REPORT
ON AN
AIRBORNE ELECTROMAGNETIC
AND MAGNETIC
SURVEY
HINCKS TOWNSHIP
N. ONTARIO

CANAMAX RESOURCES INC.

PRICE PROJECT (035-15)
A. Watts

Geophysicist

$010 c$
I.) INTRODUCTION 1
II.) SURVEY EQUIPMENT AND PROCEDURE 2
III.) DATA PRESENTATION 3
IV.) GENERAL GEOLOGY AND EXPLORATION HISTORY 6
V.) DISCUSSION OF RESULTS 8
i) MAGNETIC SURVEY 8
ii) ELECTROMAGNETIC SURVEY 9
VI.) CONCLUSIONS AND RECOMMENDATIONS 13
Appendix A A
i) Schedule of Claims
ii) EM Anomaly Map - Map 1 ($1: 15000$)
Aeromagnetic Contour Map - Map $2(1: 15000)$

I) INTRODUCTION

During the period November 13-18, 1983 Aerodat Ltd of Malton, Ontario, carried out a helicopter-borne magnetic and electromagnetic survey in Hincks Township, N. Ontario, for Canamax Resources of 181 University Avenue, Toronto.

The purpose of the survey was to obtain systematic and detailed geophysical coverage of a block of 165 claims Canamax had staked prior to the survey. These claims are centred on two historic Au showings straddling the border between Melrose and Hincks Townships and situated $2-3 k m$ NW of the old Ashley Mine.

A total of 302 miles (483 km) was flown in the area, with approximately 165 miles (264 km) directly over the 165 cla m s submitted. The survey was flown at a 100 m line spacing in order to qualify for maximum airborne geophysical credits, i.e. one mile per claim. Flight direction was NE-SW.

II) SURVEY EQUIPMENT AND PROCEDURE

The survey was carried out with an Aerospatiale A-Star 3500 helicopter at a nominal flight-line spacing of 100 metres. The survey was flown in a NE-SW direction utilising the Mini-Ranger radar positioning system for high precision flight-path navigation and recovery. This navigation system was used in conjunction with a Geocam 35 mm strip film tracking camera, and a Hoffman HRA-10 radar altimeter.

For the magnetic survey a Geometrics G-803 proton precession unit was used. The sensitivity of the instrument is one gamma, and a .5 second sample rate was used. The magnetic sensor was towed a nominal 45 metres from the ground. The electromagnetic system was an Aerodat/Geonics 3 frequency system. Two vertical coaxial coil pairs were operated at 950 and 4500 Hz and a horizontal coplanar coil pair at 4100 Hz . The transmitter-receiver separation was 7 meters. In-phase and quadrature signals were measured simultaneously for the 3 frequencies with a time-constant of 0.1 seconds. The electromagnetic bird was towed 30 meters below the helicopter.
III) DATA PRESENTATION

1) Base Map and Flight Path Recovery

Abstract

Photo Map bases at a $1: 15,000$ scale were prepared by enlargement of aerial photographs of the area. Minor distortions were noted, however, preventing an ideal match with the UTM coordinates and radar position. Hence, a corresponding $1: 15,000$ scale topographic map was provided as well.

As illustrated by the very consistent and straight alignment of the flight lines on the maps, the MRS III radar positioning system worked perfectly in the given flat environment. As a result, fiight path recovery was 100\% automatic.
2) Electromagnetic Profile Maps

The electromagnetic data was recorded digitally at a sample rate of $10 /$ second with a time constant of 0.1 second. A two stage digital filtering process was carried out to reject major sferic events, and to reduce system noise.

Local atmospheric activity can produce sharp, large amplitude events that cannot be removed by conventional filtering procedures. Smoothing or stacking will reduce their amplitude but leave a broader residual response that can be confused with a geological phenomenon. To avoid this possibility, a computer algorithm searches out and rejects the major sferic events.

