

42401NE0106 82 1

DIAMOND DRILLING

TOWNSHIP: TECK

REPORT NO: 82

•

WORK PERFORMED FOR: BATTLE MOUNTAIN INC.

RECORDED HOLDER: SAME AS ABOVE [X]

: OTHER []

CLAIM NO.	HOLE NO.	FOOTAGE (m)	DATE	NOTE
L447419	AK-91-29	206.85	JULY-AUG/91	(1)
447419 + 500057	AK-91-30	387.45	AUG/91	11
491662 + 491663 491663	AK-91-31 AK-91-32	409.75 390.80	н н	11 11
491650 + 491651	AK-91-33	454.75	. .	н
491662	AK-91-34	450.00	AUG-SEPT/91	11
491182 +491183	AK-91-35	365.50	SEPT/91	п
491183	AK-91-36	132.80		11
491182	AK-91-37	301.35	**	IJ
491662 + 491663	AK-91-38	619.10	SEPT-OCT/91	. н

16124/3718.35

NOTES:

(1) W9280.00054

010

	7000,000004		
Ministry of Northern Development	Report of Work Con		
and Mines	_After Recording Cla		
Ontaric Assess	FILES Mining Act	11 11010 11 11011 11 11 11 11 1001 11 11	900
Personal Information collected on this form	is obtained under the authority of the Mining A	ct. This Information will be used for correspondence. Question	ns about

this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Street, Sudbury, Ontario, P3E 6A5, telephone (705) 670-7264.

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
 - A separate copy of this form must be completed for each Work Group.
 - Technical reports and maps must accompany this form in duplicate.
 - A sketch, showing the claims the work is assigned to, must accompany this form.

Recorded Holder(s)	·····		Client No.
BATTLE MOUNTAIN (CANADA) INC		Т 5179	105640
Address			Telephone No.
390 BAY STREET, SUITE 2910,	TORONTO, ONTARIO	M5H 2Y2	(416) 867-9815
Mining Division	Township/Area		M or G Plan No.
Larder Lake	Teck Township		M 392
Dates Work From: June 1, 1991 Performed	Т	^{o:} November 29	, 1991

Work Performed (Check One Work Group Only)

	Work Group		Туре	
	Geotechnical Survey			
x	Physical Work, Including Drilling	Drilling	· ·	· · ·
	Rehabilitation		ONTARIO GEOLOGICAL SURVEY	
	Other Authorized Work		GIS - ASSESSMENT FILES	
	Assays		JUN 1. 6. 1992.	
	Assignment from Reserve			
				1

\$ 274,746.42 Roundedup 274,44+ Total Assessment Work Claimed on the Attached Statement of Costs

Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

Name	Address			
W. Benham (Author)	P. O. Box 635, Kirkland Lake, Ontario P2N 3K1			
Heath & Sherwood (1986) Drilling Inc.	P. O. Box 993, Kirkland Lake, Ontario P2N 3L3			
Swastika Laboratories	P. O. Box 10, Swastika, Ontario POK 1TO			
M. Masson (Geologist)	P. O. Box 1343, Kirkland Lake, Ontario P2N 3P2			
(attack a ackadula 16 nacasan)				

(attach a schedule if necessary)

Certification of Beneficial Interest * See Note No. 1 on reverse side

I certify that at the time the work was performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder.	ז ו	Jace 2	8/92	Recorded Holder or Agent (Signature)	Leigh
	/	· · · ·			

Certification of Work Report

I certify that I have a perso its completion and annexe	onal knowledge of the facts set forth in d report is true.	this Work report, having performed	d the work or witnessed s	ame during and/or after
Name and Address of Person	Certifying			
Wayne Benham,	P. O. Box 635, Kirk]	and Lake, Ontario	P2N 3K1	
Telepone No.	Date	Certified By (Signatu		
(705) 567-484	0 Jan 31/9.	2 wik		W. Benham
For Office Use Only				
Total Value Cr. Recorded	Date Recorded	Minima Decore	Received Stamp	
	JANUARY 3/192	and the	1 4 1	LANK C
.1	Deemed Approval Date	Date Approved		STATE AND A
\$724717		JANUARY 21 10	0-1	1.4.4.4
TAIT TT	Date Notice for Amendments Sent	1 = HNUH ~ 51,19	14	
	Date Holice for Amendments Sent			PA S CL
			j, k∑karon orana	• • •
)241 (03/91)				

I

Work Report Number for Applying	Claim Number (see Note 2)	Number of Claim	Value of Assessment Work Done	Value Applied to this	Value Assigned	Reserve: Work to be
Reserve		Units	on this Claim	Claim	this Claim	a Future Date
	L477419	1	31,393	0	0	31,393
<u>م</u>	L491650	1	9,13	0	0	9,13
	L491651	1	25,103	0	0	25,103
	L491662	1	67,63	0	• 0	67,63
	L491663	1	72,65	0	0	72,65
······	L491182	1	27,63	0	0	27,635.
	L491183	1	29,56 9.25	0	0	29,56
	L500057	1	11,618	0	0	11,618
· · ·	-					
				i		
· · · ·						
	8	1	274,74	0	0	274,74
03/91)	Total Number of Claims	_	Total Value Work Done	Total Value Work Applied	Total Assigned From	Total Reserve

ς.

A Credits are to be cut back starting with the claim listed last, working backwards. - പത

Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims. Note 1:

If work has been performed on patented or leased land, please complete the following: Note 2:

I certify that the recorded holder had a beneficial interest in the patented or leased land at the time the work was performed.

wal beer. Signathure

3/32 2 Daye Leigh ы

3

Minastry of Northern Development and Mines

nistère du eveloppement du Nord et des mines

Statement of Costs for Assessment Credit

État des coûts aux fins du crédit d'évaluation

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

1. Direct Costs/Coûts directs

Туре	Description	Amount Montant	Totais Total global
Wages Salaires	Labour Main-d'oeuvre	49,808.76	
	Field Supervision Supervision sur le terrain		49,009.78
Contractor's and Consultant's	Type DRILLING	188,014.30	
Fees Droits de l'entrepreneur	ABSAYING	22,606.53	
et de l'expert- conseil Supplies Used Fournitures utilisées			208,620,83
	Type FIELD SUPPLIES	2,286.48	
	CORE RACKS	2,475.00	
	OFFICE	134.55	
	PRINTING	1,541.87	38249 Ju.
Equipment Rental Location de matériei	Туре		
			e verse
	Total Di Total des coû	rect Costs its directs	

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

Filing Discounts

- Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
- Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

Total Value of Assessment Credit	Total Assessment Claimed
× 0.50 =	

Certification Verifying Statement of Costs

I hereby certify:

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

VICE PRESIDENT AND

that as <u>MANAGER OF EXPLORATION</u> I am authorized (Recorded Holder, Agent, Position in Company)

to make this certification

Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la Loi sur les mines et serviront à tenir à jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, ministère du Développement du Nord et des Mines, 159, rue Cedar, 4^e étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

