

WEG PROPERTY
REPORT ON

12A01NE0049 2.7996 MAISONVILLE

MAGNETIC AND ELECTROMAGNETIC SURVEYS

9 April 1985

E. O. Andersen

Location, Access and Topography

The Weg Property encompasses nine unpatented claims: RECEIVED

L797356	L799701	ADL
L797357	L799702	APR 1 5 1985
L797358	Ľ 799703	MINING LANDS STOTES
L797359	,	MINING LANDS SECTION
L797362		
L797363		

The claims are located in Maisonville Township, east of Kapikita Lake and north of Wewegimok Lake. Access to the property is via Highway 570 to within one mile of Kipikita Lake, then by trail to the lake and by boat or snowmachine across Kapikita Lake. Plate 1 shows the location of the claims.

The property lies in an area of undulating hills with considerable bedrock exposure. Swampy areas exist in the northeast and westcentral parts of the property. A creek flows through the western part of the property and empties into Wewegimok Lake.

General Geology and Previous Work

Maisonville Township was mapped by H. Lovell at a scale of 1 inch to $\frac{1}{2}$ mile (Report 92, map 2215, 0DM 1971). The property is underlain by mafic to intermediate metavolcanics which have been intruded by gabbros and syenites. The general geology, after Lovell, is indicated on Plate 1.

010

No previous work has been done on the claims by the present claim holders.

Geophysical Surveys - Results and Interpretation

a) Magnetic Survey

The magnetic survey shows a major NE-SW trend across the centre of the property. This trend has a maximum amplitude of 800 to 1000 nanoteslas (nT). It is likely that this feature reflects a magnetite-rich syenitic unit as mapped by Lovell. There are several other isolated magnetic highs which may indicate magnetite-rich local intrusives.

In general, the magnetic relief is very low, indicating no major geological features other than the noted intrusives. In particular, there is no clear indication of the N-S fault indicated by Lovell to exist in the western part of the property.

b) Electromagnetic Survey

The horizontal loop EM survey was done using a coil spacing of 50 metres. The results from this survey are quite noisy, most probably as a result of less than ideal coil orientation due to rugged local topography. Since coil misorientation mainly affects the in-phase component, the interpretation of the results has relied on the out-of-phase component.

Anomaly A, striking N-S in the western part of the property is quite definate. This anomaly is coincident with a major ravine and is interpreted to coincide with the previously noted N-S fault. The interpreted width of the conductor is indicated on Plate 3. The interpreted depth to the top of the conductor on Line 3N is approximately 10 metres.

Anomaly B is less well defined. It is only clearly indicated on Line 4N.

It's indicated extention onto Lines 3N and 2N is somewhat speculative

especially considering that a major magnetic feature appears to cross-cut the EM anomaly. Nevertheless the interpretation shown on Plate 3 is possible allowing for a late, cross-cutting dike as indicated by the magnetics that has not offset the conductive unit.

Anomaly c is poorly defined. Line-to-line correlation of this anomaly is uncertain. The strength of the response is weak.

Recommendations

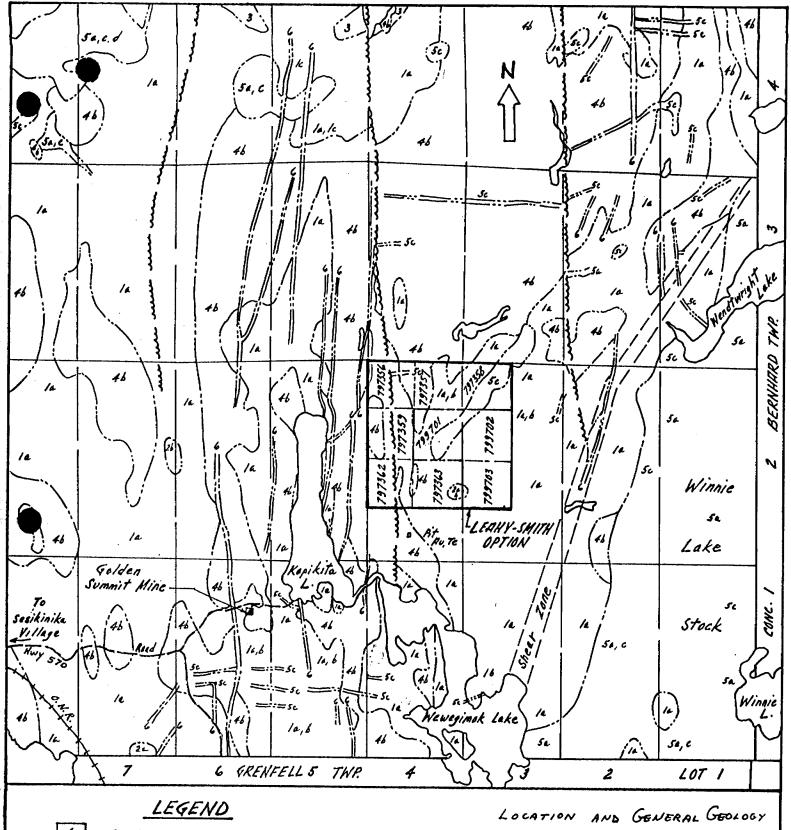
Anomaly A is the only clear potential drill target located. It could be drill tested on either Line 2N or 3N.

