

41P15NE2009 2.19518

010

ASSESSMENT REPORT ON

.

THE OKA PROJECT

1996 STRIPPING PROGRAM

FOR

SEDEX MINING CORP.

POWELL TOWNSHIP, DISTRICT OF TIMISKAMING

MATACHEWAN, ONTARIO

NTS 41P NE

March 10, 1999

Todd Keast

41P15NE2009 2.19518 POWELL

010C

TABLE OF CONTENTS

INTRODUCTION	Page 1
LOCATION AND ACCESS	Page 2
PROPERTY	Page 2
TOPOGRAPHY	Page 4
REGIONAL GEOLOGY	Page 4
ECONOMIC MINERALIZATION	Page 6
PREVIOUS WORK	Page 8
1996 TRENCHING PROGRAM	Page 11
RECOMMENDATIONS	Page 14
REFERENCES	Page 15
CERTIFICATE OF QUALIFICATIONS	Page 16

FIGURES

FIGURE 1	PROJECT LOCATION MAP	Page 3
FIGURE 2	REGIONAL GEOLOGY	Page 5
FIGURE 3	DDH LOCATION	Page 9

TABLES

TABLE 1	CLAIM LIST	Page 2
TABLE 2	GOLD DEPOSITS OF THE MATACHEWAN AREA	Page 6
TABLE 3	TRENCH ASSAY RESULTS	Page 12

APPENDICES

APPENDIX I ASSAY CERTIFICATES

MAPS

MAP 1 TRENCH LOCATION MAP TRENCH SKETCH 1 TRENCH SKETCH 2 TRENCH SKETCH 3 TRENCH SKETCH 4 TRENCH SKETCH 5 TRENCH SKETCH 6

INTRODUCTION

Between the period of June 1 and July 11, 1996 Sedex Mining Corp. completed a backhoe mechanical stripping program on the Oka Project. The purpose of the stripping program was to follow up on geological and geophysical targets identified during previous exploration programs. Trenching was focussed on areas of favorable geology, geophysical anomalies, and an old shaft on the property. Six trenches were completed with a combined total length of 325metres. A total of 94 grab samples were collected from the trenches and analysed for Au by fire assay method. A number of discrete shears approximately 2-25 metres in width were identified. Rock types exposed included conglomerate, syenite, chlorite-sericite schist, and diabase dyke. The assay results from the sampling were generally low with the highest assay returning **554 PPB**. A number of discrete shears were exposed which returned anomalous assays in the **100 PPB** range over significant widths.

The Oka Project is located in the Matachewan greenstone belt, of the Larder Lake Mining Division. The greenstone belt is situated along the highly productive Kirkland-Larder Lake-Cadillac Break, which has produced in excess 40 million ounces of gold. The Matachewan gold camp has a long history of exploration and mining activity. A total of **950,000 ounces of gold** has been produced from the camp. The majority of production has come from the Matachewan Consolidated Mine, and the Young-Davidson Mine. Recent work by Royal Oak Mines on these same properties has identified a mineable reserve of eight hundred thousand ounces. The Oka Project is adjacent to the Royal Oak Property property, along the same major structure.

Further work is recommended for the Oka Project. A combination of geological mapping, geochemical surveys, and diamond drilling is recommended to further evaluate the potential of this project.

LOCATION AND ACCESS

The Oka Project is located two kilometres northwest of the town of Matachewan, Ontario, and approximately fifty five kilometres southwest of the town of Kirkland Lake, Ontario (Figure 1). The property is situated in Powell Township, in the Larder Lake Mining Division. The latitude and longitude of the property is 80 40' E and 47 57' N respectively.

Access to the property is excellent. Highway 566 from the town of Matachewan, passes two kilometres southwest of the property. A gravel road through Royal Oak Mines Matachewan Project is used to access the southern portion of the property. Old drill trails are used to access the north portions of the property.

PROPERTY

The Oka Project consists of eleven contiguous unpatented mining claims located in Powell Township of the Larder Lake Mining Division. The claims are optioned from a group of prospectors. A listing of claims is enclosed on **Table 1**.

Table 1: Oka Project Claim Li

Claim No.	Claims
L. 1225271	1
L. 1223283	1
L. 1223284	1
L. 1223285	1
L. 1223286	1
L. 1223287	1
L. 1223288	1
L. 1206147	1
L. 1206148	1
L. 1206150	1
L. 1206081	1
	11 claims

2

Figure 1

TOPOGRAPHY

Approximately 2/5 of the Oka Project is overlain by Otisse Lake. The surrounding area is characterized by a series of steep north-south trending ridges of diabase dykes, which define drainage. The vegetation consists predominantly of cedar, alder and hazel in the low areas, and a mixture of poplar and spruce in the high areas. Outcrop exposure is approximately five to ten percent.

REGIONAL GEOLOGY

The property lies within the Watabeag Assemblage of the Abitibi Subprovince. The general geology of the Matachewan area has been described in 1967 by H. L. Lovell of the Ontario Geological Survey (O.G.S.), (G.R. 51, Map 2110), (**Figure 2**). In addition, L. Jensen of the O.G.S. has recently mapped portions of Powell township (O.G.S. Map 3356).

The dominant geological feature of the region is the Cairo stock, a large syenite intrusion centered in Cairo township. A number of trachytic syenite and syenite porphyry dykes and sills associated with the Cairo stock intrude the surrounding volcanic units. Tholeiitic basalt and andesite flows, with minor iron formation and interflow sediments possibly correlate with the Kinojevis Group (Jensen 1979), in Kirkland Lake. This sequence of volcanic rocks are isoclinally folded with the axial plane orientated at Az 070. A sequence of sedimentary and alkalic volcanic rocks of the Timiskaming Group (Lovell 1967; Jensen, 1979), unconformably overlies the volcanic rocks. The Timiskaming Group contains distinctive fluvial conglomerates and greywackes and is spatially associated with the Kirkland-Larder Lake - Cadillac Break Granitic to dioritic intrusions, are present mainly in the north and southeastern parts of the region. All the rocks are intruded by north trending diabase dykes of the Matachewan swarm. In the southeast and southwest, proterozoic sedimentary rocks of the Cobalt Group, mainly conglomerates, unconformably overlie the older rocks.

