
63.4980

1

41P15NE8236 83.4980 POWELL

010

REPORT ON EXPLORATION DURING 1985 ON THE CAMKING PROPERTY, POWELL TOWNSHIP, LARDER LAKE MINING DIVISION, ONTÁRIO

Ronald C. Wells Lacana Mining Corporation October 1985

A. .. - Grall 3/2/86

41P15NE8236 63.4980 POWELL

ſ

7

1

010C

TABLE OF CONTENTS

	Page
CONCLUSIONS & RECOMMENDATIONS	1
INTRODUCTION	2
LOCATION & ACCESS	3
PROPERTY OWNERSHIP & CLAIM STATUS	4
HISTORY OF PREVIOUS WORK	5
REGIONAL GEOLOGY	7
1985 WORK PROGRAM	
1) LINE CUTTING	8
2) GEOPHYSICAL SURVEYS	8
3) GEOLOGICAL MAPPING	10
4) DIAMOND DRILLING	17

LIST OF FIGURES

•

.

Page

Figure l	:	PROPERTY LOCATION & REGIONAL GEOLOGY MAP Appendix	8
Figure 2	:	COMPILATION MAP OF PREVIOUS WORK WITH 1985 GRID	B
Figure 3	:	MAGNETIC MAP - READINGS Appendix	8
Figure 4	:	CONTOURED MAGNETIC MAP Appendix	B
Figure 5	:	VLF MAP. CONTOURED FRASER FILTERED DATA Appendix	B
Figure 6	:	GEOLOGICAL MAP	B
Figure 7	:	DRILL PLAN	B

LIST OF TABLES

Table 1	:	ASSAY RESULTS FROM COPPER LAKE DDH CL-1 1975 Append	dix A
Table 2	:	ASSAY RESULTS, MAIN TRENCH BY D. CAMPBELL Append	A xib
Table 3	:	1982 DRILL HOLE ASSAY RESULTS Append	A xit
Table 4	:	SAMPLING RESULTS, SEPTEMBER 1984 Append	dix A
Table 5	:	CHIP SAMPLING RESULTS, OCTOBER 1984 Append	Jix A
Table 6	:	SAMPLING RESULTS, MAY 1985 Append	A xit

LIST OF APPENDICES

Appendix A:	TABLES. . </th <th>At Rear</th>	At Rear
Appendix B:	LARGE FIGURES & PLANS	At Rear
Appendix C:	DIAMOND DRILL LOGS	At Rear

CONCLUSIONS AND RECOMMENDATIONS

The 1985 Lacana drill program demonstrated that gold mineralization at the main showing is controlled by a major northeasterly trending shear zone which has been partially healed by syenitic intrusive rocks and associated alteration. Initial surface sampling at the main showing had suggested an easterly trend to the mineralization and possible stratigraphic control. However this was not the case since later east trending fractures had transported gold values in that direction, enhancing high background gold values in a sequence of chemical sedimentary rocks.

Gold values in the shear zone are generally in the 0.02 to 0.11 oz/T range and increase with pyrite content and fracture density. The better widths and average grades of gold mineralization (.07 oz/T Au over 30 feet) occur within the shear zone where it cuts a narrow sequence of chemical sediments, 40 feet wide.

Geological mapping indicates that the shear zone is intersected 400 to 600 feet to the southwest of the drilled area by a later swarm of diabase dikes over 300 feet wide. To the northeast a 150 feet wide diabase dike lies within 100 feet of the eastern most hole. This gives the shear zone a maximum uninterrupted length of 900 feet.

On the basis of generally sub-economic gold grades and limited strike potential no further work is warranted. It is recommended that the CamKing option be dropped this October. INTRODUCTION

Matachewan is a former gold mining camp which had two medium size producers, the Young Davidson Mine and Matachewan Consolidated Mine from the late 1920's until the 1960's. These two mines combined had a total production of over 5 million tons grading a little over 0.1 oz/T Au.

The CamKing property lies less than 2 miles northwest of Young Davidson Mine in Powell Township (Figure 1). A property visit was made late in September 1984. The property had received a limited amount of work by the owners and during a short option by Copper Lake Mines, this work had not adequately tested the main gold showing.

The initial property examination confirmed the sampling results of the previous work in the main showing area. A 30 feet section of fractured, pyritic, cherts in the main trench averaged .08 oz/T Au and a sample of fractured iron formation ran 1.55 oz/T Au.

Following these results, three days were spent mapping and chip sampling the main showing area. These surveys indicated that gold mineralization continued in the fractured cherts for 100 feet east and west of the main showing. The widths of low grade gold values in this area suggested possible open pit potential.

In late October 1984, Lacana took an option on the 9 claim property from CamKing Exploration and Resources Ltd. During 1985 a program of line cutting, geophysics, diamond drilling, geological mapping and prospecting was conducted on the property by Lacana. This report gives details of the work as well as the results and discusses the nature of the gold mineralization and its economic potential.

LOCATION AND ACCESS

The CamKing property is located in the centre of Powell Township, west of old Highway 566 (Figure 1) and is approximately 4 miles by road northwest of Matachewan. Access from Highway 566 is by bush road beginning at Ryan Lake Mine (Extender Minerals) a distance of 2 miles with 4 W.D. vehicle or ski-doo.

PROPERTY OWNERSHIP AND CLAIM STATUS

The CamKing property consists of 9 contiguous mining claims in central Powell Township, Larder Lake Mining Division, Ontario (Figures 1 and 2). A legal survey has been made of all the claims followed by an application for lease (prior to Lacana's option).

Claim Number	Anniversary Date	Holder
		1
L 367899	May 8, 1973	Don Campbell
L 367900	May 8, 1973	Don Campbell
L 372901	May 8, 1973	Don Campbell
L 372904	May 8, 1973	Don Campbell
L 372905	May 8, 1973	Don Campbell
L 372908	May 8, 1973	Don Campbell
L 372909	May 8, 1973	Don Campbell
L 372910	May 8, 1973	Don Campbell
L 372911	May 8, 1973	Don Campbell

Total 9 claims - approximately 400 acres

Address: Mr. D. Campbell

214 Anabalis Street

Matachewan, Ont.

HISTORY OF PREVIOUS WORK

The Matachewan area has a long prospecting history dating back to the turn of the century. Following the discovery and development of the Young Davidson and Matachewan Consolidated gold mines in the 1920's and 1930's, Powell and Cairo Townships received a great deal of exploration activity.

- Pre 1975. Henry King, Campbell and Welsh concentrated on the area west of Young Davidson Mine, out to Mistinikon Lake. King and Campbell's work involved basic propsecting, follow-up bulldozer stripping and trenching. This work located a number of gold and silver showings. One discovery was of gold in pyritic, altered, sediments (main showing) in the northern part of the CamKing property.
- 1975. The property was optioned to Copper Lake Exploration. Work by Thomas Skimming and Associates Ltd. involved trenching, some detailed mapping, line cutting, induced polarisation survey followed by three holes for 572 feet. The trenching of the main showing returned .12 Opt. Au over 15 feet. Hole CL-1 drilled beneath the showing intersected .095 Opt Au/6.0 feet and .305 Opt Au/5.0 feet in fractured, pyritic sediments (siliceous). Copper Lake's other two holes tested IP anomalies to the east and west (different areas) and did not yield any significant assays. The property was dropped without further testing of the showing zone.

- 1979. Magnetometer and VLF surveys on selected lines by Sylva Explorations Ltd. The geophysics was on too widely spaced lines to give meaningful data.
- 1981. Single, 170 foot long hole by H. King drilled 80 feet west of CL-1 (along strike - stratigraphically). The hole intersected a wide zone of pyritic, altered, sediments with .09 Opt Au/30 feet and .07 Opt Au/10 feet. More bulldozer stipping and trenching was completed west of this hole.
- 1981 1984. No further work on the property with the exception of company visits by Chevron, Rio Canex, Kerr Addison, etc.

Page...7

REGIONAL GEOLOGY

The regional geology of the Matachewan area can be seen on map 2100 'Powell and Cairo Townships, Timiskaming District', which accompanies Geological Report 51 published by the Ontario Department of Mines (1967).

Matachewan lies at the southwestern end of the Abitibi Greenstone Belt in an area with a complex structural and intrusive history. In Powell Township (Figure 1), tight folding appears to have repeated a succession of Keewatin metavolcanic and Timiskaming sedimentary rocks along an east west axis. This steeply dipping sequence is intruded by a large number of dikes, sills and plugs of felsic to intermediate composition. A swarm of later 'Matachewan' diabase dikes follow north trending fracture zones. In the sourthern part of the township the sequence is overlain unconformably by flat lying, Cobalt group, sedimentary rocks.

The Young Davidson Mine lies 2 miles southeast of the CamKing property (Figure 1). At the mine, a syenite dike complex has been intruded at the contact between Keewatin mafic volcanics and Timiskaming conglomerate. The gold ore occurs in a mineralized, brick red, fractured, phase of the syenite and forms a tapering cone extending to 1000 foot depth from the open pit (mined depth). Gold occurs within pyrite and as fine fracture fill in the syenite.

At the Matachewan Consolidated Mine to the east of Young Davidson, the gold was associated with structurally controlled quartz vein systems in the

1

metavolcanics and syenite.

Most prospecting in the Matachewan area has concentrated on quartz veins near the margins of felsic to intermediate intrusives and on base metals in shear zones (Ryan Lake type).

1985 WORK PROGRAM

During 1985 Lacana conducted a program of line cutting, geophysical surveys, diamond drilling, geological mapping and prospecting on the CamKing property.

1) Line Cutting

Paul Benard of Sesekinika was contracted to cut, chain and picket approximately 11 miles of line on the northern part of the property. The main showing and the area east and west was covered by 100 feet spaced lines for detailed geophysical and geological surveys while the area south was partially covered by 400 feet spaced lines (Figure 2).

2) Geophysical Surveys

Magnetometer and VLF surveys were run over the grid in late January 1985 by Rayan Exploration of North Bay. Some data from the Copper Lake IP survey (apparent resistivity) completed by Geoterrex in 1975 was located and reinterpreted.

a) Magnetometer Survey

An EDA PPM 350 field magnetometer and recording base station were used for the survey. Readings were taken every 20 feet on the grid (Figure 3) and the results are contoured in Figure 4.

b) VLF Electromagnetic Survey

A Geonics EM16 was used in this survey and in-phase and quadrature readings were taken every 100 feet on the grid. The results were contoured using the Fraser filtered values in Figure 5.

c) Discussion of Geophysical Data

The magnetic data (Figure 4) in the detailed part of the grid indicates a series of strong, linear, magnetic highs with northerly trend separated by plateau areas of low magnetic relief. All the north trending features can be explained by diabase dikes while the plateau areas occur over relatively homogeneous (magnetically) sediments. At the northern end of the grid a sharp increase in the magnetic gradient reflects the contact with mafic to ultramafic metavolcanic rocks.

Detailed contouring of magnetic data in the main showing area was able to pick out the narrow iron formation and some weakly magnetic, mafic syenite intrusives to the south. The VLF data (Figure 5) indicates a series of semi-continuous easterly trending features roughly parallel to the strike of the sedimentary stratigraphy. In most cases these represent narrow, graphitic argillite units. Erratic north westerly to north trending VLF features on the detailed grid occur at the edges of magnetic ridges and can be explained by dike margins.

The induced polarisation (apparent resistivity) map of Copper Lake (Geoterrex) was useful with structure and stratigraphy in the main showing area. A resistivity high follows a narrow sequence of orthoquartzites for over 800 feet along strike, immediately south of the drilled area.

3) Geological Mapping

Approximately 20 days in May 1985 were spent completing geological mapping and prospecting over the northern part of the 1985 geophysics grid. The results from this survey can be obtained from a geological map (Figure 6).

The property lies in a relatively high, watershed area featuring gently undulating hills and steeper ridges with generally moderate vegetation cover. North and east trending ridges in the northern part of the property are separated by fairly extensive, lower, swampy areas. Approximately 5% of the property consists of bedrock exposure. Much of this is man-made; either by bulldozer stripping on ridge tops or by road construction.

The property is underlain largely by easterly striking and steeply dipping, sedimentary units possibly of Timiskaming age. At the northern edge of the property the sediments are underlain by mafic to ultramafic metavolcanic rocks which strike east onto the Ryan Lake Mine property. The metavolcanic - sedimentary sequence has been intruded by intermediate dikes and plugs with variable orientations. North trending 'Matachewan' diabase dikes cross cut the whole sequence.

i) Rock Types

Volcanic Rocks

1) Mafic to Ultramafic Metavolcanic Rocks

These rocks are exposed in a few outcrops in the northern part of the grid. Massaive to achistose, fine grained, dark green, chloritic, Mg basalts (la) predominate. Medium green apinifex textured, flows and talcy ultramafic tuffs (lb) outcrop in one small area of the north end of Line 2E.

Until recently these rocks had been called ultramafic intrusives (Lovell 1964) they are now recognized as metavolcanics (Tisdale group?).

Sedimentary Units

2) Conglomerates

Light grey to white, oligomictic, pebble conglomerates of quartzitic composition (2a) outcrop over a wide area north of the main showing (Base Line). Locally, the pebble conglomerates give way to finer, poorly sorted quartzitic grits and coarse orthoquartzites. One outcrop of polymictic conglomerate (2b) occurs on Line 11E and consists of sub-angular pebbles of predominantly metavolcanic origin with minor siltstone and chert.

This sequence appears to lie with slight angular unconformity on the metavolcanics (1).

3) Chemical Sedimentary Rocks

Light grey to yellowish, finely bedded cherts and cherty siltstones with thin, black, argillite beds outcrop in the main showing area and are closely associated with a narrow silicate iron formation (1F). the iron formation is one to two feet wide and consists of alternating light coloured cherty bands with green, chlorite-amphibole bands and over 10% pyrite in layers or as fracture fill.

This unit has been strongly deformed and features tight folding in the iron formation and widespread fracture clevage in the cherts.

4) Greywackes and Siltstones

This unit consists of a fairly monotonous sequence of massively bedded, dark grey to green grey greywackes and siltatones. Contacts with unit 3 and 5 are transitional.

5) Quartzites, Grits and Arkoses

A thick sequence of light grey to pink, hematite stained, impurequartzites, grits and coarse arkosic sandstones outcrop south of the drilled area. Near the contact with unit 4 occurs a thick bed of pale grey, orthoquartzite which showed up well as an apparent resistivity 'high' on the 1975 IP survey.

Intrusive Rocks

6) Mafic Syenite

A number of grey to dark red, medium grained, intermediate, intrusive rocks outcrop on the property. For the most part they are dikes and cross-cutting, striking north, east or northeast.

Medium grey, medium grained, pyritic, syenite-porphyry (6a) dikes outcrop along Line 8E. The main dike is 40 feet wide, strongly porphyritic and has sharp, steeply dipping, sheared contacts. Mafic syenite (6b) dikes are of highly variable colour and composition due primarily to varying degrees of wallrock and xenolith contamination. They may easily be confused with other rock types on the property. For example, the mafic syenite dike at the main showing was intruded along a shear zone during or soon after deformation. It contains numerous partially assimilated chloritic xenoliths that look like pebbles in a medium grained (arkosic looking) groundmass. Within the shear zone, intrusion is associated with widespread silicification, sericitization and local hematization.

A more uniform mafic syenite dike(?) occurs at the north end of Line 4E.

Biotite rich, syenite dikes (6c) are common in the main showing area and have easterly trend. They are dark coloured with up to 10% coarse biotite and some contain enough disseminated magnetite to be moderately magnetic.

7) Diabase Dikes

Dikes of 'Matachewan' diabase are common on the property and always have northerly trend. The diabase is dark grey on fresh surfaces and predominantly coarse grained, equigranular. These dikes are strongly magnetic in contrast to the country rocks and were clearly defined by the magnetic survey. Dike width ranges from a few feet to over 400 feet and some of the larger ones are multiple and anastomosing.

ii) <u>Structure</u>

Y

The tightly folded sedimentary sequence strikes east and appears to lie unconformably on the older metavolcanics which strike east to northeast.

A large fold (syncline?) with a northeasterly trending axial trace is indicated by a widespread fracture clevage (Az. N 45° E) in the finer sedimentary units. The same atress pattern may be responsible for the strong shear zone (40 feet wide) at the main showing which trends N 40° E. Later, north trending fracture zones, commonly healed by diabase dikes, cut all earlier structures locally, with minor displacements.

iii) Mineralization

Two different types of structurally controlled mineralization were recognized on the property.

 Gold bearing, pyritic and altered shear zones trending northeast. The main showing is of this type and was the target for the 1985 drill program.

Page...16

At surface in the main showing area, the shear zone is up to 35 feet wide and 'trends N 40 E. It cross-cuts a sequence of easterly striking sediments consisting of greywackes, chemical sediments, iron formation, siltstones and quartzites (impure) from north to south.

The shear has essentially been healed by intrusive activity (mafic syenite dikes) and pervasive alteration. Alteration features pervasive silicification, sericitization with up to 15% pyrite where the shear cuts chemical sediments (mainly bittle fracture) and silicification, hematization with up to 10% pyrite where it cuts impure quartzites and arkosic sandstones (brittle fracture and shear foliation).

Gold values within the shear at surface (main showing) are consistently in the .02 to .15 oz/T range (Table 2). Fractured iron formation gave the best assay of 1.55 oz/T Au. To the southwest, gold values in the shear are generally lower in the .01 to .03 oz/T range.