The signal to noise ratio was further enhanced by the application of a low pass digital filter. It has zero phase shift which prevents any lag or peak displacement from occurring, and it suppresses only variations with a wavelength less than about 0.25 seconds. This low effective time constant permits maximum profile shape resolution.

Following the filtering processes, a base level correction was made. The correction applied is a linear function of time that ensures that the corrected amplitude of the various in-phase and quadrature components is zero when no conductive or permeable source is present. The filtered and levelled data was then presented in profile map form.

The in-phase and quadrature responses of the coaxial 924 Hz configuration was then plotted and presented with
flight path and electromagnetic anomaly information on the base map.

Total Field Magnetic Contours

The aeromagnetic data was corrected for diurnal variations by subtraction of the digitally recorded base station magnetic profile. No correction for regional variation was applied.

The corrected profile data was interpolated onto a regular grid at a 25 metre interval (1.67 mm at 1:15,000 scale) using a cubic spline technique. The grid provided the basis for threading the presented contours at a 10 gamma interval.
IV) GENERAL GEOLOGY AND EXPLORATION HISTORY

A large proportion of the rocks within the survey area are Archean volcanics of mafic composition. Overlying these volcanics to the west are flat-lying sediments of the Cobalt Series which form the latest rock assemblage in the area. Numerous dykes of Matachewan origin, trending NS, occur throughout the survey area and a single Keewanawan dyke trending NW-SE is thought to occur in Montrose Township, approximately 1 kilometer east of Dara Lake. Several small bodies of peridotite and pyroxenite intrude the area, but these do not compare in size or degree of magnetism, to the large serpentinitic mass in the north half of Bannockburn Township, just outside the survey area.

Economic interest in the area was generated originally by the discovery of the Ashley gold bearing quartz vein system, and the subsequent mining thereof. After the mine closed in the fifties, exploration once again lay dormant until the Ontario government sponsored the Matachewan INPUT survey in 1975. Release of the data generated new interest in the area, with staking concentrated on INPUT EM anomalies, of which there is a relative paucity in the present survey block. A strikeextensive INPUT zone straddling the Hincks-Montrose border appears to have been drilled at least once, by Hanna Mining, at its eastern extremity. East of Canamax's claims in Montrose Township,

Golden Bounty Resources has carried out intermittent drilling on a sporadically mineralized Au-bearing zone of carbonatized volcanics.

Canamax's original block of four claims (L661897-661900)
is centred on the old Montrose Syndicate claims. These claims contain showings which exhibit abundant fuchsite and ankerite alteration, some quartz veining, and localized zones of heavy pyrite mineralization. Historically, however, no appreciable gold was obtained from these showings.
V) DISCUSSION OF RESULTS
i) Magnetic Survey

The magnetic map is dominated by a series of $N W$ trending linear magnetic anomalies which appear to terminate against a fault at the northern extremity of the claim block. The cyclical nature of these linears suggests magnetic mafic volcanic flows as the source rock.

These interpreted magnetic flows are disrupted in many places by N to $N E$ trending faults and associated Matachewan diabase dykes. Evidence of these crosscutting dykes is strongest along the eastern border of the survey. A major NS fault, paralleling the Whitefish River before it adopts an EW course, is interpreted from the aeromagnetics. A large amplitude and lengthy magnetic linear along the $S W$ boundary of the claim block appears to be too continuous for a Matachewan dyke and is probably Keewanawan in origin. This feature also forms an approximate boundary between Archean volcanics and sediments to the east and flat-lying Cobalt sediments to west.

ii) Electromagnetic Survey

A number of conductors were outlined by the AEM survey and these are discussed individually below.

Zone 2
Closely following a NS topographic lineament, this weak but narrow quadrature $E M$ response can be related to a quartz-sulphide rich fracture zone located on the old Leliever claims approximately 1 Km south of Canamax's claims. Weak Au values were apparently obtained from this quartz vein system some time in the past and, on the strength of this possibility, an otherwise unimpressive EM trend deserves a closer examination on the ground.

