BATTLE MOUNTAIN (CANADA) INC.

 KIRKLAND LAKE PROJECTREPORT ON GEOLOGICAL MAPPING AND SAMPLING
May, 1991
RAND PROPERTY
(Kirkland Gold Rand Property)
TECK TOWNSHIP, LARDER LAKE MINING DIVISION
ONTARIO, CANADA

M. W. Masson

August 30, 1991

D10C

CONTENTS

1.0 SUMMARY 1
2.0 INTRODUCTION 2
2.0 Introduction 2
2.1 Property Location and Access 2
3.0 PREVIOUS WORK 3
4.0 REGIONAL GEOLOGY 4
5.0 PROPERTY GEOLOGY 5
$5.0 \quad$ Introduction 5
5.1 Stratigraphic Units 5
5.1.1 Larder Lake Group 5
5.1.2 Timiskaming Group 7
5.2 Intrusive Rocks 8
5.3 Structure 10
5.3.1 Internal Structures 10
5.3.2 Faults and Fault Zones 10
6.0 ALTERATION AND MINERALIZATION 13
6.1 Alteration 13
6.1.1 Larder Lake Group 13
6.1.2 Timiskaming Group and Related Intrusive Rocks 13
6.1 Mineralization 14
6.0 CONCLUSIONS AND RECOMMENDATIONS 16
REFERENCES 17

LIST OF FIGURES

Figure 1

Property Location Map

LIST OF TABLES

Table I
Table II
Surface Grab Sample Assay Summary
Anomalous Grab Sample Summary

APPENDICES

Appendix I
Appendix II
Assay Certificates
Certificate of Qualifications

DRAWINGS

Description

Scale
GL-019
GL-020
GA-017
GA-018

Geology
1:2500
Geology 1:2500
Grab Sample Locations $\quad 1: 2500$
Anomalous Grab Sample Assays $\quad 1: 2500$

1.0 SUMMARY

During May 1st - 31st, 1991, geological mapping and sampling was completed on the Rand property at a scale of $1: 2500$.

The property is underlain by steeply south dipping Timiskaming Group volcanic/sedimentary sequences to the north and by Larder Lake Group mafic volcanic rocks and narrow interflow sedimentary rocks to the south, separated by the Larder Lake Break.

Six weakly mineralized alteration and structural zones were identified as targets for diamond drilling.

2.0 INTRODUCTION

2.0 Introduction

This report describes the results of geological mapping and sampling at a scale of $1: 2500$ by M. W. Masson during May 1 st-31st, 1991. The property was mapped using a 50 metre line grid with 25 metre picket spacing. Prior to the mapping a compilation was made of the historical geological and exploration data base for the property (Masson, 1991a).

An important objective of the geological mapping and sampling was the evaluation of the possible easterly extensions of a series of altered and variably mineralized zones on the Amalgamated Kirkland property, immediately to the west. These alteration zones are characterized by corresponding linear zones of low magnetic amplitudes. The winter ground geophysics on the Rand property delineated a series of linear magnetic lows which were originally identified from the 1989 airborne geophysical survey flown over the Kirkland Lake area by Battle Mountain. A specific objective, therefore, was to evaluate the bedrock geology in the areas of these magnetic lows.

2.1 Property Location and Access

The Rand property consists of nine (9) unpatented mining claims (approximately 344 acres) as listed below, in the Larder Lake Mining Division, located in the eastern part of Teck Township, immediately south and east of the Town of Kirkland Lake. Eight of these claims correspond with historical patents which formed the original Kirkland Gold Rand property which became open at various dates and were staked in the years shown below. Current Assessment Work Credits up to, but excluding, this geological mapping are also shown as man-days and as dollars at the conversion rate of $\$ 22$ per man day to correspond to the new Ontario Mining Act.

Claim No.	Historical Patent	Date of Record	Current Ass. Days	Current Ass. \$
L. 1049642.		Dec. 5, 1988	105	\$2,310
L. 1111439	L. 6680	June 1, 1989	83	\$1,826
L. 1111440	L. 6679	June 1, 1989	107.75	\$2,370
L. 1111441	L. 6681	June 1, 1989	105	\$2,310
L. 1111442	L. 6678	June 1, 1989	105	\$2,310
L. 1111453	L. 6682	June 1, 1989	82	\$1,804
L. 1132251	L. 2678	May 18, 1990	$0{ }^{*}$	
L. 1132280	L. 2679	May 18, 1990	45	\$ 990
L. 1146063	L. 5941	May 18, 1990	60	\$1,320

*On Extension until November 29th, 1991
Access to the property is provided by Pollock Street (Harvey Kirkland Road) which crosses its northeastern corner; Rand Avenue located in the northwestern corner; and by a semi-private bush road immediately to the east, which ends in the southeast corner (Figure 1). There are numerous walking trails and narrow bush roads throughout the claims.

3.0 PREVIOUS WORK

The original Kirkland Gold Rand property, now forming the major part of the present Rand Property, was originally explored during the earliest prospecting in the Kirkland Lake area. Early development, in the late 1910's and early 1920's, was by Ontario Kirkland Gold Mines and Ontario Montreal Mines. Subsequently, Kirkland Premier Mines explored narrow, pyritic quartz veins on claim L. 1132280 (historical patented claim L.2679).

In 1931, Kirkland Gold Rand Ltd. was organized, but commencement of operations was delayed until 1935 due to a lack of financing. Between 1935 and 1937 two shafts were sunk on old patent L. 2679 and six levels ($150,300,450,550,675$ and 800 feet) were developed; subsequently, No. 1 winze was sunk from 290 metres west of the No. 1 Shaft on the 800 foot (244 m) level to the 1425 foot (434 m) level. Kirkland Gold Rand was succeeded by Hudson-Rand Gold Mines, who re-opened and re-sampled the underground workings from September, 1946 to May, 1947.

A full description of the Kirkland Gold Rand Mine is given in the report dated March, 1991, titled: "Historical Data Compilation on the Kirkland Gold Rand Mine" by M. W. Masson, August, 1991.

During the 1970's, various exploration programs, which consisted of prospecting, mapping, geophysics and diamond drilling, were carried out by Kerr Addison and Newmont Exploration in the Larder Lake Group on current claims L. 1049642 and L. 1111442 . In 1974 Kerr Addison Mines drilled four winkie holes (AXT core), totalling 330 feet, in the vicinity of trenching at approximately line $104+50 \mathrm{E}, 99+00 \mathrm{~N}$ of the present grid.

In 1978 Newmont Exploration carried out magnetometer, VLF-EM and IP surveys on what is now claim L. 1049642. A fence of two holes (D78-1, D78-7) for a total of 452 metres was drilled in the same area as the previous Kerr Addison drilling and trenching.

Weakly anomalous gold was reported from cherty magnetite iron- formations within quartzcarbonate altered volcanics of the Larder Lake group. The best intersections were 430, 470 and 1010 ppb Au over widths of one metre each.

During January 1991 a new grid was cut by Northland Technical Surveys as an extension of the 1989 grid on the adjacent Amalgamated Kirkland property, using the common corner point of the Rand and Amalgamated Kirkland properties at L100+00E, 100+00N (See Figure 1). Subsequently, in February, 1991, magnetometer and VLF-EM surveys were carried out by Timmins Geophysics Ltd. on behalf of Battle Mountain (Canada) Inc.

4.0 REGIONAL GEOLOGY

The Kirkland Lake area is in the central part of the Archean, Abitibi Greenstone belt, on the south limb of the major east-west trending, east plunging Blake River synclinorium, between the Round Lake and Lake Abitibi batholiths.