In general, gold values increase with pyrite content (fracture fill) in the shear. Some later easterly trending fractures in the main showing area yield gold values up to .1 oz/T over narrow width. This appears to be a remobilization of gold from the main shear. The main shear can be traced at surface for about 300 feet after which it disappears beneath swamp. Approximately 600 feet to the east (other side of a 150 foot wide diabase dike) a N 40° E shear cuts siliceous pebble conglomerates (2a). The shear is 10 feet wide and is altered (quartz, carbonate, sericite) with 1 - 5% pyrite. Gold values are low (Table 6) in the .02 to .03 oz/T range.

2) Base metal mineralization in north trending fracture zones. This type is exposed on the northern boundary of the property around Line 5E. Locally heavy sphalerite and galena with minor chalcopyrite occur in fractured pebble conglomerates (2a). The showing was trenched and drilled in the 1960's by S. Welsh. Drilling intersected narrow inconsistent widths (up to 3.5 feet) with up to 9% Zn, 4% Pb and 1.0 oz/T Ag. The highest gold value was .02 oz/T. 1985 surface sampling yielded up to 5% Zn in grabs (Table 6). the fault zone occurs close to a large diabase dike (to west) and the mineralization appears to have been remobilized with little continuity.

4) Dismond Drilling

During February, 1985, 6 diamond drill holes totalling 2,034 feet were completed on the CamKing property by Tindale Drilling Ltd. All the drilling was in the main showing area (Figure 7) and showed the geology to be far more complex than indicated at surface.

Page ... 18

A short fence of 3 holes (CK-85-1 to 3) tested the continuation of gold mineralization to the east and west of the main showing at shallow depth. CK-85-1 was drilled 20 feet behind the 1975 Copper Lake hole CL-1 which intersected .095 oz/T Au over 6.0' (55.0-61.0) .16 oz/T Au over 10.0' (71.0 - 81.0) and .17 oz/T Au over 2.3'. CK-85-1 intersected better width, but lower average grade of mineralization with .119 oz/T Au over 7.0' and .06 oz/T Au over 26.5'. These gold values and widths are similar to the main trench at surface (directly above). The style of mineralization is identical with fractured, altered, pyritic cherty sediments and mafic syenite dikes (within the shear).

CK-85-2 80 feet east of CK-85-1 intersected a much narrower fracture zone with .04 oz/I Au over 7.3 feet (75.7 - 83.0) which is probably a later east trending structure.

CK-85-3 100 feet west of CK-85-1 intersected the shear zone a lot further south than expected, cross-cutting impure quartzites and arkoses. The shear is over 20 feet wide and hematitic with one 10.0' section averaging .07 oz/T Au (includes 0.10 over 5 feet).

A second fence of 3 holes (CK-85-4 to 6) were drilled in the same area but at a corrected azimuth of 138 degrees to intersect the zone at right angles and at greater depth. CK-85-4 drilled beneath and across Henry King's 1981 hole, CK-85-1 and CL-1 intersected 63.0' averaging .05 oz/T Au (include 4 zones of 5.0' of 0.1 oz/T Au) approximately 100 feet below the zone in CK-85-1. CK-85-5 60 feet to the southwest of CK-85-4 interesected a 40.0' wide fracture zone with 10.0' averaging .045 oz/T Au.

CK-85-6 60 feet to the northeast intersected a number of narrow sheared and altered zones, one of which yielded 0.24 oz/T Au over 2.1 feet.

Silver values in the shear zone are generally, roughly equal to gold, except in the impure quartzites where the Ag/Au ratio is 2:1. Zinc and copper values area generally low below 200 ppm. APPENDIX A TABLES

CAMKING PROPERTY POWELL TOWNSHIP, MATACHEWAN

ASSAY RESULTS FROM COPPER LAKE DDH CL-1 1975 Az 180 degrees, Dip -45 degrees Drilled Beneath Main Trench at 90W

Sample	Interval	Total	Au oz./ton	Ag oz./ton	Mo %	Comments
7.0	12.0	5.0	.01		nil	
12.0	17.0	5.0	.005		nil	
17.0	22.0	5.0	nil ,		nil	
22.0	27.0	5.0	.005		nil	
27.0	30.0	3.0	.01		nil	
30.0	33.0	3.0	.03_ *		.02	
55.1	58.2	3.1	.035	.04		
58.2	61.2	3.0	.22 5.095/6.0'	.13		not seen
61.2	64.2	3.0	.02	.02		
64.2	66.0	1.8	.02	.02 '		
66.0	68.0	2.0	.03	.03		
68.0	71.0	3.0	.005	nil		
71.0	76.0	5.0	.01 7.16/10.0'	.01	ר ו	cherty
76.0	81.0	5.0	.305	.15		carb.
81.0	86.0	5.0	.005	tr	1 >	2-10%
86.0	91.0	5.0	.005	.01		diss. &
)				fracture
-						fill Py
91.0	96.0	5.0	.005	.01		-
96.0	101.0	5.0	.01	.02		
101.0	106.0	5.0	.005	.02		
106.0	111.0	5.0	.005	.01		
111.0	116.0	5.0	nil	nil		
116.0	118.5	2.5	nil	nil		
122.2	124.5	2.3	.17	.05		chertyPy
124.5	126.6	2.1	.01	.01		
126.6	131.5	4.9	.005	.02	1	
131.5	134.5	3.0	.03	.05		
134.5	138.0	3.5	nil	nil		
138.0	143.0	5.0	nil	nil		
143.0	148.0	5.0	nil	nil		
148.0	153.0	5.0	.005	tr		
153.0	157.6	4.6	nil	nil		
170.7	174.0	.3.3	nil	nil		
174.0	177.2	3.2	nil	nil		
183.0	188.0	4.5	nil	nil		

CAMKING PROPERTY POWELL TOWNSHIP, MATACHEWAN

ASSAY RESULTS Main Trench, North to South, Chip Samples By: D. Campbell, Camking

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample Interval From To	North Au oz./ton Averages
93.6 103.6 .005 South	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.005 .02 .14 .04 .09 .03 ni1 .005 .002 .08 .09 .085/20.0' .06 .11 .04 .005 .002 .06 .01 .005

R

R

CAMKING PROPERTY POWELL TOWNSHIP, MATACHEWAN

1982 DRILL HOLE ASSAY RESULTS

Sample From	Interval To	Length (Feet)	Au oz./ton	Ag oz./ton	Moʻs
45	50	5.0	.01		
50	55	5.0	.005		
55	60	5.0	· .01		
60	65	5.0	.15		
65	70	5.0	12>	.11/15.0	
70	75	5.0	.05		
75	80	5.0	.055		
80	85	5.0	.09 >	.07/15.0	
85	90	5.0	.05	1	
90	95	5.0	.002		
95	99	4.0	.05		
99	105	6.0	.02		
105	111.5	6.5	nil		
111.5	113.0	1.5	.13		
113	120	7.0	.005		
120	125	5.0	10		
125	130	5.0	.045	.07/10.0	
130	135	5.0	.005		
135	140	5.0	.02		
140	145	5.0	.005		
145	150	5.0	nil		
150	155	5.0	nil		
153	160	5.0	.002		
160	165	5.0	.04		
165	170	5.0	.04		
170	175.5	5.5	.02		
175.5	177.5	2.0	nil		
177.5	182.5	5.0	.002		
182.5	187.5	5.0	.02		
. <u></u>		· · · · · · · · · · · · · · · · · · ·			

CAMKING PROPERTY POWELL TOWNSHIP, MATACHEWAN

SAMPLING RESULTS September, 1984

Sample No.	Width	Assay c Au	oz./ton Ag	Description	Approx. Location
32091	2' N-5	286 ppb	0.6 ppm	rusty zone 10-20% Py with cherty material	BL 40' E
32092	1.5' N-S	816 ppb	2.0 ppm	fusty zone strong Py strong fracturing 160 ⁰	BL 10- 15' W
32093	3' N-S	.120	1.8 ppm	cherty 5-10% Py ¹ main trench	BL 90 W
32094	5' N-S	.06	2.2 ppm (.07 oz)	main trench 5% Py in cherty material	90 W 20-25 S
32095	20' N-S	.045	2.3 ppm	section through cherty zone	90 W 25-45 S
32096	5'	126 ppb	0.6 ppm	impure sandstone between cherts	90 W 10-15 S
32097	grab	1.55	14.0 ppm (•45 oz)	boulder heavy Py some fine VG	110 W 10 S
32098	5'	.030	2.0 ppm	5% Py in cherty material	130 W 10-15 S

CAMKING PROPERTY POWELL TOWNSHIP, MATACHEWAN

CHIP SAMPLING RESULTS October, 1984

3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3	2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111	50W 0-5S 70W 5-10S 130W 0-5S 130W 10-15S 130W 10-15S 130W 15-20S 130W 20-25S 110W 2.5-7.5 175W 5-10S		cherty 5-10% Py cherty 5-10% Py 2' strong Py zone in cherty material 2-5% Py in chert 2-5% Py in chert 2-5% Py in chert carbonated greywacke siltstone and chert 3' strong Py in Py cherts	.123 .054 .032 '.050 .026 .028	284 214
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2103 2104 2105 2106 2107 2108 2109 2110	130W 0-5S 130W 5-10S 130W 10-15S 130W 15-20S 130W 20-25S 110W 2.5-7.5	5' 5' 5' 5'	2' strong Py zone in cherty material 2-5% Py in chert 2-5% Py in chert 2-5% Py in chert carbonated greywacke siltstone and chert 3' strong Py in	.032 `.050 .026	
3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:	2104 2105 2106 2107 2108 2109 2109 2110	130W 5-10S 130W 10-15S 130W 15-20S 130W 20-25S 110W 2.5-7.5	5' 5' 5' 5'	cherty material 2-5% Py in chert 2-5% Py in chert 2-5% Py in chert carbonated greywacke siltstone and chert 3' strong Py in	`.050 .026	
3 3 3 3 3 3 3 3 3	2105 2106 2107 2108 2109 2110	130W 10-15S 130W 15-20S 130W 20-25S 110W 2.5-7.5	5' 5' 5'	2-5% Py in chert 2-5% Py in chert 2-5% Py in chert carbonated greywacke siltstone and chert 3' strong Py in	.026	
3 3 3 3 3 3 3 3 3	2105 2106 2107 2108 2109 2110	130W 10-15S 130W 15-20S 130W 20-25S 110W 2.5-7.5	5' 5' 5'	2-5% Py in chert 2-5% Py in chert carbonated greywacke siltstone and chert 3' strong Py in	.026	
3 3 3 3 3 3 3	2106 2107 2108 2109 2110	130W 15-20S 130W 20-25S 110W 2.5-7.5	5'	2-5% Py in chert carbonated greywacke siltstone and chert 3' strong Py in	.026	214
3: 3: 3: 3: 3: 3:	2107 2108 2109 2110	130W 20-25S 110W 2.5-7.5	5' 5'	carbonated greywacke siltstone and chert 3' strong Py in	.026	
3: 3: 3: 3:	2108 2109 2110	110W 2.5-7.5	5'	siltstone and chert 3' strong Py in		
3:	2109 2110		_	3' strong Py in	.028	
3:	2109 2110		_		.028	
3:	2110	175W 5-10S		I Dv cherte I		
3:	2110	175W 5-10S				
3			5'	cherty with Py	.164	
	2111 1	0+00 0-5N	5'	strong Py over 5'		167
		0+10W 0-5S	5'	cherty with Py		49
		0+10W 5-10S	5'	cherty		53
		0+10W 10-15S		cherty with Py		16
		0+10W 15-20S		cherty		16
3:	2115	0+10W 20-258	5'	cherty with micaceous		56
				dikes		
3:	2116	0+10W 25-30S	5'	argillaceous minor		67
				chert		
	2117	0+33W 0-5S	5'	strong Py 16" in chert		64
	2118	180W 0-5S	5'	cherty with Py		363
3	2119	180W 0-5N	5'	siltstone, cherty		10
				minor Py		
3	2120	180W 5-10N	5'	siltstone locally		12
				cherty		
	2121	180W 45-50S	5'	cherty siltstone		151
	2122	250W 0-8N	8' '	siltstone with Py		11
	2123	250W 0-5S	5'	siltstone with Py		19
3	2124	110W 75-80S	5'	strong carbonated	.04	
				siltstone 5% Py		
3	2125	125W 65-70S	5'	strong carbonated		41
				siltstone 5% Py		

CAMKING PROPERTY POWELL TOWNSHIP, MATACHEWAN

SAMPLING RESULTS May, 1985

GRID LOCATION	GOLD ppb.	GOLD oz.	DESCRIPTION
8 + 15E/35	64		Syenite porphyry dike, 5% disseminated Py, narrow qtz, carb. stringers no Py.
8 + 20E/35	256		Sheared∴siltstone at dike margine, numerous lensy qtz. veins. Up to 5% dissem. stringer Py.
8 + OOE/35	33		Syenite porphyry dike strong qtz veining 0.5% Py.
2 + 30W/1 + 405	133 196 55 25 151	20 Feet N - S	Series of 5 composite grabs across <u>main shear</u> <u>zone</u> . Strong hem., qtz stringers, <u>1 - 5%</u> Py. Some mafic syenite intrusive.
0 + 00/6N	118		Strong qtz veins in quartzite 1 - 5% Py. local Cpy, Gal.
4 + 90E/6 + 25N	85		Silicified sediment 1 - 10% Py.
4 + 60E/6 + 90N	70		Pyritic (1 - 2%) quartzite.
7E/4N	49 574	.026 .018 .026	3.0 feet) chip across <u>altered shear zone</u> 4.4 feet) in pebble conglomerates 1 - 5% Py. 5.0 feet) as above few feet to south. 3.0 feet) Composite grab from zone.
4 + 90E/6 + 25N	230		Fractured quartzite with py, sph in fractures (1500 ppm Zn) grab from trench.
	314		As above 1 – 7% py, gal, sphy, cpy as blebs and fracture fill (5% Zn).

APPENDIX B LARGE FIGURES AND PLANS 1

APPENDIX C

DIAMOND DRILL RECORDS

Ľ

÷. •

DIAMOND DRILL RECORD

Hole # CK-85-1 Page 1 of 6

Property:	Casking Option	Claim #:				Down Hol	e Survey	<u>*</u>		Drilled By:	Tindale Drilling Ltd.
Location/Twp:	Powell Twp	Grid:	1985			Depth:	' <u>Azı</u>	• Dip	<u>:</u> 45 •	Pron-To:	2/7/85 - 2/7/75
Area (Map #):			0+50N 0+10W			2	99 '	•	46 •	Size(s):	
M.D./County:	•	Length:	299 • ((Units:)		•	•	•	Logged By:	R. C. Wells
Province:	Ontario	Azimuthi	180 • 1	Dip Collar:	45	•	•	•	•	Signed:	
Remarks :			•	•		-		•,-	•		

INTERVAL				PLANAR		INTE	RVAL	SNPLE	Assays			
FROM	TO	ROCK TYPE	Description peature samp Angle*	SAMPLE #	FROM	TO	LENGTR		hg oz/T	Au ppb		
					32251	15.0	20.0	5.0	_		16	
°.	 	GREYWACKE AND SILTSTONE	Grey, locally greenish grey, poorly bedded greywacks interbedded with finer and more green- ish siltsone units displaying moderate to good bedding 60-70°CA. The % siltstone up down hole, Units are weakly carbonated, locally moderately fractured with guartz-carbonatefill. Fine to coarse pyrite occurs along facture planes, locally disseminated.	- 60-70		•	•				•	
			<pre>@ 0-10.0 - much broken core (regolith) @ 14.0-20.0 - moderate fracturing up to 1% Py. Siltstone more predominant.</pre>									
20.0	50.0	SILTSTONE,	Medium hard, light grey to green grey to		32252	20.0	25.0	5.0			51	
		CHERTY SILT- STONE AND GREYWACKE	yellowish, predominantly fine grained, moderate to finely bedded, predominantly at $30-60^{\circ}$ up to 3° wide. Later quartz carbonate filled fractures at 30° .	60 30-60 30	32437 32253 32254 32255	38.0 43.0	38.0 43.0 47.6 50.0	3.0 5.0 4.6 2.4	.09 .175	.07 .25	5 5 830	

÷

i,

· ~

DIAMOND DRILL RECORD

13

<u>Hole #CK-85-1</u>

Page 2 of 6

INTERVAL	•	ROCK TYPE DESCRIPTION		SAMPLE 4	INTERVAL		SAMPLE					
FROM 1	• • • • • • • • •	DESCRIPTION	PEATURE ANGLE*	SNTLE V	FROM	T O			Ag ∞z/T	yn bbp		
				Width Average	43.0	50.0	7.0	.12	.13			
• •		 20.0 - 23.0 - fractured cherty siltstone <1% Py weakly sericitic. 23.0-26.0 - poorly bedded greywacke. 26.0-32.5 - moderately fractured, cherty grey to yellowish (sericitic) siltstone. 33.5-38.0 - poorly bedded greywacke, grey siltstone with sharp 60° fractures minor Py, Cpy. 38.0-47.6 - yellowish weakly sericitic, cherty, siltstone numerous dark, angular fractures predominantly at high angles locally graphitic. Py 1-3% fracture fill. 47.6-50.0 - strong fracturing, silicified with some grey quartz, locally up to 10% fine to medium grained, fracture fill Py. 	60	:		•						
50.0 69.		Medium hard, medium green to mottled green pinkish. Angular to sub-angular, elon- gate, chloritic fragments in fine to medium grained groundmass with crude flow structure/ layering 50-60°. Few high angle fractures, sparse medium to coarse euhedral pyrite. @ 50.0-55.0 - medium grained. @ 55.0-57.9 - finer groundmass with angular chloritic fragments, weak potasic, hematite alteration.	50–60	32442 32443			5.0 5.0			12 8		

ξ.