Zone 3

Located immediately north of Zone 2, this 2-line AEM feature differs markedly in anomaly characteristics from Zone 2 , and in fact from any other zone detected by the AEM survey.

The main difference is a reversal of the typical single-peak co-axial and double-peak coplanar responses obtained over the narrow, steeply dipping dyke-type source common in Precambrian greenstone belts. In the case of Zone 3 the exaggerated single peak response produced by the coplanar coil configuration suggest either a near-horizontal sheet of limited down-dip extent, or else a thick (more than 50 m wide) steeply dipping dyke source. The latter explanation appears to be the more likely of the two as the pyriterich quartz vein system on the Leliever showing to the south is described (ODM Report 41 Vol 2) as being at least 100 foot wide.

Though there is a possibility that this conductor was located and surface prospected in the wake of the 1975 Government sponsored INPUT survey of the area, it is unlikely that the entire width of the conductor would have been sampled for possible $A u$ association. It is therefore recommended that this intriguing geophysical expression be located on the ground with detailed HEM or VLF traverses, and then drill tested so as to evaluate the full width of the conductor.

It should also be noted that the strike of Zone 3 is quite different to any obtained from conductors to the north, which are generally conformable to the NW trending stratigraphy.

Zones $4 A$ and B

Both zones are approximately coincident with the NS trending portion of the Little Whitefish River, the course of which, from the aeromagnetics, is interpreted as being fault-influenced. Zone $4 B$ is therefore interpreted as solely fault-gouge derived, but there is an element of ambiguity in the possible source for Zone 4 A . This zone, although following the Whitefish River, also sub-parallels the many aeromagnetic and EM stratigraphic marker horizons to the east and west. It is suspected that a bedrock source, i.e. graphite or sulphides, may be found when detailed on the ground.

Both zones form interesting targets, keeping in mind that the Au-bearing quartz veins at the old Ashley Mine are related to a NS structure.

Zones $7 B$ and C

These two zones form a semi-continuous conductive horizon over 2 km long, and fall on the west flank of one of the more prominent magnetic flow horizons outlined by the aeromagnetics.

Hanna Mines has apparently drilled this extensive, weakly conductive EM unit south of claim 767730, outside of Canamax's claim block. Sufficient graphite was intersected to explain the particular response they were evaluating. Still of some interest is the multiple response constituting the core of Zone 78. (Lines 140-142). Three separate conductor peaks were detected on Line 141, associated with higher-than average conductivity when compared to the rest of the Zone 7 EM trend.

Ground EM and magnetic detailing of Zone $7 B$ is therefore recommended to ascertain the reason for the abrupt multiplicity of $E M$ response and the increased conductivity at this location.

Zone 9 exhibits similar anomaly characteristics to Zones 7 though there is a kilometre gap between the two zones. In addition, the aeromagnetics has this zone located within the same low magnetic expression as Zone 7. The only intriguing feature associated with this zone is the abrupt offset of the conductor axis between Line 112 and 111 . Lack of a corresponding offset in the magnetic flow unit immediately to the north suggests folding, rather than faulting, as the cause of this offset.

Preliminary field examination of this zone has uncovered a possible old drill set-up in the vicinity of the AEM axis and no further work is recommended.

Zone 13
This conductor is almost solely quadrature in response and falls directly over a lake. As such it is probably lake-bottom sediment derived.

Zone 14
Lula Lake has been slightly misplotted and Zone 14 actually falls directly on rather than adjacent to the lake as indicated on the two enclosed maps. A lake-bottom source is interpreted and no follow-up work is recommended.

VI) RECOMMENOATIONS AND CONCLUSIONS

The airborne survey has confirmed the presence of a dominant sequence of repetitive mafic flows over most of the claim block, except for the south portion in Montrose Township which consists predominantly of Cobalt sediments.

Diabase dykes of various orientations were outlined by the aeromagnetics, though those of suspected Matachewan origin present a more subtle signature than the Keewanawan dyke along the west boundary of the survey area. A number of structural disturbances were resolved, the most obvious located along the NS course of the Little Whitefish River on the property. A similarity in structural setting to that at the nearby Ashley Mine requires that this area, i.e. Zones 4 A and B , be examined carefully on the ground.