The northern and southern limbs of this synclinorium are marked by wide, east-west trending deformation zones, known as the Porcupine-Destor and Cadillac-Larder Lake Breaks, respectively. The Cadillac-Larder Lake Break can be traced from Val d'Or, Quebec to the Matachewan area in Ontario, and lies immediately south of the Town of Kirkland Lake. The Larder Lake Break passes through the southern part of the Rand Property.

All the significant past- and presently-producing gold mines in the Kirkland Lake District are located north of the Larder Lake Break, along a sub-parallel structure known as the Kirkland Lake Main Break.

5.0 PROPERTY GEOLOGY

5.0 Introduction

The geological mapping programme used a grid with a surveyed base-line along $105+00 \mathrm{~N}$ and a tie-line along $100+00 \mathrm{~N}$ (the base line on the adjacent Amalgamated Kirkland property), both oriented at 071°; the cross-lines at 341° were spaced at 50 metres across most of the property, and at 100 metres for the area south of the $100+00 \mathrm{~N}$ tie-line. The results of the mapping are presented on Drawings GL-019 and GL-020 at a scale of $1: 2,500$.

The Rand property covers parts of the two geologically distinct Timiskaming and Larder Lake Groups. All the rocks on the property are metamorphosed to the lower greenschist facies (chlorite) and the prefix "meta-" has therefore been dropped, but is inherent throughout the following description of the rock types on the property.

The northern part of the property is underlain by the Timiskaming Group interbedded sedimentary and volcanic rocks, more specifically as conglomerates, graywackes, mudstones and trachytic ash- lapilli- and block-tuffs. These have been intruded by irregular shaped bodies of syenite and syenite porphyry.

The southern part is underlain by Larder Lake Group mafic to ultramafic volcanic rocks and minor sedimentary rocks, intruded by small syenite/felsite bodies. Large areas of the volcanic rocks are altered to a quartz + carbonate \pm fuchsite assemblage.

Part of the Murdock Creek Stock lies along the south side of the property.
The major structure on the property is the Larder Lake Break. It forms two sub-parallel splays enclosing the Larder Lake Group rocks. The northern splay is historically referred to as the South Harvey Fault (Thomson, 1950) and the southern as the Larder Lake Break. Two additional faults sub-parallel to the Larder Lake Break at $055^{\circ}-075^{\circ}$ cross the Timiskaming sequence in the central and northern parts of the property; these have been referred to historically as the Middle Harvey Fault and North Harvey Fault, respectively.

Two prominent cross-faults at $030^{\circ}-035^{\circ}$ are interpreted in the central part of the property from off-sets in the Timiskaming stratigraphic units and their corresponding magnetic features. These are parallel to the Murdock Creek Fault which, from regional mapping (Thomson, 1950), has been shown as crossing the northwestern corner of the property in an area underlain by urban development and which was, therefore, not mapped.

5.1 Stratigraphic Units

5.1.1 Larder Lake Group

The Larder Lake Group (LLG) volcanic and sedimentary rocks form a band along the southern side of the property between the Murdock Creek Stock to the south and the Timiskaming

Group to the north. the Larder Lake Break marks the structural contact between the LLG and the Timiskaming Group.

Volcanic Rocks

The LLG mafic volcanic rocks are massive, dark green to blue-green and very fine grained. They are quite featureless in this area, and do not display the features and textures of ten associated with the LLG in the surrounding area, such as polysuturing, spinifex, variolites or pillows.

In places, they displayed patchy zones which were strongly magnetic, especially from L106+00E to L107+00E. In addition, they contained some massive, irregular, barren, white, quartz pods and veins up to 1.5 metres wide.

Green/Brown Carbonate Altered (Ultramafic(?)) Rocks

Numerous outcrops of what were probably originally ultramafic volcanic or sub-volcanic intrusive rocks are now seen only as carbonate \pm chlorite \pm fuchsite \pm quartz alteration zones. These are exposed in the southern part of the property on claims L. 1111440 , L. 1111442 and L.1049642, as well as on the adjoining Amalgamated Kirkland property to the west. They are described further below under alteration.

Sedimentary Rocks

Only five exposures of identifiable sedimentary rocks within the LLG were recognized on the property, as either graywacke, chert, or magnetite iron-formation. These exposures are very limited in size, and generally confined to individual outcrops, indicating that the sedimentary rocks are either thin beds or lenses within the volcanic rocks.

The graywackes are characteristically well banded to layered as alternating bands or beds, 2 mm to 1 cm thick, of approximately equal proportions of dark green chlorite and reddish-brown to pinkish feldspar. This unit is typically non-magnetic. Bedding was from 080° to 090°, dipping vertically to 62° to the south.

One exposure of two visually distinguishable cherts was mapped on the north flank of a large quartz-carbonate-fuchsite outcrop at $\mathrm{L} 97+00 \mathrm{E}, 99+85 \mathrm{~N}$. The first is dark grey-blue, with $1-2 \%$ disseminated pyrite throughout; the second is dark blue-black with little to no discernible sulphide mineralization. Both varieties were sampled and contained 60 and 80 ppb Au , respectively. Both cherts are massive and non-bedded. Although no bedding was evident, the north side of this outcrop trends approximately parallel to the base line at 072°, which may reflect the strike of the unit.

A one metre wide band of "iron-formation" was located in a small outcrop at $\mathrm{L} 103+80 \mathrm{E}$, $99+50 \mathrm{~N}$, bounded on both sides by dark green, chloritic mafic volcanic rocks. This band is massive, non-bedded, very hard (cherty), very fine grained and contains approximately 60% non-crystalline magnetite. It trends 097° and dips 86° to the south. One grab sample was taken and assayed 404 ppb Au.

5.1.2 Timiskaming Group

The northern and central portions of the Rand property are underlain by Timiskaming group sedimentary and volcanic rocks which have been intruded by irregular shaped plugs and sills of syenite and syenite-porphyry. The southern contact with the LLG is structural.

Sedimentary Rocks

The sedimentary rocks on the property are polymictic conglomerates and graywackes, together with minor siltstone.

The conglomerates are typically matrix supported, polymictic and interbedded with graywackes. The clasts form $5-35 \%$ of the rock as pebbles to cobbles, generally rounded to subrounded, consisting of a wide variety of rock types including granitoids, syenite, quartz porphyries, mafic volcanic rocks, trachyte, red jasper, and vein quartz. The matrix has the composition of the graywackes.

The graywackes are very massive, fine grained, non-bedded, generally chloritic and nonmagnetic. The contain small, sub-rounded, polymictic rock fragments including jasper, as well as quartz and feldspar grains, in a very fine grained chloritic matrix.

There are a few minor exposures of extremely fine-grained, buff-brown to light green and well bedded or laminated siltstone. Bedding is typically very fine, from a few millimetres to 1 cm , and quite frequently disrupted by small scale faulting and slumping.

Volcanic Rocks

The volcanic rocks are all pyroclastic (epiclastic) "trachytic"1 ash-, lapilli- and block-tuffs, all of which are moderately to strongly magnetic. The majority of the exposures are unaltered, undeformed and massive.

The ash tuffs are fine grained, well sorted, massive to well-bedded. They are generally quite mafic and dark green, with a red-brown tinge due to the presence of pink-red feldspar and/or fine (1-3 mm) trachyte clasts. Frequently, these clasts display porphyritic or trachytoid textures.

[^0]The lapilli- and block-tuffs are compositionally the same as the ash tuffs, which forms the matrix of these coarser units, and with which they are interbedded or lensoid. The clasts are monolithic, red-pink, sub-rounded to elliptical, fine-grained to porphyritic syenite or trachyte. No bedding was recognized.