4

Figure 2

1

2

-3

ECONOMIC MINERALIZATION

The majority of gold deposits of the Abitibi Subprovince are generally situated within a few kilometres of two major structural breaks, the Kirkland-Larder Lake - Cadillac Break, and the Destor -Porcupine Break. Production in excess of one hundred million ounces has come from areas proximal to these two major deformation zones. This spatial association makes the areas along these breaks key exploration targets. Recent mapping by the O.G.S. (Jensen, 1996), has identified and extended the Kirkland-Larder Lake - Cadillac Break from Kirkland Lake through to the Matachewan area.

The Matachewan area has a long history of exploration and mining dating back to 1906. Between the period of 1934 to 1957, in excess of nine hundred and fifty thousand (950,000), ounces of gold were produced in the Matachewan camp. The majority of this production was from two mines, the Young-Davidson Mine and the Matachewan Consolidated Mine (**Table 2**). Royal Oak Mines, who now owns both the Young-Davidson Mine and Matachewan Consolidated Mine, has recently defined a mineable reserve in excess of eight hundred thousand ounces (800,000) of gold (Royal Oak Mines Annual Report, 1995). This reserve includes open pit and underground material. An aggressive exploration program is continuing on this property in hopes of bringing it into production.

Deposit Name	Years of	Ounces	Grade	Туре	Nature of Ore
Паше	Operation	<u>Au</u>	02/1		
Young-	1934-57	585,690	0.10	Syenite	Auriferous pyrite in
Davidson					quartz stockwork.
Matachewan	1934-54	378,101	0.11	Syenite,	Auriferous pyrite in
Consolidated				Volcanic	quartz stockwork
Ryan Lake	1948-57	1,352	0.01	Porphyry	Auriferous chalcopyrite
		-		Copper	in quartz stockwork
Total		965,143			

Table 2Gold Deposits of the Matachewan Area

1_

Gold deposits and showings of the Matachewan area are subdivided into four types (Sinclair, 1982). These types are based on rock type, associated sulphide mineral assemblage, and associated alteration assemblage. The four types are, syenite hosted, volcanic hosted, porphyry copper, and quartz vein. The majority of production (85%), has home from the syenite hosted type deposits (**Table 2**).

Syenite hosted deposits are relatively large, one to five million tons, with an average grade of 0.1 oz/ton. The two largest deposits, Young-Davidson and Matachewan Consolidated, are of the syenite hosted type. They occur at opposite ends of a large trachytic syenite 3,000 feet long and 600 feet wide. The syenite trends east-west and is oriented subparallel and proximal to the contact between the volcanic rocks and sedimentary rocks. The syenite is foliated at the contacts, and generally massive in the interiors. Gold bearing syenite is typically pink to red, highly fractured and cut by quartz and quartz carbonate veins. They contain 2-3% disseminated pyrite, with some pyrite in quartz veins but rarely in quartz carbonate veins. Gold occurs as native gold associated with pyrite. Minor chalcopyrite, galena, and molybdenum are associated with the disseminated pyrite.

The Matachewan syenite hosted gold deposits are similar in some respects to the Kirkland Lake gold deposits. The Matachewan deposits are situated along the Kirkland-Larder Lake - Cadillac Break (Matachewan Branch, Jensen, 1995), as are the Kirkland Lake deposits (04 Break). Similarly, the Matachewan Deposits are hosted within syenite intrusions, as are the Kirkland Lake deposits. The Kirkland Lake deposits differ in that they consist mainly of narrow high grade quartz veins, and quartz vein stockworks and breccia zones. Although the average recovered grade for the Kirkland Lake camp (0.51 oz/ton), is much higher than the Matachewan camp (0.10 oz/ton), the gold-silver ratio (4.3:1) is very similar (Sinclair, 1982).

7

PREVIOUS WORK

The area has a long history of exploration activities for a variety of different metals dating back to 1906. A summary of work relevant to the Oka Project is outlined below in chronological order.

Culver Gold Mines Limited (1928):

Culver Gold Mines reported having the first professional geologist examine the property. In 1928 an engineer by the name of Huntoon, reported favorably on the project. It was his report which led to drilling and trenching on the property. Diamond drilling commenced in 1934, with little encouragement. The best intersection was a five foot section of 0.22 oz/ton gold. A total of 6,700 feet were drilled at a number of unknown locations on the property.

O' Connell Gold Mines (1935):

In 1934-1935 O'Connell Gold Mines completed work on claim L 1206147. The following description of work is included on page 37 of O.G.S. Report 51, Geology of the Matachewan Area: "A shaft is being sunk to explore a quartz vein, from which values have been reported by the company; this shaft has reached a depth of 75 feet in July 1934. The vein reached a width of 1.4 feet and is mineralized with chalcopyrite, pyrite, and tourmaline. It is vertical and strikes northeast, parallel to the schistosity in the soft, grey altered greywackes, which form the country rock. The vein could be followed only a short distance, owing to the fact that it has been faulted". No further work was reported by O'Connell Gold Mines.

Bloom Lake Consolidated Gold Mine (1937):

Bloom Lake Consolidated Gold Mines obtained the property and extended the existing shaft to a depth of 125 feet. No further work was documented by the company.

R

F. J. Garbutt (1974):

F. J. Garbutt completed a magnetometer survey on a portion of the property situated over Otisse Lake. The survey outlined one strong magnetic horizon oriented in a north-south orientation, possibly a diabase dyke. No follow up work was reported.

Texasgulf Canada Limited (1975):

Texasgulf Canada Limited optioned the claims from F. J. Garbutt. Texasgulf completed a VLF electromagnetic survey on the property. No significant anomalies were identified and the property was returned.

