
\& 1000 \mathrm{E} \\
\& 1100 \mathrm{E} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 700 \mathrm{~S} \\
\& 688 \mathrm{~S} \\
\& 638 \mathrm{~S} \\
\& 638 \mathrm{~S}
\end{aligned}
\] \& \begin{tabular}{l}
Minor \\
None \\
None \\
Edge
\end{tabular} \& 2 \& Grid ENE to EW trending, moderate IP axis, lies along south edge of longer, broad, discordant high res. zone, non magnetic, lies along volcanic and mafic-ultramafic intrusive contact. \\
\hline 20. \& \[
\begin{aligned}
\& 1200 \mathrm{E} \\
\& 1300 \mathrm{E} \\
\& 1400 \mathrm{E} \\
\& 1500 \mathrm{E} \\
\& 1600 \mathrm{E} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 762 S \\
\& 750 S \\
\& 712 S \\
\& 688 S \\
\& 625 S
\end{aligned}
\] \& Edge None Edge None None \& 2 \& Grid ENE to NE trending, weak to moderate IP axis, coincides with discordant ENE trending high res. zone, non-magnetic, lies in volcanic rocks north of sillcic intrusive contact. \\
\hline 21. \& \[
\begin{aligned}
\& 1900 \mathrm{E} \\
\& 2000 \mathrm{E}
\end{aligned}
\] \& \[
\begin{aligned}
\& 338 \mathrm{~S} \\
\& 325 \mathrm{~S}
\end{aligned}
\] \& None Edge \& 1 \& Grid ENE to EW trending, short but strong IP axis, coincides with NE end of longer discordant ENE high res. zone, non magnetic, lies in silicic intrusive sil! (?). \\
\hline 22. \& \[
\begin{aligned}
\& 1700 \mathrm{E} \\
\& 1800 \mathrm{E} \\
\& 1900 \mathrm{E}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 088 \mathrm{~S} \\
\& 088 \mathrm{~S} \\
\& 062 \mathrm{~S}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Edge } \\
\& \text { Eage } \\
\& \text { Edge }
\end{aligned}
\] \& 1 \& Grid EW to ENE trending. strong IP axis, coincides with longer, discordant ENE high res. zone, south of major concordant magnetic lineament/stratigraphy, in volcanic rocks, on strike with previous IP anomalies, 100 m east. \\
\hline 23. \& \[
\begin{aligned}
\& 1500 \mathrm{E} \\
\& 1600 \mathrm{E} \\
\& 1700 \mathrm{E}
\end{aligned}
\] \& \[
\begin{aligned}
\& 312 \mathrm{~N} \\
\& 338 \mathrm{~N} \\
\& 362 \mathrm{~N}
\end{aligned}
\] \& Edge Edge Low \& 2 \& Grid ENE trending, moderate to strong iP axis, partly coincides with longer, narrow, strike extensive discordant ENE high res. zone, crosscuts concordant ESE magnetic lineament and extends into possible alteration/depletion zone, lies in volcanics. \\
\hline 24. \& 1700 E
1800 E
1900 E
2000 E \& \[
\begin{aligned}
\& 362 \mathrm{~N} \\
\& 362 \mathrm{~N} \\
\& 362 \mathrm{~N} \\
\& 362 \mathrm{~N}
\end{aligned}
\] \& Low Low Edge Edge \& 2 \& Grid EW trending, strike-extensive strong to moderate IP axis, occurs within near-discordant high res. rocks, east of discordant zone, crosscuts concordant magnetic lineaments, and extends from possible alteration/depletion zone, lies in volcanics, investigated by trench at L18E. \\
\hline 25. \& 1800 E
1900 E
2000 E
2100 E \& \[
\begin{aligned}
\& 425 \mathrm{~N} \\
\& 450 \mathrm{~N} \\
\& 450 \mathrm{~N} \\
\& 488 \mathrm{~N}
\end{aligned}
\] \& Edge Edge None Edge \& 2 \& Grid ENE trending, moderate IP axis, partly coincides with longer, strike extensive, narrow high res. zone, and on strike with other high priority axis, 100 m SW, non-magnetic, in volcanic rocks. \\
\hline 26. \& \[
\begin{aligned}
\& 2100 E \\
\& 2200 \mathrm{E} \\
\& 2300 \mathrm{E}
\end{aligned}
\] \& \[
\begin{aligned}
\& 238 \mathrm{~N} \\
\& 250 \mathrm{~N} \\
\& 262 \mathrm{~N}
\end{aligned}
\] \& Edge Low None \& 2 \& Grid ENE trending, strong to moderate 1 P axis, coincides with near-discordant EW band of high res. rocks, just west of discordant ENE high res. zone, non magnetic, lies in volcanics, 100 m north of previous IP anomalies. \\
\hline 27. \& \[
\begin{aligned}
\& 2100 \mathrm{E} \\
\& 2200 \mathrm{E} \\
\& 2300 \mathrm{E} \\
\& 2400 \mathrm{E} \\
\& 2400 \mathrm{E} \\
\& 2500 \mathrm{E} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 250 \mathrm{~S} \\
\& 188 \mathrm{~S} \\
\& 162 \mathrm{~S} \\
\& 138 \mathrm{~S} \\
\& 138 \mathrm{~S} \\
\& 062 \mathrm{~S}
\end{aligned}
\] \& \begin{tabular}{l}
Low \\
None Edge Major \\
Major Major
\end{tabular} \& 1

1.5 \& | One or two separate, grid ENE to NE trending, strong, strike-extensive IP axis, coincide with longer, well-defined, discordant ENE high res. zone, converges with major NE discordant 250 m long, magnetic axis (too short for Matachewan |
| :--- |
| ?), lies in volcanic rocks, coincides with previous IP axes " B " and " A ", trenching along strike to NE. |