 \mathbf{N}_{i}

DIAMOND DRILL RECORD

Hole #CK-85-1

Page 3, of 6

INT	ERVAL	BOCK TYPE	DESCRIPTION	PLANAR	e smple (INTER	WAL	SAMPLE		Assays	
FROM	10			ANGLE*		FROM	TO			Ag oz/T	Au ppb
			<pre>€ 57.9-58.2 - coarse guartz-carbonate, hematitic. € 58.2-69.5 - fine groundmass, numerous chloritic fragments, well alligned 60° CA.</pre>	60							
	100.0	ALTERED SILT- STONE, CHERTY SILTSTORE	As at 20.0-50.0 - moderate to finely bedded 60° CA. Weak to strongly sericitic, weak to moderately carbonated, locally silicified, bleached. Local ferromolybdate? staining. Moderate to strong fracturing decreasing in intensity gradually down hole. 1-3% locally up to 10% disseminated and fracture fill Py.	60 55–60	32256 32257 32258 32259 32260 32261 32262 32263 32438 Width Average	70.5 75.0 79.5 82.5 83.5 89.0 93.0 97.0	79.5 82.5 83.5 89.0 93.0 97.0	1.0 4.5 4.5 3.0 1.0 5.5 4.0 4.0 3.0 30.5	.049 .068 .044 .081 .122 .042 .033 .071 .080 .06	.11 .07 .02 .07 .06 .02 .02 .08 .125 .055	
100.0	175.2	INTERBEDDED SILTSTONE, GREYWACKE AND ARGILLITE	Predominantly siltstone and fine grey- wacke, moderate to coarsely bedded 55-60° CA. Local, narrow beds of black, fine, argillite. Fine disseminated Py throughout generally less than 1% weak to moderately fractured, commonly	55-60	32444 32264 32265 32266 32266 32267	109.5 142.0 147.0	113.5 147.0 149.0	5.0 2.0			754 69 56 33 40

÷

DIAMOND DRILL RECORD

<u>Pole # CK-85-1</u>

Page 4 of 6

INTERVAL		BOCK TYPE	DESCRIPTION	PLANAR FEATURE	SAMPLE #	INTE	RVAL	SAMPLE		ASSAYS	
FROM	TO	ROCK TIPE		ANGLE*	SATURE #	FROM	TO	LENGTH	2/T	Ag oz/T	yn bbp
			quartz, carbonate, chlorite fill, many of these fractures are at $30-60^{\circ}$ CA.	30-60	32268 32269		159.0 161.5				191 387
•••	••		 8 109.5-113.5 - moderately fractured, sericitic sections adjacent to narrow dike 111.8-112.8. Mafic syenite with chloritic fragments. 8 134.0 - numerous, narrow, black, argillite beds 45° CA. 8 142.0-149.0 - strong fracturing in silt- stone, weak to moderately carbonated. Sparse fine disseminated Py. 8 149.0-161.5 - moderately carbonated, seri- citic, strongly fractured, up to 1% Py. Numerous carbonate filled fractures at varying angles. 8 162.5 - 1/2° quartz carbonate vein 35° CA. 				•				
			<pre>@ 162.5-174.5 - gray siltstone, greywacke, poorly bedded, numerous parallel fractures 60-70° CA quartz filled. @ 174.5-175.2 - strongly fractured with gray quartz fill, 1-5% Py fracture fill and disseminated.</pre>	60-70							
175.2	200.0	MAFIC SYENITE AND STRONGLY ALTERED SEDIMENTS	Medium hard, light greenish gray to pinkish gray fine to medium grained, with locally numerous altered, chloritic phenocrysts (after hornblende?). Groundmass is light coloured, predominantly feldspar with minor chlorite. Very fine disseminated Py. Numerous sharp, hairline, fractures, quartz filled at 30-60° CA.	30-60	32270	175.0	179.0	5.0			122

٩,

DIAMOND DRILL RECORD

<u>ID</u> <u>Hole #</u> CK-85-1

Page 5 of 6

2

INTERVAL		DESCRIPTION	PLANAR	SAMPLE 1	INTERVAL		SAMPLE				
FROM TO	ROCK TYPE		FROM	OT		AU 02/T	hg oz/T	Au pp			
• .		<pre>@ 175.2-179.0 - fine, pinkish (hematite staining?). @ 183.0 - weakly brecciated with quartz fill. @ 179.0-200.0 - medium to coarse grained porphyritic, mafic syenite, predomi- nantly feldspar and lesser chlorite, minor quartz.</pre>									
200.0 239.0	ALTERED, IMPURE QUARTZ ITES, ARKOSE	Medium gray to reddish gray, hematite stained, poorly bedded to massive. Weak to strongly fractured with locally intrusive material filling fractures. Difficult to distinguish altered arkose from dike rock. Sharp fractures at varying though generally high angles to CA.	•	32271 32272 32273 32274	200.0 205.0 210.0 214.5	210.0	5.0 4.5			10 48 20 36	
		 214-2191.0 - mixed zone, brecciated, hematitic with dike material? healing fractures at 218-219 siliceous with fine Py local Cpy blebs. 219.0-239.6 - altered arkose, hematitic with finer units. 			•	.					
239.6 243.0	MAFIC SYENITE	Medium green, medium grained, massive.									
243.0 246.0	ALTERED ARKOSE	Strongly hematitic, 1% fine Py locally as balls to 1/2" diameter.		32275	243.0	246.0	3.0			11	

÷

ς.

DIAMOND DRILL RECORD

Hole # CK-85-1

Page 6 of 6

INT	ERVAL	ROCK TYPE	DESCRIPTION	PLANAR	SAMPLE (INTER	VAL	SAMPLE		ASSAYS	
FROM	70	NOCK TIPE		ANGLE*	SAVEL 1	FROM	TO		Ali oz/T	hg oz/T	yn bbp
246.0	262.5	MAFIC SYENITE	Fine to medium grained, gray to pinkish gray with chloritic phenocrysts.			•					
262.6	299.0	ALTERED, ARKOSE, IMPURE QUARIZITE	Gray to pinkish, fine to medium grained sparse fine Py, generally poorly/massively bedded.								
			<pre>@ 280.8-281.3 - well bedded 60° CA. @ 293.6-294.6 - strong fracturing, hematite alteration.</pre>	60							
	299	END OF HOLE		•		•	•				
				·			•				

Ξ.

· -

DIAMOND DRILL RECORD

Hole # CK-85-2 Page 1 of 3

1

٠

مت مقد من الم		
		and the second

Property:	Camking Option	Claim #:		Down Hole Sur	veys		Drilled By:	Tindale Drilling Co.
Location/Twp:	Powell Twp	<u>Grid:</u>	1985 0 + 80N	Depth:	Az:	• <u>Dip:</u> 45 •	From-To:	2/9/85 - 2/10/85
Area (Map #):	(M241)		0 + 802			• •	Size(s):	
M.D./County:	Larder Lake	Length:	259 ' (Units: feet)			• •	Logged By:	R. C. Wells
Provinces	Ontario	Azimith:	180 * Dip Collar: 45	• 149		• 54 •	Signed:	

Remarks:

INTE	RVAL	ROCK TYPE	DESCRIPTION	PLANAR PEATURE	SAMPLE #	INTER	wal.	SN TLE LENGTH	1	Assays	
PRON	TO			ANGLE*		FROM	TO		Au oz/T	hg oz/T	yn bbp
0		Bouldery O/B Greywacke Cherty Silt- stone	Light grey to green grey, predominantly fine silt- stone, locally cherty and weakly sericitic inter- bedded with coarser grey greywacke. Within silt- stones local argillite beds 45°-60°CA. Generally poorly fractured becoming more fractured downhole		32276 32277 32278 32279 32280 32281	7.5 11.5 16.0 32.5 37.5 4.5	15.0 21.0 	4.0 3.5 5.0 5.0 5.0 2.0		•	12 15 10 33 69 45
·			with fracture fill Py 1 to 2%. @ 7.5 - 15.0 well bedded siltstone @ 15.0 - 16.0 massive greywacke @ 16.0 - 27.5 Grey to yellowish grey siltstone, cherty, weakly sericitic, moderately fractured up to 1% Py		32282 32283 32284	55.0 57.0 60.0	65.5	2.0 3.0 5.5			254 121 67
			<pre>0 27.5-32.5 Grit, greywacke, chloritic, fract. 0 32.5-44.0 Siltstone, cherty siltstone, poor to</pre>	30-60 60	32285 32286 32287	70.0 75.7 78.0	78.0	5.7 2.3 5.0	.075		25 926

Υ.

DIAMOND DRILL RECORD

Hole fCK-85-2 Page 2 of 3

INT	ERVAL	ROCK TYPE	DESCRIPTION	PLANAR FEATURE	SAMPLE 1	INTER	VAL	SAMPLE		ASSAYS	
FROM	TO	ROCK TIPE		ANGLE"	Greens +	FROM	OT			Ng oz/T	Au pob
44.0	55.5		Grey, medium grained containing numerous angular		32288		85.0	2.0			465
		Dike	chloritic fragments (xenoliths). Dike material		32433		89.0	4.0			155
		1	contains dark chloritic phenocrysts in feldspar -		32289	89.0	90.0	1.0			112
			quartz groundness		32434		A D A				l n
•			irregular hairline fractures variable angles Coarse euhedral Py. in angle 20° Out angle brecci-		32939	90.0	93.0	3.0			
55.5	00.2	Siltstone and	ated as at 7.5-44.0 though finer grained, locally						1		1
	2014	Altered Cherty	more siliceous, weakly sericitic and stronger		1						
		Siltstone	fracturing. 1-28 fracture fill Py locally up to					1	1	1	
			158.		1			1		1	ļ
			@ 55.0 - 64.3 cherty siltstone, siltstone,					1			
			fractured, some guartz-carbonate fill with Py		Į]			
			@ 58-58.3; 60-60.2; 6363.1 strong fracturing	·	ł	l ·		1		ļ	
			138 Py	1]			1		
		1	@ 64.3 - 70.0 Greywacke, massive, sparse Py.	1	· ·	ſ		ł.	ļ	4	ļ
		1	@ 70.0 - 75.7 strongly fractured, moderate to							1.	1
			weakly sericitic - up to 2% Py in fractures	1		1		1	1		(
			@ 75.7 - 78.0 strong facturing, grey quartz fill,	.				1			1
	• ••.		5-15% Py					1	l I		
			@ 78.0 - 85.0 moderately fractured, weakly seri-		32290	136.0		1.0	1		71
			citic, <18 Py; more quartz-carbonate fill		32435		141.0				7 88
			83-85.5 with up to 28 Py		32436		169.5	3.0			156
			<pre>@ 85.0 - 90.2 Mixed siltstone, cherty siltstone and fine, black, well bedded argillite locally</pre>	80*	32291 32292		176.0	5.0			90
			fractured with up to 3% Py.		32293		180.0	4.0			82
90.2	158.5	Siltstone	Grey, fine, generally massive, local fine frac-	·	32294		184.0	4.0		ł	44
	20010		tures quartz filled at variable angles. Local	1	32295		188.0	4.0	1	1	32
			argillite units finely bedded - abundance	60-70°	1	}			1		
			increases downhole. Sparse fine disseminated Py		32296		195.5	5.0			11
			@ 136.2 - 136.3 Quartz carbonate filled fracture	50°	32297	195.5	200.5	5.0			18
			with Py		.			1			45
		1	@ 146 - 147.0 Well bedded argillite	80*	32299	205.5	210.5	5.0		1	41

••

÷

DIAMOND DRILL RECORD

Hole #CK-85-2 Page 3 of 3

IN	TERVAL	ROCK TYPE		PLANAR		INTE	RVAL	SAMPLE		ASSAYS	
FROM	το	NOX TIPE	DESCRIPTION	ANGLE*	Sample #	FROM	T O	LENGTH		Ng oz/T	Au ppb
158.5	223.0	Interbedded Siltstone, Greywacke & Argillite	Mixed, predominantly fine grained sequence generally moderate to well bedded. Degree of fracturing variable from massive to brecciated @ 169.5 - 171.0 Strong fracturing with quartz fill <1% Py @ 171.0 - 188.0 Cherty siltstone weakly sericitic		32300 32301 32302 32449 32303	210.5 215.5 220.5 223.0 228.0	220.5 223.0 228	5.0 5.0 2.5 4.0 4.0			58 81 122 45 63
	• .		<pre>e 171.0 = 100.0 chercy situations weakly selfcicit strong fracturing up to 3% Py. @ 188.5 - 190.5 finely bedded argillite @ 190.5 - 223.0 Weakly sericitic, cherty siltstone Very fine disseminated Py <1%. Moderately fractured</pre>	60	32304 32305 32306 32450		237.0 242.0 248.5	5.0 5.0 6.5 5.0			37 41 38 44
223.0	227.0	Mafic syenite	Dike filling strongly fractured zone. Grey fine grained with chloritic flecks		1			Į			
227.0	248. 0	Siltstone	Poorly bedded siltstone locally yellowish, sparse fine Py						}		
248.0	252.0	Mafic syenite	Grey, medium grained with chloritic, hornblende phenocrysts, chilled margins to dike. In angle=90 Out Angle 90°	90 90						•	
252.0	258.5	Siltstone	Weak to strongly fractured grey siltstone sparse Py			.					
	258.5	END OF HOLE									
					-	1		ŀ			

Property: Camking Option Claim #: Down Hole Surveys Drilled By: Tindale Drilling Co. 1985 Dip: 45 * From-To: Location/Typ: Powell Twp Grid: Depth: λz: 2/9/85 - 2/10/85 0 + 80NArea (Map #): (M241)0 + 80E Size(s): M.D./County: 259 ' (Units: feet) Larder Lake R. C. Wells Length: Logged By: 149 54 * Signed: Provinces Ontario Azimuth: 180 Dip Collar: 45 Remarks: -----PLANAR ASSAYS INTERVAL SAMPLE INTERVAL DESCRIPTION PEATURE SAMPLE # LENGTH ROCK TYPE FROM ANGLE* Au oz/T Ag oz/T Au pob TO FROM TO 4.0 0 7.5 Bouldery O/B 32276 7.5 11.5 12 32277 11.5 15.0 3.5 15 32278 16.0 21.0 5.0 Light grey to green grey, predominantly fine silt-10 Greywacke stone, locally cherty and weakly sericitic inter-Cherty Silt-• •. 32279 32.5+ 37.5 5.0 stone bedded with coarser grey greywacke. Within silt-33 32280 37.5 42.5 5.0 stones local argillite beds 45°-60°CA. Generally 45-60 69 poorly fractured becoming more fractured downhole 32281 4.5 44.5 2.0 45 with fracture fill Py 1 to 2%. 32282 55.0 57.0 2.0 254 @ 7.5 - 15.0 well bedded siltstone 8 15.0 - 16.0 massive greywacke 32293 57.0 65.5 3.0 121 @ 16.0 - 27.5 Grey to yellowish grey siltstone, 32284 60.0 65.5 5.5 67 cherty, weakly sericitic, moderately fractured up to 11 Py 30-60 8 27.5-32.5 Grit, greywacke, chloritic, fract. 32285 75.7 5.7 25 @ 32.5-44.0 Siltstone, cherty siltstone, poor to 70.0 .075 32286 75.7 78.0 2.3 well bedded. Moderate to strong fracturing some 60 926 78.0 83.0 5.0 quartz-carbonate filled 0.5% to 1% Py 32287

DIAMOND DRILL RECORD

Hole # CK-85-2

Page 1

of 3

LACANA MINING CORPORATION

:

N .

DIAMOND DRILL RECORD

Hole #CK-85-2 Page 2 of 3

INTE	ERVAL			PLANAR'		INTER	WAL	SMPLE		ASSAYS	
FROM	OT	ROCK TYPE	DESCRIPTION	FEATURE ANGLE	sample #	FROM	TO	LENGTH	AU 02/	T Ag OZ/T	Au ppb
44.0	55.5	Mafic Syenite Dike	Grey, medium grained containing numerous angular chloritic fragments (xenoliths). Dike material contains dark chloritic phenocrysts in feldspar - guartz groundness		32288 32433 32289	83.0 85.0 89.0	85.0 89.0 90.0	2.0 4.0 1.0			465 155 112
55 .5	90 . 2	Siltstone and	irregular hairline fractures variable angles Coarse exhedral Py. in angle 20° Out angle brecci- ated as at 7.5-44.0 though finer grained, locally		32434	90.0	93.0	3.0			11
		Altered Cherty Siltstone	more siliceous, weakly sericitic and stronger fracturing. 1-2% fracture fill Py locally up to 15%.		·						
			<pre>@ 55.0 - 64.3 cherty siltstone, siltstone, fractured, some quartz-carbonate fill with Py @ 58-58.3; 60-60.2; 6363.1 strong fracturing 13% Py</pre>								
			<pre>@ 64.3 - 70.0 Greywacke, massive, sparse Py. @ 70.0 - 75.7 strongly fractured, moderate to weakly sericitic - up to 2% Py in fractures</pre>								
	• •,.		<pre>@ 75.7 - 78.0 strong facturing, grey quartz fill, 5-15% Py @ 78.0 - 85.0 moderately fractured, weakly seri-</pre>	•	32290		137.0				71
			citic, <1% Py; more quartz-carbonate fill 83-85.5 with up to 2% Py @ 85.0 - 90.2 Mixed siltstone, cherty siltstone		32435 32436 32291	166.5 169.5	141.0 169.5 171.0	3.0 1.5			7 88 156
90.2	158.5	Siltstone	and fine, black, well bedded argillite locally fractured with up to 3% Py. Grey, fine, generally massive, local fine frac-	80 *	32292 32293 32294	176.0	176.0 180.0 184.0	4.0			90 82 44
			tures quartz filled at variable angles. Local argillite units finely bedded - abundance increases downhole. Sparse fine disseminated Py	60 - 70*	32295 32296		188.0 195.5				32
			<pre>@ 136.2 - 136.3 Quartz carbonate filled fracture with Py @ 146 - 147.0 Well bedded argillite</pre>	50°	32297	195.5	200.5	5.0			18 45 41

•

•

٩.