Dr. F. Yandel (1975):

Dr. F. Yandel acquired the property and contracted Cana Exploration Consultants Ltd. to perform Magnetometer, VLF, Vertical Loop EM, and geological surveys on the north portion of the property. The magnetometer survey identified a number of magnetic high zones found later to be diabase dykes. The VLF survey identified three conductive zones. The Vertical EM survey identified a number of marginal conductors. The geological mapping identified the main lithology types in the area, syenite intrusions, mafic volcanics, diabase dyke and sediments. A number of old trenches and drill hole setups were identified in the mapping program. Widespread pyrite mineralization was noted on the property. No follow up was recorded

Sylva Explorations Ltd. (1979-1980)

Sylva Explorations Ltd. acquired the property and completed, geophysical surveys including magnetometer, VLF, Self Potential surveys, as well as geochemical surveys. Five geophysical targets were outlined. Two diamond drill holes were drilled to test anomalies on Otisse lake. The holes encountered sulphide mineralization in the greywacke and conglomerate units. No significant gold assays were returned. No further work was reported, so it is unknown if the geophysical anomalies were ever followed up on.

Otis J. Explorations-Sedex Mining Corp. (1996)

Otis J. Explorations optioned the property in 1996. The company changed its name to Sedex Mining Corp. In January of 1996 Sedex Mining Corp completed a magnetometer survey and a limited Induced polarization survey. Sedex completed 3 diamond drill holes totaling 405.38 metres. Wide sections of highly anomalous gold mineralization were encountered in conglomerates, argillites and greywackes. Summaries of the individual holes are included below:

DDH S0-96-1 was drilled on line 1+00 E / 1+50 S, at -45 N, to test an IP anomaly. The hole was drilled to a depth of 106.68 metres. The hole encountered wide Matachewan diabase dykes, and Temiskaming greywackes. Wide zones of anomalous gold mineralization were encountered within the greywackes. The best assay was 1,257 PPB Au over a 1.5 metre wide section. One section of disseminated pyrite mineralization averaged greater than 200 PPB Au over a 36 metre wide interval.

DDH SO96-2 was drilled on line 1+00 W / 0+75 N, at -45 N, to test an IP anomaly. The hole was drilled to a depth of 131.06 metres. The hole encountered Temiskaming greywackes, and altered greywackes. No anomalous gold assays were returned from the hole.

DDH SO-96-3 was drilled on line 0+00 / 0+00, at -45 N, to test both a weak IP anomaly and the down dip extension of the mineralization in the O'Connell Gold Mines shaft. The hole was drilled to a depth of 167.64 metres. The hole encountered Temiskaming conglomerates, greywackes, and syenite intrusions. A wide zone of shearing was intersected along the sediment-syenite contact. Anomalous gold mineralization was associated with this structure. The best result was 981 PPB Au over a 1.5 metres wide interval. Numerous wide sections of anomalous gold mineralization were intersected in both the sediments and syenite.

10

1996 TRENCHING PROGRAM

A limited mechanical trenching program was completed between the period June 1 and July 11, 1996. The stripping was focussed on investigating several induced polarization anomalies, the O'Connell Gold Mines Shaft and several locations of old reported showings. Trenching was restricted to claims 1206081, 1206147, and 1206148, and 1223288 (MAP 1). Results of the program are discussed below for each individual trench. Assay certificates are enclosed in APPENDIX I.

Trench 1 totaled 70 metres in length and was situated along a syenite intrusion. Trenching identified a structurally complex area which included a folded syenite dyke approximately 5 metres in width, hosted within conglomerates (**TRENCH SKETCH 1**). A total of 18 grab samples were collected from the trench (**Table 3**). Assay results were low for all samples.

Trench 2 totaled 45 metres in length and is located along weakly sheared, folded sequence of conglomerates, syenites, and chlorite-sericite schist (**TRENCH SKETCH 2**). A total of 13 samples were collected for analysis (**Table 3**). Assay results were low for all samples from this trench.

Trench 3 totals 85 metres in length. Weakly sheared conglomerates and syenite was encountered in the trench (**TRENCH SKETCH 3**). A total of 46 samples were collected for analysis, the highest result was **386 PPB Au** (**Table 3**). Of the 46 samples, 22 returned assays greater than **100 PPB Au**. These samples were collected along an area approximately 25 metres in width.