The block-tuffs typically contain large trachyte clasts, averaging 1-20 cm in diameter (up to 50 cm), but consist of only a very small part ($1-2 \%$) of any outcrop, which otherwise consists predominantly of ash- or lapilli-tuff. There are a few exposures (e.g. L100+50E, $104+50 \mathrm{~N}$) where the predominant clast size is greater than 6 cm , and where the clasts form up to 25% of the unit.

Between L96+00E and L100+50E, at $104+40 \mathrm{~N}$ and $104+85 \mathrm{~N}$ there are two parallel, massive, moderately to strongly magnetic, porphyritic units which may be trachytic flows ("white-spotted porphyry" or "leucite-trachyte"). They have been mapped as syenites, and are described further below under Intrusive Rocks.

Stratigraphy

Within the exposed area of the Timiskaming on the property there are three recognisable stratigraphic units which are more or less conformable. In addition, there is a small exposure of conglomerate in the far northwestern corner of the property, west of the Murdock Creek Fault.

Underlying large parts of the northern three claims is a relatively well exposed unit almost exclusively of graywacke. It includes narrow, interbedded conglomerates at the east end, as well as minor, trachytic tuffs, and is intruded by a large syenite mass to the north. These sediments and the syenite are the host rocks to the veins in the Kirkland Gold Rand mine.

The central unit is a well exposed, mixed, interbedded, lensoid assemblage of volcanic rocks with interbeds of mixed graywacke and conglomerate. Within the volcanic rocks there is an apparent increase in clast size from west to east from $\mathrm{L} 105+00 \mathrm{E}$ to $110+00 \mathrm{E}$ at around $104+00 \mathrm{~N}$. At the west end, they are massive to well bedded ash tuff, grading to lapilli tuffs in the central part, which in turn grade into coarser, blocky tuffs to the east.

The southernmost unit is poorly exposed, except in the southwest corner of the property where it consists of interbedded graywacke and conglomerate. These sediments are interpreted to lie south of the volcanic exposures, and north of the LLG, throughout the eastern part of the property, primarily on the basis of their geophysical signature. In the southwest corner of the property the boundary between this sedimentary unit and the volcanic unit to the north is a gradational or facies change. The irregular, wavy contact on the geological map reflects this facies variation, rather than isoclinal folding.

5.2 Intrusive Rocks

Three areas of intrusive rocks were mapped on the property, consisting of the:
(i)

The Murdock Creek Stock,
(ii) Intrusives in the Larder Lake Group, and
(iii) Intrusives in the Timiskaming Group.

All three groups are compositionally similar as facies of syenite, but are distinguishable by their form and distribution within each area.

The Murdock Creek Stock

There are large outcrops of the regionally more extensive Murdock Creek Stock in the most southern parts of the property on claims L. 1049642 and L. 1111442 , where it forms a large hill.

This stock is textually variable over short distances, from aphanitic red felsite to a medium grained, massive hornblende \pm biotite syenite with at least $10-15 \%$ mafic minerals and which is weakly and patchily magnetic.

The stock contains mega-xenoliths or roof pendants of massive, mafic volcanic rocks which are relatively fresh and unaltered, and equivalent to the LLG further to the north.

Intrusives in the Larder Lake Group

Within the LLG volcanic rocks and alteration zones from L99+50E to L103+00E there are some small, irregular, discontinuous syenites and felsites which may be dykes or apophysis of the Murdock Creek Stock. They display very sharp, abrupt contacts with surrounding lithologies. Two distinct varieties have been mapped:

(i)	Syenite Porphyry, and
(ii)	Felsite.

The syenite/syenite-porphyry is typically dark red, hematitic massive, fine-grained to porphyritic with up to $5-10 \%$ subhedral to euhedral, white plagioclase phenocrysts, averaging 0.5 cm in size, set in a very fine grained, red groundmass. At $\mathrm{L} 99+50 \mathrm{E}, 100+25 \mathrm{~N}$, the porphyritic syenite contains 0.5% disseminated pyrite where it is in contact with the LLG mafic volcanic rocks. The adjacent LLG volcanic rocks are moderately to strongly ankeritic for up to one metre and contain 1$2 \%$ pyrite. This contact strikes 080°, dips vertically and displays a strong rodded lineation which plunges 56° to the east. Samples from this area returned from 45 to 115 ppb Au .

The massive, very fine grained to aphanitic felsites are light brown to pink, and contain 0.5$1.0 \%$ finely disseminated pyrite. The outcrops have a moderate to strong brown carbonate weathering rind. At $\mathrm{L} 100+75 \mathrm{E}, 99+02 \mathrm{~N}$, there is a 1.5 m wide, fine-grained, pink felsite dyke trending 070°, plunging approximately 60° to the east. It intrudes quartz-carbonate (fuchsite) altered volcanic rocks which are contorted and wrapped around the felsite. It contains 1% finely disseminated pyrite and 3% barren, white quartz veinlets up to 0.5 cm wide. A grab sample of the felsite contained 50 ppb Au.

Intrusives in the Timiskaming Group

Syenite and feldspar porphyritic syenite intrude the Timiskaming Group volcanic and sedimentary rocks in the northern and western parts of the property. Typically these are massive, brick-red, fine-grained to porphyritic, with on average $5-7 \%$ (up to $15-20 \%$) subhedral to euhedral
plagioclase phenocrysts, averaging 0.5 cm in diameter (up to 1.5 cm), in a very fine-grained feldspathic matrix. Quite frequently a red, hematitic dusting is visible coating the phenocrysts. Occasionally, these syenites contain minor dispersed spotty leucoxene and an altered, mafic amphibole (augite?).

These intrusives are typically non-magnetic, but with a few notable exceptions. For example, at $\mathrm{L} 96+50 \mathrm{E}, 104+80 \mathrm{~N}$, there is a red, porphyritic syenite which contains $1-2 \%$ irregular magnetite grains, disseminated and along microfractures.

There are two paralle1, massive, moderately to strongly magnetic, porphyritic units at $104+42 \mathrm{~N}$ and $104+85 \mathrm{~N}$ from $\mathrm{L} 96+00 \mathrm{E}$ to $\mathrm{L} 100+50 \mathrm{E}$, which have been mapped as syenite (unit 46 p), but which may be trachytic flows. They contain 5-10\% phenocrysts which are clear to grey-white, pseudoprismatic to pseudo-hexagonal in form, and have a poorly developed cleavage ("white-spotted porphyry" or "leucite-trachyte"). The groundmass is a dirty red-brown, very fine grained to aphanitic, and typically micro-fractured, with fractures often penetrating the phenocrysts. The phenocrysts weather high on the outcrop surfaces.

5.3 Structure

5.3.1 Internal Structures

Observed bedding within the Larder Lake Group is confined to the small exposures of interflow sediments within the massive basaltic units. These sediments strike at 080° to 097° and dip vertically to 62° to the south.

Bedding within the Timiskaming is of two prominent directions. North of the North Harvey Fault, in the northeast corner of the claim group, the conglomerates and graywackes strike northeast and dip to the west at 80°. In the underground workings around the Kirkland Gold Rand No. 1 Shaft, the bedding was reported as striking 060°, dipping 60° to the southeast.

South of the North Harvey Fault, bedding was seen only in the ash tuff horizons where it strikes from 058° to 095° and consistently dips to the south at 60° to 85°. This is consistent with the distribution of the different lithological units within the Timiskaming volcanic and sedimentary rocks.

No clear evidence of folding was observed anywhere on the property.