Finally, the most isolated and interesting EM feature of the survey, Zone 3 , should be detailed with ground geophysics and drill tested as this zone is felt to represent the best opportunity for intersecting both massive sulphide and Au-bearing mineralization on the property.

APPENDIX A

A P P E N D I X A
SCHEDULE OF CLAIMS
Price Project

LARDER LAKE MINING DIVISION 035-15; Montrose-1

$L .661897$	$L .736908$
$L .661898$	$L .736909$
$L .661899$	$L .736910$
$L .661900$	$L .736911$
$L .736854$	$L .736912$
$L .736855$	$L .736913$
$L .7368567$	$L .736914$
$L .736858$	$L .736915$
$L .736859$	$L .736916$
$L .736869$	$L .736918$
$L .736870$	$L .736919$
$L .736871$	$L .736920$
$L .736872$	$L .736921$
$L .736874$	$L .736923$
$L .736875$	$L .736925$
$L .736876$	$L .736926$
$L .736877$	$L .736928$
$L .736878$	$L .736879$

MONTROSE, HINCKS \& ARGYLE TWPS.
L. 736950
L. 736991
L. 736951
L. 736992
L. 736952
L. 736993
L. 736953
L. 736994
L. 736954
L. 736995
L. 736955
L. 767497
L. 736956
L. 767498
L. 736957
L. 767499
L. 736958
L. 767715
L. 736959
L. 767716
L. 736960
L. 767717
L. 736961
L. 767718
L. 736962
L. 767719
L. 736963
L. 767720
L. 736964
L. 767721
L. 736965
L. 767722
L. 736966
L. 767723
L. 736967
L. 767724
L. 736968
L. 736725
L. 736969
L. 767726
L. 736970
L. 767727
L. 736971
L. 767728
L. 736972
L. 767729
L. 736973
L. 767730
L. 736974
L. 767733
L. 736975
L. 767734
L. 736976
L. 767735
L. 736977
L. 767741
L. 736978 L. 767742
L. 736979 L. 767743
L. 736980
L. 767746
L. 736981
L. 767747
L. 736982
L. 767748
L. 736983
L. 767749
L. 736984
L. 767750
L. 736985
L. 767751
L. 736986
L. 767752
L. 736987
L. 767753
L. 736988
L. 767754
L. 736989
L. 767755

TOTAL: 165 claims

MINING CLAIMS TRAVERSED

Prefix	Number	Prefix	Number	Prefix	Number
L	661897	L	736894	L	736936
L	661898	L	736895	L	736937
L	661899	L	736896	L	736938
L	661890	L	736904	L	736939
L	736854	L	736905	L	736940
L	736855	L	736906	L	736941
L	736856	L	736907	L	736942
L	736857	L	736908	L	736943
L	736858	L	736909	L	736944
L	736859	L	736910	L	736945
L	736869	L	736911	L	736946
L	736870	L	736912	L	736947
L	736871	L	736913	L	736948
L	736872	L	736914	L	736949
L	736873	L	736915	L	736950
L	736874	L	736916	L	736951
L	736875	L	736917	L	736952
L	736876	L	736918	L	736953
L	736877	L	736919	L	736954
L	736878	L	736920	L	736955
L	736879	L	736921	L	736956
L	736880	L	736922	L	736957
L	736881	L	736923	L	736958
L	736882	L	736924	L	736959
L	736883	L	736925	L	736960
L	736884	L	736926	L	736961
L	736885	L	736927	L	736962
L	736886	L	736928	L	736963
L	736887	L	736929	L	736964
L	736888	L	736930	L	736965
L	736889	L	736931	L	736966
L	736890	L	736932	L	736967
1	736891	L	736933	L	736968
L	736892	L	736934	L	736969
L	736893	L	736935	L	736970