2. Indirect Costs/Coûts Indirects

- ** Note: When claiming Rehabilitation work indirect costs are not allowable as assessment work. Pour le remboursement des travaux de réhabilitation, les
 - Pour le remboursement des travaux de réhabilitation, les coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

Туре	Descrip	tion	Amount Montant	Totals Total global
Transportation Transport	Type TRUCK RENTA	-	2,090.88	
	TRUCK REPAIL	R8	70.19	
	FUEL		946.22	
	SHIPPING 6 COURIER		564.04	
				9,671.39
Food and Lodging Nourriture et hébergement				5,575.41
Mobilization and Demobilization Mobilisation et démobilisation				892-89
	Sub Tot Total partiel	tal of Indir des coûts	ect Costs indirects	10.070.18
Amount Allowable Montant admissible	(not greater than (n'excédant pas	20% of Dire 20% des c	ect Costs) :oûts directs)	
Total Value of Assessment Credit (Total of Direct and Allowable indirect costs) Valeur totale du crédit d'évaluation (Total des coûts directs et indirects admissibles Kaund		274.748.42 d+0 27474		

Note : Le titulaire enregistré sera tenu de vérifler les dépenses demandées dans le présent état des coûts dans les 30 jours suivant une demande à cet effet. Si la vérification n'est pas effectuée, le ministre peut rejeter tout ou une partie des travaux d'évaluation présentés.

Remises pour dépôt

- 1. Les travaux déposés dans les deux ans suivant leur achèvement sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation.
- Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

	Valeur totale du crédit d'évaluation	Évaluation totale demandée	
i	× 0,50 =		

Attestation de l'état des coûts

J'atteste par la présente :

que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de _____je suis autorisé (titulaire enregistré, représentant, poste occupé dans la compagnie)

à faire cette attestation.

Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre.

Battle Mountain (Canada) Inc.

KIRKLAND LAKE PROJECT

REPORT ON DIAMOND DRILLING PROGRAMME

JULY TO OCTOBER, 1991

AMALGAMATED KIRKLAND PROPERTY TECK TOWNSHIP, LARDER LAKE MINING DIVISION ONTARIO, CANADA

VOLUME I

Kirkland Lake, Ontario November 29, 1991 W. Benham T. J. Bottrill Battle Mountain (Canada) Inc.

KIRKLAND LAKE PROJECT

REPORT ON DIAMOND DRILLING PROGRAMME JULY TO OCTOBER, 1991

AMALGAMATED KIRKLAND PROPERTY TECK TOWNSHIP, LARDER LAKE MINING DIVISION ONTARIO, CANADA

<u>VOLUME I</u>

Kirkland Lake, Ontario November 29, 1991

W. Benham T. J. Bottrill Battle Mountain (Canada) Inc.

KIRKLAND LAKE PROJECT

REPORT ON DIAMOND DRILLING PROGRAMME JULY TO OCTOBER, 1991

AMALGAMATED KIRKLAND PROPERTY TECK TOWNSHIP, LARDER LAKE MINING DIVISION ONTARIO, CANADA

Kirkland Lake, Ontario November 29, 1991 W. Benham T. J. Bottrill

Amalgamated Kirkland Drilling

TABLE OF CONTENTS

1.0	UMMARY	1
2.0	NTRODUCTION 2.1 Location and Access 2.2 Claims 2.3 Topography and Vegetation	3 3 4 4
3.0	REVIOUS WORK	7
4.0	EGIONAL GEOLOGY AND MINERALIZATION	10
5.0	ROPERTY GEOLOGY5.1Stratigraphy5.2Intrusive Rocks5.3Structure5.4Alteration and Mineralization	12 12 14 14 15
6.0	RILLING6.1Drilling Programme6.2Drill Results6.3Check Assaying6.4Discussion of Drill Results	17 17 18 21 21
7.0	ONCLUSIONS AND RECOMMENDATIONS	23
REI	RENCES	24

TABLES

Table I	Summary Listing of Diamond Drill Holes	
	Including Significant Intersections	-26
Table II	Check Assaying Results-Quartered Core	27
Table III	Check Assaying Results-Rejects	-31

.

Amalgamated Kirkland Drilling

TABLE OF CONTENTS

APPENDICES

Appendix I	Diamond Drill Logs
Appendix II	Assay Certificates
Appendix III	Certificate of Qualifications

<u>VOLUME II</u>

LIST OF DRAWINGS

Drawing Number	Description	Scale
1	Location Map	1:100,000
2	Property Map	1:20,000
GL-026	Geology Plan	1:2,500
GL-027	Geology Plan	1:2,500
GL-028	Geology Plan	1:2,500
GL-029	Geology Plan	1:2,500
DP-003	Drill Plan with Claims	1:2,500
DL-006	Longitudinal Section "102" Structure	1:2,500
DL-007	Longitudinal Section "103" Structure	1:2,500
DC-010-1 to 3	Section 8190 E, Holes AK91-31, 34, & 38	1:500
DC-017-1 & 2	Section 8400 E, Hole AK91-32	1:500
DC-022-1 & 2	Section 8600 E, Hole AK91-30	1:500
DC-034	Section 8700 E, Hole AK91-29	1:500
DC-035	Section 8400 E, Hole AK91-32	1:500
DC-036-1 & 2	Section 8000 E, Hole AK91-33	1:500
DC-037-1 & 2	Section 8190 E, Hole AK91-34	1:500
DC-038	Section 7600 E, Hole AK91-36	1:500
DC-039	Section 7600 E, Hole AK-35 & 36	1:500
DC-040	Section 7500 E, Hole AK91-37	1:500

1.0 SUMMARY

Battle Mountain (Canada) Inc. (BMCI) completed a diamond drilling programme during July 29th to October 3rd, 1991, on the Amalgamated Kirkland Property located in Teck Township, Ontario. Ten holes were drilled, for a total of 3718.35 metres, to follow-up and extend the mineralization known as the "102" zone which was discovered in 1989 and drill tested at shallow depths in 1990; to test some interpreted sub-parallel structures; and to explore two areas underlain by the Amalgamated Kirkland syenite body, at greater depths beneath historically reported gold mineralization.

Seven holes were targeted on the "102" structure along strike, and at greater depths than tested by the 1990 program. Hole AK91-29 intersected the zone 100 metres further west than tested previously at a depth of 125 metres, and hole AK91-35 intersected weak mineralization and alteration in the gap between the main part of the "102" zone tested by closely spaced drilling in 1990 and the mineralization close to the eastern Canadian Kirkland shaft tested by hole AK90-28.

Holes AK91-30, -31, -32 and -33 were drilled at 200 metre horizontal intervals at a vertical depth of approximately 300 metres beneath the area of the 1990 closely spaced drilling along the "102" zone. Of these only hole AK91-31 returned a significant intersection of 9.70 g/t Au over 5.15 metres at vertical depth of 315 metres. The remaining three holes intersected the zone in a fault gap or in an area of weak alteration.