. · -

 \geq

DIAMOND DRILL RECORD

Hole #CK-85-2 Page 3 of 3

IN	TERVAL	ROCK TYPE	DESCRIPTION	PLANAR FEATURE	SAMPLE #		RVAL	SAMPLE		ASSAYS	
FROM	70	NOX 11PE	DESCRIPTION	ANGLE*	SAVELE +	FROM	T O		Au oz/T	Ag oz/T	ли рро
158.5	223.0	Interbedded Siltstone, Greywacke & Argillite	Mixed, predominantly fine grained sequence generally moderate to well bedded. Degree of fracturing variable from massive to brecciated @ 169.5 - 171.0 Strong fracturing with quartz fill <18 Py		32301 32302 32449	215.5 220.5 223.0	215.5 220.5 223.0 228	2.5 4.0			58 81 122 45
	•		 171.0 - 188.0 Cherty siltstone weakly sericitic strong fracturing up to 3% Py. 188.5 - 190.5 finely bedded argillite 190.5 - 223.0 Weakly sericitic, cherty siltstone Very fine disseminated Py <1%. Moderately 	60	32303 32304 32305 32306 32450	228.0 232.0 237.0 242.0 253.5	232.0 237.0 242.0 248.5 258.5	4.0 5.0 5.0 6.5 5.0			63 37 41 38 44
223.0	227.0	Mafic syenite	fractured Dike filling strongly fractured zone. Grey fine grained with chloritic flecks								
227.0	248.0	Siltstone	Poorly bedded siltstone locally yellowish, sparse fine Py								
248.0	252.0	Mafic syenite	Grey, medium grained with chloritic, hornblende phenocrysts, chilled margins to dike.In angle=90 Out Angle 90°	90 90		, ,					
252.0	258,5	Siltstone	Weak to strongly fractured grey siltstone sparse Py	· ·			÷				
	258.5	END OF HOLE									
			· ·								
					-			. -			

LACANA MINING CORPORATION DIAMOND DRILL RECORD Bole # CK-85-3 Page 1 of 4 Property: Camking Option Claim #: Down Hole Surveys Drilled By: Tindale Drilling Ltd. * Dip: 45 * From-To: Location/Twp: Powell Twp. Grid: 1985, 100N, 110W Depth: 2/12/85 - 2/14/85 Az: 149 ' Area (Map #): 46 • Size(s): 399 ' M.D./County: 399 (Units: K. Donner/R. Wells Length: ۱ Logged By: Provincer Ontario Azimuth: 180 Dip Collar: 45 ٠ Signed: Renarks: PLANAR ASSAYS INTERVAL INTERVAL SAMPLE FEATURE SAMPLE # LENGTH ROCK TYPE DESCRIPTION ANGLE* AU OZ/T AG OZ/T AU POD FRM FROM TO TO 17.0 BOULDERY 0 OVERBURDEN 40-50 -5 17.0 .85.8 INTERBEDOED Medium gray, fine grained sequence, 32424 40.0 43.0 3.0 predominantly siltstone sparse fractured, some 32318 43.0 45.0 2.0 333 SILTSTONE. quartz filled occasional Py. 32417 45.0 48.0 8 GREYWACKE AND 3.0 32319 84.0 89.0 5.0 64 ARGILLITE @ 43.0-44.5 - cherty siltstone, moderately fractured with guartz fill. Up to 5% Py. @ 56.4-59.3 - blocky core recovery, probably well fractured, much iron staining on fracture planes. 8 65.8-67.2 - greywacke, massive. @ 74.5-76.3 - greywacke, massive. 85.8 89.0 SILICATE IRON Fine to moderately bedded with alternating 45 FORMATION siliceous, cherty units with green chlorite/ amphibole rich bands. Py is disseminated or concentrated between layers and also in some

÷

i,

·.

<u>_</u>______

DIAMOND DRILL RECORD

Hole #CK-85-3

Page 2 of 4

INI	ERVAL.	ROCK TYPE	DESCRIPTION	PLANAR	SAMPLE 1	INTERV	AL.	SAMPLE		ASSAYS	
FROM	TO			ANGLE*		FROM	T O		Au oz/T	Mg ∞/T	Au pob
89.0	⁻ 101.0	SILTSTONE	<pre>fractures. Py content 1-10%. @86.0 - fold nose defined by layering. Medium grey, fine grained, locally moderately fractured (93.0-98.0) with up to 1% fracture fill Py. @ 97.5-98.0 - narrow mafic dike?</pre>								
101.0	104.0	MAFIC SYENITE	Grey, medium grained dike with chloritic phenocrysts, minor disseminated Py.		32320	103.0 1	.07.0	4.0			11
104.0	149.7	SILTSTONE AND GREYWACKE	Medium grey, fine with local narrow argillite beds. Few narrow quartz veins filling fractures. Sparse Py.		32321	110.0 1	12.0	2.0			10
	• ••.		<pre>@ 104.0-107.7 - siltstone and argillite, some soft sediment deformation. Up to 3% Py, disseminated. @ 110.4-111.7 - quartz vein subparallel CA. @ 129.9-131.3 - greywacke. @ 137.4-138.5 - dike in fracture zone, mafic syenite.</pre>	0-5		•	×			-	
149.7	151.5	MAFIC SYENITE	Light greenish grey, medium grained with chloritic/muscovite phenocrysts. Narrow 45° quartz vein with bleb of cpy.		- -						
151.5	196.5	SILITSTONE, GREYWACKE AND ARGILLITE	Mixed predominantly fine grained sequence with narrow finely bedded argillite. Trace up to 1% disseminated Py.	50	32322 32323	180.0 1 184.0 1		4.0 4.0			14 22

ť

DIAMOND DRILL RECORD

Hole #CK-85-3

Page 3 of 4

INT	ERVAL			PLANAR		INTE	RVAL	SAMPLE		Assays	
FROM	TO	ROCK TYPE	DESCRIPTION	FEATURE ANGLE®	SAMPLE #	FROM	TO	LENGTH	∞z/T	Ag oz∕T	yn bo
196.0	197.9	MAFIC SYENITE	Light greenish grey with xenoliths of chloritic wallrocks up to 1% disseminated Py.								
197.9	230.2	SILTSTORE, CHERIY SILTSTORE AND GREYWACKE	Medium grey, fine to medium grained with sections of weakly sericitic, cherty siltstone. Weak locally moderately fractured. Py is disseminated or fracture fill and ranges from trace to 2% (related to fracturing). Fine argillite beds 45°CA.	45	32324 32418 32325 32326 32327	207.0 213.0 216.0	206.0 212.0 216.0 222.0 228.0	1.0 5.0 3.0 6.0 6.0			23 5 247 27 18
			<pre> @ 205-206 - cherty siltstone 2% Py. @ 206-208.6; 211.2-212.0 - greywacke. @ 214-215 - cherty siltstone moderately to strongly fractured and siliceous 2% Py. @ 216-219.8 - fractured siltstone 2% Py.</pre>			•				-	
230.2	236.7	MAFIC SYENITE	Medium grey, fine to coarse grained with chloritic phenocrysts. 1% disseminated Py.	In 35 Out 50 45		•	ب و.				
236.7	287.0	CHERTY SILTSTONE AND GREYWACKE	Greenish grey to yellowish (weakly sericitic) weak locally moderately fractured with up to 2% Py.		32328 32329 32331 32332	245.0 253.6	245.0 251.0 258.6 284.5	5.0 6.0 5.0 4.0		.06	23 38 171 53
			<pre>@ 236.7-257.7 - predominantly cherty siltstone, bedding. @ 240-241.5; 242.3-243.5; 257-257.7 - moderate to strong fracturing 1-3% Py. @ 257.7-269.0 - 70% greywacke sparse Py. @ 269.0-287.0 - cherty siltstone. @ 280.5-284.0 - moderately to strongly fractured, some fracture subparallel to CA, 2% Py.</pre>	45 0-5	32333		287.0	2.5			59

Ϊ,

DIAMOND DRILL RECORD

Hole (CK-85-3

Page 4 of 4

INI	ERVAL	BOCK TYPE	DESCRIPTION	PLANAR FEATURE	SAMPLE #	INTE	RVAL	SAMPLE		Assays	
FROM	TO	NUCK TIPE	DESCRIPTION	ANGLE*	JALETT +	FROM	TO	LENGIN		Ng ∞z/T	ул Бор
287.0	289.1	MAFIC SYENITE	Medium grey, medium grained with chloritic phenocrysts. Trace to 1% disseminated Py.		32451	289.0	294.0	5.0			96
289.1	· 340.8	impure Quarizite	<pre>Very light green grey to pinkish, medium grained with local clasts up to 1/4" dia. Local hematice staining along fractures. Trace to 2% disseminated Py. Local strong fracturing. @ 319.0-320.2 - strong fracturing, hematite staining 2% Py. @ 326.5-327.5 - hematized, strongly fractured 3-5% Py. @ 335.0-337.0 - hematitic, moderately fractured, immature garnets% 3-5% Py. @ 337.0-338.5 - mafic symite dike, chloritic phenocrysts 2% disseminated Py. @ 338.5-340.5 - moderately fractured, hematitic. 5% Py.</pre>		32452 32453 32454 32455 32419 32334 32335 32425 32336 32456 32337	299.0 304.0 309.0 314.0 319.0 324.0 329.0 335.0 337.0	299.0 304.0 309.0 314.0 319.0 324.0 329.0 335.0 337.0 338.5 340.8		.103 .038	.05 .08 .05 .046 .075 .06	10 5 147 548 823 374 149 222 480
340.8	343.7	MAFIC SYENITE	Light greenish grey, medium grained, chloritic phenocrysts and blebs (fragments) 1% Py.		32457	340.0	343.0	3.0			344
343.7	399.0 399.0	Impure Quartzite End of Hole	<pre>Similar to previous section (289-340). Hematite alteration decreasing down hole. Trace to 5% Py. @ 361.5-364.0 - 1/4" quartz vein, sub-parallel CA 1% Py. @ 368.2-370.5 - strongly fractured 5% Py. @ 379.5-381.5 - strongly fractured 5% Py.</pre>		32426 32338 32427 32428 32339 32429 32340 32340 32341 32431 32431 32432 32442	349.0 354.0 358.0 361.0 365.0 368.0 374.0 379.0 384.0 389.0	349.0 354.0 358.0 361.0 365.0 368.0 374.0 374.0 384.0 389.0 393.0 399.0		.034	.034 .046 .04 .10 .034	170 180 114 457 651 403 337 277 165 218 101

roper	ty:	Camking Option	<u>Claim</u> ‡				Down Ho	le Survey	8		Drille	d Byr	Cindale (Drilling	Ltd.
ocati	on/Typ:	Powell Twp.	Gride	Same as C 100N	K-85-3		Depths	' <u>λzı</u>	• <u>Di</u>		Pron-T		14/2/85 ·	- 16/2/89	5
rea/t	ap No:			110W				149 '	•	45 *	Size(s	<u>)1</u>			
.D./C	ounty:		Length:	379'	(Units:	2		379 '	•	47 *	Logged	By:	K. Donne:	r/R.W.	
emeri	.s:					<u></u>						<u></u>			
INT	RVAL	ROCK TYPE		DES	CRIPTION			PLANAR	SAMPLE #	INTE	RVAL	SAMPLE		Assays	
MOR	OT							ANGLE*		FROM	OT		Au oz/T	Ng oz/T	yn bbp
							• •				~ ~			·	193
0 5.0		Interbedded	Medium to da massively be	dded. Gen	erally wea	kly factu	ared with	30*	32412 32343	84.8 83.8	89.8 95.5	5.0 5.7]	244
		siltstone, cherty silt-	sparse veini Py	ng 40°-50°	CA. Spar	80 01580	unated	40-50	32307	95.5	99.5	4.0			82
		stone, grey-	e 64 - 69.		85.0 greyw				32344		102.4	2.9	1		122
		wacke and	£ 8 8.8 -11		siltstone				32345		107.5				193
		argillite			tic, weak		te frac-	1	32413		111.0				7
					with up t		F8	}	32414		114.4	3.4			5 82
			6 20.3 - 3		allel quar bedded wi				32308 32415		115.6	4.0	ł		62
14.1	115.0	Silicate Iron			amphibolec				32415		128.2	3.6			l a
17413	113.0	Formation		argill fractu	accous uni ring seams y up to 10	ts. Mode and frac	erate			124.0	12012	5.0			
15.0	117.0	Siltstone	Medium green				ured		32420	166.0	169.0	3.0	1		84
		{	sparse Py					1	32421		172.0	3.0	1	1	7
117.0	120.6	Mafic Syenite	Medium to da muscovite/ch	lorite phe					32309		177.0		.105	.06	
			disseminated	і ру					32310	177.0	182.0	5.0	I	1	343

ブ

•

Ď

•

.

4

r

÷,

....

Hole No. CK-85-4

Page 2 of 4

ER	INTERVAL OM TO	ROCK TYPE	DESCRIPTION	PLANAR FEATURE ANGLE	sample #	INTERVAL FROM TO	Sample Length	Au oz/t	ssays Ag oz/t	Ацрро
	0.6 128.2	stone	medium grey to greenish grey, weakly fractured few quartz veins			182.0 185.0 185.0 190.2	5.2		.13	685
12	8.2 149.5	Matic Syenite	medium grey, fine to medium grained, large eubedral Py up to 1/2" @ 136.5 - 141.4 mottled	IN 45 CUT45	32312 32346 32422	190.5 195.5 195.5 199.3 199.3 202.0	3.8	.034 .055	.02 .02	58
14	9.5 182.0		Light yellow green to greenish grey, weak to	40-50 IN 80		202.0 203.0 203.0 208.0 208.0 210.0 210.0 215.0 215.0 220.5 220.5 225.5	1.0 5.0 2.0 5.0 5.5	.092 .053 .048		651 789 322
18	2.0 185.2	Mafic Syenite	Light greenish grey, medium grained with chloritic phenocrysts (blades) 18 disseminated Py.		32315 32316	225.5 230.5 230.5 235.0	5.0	.110	.09	323
18	5.2 239.0 • -,	l stope	Light yellow to greenish grey, weak to moderately fractured with grey quartz fill, trace to 5% Py disseminated or fracture fill. Moderate sericite alteration @ 185.2 - 193.8. Moderate to strong fracturing, some treecia 5% Py.	40-50 .	32317	235.0 239.0				97
			<pre>@ 193.8 - 202.0 Massive, unaltered 1% disseminated Py. @ 202.0 - 208.0 as at 185.2 - 193.8 @ 208.0 - 210.7 Spotted appearance, chloriticto pyrite quartz grains 1 mm dissem Inated, 5% Py</pre>		32423 32351 32352 32353	339.0 244.0 259.8 264.8 287.0 292.0 292.0 295.5	5.0	.052		7 12 195
					-					

;

÷,

•

. • •

Hole No. CK-85-4

Page 3 of 4

FROM	INTERVAL TO	ROCK TYPE	DESCRIPTION	FEATURE ANGLE	SAMPLE #	INTERVAL FROM TO	SAMPLE		ASSAYS	
				l				AU OZ/T	hg oz/T	Au ppb
			@ 218.2 - 229.0 Weakly fractured 1-2% Py		32354	295.5 300.8	5.3			207
239.0	264.8	Siltstone	Medium to dark grey, fine grained, moderately		32355	300.8 303.7	2.9			106
	•		fractured, few quartz veins. Trace -1% Py]	32356	303.7 304.8	1.1			16
	• •		disseminated	1	32357	349.0 352.0	3.0	1		8
			@ 259.8 - 264.8 moderate to strong fracturing,	1	32358	357.0 359.0	5.0			55
			siliceous and locally weakly hematitic 3% Py		32459	352.0 357.0	5.0			55
264.8	3 270.3	Mafic Syenite	Green, grey, fine to medium grained, dioritic	1		359.0 364.0	5.0	1		55
			phenocrysts, trace, disseminated Py. Weakly		32461	364.0 369.0	5.0			7
			magnetic		32463	374.0 379.0	5.0			5
270.3	303.7		Interbedded dark, greenish grey siltstone and	1		•	1			
		Impure	light pinkish to grey (hematitic)					1		
		Quartzite	quartzite/arkose.	ļ	ļ			l I		l
			€ 270.3 - 286.0 50% siltstone, 50%	1		1				
			quartite/arkose weakly fractured with few veins							
				1	1			· ۱		
	• •,.		<pre>@ 286.0 - 303.7 pink-beige quartzite/arkose strongly fractured, locally brecciated 3-5%</pre>	1 .	•			}		
	, .		Py -	Ì			11			
			e 295.0 - 295.5; 298.6 - 299.2; 300.3 - 300.8	1			1	1		}
			mofic syenite dikes/veins					1		1
303.7	304.8	Shin Svenite	Pinkish-grey, medium to coarse grained,							1
30347	204.0	PELIC SYALLCE	hematitic, chloritic phenocrysts, 28 disseminated])	1	1	1		
			Py, weakly magnetic]	1 . ·]	1		
304.8	343.0		es at 270.3 - 303.7	1	1		1	ł		
		quartzite								
		arkose	# 304.8 - 312.0 70% siltstone, 30% quartzite						[1
			ê 312.0 - 343.0 siltstone, massive to weakly	1	4	1			l	
			fractured	[ł		1		
343.0	349.0	Mafic Symite	Medium grey, medium grained, weakly hematitic	1	- 1	1		ł		
		}	with chloritic phenocrysts. Trace disseminated	1			ł	}	ł	1
		ł	Py	1.			1		1	
	•		•	ľ		1	1			
		1	1	1	L	I	1	1	[1

2

ξ.