\hline
\end{tabular}

Table II (continued): Recommended Targets at Whiskeviack Creek

No.	LINE	STATION	MAGNETIC ASSOCIATION	PRIORITY	COMMENTS
28.	$\begin{aligned} & 2100 E \\ & 2200 E \\ & 2300 E \\ & 2400 E \end{aligned}$	$\begin{aligned} & \hline 538 S \\ & 488 S \\ & 462 S \\ & 462 S \end{aligned}$	Edge Minor None None	2	Grid EW to ENE trending, weak to moderate IP axis, lies along south edge of discordant, ENE trending high res. zone, non-magnetic (crosscuts discordant NE trending magnetic lineament. lies in volcanics, coincides with previous axis " C "
29.	$\begin{aligned} & 2600 E \\ & 2700 E \\ & 2800 E \end{aligned}$	$\begin{aligned} & 712 S \\ & 688 S \\ & 675 S \end{aligned}$	$\begin{aligned} & \text { Edge } \\ & \text { Edge } \\ & \text { None } \end{aligned}$	2.5	Grid ENE trending, mixed resistivity, moderate IP axis, lies along SW extent of longer, narrow ENE high res. zone, and on-strike with other high priority axes 100 m to NE , non magnetic. extends from volcanics to silicic intrusive to NE.
30.	$\begin{aligned} & 2800 \mathrm{E} \\ & 2900 \mathrm{E} \\ & 2900 \mathrm{E} \\ & 3000 \mathrm{E} \\ & 3100 \mathrm{E} \end{aligned}$	$\begin{aligned} & 612 \mathrm{~S} \\ & 588 \mathrm{~S} \\ & \\ & 638 \mathrm{~S} \\ & 612 \mathrm{~S} \\ & 562 \mathrm{~S} \end{aligned}$	None None Edge None Edge	2	Two paralleling, grid ENE trending, moderate and strong IP axes, lying on north and south (respectively) edge of longer, strike-extensive, broad high res. zone, and on-strike with other high priority axes $100 \mathrm{~m} S W$, non magnetic and cross-cuts major NE trending lineament, north zone lies along volcano-intrusive contact and tested by DDH and gold-bearing; south zone extends from silicic intrusive plug to volcanics.
31.	$\begin{aligned} & \hline 3000 \mathrm{E} \\ & 3100 \mathrm{E} \end{aligned}$	$\begin{aligned} & 138 \mathrm{~S} \\ & 112 \mathrm{~S} \end{aligned}$	None None	2	Grid ENE trending, moderate IP axis, lies along north edge of short discordant ENE high res. zone, non-magnetic, on-strike with airbome EM anomaly (?), lies in volcanic rocks.
32.	$\begin{aligned} & 3000 \mathrm{E} \\ & 3100 \mathrm{E} \\ & 3200 \mathrm{E} \\ & \\ & 3000 \mathrm{E} \\ & 3100 \mathrm{E} \\ & 3200 \mathrm{E} \end{aligned}$	$\begin{aligned} & 112 \mathrm{~N} \\ & 112 \mathrm{~N} \\ & 112 \mathrm{~N} \\ & 162 \mathrm{~N} \\ & 162 \mathrm{~N} \\ & 162 \mathrm{~N} \end{aligned}$	Edge Edge Edge Edge Edge None	2 2	Two paralleling, grid EW trending, moderate IP axes, lies in EW band of high res. rocks, and cross-cuts longer ENE trending high res. zone, lies on strike with other high priority axis to NE, lies in weakly magnetic rocks but non-magnetic, lies in mapped volcanic rocks
33.	$\begin{aligned} & 3200 E \\ & 3300 E \\ & 3400 E \end{aligned}$	$\begin{aligned} & 212 \mathrm{~N} \\ & 212 \mathrm{~N} \\ & 238 \mathrm{~N} \end{aligned}$	Edge Eage Major	2	Grid EW to ENE trending, moderaie IP axis, coincides with NE extension of a longer ENE discordant high res. zone, and on-strike or continuous with other high priority target to SW, closely parallels or coincident with near concordant ESE major magnetic lineament, in mapped volcanics, open to NE.
34.	$\begin{aligned} & 3400 \mathrm{E} \\ & 3500 \mathrm{E} \end{aligned}$	$\begin{aligned} & 025 \mathrm{~S} \\ & 012 \mathrm{~N} \end{aligned}$	None None	2	Grid ENE trending, short strike-length, moderate IP axis, extends NE from short, discordant ENE high res. zone, non-magnetic, lies in volcanics
35.	$\begin{aligned} & \hline 3200 \mathrm{E} \\ & 3300 \mathrm{E} \\ & 3400 \mathrm{E} \\ & 3500 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 162 \mathrm{~S} \\ & 125 \mathrm{~S} \\ & 088 \mathrm{~S} \\ & 088 \mathrm{~S} \\ & \hline \end{aligned}$	None None None None	1.5	Grid ENE trending, strike-extensive but moderate, diffuse IP axis, coincides with discordant, NE trending high res. zone, non magnetic, lies in volcanics and coincides with mapped fault.
36.	$\begin{aligned} & \hline 3100 \mathrm{E} \\ & 3200 \mathrm{E} \\ & 3300 \mathrm{E} \\ & 3400 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 288 \mathrm{~S} \\ & 238 \mathrm{~S} \\ & 188 \mathrm{~S} \\ & 162 \mathrm{~S} \\ & \hline \end{aligned}$	None Edge Major None	1.5	Grid ENE trending, strike-extensive, but weak to moderate, diffuse IP axis, coincides with discordant NE trending high res. zone, cross-cuts major NE trending magnetic axis, lies in volcanics.
37.	$\begin{aligned} & 3300 E \\ & 3400 E \end{aligned}$	$\begin{aligned} & 612 \mathrm{~S} \\ & 588 \mathrm{~S} \end{aligned}$	Weak Weak	2	Grid ENE trending, short strike-length, moderate IP axis, occurs at SE extent of longer, narrow, discordant ENE high res. zone, cross-cuts but possibly related to cross-cutting NE \& NS magnetic linears (buried), on strike with other high priority IP axes to west, likely in volcanics but buried below Huronian cover rocks.

Table II (continued): Recommended Targets at Whiskeyjack Creek

No.	LINE	STATION	$\begin{aligned} & \text { MAGNETIC } \\ & \text { ASSOCIATION } \end{aligned}$	PRJORITY	COMMENTS
38.	$\begin{aligned} & \hline 3500 \mathrm{E} \\ & 3600 \mathrm{E} \\ & 3700 \mathrm{E} \\ & 3800 \mathrm{E} \\ & 3900 \mathrm{E} \\ & \\ & 3900 \mathrm{E} \\ & 4000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 175 \mathrm{~S} \\ & 162 \mathrm{~S} \\ & 088 \mathrm{~S} \\ & 038 \mathrm{~S} \\ & 012 \mathrm{~N} \\ & 050 \mathrm{~S} \\ & 000 \end{aligned}$	None Weak None Weak None None None	2 2	Two paralleling, grid ENE trending, moderate, short to strike extensive IP axes, lying on borders of a prominent, broad, discordant high res. zone, non magnetic but cross-cuts major concordant ESE magnetic lineament, lies in volcanic rocks, north of Huronian contact, open to NE.
39	$\begin{aligned} & 3800 \mathrm{E} \\ & 3900 \mathrm{E} \\ & 4000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 138 \mathrm{~N} \\ & 100 \mathrm{~N} \\ & 150 \mathrm{~N} \end{aligned}$	None None None	2.5	Possibly multiple, grid EW to ENE trending, moderate, mixed resistivity IP axes, occurring within discordant, EW to ENE high res. zone, non-magnetic, lying in volcanic rocks, buried below Huronian cover rocks, open to NE.
40.	$\begin{aligned} & 3700 E \\ & 3800 E \\ & 3900 E \\ & 4000 E \end{aligned}$	$\begin{aligned} & 562 S \\ & 538 S \\ & 512 S \\ & 462 S \end{aligned}$	Edge None None None	2	Grid ENE trending, moderate but strike extensive IP axis, lies on south border of discordant ENE high res. zone, non magnetic, coincides with mapped Huronian cover rocks, but likely buried at depth within volcanic basement.

Table II (continued); Recommended Targets at Whiskeviack Creek

5. CONCLUSION AND RECOMMENDATIONS

The Gradient IP/Resistivity and ground magnetic results at Whiskeyjack Creek identify potential chargeability and resistivity signatures relating to the subsurface geology, including possible lithologic discrimination, fault-fracture structures, geochemical alteration and, most importantly, concentrations of disseminated sulphide potentially associated with gold-mineralized, quartz/carbonate alteration in discordant fault-fracture and shear zones. In response to the geologic objectives, fifteen (15) high priority targets have been identified, which host significant chargeability, strike-length and geoelectric characteristics relating to the target model. In addition to these highest priority targets, twenty-five (25) other 2^{ND} priority axes have also been identified which share similar characteristics, but are either shorter strike length or weaker, resulting in a lower priority. Nevertheless, due to the large number of anomalies present at Whiskeyjack, the present study has restricted itself to the specific to the target model, and is by no means exhaustive. However, it is worthwhile noting that the Newmont gold showings (ref. MPH 1996 report) in fact coincide with a short length, moderate to strong, high to nil resistivity, non-magnetic, discordant grid-ENE IP axis, and occurs within a welldefined grid ENE high resistivity zone - which is consistent with our prioritization.