Hole AK91-38 was drilled at a vertical depth of 525 metres beneath the intersection in AK91-31 and located a broad zone of alteration and veining from which the highest assay interval was 1.97 g/t Au over 5.1 metres.

In the process of drilling holes AK91-30, 31, 33, 35 and 38 the new "103" zone was discovered, lying approximately 100 metres north of the "102" zone. This zone was mineralized in four of these five holes (30, 31, 35 and 38), with from 1.14 to 4.88 g/t Au over core lengths of 0.60 to 3.45 metres.

Hole AK91-36 was a short hole drilled beneath hole 35 to test an area of alteration and discontinuous syenite bodies related to the "99", "100" or "101" zones. No significant mineralization was encountered.

Holes AK91-34 and -37 were drilled to test a series of alteration and historically reported mineralized zones within and to the immediate south of the Amalgamated Kirkland Syenite body

in the northwest corner of the property. Both intersected broad zones of anomalous and altered feldspar-porphyritic syenite dykes, with up to 280 ppb Au over 8.6 metres in hole 34 (the "107" zone) and 180 ppb Au over 25 metres in hole 37 (the "106" or historical Amalgamated Kirkland zone). The Amalgamated Kirkland syenite probably consists of a mafic "trachyte" flow complex cut by a feldspar-porphyritic syenite dyke swarm, rather than a single plutonic body.

As a result of the 1989-91 program on the Amalgamated Kirkland property a series of sub-parallel mineralized zones or structures have been discovered within an area which extends for at least 1,550 metres along strike, and over a stratigraphic interval about 800 metres wide, as a complexly folded sequence of Timiskaming volcanic sedimentary and minor intrusive rocks. These mineralized zones are parallel to the Kirkland Lake "Main Break", approximately 1,500 metres to the immediate north, and to the Larder Lake Break to the immediate south.

The most important mineralization as tested to date is the "102/103" zone, which has been traced for 1,550 metres along strike by stripping and drilling. It consists of a series of subparallel mineralized structures which are open at depth, especially given the wide spacing of the deeper holes. The surface stripping and shallow drilling in 1990 showed that the individual mineralized structures are continuous along strike, but locally disrupted by later faulting, and the deeper drilling in 1991 has shown that the overall system is continuous to a depth of 525 metres. Whilst no body of economic mineralization has yet been located, many of the intersection widths and average grades are indicative of a significant mineralized system with the potential to host ore-shoots characteristic of the Kirkland Lake district.

Further drilling is recommended to evaluate the overall potential of the combined "102/103" structure between surface and 700 metres vertically, over the known and available strike length of 1,600 metres on the property. The initial drilling should be on 200 metre centres, with progressive in-fill drilling in areas of stronger mineralization, prior to either close-spaced surface drilling or underground exploration in order to establish the mineral reserves along this system. No further exploration is recommended at this time of the mineralized zones in the Amalgamated Kirkland syenite which were drilled in 1991. However, the structural relationships between the strike and dip of the "102/103" zone and the southern contact of the syenite indicate that the zone should enter into the syenite at a depth of about 700 metres at the west end of the property, and at progressively greater depths to the east. Most of the historical production in the Kirkland Lake district has been from a complex syenite body that is almost identical to the Amalgamated Kirkland syenite; therefore, the potential for economic mineralization along the "102/103" zone is probably greater at depth, after it intersects the syenite body.

2.0 INTRODUCTION

This report describes the results of the 1991 diamond drilling programme, which was carried out by Battle Mountain (Canada) Inc. (BMCI) during July 29th to October 3rd, 1991 on the Amalgamated Kirkland property located in the Kirkland Lake gold camp in northeastern Ontario, Canada. Previously diamond drilling in 1990 had intersected significant gold mineralization, which is associated with the "102" structure, along a strike length of 550 metres and at vertical depths of 20 to 119 metres, as well as in a possible western extension of the zone a further 700 metres to the west. The 1991 follow up drill programme was planned to follow-up and extend the "102" zone along strike at greater depths; to test some interpreted sub-parallel structures; and to explore two areas underlain by the Amalgamated Kirkland syenite body, at greater depths beneath areas where previous drilling during the 1930's and 40's had reported gold mineralization.

Ten holes were drilled, for a total of 3718.35 metres, by Heath & Sherwood of Kirkland Lake and selected core samples were assayed by Swastika Laboratories in Swastika. The core was logged by Mark Masson, B.Sc., and W. Benham, B.Sc, assisted by technician R. Peever; the programme was supervised by W. Benham, the BMCI Kirkland Lake project geologist. The drill plans and sections accompanying this report were drafted by B. Madill. The logs were typed by C. Anderson and the final logs designed and produced using WordPerfect 5.1 by MDC Geological Consultants.

2.1 Location and Access

The property is located in the Larder Lake Mining Division in the southeast quarter of Teck Township, immediately south and southwest of the Town of Kirkland Lake (NTS 42 A/1; UTM 538800 E, 568600, N; See Drawings No. 1 & 2).

Access to the northeastern part of the property is provided by Main, Queen and Earl streets in the Town of Kirkland Lake and the Hunton Shaft bush road. Access to the northwest is along various trails leading from Government Road West in Chaput Hughes, and from the Industrial Plaza on Highway 66. A gravel road, which joins the Highway at a point approximately midway between the GMC City dealership and the Industrial Plaza, was used to provide access for heavy equipment such as diamond drills and backhoes. This private road crosses patented claims held by Mr. Joe Morgan of Swastika, who kindly gave his permission for its use.

Parallel and adjacent right-of-ways for hydro and natural gas lines cross the northern part of the property, leading to the co-generation plant south of the Town.

2.2 <u>Claims</u>

The Amalgamated Kirkland property consists of twenty-seven (27) claims optioned by Queenston Mining Inc. (formerly HSK Minerals Ltd.) from Premier Explorations Inc. The property is currently held by BMCI as part of an option agreement with Queenston Mining Inc. dated June 15, 1989.

The 27 contiguous unpatented mining claims are shown on Drawing No. 2. An application for lease, mining rights only, was submitted November 12, 1987. The surface rights are held by the Corporation of the Town of Kirkland Lake.

2.3 <u>Topography and Vegetation</u>

Seventy percent of the property consists of low rounded knolls and ridges, whilst the remaining thirty percent forms tag alder and black spruce swamps. Elevations are from 305 to 345 metres ASL. Thirty percent is outcrop and shallow soil, whilst overburden, consisting of glacial till one to twenty metres thick, covers the remainder of the claims. The southwesterly flowing Murdock Creek divides the property approximately in half.

Most of the property that is not occupied by the alder and spruce swamps is covered by second growth poplar bush with local, small stands of birch, spruce, balsam and pine.