П

Table 3

				Oka Proje	ct 199	6 Sampling Resul	ts			
Sample #	Trench #	Location	EW	Location	N/S	Rock Type	Sulphide %	Alteration	Mag. Sus.	Au PPB
17926	Irench 1	/06	W	/5	N	Syenite	1-2% Py	Hem		5
1/92/	Irench 1	/08	W	/6	N.	Conglomerate	1-2% Py	Hem	<u> </u>	3
1/928	Irench 1	/0/		11		Conglomerate	3-5% Py	Hem, Chlor	<u> </u>	10
17929	Irench 1	709	W	77	N	Conglomerate	1-2% Py	Chlor, Hem		10
1/930	I rench 1	/12	W	/8	<u>N</u>	Syenite	1-2% Py	Hem	[5
1/931	Trench 1	/14	W	/9	N	Syenite	3-5% Py	Hem, Chlor		2
1/932	Trench 1	/15	W	80	N	Syenite	1-2% Py	Hem		5
17933	Trench 1	/19	W	83	N	Chlor-carb schist	tr. Py	Chlor, carb		12
17934	Trench 1	/26	VV	87	N	Conglomerate	Tr. Py	Chior		9
17935	Trench 1	730	VV	89		Syenite Porphyry	Tr. Py	1-2% Qtz veins		2
17930	Trench 1	725	VV	98	N	Chior-carb schist	Tr. Py	Chior, carb.		9
1/93/	Trench 1	724	VV	103	N	Quartz Vein	Tr. Py	Carb		
1/938	Trench 1	721		96	IN .	Syenite	Ir. Py	Hem Oblas set at		1
17939	Trench	/26	VV	104		Congiomerate	12-3% Py	Chior, carb, qiz	ļ	3
17940	Trench 1	733	VV	104		Congiomerate	Ir. Py	Hem, carb		
// 7040	Trench 1	732		99		Chior-carb schist	1-2% Py	Chior, carb,ql2		24
17942	Trench 1	/36	VV	88		Syenite Porphyry	Tr. Py	1-2% qiz veins		7
1/943	Trench	/ 36	VV	83	N	Congiomerate	Ir. Py .	Chior, carb		
. 6740	Tranch O	005	14/	404	N1	0	4.00/	Obles have		40
6710	Trench 2	893	VV	124		Congiomerate	1-2% Py			40
6714	Trench 2	890	VV	123		Syenite	2-3% Py	Hem		10
6715	Trench 2	091	VV	123	N	Syenite	2-3% Py	Hem		19
47040	Trench 2	891	VV	124		Syenne	2-3% Py	Hem		10
17949	Trench 2	859	VV	124	N	Chior carb schist	5-7% Py	Carb		17
1/950	Trench 2	864	VV	127	N `	Chior carb schist	3-5% Py	Carb		12
1/8/6	Trench 2	8/0		130		Quartz Vein	Tr. Py			14
1/8//	Trench 2	868	VV	129	N	Quartz Vein	Ir. Py			19
17070	Trench 2	8/0		128	N N	Conglomerate	3-5% Py	Chior, carb, tuc		14
17079	Trench 2	8/3		127	IN N	Conglomerate	2-3% Py	Chior, carb		14
17000	Trench 2	897	VV	125		Conglomerate	5-7% Py	Chior,carb		
17001	Trench 2	897	VV	124	IN	Conglomerate	7-10% Py	Chior,carb		14
	Trench Z	912	vv	127	IN	Conglomerate	5-7% Py	Chior		56
6746	Tranah 2	10	r-		<u> </u>	O an alla na anata	2.60(D.	Obles each		
0/10	Trench 3	10		77	<u> </u>	Conglomerate	5-5% Py	Chior, carb	30	34
6719	Trench 3	19		70	<u>s</u>	Congiomerale	5-7% Py	Chior	0.7	214
- 0/10	Trench 3	1/		70	<u>s</u>	QTZ Ser Chior Sch	3-1% Py	Ser, Chior, carb	0.97	314
6720	Trench 3	14		69	<u>s</u>	Qtz Ser Chior Sch	5 70 Du	Ser, Chlor, carb	0.33	59
6721	Trench 3	13		62	<u> </u>	Q12 Ser Chior Sch	5 70/ PV	ser, chior, carb	0.3	153
6722	Tropoh 3		C C	56	<u>s</u>	Q12 Ser Chlor Sch	5 70/ DV	Chior, ser	0.23	106
6723	Trench 3			54	<u> </u>	Conglomerate	5-7% PV	Sel, luc. yiz	0.3	00
6724	Tranch 3			57	<u> </u>	Oth Cor Chlor Sob	10 150/ Dr	Contor, Carb	0.10	180
6725	Trench 3			32	<u> </u>	QIZ Ser Chior Sch	5 70 D	Sel, Chiul	0.24	109
6726	Trench 2			43	0	QIZ SEI CHIOI SCH	3-170 FY	Chlor cor fue	0.21	103
6727	Trench 2				0	QIZ SEI CIIIOI SUI	15 200/ D.	Chior, ser, iuc	0.14	
6729	Trench 3	9		44	<u> </u>	Syenite	10-20% Py	Chlor, ser, carb	0.32	296
0720	Trench 3			42	5	Syenite	10-15% Py	Chior, ser, nem	0.25	300
0001	Tranch 3		<u> </u>	90	<u> </u>	Congiomerate	2-3% Py	Ser	29	46
0002	Tranch 3	19		79	3	Congiomerate	2-3% Py	ChiOr	20	C lin
0003	Tranch 2	19		/ ð 74	<u> </u>	Congiomerate	3-3% PY	CINOT	3/	110
0004	Trench 3	18		- /4	<u> </u>	Congiomerate	1-3% Py	Chlor	38	46
0000	Trench 3		<u>-</u>	12	0	Congiomerate	5-1% Py	Chior, ser	8.5	69
0000	Trench 3	18		69	3	Congiomerate	3-1% PY	Chior, Ser	0.16	62
8007	Tranch 3	14		00	0		10-15% Py	Unior,ser	0.15	
8008	Trench 3	12	<u>-</u>	64	<u> </u>	Congiomerate	7-10% Py	UZ SEF CRIOF	0.27	
8609	rench 3	10	E j	60	S	Conglomerate	7-10% Py	Qtz ser chlor	0.37	3