In addition to those targets listed, many other chargeability anomalies of interest occur throughout the property, and could still represent economic targets - including structurally-controlled, discordant mineralization along either weakly altered shears, alteration contacts, and clay-altered faults \&/or stringer sulphides. Concordant targets of interest could include possibly gold-bearing stringer to semi-massive stratiform mineralization, or structurally controlled concordant fault-shears and contacttype mineralization associated with ultramafic units. We also note that, all anomalies previous geophysical surveys have been identified, including the five Newmont $\mathbb{I P}$ axes - although the gradient suggests a re-alignment of the grid EW axes to either concordant ESE or discordant ENE. The Sylva VLF/Maxmin conductor coincides with a concordant ESE trending, non-magnetic, highly polarizeable, low resistivity lineament. The Falconbridge airborne EM anomaly is a strike-extension of the HLEMNLF conductor, but lies 100 m further south than indicated on the MPH compilation map (\#1731-001 @ 1996). These likely represent either graphitic metasediments, massive sulphides within a BIF, strongly altered/magnetite-depleted ultramafics, or a major mineralized concordant fault.

We recommend that these results be combined with existing geoscientific information prior to follow-up. We also recommend that the current priority targets be carefully evaluated prior to and during the DDH-testing stage. Particular attention should be given to the probable type of mineralization indicated by the resistivity and magnetic association. Finally, because of the poor vertical depth-control inherent with the gradient technique, we recommend that the high priority axes warranting additional follow-up be detailed using Realsection IP prior to drill-targeting, to provide some measure of depth/dip control. Additional processing in the form of gradient block-leveling and optimal parameter filtering could also be used to improve the interpretability of the results.

RESPECTFULLY SUBMITTED

Porcupine, ON
April, 1997

APPENDDX A

Statement of Qualifications:

I, G.R. Jeffrey Warne, hereby declare that:

1. I am a geophysicist with residence in South Porcupine, Ontario and am presently employed in this capacity with Quantec IP Inc. of Waterdown, Ontario.
2. I studied Engineering Geophysics in the Faculty of Applied Science at Queen's University in Kingston, Ontario, completing all but two of the course requirements for a B.Sc.(Eng.) in 1981.
3. I have practiced my profession continuously since May, 1981 in Canada, the United States and Chile.
4. I have no interest, nor do I expect to receive any interest in the properties or securities of Norcan Resources Ltd.
5. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Porcupine, Canada
April, 1997

APPENDXX

Statement of Qualifications:

I, Jean M. Legault, declare that:

1. I am a consulting geophysicist with residence in South Porcupine, Ontario and am presently employed in this capacity with Quantec IP Inc. of Waterdown. Ontario.
2. I obtained a Bachelor's Degree, with Honours, in Applied Science (B.A.Sc.), Geological Engineering (Geophysics Option), from Queen's University at Kingston, Ontario, in Spring 1982.
3. I am a registered professional engineer (\# 047032), with license to practice in the Province of Quebec, since 1985.
4. I have practiced my profession continuously since May, 1982, in North-America, SouthAmerica and North-Africa.
5. I am a member of the Society of Engineers of Quebec, the Quebec Prospectors Association, the Prospectors and Developers Association of Canada, and the Society of Exploration Geophysicists.
6. I have no interest, nor do I expect to receive any interest in the properties or securities of Norcan Resources Ltd.
7. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

Porcupine, Ontario
April, 1997

Jean M. Legault, P.Eng. (QC)
Chief Geophysicist
Dir. Quantec Technical Services

APPENDIX A

Statement of Qualifications:

I, Christine Williston, hereby declare that:

1. am a processing geophysicist with residence in South Porcupine, Ontario and am presently employed in this capacity with Quantec Consulting Inc. of Porcupine, Ontario.
2. I am a graduate of York University, North York, ON, in 1994, with an Honours Bachelor of Science Degree in Earth and Atmospheric Science.
3. I have practiced my profession in Canada since graduation.
4. I have no interest nor do I expect to receive any interest, direct or indirect, in the properties or securities of Norcan Resources Ltd.
5. The maps created in this report accurately represent the information given to me at the time of the preparation of this report.

Porcupine, Ontario
April, 1997

Christine Williston, B.Sc.
Processing Geophysicist
Quantec Technical Services

APPENDXB

theoretical Basis and Survey Procedures

TDIP SURVEYS

The "RealSection" survey design uses multiple gradient arrays - with variable depths of investigation controlled by successive changes in array size/geometry. The method of data acquisition and the "RealSection" presentation are based on the specifications developed by Dr. Perparim Alikaj, of the Polytechnic University of Tirana, Albania, over the course of 10 years of application. This technique has been further developed for application in Canada during the past four years, in association with Mr. Dennis Morrison, president of Quantec IP Inc.

The Gradient Array measurements are unique in that they best represent a bulk average of the surrounding physical properties within a relatively focused sphere of influence, roughly equal to the width of the receiver dipole, penetrating vertically downward from surface to great depths. These depth of penetration and lateral resolution characteristics are showcased when presented in plan, however through the use of multiplespaced and focused arrays, the advantages of the gradient array are further highlighted when the IP/Resistivity data are fully developed in cross-section, using RealSections.

The resistivity is among the most variable of all geophysical parameters, with a range exceeding 10^{6}. Because most minerals are fundamentally insulators, with the exception of massive accumulations of metallic and submetallic ores (electronic conductors) which are rare occurrences, the resistivity of rocks depends primarily on their porosity, permeability and particularly the salinity of fluids contained (ionic conduction), according to Archie's Law. In contrast, the chargeability responds to the presence of polarizeable minerals (metals, submetallic sulphides and oxides, and graphite), in amounts as minute as parts per hundred. Both the quantity of individual chargeable grains present, and their distribution with in subsurface current flow paths are significant in controlling the level of response. The relationship of chargeability to metallic content is straightforward, and the influence of mineral distribution can be understood in geologic terms by considering two similar, hypothetical volumes of rock in which fractures constitute the primary current flow paths. In one, sulphides occur predominantly along fracture surfaces. In the second, the same volume percent of sulphides are disseminated throughout the rock. The second example will, in general, have significantly lower intrinsic chargeability.

Figure C1:: Gradient arrav configuration

Using the diagram in Figure C1 for the gradient array electrode configuration and nomenclature: ${ }^{4}$, the gradient array apparent resistivity is calculated:
where: \quad the origin 0 is selected at the center of AB
the geometric parameters are in addition to $a=A B / 2$ and $b=M N / 2$
X is the abscissa of the mid-point of MN (positive or negative)
\mathbf{Y} is the ordinate of the mid-point of MN (positive or negative)

Gradient Array Apparent Resistivity:

$$
\begin{gathered}
\rho z=K \frac{V P}{l} \text { ohm-metres } \\
\text { where: } K=\frac{2 \pi}{\left(A M^{-1}-A N^{-1}-B M^{-1}+B N^{-1}\right)} \\
A M=\sqrt{(a+x-b)^{2}+y^{2}} \\
A N=\sqrt{(a+x+b)^{2}+y^{2}} \\
B M=\sqrt{(x-b-a)^{2}+y^{2}} \\
B N=\sqrt{(x+b-a)^{2}+y^{2}}
\end{gathered}
$$

Using the diagram in Figure C2 for the Total Chargeability:

[^3]

Fiqure C2 The measurement of the time-domain IP effect
the total apparent chargeability is given by:
Total Apparent Chargeability: ${ }^{5}$

$$
M r=\frac{1}{t_{p} V_{p}} \sum_{i=1 \text { to } 10} \int_{t_{i}}^{t_{i+1}} V_{s} \text { (t) dt millivolts per volt }
$$

where $\boldsymbol{t}_{\boldsymbol{j}}, \boldsymbol{t}_{\boldsymbol{j}+\boldsymbol{1}}$ are the beginning and ending times for each of the chargeability slices,
More detailed descriptions on the theory and application of the IP/Resistivity method can be found in the following reference papers:

Cogan, H., 1973, Comparison of IP electrode arrays, Geophysics, 38, p 737-761.
Langore, L., Alikaj, P., Gjovreku, D., 1989, Achievements in copper sulphide exploration in Albania with IP and EM methods, Geophysical Prospecting, 37, p 925-941.