3.0 PREVIOUS WORK

The Amalgamated Kirkland property has a long history of exploration activity which dates back to 1911. Prospecting, mapping, trenching, geophysical surveys and diamond drilling programmes have been carried out on specific geological targets such as quartz veins at the east (Hunton Shaft) and west (Amalgamated Kirkland zone) ends of the Amalgamated Kirkland syenite body in the north part of the property; carbonate alteration zones in close proximity to the Larder Lake Fault Zone which crosses the central portion of the claim block; carbonate alteration zones within the Murdock Creek stock which occupies most of the southern half of the property. The area which is mostly underlain by Timiskaming volcanic and sedimentary rocks between the Larder Lake Fault and the Amalgamated Kirkland syenite had not been intensely explored prior to 1989, except for numerous old prospector's trenches which probably date back to the period from 1911 to 1924.

During the 1989 field season, a line-cutting, geological mapping and overburden stripping programme was carried out by BMCI to explore all of the property, but with the specific objective of exploring the Timiskaming volcanic and sedimentary rocks which had been relatively neglected in the past. This programme was specifically designed to search for mineralization based on a model of the stratigraphic and structural controls of the mineralization within the Kirkland Lake gold-quartz deposit (the "Kirkland Lake Main Break") and the Upper Canada Mine deposit in Gauthier Township to the east.

The grid was cut with a survey controlled base-line orientated at 071°, with cross-lines every 100 metres. In early 1990 intermediate lines were cut 50 metres apart as far south as 96+00N (i.e. across the Timiskaming Group and the Larder Lake Fault Zone).

This 1989 programme resulted in the discovery of two anomalous gold-bearing alteration zones (Bottrill, 1990; Benham, 1990) within the Timiskaming sedimentary and volcanic rocks. The "101-7290" gold zone averaged 2.48 g/t Au over a width of 6 metres, while the "102-8350" zone assayed 2.22 g/t Au across 6 metres including 5.0 g/t Au over 1.5 metres. Both showings are associated with sericitic, pyritic, silica-breccia and vein zones striking 070°, parallel to the other major mineral deposits in the district.

The "101-7290" zone is close to the eastern of the two Canadian Kirkland shafts close to the western boundary of the property. Nothing is known about the historical work around this shaft.

A magnetometer survey (Roth, 1990) and a detailed IP survey (Roth, 1990a) were completed during 1990. Linear zones of low magnetic amplitude, related to the pyritic replacement of magnetite, with corresponding, if intermitted, weak chargeability and high resistivity anomalies from the IP survey, were found to be associated with these mineralized structures. Similar anomalies along strike, and others parallel to the known mineralization (the "99", "100", "101", "102, "104", "105", "106", and "107" zones), provided an indication of the overall form of the alteration and structural system on the property, as well as specific exploration targets for diamond drilling and/or further trenching.

During the summer of 1990, additional overburden stripping, detailed mapping and channel sampling was completed (Benham, 1990a). The interpreted "102" structure was traced intermittently as a gold-bearing, pyritic, sericitic, silicic alteration zone for a strike length of 540 metres from 79+10 E to 84+50 E. The exposed mineralization was channel-sampled at close spacings, which averaged 3.53 g/t Au over 4.01 metres for a strike length of 60 metres in the "102-8350" zone, and 2.96 g/t Au over 5.00 metres for a strike length of 45 metres and in the "102-8170" zone. Selected grab samples returned assays up to 36.55 g/t Au and individual channel samples across the zone were up to 8.36 g/t Au over a width of 3.80 metres. A new showing of native gold, which was named the "99-8030" zone, returned a channel sample assay of 797.5 g/t Au across 0.45 metres.

During October 15, 1990 to December 13, 1990, a diamond drilling programme was carried out (Benham, 1990b). Twenty-eight holes for a total of 3,318.67 metres were drilled to test new gold discoveries and geophysical anomalies outlined by the previous exploration work by BMCI. This programme was concentrated along strike for 350 metres to the west and 200 metres to the east of the original "102" discovery showing at 83+50E, and to a vertical depth of 115 metres. Quartz plus pyrite breccia veins, 0.05 to 6.2 metres wide, within a broader zone of hematized, sericitized and silicified altered tuffs, graywackes, mudstones and syenites were found in most of the holes. Mineralized intersections varied considerably in width and grade in the twenty holes completed in this area. Some were relatively narrow quartz vein structures (such as 11.25 g/t Au over 0.60 metres in hole AK90-09) whereas others were multiple vein and breccia zones within broader alteration envelopes (e.g. 7.64 g/t Au over 4.00 metres in hole AK90-06). Other significant intersections included 3.58 g/t Au over 2.55 metres in hole AK90-08; 3.14 g/t Au over 2.80 metres in hole AK90-18; 2.25 g/t Au over 8.45 metres in hole AK90-21; and 2.74 g/t Au over 3.75 metres in hole AK90-24.

Holes AK90-22 and AK90-11, drilled 200 metres further east and west respectively along strike from the 550 metre long mineralized section of the "102" zone, failed to return any significant mineralization. Hole AK90-11, intersected over 20 metres of altered sericitic tuffs,

graywackes and mudstones, but without any mineralized pyrite + quartz breccia zones. Subsequent re-interpretation of the data indicates that hole AK90-22 was not drilled far enough south to intersect the "102" zone, but it intersected a broad zone of silicified, pyritic but barren alteration which may be related to the "103" zone.

Hole AK90-28, drilled just to the east of the "101-7290" trench and the Canadian Kirkland Shaft returned 1.89 g/t over 2.0 metres. This mineralization may be part of the western extension of the "102" zone or a sub-parallel feature.

Drill tests of the "99" and "100" structures in six holes did not return any anomalous assays. The magnetic lows and IP anomalies which were the targets of these holes are due to zones of sericite + carbonate + hematite alteration zones with quartz veining and pyrite, but no significant gold mineralization.

Although no economic mineralization was discovered by the 1990 drill programme, significant anomalous gold mineralization, which is associated with the "102" structure, was intersected in holes drilled along a strike length of 1250 metres, from 73+50 E to 86+00 E and at vertical depths of 20 to 119 metres.

4.0 REGIONAL GEOLOGY AND MINERALIZATION

The Kirkland Lake district is in the Abitibi Greenstone belt of the Archean Superior Province of the Canadian Shield. It lies to the south of the major east-west trending Blake River synclinorium, the northern and southern limbs of which are defined by the Destor-Porcupine and Larder Lake-Cadillac Fault Zones or Breaks. Most of the historical gold production in the Abitibi Belt is spatially associated with these two regional structural zones. The southern limb of the Blake River synclinorium in the Kirkland Lake area consists of tholeiitic volcanics of the Kinojevis Group. These are unconformably overlain by the trachytic volcanic and coarse clastic sedimentary rocks of the Timiskaming Group, and their associated syenitic intrusives. The southern boundary of the Timiskaming Group is marked by the regionally south-dipping Larder Lake Fault Zone. The assemblage to the south of this fault consists of the Larder Lake Group, consisting of komatiitic and tholeiitic volcanic rocks with thin interflow graywacke, argillite and iron formation sedimentary rocks. The Larder Lake Group are intruded by plutons of pyroxenite, gabbro and syenite, including the Lebel, Murdock Creek and Otto stocks.