Prefix	Number	Prefix	Number	Prefix	Number
L	736971	L	736991	L	767727
L	736972	L	736992	L	767728
L	736973	L	736993	L	767729
L	736974	L	736994	L	767730
L	736975	L	736995	L	767733
L	736976	L	767497	L	767734
L	736977	1	767498	L	767735
L	736978	L	767499	L	767741
L	736979	L	767715	L	767742
L	736980	L	767716	L	767743
L	736981	L	767717	L	767746
L	736982	L	767718	L	767747
L	736983	L	767719	L	767748
1	736984	L	767720	L	767749
L	736985	L	767721	1	767750
L	736986	L	767722	L	767751
L	736987	L	767723	L	767752
L	736988	L	767724	L	767753
L	736989	L	767725	L	767754
L	736990	L	767726	L	767755

\qquad

035-15
Type of Surveys) Airborne Magnetic and Electromagnetic Surveys
Township or Area Hincks, Montrose and Argyle Townships
Claim Holder (s) CANAMAX RESOURCES INC.
Survey Company AERODAT LIMITED
Author of Report A. Watts
Address of Author 255 Algonquin Blvd. W., Timmins, Ontario
Covering Dates of Survey $\frac{\text { November } 13 \text { to 18, } 1983}{\text { (linecutting to office) }}$
Total Miles of Line Cut \qquad

SPECIAL PROVISIONS					
CREDITS REQUESTED	DAYs				
per claim		$	$	ENTER 40 days (includes	-Electromagnetic
:---	:---				
line cutting) for first	-Magnetometer_-				
survey.	-Radiometric				
ENTER 20 days for each -Other additional survey using Geological same grid. Geochemical					

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer 40 Electromagnetic $\frac{40}{(\text { enter days per claim) }}$ Radiometric

DATE: October 19, 1984 SIGNATURE: \qquad
moran

Res. Geol. \qquad Qualifications \qquad Previous Surveys

\qquad

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations_________________
Station interval Line spacing \qquad
Profile scale
Contour interval \qquad

Instrument \qquad
Accuracy - Scale constant
Diurnal correction method \qquad
Base Station check-in interval (hours)
Base Station location and value \qquad

Instrument \qquad
Coil configuration \qquad
Coil separation \qquad
Accuracy \qquad
Method:
Fixed transmitter
Shoot backIn line
Parallel line

Frequency
Parameters measured

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy \qquad

Instrument \qquad

```
Frequency Domain
```

Method
\square Time Domain
Frequency \qquad
Parameters - On time \qquad

- Off time

Range \qquad

- Delay time \qquad
- Integration time \qquad
Power
\qquad
Electrode array
Electrode spacing
Type of electrode

SELF POTENTIAL

Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument
Values measured \qquad
Energy windows (levels) \qquad
Height of instrument Background Count \qquad
Size of detector \qquad
Overburden \qquad (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey \qquad
Instrument \qquad
Accuracy
Parameters measured \qquad

Additional information (for understanding results)

AIRBORNE SURVEYS

Type of survey(s)
Airborne Magnetic and Electromagnetic
Instrument(s) Aerodat 3-frequency EM system, Geonics G-803 magnetometer
Accuracy $\pm \frac{1}{2} \mathrm{ppm}-\mathrm{EM}, \pm 1$ gamma - Mag ${ }^{(\text {Magecify for each type of survey) }}$
Aircraft used Aerospatiale 350 D
Sensor altitude EM - 30m, Mag - 45m
Navigation and flight path recovery method \quad Mini Ranger radar navigation

Aircraft altitude $\quad 60 \mathrm{~m}$		
Miles flown over total area $\quad 300$ miles	Line Spacing $\quad 100 \mathrm{~m}$	

Numbers of claims from which samples taken

SAMPLE PREPARATION
(Includes drying, screening, crushing, asting)
Mesh size of fraction used for analysis \qquad
\qquad
\qquad
\qquad

GeneraL
\qquad

Others
Field Analysis (
Extraction Method
Analytical Method
\qquad
Field Laboratory Analysis
No.
Extraction Method
d