	8610	Trench 3	9	ĴΕ	58	S	Conglomerate	5-7% Py	Qtz ser chlor	0.17	146
	8611	Trench 3	10	E	55	S	Qtz Ser Chlor Sch	5-7% Py	Ser chlor fuc	0.21	94
	8612	Trench 3	4	E	55	S	Conglomerate	7-10% Py	chlor carb	0.33	173
	8613	Trench 3	8	E	53	S	Conglomerate	10-15% Py	chlor carb	0.19	103
	8614	Trench 3	6	E	53	S	Qtz Ser Chlor Sch	10-15% Pv	chlor ser	0.18	180
	8615	Trench 3	7	E	52	s	Qtz Ser Chlor Sch	7-10% Pv	chlor ser	0.24	122
	8616	Trench 3	4	F	53	s	Otz Ser Chlor Sch	3-5% Pv	chlor ser	0.14	135
	8617	Trench 3	4	F	51	Š	Otz Ser Chlor Sch	3-5% Pv	chlor ser	0.23	207
	8618	Trench 3	4	F	50	s	Otz Ser Chlor Sch	3-5% PV	chlor ser	0.21	101
	8619	Trench 3	3	F	49	15	Conglomerate	5-7% PV	chlor carb	0.24	110
	8620	Trench 3	1	E	40	S S	Conglomerate	3-5% PV	chlor ser	0.07	43
	8621	Trench 3		<u> </u>	43	6	Conglomerate	7-10% Pv	chlor ser carb	0.07	151
	8622	Trench 3		W/	40	6	Ott Ser Chlot Sch	7-10% Py	ser carb	0.07	141
	8622	Trench 3	2		40	0	Otz Ser Chlor Sch	3 5% Du	ser chlor carb	0.07	135
N	8624	Trench 3	5		40	6	Q12 Ser Chior Sch	3 50/ Dy	ser chlor carb	0.00	57
	8625	Tropoh 3			45	0	Ott Ser Chlor Sch	7 10% DV	ser chior carb	0.14	130
	8020	Trench 2	0		44	13		1-10% Fy	ser chior fuc	0.10	133
	0020	Trench 3	9		43	10	Syenite	13-20% Py	ser chior	0.20	3
	. 0027	Trench 3	13	VV	40	8	Syenite	5-7% Py		47.0	J
	8628	Trench 3	16	VV	39	15	Syenite	1-3% Py	CHIOT	0.26	45
	8629	I rench 3	19	W	38	5	Syenne	2-3% Py		18.1	38
	/8630	I rench 3	20	W	34	S	Syenite	1-2% Py	cnior	11.2	3
	8631	French 3	25	W	29	S	Conglomerate	tr-1% Py	chlor	15.8	79
	6729	Trench 3	10	E	35	S	Conglomerate	7-10% Py	Chlor ser fuc	ļ	27
	6730	Trench 3	10	E	33	s	Conglomerate	7-10% Py	Chlor ser fuc		36
	8632	Trench 4	7	E	26	N	Conglomerate	1-2% Py		20.1	3
	/8633	Trench 4	10	E	28	N	Conglomerate	1-2% Py		28.1	nil
	8634	Trench 4	12	E	31	N	Conglomerate	1-2% Py		38	60
	8635	Trench 4	14	E	35	N	Conglomerate	1-2% Py		39	138
	8636	Trench 4	4	E	55	N	Chlor ser sch	1-2% Py	Chlor ser	0.13	67
	8637	Trench 4	1	E.	56	N	Chlor ser sch	1-2% Py	Chlor ser	0.62	137
	8638	Trench 4	1	W	53	N	Chlor ser sch	1-2% Py			554
	8639	Trench 4	2	W	52	N	Conglomerate	1-2% Py			55
	8640	Trench 4	5	W	53	N	Conglomerate	1-2% Py			167
	8641	Trench 4	4	W	57	N	Conglomerate	1-2% Py			170
	8642	Trench 4	20	E	56	N	Conglomerate	1-2% Py			39
	8643	Trench 4-	25	E	56	N	Conglomerate	1-2% Py			153
	8644	Trench 4	35	E	56	N	Conglomerate	1-2% Py			2
	8645	Trench 4	35	E	52	N	Conglomerate	1-2% Pv			84
	8646	Trench 4	- 36	E	49	N	Conglomerate	1-2% Pv			45
	8647	Trench 5	100	E	307	N	Conglomerate	1-2% Pv	chlor	0.8	5
	8648	Trench 6	98	E	126	N	Conglomerate	2-3% Pv		0.18	466
				F		N		_ = = ;	<u> </u>	0.10	.30
E' TÉ	8656		315	– F	1200	N					
					1200	<u> </u>					
				F						<u> </u>	
				-						<u>├</u>	
				<u>c</u>							<u></u>
										┟─────┤	····
				<u> </u>							
				<u> </u>			+	······		···	· · · · · · · · · · · · · · · · · · ·
	4.30			<u> </u>							
	8647	11CNCH4		<u> </u>	li					I	
				<u>E</u>							
				E					·		
		· · · ·		E							
				E						L	
	ļ			E							
				E							
				E							

Page 2

Trench 4 totals 50 metres in length in 2 closely spaced trenches. The trenching was located proximal to the historical O'Connell Gold Mines Shaft. Conglomerate and chlorite sericite schist were exposed (**TRENCH SKETCH 4**). A total of 15 samples were collected from the trenches, with the highest assay returning **554 PPB Au** (**Table 3**). A number of samples returned assays in the 100's of PPB ranged.

Trench 5 totals 35 metres in length and is located over an IP anomaly. The trenching exposed barren conglomerate with one narrow shear approximately 1 metre wide (**TRENCH SKETCH 5**). Only 1 sample was collected from this trench which returned low a low assay value (**Table 3**).

Trench 6 totals 40 metres in length and is located over an IP anomaly. The trenching exposed diabase dyke and barren conglomerate(**TRENCH SKETCH 6**). One sample was collected for analysis which returned **466 PPB Au** (**Table 3**).

RECOMMENDATIONS

Results of the stripping program indicate anomalous low-grade gold mineralization associated with narrow shears and weakly altered conglomerates. Due to the location of the Oka Project along strike to the past producing Matchewan projects, further work is recommended for the Oka Project. Geochemical surveys, geological mapping, and diamond drilling are recommended to further evaluate the gold potential of this property.

REFERENCES

Assessment File Data:

Culver Gold Mines (1928), Internal correspondence Documents.

O'Connell Gold Mines (1935)

Bloom Lake Consolidated Gold Mine (1937) .

F. J. Garbutt (1974) Geophysical Survey.

Texasgulf Canada Limited (1975) Geophysical Survey.

Dr. F. Yandel (1975) Geophysical and Geological Surveys.

Sylva Explorations Ltd. (1979-1980) Geophysical, Geochemical, and Geological Surveys.

References:

Jensen, L. S. 1995 Precambrian Geology Powell Township, Ontario Geological Survey. Scale 1:20,000, uncoloured.