The Kirkland Lake gold camp has produced in excess of 23 million ounces of gold from quartz-veined shoots in a deposit known historically as the Kirkland Lake Break or Mile of Gold. There were six producing mines along the deposit, of which the one remaining active producer is the Macassa Mine of Lac Minerals Ltd, at the west end of the deposit. The deposit strikes 067°, with a dip to the south of 75°-80°. It lies mostly within augite-syenites which intrude interbedded coarse tuffaceous and clastic sedimentary units of the Timiskaming Group. The augite-syenites and the country rocks are intruded in the area of the deposit by hypabyssal felsic syenite plugs and by syenite porphyry dykes. All of the intrusive phases are comagmatic with the enclosing trachytic volcanic rocks. Some of these plugs and dykes are locally mineralised or form one of the walls of the shoots. The entire deposit has been dismembered by a complex series of younger, steeply dipping reverse faults, of which the largest is the Kirkland Lake Main Break. Many of the larger shoots lie against, or are terminated by, one or more of the branches of this fault system.

The Kerr Addison mine, which is located 36 km to the east in the Larder Lake district, has produced in excess of ten million ounces, and is still in production. This ore deposit is hosted by altered and strongly sheared mafic to ultramafic volcanics of the Larder Lake Group immediately to the south of the Larder Lake Fault Zone, and is associated with altered plugs and dykes, known locally as "albitite", of unknown original composition. It contains two distinct oretypes: "green-carbonate ore", as quartz veins in altered ultramafic volcanic rocks; and "flow-ore",

as pyritic, altered and deformed variolitic, pillowed basalts, with only minor quartz veining. Both ore types are spatially associated with the "albitite" plugs and dykes, but they have different distribution and plunges on the longitudinal section.

5.0 PROPERTY GEOLOGY

The Amalgamated Kirkland property is underlain by Timiskaming Group volcanic sedimentary and related intrusive rocks in the north half, and by the Murdock Creek syenite stock intruding Larder Lake Group volcanic rocks to the south. These are separated by a broad zone of shearing along the Larder Lake Fault Zone.

5.1 <u>Stratigraphy</u>

The Timiskaming Group is a series of interbedded clastic sedimentary rocks and coarse pyroclastic and epiclastic volcanic rocks, together with minor flows, intruded by semi-concordant bodies of multi-phase syenite. The majority of the rocks on the property are volcanic, with sedimentary layers. To the north of the property, and on the northernmost claims around the Hunton Shaft the sequence is dominantly sedimentary. A similar dominantly volcanic sequence to that on the Amalgamated Kirkland property encloses the majority of the host syenite complex which forms the wall rocks to the Kirkland Lake gold-quartz deposit immediately to the north. It is not known whether these volcanic units are the same horizon, exposed on either side of a major fold (the "Kirkland Lake Syncline") or separate units in a south facing sequence. No consistent and reliable facing indicators have been established in the units on the property.

During 1991, some detailed mapping was carried out by K. Barron on the property in areas of complex folding and faulting of the Timiskaming Group rocks, especially to provide better correlation between the earlier geological mapping and the drilling results. A revised geology map with the interpreted changes, especially in areas underlain by altered fine grained sediments and volcanics, and showing the projections of the drill holes is on Drawings GL-026 to GL-029 at a scale of 1:2,500.

The individual stratigraphic units are difficult to distinguish due to rapid along-strike and down-dip gradations and interfingering between pyroclastic volcanic rocks, epiclastic volcanic rocks and clastic sediments. Theses sedimentary and volcanic rocks are diagnostic of an extremely dynamic palaeo-environment with a high degree of topographic relief and multiple volcanic pulses. In such an environment laterally extensive units would not be expected. This type of environment is also characterised by syn-deformational growth-faults, which further complicate stratigraphic correlation. This complex stratigraphic picture is indicative of deposition close to the original volcanic source. Stratigraphic interpretation is further hampered by the complex

structural picture, with both complex folds and numerous, closely spaced faults which dismember the individual layers in the stratigraphic assemblage into isolated segments.

The unit usually interpreted as an augite syenite within the Amalgamated Kirkland syenite body may be a series of mafic trachyte flows. No other units which are more definitive as flows have been mapped on the property.

The coarsest pyroclastic rock is a lapilli tuff with variously sized, angular, polymictic fragments in an ash matrix of similar composition. Most of the fragments are different coloured phases of porphyritic trachyte¹ with different phenocryst sizes and densities. This rock is typically strongly magnetic and forms a distinct mappable unit north of the Larder Lake Fault Zone, and just south of the base-line. Other, lapilli-tuff units grade progressively into rocks with fewer and finer clasts, and to rocks with a finer matrix.

The distinction between the volcanic and the sedimentary rocks is based on the presence of quartz grains and/or jasper grains or clasts in the rocks described as sediments. It is, however, often difficult to distinguish in core or outcrop between the lapilli-tuffs and the conglomerates, or between the ash-tuffs and the graywackes, particularly where they are pervasively altered by chlorite and carbonate, as on most of the property.

Whilst the sedimentary units typically include conglomerates, graywackes and mudstones, it is possible to distinguish horizons which are characterised as containing a higher proportion of conglomerate from others which are dominantly graywacke and mudstone. One unit is a distinctive, thinly bedded, inter-layered black mudstone and light grey graywacke. This distinctive banded unit was seen to grade rapidly into a lapilli-tuff.

The Larder Lake Group rocks to the south of the Larder Lake Fault Zone are found as large xenoliths or roof-pendants within the Murdock Creek Stock, or as highly strained units within the broad area underlain by the Fault Zone. These rocks were originally mafic and ultramafic volcanic rocks, with minor interbedded clastic sediments and iron formations. They are now amphibolites or various talc + chlorite + carbonate schists.

¹"Trachyte" is a local field term used to describe volcanic rocks with a trachytic texture, locally including phenocrysts which have been called pseudo-leucites; the actual chemical composition of these rocks, whether as flows or pyroclastic units, is difficult to establish due to the pervasive regional alteration, but they may be phonolites or basaltic-andesites. There are no preserved feldspathoidal mineral which would definitely indicate an "alkalic" petrological association.

5.2 Intrusive Rocks

The Murdock Creek syenite is a multi-phase zoned body. The area east of Murdock Creek is mostly underlain by a fine to medium leuco-syenite phase, whereas that to the west is mostly a medium to coarse grained meso-syenite. There is a distinct area of carbonate alteration within the stock, orientated 015° and just to the east of the Creek, which was previously described as "felsite". This alteration zone may mark the trace of the Lakeshore fault south of the Larder Lake Break.