Anomalies B and C are poor responsed and should be better defined prior to drilling. It is recommended that a horizontal loop EM survey using a coil spacing of approximately 100 metres be completed prior to final drilling consideration. Care should be taken during additional horizontal loop EM surveying to keep topographic noise to a minimum.

QUEENSTON GOLD MINES LIMITED

Erik Andersen, P.Eng.

Manager, Mining and Exploration


Kirkland Lake, Ontario

Attachments: Plate 1 1" = 2640' Location Map and General Geology

Plate 2 1: 2500 Magnetic Survey

Plate 3 1: 2500 Electromagnetic Survey HLEM

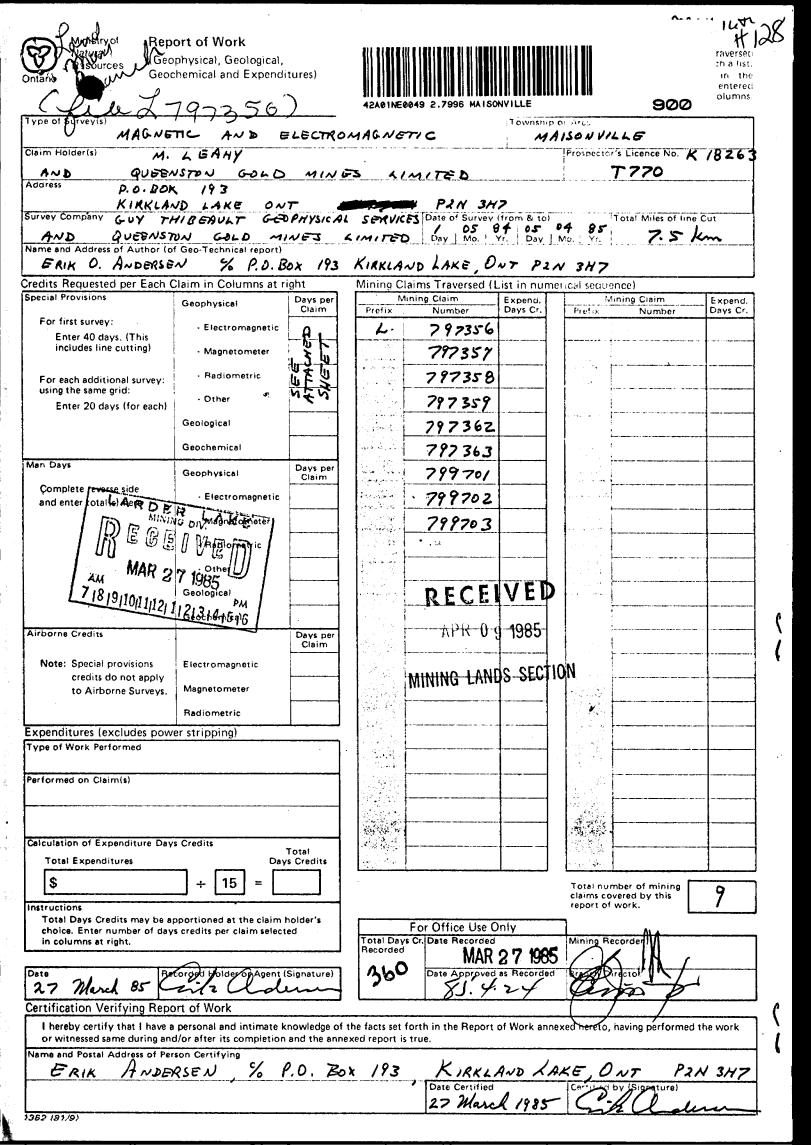
E Q ANDERSEN

6 Diabase

5 Granite, Syenite, Syn. Porphyry

46 Gabbro, Diorite

3 Slate, Chert, tuff


2 Dacite

Basalt, Andesite, matic metavoleanies

- WEG PROPERTY -MAISONVILLE TWP. N.T.S. - 42A1-G SCALE - 1": 2640"