Hole No. CK-85-4

Page 4 of 4

							_		
INTERVAL FROM T	D ROCK TYP	DESCRIPTION	PLANAR FEATURE	sample #	INTERVAL FROM TO	Sample Length	Au oz/T	ssays Ag oz/t	Ацррь
349 3	9 Siltstone impure quartzite arkose	<pre>and Pinkish beige to grey, locally hematitic, weak to locally strong fracturing. Trace to 2% disseminated and fracture fill Py. @ 349.0 - 352.0 Impure quartzite, moderately fractured 2% Py. Some greyish quartz fracture fill @ 352.0 - 357.0 Fracture zone strongly hematized, minor disseminated Py and Cpy (blebs) @ 357.0 - 359.0 Impure quartzite @ 359 - 379.0 Siltstone, greenish grey, fine- grained, few fractures</pre>	45*						
379	END OF HC	32		•					

÷

ł

DIAMOND DRILL RECORD

Hole # CK-85-5 Page 1 of 4

......

Propertys	Canking Option	Claim #1			Down Ho	le Surveys			Drilled By:	Tindale Drilling Ltd.
Location/Twp:	Powell .	Grid:	1985 Grid 100N		Depth:	' <u>Az:</u>	• <u>Dip</u> :	45 •	From-To:	17/2/85 18/2/85
Area (Map #):			180W			•	•	•	Size(s):	
M.D./County:		Lengths	399 ' <u>(Units:</u>)		149'	•	47 •	Logged By:	K. Donner/R. Wells
Province:	Ontario	Azimuth:	138 • Dip Collar:	45	•	399'	•	48 *	Signed:	
			•				•			

Remarks:

INI	ERVAL	ROCK TYPE	DESCRIPTION	PLANAR PEATURE	SAMPLE #	INTER	/AL	SAMPLE		ASSAYS	
FROM	TO			ANGLE*		FROM	70		№ ∞/Т	Mg ∞z/T	yn bbp
0	12.0	BOULDERY O/B					_			•	
12.0		SILTSTONE AND GREYWACKE	Predominatly medium grey, fine grained siltstone with argillite bands, interbedded with coarsely bedded greywacke. Weak locally moderate fracturing. Trace to 2% Py increasing with degree of fracturing.	45 ⁻	32359 32360 32361	31.0 37.0 104.0	41.0	6.0 4.0 0.4			11 10 25
			<pre>@ 12.0-53.3 - predominantly siltstone with fine argillite. @ 31.0-41.0 - moderate fracturing 2% Py. @ 53.3-79.7 - greywacke with occasional narrow quartz veins some of which are sub-parallel to CA. @ 79.7-104 - predominantly siltstone. @ 92.5-96.0; 100.5-104.0 - broken core.</pre>	0–5	-						

÷

÷,

٠

DIAMOND DRILL RECORD

<u> Hole #</u> CK-85-5

Page 2' of 4

INT	ERVAL	BOCK TYPE	DESCRIPTION	PLANAR	SAMPLE #	INTE	RVAL	SAMPLE	Assays	
FROM	TO	ROCK LIFE		ANGLE*	SAMPLE I	FROM	TO	Lengin	Ng ∞z/T	Au ppb
104.0	113.0	SILICATE IRON FORMATION, SILTSTONE, ARGILLITE	Strongly layered/banded with alternating cherty and amphibole/chlorite layers. Up to 5% syngenetic? pyrite, ;minor fracture fill Py.		32362	111.4	112.0	0.6		11
			 @ 104.4-111.4 - siltstone with fine argillite. Trace Py. @ 104.0-104.4; 111.4-112.6 - silicate iron formation probably representing two limbs of a tight fold. @ 112.0-113.0 - siltstone and argillite. 	45	·					
113.0	114.5	MAFIC SYENITE	Light grey, medium grained with miscovite, chlorite blades, non-magnetic, trace Py.				•			
114.5	127.0	SILTSTONE	Medium to dark grey, weakly fractured, trace Py.						-	
	• •,.		@ 115.7-116.0 - cherty.	•						
127.0	128.5	MAFIC SYENITE	As at 113.0-114.5.	out 45						
128.5	204.5	SILTSTONE, MINOR GREYWACKE	Medium grey, fine grained, relatively massive with few fractures, coarsely bedded local fine argillite.	40 .	32409 32363		201.5 204.0	5.0 2.5		10 44
			 e at 178.8-179.8 - conglomeratic withy clasts up to 1/4" of siltstone. e 194.0-195.1 - mafic syenite dike (as seen above). e 195.1-204.5 - becoming cherty with more fractures. 	in 30 out 40	-	•				

÷

Ξ.

15

DIAMOND DRILL RECORD

<u>Role #</u> CK-85-5

Page 3' of 4

INI	ERVAL			PLANAR	SAMPLE 1	INTE	RVAL	SAMPLE		Assays	
FROM	TO	ROCK TYPE	DESCRIPTION	FEATURE ANGLE®	SAMPLE #	FROM	T O	LENGTH		Mg ∞z/T	Au ppb
204.5	222.5	CHERTY SILTSTONE	Light yellow green, fine grained. Moderately to weakly fractured with grey quartz fill. Py content increases with fracturing from trace up to 5%.		32364 32410 32365 32366	209.0 212.0	209.0 212.0 217.0 222.5	5.0 3.0 5.0 5.5	.034		11 337 33
222.5	232.0	MAFIC SYENITE	Light to medium grey, lighter with depth, fine to medium graind. Small euhedral Py-disseminated throughout up to 2% near lower contact. Chloritic phenocrysts common.				-				
232.0	236.7	CHERTY SILTSTONE	As at 204.5-222.5, becoming coarser grained with depth.								
236.7	242.9	basalt dike	Dark grey, almost black, slightly magnetic, fine grained, with sub-parallel quartz veinlets throughout, trace Py.	0-5						•	
242.9	289.0	CHERTY SILTSTONE	Light greenish grey, fine grained, weakly sericitic? @ 242.9-261.5 - weakly fracture, sparse Py. @ 261.5-263.5 - brecciated, trace Py, disseminated grey metallic mineral possibly molybdenum or graphite? @ 266.9-270.1 - strong fracturing with grey quartz up to 3% Py. @ 270.1-271.4; 273.5-275.0 - light green with quartz clasts to 1 mm, numerous fine quartz veins, trace Py. @ 275.0-289.0 - cherty siltstone grading into quartzite with depth. Possibly immature garnets near bottom of section.		32367 32368 32369 32370 32371 32372 32373 32411 32374	263.5 268.5 270.1 271.4 273.5 275.0 280.0	263.5 268.5 270.1 271.4 273.5 275.0 280.0 289.0 289.0	5.0 1.6 1.3	•059 •045 •032		45 426 130 101 926 236

÷

÷

. .

DIAMOND DRILL RECORD

•

<u>Hole #</u> CK-85-5

Page 4 of 4

	ERVAL TO	ROCK TYPE	DESCRIPTION	PLANAR FEATURE ANGLE®	SAMPLE (INTER	/AL TO	SAMPLE LENGTH	ASSAYS	
	304.0	INTERMEDIATE TO MAFIC DIKES	<pre>pinkish, trace Py. @ 289.0-297.6 - mafic syenite with chlorite blades, magnetic. @ 297.6-304.0 - mafic-basalt dike, fine, moderately fractured with some epidote. Trace Py. Magnetic.</pre>		32473 32474 32475	289.0 2 294.0 2 298.0 2 304.0 2	294.0 298.0 304.0	5.0 4.0 6.0	Ng (22/1	14 20 10
304.0	341.0	SILISTONE	Medium to dark greenish grey, local hematitic and pinkish, massive to weakly fractured. Infrequent quartz veins @ 40-50°. Trace Py. @ 332.0-335.0 - moderately fractured minor Cpy.	40-50	32476 32477 32375 32478	328.0 328.0 332.0 335.0	333.0 335.0	5.0 5.0 3.0 6.0	-	11 306 411 12
341.0	<u>399</u>	IMPURE QUARIZITE MINOR SILTSTONE	<pre>Pinkish, weak to moderately fractured, quartz veins are small 35-45°, 2-3% Py mainly fracture fill. @ 344-345 - brecciated 5% Py. @ 349.5-357; 363.5-367.0; 379.0-381.7; 370.8-372.3 - pinkish to red strongly hematized sections.</pre>	•	32376 32377 32378 32379 32380 32381 32382 32383 32384	341.0 345.0 358.5 363.5 370.8 378.5 382.0 389.0 395.5	349.0 361.5 367.0 372.3 382.0 384.6 391.0	3.5 2.6		195 32 15 14 88 43 19 15 25
	399	end of hole			-					

Ò

?

•

	LAC	CANA MINING C	ORPORATION		DIAMON	D DI	RILL R	ECORD	Hole #	CTK-85-	-6 <u>Pa</u>	ge 1 (of 3	-	
Property	<u>Y:</u>	Camking Option	Claim #:				Down H	ole Surveys		Ģ	rilled	By: Ti	ndale Dr	illing D	Ŀd.
Locatio Area (M		Powell Twp.	Grid:	1985 100N 0+35M			Depth:	' <u>Az:</u> 149'	• <u>Dip:</u>	-	from-To: Size(s):	•	/2/85 21	/2/85	
M.D./Co			Length:		nits:)		299'	•	58 • <u>1</u>	logged B	-	Donner/R	.Wells	
Provinc	<u>e:</u>	Ontario	Azimuth:	• <u></u> <u></u>	p Collar:	<u> </u>	•	•	•	• •	Signed:				
Remarks	<u>1</u>			•								•	•		_
	ERVAL	ROCK TYPE		DESCRI	PTION				SAMPLE #		RVAL	SAMPLE		ASSAYS	1
FROM	70							ANGLE		FROM	10		Au oz/T	Ag oz/T	yn bbp
0	7.0	BOULDERY O/B						B=beddi F=fract						-	
7.0	.69.3	SILTSTONE' MINOR CHERTY SILTSTONE	predominantly grained with Inarrow quart Py content in a maximum of @ 28.6-29. veins, 1 @ at33.0-3 Vuggy. @ 35.0-37. @ 46.5-54. sparse P @ 64.0-65.	local fine z veins, so creases wit 10%. 4 - narrow 0% Py. 4.5 - broke 0 - sub-par 0 - sub-par 0 - strongl	weakly fr argillite me sub-paral h degree (sub-paral) n section allel quanty fracture siltstone	ractur beds ralle of fra- lel q 50% rtz w ed, ha	red. Fi . Few l to CA. acturing wartz quartz. einlets. eated, ne, ligh	to F-0-5	32479 32480 32385	49.0	49.0 54.0 69.3	5.0 5.0 3.4			8 7 36

÷

Ļ

:

٩,

.

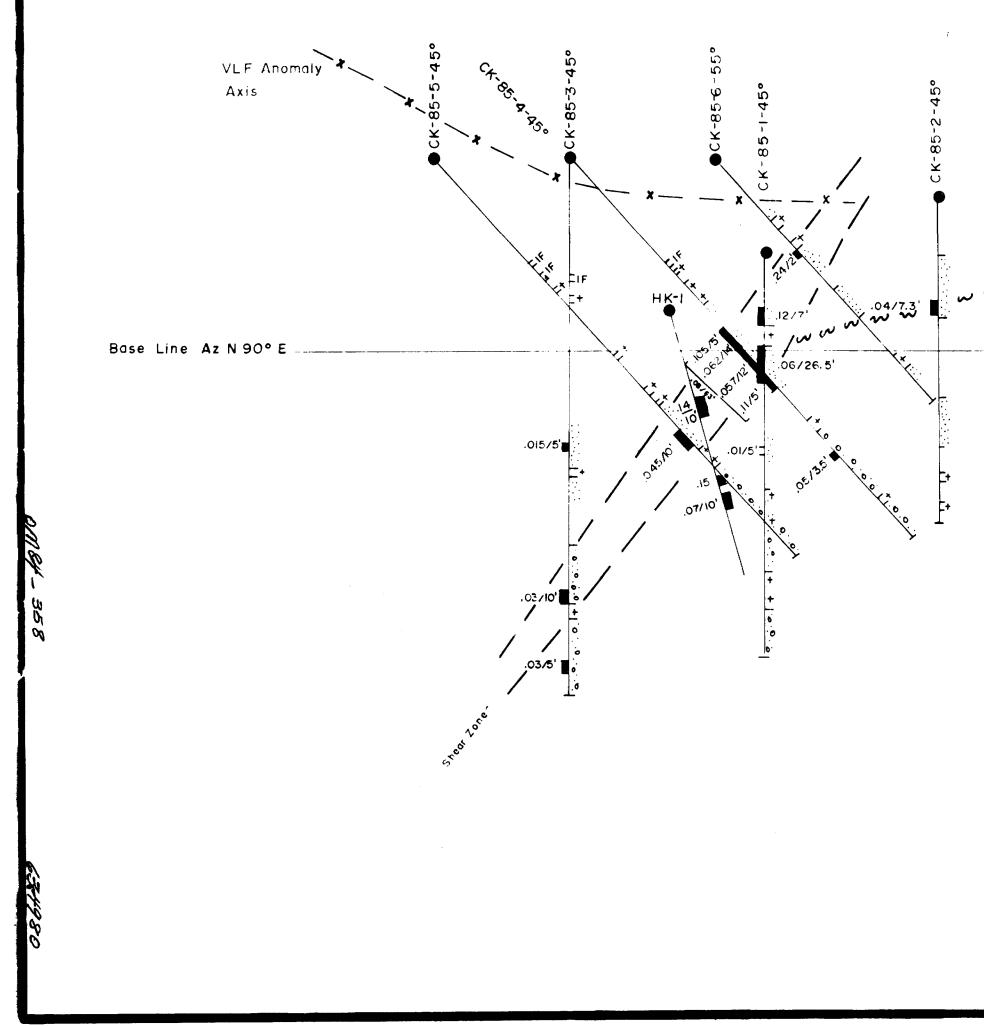
DIAMOND DRILL RECORD Hole # CK-85-6

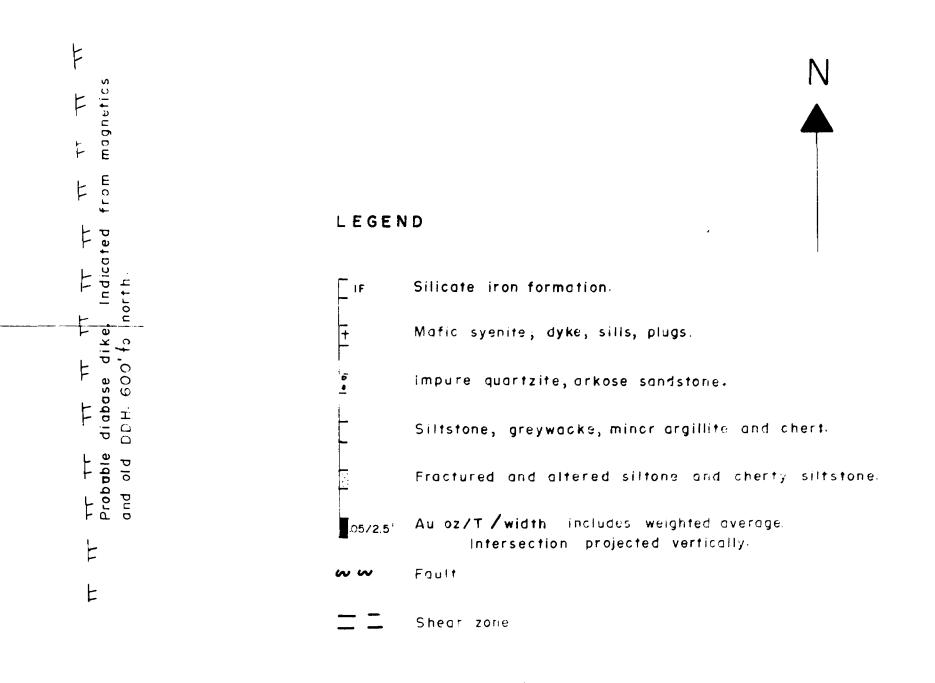
Page 2 of 3

INTERVAL	ROCK TYPE	DESCRIPTION		SAMPLE 1	INTER	VAL	SAMPLE		ASSAYS	
FROM TO			ANGLE		FROM	TO	j	Au oz/T	Ag ∞z/T	yn bbp
		<pre>sericitic. Moderately to strongly fractured, healed with greyish quartz 2% Py. @ 65.9-69.3 - siltstone, medium grey, locally greenish grey, trace Py.</pre>								
69.3 74.7	MAFIC SYENITE	Light grey, fine grained with chloritic blades, phenocrysts. Up to 1% medium grained, subedral Py, non magnetic.	In 45 Out 45	· · · ·	•					
74.7 244.0	SILTSTONE, CHERTY SILTSTONE	Predominantly siltstone, medium grey, fine grained, medium to coarsely bedded. Few quartz veins, some with significant Py. Cherty siltstone, grey to yellowish, weakly sericitic, usually moderately to strongly fractured with 1-5% Py and grey quartz carbonate fill. @ 74.7-76.5 - cherty siltstone, 1% Py. @ 79.0-81.5 - cherty siltstone, deformed, 2% Py. @ 105-108 - mafic syenite dike, medium grey, medium grained, minor muscovite, trace Py. @ 108-124.3 - slightly more fractured. @ 124.3-125.5 - strongly fractured to breeciated with grey quartz fill and up to 5% Py. @ 125.5-126.1 - mafic syenite dike as at 105.0. @ 133.0-137.5 - broken core. @ 162.0-169.0 - cherty siltstone, weakly sericitic, strongly fractured, 3-5% Py. @ 174.0-185.0 - cherty siltstone, weak to moderately fractured, up to 5% Py.	B-35 B-30 In 30 Out 35 In 45 Out 80 B-45 B-45 B-45	32386 32401 32387 32481 32482 32402 32391 32388 32403 32389 32408	79.0 119.4 123.4 125.5 130.5 159.0 162.0 166.0 169.0 174.0 198.0	123.4 125.5 130.5 135.5 162.0 166.0 169.0 174.0 180.0	3.0 4.0 2.1 5.0 5.0 3.0 4.0 3.0 5.0 6.0 5.0	.243		26 5 7 14 4 192 442 16 504 273