The northern part of the property is mostly underlain by a complex syenite body referred to as the Amalgamated Kirkland syenite. Most of the outcrop exposures are of a leuco-syenite and are feldspar-phyric. The area to the west, which is poorly exposed beneath the swampy area south of the Industrial Plaza, has been shown on previous maps (e.g. Thomson, 1950) as mafic syenite, presumably from the historical drilling of the Amalgamated Kirkland mineralization. However, the 1991 drilling has shown that both the eastern (hole AK91-34) and western (AK91-37) areas are mostly augite syenite or mafic "trachyte", intruded by numerous feldspar porphyry dykes. The latter are clearly more resistive to weathering, giving the false impression in the outcrop mapping of the relative proportions of mafic and felsic syenite in each area.

Smaller bodies mapped as syenite intrude the Timiskaming volcanic and sedimentary rocks south of the Amalgamated Kirkland syenite. Most of these are orientated close to 070°, the principal mineralized direction. However, some units mapped previously as syenite are probably a phase of alteration related to the mineralization.

5.3 <u>Structure</u>

Dips and strikes within the Timiskaming volcanic and sedimentary units are highly variable and reflect a complex pattern of tight anticlinal and synclinal drag-folds. The central limb of these drag-folds is often missing, being represented by a zone of shearing, leaving mostly east closing, and few west closing fold patterns defined mostly by the interbedded sedimentary units. Local dips and strikes are often conflicting, possibly because they represent original high angle of rest sedimentary structures within this high energy palaeo-environment.

The main mineralized zones are parallel to the axial planes of these folds, and may represent replacement bodies along the axial planes. Alternatively, they occupy syn-depositional structures reactivated during subsequent structural events. There are distinct facies differences in the units to the north and south of the mineralized zone, as well as between the units to the

north and south of the base-line. Although there are no obvious, mappable faults orientated at 070° at either of these facies boundaries, they probably represent growth faults within the volcanic and interbedded sedimentary sequence.

The principal structural feature on the property is the Larder Lake Fault Zone, which lies between the Timiskaming Group and the Murdock Creek Stock. Diamond drilling to the immediate east of the Amalgamated Kirkland property has demonstrated that the fault zone dips south at about 50°, and is a complex of splay faults enclosing variably deformed and altered volcanic rocks of the Larder Lake Group.

The Amalgamated Kirkland Fault strikes 050° and passes through the northwest corner of the property.

The Murdock Creek Fault strikes at 040° (035° to 045°) through the centre of the property and appears to off-set or deflect the trace of the Larder lake Fault Zone. Based on the underground development in the Glenora shaft to the northeast of the property this fault dips to the north west at $75^{\circ}-80^{\circ}$. A series of closely spaced, northwest dipping faults, sub-parallel to the Murdock Creek Fault dissect the Timiskaming volcanic and sedimentary assemblage throughout the property, with a dominantly sinistral sense of motion. These are referred to as the "Murdock Creek Fault set". They are seen in the field and core as chlorite + carbonate \pm pyrite alteration zones with closely spaced pressure-solution cleavage. These faults post-date and off-set the major mineralized zones on the property.

The Lakeshore Fault strikes 020° (015° to 025°) and dips to the west at 75°-80°. It passes along the eastern side of claim L.500057, and appears to be the youngest of the faults on the property. There are many small fault off-sets at outcrop scale across the property with similar orientation and dextral motion which form the "Lakeshore Fault set".

5.4 Alteration and Mineralization

The principal mineralization on the property is the "102/103" zone as discussed above in Section 3.0. This gold mineralization is associated with pyritic, sericitic, and carbonate alteration. The best mineralization is found in silicified, blue-grey quartz-breccia zones containing up to 30% fine grained pyrite, as well as local and minor galena and molybdenite.

Distinctive alteration zones have been mapped around the quartz + pyrite + gold mineralization. The outermost alteration consists of intense development of chlorite and carbonate. This progresses towards the mineralization zone into an outer envelope of sericite replacing the chlorite, and of hematite replacing the primary magnetite in the sedimentary and volcanic rocks. Closer to the mineralization there is a distinctive zone of alteration with the development of euhedral chlorite spots within the sericite and carbonate groundmass. These chlorite spots may be replacing an earlier unknown phyllosilicate or peraluminous mineral. One phase of the hematitic alteration is represented by a strong red colouration in a strongly silicified rock which is difficult to distinguish from the syenite dykes. However, it is not usually porphyritic, except where it replaces originally porphyritic trachyte clasts. In the main zone of alteration and mineralization which host the quartz veins and breccia zones the hematite is replaced by pyrite, and the remaining chlorite by sericite.

Whilst the mineralization in the "102" zone is clearly related to sericite alteration, there is little accompanying foliation or "sericite-schist". The structural controls on the mineralization are not fully understood, but the zone appears to be related to either syn-depositional growth-faults, and/or to the axes of one or more tight folds within a complex of drag-folded and faulted, interbedded, coarse pyroclastic and epiclastic units. The mineralized zones strike approximately 070° and dip steeply, close to vertical; they are offset by northeast striking and northwest dipping cross faults, probably as part of the Murdock Creek Fault set.

Other mineralized zones on the property are located at the eastern and western ends of the Amalgamated Kirkland syenite. The mineralization to the east was explored from the Hunton shaft and is mostly a series of quartz veins within Timiskaming Group sedimentary rocks and the syenite. The mineralization to the west overlaps the boundary of the property, immediately beneath and to the east of the Industrial Plaza; it is known as the Amalgamated Kirkland Zone. Historical drilling as well as hole AK91-34 has demonstrated the existence of a number of altered and gold-anomalous zones within the Amalgamated Kirkland syenite between these two mineralized areas.

6.0 DRILLING

6.1 Drilling Programme

Diamond drilling on the Amalgamated Kirkland property was started on July 29th and completed on October 3rd, 1991 by Heath & Sherwood Drilling (1986) Inc. of Kirkland Lake under the supervision of W. Benham. Ten holes were drilled for a total of 3718.35 metres. A total of 1797 sawn core samples were assayed for gold at Swastika, Ontario, using one assay ton fusions by Swastika Laboratories Ltd. Forty-seven quartered core samples and 144 reject samples from selected mineralized drill intersections were sent to Bondar-Clegg in Ottawa for check assaying.

These ten holes were drilled to follow-up and extend the mineralization identified in the 1990 program, as well as to test some interpreted parallel structures and two areas underlain by the Amalgamated Kirkland synite body, at depth beneath historically reported mineralized intersections.

Seven holes were targeted on the "102" structure along strike, and at greater depths than tested by the 1990 program. Hole AK91-29 was planned to intersect the zone 100 metres further east than tested previously at a depth of 125 metres, and hole AK91-35 to explore the gap between the main part of the "102" zone tested by closely spaced drilling in 1990 and the mineralization around the eastern Canadian Kirkland Shaft, the "101-7290 zone and in hole AK90-28.