[^4]
APPENDIX

Theoretical Basis and Survey Procedures

Abstract

Magnetics

Base station corrected Total Field Magnetic surveying is conducted using at least two synchronized magnetometers of identical type. One magnetometer unit is set in a fixed position in a region of stable geomagnetic gradient, and away from possible cultural effects (i.e. moving vehicles) to monitor and correct for daily diumal drift. This magnetometer, given the term 'base station', stores the time, date and total field measurement at fixed time intervals over the survey day. The second, remote mobile unit stores the coordinates, time, date, and the total field measurements simultaneously. The procedure consists of taking total magnetic measurements of the Earth's field at stations, along individual profiles, including Tie and Base lines. A 2 meter staff is used to mount the sensor, in order to optimally minimize localized near-surface geologic noise. At the end of a survey day, the mobile and base-station units are linked, via RS-232 ports, for diurnal drift and other magnetic activity (ionospheric and spheric) corrections using internal software.

Production logs

	TME DOMAIN INDUCED POLARIZATION SURYEY				
DATE	DESCRIPTION	LNE	START	END	TOTAL (m)
23-Feb	Mob to Matachewan				
24-Feb	Established Tx dipole AB 2000 at 1400N, 600 S on line 2800E				
	Current low, moved north end of AB 2000 to 1250 S Block A				
25-Feb	Survey	2600E	575N	175S	750
	Results poor on south end of lines. Decay curves bad and data noisy in spots.	2700E	2755	600N	875
		2800E	850 N	550 N	300
				Total	1925
	Block B				
26-Feb	Established Tx dipole AB 2000 at 1250N, 750 S on line 3300E				
	Survey	3000E	850 N	2005	1050
		3100E	2005	850 N	1050
		3200 E	800N	250 S	1050
		3300E	2005	700 N	900
				Total	4050
27-Feb	Survey	3400E	675N	225 S	900
		3500E	2005	100 N	300
	Block A				
	Established Tx dipole AB 2000 at 1400N, 600 S on line 2800E	3000E	505	850N	900
		2900E	900 N	150 S	1050
	300m re-survey on L28E	2800E	2005	850N	1050
	re-survey L27E	2700E	575N	275N	300
				Total	3900
				Re-survey	600
28-Feb	Survey	2700E	275N	175S	450
	re-survey L26E, L27E	2600E	175 S	575N	750
		2500E	500 N	1005	600
	Block C				
	Established Tx dipole AB 2000 at 1000N, 1000S on line 2200E	2500E	1005	500N	600
		2400 E	325 N	425S	750
		2300E	500 S	375N	875
		2200E	425N	275N	150
				Total	2975
				Re-survey	1200
1-Mar	Survey	2200E	275N	475S	750
		2100 E	400 S	475N	875
		2000E	525 N	375S	900
	Block D				
	Established Tx dipole AB 2000 at $500 \mathrm{~N}, 1500$ S on line 2200E	2000E	2255	9755	750
		2100E	1025S	4505	575
				Total	3850
2-Mar	Survey	2100 E	4505	150 S	300
		2200E	150 S	1025 S	875
		2300E	1050 S	1505	900
		2400E	150 S	10505	900
		2500E	1050 S	BL	1050
				Total	4028
3-Mar	Block E				
	Established Tx dipole AB 2000 at $375 \mathrm{~N}, 1625 \mathrm{~S}$ on line 2800 E				
	Move TX site to power line; Survey	2500E	BL	6005	
	Decays poor; move north end of AB to 500 N on line 2800E				
	Survey	2500E	BL	10505	1050
		2600E	10505	BL	1050
		2700E	BL	1050S	1050
				Total	3150

DATE	DESCRIPTION	LNE	START	END	TOTAL (m)
4-Mar	Survey	2800E	10505	BL	1050
		2900E	BL	10505	1050
		3000E	1050 S	BL	1050
	Block F				
	Established Tx dipole AB 2250 at 575N, 1675 S on line 3300E				
	Survey	3000E	BL	7505	750
		3100 E	10505	BL	1050
		3200E	BL	10505	1050
				Total	6000
5-Mar	Survey	3300E	1050 S	BL	1050
		3400E	BL	10508	1050
		3500E	1050 S	BL	1050
	Block 6				
	Established Tx dipole AB 2000 at 400N, 1600 S on line 3800E				
	Current very low, added electrodes to north and south ends	$3500 E$	BL	$900 S$	900
	Decays poor on north end.			Total	4050
6-Mar	Survey	3500E	9005	10505	150
	Decays poor on north end; moved North AB to 500N.	3600E	10505	BL	1050
	Re-survey L35E, L36E	3500E	BL	1050 S	1050
		3600E	1050 S	BL	1050
	Alternator shaft down, went to Timmins for Huntec system.			Total	1200
				Re-Survey	2100
7-Mar	Returned to Timmins in morning for cable for Huntec, crew worked on $A B$ setup				
	Survey	3700E	BL	10505	1050
	Shift in data due to change between Huntec and Phoenix. Resurveyed L35E to measure effect	3500E	1050S	BL	1050
				Total	1050
				Re-Survey	1050
8-Mar	Survey	3800E	BL	1025 S	1025
		3900E	850 S	50 N	900
		4000E	BL	7005	700
	Block H				
	Established Tx dipole AB 2075 at 550N, 1525 S on line 1200E				
	Survey	1000E	BL	1050 S	1050
		1100E	10755	3255	750
				Total	4425
9-Miar	Survey	1100E	325 S	255	300
		1200E	BL	10505	1050
		1300E	10505	BL	1050
		1400E	BL	1050S	1050
	Block 1				
	Established Tx dipole AB 2025 at 525N, 1500 S on line 1700 E				
	Survey	1400E	10505	450 S	600
		1500E	10255	25 N	1050
				Total	5100
10-Mar	Survey	1600E	BL	10505	1050
		1700E	1050 S	BL	1050
		1800E	BL	1050 S	1050
		1900E	10505	BL	1050
		2000E	BL	900S	900
				Total	5100
11-Mar	Block J				
	Established Tx dipole AB 2025 at 525N, 1500 S on line 700E				
	Survey	1000E	1505	875S	725
		900E	1050s	1505	900
		800E	150 S	1050s	900
		700E	10505	1505	900
		600E	1505	1050 S	900
		500E	10505	9005	150
				Total	4475