Lovell H. L., 1967

Geology of the Matachewan Area; Ontario Department of Mines Geological Report 51 Exploration, 61 p. Accompanied by coloured geological maps 2109, 2110, scale 1 inch to 1/2 mile.

Powell, W. G., Hodgson, C. J. and Carmichael, D. M. 1990
Tectono-metamorphic Character of the Matachewan Area, Northeast
Ontario. Geoscience Research Grant Program, Summary of Research 1989-1990.
p. 56-65. O.G.S. Miscellaneous Paper 150.

Pyke, D.R., Ayers, L.D. and Innes, D.G. 1973.

Timmins-Kirkland Lake; Ontario Department of Mines, Geological Compilation Series, Map 2205.

Royal Oak Mines, 1995 Royal Oak Mines Annual Report 1995.

Sinclair, W. D. 1982

Gold Deposits of the Matachewan Area, in Geology of Canadian Gold Deposits, edited by R. W. Hodder and W. Petruk, Canadian Institute of Mining and Metallurgy, Special Volume 24, p. 83-93.

CERTIFICATE OF QUALIFICATIONS

I, Todd Keast, of 1204 Grace Ave., Porcupine, Ontario, do hereby certify that:

- 1. I am the author of this report.
- 2. I am a graduate of the University of Manitoba, Winnipeg, Manitoba, having received an Honors Bachelor of Science (Geology), in 1986.
- 3. I have practiced in the field of mineral exploration since 1987, for a number of exploration companies throughout Manitoba, Ontario, and Quebec.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 7. I have not received nor do I expect to receive any interest in the Oka Project.

Dated at Porcupine, Ontario this 10th day of March, 1999.

I dell'and

Todd Keast, B.Sc.

APPENDIX I

Assay Certificates

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Assay Certificate

6W-1992-RA1

Date: JUN-06-96

Company:**T.OBRADOVICH**Project:OKA 2Attn:T.Obradovich

We hereby certify the following Assay of 6 Rock samples submitted JUN-05-96 by .

Sample Number	Au PPB	Au Check PPB	Cu PPM	
6710	46	43	20	
6711	31	-	22	
6712	46	-	26	
6713	17	14	21	
6714	19	21	34	
6715	10		15	

One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: T. OBRADOVICH

Project: OKA-2 Attn: T. Obradovich

We hereby certify the following Geochemical Analysis of 15 Rock samples submitted JUN-10-96 by

Sample Number	Au PPB	Au Check PPB	Cu P PM	
6716			42	
6717	69	-	30	
6718	314	309	22	
6719	39	-	26	
6720	50	-	20	
6721	153		26	
6722	106	-	16	
6723	91	-	7	
6724	189	137	60	
6725	103	-	44	
6726	117	· - · · -	28	
6727	144	144	42	
6728	386	415	50	
6729	27	-	20	
6730	36	-	22	

One assay ton portion used.

Certified by Denis Charte

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300

6W-2038-RG1

Date: JUN-12-96

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 1 of 2

Geochemical Analysis Certificate

Company: T. OBRADOVICH

Project: OKA Attn: T.Obradovich

We hereby certify the following Geochemical Analysis of 34 Bulk samples submitted JUL-02-96 by .

Sample	Au	Au Check	Cu	
Number	PPB	PPB	PPM	
17876	14	12	36	•••••••••••••••••••••••••••••••••••••••
17877	19	14	28	
17878	12	-	12	
17879	14	-	12	
17880	17	-	14	
17881	14	-	20	
17882	58	-	11	
17883	43	-	22	
17884	50	-	21	
17885	29	-	98	
√17926	5		50	
17927	3	-	75	
17928	10	-	86	
17929	10	-	31	
17930	5	-	14	
17931	2	-	32	
17932	5	-	38	
17933	12	-	78	
17934	9	5	182	
17935	. 2	-	24	
17936	9	-	27	
17937	Nil	-	16	
17938	7	-	21	
17939	3	-	44	
17940	7	· -	43	
17941	24	26	47	
17942 Not Rec'd	-	-	-	
17943	7	-	72	
17944	15	-	20	
17945	7	-	151	
One access ton nortion we				

One assay ton portion used.

Certified by K. Mon

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300 CW 1221 DC

6W-2331-RG1

Date: JUL-04-96

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 2 of 2

Geochemical Analysis Certificate

Company: T. OBRADOVICH

6W-2331-RG1

Date: JUL-04-96

Project: OKA Attn: T.Obradovich

We hereby certify the following Geochemical Analysis of 34 Bulk samples submitted JUL-02-96 by .

Sample	Au	Au Check	Cu	
Number	PPB	PPB	PPM	
17946	12	-	70	
17947	Ni l	-	44	
17948	7	-	108	
17949	17	-	32	
17950	12	-	19	
				•••••••••••••••••••••••••••••••••••••••

One assay ton portion used.

Certified by K. Monison

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Page 1 of 2

Geochemical Analysis Certificate

Company: T. OBRADOVICH

6W-2480-RG1

Date: JUL-15-96

Project: OKA Attn: T. Obradovich

We hereby certify the following Geochemical Analysis of 50 Bulk samples submitted JUL-11-96 by .

Sample	Au	Au Check	
Number	PPB	PPB	
6728 Extra sample	331	312	
8601	46	-	
8602	5	-	
8603	NIL	-	
8604	46	-	
8605	69	77	
8606	62	-	
8607	63	-	
8608	134	-	
8609	3	-	
8610	146	· · · · · · · ·	· • • • • • • • • • • • • • • • • • • •
8611	94	-	
8612	173	-	
8613	103	-	
8614	180	-	
8615	122	-	
8616	135	-	
8617	207	285	
8618	101	-	
8619	110	-	
8620	43		
8621	151	-	
8622	141	-	
8623	135	-	
8624	57	~	
8625	139	149	
8626	3	-	
8627	3	-	
8628	45	-	
8629	38	-	
One assay ton portion u	sed.		