Holes AK91-30, -31, -32 and -33 were drilled at 200 metre horizontal intervals at a vertical depth of approximately 300 metres beneath the area of the closely spaced drilling along the "102" zone. Hole AK91-38 was drilled beneath the intersection in AK91-31 at a vertical depth of 525 metres.

Hole AK91-36 was a short hole drilled south of AK91-35 to explore an area of alteration and discontinuous syenite bodies related to either the "99", "100" or "101" zones.

Holes AK91-34 and -37 were drilled to test a series of alteration zones within and to the immediate south of the Amalgamated Kirkland Syenite body in the northwest corner of the property.

6.2 Drill Results

The results of the drilling are described in drill logs AK91-29 to AK91-38 (Appendix I) and illustrated on drill sections DC-010, DC-017, DC-022 and DC-034 to DC-040 inclusive, at a scale of 1:500. Nine holes were logged by M. Masson and one hole, AK91-36, was logged by W. Benham. Drill hole locations are shown on Drawing DP-003 at a scale of 1:2,500. A listing of the significant gold intersections, i.e. any assays greater than 1.0 g/t Au or any intervals which average greater than 100 ppb Au over at least 3.0 metres, is presented in Table I. Assay certificates are located in Appendix II and all sampled intervals and assay results are recorded in the drill logs. Longitudinal sections of the "102" and "103" structures, at a scale of 1:2,500, are shown on Drawings DL-006 and DL-007 respectively.

Hole AK91-29, which tested a weak IP anomaly at 87+00 E, 102+25 N, 100 metres to the east of hole AK90-26, intersected pyritic quartz veins in sericitic tuffs, graywackes and mudstones, which assayed 0.47 g/t Au over 12.00 metres including 1.05 g/t Au over 3.20 metres. This intersection is offset approximately 20 metres to the northeast from the projected strike extension of the "102" zone by a strong cross-fault.

Hole AK-30, which undercut hole AK90-26 along 86+00 E, probably intersected a fault gap in the "102" structure at about 84 metres down the hole; alternatively, the bleached, sericitic interval, which was intersected from 304.0 to 347.0 metres, is a non-mineralized section of the "102" structure.

Hole AK91-30 was drilled from north to south in order to avoid hole flattening problems related to the northwest dipping faults encountered in hole AK91-29 and as a result the "103" gold zone was discovered higher in this hole, approximately 100 metres to the north of the "102" zone. This new zone consisted of silicified, sericitic conglomerates with pyritic quartz veins from 107.0 to 118.3 metres, where they averaged 1.80 g/t Au over the 11.30 metres, including 11.01 g/t Au over 0.50 metres and 15.12 g/t Au over 0.40 metres. This new gold discovery is associated with a geophysically interpreted structure which has been traced across the property by a series of low magnetic linear anomalies and IP chargeability anomalies. Some weak gold mineralization which was previously intersected in hole AK90-22 along 88+25 E (0.42 g/t Au over 1.00 metres and 0.36 g/t Au over 0.40 metres) is possibly related to this "103" structure.

Hole AK91-31, tested the "102" structure 200 metres below hole AK90-24 on section 81+90 E. The "102" gold zone was intersected from 359.10 to 364.25 metres at a vertical depth of 310 metres. This significant intersection assayed 9.70 g/t Au over 5.15 metres, including 42.43 g/t Au over 0.50 metres, 12.52 g/t Au over 0.30 metres and 23.43 g/t Au over 0.85 metres. The

mineralized zone consists of 5 to 45 cm wide, blue-grey, pyritic, quartz breccia veins, within pyritic, fractured, chloritic, sericitic and silicified graywackes and conglomerates. Very fine grained "dusty" native gold was observed at 359.2 metres.

Hole AK91-31 also intersected the "103" gold zone from 258.4 to 261.5 metres where it averaged 3.63 g/t Au over 3.10 metres, including 27.12 g/t Au over 0.40 metres, related to a 30 cm wide, pyritic quartz vein in weakly to moderately sericitic graywacke.

Hole AK91-32 was drilled to test the "102" structure approximately 235 metres below AK90-03 along 84+00 E. The "102" zone may be represented by 0.70-1.10 metres wide quartz and chlorite breccia zones with traces of pyrite, which were intersected from 336.6 to 351.7 metres in weakly sericitic and silicified graywackes and conglomerates. However, no anomalous assays were returned from this section.

Hole AK91-32 was drilled from south to north and the projected down-dip extension of the "103" structure should be approximately 75 to 100 metre beyond the bottom of the hole.

Hole AK91-33 tested the "102" and "103" structures 200 metres to the west of the hole AK91-31. No significant mineralization was encountered. The "102" zone was intersected from 378.8-379.25 metres in sericitic lapilli tuffs, but only assayed 0.16 g/t Au over 0.45 metres. The "103" gold zone is interpreted to be at 275.5-276.10 metres in sericitic graywacke, where this narrow interval assayed 0.13 g/t Au over 0.60 metres.

Hole AK91-34, along section 81+90 E, tested part of the Amalgamated Kirkland syenite where mineralized intersections had been reported from holes A5 and A6 drilled in 1939, as well a series of linear, zones of low magnetic amplitude which are sub-parallel to the "102" structure, both within the syenite and to the south within the adjacent sedimentary and volcanic rocks. An altered zone within the sedimentary rocks, south of the syenite contact, interpreted as the "105" structure, from 205.5-208.9 metres, returned 0.28 g/t Au over 3.4 metres. Three hematitic, brecciated feldspar porphyritic syenite dykes, intruding mafic syenites and/or trachyte flows, assayed 0.27 g/t Au over 5.0 metres (246.0-251.0 metres), 1.15 g/t Au over 0.70 metres (337.1-337.8 metres) and 0.28 g/t Au over 8.6 metres (422.4-431.0 metres).

Holes AK91-35 and AK91-36 were drilled as a cross-section along section 76+00 E, to test a series of sub-parallel geological lineaments and zones of low magnetic amplitude, any one of which could have represented the projected extension of either the "102" of "103" structures. This section is midway within a 550 metre wide gap between hole AK90-28, which returned 1.89 g/t Au over 2.0 metres close to the western boundary of the property, and hole AK90-11, which

failed to locate the "102" zone at the western end of the area of concentrated drilling on the "102" zone in 1990.

Hole AK91-35 intersected chloritic, weakly foliated conglomerates, interpreted as the "102" zone, from 223.0-226.0 metres where they assayed 0.13 g/t Au over 3.00 metres. A deeper zone intersected from 344.0 to 347.5 metres, which may be equivalent to the "103" zone, averaged 3.11 g/t Au over 3.45 metres, including 18.88 g/t Au over 0.55 metres. This interval contains a 30 cm wide silicified zone with 8-10% pyrite and < 0.5% chalcopyrite and molybdenite.