5.3.2 Faults and Fault Zones

The "Larder Lake Break" has historically been traced as striking east-west through the Larder Lake Group (LLG) volcanic rocks in the southern part of the Rand property, as defined by the zone of quartz + carbonate \pm fuchsite alteration (see Alteration, below). Due to the generally crenulated and folded nature of these rocks, it is impossible to establish the prominent fabric directions or the distribution of the individual volcanic units. Locally a prominent foliation or shearing direction of 040° to 045°, dipping vertically to 60° to the southeast, is traceable in the carbonate units. For
example, a zone of carbonate alteration was traced from L99+00E, $97+75 \mathrm{~N}$ to the northeast (040°) to the trench at $102+75 \mathrm{E}, 100+150 \mathrm{~N}$, which displays a strong 040° fabric. At L99+20E, $99+80 \mathrm{~N}$ there is an outcrop of quartz + carbonate schist which strikes at 045°. This prominent $040^{\circ}-045^{\circ}$ direction may reflect a series of faults along which the alteration zones have been developed, crosscutting stratigraphy.

In the present interpretation, the Larder Lake Break is defined as two parallel faults which enclose the block of LLG volcanic rocks and their enclosed alteration zones. The Larder Lake Fault North Branch, was historically referred to as the South Harvey Fault, and marks the contact between the Timiskaming to the north and the LLG rocks. It is shown on the geology map as lying along the north side of the LLG outcrops, south of the low swampy ground in the south-central portion of the property, and north of a linear zone of low magnetics within the LLG volcanic rocks. The Larder Lake Fault - South Branch lies between the LLG rocks and the Murdock Creek Stock.

Three sub-parallel faults or shear zones trending 060° to 075° within the Timiskaming Group are represented by sericite \pm chlorite schists ranging from 0.5 metres to over 10 metres wide. From north to south, these are:

(i)	The Black Fault
(ii)	The North Harvey Fault
(iii)	The Middle Harvey Fault

The Black Fault is close to the southern contact of the prominent syenite body which lies along the northern boundary of the property. It strikes 065° and dips 75° to the south. Where exposed at $\mathrm{L} 107+50 \mathrm{E}, 108+00 \mathrm{~N}$, along the syenite/sediment contact, it is a $0.5-1.0 \mathrm{~m}$ wide, chlorite + sericite \pm ankerite schist. No mineralization or quartz veining was evident. This fault is referred to as the Black Fault after the Black property to the northeast.

The North Harvey Fault is best exposed in the sediments from L108+00E to L110+00E at $106+25 \mathrm{~N}$. Here the fault is an over 5 m wide chlorite \pm ankerite schist, striking 070° and dipping 65$75^{\circ}$ to the south. The westerly extension of this fault may lie within the syenite body between $\mathrm{L} 97+50 \mathrm{E}$ to $101+50 \mathrm{E}$ at approximately $105+75 \mathrm{~N}$. A prominent gully, trending 070°, exists between outcrops exposed on L100+00E, from $105+55 \mathrm{~N}$ to $105+75 \mathrm{~N}$. Outcrops on both the north and south sides of this gully are strongly altered and deformed sericite \pm ankerite schists, within syenite porphyry (see Alteration - Section 5.3). Along the side of the gully, at L99+95E, 105+50N, the unit is strongly silicified.

A third sub-parallel shear, previously been referred to as the Middle Harvey Fault, strikes 057° to 065° and dips $70^{\circ}-75^{\circ}$ to the south. It is exposed within the trachytic tuffs in the easterncentral portion of the property, along $103+75 \mathrm{~N}$ at $\mathrm{L} 106+00 \mathrm{E}$ to $110+00 \mathrm{E}$, and in the tuffs to the west along $102+00 \mathrm{~N}$ at $\mathrm{L} 98+00 \mathrm{E}$ to $\mathrm{L} 98+50 \mathrm{E}$. This zone is at least 10 to 15 metres wide as sericite \pm chlorite \pm ankerite schist.

A prominent foliation fabric at 065° to 075° and dipping roughly 70° south, is evident within most lithologies in the Timiskaming sequence, reflecting the major regional foliation in the Kirkland Lake area.

Two prominent cross faults are interpreted within the Rand property, trending approximately $025^{\circ}-030^{\circ}$. These are parallel to the Murdock Creek Fault, which is not exposed, but is interpreted
from regional considerations to lie in the northwestern corner of the property, in the built-up area of the Town of Kirkland Lake.

The "East Cross Fault" is interpreted from truncation of lithologies in the Timiskaming sequence and the displacement of the Larder Lake Break - North Branch (South Harvey Fault); in addition it is marked by a linear magnetic low. At the south end of the fault there is an apparent sinistral displacement of up to 220 metres, while to the north the sinistral displacement is 30 to 50 metres. The difference in the offset is possibly due to a rotational component. It is not known if the East Cross Fault extends any further north than the North Harvey Fault to penetrate the syenite to the north; however, there is a strong foliation at 040° in the intrusive at $\mathrm{L} 108+50 \mathrm{E}, 107+75 \mathrm{~N}$.

The West Cross Fault strikes 025° and displays an apparent sinistral offset of up to 50 metres. It may turn from 025° to 046° and merge with the shearing around the "No. 3 Shaft" at L99+50E, $103+00 \mathrm{~N}$, where previous stripping exposed strongly sericite altered sediments with strong slip planes at 046°, dipping 82° southeast. Bedding in this area is 085°, dipping $60^{\circ} S$, and a well developed intersection lineation is visible on the fault plane plunging 46° southwest.

6.0 ALTERATION AND MINERALIZATION

6.1 Alteration

6.1.1 Larder Lake Group

Weakly altered volcanic rocks in the Larder Lake Group typically consist of a chlorite \pm ankerite assemblage, with weak to moderate "rusty" weathering.

Strong alteration of the volcanic rocks is displayed by broad zones of quartz + carbonate \pm fuchsite. These rocks typically have deep, strong "rusty" rinds and knobby weathered surfaces due to differential weathering between the soluble carbonates and the abundant, but irregularly distributed, resistive quartz. Quartz forms up to 50% of these zones as irregular veins, pods, disseminations, and crosscutting ladder vein systems.

These strongly altered areas were probably originally ultramafic volcanic or sub-volcanic intrusive rocks. They are exposed in the southern part of the property on claims L.1111440, L. 1111442 and L. 1049642 , as well as on the adjoining Amalgamated Kirkland property to the west.

Fresh rocks are characteristically bright green (fuchsitic) to buff-brown (iron-bearing carbonate), and contain sporadic, disseminated pyrite, locally up to one percent. These zones are of ten irregularly crenulated and folded, but with very little preferred orientation to their fabrics. However, locally, for example in the trench at L103+00E, $100+00 \mathrm{~N}$, the dominant orientation of the fabric is 040°, dipping vertically to 60° to the southeast.

This 040° trend to the carbonate alteration has been mapped in the past as, or considered to be, remnant primary bedding within the LLG volcanic rocks, i.e. between mafic and ultramafic units. However, small exposures of sediments, within the volcanic units, strike approximately east-west. This 040° alteration trend may be a structural foliation as a shear-set of "tension-gashes" joining the two branches of the Larder Lake Fault, or represent unconformable layering or complex folding within the LLG.

6.1.2 Timiskaming Group and Related Intrusive Rocks

Weakly altered rocks of the Timiskaming group are characterized by chlorite \pm ankerite \pm hematite assemblages.

Strong alteration is associated with shear zones (see Structure-5.3) and consists of three types of assemblages:
(i) chlorite \pm ankerite \pm sericite \pm hematite,
(ii) sericite \pm chlorite \pm ankerite, and
(iii) sericite \pm quartz \pm pyrite.