Ľ

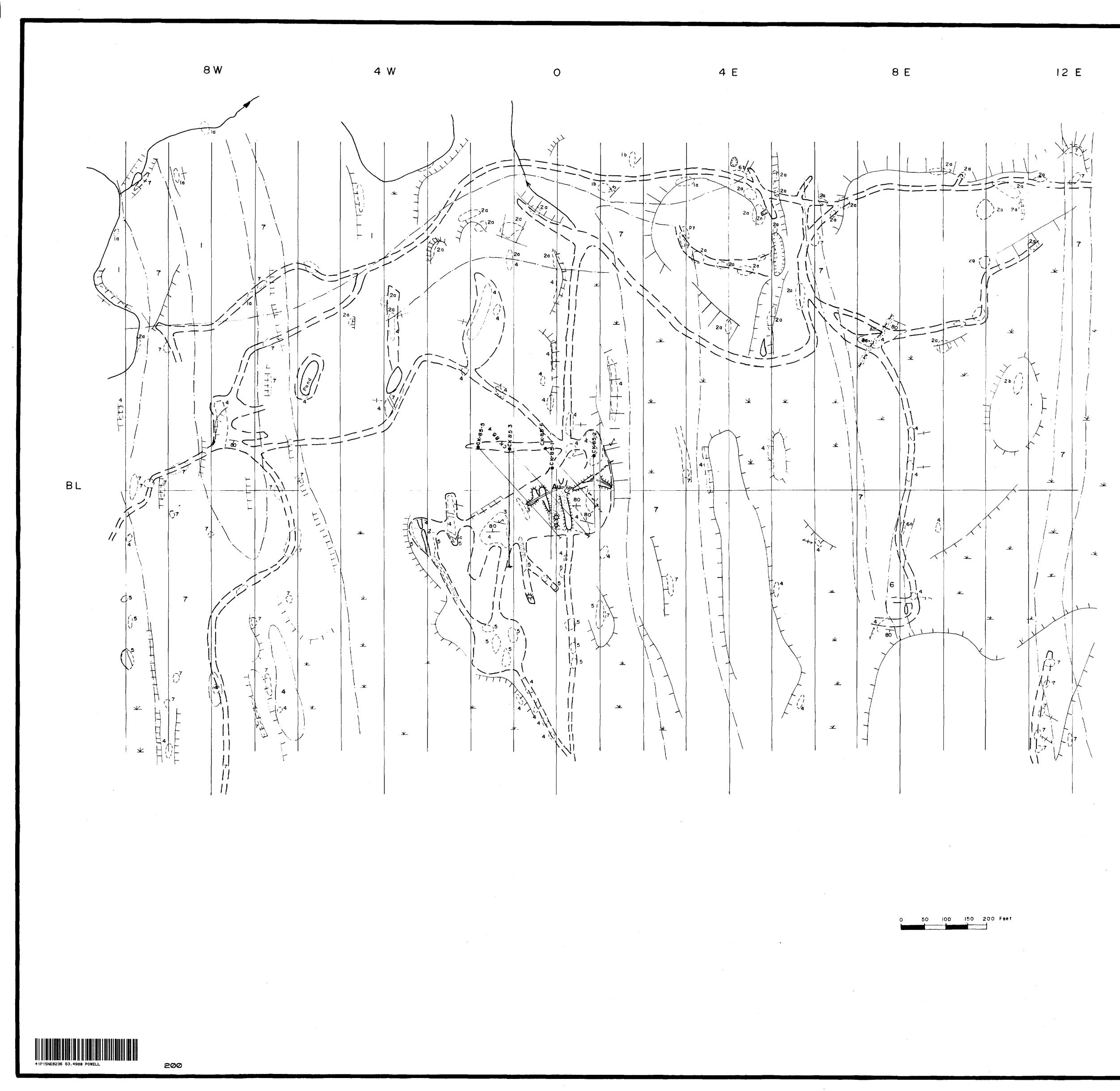
1


DIAMOND DRILL RECORD


<u>Role </u> CK-85-6

Page 3 of 3

INI	ERVAL	ROCK TYPE	DESCRIPTION	PLANAR FEATURE	SAMPLE :	INTERVAL	SAMPLE		LSSAYS	
FROM	TO	ALK TIPE	DESCRIPTION	ANGLE	SAMPLE :	FROM TO	Lenuin	ALL OZ/T	kg ∞z/T	Au ppb
244.0	260.3	MAFIC SYENITE DIKE	Medium grey, medium grained, chloritic blades, blebs, trace Py, weakly magnetic.	In 40 Out 40	32483	245.0 250.0	5.0			4
260.3	299.0	SILTSTONE AND CHERTY SILTSTONE	<pre>Similar to sequence abhove dike, fewer argillaceous beds. (270.0-272.0 - cherty siltstone, strongly fractured, 3-5% Py. (278.0-279.0 - cherty siltstone, strongly fractured, grey quartz fill, 3% Py.</pre>	F-40	32404 32392 32393 32394 32405 32406 32407	265.0 270.0 270.0 272.0 272.0 278.0 2 3.0 280.5 250.5 285.5 285.5 290.5 290.5 295.5	6.0 2.5			8 58 188 21 4 4 7
	299	END OF HOLE							-	
	•			•		• •				
					-					



°	25	50	75	IOO Fret		

		LANA M	ININ(, , ()AP-)AA	*-15 N
	DRII	L PLAN		
ΜΔ		WING A	REA -	
		6 OPTIC		
	SCALE			I
REPARED BY	1	DATE Feb. 1985	N T.S. SHEET 41 PZ 15	FIGURE

____~~

LEGEND

INTRUSIVE ROCKS

7	Diabase dikes						
6	Syenite 6a Syenite porphyry 6b Mafic syenite 6c Biotite rich syenite dikes						
	SEDIMENTARY UNITS						
5	Quartzites, grits and arkoses						
4	Greywackes and siltstones						
3	Chemical sedimentary rocks Cherts and cherty siltstones, minor argillite. IF = Silicate fron formation						
2	Conglomerates 2a Oligomictic pebble conglomerates 2b Polymictic conglomerate						
	VOLCANIC ROCKS						
1	Mafic to ultramafic metavolcanic rocks						

Mafic to ultramafic metavolcanic rocks la Mg. basalts

Ib Ultramafic flows and tuffs

SYMBOLS

Alt	Strong alteration
[Geological contact observed
	Geological contact interpreted
\mathcal{O}	Outcrop area
-4_	Dip and strike of bedding
~~1	Dip and strike of schistocity
×	Dip and strike of bedding with lineation
⁴ N N	Fault
•	Drill hole
	Alteration zone
X	Stope
Au	Gold occurrance
Zn	Sphalerite
\$	Trench
	LACANA MINING CORPORATION
	GEOLOGICAL MAP
	CAMKING OPTION

•

210

8 N

IO W		8 W		6 W		4 W		2 W		0+00		2 E		4 E		6 E	8	E	I	ΟΕ		12 E	16 E
																		2527					
																		-1927					
- • •	· 0 5					•		-1867	r1074	. 1915	_ (4 0)							-1571					·
-1731	-1581	101	-1140	F 11 32	-965	980 - 905	775	- 1821		1875	1582 1625	17/0	1554	1546	868	r1336	-/38v	-1508	[172.4	[151]	[' ⁴ * ⁹	1072	
- 2216	-1626	- 1 72	- (080	-1154	- 840	- 954	987	- 1687	- 1677 - 934	- 1377	- 1518	- 1964	- 1 799 - 2052	1436	- 841 - 841	-1366 -1371	-1216	-1444	-/400	1486	-1287	1347	
- 2711	-1531	928	-1096	-1224	-1062	- 9 84	- / 211	- 1795	-1225	1500	- 1428	-1755	- 1961	- /2 82	-760	-1511	- //18 - // 24	-1162	-1253	- 1319 - (176	-1171 -1089	-2019	
- 11.18	- /193	- 9 05	-1160	- 1 2 25	-751	- 1026	- 1211	- 1520	-/387	- 1632	-1625	- 1570	-17/8	-1107	- 840	-1768	- 1/ 05	-1041	- 11 54	-1349	-1023	~1830	
- 1935	- 1160	-/008	-1203	-1107	940	-1018	1354	- 1367	-1386	- 1470	1595	-1982	1487	-1156	- 63>	-1686	-1074	- 916		-1314	- 993	-1734	
-2059	-1135	-1047	- / 268	- 12+2	- 1 0 9 0	- 940	1206	- 1241	-1154	-/389	- 1826	- 1224	- 1363	-1103	- 844	-1585	- 1067	- 7 :: :	1057	-1204	-9 89	-1773	
- 1687	-1692	-1104	- 1283	- 11 94	- 810	- 876	- 1582	- 1203	-1114	- 1322	-1476	- 10 47	-1328	-1070	- 864	-1340	-10 +0	~ 917	-1037	-1+15	- 859	- 1651	
- 1984	- /832	- 1252	-1290	- 1158	- 854	- 858	-1310	- 1095	-1064	-1200	- 1536	- 1068	-1257	- 1051	-854	1424	-1047	- 861	- 997	- 7 8 /	892	-1439	
- 3811 - 389	- 1643	-1373	- 1327	-1097	816	- 865	-1135	- 1060	-1029	- // 50	- 1662	- 1069	-1228	-/038	- 849	-1375 -1543	- /034	- 828	-994	-953	- 857	-1580	
- 44/	-1716 -1809	- 14 33	-1415 -1458	-1047	- 176	- 11(1	- 1131	-1038-	- /023	-1930 - 965	- 1578	- 1966	- / 2 69	- 1032	. 176		-1057	-1259	-766	- 952	- 1873	-1463	
-957	-1945	- <i>1528</i> - <i>153</i> 0	-1538	-972 -942	943	-1050	- (082	477	- 1020	- 960	- 1567	-2013 - 1958	-1400 - 1672	-1050	- 866 - 855	- 1316 -1278	-1065	- 1153	- 9 7 8	- 945	- 852	-1300	
-1051	-1727	-1436	- 1599	-959	- 994	-1195	- 917	954	- 968 - 956	-933	- 1244 - 935	- 1660	-1758	-1091	-7//	-1120	-1045	-/04/	-963 -945	- 92 5	-935	- (23)	
-1074	- 1454	-1093	-1465	-1045	- 1024	-993	-911	434	- 961	- 1032	- 736	- 16 92	-2030	-1098	-1026	-950	-/026	- 9 8 i - 959	- 927	- 553 - 364	-869 - 954	-1406	
-/020	-1430	-1115	-1560	-1008	- 1189	- 947	917	928	-974	- \$53	- 841	-1880	-2+23	-1184	- 458	- 92 5	-1026 -1016	- 960	- 790	- 916	~ 8/9	-1484 -1561	
-1613	-1297	-1142	- 1535	- 44 4	-1210	926	- 920	- 933	929	- 934	- 980	- 1 45 3	2/35	-1267	- 9 53	906	-1004	- 948	-1053	-964	- 658	- 16 08	
- 495	-1159	-1137	-1230	-974	- 1279	- 9 10		- 8 96	- 9/6	- 9+0	- 964	- / 828	- 2253	1316	977	-1278	1020	-965	-/ 000	- 846	-723	-1538	F / DO #
-955	-1/20	-1142	-1075	- 1039	- 11 82	900	- 870	- 813	- 913	- 1670	- 1018	- 1626	- 2254	- 1291	897	-1124	-992	964	-975	- 378	-173	-1507	- 10 18
- 879	-1018	1011	-1061	-1045	- 1097	- 890	- 867	- 921	- 879	- 870	- 910	- 1587	-2175	-1182	- 869	- 1045	- 987	- 758	- 93 4	- 880	-779	- 1413	- 🕈 🕈 🛢
- 864	-984	- 1278	1228	- 991	- 1014	- 996	- 841	904	- 8\$1	- 893	- 864	- 16 07	- 2042	- 1141	- 95/	-12/8	- 48 Z	- 965	-946	- 884	1771	-1259	- + 8+
- 855	- //82	-1042	-1478	- 969	- 9 97	- 9 11	- 969	- 958	- 870	- 970	- 855	-1546	- 2 ##	-1172	- 845	-1536	- 994	- 728	-943	- 856	- 758	-1101	- 983
- 9/9 - 929	-1073 294	- 148	-1509 -1378	- 9/3	- 987	- 88 2	- 837	- B72	- 866	- 970	- 856	-/380	-2016	-1187	- 834	- / 02 4	-/022	- 108	-919	- 93 24	- 759	-1001	- 985
- 581		-9=0 -976	1171	949	- 923 - 903	903	• • 74	- 814	- 856 - 856	- 18 77	- 977 - 867	- 1255	-1976	-1023	- 8 4 6	- 87 8	-1010	- 905	- B71	- 857	- 781	-1004	- 973
- 817	-1378 -4302	- 876	-1015	- 1037 - 1150	- 874	- 8 67 - 872	- 860	- 854	-852	- 867 - 860	- 859	-// 48	-1851 -1902	-/0/8	- 820	-900 -935	-10+0	- 178	- 1171	-860	-789	-1064	- 968
-170	-1493	- 849	- 766	-1200	- 878	-925	9.9	- 840 - 801	-857	- 845	- 858	- 1106 - 1108	- 1975	- 1050	- 8 • 6 - 828		-960	- 8 92	• 847 - 876	- 893	- 7 95	-1110	- 977
- 871	-1354	- 864	- 876	- 1/98	-923	-934	- 845	- 868	858	- 612	- 870	- 11 88	-/899	- 943	- 1 30	-867 -967	- 955 - 947	- 9 <i>06</i> - 921	- 875	- 886 - 965	- 7 93 - 7 95	-1155	- 9 58
. 813	- 1215	- 875	- 845	-1183	- 849	- 891	858	- 838	- 8 2 2	- 874	878	-//91	-/816	-915	- #39	- 858	- 9 36	-876	- 897	- 846	- 801	-/280	- 153
- 877	-1151	890	- 750	-1012	- 874	-861	- 899	- 8.76	- 844	- 869	- 874	-1153	-1720	- 960	- 5/3	-704	- 925	- 387	-844	- 8 45	- 809	- 1217	743
- 94/	-1057	-859	- 375	- 958	-900	- 386	- 8-8	863	- 841	870	- 869	-11 84	- 1576	- 984	- 806	910	-940	- 884	- 867	-846	823	-1177	- 934
- 8 + 5	-983	-859	- 820	- 953	-977	- 869	- 809	- 838	- 841	- 853	- 8 4 3	- 11 50	-1756	-943	- 819	-946	- 735	- 98/	- 362	- 837	- 805	-1143	- 930
- 876	- 981	- 837	- 841	- 978	- 914	- \$ 83	- \$ 09	832	- 792	- 831	- 277	- 1161	- 1619		- 832	- 790	. 739	- 9/2	- 870	- 881	- 789	-1079	- 948
- 882	- 917	- 980	~ 852	-1049	8 29	- 8 4 3	- 8 61	839	- 807	- 854	- 901	- // 03	- / 77 8	- 98 0	- 1 08	815	- 7 6 .	- 886	- 8 74	- 857	- 808	-1036	- 767
- 843	-1165	821	- 9/7	-1109	- 7/3	- 839	829	- 84 -	- 850	- 83%	869	-1085	-1272	- 177	-806	- 811	- 996	-867	- 8 70	- 176	- 785	-1025	- 975
- 946	-1113	- 8 4 8	- 8//	- 1041	- 959	- 868	- 82.6	. 84+	- 849	- 826	- 807	-/072	-/492	-115	- \$17	-740	- 984	- 885	- 8 73	- 854	- 7 80	-996	- 778
- 831 - 833	-945 - 873	917	-769	-/020	-764	- \$83	- 831	- 807	-8+4	- 834	- 8 63	-1224	-1452	- 878	- \$05	-742	- 989	- 880	- 872	- 844	-775	- 194	~ 7 8 4
- 833	- 860	- 1021	-775	-1019	-993 -1094	-863	- 822	-798	-817	- 814 - 816	- \$46	- 1267	- 1501	- 896	- 8 <i>05</i> - 8/9	- 758	- / • • •	- 874	- 966	- 844	-768	-1054	- 9• 7
- // 2/	- 845	- 1076	- 808 - 805	-934 -965	- 1298	-867	- 810 - 874	- 822	- 8/7		- 772 - 95/	-/272	-1340 -1468	- 877		- 773 - 769	-1042	- 872 892	- 962	- 853	- 825	-1103	- 987
1099	932	986	774	1239	1367	801	911	-794 	- 934 - 933	<u>8/6</u> <u>8/7</u>	896	-1307 1321	1454	949	- 809 807	779	-1069	- 892 885	- 964 869	- 341 915	- 853 <u>851</u>	- 11/6 1093	 - 968