Name of Laboratoty
Extraction Method
Analytical Method
Reagents Used

General

MINING CLAIMS TRAVERSED

Prefix	Number	Prefix	Number	Prefix	Number
L	661897	L	736894	L	736936
L	661898	L	736895	L	736937
L	661899	L	736896	L	736938
L	661890	L	736904	L	736939
L	736854	L	736905	L	736940
L	736855	L	736906	L	736941
L	736856	L	736907	L	736942
L	736857	L	736908	L	736943
L	736858	L	736909	L	736944
L	736859	L	736910	L	736945
L	736869	L	736911	L	736946
L	736870	L	736912	L	736947
L	736871	L	736913	L	736948
L	736872	L	736914	L	736949
L	736873	L	736915	L	736950
L	736874	L	736916	L	736951
L	736875	L	736917	L	736952
L	736876	L	736918	L	736953
L	736877	L	736919	L	736954
L	736878	L	736920	L	736955
L	736879	L	736921	L	736956
L	736880	L	736922	L	736957
L	736881	L	736923	L	736958
L	736882	L	736924	L	736959
L	736883	L	736925	L	736960
L	736884	L	736926	L	736961
L	736885	L	736927	L	736962
L	736886	L	736928	L	736963
L	736887	L	736929	L	736964
L	736888	L	736930	L	736965
L	736889	L	736931	L	736966
L	736890	L	736932	L	736967
L	736891	L	736933	L	736968
L	736892	L	736934	L	736969
L	736893	L	736935	L	736970

MINING CLAIMS TRAVERSED

Prefix	Number	Prefix	Number	Prefix	Number
L	736971	L	736991	L	767727
L	736972	L	736992	L	767728
L	736973	L	736993	L	767729
L	736974	L	736994	L	767730
L	736975	L	736995	L	767733
L	736976	L	767497	L	767734
L	736977	L	767498	L	767735
L	736978	L	767499	L	767741
L	736979	L	767715	L	767742
L	736980	L	767716	L	767743
L	736981	L	767717	L	767746
L	736982	L	767718	L	767747
L	736983	L	767719	L	767748
L	736984	L	767720	L	767749
L	736985	L	767721	L	767750
L	736986	L	767722	L	767751
L	736987	L	767723	L	767752
L	736988	L	767724	L	767753
L	736989	L	767725	L	767754
L	736990	L	767726	L	767755

TOTAL: 165 claims

Airborne Magnetic and Electromagnetic CANAMAX RESOURCES INC.

255 Algonquin Blvd. West, Timmins, Ontario. P4N 2R8
Ariaress
Survey company

Date of Survey (from \& 10) Qa. 11.83109 Boy 11.83.

Total Miles of line cut AERODAT LIMITED IT

A. Watts, coo Canamax Resources Inc., 255 Algonquin Blvd. West, Timmins, Ontario. P4N 2R8

Mining Claims Traversed (List in numerical sequence)

$$
-1
$$

i

par

Credits Requested per Each Claim in Columns at right

Expenditures $i f \times c l u(i e s$ power stripping

instructions

To: al Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Total number of mining claims covered by this report of work.

I hereby certify that I have a personal and initiate kriowiecige of the facts set forth in the Report of Work annexedtreto, having for formed the work or witnessed same during andor after its completion and the annexed report is true.

Aaciess of Person Certifying

A. Watts - coo Canamax Resources Inc.

255 Algonquin Blvd. W., Timmins, Ont. P4N 2 RB
$\left[\left.\begin{array}{c}\text { Date Certified } \\ \text { Withe, } 2,100,4\end{array} \right\rvert\, \begin{array}{c}\text { Cerifiecty Signature } \\ 0\end{array}\right.$