Six extensive alteration zones are present on the Rand property:
in the vicinity of the old Rand Mine, as discussed below;
(ii) in the syenite body at $97+50 \mathrm{E}-101+50 \mathrm{E}, 105+75 \mathrm{~N}$, as discussed below;
(iii) chlorite + hematite + ankerite in the syenite sills or trachyte flows at $104+50 \mathrm{~N}$ to $105+00 \mathrm{~N}$ from $96+00 \mathrm{E}$ to $100+50 \mathrm{E}$;
(iv) sericite + hematite, sericite + ankerite + quartz, and sericite + pyrite to the west of the "No. 3 Shaft" at $103+00 \mathrm{~N}, 98+00 \mathrm{E}$ to $100+00 \mathrm{E}$;
(v) sericite + ankerite + hematite close to the southern contact of the Timiskaming volcanics with the southern band of sediments in the southwest corner of the property; and
(vi) sericite + chlorite + ankerite \pm quartz along the Middle Harvey Fault at $104+00 \mathrm{~N}$ from $106+00 \mathrm{E}$ to $109+00 \mathrm{E}$.

To the east and south of the Kirkland Gold Rand No. 1 Shaft the graywackes are highly altered, sericitized and weakly silicified, as well as moderately to strongly foliated; they are typically light yellow-green and contain $1-2 \%$ disseminated pyrite and 1% barren quartz veins. This zone of alteration is apparently restricted in extent because the equivalent graywackes along strike are unaltered and chloritic.

East of the No. 1 Shaft, on L105+00E at $107+30 \mathrm{~N}$, an exposure of the syenite/sediment contact is bleached and silicified for up to 5 metres into the syenite. An $8-10 \mathrm{~cm}$ wide quartz + sericite +3 5% pyrite vein is located within this altered contact area.

The largest area of alteration on the property, up to 50 metres wide, is in the syenite to the west-southwest of the Kirkland Gold Rand mine. This is an area of sheared, sericitized syenite porphyry, possibly related to the North Harvey Fault (see Structure, Section 5.3). Previous geological mapping (Thomson, 1950) shows these exposures as trachyte tuffs, with narrow dykes of syenite. These outcrops are well foliated to schistose, with strongly bleached, yellow-white (sericitic) weathered surfaces.

It is difficult to determine the original lithology in this area because of the extreme deformation and alteration; however, locally remnant feldspar phenocrysts or "eyes" are detectable, indicating a probably syenite precursor. In addition, this alteration zone is bounded on both sides by syenites with the characteristic red, hematitic alteration of the syenites elsewhere on the property and in the district. These red syenites abruptly become sheared and sericitized on the edges of the sericitic alteration zone. If these outcrops are altered, sheared syenites as mapped by us, then the original syenite in this area is substantially wider at up to 75 metres, than previously indicated by Thomson of $10-15$ metres.

6.1 Mineralization

A total of 164 grab samples were taken during the course of mapping and are listed in Table 1 and shown on Map GA-017. Table 2 lists the anomalous grab samples with assays greater than 100 ppb gold, which are shown on Map GA-018. Assay Certificates are attached in Appendix I.

There are two styles of mineralization on the Rand property:
localized, disseminated pyrite up to $1-2 \%$ in moderately deformed, foliated lithologies throughout the property, with only slightly anomalous gold;
(ii) banded pyrite and quartz + sericite + pyrite veins associated with the Kirkland Gold Rand Mine, locally anomalous to high grade in gold.

The principal areas of mineralization on the property are associated with the Kirkland Gold Rand Mine. Two quartz + sericite $+3-5 \%$ pyrite veins or silicified zones were located in the area of the No. 1 Shaft. These "veins" average $8-15 \mathrm{~cm}$ wide, strike 080° to 088° and dip vertically to 86° to the south. They are typically 75% grey-white to blue quartz, with $20-25 \%$ irregular, wispy, interstitial sericite altered host rocks and $3-5 \%$ finely disseminated pyrite. The wall-rocks adjacent to the veins are weakly silicified and moderately sericitic, generally with 1% disseminated pyrite. Grab samples of silicified vein material returned up to $43.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, while wall-rocks immediately adjacent to the vein were only slightly anomalous. The gold content decreases rapidly away from the veins, consistent with the decrease in silicification.

There is a $3-4$ metre wide syenite sill at $\mathrm{L} 106+00 \mathrm{E}, 106+90 \mathrm{~N}$, with $0.5-1 \%$ disseminated pyrite, which intrudes foliated tuffs containing $1-2 \%$ patchy, disseminated pyrite and $1-3 \mathrm{~cm}$ wide quartz + pyrite veinlets. One 7 cm wide sample, with quartz and pyrite veinlets, assayed $13.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ gold.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Mapping and sampling on the Rand property failed to uncover any new mineralization on surface. However, some significant alteration zones were outlined.

As shown in the earlier compilation report (Masson, 1991a), the veins in the Kirkland Gold Rand Mine are locally high grade, as confirmed by the samples taken during this mapping program. However, the majority were in graywackes, generally not considered a favourable host within the district, and were narrow and of short strike length. However, the West Drift Vein where intersected in the deep drill hole from the 800 foot level was within a syenite body. This syenite might lie in the built-up area to the west of the mine workings where there are no exposures, or it might connect with the exposed and altered syenite to the west southwest of the No. 1 Shaft. Two deep drill holes are recommended to test the area west of the underground intersection in the West Drift Vein, to see whether this mineralization can be found closer to surface, up-plunge along the indicated easterly rake of the mineralization in the old workings.

Most of the magnetic lows, considered as possible easterly extensions of the mineralized zones associated with the magnetic lows on the adjacent Amalgamated Kirkland property were shown to correspond to relatively narrow sedimentary units within the dominantly volcanic, and magnetic, central member of the Timiskaming sequence, or marked the major grid east-west shear zones which define the north and south boundaries of this volcanic member.

The 50 metre wide zone of sericite alteration in the syenite porphyry at the northwest end of the outcrop area of the property, west-southwest of the Kirkland Gold Rand Mine, might be reflecting one of the alteration zones similar to those on the Amalgamated Kirkland property. Grab samples of this sheared and altered material failed to return any significant assays. A buried fault zone (the North Harvey Fault) is interpreted along the south side of this altered area, and it remains a favourable target for gold mineralization, and is recommended for diamond drilling.

The strong alteration associated with the syenite sills or trachyte flows south of $105+00 \mathrm{~N}$ close to the west side of the property, and the associated linear zone of low magnetics may be reflecting the extension of the " 102 " structure on the Amalgamated Kirkland property, immediately to the west. It is recommended that a three-hole fence be completed across the western portion of claim L. 1111453 to test for the possible continuation of the " 102 " structure in this area.

Anomalous grab samples of up to 100 ppb gold were taken in foliated to sheared, sericitized conglomerates at $\mathrm{L} 97+00 \mathrm{E}, 101+52 \mathrm{~N}$. The fault zone intersected in this area is poorly exposed but is coincident with an area of low magnetics and two VLF-EM conductors. It is recommended that one drill hole should test this zone in the search for gold mineralization at depth.

VLF-EM conductors located during the winter geophysics lie more or less in the area of the quartz-carbonate altered rocks of the Larder Lake Group. The source of these conductors was not identified on surface and they could warrant testing by some short test holes.

FL: KL\RANDGEOL.RPT

REFERENCES

Assessment Files, Resident Geologists Office, Kirkland Lake, Ontario, Ministry of Northern Development and Mines.

Londry, D. 1991
Report On Geophysical Work, Magnetic and VLF-EM Surveys, Rand Property, Teck Township, Timmins Geophysics Ltd. for Battle Mountain (Canada) Inc.

Masson, M.W. 1991a
Kirkland Lake Project, Rand Property, Historical Data Compilation on the Kirkland Gold Rand Mine; Battle Mountain (Canada) Inc.