DATE	DESCRIPTION	LNE	START	END	TOTAL (m)
12-Mar	Survey	500 E	900 S	150 S	750
	Block K				
	Established Tx dipole AB 1975 at 1025N, 950 S on line 700E				
	Survey	500E	3005	450N	750
		600 E	450 N	3005	750
		700E	300 S	450 N	750
		800 E	450 N	300 S	750
		900 E	3005	450 N	750
				Total	4500
13-Mar	Block L				
	Established TX dipole AB 2050 at 500N, 1550 S on line 200E				
	Survey	500 E	BL	1050 S	1050
		400E	1050 S	BL	1050
		300 E	BL	1050 S	1050
		200 E	1050 S	550 S	500
		100E	525 S	10505	525
		OE	10505	5005	550
				Total	4725
14-Mar	Weather day; Blizzard with whiteout conditions on Elk Lake twy. Called day due to hazard to transmitter site from passing vehicles.				
15-Mar	Block M				
	Established Tx dipole AB 2050 at 500N, 1550S on line 300W				
	Survey	OE	500 S	1050S	550
		100W	1050S	475 S	575
		200W	1505	1000S	850
		300 W	1050S	150 S	900
		400W	150 S	1050S	900
				Total	3775
16-Mar	Survey	500w	1050S	150 S	900
	Block N				
	Established Tx dipole AB 2000 at 500N, 1500 S on line 800W				
	Survey	500W	125 S	1025S	900
		600W	1050S	150 S	900
		700W	1505	1050S	900
		800W	1050S	1505	900
				Total	4500
17-Mar	Dummy load down in morming. Went to KL for replacement parts.				
	Survey	900W	150 S	1050 S	900
		1000w	1050S	150 S	900
				Total	1800
18-Mar	Block O				
	Established Tx dipole AB 2075 at 1075N, 1000 S on line 300W				
	Survey	100W	450N	BL	450
		200W	3005	450 N	750
		300W	450 N	3005	750
		400W	3005	450 N	750
		500W	450 N	3005	750
	Block P				
	Established Tx dipole AB 2000 at $1000 \mathrm{~N}, 1000$ S on line 800 W				
	Current very low, added rods and salt to both ends of AB.			Total	3450
19-Mar	Survey	500W	3005	450 N	750
		600W	450N	3005	750
		700W	3005	450 N	750
		800W	450 N	3005	750
		900 W	300 S	450 N	750
		1000W	450 N	3005	750
				Total	4500

DATE	DESCRIPTION	LINE	START	END	TOTAL (m)
20-Mar	Block Q				
	Established Tx dipole AB 1975 at 1000N, 975 S on line 1100 W				
	Survey	1000W	225 S	600 N	825
		1100W	475N	425 S	900
		1200W	450 S	375N	825
		1300W	350N	400S	750
		1400W	400 S	250 N	650
	Elock R				
	Established Tx dipole AB 1900 at 1500N, 400 S on line 800W				
	Survey	1000W	600 N	300 N	300
		900 W	300 N	600 N	300
				Total	4550
21-Mar	Survey	900W	600N	900N	300
		800W	1025N	275N	750
		700W	300N	1000N	700
		600W	1050N	250 N	800
	Block 5				
	Established Tx dipole AB 2000 at 1800N, 2005 on line 300W				
	Current very low, added rods and salt to north end of $A B$, moved south end to 300S.			Total	2550
22-Mar	Current still to low, moved north end of AB to 350W				
	Survey	600W	250N	1100 N	850
		500W	1200N	300N	900
		400W	300N	1200 N	900
		300W	1125N	375N	750
		200W	300 N	1000N	700
				Total	4100
23-Mar	Survey	100W	1250 N	350N	900
		OE	750 N	1250 N	500
	Biock T				
	Established Tx dipole AB 1950 at 1550N, 400 S on line 700 E				
	Survey	900E	1150N	350N	800
		800 E	300 N	1200 N	900
		700E	1200 N	300N	900
		600E	300 N	1200N	900
				Total	4900
24-Mar	Survey	500 E	1250 N	200N	1050
		400E	200N	1100N	900
	Block U				
	Established Tx dipole AB 2000 at $1800 \mathrm{~N}, 2005$ on line 200E				
	Survey	400E	1250 N	500N	750
		300 E	550 N	1275 N	725
		200E	1275N	600N	675
		100E	675N	1275N	600
		OE	1250N	800 N	450
				Total	5150
25-Mar	Block V				
	Established Tx dipole AB 2025 at 1425N, 600S on line 1200E				
	Survey	900E	1150N	400N	750
	Snowstorm all day. Stopped work at noon due to unsafe road conditions on highway (ransmitter site).	1000E	1005	1100 N	1200
				Total	1950
26-Mar	Survey	1100E	1050N	1505	1200
		1200E	1505	1000N	1150
		1300E	775N	1255	900
		1400E	1505	700 N	850
	Block W				
	Established Tx dipole AB 2100 at 1200N, 900S on line 1700E				
	Survey	1400E	700N	1505	850
				Total	4950

DATE	DESCRIPTION	LNE	START	END	TOTAL (m)
27-Mar	Survey	1500E	1505	750 N	900
		1600E	675N	755	750
		1700E	150 S	600 N	750
		1800E	500 N	100 S	600
		1900E	1005	500 N	600
		2000E	500 N	100 S	600
				Total	4200
28-Mar	Block X				
	Established Tx dipole AB 2000 at 1250N, 750 S on line 3800E				
	Survey	4000E	725 N	175 S	900
		3900E	200 S	550 N	750
		3800E	400N	50 S	450
		3700E	150 S	150 N	300
		3600E	75 N	75 S	150
	Wrap up wire and pack equipment.			Total	2550
29-Mar	Demob				
				GRAND TOTAL	122.375km

	TOTAL FIELD MAGNETICS SURVEY				
DATE	DESCRIPTION	LINE	START	END	TOTAL (m)
18-Feb	Mob to KL. Picked up supplies for house				
19-Feb	Mob to Matachewan				
20-Feb	Survey	4000E	725N	7005	1425
	"Weak signal" display showing throughout most of day	3900E	575 N	8505	1425
		3800E	400N	1025 S	1425
		3700E	150N	1050S	1200
		3600E	75 N	1050S	1125
		3500E	100 N	10505	1150
				Total	7750
21-Feb	Survey	3400E	675 N	1050S	1725
	Weak signal display showing almost all day.	3300E	725N	1050S	1775
	Lost tune at power line on 3300E. Would not retune till 600 meters from power line.	3200E	800 N	1050S	1850
	Stopped early and profiled data to check data quality. Data very spiky. Returned to Timmins to check equipment	3100E	850 N	10505	1900
				Total	7250
22-Feb	Tested walking magnetics with new sensor cables.				
23-Feb	Mob back to Matachewan				
24-Feb	Resurveyed	3300E	725N	10505	1775
	Data smooth with no spikes.	3400E	675 N	1050S	1725
				Total	3500
1-Mar	Survey	1000W	650 N	1000S	1650
		1100W	475N	950 S	1425
		1200W	375 N	9005	175
		1300W	350N	7255	1275
		1400W	250 N	6005	850
	Low signal from 10505 to 900S.	900W	900N	1050 S	1950
				Total	8225
2-Mar	Survey	800W	1000 N	1000S	2000
		700W	1000 N	1050S	2050
	Low signal from 1200N to 300s. Unit loosing tune.	600W	1200 N	1050S	2250
	Low signal coming on intermittently.	500W	1200 N	1050S	2250
		400W	1175N	1075S	2250
		300W	1125 N	10505	2175
				Total	12975
4-Mar	Picked up rental walking magnetic unit from Timmins.				
5-Mar	Overlap on 600W. Survey.	600W	1250N	1050S	2300
		200W	1000N	975S	1975
		100W	1350 N	BL	1350
			475S	1050S	575
		0	500 S	1050S	550
			1250 N	775 N	475
		100E	525 S	10505	525
			1275N	700N	575
		200E	550 S	1050S	500
			1275N	650 N	625
		300 E	275N	10505	1325
			1275 N	600 N	675
		400E	1275N	1050S	2325
				Total	13775
6-Mar	Survey	500 E	1275 N	10505	2325
		600 E	1250 N	10505	2300
		700E	1200 N	10505	2250
		800E	1200 N	1050S	2250
		900E	1150 N	10505	2200
		1000E	1100 N	10505	2150
				Total	13475