MAY 1/84

PLATE 1

SUMMARY OF CREDITS REQUESTED

CLAIM NUMBER	LINECUTTING days	MAGNETICS days	ELECTROMAGNETICS days	TOTAL days
		20		40
L 797356	20		•	40
L 797357	20	20		
	20	20		40
L 797358			20	60
L 797359	20	20 -		20
L 797362	nil *	20		
	nil *	20 th		20
L 797363	1111 "		20	60
L 799701	20	20		60
L 799702	20	20.13	20	ניס
		20		20
L 799703	nil *	20		

*Note Magnetic surveys on these claims were run on previously existing lines - no new credit for linecutting is claimed.

OFFICE USE ONLY

837 (5/79)

Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Magnet	ic and Electromagnetic	
Township or AreaMals	onville township	MINING OF A PAGE OF A VIDEO
Claim Holder(s) M. Lea	hy and Queenston Gold Mines L	mited MINING CLAIMS TRAVERSED List numerically
Survey Company Guy Thib	eault Geophysical Services and	L 797356
Author of Report Erik 0.	Andersen	(prefix) (number)
	193 Kirkland Lake, Ont, P2N	3H7
Covering Dates of Survey J	une 1984 to April 1985 (linecutting to office)	L797358
Total Miles of Line Cut_7		L_797359
		LL
SPECIAL PROVISIONS CREDITS REQUESTED	See attached DAYS Summary Sheet per claim	
PARTID 40 1 (1)	Electromagnetic	L. 797363 L. 799701 L. 799702 L. 799703
ENTER 40 days (included line cutting) for first	s Magnetometer	L7997.02
survey.	-Radiometric	— L. 799703
ENTER 20 days for each	Other	—
additional survey using same grid.	Geological	
same gra.	Geochemical	
AIRBORNE CREDITS (Spe	cial provision credits do not apply to airborne surv	cys)
MagnetometerElect	tromagnetic Radiometric (enter days per claim)	
DATE: 27 March 198	FIGNATURE CITY Of du	
	Author of Report or Age	nt
Res. Geol.	_Qualifications	
Previous Surveys		
File No. Type D	Oate Claim Holder	
		TOTAL CLAIMS

GEOPHYSICAL TECHNICAL DATA

9	GROUND SURVEYS - If more than one survey, specify data for each type of survey							
	Electromagnetic Survey: 192 EM:192							
1	Number of Stations Magnetic Survey: 502 Number of Readings Magnetic: 796							
5	Station interval 25 metres (many closer spaced mag readine spacing 120 metres							
I	Profile scale Elecromagnetics: 1 cm = 10%							
	Contour interval Magnetics: 250 gammas (nT)							
	Instrument Geometrics GM 816 nuclear precession and Gem Systems GSM 8							
3	Accuracy — Scale constant ± 5 gammas							
MAGNETIC	Diurnal correction method Baseline looping							
BG	Base Station check-in interval (hours) ½ hour							
Z	Base Station location and value _at intersection of Baseline with cross lines.							
	base Station location and value							
	Instrument Apex Parametrics MaxMin							
ELECTROMAGNETIC	Coil configuration Horizontal, co-planar (horizontal loop)							
Z								
AG	Coil separation 50 metres							
S O	Accuracy ± 1%							
IR	Method: ☐ Fixed transmitter ☐ Shoot back ☐ In line ☐ Parallel line							
TE	Frequency 1777 hertz (specify V.L.F. station)							
띄	Parameters measured in phase and out-of-phase components of the secondary magnetic field in relation to the primary magnetic field							
	in relation to the primary magnetic field							
	Instrument							
	Scale constant							
Z	Corrections made							
GRAVITY								
뜅	Base station value and location							
	Elevation accuracy							
	Instrument							
	Method Time Domain Frequency Domain							
	Parameters - On time Frequency							
<u>~</u>	- Off time Range							
H	- Delay time							
117	- Integration time							
RESISTIVITY	Power							
RE	Electrode array							
	Electrode spacing							
	• •							
	Type of electrode							

INDUCED POLARIZATION

SUMMARY OF CREDITS REQUESTED

CLAIM NUMBER	LINECUTTING days	MAGNETICS days	ELECTROMAGNETICS days	TOTAL days	
L 797356	20	20		.40	
	20	20	·	40	
L 797357	20	20		40	
L 797358		20.	20	60	
L 797359	20	20		20	
L 797362	nil *			20	
L 797363	nil *	20 ^{ms}	20	60	
L 799701	20	20			
L 799702	20	20.**	20	60	
L 799703	nil *	20		20	

*Note Magnetic surveys on these claims were run on previously existing lines - no new credit for linecutting is claimed.