Prefix	Mining Claim Number	DISTRIBUTION Work Days Credit
L	661897	20
L	661898	20
L	661899	20
L	661900	20
L	736854	80
L	736855	80
L	736856	80
L	736857	80
L	736858	80
L	736859	80
L	736869	80
L	736870	80
L	736871	80
L	736872	80
L	736873	80
L	736874	80
L	736875	80
L	736876	80
L	736877	80
L	736878	80
L	736879	80
L	736880	80
L	736881	80
L	736882	80
L	736883	80
L	736884	80
L	736885	80
L	736886	80
	736887	80
L	80	

Prefix	Mining claim Number	Work Days Credit
L	736894	80
L	736895	80
L	736896	80
L	736904	80
L	736905	80
L	736906	80
L	736907	80
L	736908	80
L	736909	80
L	736910	80
L	736911	80
L	736912	80
L	736913	80
L	736914	80
L	736915	80

		DISTRIBUTION OF CREDITS				
Prefix	Mining Claim Number	Work Days Credit		Prefix	Mining Claim Number	Work Days Credit
L	736936	80.		L	736971	80
L	736937	80		L	736972	80
L	736938	80		L	736973	80
L	736939	80		L	736974	80
L	736940	80		L	736975	80
L	736941	80		L	736976	80
L	736942	80		L	736977	80
L	736943	80		L	736978	80
L	736944	80		L	736979	80
L	736945	80		L	. 736980	80
L	736946	80		L	736981	80
L	736947	80		L	736982	80
L	736948	80		L	736983	80
L	736949	80		L	736984	80
L	736950	80		L	736985	80
L	736951	80	i	L	736986	80
L	736952	80		L	736987	80
L	736953	80		L	736988	80
L	736954	80		L'	736989	80
L	736955	80		L	736990	80
L	736956	80		L	736991	80
1	736957	80		L	736992	80
L	736958	80		L	736993	80
L	736959	80		L	736994	80
L	736960	80		L	736995	80
L	736961	80		L	767497	80
L	736962	80		L	767498	80
L	736963	80		L	767499	80
L	736964	80		L	767715	80
L	736965	80		L	767716	80
L	736966	80		L	767717	80
L	736967	80		L	767718	80
L	736968	80		L	767719	80
L	736969	80		L	767720	80
L	736970	80		L	767721	80

Control Sheet
TYPE OF SURVEY

\sim | GEOPHYSICAL |
| :--- |
| GEOLOGICAL |

MINING LANDS COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mr. F. W. Matthews, Lands Management Branch, Ontario Ministry of Natural Resources, Room 6450, Whitney Block, Queen's Park, Toronto, Ontario MFA 1W3

Dear Sir:

> | Re $:$ | Report of Work, Airborne Magnetic and |
| ---: | :--- |
| | Electromagnetic Survey - Montrose, Hincks |
| | and Argyle Townships - Our Project 4035-15 |

Further to the Report of Work submitted to the Mining Recorder in Kirkland Lake on October 2, 1984, you will find two copies of the technical report in this connection enclosed.

Thank you.
Yours truly,
$\sum l i z a b=i n t s a n d a u$
Elizabeth A. Barclay

E
encl.
cc: A. W. Watts
cc: K. R. Clemiss
cc: Timmins Office

Ministry of
Natural
Resources

Land Management Branch
Mining Lands Ecction
Whitney Block, Queen's Park
Toronto, Ontario M7A 1W3

Aerodat Limited c/o Canamax Resources Inc. 255 Algonquin Blvd. West
Timmins, Ontario
P4N 2R8
Attn: A. Watts

Land Management Branch
Mining Lands Section
Whitnoy Block, Queon's Park
Toronts, Cn:arin M17A1W3
Canamax Resources Inc. 255 Algonquin Blvd. West Timmins, Ontario P4N 2 R8

$\sum_{\mathcal{N}}$

$\underset{N}{\underset{\sim}{i}}$

THE TOWNSHIP OF
 MONTROSE

DISTRICT OF TIMISKAMING

LARDER LAKE.

PLAN NO.- M. 237
MINHSIRI OF VATIJRAL RESOURCES
MINHSIRI OF VATIJRAL RESOURCES