DATE	DESCRIPTION	LINE	START	END	TOTAL (m)
7-Mar	Survey	1100E	1050 N	1075 S	2125
		1200E	1000N	1050 S	2050
		1300E	775 N	10505	1825
		1400 E	725 N	1050 S	1775
		1500E	700N	1050 S	1750
		1600E	675N	1050 S	1725
				Total	11250
8-Mar	Survey	1700E	625N	10505	1675
		1800 E	500 N	1050 S	1550
		1900E	525N	1050 S	1575
		2000 E	525N	10005	1525
		2100E	475N	10005	1475
		2200 E	425 N	1025 S	1450
		2300E	375N	1050 S	1425
		2400E	675N	1050 S	1725
				Total	12400
9-Mar	Survey	2500 E	500 N	1050 S	1550
		2600E	575N	1050S	1625
		2700E	625 N	1050S	1675
		2800E	925 N	1050S	1975
		2900E	900N	1050S	1950
		3000 E	875 N	1050S	1925
		3100 E	850N	1050 S	1900
		3200E	800 N	1050 S	1850
				Total	14450
12-Mar	Survey	3300 E	725N	BL	725
		3500E	100N	1050S	1150
		3600E	75 N	1050S	1125
		3700E	150 N	1050S	1200
		3800E	400N	1025S	1425
		3900E	575N	850 S	1425
		4000E	725 N	7005	1425
		BL	4025E	1600W	5625
				Total	14100
13-Mar	Survey	TL1050S	975W	3800E	4775
				Total	4775
				Total	123.925 km

APPENDXX

Instrument Specifications:
(from IRIS Instruments IP 6 Operating Manual)
Weather proof case

Dimensions:	$31 \mathrm{~cm} \times 21 \mathrm{~cm} \times 21 \mathrm{~cm}$
Weight:	6 kg with dry cells 7.8 kg with rechargeable bat.
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	($-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ with optional screen heater)
Storage:	($-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
Power supply:	$6 \times 1.5 \mathrm{~V}$ dry cells ($100 \mathrm{hr} . @ 20^{\circ} \mathrm{C}$) or
	$2 \times 6 \mathrm{~V}$ NiCad rechargeable (in series) (50hrs @ $20^{\circ} \mathrm{C}$) or $1 \times 12 \mathrm{~V}$ external
Input channels:	6
Input impedance:	10 Mohm
Input overvoltage protection:	up to 1000 volts
Input voltage range:	10 V maximum on each dipole 15 V maximum sum over ch 2 to 6
SP compensation:	automatic $\pm 10 \mathrm{~V}$ with linear drift correction up to $1 \mathrm{mV} / \mathrm{s}$
Noise rejection:	50 to 60 Hz powerline rejection 100 dB common mode rejection (for Rs=0) automatic stacking
Primary voltage resolution: accuracy:	$1 \mu \mathrm{~V}$ after stacking 0.3% typically; maximum 1 over whole temperature range
Secondary voltage windows:	up to 10 windows; 3 preset window specs. plus fully programmable sampling.
Sampling rate:	10 ms
Synchronization accuracy:	10 ms , minimum $40 \mu \mathrm{~V}$
Chargeability resolution:	0.1 mVN
accu	typically 0.6%. maximum 2% of reading $\pm 1 \mathrm{mVN}$ for $V_{p}>10 \mathrm{mV}$
Battery test:	manual and automatic before each measurement
Grounding resistance:	0.1 to 467 kohm
Memory capacity:	2505 records, 1 dipole/record
Data transfer:	serial link @ 300 to 19200 baud remote control capability through serial link @ 19200 baud

ELREC 6

IP Receiver

Features:

6 input channels.
Up to 10 chargeability windows.
Symmetrical time domain with a pulse duration of $1,2,4$ or 8 s .

Input overvoltage protection up to 1,000 Volts.
Analyzes IP decay curves.
Fully automatic measuring processes.
Internal memory can store eighteen hundred measurements.

General

The Elrec 6 is a six-channel multi-window time domain induced polarization receiver that measures six receiver dipoles. The unit is extremely efficient in the field, especially when used with the multi-dipole cable.

IP decay curves are analyzed by various types of sampling: Up to 10 windows are available, with preset or programmable arithmetic or logarithmic widths. Multi-window analysis provides a high degree of accuracy when defining decay curves.

Measurements are made through a fully automatic measuring process: Self test and calibration, auto-synchronization and resynchronization at each cycle, plus continuous tracking of SP including linear drift correction. Also provided is automatic gain selection, digital stacking for noise reduction, and fully documented displays
controlled by the microprocessor to ensure the highest degree of accuracy and reliability.

The operator can select various reading options regarding the parameters that are displayed: A. Display of running or cumulative average values for monitoring the noise. B. Display of normalized or true chargeability values for referral or nonueferral to a standard decay curve. C. During the measurement possibility of simultaneously displaying the average chargeabilities of the six dipoles, or their standand deviations, or the primary voltage, average chargeability and standard deviation of each dipole.

Frequency Mode Option

An analysis of the measurements in the frequency domain is provided as an option through Fourier transform computations of either frequency domain waveform ($\mathrm{ON}+$, ON -), or a time domain waveform ($\mathrm{ON}+$, OFF, ON -, OFF), and a pulse duration of 1,2 , 4 or 8 sec . The parameters measured are the amplitudes of the fundamental and of the first six odd harmonics (3RD to 13th), the frequency effects and relative phases of the harmonics with respect to the fundamental, and the standard deviations of these parameters. Due to the large amount of data gathered, the capacity of the internal memory is reduced by fifty percent in this mode.

Specifications

Input Voltage Range: Each Dipole 8V maximum, Sum of voltage dipoles 2 to 6 , 12 V maximum
Primary voltage: Resolution: $10 \mu \mathrm{~V}$, Accuracy: 0.3\%; max 1\%

Chargeability Resolution: 1 mVN for Vp10 $\mathrm{mV}, 0.1 \mathrm{mV} / \mathrm{f}$ for Vp 100 mV , Accuracy: 0.6%; $\max 2 \%$ for Vp 10 mV
Up to 10 Chargeability Windows: Mode 1: 10 preset arithmetic Windows, Mode 2: 10 programmable arithmetic windows (delay time and window width), Mode 3: 10 preset logarithmic windows, and Mode 4: 3 to 6 preset logarithmic Windows.

6 Input Channels.

Signal Waveform: Symmetrical time domain (ON+, OFF, ON-, OFF) with a pulse duration of $1,2,4$ or 8 s . Input impedance: 10 Mohm .
Input overvoltage protection up to 1,000 Volts.

Overload Indication

Automatic Gain Ranging

Automatic stacking, automatic SP bucking (-1 V to +1 V) with linear drift correction up to $1 \mathrm{mV} / \mathrm{s}$.
Sampling Rate: 10 ms
50 and 60 Hz power line rejection greater than 100 dB
Accuracy in Synchronization: 10 ms
Common Mode Rejection: 86 dB (for Rs $=0$)
Display of primary voltage, partial and average chargeabilities, standard deviation of primary voltage and of average chargeability, and computation of apparent resistivity (dipole to dipole, pole to dipole, gradient, VES, etc).
Grounding resistance measurement from 0.1 to 128 kohm
Memory Capacity: 1,800 measurements
Dimensions: $30 \times 20 \times 20 \mathrm{~cm}$

Weight: 7.5 kg

Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+70^{\circ}$. The specifications listed above are given over the entire temperature range.
Power Supply: Six 1.5V D size alkaline dry cells (20 hours of operation at $20^{\circ} \mathrm{C}$)

Standard Components

Elrec 6 console and instruction manuals.