SELF POTENTIAL	
Instrument	Range
Survey Method	
Corrections made	
D. A. D. V. O. V. P. P. V. C.	
RADIOMETRIC	
Instrument	
Values measured	
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden	
(type, depth — in	clude outcrop map)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)	
Type of survey	
Instrument	
Accuracy	
Parameters measured	
Additional information (for understanding results)	
AIRBORNE SURVEYS	
Type of survey(s)	
Instrument(s)(specify for each	
Accuracy(specify for each	
Aircraft used	type of survey)
Sensor altitude	
Navigation and flight path recovery method	
	Line Spacing
Miles flown over total area	Over claims only
	,

GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples taken		
Total Number of Samples	MINIMAL TONE MELLION	3
Type of Sample(Nature of Material) Average Sample Weight	Values expressed in: per cent p. p. m.	
Method of Collection	p. p. b.	
	Cu, Pb, Zn, Ni, Co, Ag, Mo,	, ,
Soil Horizon Sampled		
Horizon Development	•	•
Sample Depth	Extraction Method	
Terrain		
Drainage Development	Field Laboratory Analysis	
Estimated Range of Overburden Thickness	No. (tests)
	Extraction Method	····
	Analytical Method	
•	Reagents Used	
SAMPLE PREPARATION	Commercial Laboratory (tests
(Includes drying, screening, crushing, ashing)	Name of Laboratory	
Mesh size of fraction used for analysis	Extraction Method	
	Analytical Method	
	Reagents Used	
General	General ————————————————————————————————————	

Mining Lands Section

File No 2.7996

Control Sheet

		ТҮРЕ	OF SURV	ЕУ		GEOPHY: GEOLOG GEOCHE EXPEND	GICAL EMICAL		
MINING	LANDS	COMME	NTS:						
				 				· · · · · · · · · · · · · · · · · · ·	
							•		

		-							
			lgs	1					

Signature of Assessor

17/4/85

Date

Queenston

9 April 1985

4 AL WENDE AVENUE P.O. BOX 193 KIRKLAND LAKE, ONT. P2N 3H7

(705)567-3261

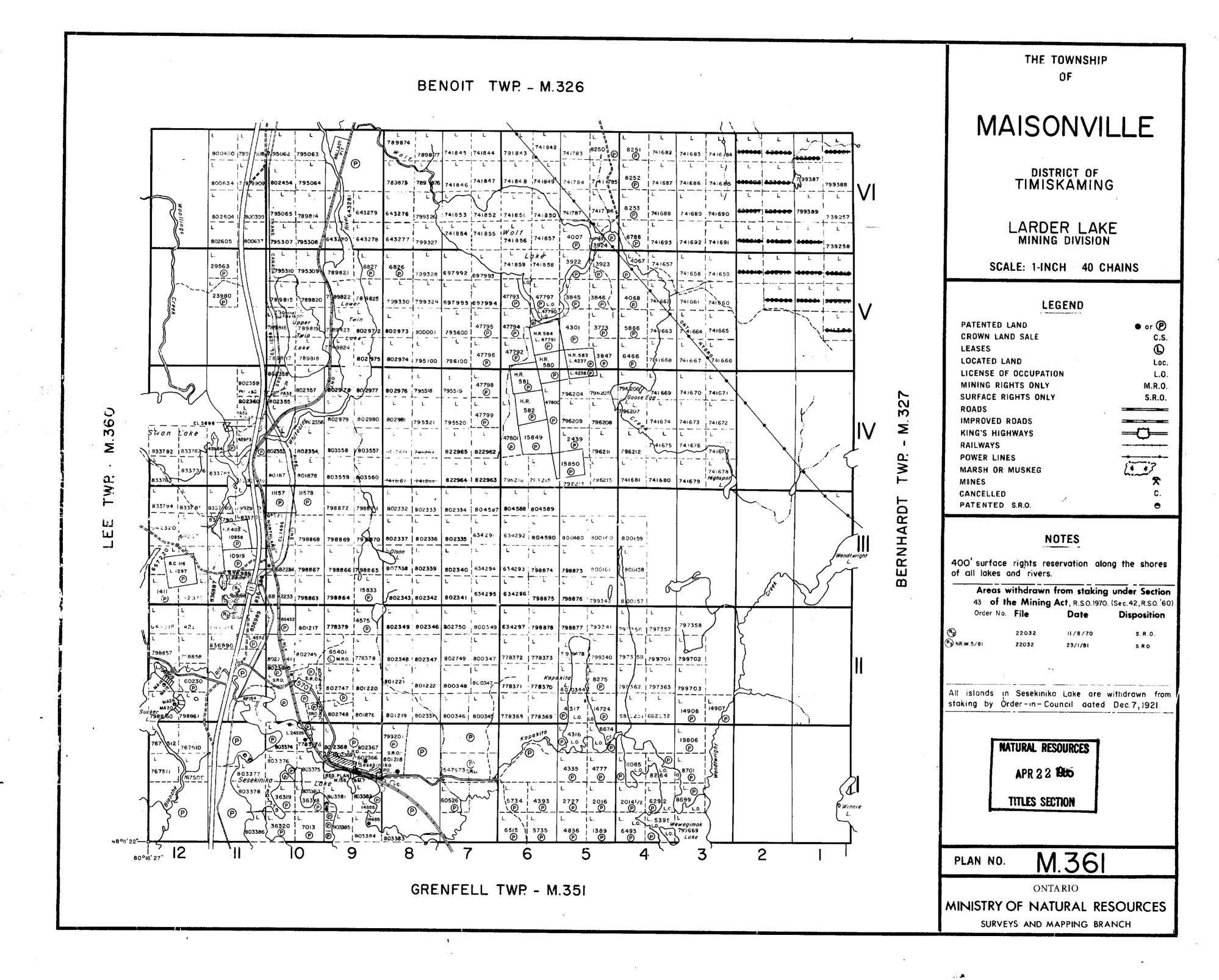
Lands Management Branch
Ministry of Natural Resources
Room 6610
Whitney Block, Queens Park
99 Wellesley St. West
Toronto, Ontario M7A 1W3