Thomson, J.E. 1950
Geology of the Main Ore Zone at Kirkland Lake; Ontario Dept. of Mines; Annual Report for 1948, 5, Part 5.

TABLE 1 , Continued
RAND PROPERTY
(Kirkland Gold Rand)

TABLE 1, Continued
RAND PROPERTY
(Kirkland Gold Rand)

table 1, Continued
RAND PROPERTY
(Kirkland Gold Rand)
Au, pob
Nil

$\stackrel{-1}{-1}$

~mo

Au, ppb Nil \xrightarrow{N}

vns.
TABLE 1, Continued

on
${ }_{\substack{m}}^{\infty}$
Foliated, sericitic conglomerate, moderately sheared. White, barren quartz vein, $3-5 \mathrm{~cm}$ wide. Foliated conglomerate/wacke, chl + ser.
Dark grey-blue chert (LLG) with $1-2 \%$ py.
LLG - green carb. + fuchsite + qtz.
Black chert, massive, weakly mineralized.
Sericitized, foliated conglomerate.
Sericitized, foliated conglomerate.
ericitized, foliated conglomerate.
Moderately sericitic \& hematitic syenite.
Moderately sericitic \& hematitic syenite.
Syenite, hematite + sericite.
oliated syenite, sericite + hem.
Bleached, schistose syenite, ser + hem \pm ank. Bleached, schistose syenite, ser + hem \pm ank.
Bleached, schistose syenite, ser \pm hem \pm ank.
Syenite, ank + hem.
Massive syenite, hematitic.
Syenite, ank + hem.
Massive ash/lapilli tuff.
Syenite, ser + ank + hem.
Syenite, ser + ank + hem.
Foliated syenite, ser + ank \pm hem.
Massive, foliated lapilli tuff.
Foliated ash tuff, chl + ank.
Weakly sericitic, hematitic syenite.
Sheared chloritic tuff with trace py.
Sheared, chloritic \pm sericitic tuff.
Sheared, ser. tuff, 0.5% diss py, $1-5$ ms qtz vnlts.

Sample

TABLE 1, Continued
RAND PROPERTY
(Kirkland Gold Rand)

Sample		SURFA	E GRAB EAMPLE DESCRIPTIONS AND A8SAYB	
No.	Easting	Northing	Sample Description	b
13624	$99+75 \mathrm{E}$	$105+50 \mathrm{~N}$	Silicified	
13625	$99+00 \mathrm{E}$	$104+88 \mathrm{~N}$	Sheared, sericitic syenite porphyry (?), 0.5\% py.	33
13626	$97+38 \mathrm{E}$	$104+60 \mathrm{~N}$	Sheared, sericitic wacke. Trace py.	3 Nil
13627	$97+00 \mathrm{E}$	$101+60 \mathrm{~N}$	Sheared, foliated sericitic wacke.	$22^{\text {Nil }}$
13628	$97+50 \mathrm{E}$	$100+55 \mathrm{~N}$	Sheared, sericitic conglomerate, trace py	22
13629	$100+75 \mathrm{E}$	$99+02 N$	Felsite dyke in green carb. 1\% py.	10
13630	$99+25 E$	$99+80 \mathrm{~N}$	Qtz - green carb, fuchsite.	50
13631	$99+60 \mathrm{E}$	$100+27 \mathrm{~N}$	Syenite/Felsite with 0.5\% py.	$4 \frac{3}{5}$
13632	$99+55 \mathrm{E}$	$100+22 \mathrm{~N}$	Syenite/mafic volcanic contact with 2% py.	45 115
13633	$99+55 \mathrm{E}$	$100+23 \mathrm{~N}$	Syenite/volcanic contact, 1% py.	115
13634	$101+52 \mathrm{E}$	$100+80 \mathrm{~N}$	Light brown, felsite, 0.5\% py.	91
13635	$101+50 \mathrm{E}$	$100+90 \mathrm{~N}$	Shear, qtz + green carb, trace py.	26 Nil
13636	$102+55 \mathrm{E}$	$100+68 \mathrm{~N}$	Qtz + fuchsite.	${ }_{3} \mathrm{Nil}$
13637	$102+60 \mathrm{E}$	$100+60 \mathrm{~N}$	$Q t z+$ fuchsite $+0.5 \%$ py.	197
13638	$102+62 \mathrm{E}$	$100+53 \mathrm{~N}$	Qtz + fuchsite \pm brown carb	197
13639	$102+70 \mathrm{E}$	$100+40 \mathrm{~N}$	Qtz + fuchsite \pm brown carb.	3 4
13640	$102+75 \mathrm{E}$	$100+34 \mathrm{~N}$	Qtz + fuchsite \pm brown carb.	42
13641	$102+90 \mathrm{E}$	$100+14 \mathrm{~N}$	Foliated to sheared mafic volcanic	65 Nil
13642	$102+90 \mathrm{E}$	$99+05 \mathrm{~N}$	Qtz + fuchsite \pm felsite.	Nil
13643	$103+90 \mathrm{E}$	$99+05 \mathrm{~N}$	Qtz + fuchsite \pm felsite	Nil
13644	$103+85 \mathrm{E}$	99+50N	Magnetite iron formation, 1 m wide, $>60 \% \mathrm{mag}$.	$404{ }^{\text {Nil }}$

Total No. of Grab Samples - 164
Abbreviations:

qtz	Quartz	
mag	Magnetite	carb or cb
vn	Vein	vnlts

TABLE 2
RAND PROPERTY (Kirkland Gold Rand)
ANOMALOUS SURFACE GRAB BAMPLE ABSAYB

TABLE 2, Continued
RAND PROPERTY
(Kirkland Gold Ra

APPENDIX I

ASSAY CERTIFICATES

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	W. BENHAM

Date: MAY-09-91
Copy 1. HOLD COPY 567-4840
2. FAX \# 567-6448

We hereby certify the following Geochemical Analysis of 30 ROCK samples submitted MAY-06-91 by .

Au was determined using 1 AT fusions.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705)642-3300

Established 1928

Swastika Laboratories
A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate
Company: BATTLE MOUNTAIN CANADA INC.
Project: 75-JV-28
Attn: WAYNE BENHAM

1W-2869-RG1
Date: MAY-09-91

Copy 1. HOLD COPY
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 5 ROCK samples submitted MAY-07-91 by M. MASSON.

Au was determined using 1 AT fusions

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705)642-3300

Established 1928

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

1W-2866-RG1
Company: BATTLE MOUNTAIN CANADA INC

Project: 75-JV-28
Attn:
W. BENHAM

Date: MAY-09-91
Copy 1. HOLD PHONE 567-4840
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 9 ROCK samples submitted MAY-07-91 by M. MASSON.

Sample	Au	Au check
Number	ppb	ppb
786	17	
787	5	
788	17	
789	7	
790	21	19
791	14	
792	5	
793	3	
794	14	

Au was determined using 1 AT fusions

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Date: MAY-14-91
Copy 1. P.O.BOX 635 KIRKLAND LAKE,ONT.P2N 1K3
2. FAX TO 567-6448

Company: Project: Atu:

BATTLE MOUNTAIN (CANADA) INC. 75-JV-28 MR.W.BENHAM

We hereby certify the following Geochemical Analysis of 16 ROCK samples submitted MAY-10-91 by M. MASSON.