Ordering Information

Description
Order Number
Elrec 6 500-190-0024

GSM-19 Proton MAGNetometer/VLF

Proton MagnetometerNLF System

Features:

- Omnidirectional Magnetometer with VLF.
- Remote control for observatory and airborne base station applications.
- Streamlined grid coordinate system with "end of line" quick change capability.
- 128 kb basic memory, expandable to 2 MB .
- Programmable RS-232 high-speed data transfer to 19.2 kb .
- 50 and 60 Hz filter, user selectable.
- Automatic tuning and base station synchronization.

General

The GSM-19 is a state-of-the-art magnetometer/VLF system that delivers quality data and the extensive capabilities required to perform a broad spectrum of applications. Whether the application calls for detailed ground surveys, or remotely controlled magnetic observatory measurements, you can count on the GSM-19 system to meet your goals.
The proton magnetometer can be equipped with gradiometer or VLF options, and is upgradable to an Overhauser Magnetometer.

Simultaneous Gradiometer

Many mining, environmental, and archaeological applications call for high-sensitivity gradiometer surveys. The GSM-19 meets these needs in several ways. For example, simultaneous measurement of the magnetic field at both sensors eliminates diurnal magnetic effects.

"Walking" Magnetometer/Gradiometer

The "Walking" option enables acquisition of nearly continuous data on survey lines. Data is recorded at discrete time intervals (up to 2 readings-per-second) as the instrument travels along the line.

Omnidirectional VLF

With the omnidirectional VLF option, up to three stations of VLF data can be acquired without orienting. Moreover, the operator can record both magnetic and VLF data with a single stroke on the keypad.

Remote Control Operation

When used during observatory, marine, and airborne base station applications, this option allows users to set parameters and initiate measurements from a computer terminal using standard RS-232 commands. A real-time transmission capability is provided to allow data quality monitoring while marine or vehicle borne surveys are in progress.

Automatic Tuning

Tuning is automatic in all modes of operation with initial preset. An override option is also provided for manual and remote modes. Tuning steps are 1,000 gammas wide.

Adaptability to High Gradients

In standard instruments, a gradient in the magnetic field across the sensor volume can shorten the decay time of the proton precession signal. However, the GSM-19 monitors the signal decay, and calculates the optimal time interval for measurement. Warning messages appear on the display when the measuring interval becomes too short.

2x =

GSM-19
 Proton MagnetometerNLF Sysiom

Specifications

Performance

Resolution: 0.01nT
Relative Sensitivity: 0.2nT
Absolute Accuracy: 1nT
Range: $\mathbf{2 0 , 0 0 0}$ to $\mathbf{1 2 0 , 0 0 0 n T}$
Gradient Tolerance: Over $7,000 \mathrm{nT} / \mathrm{m}$
Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Operating Modes

Manual: Coordinates, time, date and reading stored automatically at min. 3 second interval.
Base Station: Time, date and reading stored at 3 to 60 second intervals.
Mobile: Time, date and reading stored at coordinates of fiducial.
Remote Control: Optional remote control using RS-232 interface.
Input/Output: RS-232 or analog (optional) output using 6 -pin weatherproof connector.

Storage Capacity

Manual Operation: 8,000 readings standard. 131,000 optional.
Base Station: 43,000 readings standard, 700,000 optional.
Gradiometer: 6,800 readings standard, 110,000 optional.

Dimensions and Weights

Dimensions: Console: $223 \times 69 \times 240 \mathrm{~mm}$. Sensor: $170 \times 71 \mathrm{~mm}$ diameter cylinder.
Weight: Console: 2.1 kg . Sensor and Staff Assembly: 2.2 kg

Standard Components

GSM-19 console, batteries, harness, charger, case, sensor with cable, connector, staff, and instruction manual.

Ordering Information

Description	Order Number
GSM-19 Proton Mag	350-170-0039
Gradiometer Option	350-170-0042
VLF Option	350-170-0069
Memory Upgrade, 1281	350
Analog Output	350-170-0040
mote Option	35

APPENDXX

OPERATOR COMments

Whiskeyjack Creek Project P-177 Walking Magnetic Survey March 1997

March 1, 1997

- "Low signal" indicated at south end of line 900 W for 150 m (1050S-900S)

March 2, 1997

- Line 800 W chaining error somewhere in south 500 m , had to pace off approximately 150 m to get to 1000 S .
- Hydro line at north end of grid, approx. $900 \mathrm{~N}-1000 \mathrm{~N}$ on lines $800 \mathrm{~W}, 700 \mathrm{~W}, 600 \mathrm{~W}, 500 \mathrm{~W} \&$ 400W
- Line 600 W , @ 1225 N is next to highway 66
- Line 600W, severe "low signal" indicated for every other reading from 1200N to 300s. "Jumps" occur in readings from 22000 nT to 63000 nT . Bad readings. Unit appears to lose tune. Gradient too high? Recommend re-do with staff in mobile mode. Southern 700 m readings OK.
- Line 400 W "low signal" on north $300 \mathrm{~m}-400 \mathrm{~m}$
- Line 300W "low signal" south 200 m of line. no culture or power lines present to make instrument lose tune.
- Line 300 W large high up to 63000 nT (increase of approx. 5000 nT) real anomaly, around 400 N to 500 N .
- Line 300W crosses Hwy. 65 at 725 N .
- Line 300W "low signal" intermittent from 725 N to 1125 N . line now (north of Hwy. 65) runs paraliel to and approx. 50 m to 100 m west of major power line

March 5, 1997

- 200 W two chaining errors south of baseline Add 100 m to all readings south of baseline (i.e. 100 S should be BL $0+00$)
- Hwy. 65 located on L200W © 600N to 625N
- Major power intersection from approx. 700N to 900N on L200W. (data no good) east-west running powerline (medium size) and north-south powerline (major) intersect
- Major powerline runs south on east side of Hwy. 65, between L300W and L200W from 700N to end of line.
- L100W Hwy. 66 at 1250 N to 1275 N , EW powerline at 800 N to 825 N .
- No line cut on excluded area between 100 W and 300 E (MNR experimental poplar forest)

March 6, 1997

- 600E chaining error north of baseline, 25 m off (does not effect magnetics)
- 800 E highly magnetically active area around $900 \mathrm{~N}-950 \mathrm{~N}$. Signal high (60000 nT), lost signal at one point (approx. 950N) so redid from 900 N . edited out bad data, magnetic repeatable but did not loose signal (no "low signal" indicated)
- L700E and eastward, stopped reading directly under powerline (readings garbage) (i.e. collected no data for approx. 50 m under powerline on each line)
- EW running powerline located approx. at:

500E @ 425N-375N \#data "REMed" out of $X Y Z$ files 600E @ 300N-350N
700E @ 225N-275N (no data collected)
800E @ 175N-225N

900E @ 50N-100N
1000E@ OOON-50N
March 7, 1997

- No data on L1600E 575 N to 600 N , due to open water.
- Fell in creek on L100E 925S to 950S - no data collected.
- Cold, wet, miserable weather: called it an early day.
- Hydro line intersections (no data in between): 1100E @ 50S-112.5S 1200E @ 150S-100S 1300E © 162.5S 225S 1400E @ 250S-200S 1500E @ 250S-200S 1600E @ 325S-275S

March 8, 1997

- Hydro line intersections (no data between):

2400E @ 612.5S-662.5S 2300E © 600S-550S 2200E @ 500S-550S 2100E @ 525S-475S 2000E @ 400S-450S 1900E @ 425S-375s 1800E @ 375S-425S 1700E @ 362.5S-300S

March 9, 1997

- Chaining error on L3000E, 25m subtracted from all magnetic stations north of 625 N
- L2800E - IP AB wire laid out overhead (not in use), possible source of noise?
- Hydro line intersections (no data between):