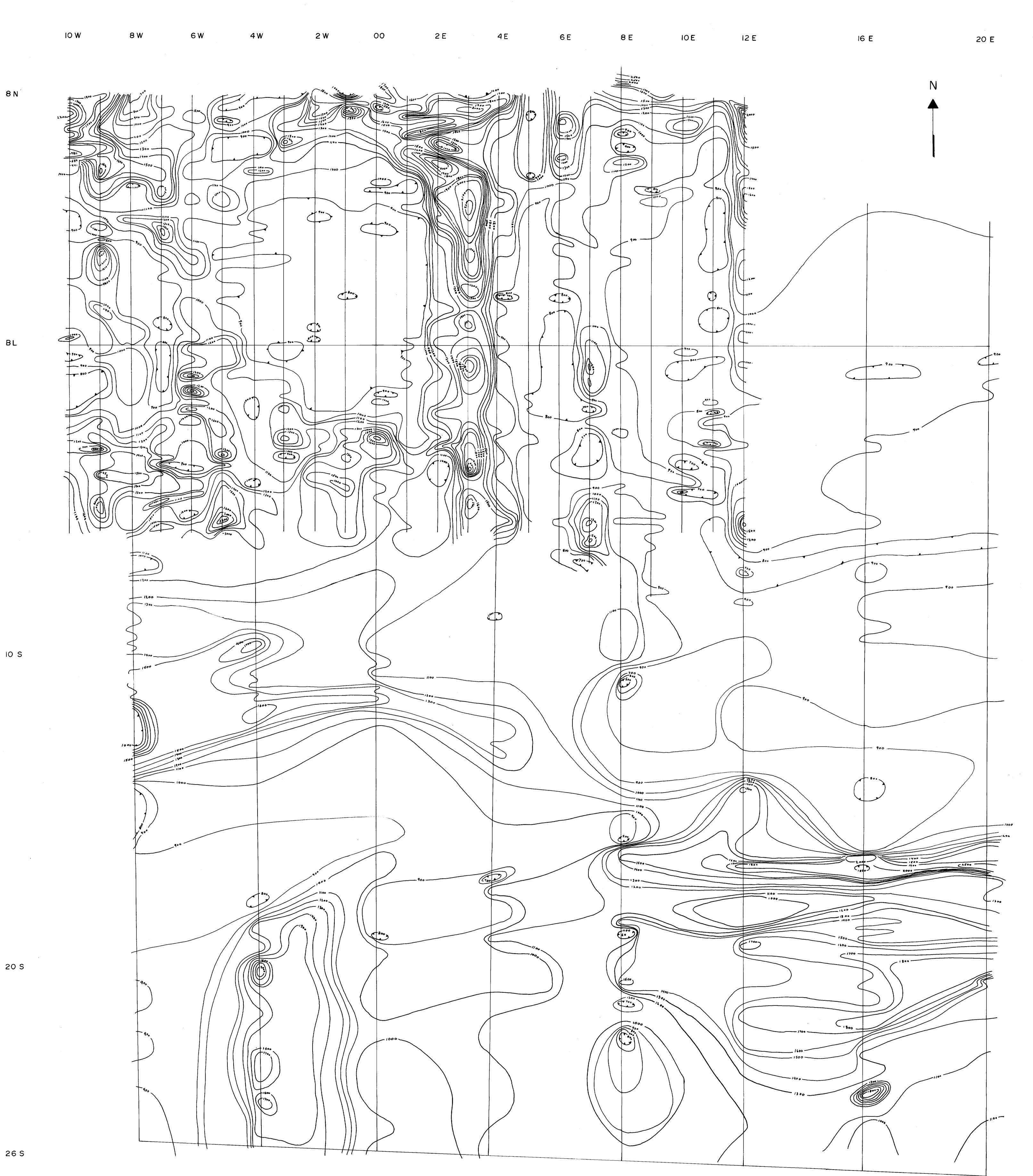
• .

> F1037 -/006 1001 - 925 - 906 930 - 945 - 942 - 973 - 733 934 - 931 - 9/9 - 926 - 921 -924 -716

> > - 7/8

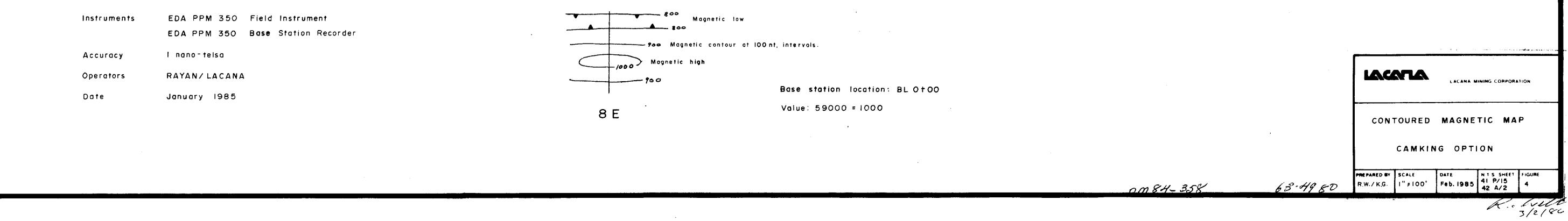
.

20 E

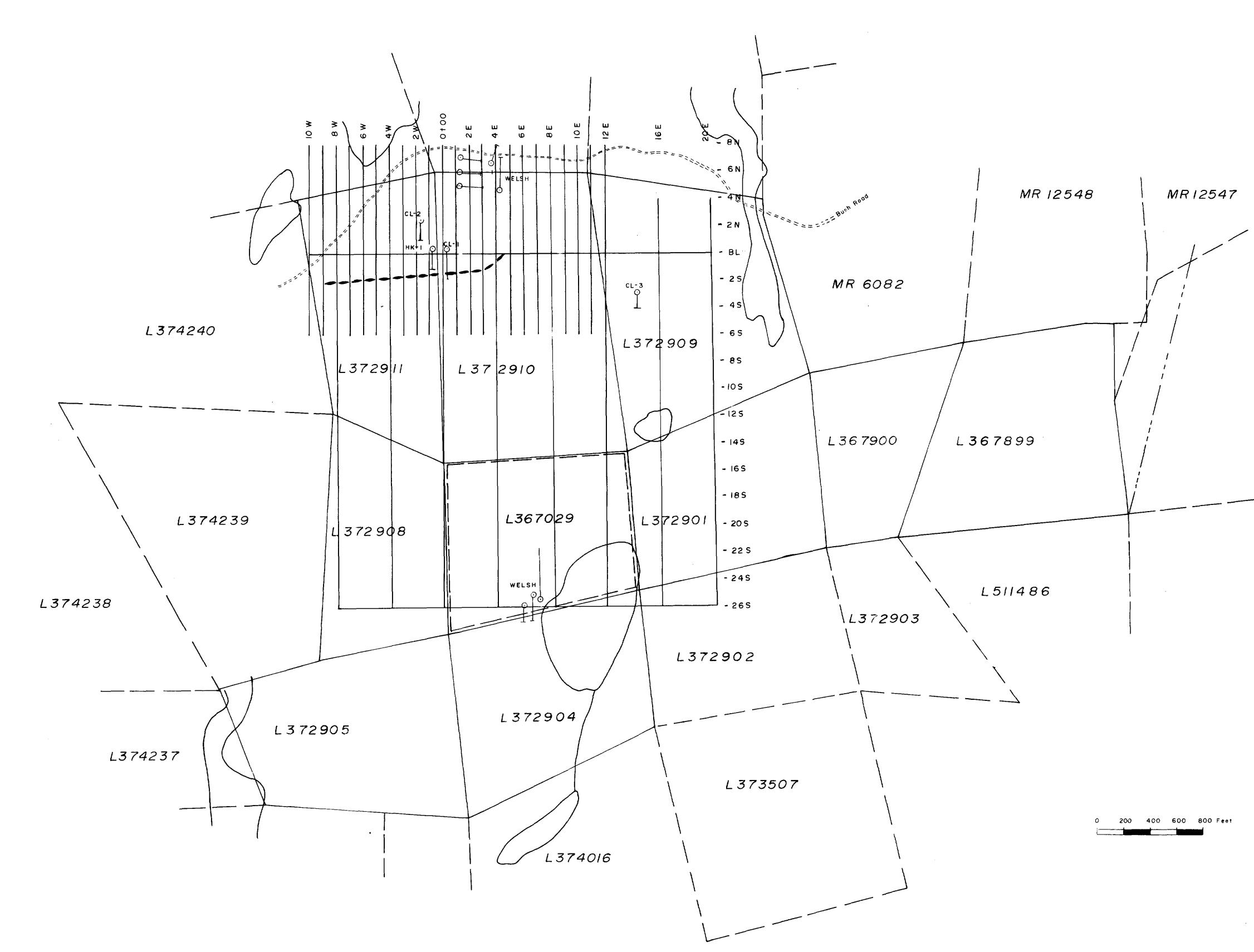

Ν

-**		- 360	- 10 76	808	-734	- 1094	-867	- 810	- 812	- 8/7	- * "	- 772	-/272	- 1340	- 877	- 8/9	- 773	-1042	- 892	- 962	- 8-23	- 8 25	-1103	- 487	- 917
- // 2		- 843 932	- /0/6	- 805	- 765	~ /298	- 250	921	- 744	- 934	8/6	- 9 <i>51</i> 1896	-/307	1468	949	- 809	- 769	-/069	- 892	- 864	- 241	- 853	- 11/6	- 168	- 924
			986	774	/239	1387					8/7		(32/	1454		807	779	1112	885	869	925	851	1013	922	925
- 78	5 0	- 870	- 1011	-794	-1261	-1385	- 869	- 924	- 804	- 805	832	- 903	-1279	-1536	-900	- 867	- 772	-1146	- 905	- #59	-915	- 867	-/0 3 8	- 9/ 9	- 7/ 9
- 81			-1048	-773	-1064	-1294	-841	- 920	- 833	- 81 9	- 831	-902	-1219	1760	- 921	-852	-767	-1178	-901	- 858	-786	- 794	-1051	- 92.9	~ 875
- 34		- 917	-1043	- 786	-1167	-1219	-778	- 683	825	- \$29	- 631	- 892	- 11 46	- / 893	-947	-994	-781	-1330	- 890	- 867	-768	- 825	-11 08	405	-933
-8	15	- 787	- 1127	-780	-1311	-1054	- 984	-921	- 811	- 80 8	- 852	- 9 • 9	- 1075		- 930	- 894	783	-/270	- 908	- 860	790	- 837	-/067	- 894	- 717
- 7 1	**	- 793	1482	- 777	-1944	-1006	- 77 7	- 980	876	- 8 0 3	- 861	- 909	- 1044	-1787	-937	- 357	-764	-// 92	- 900	- 863	- 776	- 853	-1017	- 87/	- 9.1
- 74	7	- 723	-1525	-793	1149	-1084	-1037	-1012	- 8 53	- 803	- 872	- 378	- 1108	-1571	-970	- 826	- 782	-1275	715	- 848	876	- 803	- 980	- 99 2	~ 9.75
- 73		-770	1044	- 784	1660	1061	-1031	-1019	- 16 8 1	- 800	- 971	- 905	-1010	-1526	-992	- 8 12	- 761	-1138	-917	- 8 6 8	- 87+	- 18 2 3	- g 2/	- 987	- 8 ##
711	,	- 877	1048	8 54	-1413	-1128	-1018	- 187	-846	844	-851	- 9 •4	-1124	-1461	-1008	- 798	- 754	-748	- 971	- 873	- 328	- 864	- 868	- 78%	- 7 21
- 6	87	- 941	1038	896	1076	-1156	-996	-1080	-857	- 86/	-1018	- 916	-1122	-1440	-1016	- 803	748	- 8/6	-934	- 814	- 935	- 739	- 889	- 997	- 895
-78	5	- 895	958	-766	-1301	- 11 94	- 994	- (228	- 893	- 8 80	-917	- 922	-1364	-1+34	-1019	- 798	-743	620	- 964	- 845	- 851	- 87.	- 956	- • • •	- 883
- 8	6 8	-1088	-935	1034	- 1067	-1212	- 188	-1115	- 932	-1000	-882	- 995	- 1455	-1451	-1034	806	-795	-715	-7/8	-851	- 799	- 443	-186	- 987	- 984
-10	29	-1202	- 95 8	-1126	- 982	- (198	1008	-459	965	-1152	- 1058	- 786	- 1276	1419	-1045	- 810	- 824	- 7/ 8	936	- 855	760	921	- 965	- 136	
- +4	17	-1176	- 966	1256	-1012	- 1304	-1081	-1153	-1167	1278	-1041	- 99/	-1242	- 1593	-1129	917	- 801	823	- 786	- 874	-789	- 840	-1 *7	- 917	- 878
-117	ود	-1362	1012	-1189	- 1045	-1368	1043	-1347	-1022	-1328	-1697	- 8 76	-1107	-17/2	-1103	- 872	- 8/8	-687	-1012	- 856	-709	773	~ 7 \$ 6	- 955	- 975
	2/6	-1394	1162	-1101	-1020	- 1234	-1034	-1449	-1082	-1214	-1805	-869	1063	-1773	-991	907	- 845	-637	-789	- 858	- 74 8	- 732	-1002	- 700	- 977
	88	-1215	1229	-1+48	- 970	-1253	-796	-1271	-1097	1413	- 1570	- 999	-1450	-1853	-1094	- 871	- 826	-614	- 7+9	- 86+	- 368	- 542	- 884	-912	
	4	-745	-1294	-106 8	- 967	- 1002	-1000	-992	-1077	-1397	-1526	1086	-1167	-1825	-1157	-863	823	-550	-953	-882		9/3		~906	- \$78
- 12	,70	-1354	-1415	- 1245	-927	- 1546	1048	- 872	-1331	-/292	-1547	-1147	-10/8	-1816	-1647	- 862	- 796	-645	- 778	- \$77	-786	- 871	-945 -967	- \$61	976
- 12	160	477	-/423	-352	. 933	- 948	-1102	-1008	-1420	-1353	- 1433	-1173	- 936	-176+	-11+2	-887	-784	-697	-946	929	- 675-	- 823	- 786	- 877	- 862
-12	14	- 8 54	-1423	-1442	-880	-1203	-1180	-1041	-1469	-1454	- 1/97	-1219	-926	-2/26	-1079	- 882	-792	-746	- 72 9	-932	-756	- 799	970	- 913	
-11	15	-2568	-1512	-1867	1075	- 1351	-2135	-1041	-1545	-14 5-4	- 1166	-1156	-930	-1601	-1069	-887	- 821	-792	- 891	-904	- 714	-741	- 985	970	863
-10	53	-1111	1506	-1385	-1130	- 1431	1094	-1103	-1509	-1568	-1160	-/080	978	-1475	-1119	- 89 0	- 815	- 8 75	928	- 873	- 935				- 851
- 10.	40	-702	1360	1308	-1172	1516	-1182	-1170	-/368	-1644	-1219	-1035	-1057	-1487	- 1118	- 87/	- 8 2 .	911	- 173	-889	~528	- 706 - 708	-1004	- 865	- 451
- 10	18	614	-1227	1781	1053	- 1506	-1842	-1221	1262	-1569	-1218	- 1016	- 1070	-1585	-1/2 2	-890	- 835	-1026	- 734	- 198	-792	-692		- 876	- 854
-10	12	- 2 3 2 8	-1177	917	-1207	1597	1352	-1242	-1364	-1448	-11 82	- 1031	-1077	-170 4	- 1164	- 888	- 879	-12/1	- 933	- 898		-767			- 876
-10	01	- 1856	-1150	-1297	- /22 3	-1610	- 1337	1267	-1362	-1491	-1203	-1036	- 9.52	-1644	-1279	- 876	- 88+		- 9 = 1	- 8 99	- 850 861	- 828	-1126 - 1135	- 886	- 990
-10	07	-2188	-1116	-1353	-1137	2553	1284	-1277	-1251	.1458	-1214	- 1028	- 92/	16 05			- 870	-/295	- 9 = 4	- 90 6	~ 878			- 174	-863
- 99	12	-1 -1 -1 -1 -1	-1069	-/30.	-1372	- 5373	-127 2	-1286	-1259	-1459	-/226	-1036	- 777	1581	-1905 -1504	- 8 7 e - 9 / 5-	900	-1252 -1420	- 208	- 8 94	878	- 832 -792	-1295	- 876	- 82 9
-10	77	.1470	1141	- 1500	-1441	- 5872	-1294	1287		-1447	.12.11	- 1135	-1064		- 133 2	-935	- 39,	-/3/3		-908	- 852		-1605		- 838
	55	L, 299	-1 374		L1391	\$550	-1301	L 1284	-1367	1435	-1203	954	1015	-1528	-1300	1.911	- 874	-1226	-97/	8-8	834	- 820 - 784	-1606	- 863	- 804
			-1828				-1307			•••	- 1193				-1153		- 836		- 9 * 8				-/382		2.42
			-1786								-1160				-1092			-/46 /	- 9 77	- 875				- 874 - 789	-169
			-1158				~/ 50 3				-1/27				- 10/2		- 11	-/327	- 995	- 904			746	- 78%	- 302
			-980				-1245								-/009		-742 -789	-117/	-/02 3	- 890				- \$93	- 886
			- 772															-796	-1024	*76			- 7 55		- 959
			-983								- 1/66				-1057		L814	645		-89/				775	
							1230				-/245				-1086				-/ 007	- 856					- 854
			-1225				12/5				(184								-1040				786	~ 907 - 075	L
			1144				- 1184				- /298				- (052				-1048	- 870					- 1065
			1277				-1187				-12#2				-/•#9				-100L	\$78			- 763	- 9//	1 .
			-1351				- 1202				- 1286				- /026					•78			• • 7 2	- 907	- 1275
			-1330								- /4 87				-/ •/ ٩				-/=60				- 734		- 856
							1274				-/26/				- 7 9 7				-1120				293	a/4	- 924
			-1226				1387				- // 99				-/ •/3				-1281						- 1004
			-1301				-1361								1038				-1/24				- 304 La19	- 8 4 9	- 1015
			-11 4				-1530				1085				- (-1120				- 312		
			-1345				- 17 +4				- 1071				- 1067				-1109				- 29a	- 827 - 9 59	
			-1267				- 1766				-1071				- 1045				-1289						- 1016
			-11 79				-1646				-1057				- (- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5				-1256					885	-990
			-/435				- 1459								-1057				-1240				a71	- 866 - 959	
			- 1477				- 13 11				- 11 31				-1077				- 796				974	- 844	
							1286				- 1090				1082				- 7 / 9				- 824	- 824	- 8 40
			-1480				-1329				- 11 7 9				-, 09 L				- 449				772		- 3/8
			1601				- 1298				-1471				- // 20				- 669				87/	+ g/L + g/3	741
							-1634				-1562				-1150				- 621				- 1065		741
			1504				-1493				(507				- 11 = 6				- 681				//03	- \$10	
							- 1590				1447				1164				- 756				-/ 19 0		
							- 1637				1.309				-1212				- 728				- / 5 4 0		
			- (016				- 1695								-1291				-739				- 1542	- B58	7 33
			- 1016				- 1667				- 1066				- 18 45				- 761				-974	- 868	1034
							100				Γ'													- 881	-1196