Sample	Au	Au check	Au 2nd ppb	Au check 2nd ppb
Number	ppb			
795	14	14		
796	Nil			
797	Nil			
798	Nil			
799	Nil			
800	Nil			
13501	Nil			
13502	19			
13503	12			
13504	Ni 1			
13505	17			
13506	55			19132
13507	19680	19474	18514	19132
13508	1966	2263		
13509	14			
13510	30			

Au was determined using 1 AT fusions

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705)642-3300

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: BATTLE MOUNTANN CANADA INC.
Project: 75-JV-28 Attn: WAYNE BENHAM

1W-2905-RG1
Date: MAY-17-91
Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 23 GRAB samples submitted MAY-14-91 by ROBERT PEEVER.
Sample
Number
13511
13512
13513
13514
13515
13516
13517
13518
13519

Au was determined using 1 AT fusions

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705)642-3244. FAX (705)642-3300

Assaying - Consulting - Representation

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Geochemical Analysis Certificate
Company: BATTLE MOUNTAIN CANADA INC.
Projec: $\quad 75-J V-28$
Atn: WAYNE BENHAM

1W-2925-RG1
Date: MAY-23-91
Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3KI
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 12 ROCK samples submitted MAY-16-91 by M. MASSON.

Sample	Au	Au check	Au 2 nd
Number	ppb	ppb	ppb
13534	Nil		
13535	Nil		
13536	Nil		
13537	12		
13538	Nil		
13539	Nil		
13540	Nil		
13541	7		
13542	12892	13234	
13543	740		
13544	Nil		
13545	21497	22012	21874

Au was determined using 1 AT fusions

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0

Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: BATTLE MOUNTAIN CANADA INC.

Project: 75-JV-28
Autn: WAYNE BENHAM

1W-2936-RG1

Date: MAY-22-91
Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 3 ROCK samples submitted MAY-17-91 by M. MASSON.

Sample	Au
Number	ppb
13546	$14 / \frac{15}{135}$
13547	Nil
13548	6

Au was determined using 1 AT fusions

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying-Consulting-Representation

Geochemical Analysis Certificate

Company: BATTLE MOUNTAIN (CANADA) INC.
Project:
Attn:
75-JV-28
W. BENHAM

1W-2951-RG1
Date: MAY-24-91
Copy 1. P.O. BOX 635,KIRKLAND LAKE,ONT.P2N 3K1
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 16 ROCK samples submitted MAY-22-91 by

Sample	Au
Number	PPB
13549	34
13550	22
13551	19
13552	14/12
13553	3
13554	9
13555	Nil
13556	Ni 1
13557	Ni 1
13558	Nil
13559	45
13560	5
13561	27
13562	Nil
13563	12
13564	99/99

Au was determined using 1 AT fusions

Established 1928

Swastika Laboratories
 A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: BATTLE MOUNTAIN CANADA INC.

Project: 75-JV-28
Aun: WAYNE BENHAM

1W-2975-RG1

Date: MAY-29-91
Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N IK3
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 6 ROCK samples submitted MAY-27-91 by M. MASSON.

Sample	Au
Number	ppb
13565	19
13566	13
13567	$69 / 86$
13568	24
13569	$60 / 77$
13570	

Au was determined using 1AT fusions.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705)642-3300

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate

Company: BATTLE MOUNTAIN CANADA INC.
Project: 75-JV-28
Attn: WAYNE BENHAM

1W-2976-RG1
Date: MAY-30-91
Copy 1. P.O.BOX 635, KIRKLAND LAKE,ONT. P2N 1K3
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 29 ROCK samples submitted MAY-27-91 by M. MASSON.

Sample
Number
13601
13602
13603
13604
13605
13606
13607
13608
13609

Au was determined using lat fusions.

P.O. Box 10, Swastika, Ontario P0K 1T0

Swastika Laboratories

A Division of Assayers Corporation Ltd.
Assaying - Consulting - Representation

Geochemical Analysis Certificate
Company: BATTLE MOUNTAIN (CANADA) INC.
Project: 75-JV-28
Aan: W. BENHAM

1W-2999-RG1
Date: MAY-31-91
Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
2. FAX TO 567-6448

We hereby certify the following Geochemical Analysis of 15 ROCK samples samples submitted MAY-29-91 by M. MASSON.

Sample	Au
Number	ppb
13630	3
13631	45
13632	115
13633	87/94
13634	26
13635	Nil
13636	3
13637	199/195
13638	3
13639	42
13640	65
13641	Nil
13642	Nil
13643	Nil
13644	417/391

Au was determined using 1 AT fusions

P.O. Box 10, Swastika, Ontario P0K 1T0

APPENDIX II

CERTIFICATE OF QUALIFICATIONS

CERTIFICATE OF QUALIFICATIONS

I, Mark W. Mascon of 12 O'Meara Blvd. in the Town of Kirkland Lake in the Province of Ontario.

DO HEREBY CERTIFY:

1. That I am a graduate of Queen's University, Kingston, Ontario with a Bachelor of Science (B.Sc.), Honours Geology, 1982.
2. That I have been practicing my profession as an exploration geologist since 1982.
3. That I carried out the geological mapping and supervised the sampling described in this report.

Ministry of Nouthern Development

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

Work Performed (Check One Work Group Only)

Work Group				
\mathbf{x}	Geotechnical Survey	Geology		
	Physical Work, Including Drilling			
Rehabilitation				
Oher Authorized				
Work			\quad	Assays
:---				

Noie: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Periormed the Work (Give Name and Address of Author of Report)

| Name | Address |
| :---: | :---: | :---: |
| Mark W. Masson (Author) | P. O. Box 1343, Kirkland Lake, Ont. P2N 3P2 |
| Swastika Laboratories | P. O. Box 10, Swastika, Ont. P0K 1T0 |
| Wayne Benham, Geologist | P. O. Box 653, Kirkland Lake, Ont. P2N 3K1 |

(attach a schedule if necessary)
Certification of Beneficlal Interest * See Note No. 1 on reverse side
I certity that at the time the work was periormed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.

Certification of Work Report

I certify that I have a personal knowledge of the facts set forth in this Work report, having its completion and annexed report is true.		
Name and Address of Person Certifying Wayne Benham, P. O	$\text { Box } 635, \mathrm{Ki}$	$\text { ke, ont. P2N 3ki: } \quad \text { rive!oi! }$ Certifled By (Signature)
Telepone No. (705) 567-4840	Date $\text { Nou } 6,1991$	Certifed By (signature)

For Office Use Only

For Oftice Use Only		
Total Value Cr. Recorded	Date Recorded	Mining Recorder
$22,314.15$	Deemed Approval Dato	Date Appioved
	Date Notice lor Amendments Sent	

[^1]

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark (r) one of the following:
1.Credits are to be cut back starting with the claim listed last, working backwards.
2. \times

Credits are to be cut back equally over all claims contained in this report of work.
3.Credits are to be cut back as priorized on the attached appendix.
In the event that you have not specified your choice of priority, option one will be implemented.
Note 1: Examples of beneflicial interest are unrecorded transfers, option agreements, niemorandum of agreementa, etc., with respect to the mining claime.

Note 2: If work has been performed on patented or leased land, please complete the following:

| I certity that the recorded holder had a beneficial interest in the patented
 or leased land at the time the work was performed. | Signature | Date |
| :--- | :--- | :--- | or leased land at the time the work was performed.