2500E @ 637.5S-700S
2600E @ 725S-675S
2700E @ 725s-775S
2800E @ 800S-750S
2900E @ 812.5s-850S
3000E (4) 875S-825S
3100E @ 875s-925s
3200E @ 950S-900S
Rob L McKeown
Magnetic Operator
pers. comm., 03/97

APPENDXX

LISt of Maps

- Plan Maps: (1:5000 scale)

1. Total Chargeability $(\mathrm{AB}=2000 \mathrm{~m})$
2. Apparent Resistivity ($A B=2000 \mathrm{~m}$)
3. Posted Contoured Total Magnetic Field
4. Geophysical Compilation Map

DWG\# P177-PLAN-CHG-1
DWG\# P177-PLAN-RES-1 DWG\# P177-MAGCONT-1 DWG\# P177-INT-1

APPENDIXG

Plan Maps

2.3 SURVEY GRID

- Coordinate Reference System: Local cut and picket survey grids (non UTM)
- Established by:

Prior to survey execution by Norcan
Resources Ltd. (see Fig. 2)

- Method of Chaining:
- Line Direction:
- Line Separation:

100 m

- Station Interval:

25m

- Claims Covered by Project Area':

1202755	1202873	1203523
1205560	1205572	1205573
1223379	1223380	1223381
1223382	1223383	1223884
1223385	1223386	778374
778375	802370	802649
803508	803509	821304
821306	821312	821313
821314	821315	821585
821591	821592	821593
842978	883153	843154
843155	843157	843158
843159	843160	843349
843350	843882	843890
1202755	1202873	1203523
1205560	1205572	1205573
1223380	1223381	1223382
1223383	1223384	778374
778375	802370	802649
803508	803509	821304
821306	821312	821313
821314	821315	821585
821591	821592	821593
843153	843154	843155
843157	843158	843159
843160	843349	843350
843882	843890	(see

[^5]Blackstone
Development Inc.
P.O. Box 699, 50 Silver Street

Cobalt, Ontario, Canada POJ 1 CO
Tel. (705) 679-5500
Fax. (705) 679-5519
email: blackstn@nt.net
Bray 13, 1997
addendum

Mote: 1205560 now 1220209
1205572 now 1212331
You. 19, 1998
Dec. 20, 1998
1205573 now 1220128
Dee. 20,1998
Note:
all claims recorded after actual line-cutting and geophysics (IP, mag GPS) employed on the
Irhiskeyjack lereck lelaim Group
signed: I

Gino Chitaroni
for Horcan Resources Sta

CIRCULATED :ANUARY I7. 1995

Personal Information -ct Mining Act, thelitormal Questions about this 933 Ramsey Lake Roar

Instructions: - For work performed on Crown Lands before recording a claim, use form 0246.

- Please type or print in ink.

2. Type of work performed: Check (\checkmark) and report on only ONE of the following groups for this declaration.

Geotechnical: prospecting, surveys, assays and work under section 18 (rags) \square Physical: drilling, stripping, trenching and associated assaysRehabilitation
Work Type ti for Gid IPgeophysics Office Use
Line-Cutting for Grid IP geophysics
Magnetometer geophysics GPS surveying and

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

$$
\text { Juz } 380
$$

\rightarrow Continued....
4. Certification by Recorded Holder or Agent

1 -Gino Chronic \qquad , do hereby certify that I have personal knowledge of the facts set forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.
 0241 (02/96)

Ministry of Northern Development and Mines

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)
44784.01473

Assessment Files Research imaging

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990 \qquad

Personal information collected on this form is obtained under the authority of subsections $65(2)$ and $66(3)$ of the Mining Act. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, fth Floor, 933 Ramsey Lake Road, Sudbury, Ontario. P3E 6B5.
$\begin{array}{ll}\text { Instructions: } & \text { - For work performed on Crown Lands before recording a claim, DEe form per } \\ & \text { - Please type or print in ink. }\end{array}$

2. Type of work performed: Check $(\sim$) and report on only ONE of the following groups for this declaration.

\squareGeotechnical: prospecting, surveys assays and work under section 19 (regis)
Work Type

work permit from the Ministry of NaturanResources as required

- provide proper notice to surface rights holders before starting work;
- complete and attach a Statement of Costs, form 0212;
- provide a map showing contiguous mining lands that are linked for assigning work;
- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

4. Certification by Recorded Holder or Agent

 forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

5. Work to be recorded and distributed. Work can only be assigned to clams that are conuguous faujuinity) iv the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.
 subsection 7 (1) of the Assessment Work Regulation $6 / 96$ for assignment to contiguous claims or for application to the claim where fie work was dong.
Signature of Recorded $\mathrm{H} 日$ der or fer mut razed in Writing

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\sim) in the boxes below to show how you wish to prioritize the deletion of credits:
\square 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
\square 2. Credits are to be cut back starting with the claims listed last, working backwards; or
® 3. Credits are to be cut back equally over all claims listed in this declaration; or

MAY 201997

MINING LANDS BRANCH
Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

Personal Information collected on this form is oblalned under the authority of subsection $6(1)$ of the Assessment-Work Regulation 6/96. Under section 8 of the Mining Act, the Information is a public record. This information will be used to review the assessment, Nope and oprrespond with the mining land holder. Questions about this collection should be directed to the Chief Mining Aocofder, Abinistrí of wither Dey foment and Mines, fth Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E $6 B 5$.

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:
TOTAL VALUE OF ASSESSMENT WORK
Note:

- Work older than 5 years is not eligible for credit.
 request for verification and/or correction/clarification. If verification and/or corfecidincerifeation isthonade, the Minister'may reject all or part of the assessment work submitted.

Certification verifying costs:

Ministry of Northern Development and Mines

Ministère du
Développement du Nord et des Mines

August 11, 1997
NORCAN RESOURCES LTD. SUITE 1500 789 WEST PENDER STREET VANCOUVER, B.C. V6C-1H2

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor
Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846
Fax: (705) 670-5863

Submission Number: 2.17301

Status

W9780.00473 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90 -day deemed approval provision, subsection $6(7)$ of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Bruce Gates by e-mail at gates_b@torv05.ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

ORIGINAL SIGNED BY
Blair Kite
Supervisor, Geoscience Assessment Office
Mining Lands Section

Work Report Assessment Results

Submission Number: 2.17301				
Date Correspondence Sent: August 11, 1997			Assessor:Bruce Gates	
Transaction Number	First Claim Number	Township(s)/ Area(s)	Status	Approval Date
W9780.00473	1202755	CAIRO	Approval	August 11, 1997
Section: 14 Geophysical IP 14 Geophysical MAG				
Correspondence to: Resident Geologist Kirkland Lake, ON			Recor Gino COBA	/or Agent(s):
Assessment Files Library Sudbury, ON			NORCAN RESOURCES LTD. VANCOUVER, B.C.	

1

[^0]: ${ }^{1}$ Ref. Mining claim numbers from Norcan Resources Ltd. Base plan map by MPH Consulting Ltd., July 1996

[^1]: 2 Ref. BRGM ELREC-6 Operating Manual.

[^2]: ${ }^{3}$ Background information drawn from MPH Consulting Ltd. "Report on the Whiskeyjack Creek Property, Matachewan Area, Ontario, for Norcan Resources Lid.", by W. Brereton and B. Schmid, July, 1996.

[^3]: ${ }^{4}$ From Terraplus\BRGM, IP-6 Operating Manual, Toronto, 1987.

[^4]: 5 From Telford, et al., Applied Geophysics, Cambridge U Press, New York, 1983.

[^5]: ${ }^{1}$ Ref. Mining claim numbers from Norcan Resources Ltd. Base plan map by MPH Consulting Lid., July 1996