BL


10 S

	- 1010 - 1016 - 1016	- 1667 - 1419 - 1260 - 1199	- 1066 - 1033 - 980 - 950		- 761 - 760 - 766 - 788	- 939 - 938	- 882 - 90/ - 914	- 1196 - 1179 - 999
	-/3#6 -/486	- 1152	- 919 - 910	- 12 77	- 776 - 724	- 969 - 894	- 915 - 901 - 894	- 1156 - 11 80 - 1107
	-1562 -1521 -1287	- 1079 - 1061 - 1043	- 910 - 905 - 879	- 1170	- B, 7 - B 50 - B 67	- 844 - 803 - 918	- 884 - 865 - 844	- 967 - 1287 - 903
	- 11 2 6 - 761	- 100 B - 993	- 909 - 907	-100	- 9 60	- 12/1	- 8 + 3 - 787	-949 -961
	-788 -768	- 976 - 969	-983 -967	-/042	- 959 -1026	-1593 1448	- 745 - 7/1	- 461 - 955
	-743 -776 -188	- 978 - 950 - 973	- 899 - 9/1 - 901	-/028	- // 76 - / 0 / 0 - 886	- 1451 - 1465 - 1427	- 778 - 857 - 889	- 912 - 1001 - 971
	- 175 - 769	- 948 - 891	- 876 - 898	~/o+8	- 854	- / 4 #3	- 8/4 - 679	- 761 - 972
	- 789 - 826	- 895 - 836	- 898 - 797 890		- 879 -/32	- (333) - (17)	-554 -449	- 1034 - 1271
	- 862 - 909 - 979	- 891 - 997 - 878	- 942-	- 961	- 1880 - 140 8 - 1592	- 1318 - 1334 - 1661	- 347 - 707 - 2298	- 1481 - 15 36 - 1384
	- 966 - 979	- 1 79 - 864	- 1040 - 1057	-920 - 572	-1466 -1378	- 1857 - 1707	- 1941 - 1510	- 1929 - 2465
	- 1011 - 965 	- 856 - 839	- 1024 - 901	- 901	- / 3 & J - / 2 8 3 - // 2 5	-1529 -/464	- 1852 - 1809 - 1395	-2477 -/280
	-162 -978	- 791 - 798	- 878		-1134	-/006 -/035	- // 3 6 - /0 7 3	- / 3 06 - / 3 5 J
	- 9 3 / - 9 1 0	- 879 - /o/8	- 968 - 817	- 887 - 876	- 1167 - 1236	- 1008 - 960	- 1283 - 1317	- 1269 - 1200
	- \$6 / - \$79 - \$76	- 1279 - 1340 - 1226	~ 816 ~ 898 - 1272	-918 -283 -1580	- /427 - /2/3 - 604	- 837	- 1417 - 1292 - 1422	- 1182 - 1164 - 1228
	- # 6 3 - # 7 9	- // 77 - // 4L	- 792 - 939	- 1107 -102 8	- / 46 9 - / 2 73	- / 732	- 13 71 - 1429	-1875 -1461
	- 9/4 - 959 - 449	-/688	-/03	-912	- 1283 - 1725 - 1538	- 1831 - 1504	- 1694 - 1783	- 1698 - 1587
20 S	- 926 - 914	- 2092 - 2082 - 1909	-970 ~982 ~944		- 1 4//	- 1497 - 1419 -1441	- 1798 - 1915 - 1589	- 1833 - 1857
	- 88 •	- 1667 - 1501	- 961 - 970	-976 -999	-1658 -1434	-1452 -1445	- 152¥ - 1620	-/6 T 3 -/373
	- 360 - 872	-1406 -1347 -1365	- 971 - 972 - 952	-1018 -1040 -1867	-/•/2 - 758 -767	- 1508 - 1525 - 1645	- 1557 - 1911 - 1366	- 1930 - 1366 - 1392
	- 908 - ((2)	- / 428 - /423	- 986 - 10/3	- //60	-1296 -1081	- /727 - / 770	- / 656 - / 3 47	- 1388 - 1339
	- (07) - \$84	- 1453 - 1543	- 10 41 - 1055	- // 9 L	- 873 - 66/ - 5/3	~ 1697 - 1649	- 1834 - 1808	- 12 87 - 12 15
	- 867 - 867 - 867	- 1595 - 1588 - 1705	-/053 -87/ - 779		~ 554 ~ 674	- 1614 - 1664 - 1631	- /3 89 - /325	-1202 -1180 -1152
	- 877 -935	- 173 4 - 1711	- 81J - 809	-//37 -//02	- 773 - 751	- 1532 - 1446	- /167 -/298	- 1043 - 1082
	- 9.61 - 9.61	-1707	~ 838 ~ 862 ~ 912	-1077	- 755 - 74) - 74/	- 1383 - 1316 - 1270	- 1394 - 1394 - 1273	- 1068 - 1068 - 1081
	- 892 - 886		- 954 - 936	-	- 779 - 795	- 1253 - 1258	- 1145 - 1983	- 1045 - 1039
	- 890 - 885 - 872	- 16 43	- 738 - 764		- 849	-/222 -/2/3	- 1771 - 1658 - 2312	- 1035 - 1062 - 1072
	- 972 - 975 - 914	- 1599	- 1021	- // 2 / - // 7 3	- 874 - 833 - 432	- 1208 - 1209 - 1209	-1526 - 804	- 1036 - 1108
	- 981 - 987	- 1685 - 1377	- 10 8 9 - 9 50	-,310	- 842 - 849	-1210 -1213 -1218	-1146 -784	- 1243 - 1570
26 S		-1142	- 991	- 1561	- 900 - /044 L 975	- / 212	- 960 - 578 - 848	- 1 9 8 0 - 1 9 8 0 - 172 8
					LEGE	ND		
						6 1		
					- 11	viagnetic readings in nano teisa.	LACOTA	LACANA MINING CORPORATION
					- 1.	/42 Base reading 59000=1000 561 628		
						20 1	MAGNETIC N	AP READINGS
						· · · · ·		G OPTION
41P15NE8236 63.4980 POWELL 220						01184-338	63,4980 RW/KG 1"=100' 1	DATE N.1 S SHEET FIGURE 41 P/15 3 42 A/2 3
								R. Well Y 3/2/86


LEGEND

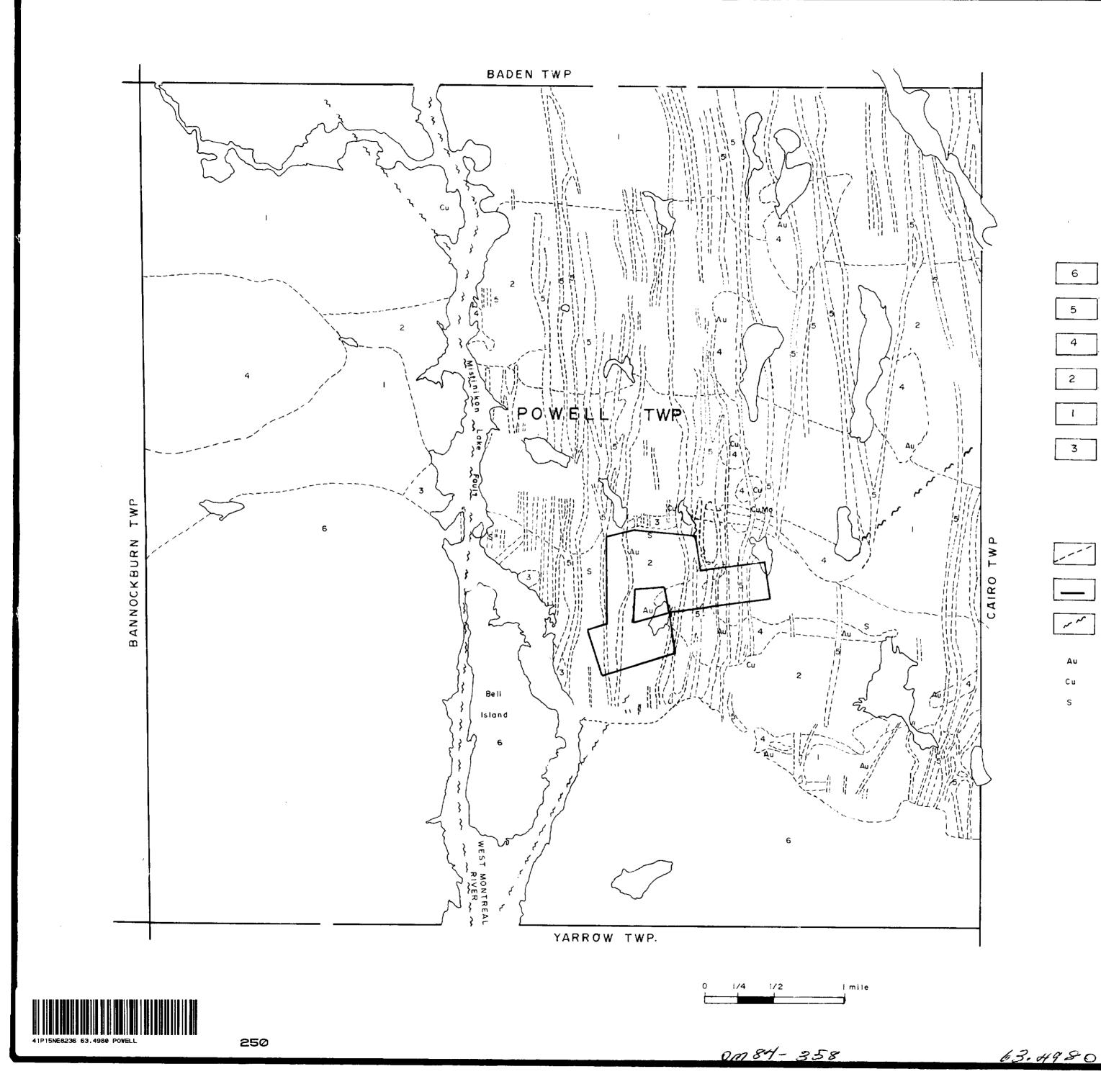
PLOTTING CONVENTION

41P15NE8236 63.4980 POWELL

230

LEGEND

om 84 -358


Comking property boundary surveyed 1984. Diamond drill hole location approximate-IP. Apparent Resistivity Anomaly (high) Copper Lake Survey 1975

Ν

1985 LACANA grid.

			LACANA N	AINING CORPORA	TION
		PILATION DRK WIT		OF PREN GRID	/10US
		САМ	KING O	PTION	
63.4980	PREPARED BY	SCALE 1"=400	DATE Apr / 85	N.T.S. SHEET 41 P/15 42 A/2	FIGUAE 2
		<u>المراجعة المراجعة ا</u>	in sy is a second		أوجو بسمع سبرين

h. . . will

LEGEND

6	
	-
5	
4	_
2	<u> </u>
1	
	i
3	

Cobalt Group, Sedimentary Rocks Matachewan Mafic Intrusive Rocks Silicic Intrusive Rocks Timiskaming Sedimentary Rocks Volcanic Rocks

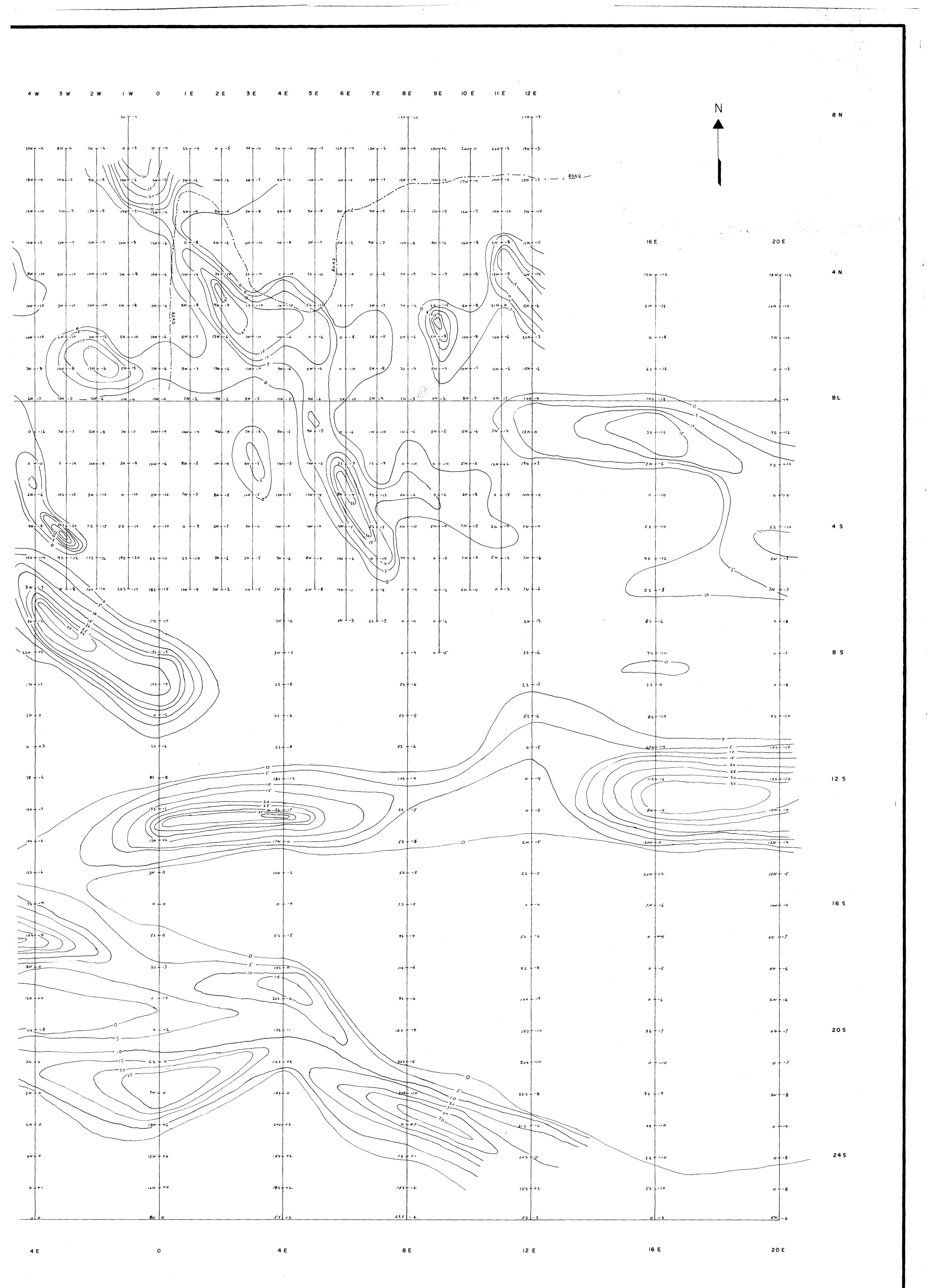
Ultramafic Rocks

SYMBOLS

C**a**m King property boundary

Geological boundary

Gold Copper Сu Sulphide mineralization


Fault

LACANA MINING CORPORATION

PROPERTY LOCATION AND REGIONAL GEOLOGY MAP

CAMKING OPTION

N T S SHEET FIGURE 41 P/15 42 A/2 PREPARED BY SCALE DATE 1"=1/2 mile Sept.1985 RW/KG R. . . Male 3/2/86

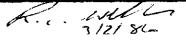
LEGEND

Instrument: GEONICS EM16 Parameters read: In phase dip angle Quadrature Transmitter station: Seattle, Wa.

(NLK)

Frequency: 24.8 Khz.

Operator: RAYAN Exploration Ltd.


PLOTTING CONVENTION

10N -6

True Cross Over 0 0 In-phase 20N -4 Quadrature Dip-Angles 40 Contoured Fraser 50 Filtered Values Seattle 200 Seattle 2

OM 8H- 358

LACANA MINING CORPORATION VLF MAP CONTOURED FRASER FILTERED DATA CAMKING OPTION PREPARED BY R W/KG I'' = 100' Feb, 1985 41 P/15 5