Ministry of
Northern Development
Statement of Costs
for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authorit) of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Coats directs

Type	Description	Amount Montant	Totals Total global
Wages Salaires	Labour Main-d'oeuvre	16.343.92	
	Field Supervision Supervision sur le terrain		$\begin{array}{\|r} 70.343 .02 \\ \hline \end{array}$
Contractor's and Consultant's Fees Drolts de l'entrepreneur et de l'expertconsell	Type assaying	1.859.15	
			0.7 .850 .15
Supplies Used Fournitures utilisés	$\begin{aligned} & \text { Type } \\ & \text { OFFIGE } \end{aligned}$	40.73	
	FiELD	85.08	
	PRINTING	286.25	
Equipment Rental Location de matériel	Type		
Total Dlrect Costs Total des couts directs			

Note: The recorded holder will be required to verity expenditures claimed in this statement of costs within 30 days of a request for verification verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

Filing Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
2. Work filed three, four or five years after completion is claimed a 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit	Total Assessment Claimed
	$\times 0.50=$

Certification Verifying Statement of Costs

I hereby certify:
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.
that as $\frac{\mathrm{V} . \mathrm{P} \text { \& Manager-Exploratiqnam authorized }}{\text { (Recorded Holder, Agent, Position in Company) }}$
o make this certification
es renseignements personnels contenus dans la presente formule son acueillis en vertu de la Loi sur les mines et serviront à tenir à jour un registre des concessions minieres. Adresser toute quesiton sur la collece de ces enseignements au chef provincial des terrains miniers, ministère du Oéveloppement du Nord et des Mines, 159, rue Cedar, 4^{e} étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Coûts Indirects

** Note: When claiming Rehabllitation work Indirect costs are not allowable as assessment work
Pour le remboursement des travaux de réhabllitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

(Total des couts directe
ot indirecta admiselbles

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandees dans e présent état des coûts dans les 30 jours suivant une demande à cet ffet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout une partie des travaux d'évaluation présentés.

Remises pour dépót

. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100% de la valeur totale susmentionnée du crédit d'évaluation
2. Les travaux déposés trois, quatre ou cinq ans après leur achévement sont remboursés à 50% de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.
Valeur totale du crédit d'évaluation Evaluation totale demandée

```
* 0,50=
```


Attestation de l'état des coûts

J'atteste par la présente
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'a titre de je suis autorisé (uitulaire enregist e, représentant, poste occupé dans la compagnie)
à faire cette attestation.

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Non. alines Ontario .rinistere du
Developpement du Nord of des mines

Mining Actlois sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Quesinos Lands, Ministry of Northern be directed to the Provincial Manager, Minings Lands, Mubury, Ontario Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Couts directs

Type	Description	Amount Montant	Totals Total global
Wages Salaires	Labour Main-d'oeuvre	16.343 .02	
	Field Supervision Supervision sur le terrain		16.343.92
Contractor's and Consultant's Fees Drolts de l'entrepreneur ot de l'expertconsell	Type ASSAYING	1.859.15	
			1.858.15
Supplies Used Fournitures utlilises	$\begin{aligned} & \text { Type } \\ & \text { OFFICE } \end{aligned}$	40.73	
	Fielo	85.08	
	PRINTING	268.25	
			308,08
Equipment Rental Location de matérel	Type		
Total Direct Costs Total des coûts directs			18.505 .13

Note: The recorded holder will be required to verify expenditures claimed in his statement of costs within 30 days of a request for verification. If erification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

FIlling Discounts

1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit

```
* 0.50=
```


Certification Verifying Statement of Costs

I hereby certify:
that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.
that as $\frac{\text { V.P \& Managè̀r-Exploratigram authorized }}{\text { (Recorded Holder, Agent. Position in Company) }}$ to make this certification

Les renseignements personnels contenus dans la presente formule sont recueillis en vertu de la Lol sur les mines et serviront à tenir à jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces enseignements au chet provincial des terrains miniers, ministère du Developpement du Nord et des Mines, 159, rue Cedar, 4 e etage, Sudbury (Ontario) P3E 6A5, teléphone (705) 670-7264.

2. Indirect Costs/Couts Indirects

* Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work.
Pour le remboursement des travaux de réhabilitation, les coûls indirects ne sont pas admissibles en tant que travaux d'évaluation.

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans le présent état des coúts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépót

1. Les travaux déposés dans les deux ans suivant leur achévement sont remboursés à 100% de la valeur totale susmentionnée du crédit d'évaluation.
2. Les travaux déposés trois, quatre ou cinq ans aprés leur achèvement sont remboursés à 50% de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

Valeur totale du crédit d'évaluation
$\times 0,50=$

Attestation de l'état des coûts

J'atteste par la présente :
que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaiuation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

[^2]a faire cette attestation.

ASSESSMENT WORK CREDIT

FILE NUMBER: 2. 14390
DATE: January 23, 1992
RECORDER' S REPORT NUMBER: W9180-05074

RECORDED HOLDER: Battle Mountain Inc.
CLIENT NUMBER: 105640
TOWNSHIP OR AREA: Teck Township

1) Assessment Credit for Geology Survey over 9 mining claims

Total Assessment Credit claimed: $\$ 22,314.15$
Level of Assessment Credit approved on January 22, 1992 is $\$ 22,314.15$.

CLAIM NO. VALUE OF ASSESSMENT VALUE APPLIED WORK DONE ON CLAIM TO THIS CLAIM

VALUE ASSIGNED TO BANK
\$ 2231.42
L 1049642 \$ 2231.42
L 1111439 \$ 1785.13
L 1111440 \$ 1785.13
$\begin{array}{llll}\mathrm{L} & 1111441 & \$ 3347.12\end{array}$
L 1111442 \$ 2231.42
L 1111453 \$ 3347.12
L 1132251 \$ 892.57
L 1132280 \$ 3347.12
L 1146063 \$ 3347.12
9 CLAIMS $\$ 22314.15$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
$\$ 0.00$
\$ 1785.13
\$ 1785.13
\$ 3347.12
\$ 2231.42
\$ 3347.12
\$ 892.57
$\$ 3347.12$
$\$ 3347.12$
\$ 22314.15

Ontario

Ministry of Northern Development and Mines	Ministère du Développement du Nord et des Mines	Mining Lands Branch Geoscience Approvals Section 159 Cedar Street, 4th Floor Sudbury, Ontario P3E 6A5				
		Toll Free: Telephone: Fax:	$\begin{aligned} & 1-800-465-3880 \\ & (705) \quad 670-7264 \\ & (705) \quad 670-7262 \end{aligned}$			
January 23, 1992		Our File: Your File:	$\begin{aligned} & 2.14390 \\ & \text { W9180-5074 } \end{aligned}$			
Mining Recorder Ministry of Northern Development and Mines						
4 Government Road East						
Kirkland Lake, Ontario						
p2N 1A2						
Dear Sir:						
SUBJECT: $\begin{array}{ll}\text { APPROVAL } \\ & \text { L. } 104964\end{array}$	of ASSESSMENT WORK ET AL. in teck tok	BMITRED ON HI P.	MI NI NG CLAIMS			

The receipts verifying your expenses have been received and approved as of January 20, 1992.

The assessment work credits for the Geological Surveys, under section 12, of the Mining Act Regulations, submitted on the above work report have been approved as January 20, 1992.

The Assessment credit form submitted supersedes the one filed as part of the Notice of Deficiency dated December 23; 1991.

Please indicate this approval on your records.
Yours sincerely,

? Ron Gashinski
Senior Manager, Mining Lands Branch
Mines and Minerals Division
${ }^{1} A_{T A / j 1}$
Enclosures:
cc: Assessment Files Office Resident Geologist Toronto, Ontario Kirkland Lake, Ontario

[^0]: 1
 A local field term used to describe volcanic rocks with essentially no quartz or jasper in the matrix, and in the coarser facies distinguished by the absence of jasper fragments, compared with the conglomerates, and a somewhat more angular form to the larger clasts. In some lenses the clasts are more monolithic, with a porphyritic or trachytoid texture. Chemically the flows, which are visually similar to these clasts, are alkalic phonolites or syenites.

[^1]: $024 \cdot 103911$

[^2]: Et qu'à titre de je je suis autorisé (titulaire enregi.tré, représentant, poste occupé dans la compagnie)