Dear Sirs,

Re: Your File L 797356

Please find enclosed two copies of a Report of Work covering a geophysical survey on nine claims. Your form 1362 was filed with the Larder Lake Mining Division Mining Recorder in Kirkland Lake on 27 March 1985.

I trust you will find everything in order. If you have any questions please do not hesitate to give me a call.


Yours truly,

Erik Andersen Manager, Mining and Exploration RECEIVED

APK 1 5 1985

MINING LANDS SECTION

	Em	mag	AMO.	_			•		
797556	200 ma	1				حو حدد بوسندسور حوالا	<u></u>]	
357		V							-
358		V							
359	V	1							
. 362		1			_				
363		V			_]
799701	V	<u> </u>			_				
. 702	V	V				 			
703		V	and the second s						

TRIM LINE

CLAIM 797256 LINE 4N LINE 3N 797359 CLAIM 79970/ LINE 2N LINE IN LINE 15 LINE 25 CLAIM 297362 797363 CLAIM 799703 LINE 35

CLAIM POST LOCATED LOCATED

CLAIM LINE

LEGEND

INSTRUMENT LINES IN, 2N, 3N, 4N GEM SYSTEMS GSM-8 LINES 6N, SN, IS, 25, 35,45 GEOMETRICS GM 8/6 NOTE: IN DROCK TO OBTAIN TOTAL MAGNETIC FIELD VALUE, ADD 58,000 NT TO ALL VALUES CONTOUR INTERVAL : 250 AT

WEG PROTECT MAGNETIC SURVEY Date surveyed; MARCH 1985 SCALE /:2500 1-4-10-Date drawn: APRIL 1985 Supervisor: E.O. ANDERSON QUEENSTON GOLD MINES LIMITE PTON.

LINE 3 N LINE ZN MAGNETIC DECLINATION 10° 19' W LINE IN LINE 15 CLAIM 797362 CLAIM 797363 CLA/M 799703 LINE 25 LINE 35 QUEENSTON WEG PROTECT LEGEND CLAIM POST LOCATED LIGHTED INSTRUMENT: APEX PARAMETRICS MAX MIN I PLOTTING: IN-PHASE ABOVE LINE IN %

MAXIMUM COUPLED , HORIZONTAL , CO-PLANAR COIL SPACING: 50 Metres FREQUENCY : 1777 ha SURVEY BY : GUY THIBAULT GEOPHYSICAL SERVICES, TIMMINS, DAT. OUT-OF-PHASE BELOW LINE IN % IN- PWASE OUT-OF- PHASE PROFILE SCALE /cm = 5 %

INTERPRETATION : CONDUCTOR AXIS : WELL DEFINED ---Possible Date surveyed; Mason 1780

ELECTRO MAGNOTIC SURVEY MLEM

Date drawn; Piece 1905 Supervisor; F. G. Aneresen QUEENSTON GOLD MINES LIMITED, TO Prov. DATABLE TWP. MASSATILLE ATS 42 A 1