Certified by Denis Chan the

1

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 2 of 2

Date: JUL-15-96

Geochemical Analysis Certificate

6W-2480-RG1

Company: **T. OBRADOVICH** Project: OKA

Attn: T. Obradovich

We hereby certify the following Geochemical Analysis of 50 Bulk samples submitted JUL-11-96 by .

Sample	Au	Au Check	
Number	PPB	PPB	
8630	3		
8631	79	-	
8632	3	-	
8633	NIL	-	
8634	60	-	
8635	138	-	
8636	67	-	
8637	137	-	
8638	554	602	
8639	55	-	
8640	167	-	
8641	170	-	
8642	39	-	
8643	153	-	
8644	2		
8645	84	•	
8646	45	-	
8647	5	-	
8648	466	393	
8649	27	-	
8650 Not Rec'd			

One assay ton portion used.

Certified by Denis Cha

1

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Declaration of Assessment Work Performed on Mining Land

Transaction Number (office use)

W9990, 00361 Assessment Files Research Imaging

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

of subsections 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act the assessment work and correspond with the mining land holder. Questions about of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury

Instructions: - For work performed on Crown Lands before **recording a claim**, use form 0240. - Please type or print in ink.

900

1. Recorded holder(s) (Attach a list if necessary)	
Name SENEN MINING CORP.	Client Number
Address 100-675 INJEST HASTINGS STREET	Telephone Number (604) 685 - 2222
VANIDUNER, B.C. V6BIN2	Fax Number (604) 685-3764
Name	Client Number
Address	Telephone Number
	Fax Number

2. Type of work performed: Check (✓) and report on only ONE of the following groups for this declaration.

	Geotechnical: prospecting, se assays and work under section	urveys, on 18 (regs)	Ø	Physical: drilling stu trenching and asso	ripping, ociated assays	Ο	Reha	bilitation
Work	Туре					Office U	se	
Ne	MANUER STO, DOIN	G TRENCH	ING	ASSAUS	Commodity			_
ישוץ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Total \$ Value of Work Claimed	# 8.9	746	1.
Dates Perform	Work From D/ D/ D/ Month	96 To	// Day	07 96 Month Year	NTS Reference		. (
Giobal	Positioning System Data (if available)	Township/Area	OWE	LL	Mining Division	har	der La	Ke.
		M or G-Plan Number	G-3	218	Resident Geologis District	st Kin	Kland	hake.

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

- provide proper notice to surface rights holders before starting work;

- complete and attach a Statement of Costs, form 0212;

- provide a map showing contiguous mining lands that are linked for assigning work;

- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name TOD REAST	Telephone Number (705) 235-2540
Address 1204 GRALE AVE. SOUTH PORCUPINE ON PON ICO	Fax Number
Name	Telephone Number
Address	Fax Number
Name	Telephone Number
Address	Fax Number

4. Certification by Recorded Holder or Agent

I,

BOB BAILEY, do hereby certify that I have personal knowledge of the facts set forth in

this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Holder or Agent	ob Bulil		Date June 3/99
Agent's Address 174 RENEE PLACE TIMPLINS	ON	elephone Number 705) 368-9686	Fax Number (705) 360-5866
0241 (03/97)	PAPIE8		3 <i>,</i>
FIECOLOS		RECEIV	ED
JUN 07 10 J	2. Jo	JUN 0 7 199	99
	- 0	5 1 GEOSCIENCE ASSES	SMENT

5. • Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mini land where work was performed, at the time work was performed. A map showing the contiguous link must accompany the form.

torm	•					
Minin work minin colum indica	g Claim Number. Or if was done on other eligible g land, show in this in the location number ated on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of wo to be distributed at a future date
1	L-1206081		3708			3.708
2	1 - 1206147	1	1449			#1449
3	1-1206148	1	2735			\$2735
4	1-1773798		884			1 224
5	- 1005600	<u> </u>				
6			1			
7						
8	<u></u>	+	1			
9						
10						
11		1	1			
12			1			
13						
14						
15			1			
16		[1			
17		<u> </u>	1			
18	<u></u>		1			
	Column Totals	4	\$8776			\$ 8 77/2
1	BOB BA	ILEV	tob	nereby certify that	the above work credi	its are eligible under
subs	(Print Full ection 7 (1) of the Assessm	Name) Name) Nent Work Regulation	on 6/96 for assign	nent to contiguous	s claims or for applica	ation to the claim
wher	e the work was done					
Signal	ture of Recorded Holder or Agent	Authorized in Writing	Date	- A - t		
		> Poul -		Jue 3/9	9	
~	la structions for sutting b			V		
6.	Instructions for cutting b		re not approved.			
Som	e of the credits claimed in the treat the deletion of credits:	his declaration may	/ be cut back. Plea	se check (✓) in th	e boxes below to sho	ow how you wish to
F	1. Credits are t	o be cut back from	the Bank first, folk	owed by option 2 d	or 3 or 4 as indicated	
	2. Credits are t	o be cut back start	ing with the claims	listed last, workin	g backwards; or	
	□ 3. Credits are t	to be cut back equa	ally over all claims	listed in this decla	ration; or	
	□ 4. Credits are f	to be cut back as p	rioritized on the att	ached appendix o	r as follows (describe	e):
Note	If you have not indicated h followed by option numbe	iow your credits are r 2 if necessary.	e to be deleted, cre	dits will be cut ba	ck from the Bank firs	t,
For (Office Use Only	·		<u></u>		

Received Stamp		Deemed Approved Date	Date Notification Sent
		Date Approved	Total Value of Credit Approved
0241 (03/97)	RECEIVED	Approved for Recording by Minin	g Recorder (Signature)
	JUN 07 1999		
	GEOSCIENCE ASSESSMENT OFFICE		
		2.1951	8

•

Statement of Costs for Assessment Credit

Ministry of Northern Development and Mines

Intario

Transaction Number (office use)

W9980.00361

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	Units of work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
HECHANICAL STRIPPING - ALEX	MACINTURE + ASSOCIATES LED		\$4513
PROJECT SUPERVISION, WASHIM	4		\$4948
LABOUR - FRED KIGRNICKI			
GEOLOGIST - MAPPING, SAM	ound		\$6925
REPORT PREPARATION			
ASSAVS			\$1,167
Associated Costs (e.g. suppli	es, mobilization and demobilization).		· · · · · · · · · · · · · · · · · · ·
Transp	ortation Costs		
Food and	I Lodging Costs		
	Total Va	lue of Assessment Work	#17.553

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.

- 2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total
- Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK	<u><i>17,553</i></u>	x 0.50 = 8776 Total \$ value of worked claimed	
	•	•	

Note:

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

AILE do hereby certify, that the amounts shown are as accurate as may reasonably 1. (nie nt full name

be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying

Declaration of Work form as _	(recorded holder, agent, or state company position with	l am authorized t	o make this certification.
0212 (03/97)	Signatu	re Bob Builey	Date June 3/99.
		RECEIVED	0
		JUN 0 7 1999	
	2.19518	GEOSCIENCE ASSESSMENT OFFICE	

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

June 11, 1999

SEDEX MINING CORP. 1000-675 WEST HASTINGS STREET VANCOUVER, B.C. V6B-1N2

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.19518

Status W9980.00361 Deemed Approval

Subject: Transaction Number(s):

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Bruce Gates by e-mail at bruce.gates@ndm.gov.on.ca or by telephone at (705) 670-5856.

Yours sincerely,

10

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 13890 Copy for: Assessment Library

Work Report Assessment Results

Submission Numb	er: 2.19518				
Date Corresponder	nce Sent: June 11	, 1999	Assessor:Bruce Gate	S	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9980.00361	1206081	POWELL	Deemed Approval	June 11, 1999	
Section: 10 Physical PTRNCI 10 Physical PSTRIP	H				
Correspondence to) :		Recorded Holder(s)	and/or Agent(s):	
Resident Geologist			Robert Bailey		
Kirkland Lake, ON			TIMMINS, ONTARIO	, CANADA	
Assessment Files Li	brary		SEDEX MINING CO	RP.	
Sudbury, ON	-		VANCOUVER, B.C.		

CWI. PH. PH Contour Approximate **Control point (horizontal** Flooded land Mine head frame Pipeline (above ground) Railway; single lrack. iouble track

Road; highway, county, in ucces: trail, bush Shoreline (original) Transmission ist Wooded area

Surface Rights Only Mining Rights Only. Leese Surface & Mining Right Surface Rights Only Mining Rights Only. Licence of Occupation Order-in-Council. Cancelled Reservation Sand & Grevel

CIRCULATED DEC 14, 1995 KP ARCHIVED MAY 27/97 Map base and land disposition drafting by Surveys and Mapping Branch, Ministry of Natural Resources

Netural

.......

AREAS WITHDRAWN FROM DISPOSITION

	MRO - Mining Rights Only BRO - Surface Rights Only B+ 6 - Mining and Surface												
	ecciption.	Order He.	(Canalary)	مطالعهوات									
۲		W-1	MAR. 30/95	M + S									
()	-	w-t -19/95	MAR. 30/95	M + 5									
•		W-1 - 20/95	MAR. 30/95	M + 8									
0	SEC 35 W- (200 MET	LL-P1715 /99 ON RES FROM WA	t May 13/99 Ter's Edge	M&S									
(b)	SEC 35 W	LL-C 1600/99 C	ONT MAY 15	/99 M+S									

SYMBOLS

		16	N												-										تنسكن سعه
~	ĸ	1													-									,	
Å	v							-	_	-	-	-			-	-	-	-							
		•																							
				•				•	`	•	,							-				-			<u> </u>
										ĺ								Ċ							
• •		• •	-	•	•		•	-	•	,	•	•	•	•	-	•		•	•			•	•		
•	-			-		•	•	-	•	•	•	•		•	-	•	•	•	•			•			هي الله جي جي الله
				-	~	-	-	-			-					-						-	-		
																	,						,		
								-						,	-										<u> </u>
				-								-			-		,								
_																						_			
·													•			•		•							ev
•		-		•	•	•	•	•	•	•	•	·	•	•	•	•		•	·	•	•	-	•	•	
											-			•											
					-																				
																									~
	• •	•	•	•	-	•		,			•	·	•	•	-	-				-		-	-		
						•									•		ı.								
																									(
			-	•	-	•		•	•		•	•	•					•	-	-				-	
-	• •	-	•	•	•	-			r	•	•	•	•	•	•		r	•	-	•	•	•	•	•	
				-								-					-				•				- * · ++
				-	-							•				•		•		•					*******
					,							-													
			~																						
		n	P		-	-		•	•	•	•	•	•	•	•	•	•	•	-	-	•	•	•	-	
		-	•	·	•	•		•	•	-	•	-	•		•	•	-	•	•	•				•	
	-	-			•	•			•	-	•					•	•	-	•				-	-	
		•	•					•	•	-		-						•	-	•					ومعادية فتنقد المتعادين
		-								-						-						-	-		• •
					•		•					,		-		-			-			-	-	-	.

NOTES

U.O. 7601 COVERS FLOODING RIGHTS IN THIS TOWNSHIP TO CONTOUR 870 TO ONTARIO HYDRO FILE 12290 VOL 2.

DISPOSITION OF CROWN LANDS

		-	-	-	•	•	•	•	-	•	-	-	•		•			-		•	•	•	•	•	•	•		•	• • •	•	•	•	•	•	• •		6		
1	•		•		•							•		,		•								•							-								
		-		•					-	-	-					-	-	-	-			•						•	-	-	-				•••	Ċ	×		
		-	•	•	•	•	•		•	- -	-	•	•		•	•	-	-	•	•		•	•	•	•	•	•		•	•	•	•	•		•••	0))	

.

Jod Fer