There were no anomalous assays in hole AK91-36 which tested a low magnetic anomaly, as well as a shear zone and associated syenite dykes at 100+60 N on 76+00 E, to the immediate south of hole AK91-35.

Hole AK91-37 tested the Amalgamated Kirkland syenite in the northwest corner of the property, below and to the east of shallow mineralization known historically as the Amalgamated Kirkland zone where shallow drilling in 1939 intersected up to 10.63 g/t Au over 3.6 metres. Two zones of weakly anomalous gold mineralization were intersected. These are related to brick-red hematitic, feldspar-porphyritic syenites which contain trace pyrite and minor quartz + albite veining and intrude mafic hornblende and feldspar porphyritic syenites or trachyte flows and polymictic pebble conglomerates. The interval form 182.0-192.2 metres averaged 0.44 g/t Au over 10.20 metres, including 2.39 g.t Au over 1.00 metres, whilst the weakly mineralized section from 245.0-257.0 metres assayed 0.21 g/t Au over 12.00 metres.

In hole AK91-38, an undercut of hole AK91-31 along section 81+90 E, the "102" structure was intersected from 546.9 to 578.6 metres (31.7 metre core length, estimated true width of 16.1 metres), and consists of widely spaced, 10-95 cm wide pyrite and quartz zones in sericitic lapilli tuffs. Three mineralized sections averaged:

546.9 - 552.0 m	1.97 g/t Au over 5.10 metres including
	8.18 g/t Au over 0.45 metres
568.8 - 573.5 m	0.20 g/t Au over 4.70 metres
577.6 - 578.6 m	2.66 g/t Au over 1.00 metres

The "103" structure in hole AK91-38 consists of two weakly mineralized zones at 387.35 to 390.10 metres and 431.30 to 432.90 metres in sericitic conglomerates and graywackes. The first interval assayed 0.41 g/t Au over 2.75 metres, while the second assayed only trace gold.

6.3 Check Assaying

Forty-seven (47) quartered core samples and 144 reject samples (42 from the 1990 drilling and 102 from 1991) from selected mineralized drill intersections were sent to Bondar-Clegg in Ottawa for check assaying. Comparisons of the assay results from Swastika Laboratories and Bondar-Clegg for the quartered core samples and the rejects samples are listed in Tables 2 and 3 respectively.

The quartered core assay results indicate that samples 9295 (0.02 versus 1.45) and 9296 (0.46 versus 0.11) in hole AK91-38 were probably inadvertently switched, sometime during the original assaying. The description of sample 9295 in the drill logs and check assaying (0.02 versus 1.70) of the reject for 9295 confirms this error.

In general, the assay results from the second lab, Bondar-Clegg, are lower than the initial results from the first lab, Swastika. Excluding sample 9295, eight quartered core samples which assayed greater than 1.00 g/t Au at either lab, were 11.8% lower at Bondar-Clegg than at Swastika, i.e. an average for the eight samples of 5.48 g/t Au versus 6.21 g/t Au.

Excluding sample 9295, thirty-seven reject samples which assayed greater than 1.00 g/t Au at either lab, were 5.1 % lower at Bondar-Clegg than at Swastika, i.e. an average for the thirty-seven samples of 6.71 g/t Au versus 7.07 g/t Au.

Except for samples 7636, 9276 and 9295, all samples which assayed greater than 1.00 g/t Au at one lab, also returned assays of greater than 1.00 g/t Au from the other lab. The results for samples which assayed nil to 1.00 g/t Au are more variable and erratic.

The check assaying of rejects and quartered core indicates that samples of the "102" mineralization do not have a serious "nugget effect" and that the significant assays can be repeated within reasonable limits. After adjusting the Swastika results for the 5.1% difference between the two labs, the larger core samples, (i.e. half core versus quarter core or the approximate equivalent of NQ core versus BQ core), gives assays 7.0% higher than the smaller core samples.

6.4 Discussion of Drill Results

Although no bodies of economic mineralization have been outlined, the results of the 1991 drill programme are significant because they indicate that the mineralized "102" zone does include individual intersections of potential economic interest, and that overall it extends to depths below

the 500 metre level and over a strike length of at least 1,550 metres. Considerably closer spaced drilling than the existing drill pattern, which is mostly on 200 metre centres away from the original shallow drilling beneath the surface showing, and/or underground exploration would be required to delineate mineable ore shoots.

The 1991 drill programme also discovered the "103" zone. There are insufficient intersections in the "103" to know if it is as extensive as the "102" zone. In the western part of the property the interpreted intersection of the "103" in hole AK91-35 may be the "102" which has changed strike slightly to the north to the northwest of a major cross-fault. This possible change in strike would correspond to a similar re-orientation of the Larder Lake Fault Zone immediately to the south. However, it is also possible that the "103" intersections in holes AK91-30 and 31 are footwall splays or subsidiary veins to the primary "102" structure. Further drilling is required to determine if the "103" is a separate zone with any economic potential.

The geochemically anomalous gold mineralization, which was intersected over appreciable widths of 5.00 to 25.00 metres, in holes AK91-34 and 37 is associated with felsic syenites which intrude the Amalgamated Kirkland mafic syenites and/or mafic trachyte flows. This mineralization is of interest because of the significant widths of anomalous assays which were intersected in both holes, as well as because of the similarities in host rock lithologies to the ore bodies which have been mined along the Kirkland Lake Main Break. Previous shallow drilling intersected "ore grade" mineralization in the Amalgamated Kirkland syenites. Further drilling at depth may be warranted.

7.0 CONCLUSIONS AND RECOMMENDATIONS

As a result of the 1989-91 program on the Amalgamated Kirkland property a series of sub-parallel mineralized zones or structures have been discovered within an area which extends for at least 1,550 metres along strike, and over a stratigraphic interval about 800 metres wide as a complexly folded sequence of Timiskaming volcanic, sedimentary and minor intrusive rocks. These mineralized zones are parallel to the Kirkland Lake "Main Break", approximately 1500 metres to the immediate north, and to the Larder Lake Break to the immediate south.

The most important mineralization as tested to date is the "102/103" zone, which has been traced for 1,550 metres along strike by stripping and drilling. It consists of a series of subparallel mineralized structures which are open at depth, especially given the wide spacing of the deeper holes. The surface stripping and shallow drilling in 1990 showed that the individual mineralized structures are continuous along strike, but locally disrupted by later faulting, and the deeper drilling in 1991 has shown that the overall system is continuous to a depth of 525 metres. Whilst no body of economic mineralization has yet been located, many of the intersection widths and average grades are indicative of a significant mineralized system with the potential to host ore-shoots characteristic of the Kirkland Lake district.

Closer-spaced drilling or underground exploration would be required to delineate any ore shoots which may be associated with the "102/103" zone. However, it is recommended that the next phase of drilling should be to extend the 200 metre-spaced pattern to a vertical depth of 700 metres over the known strike length of 1,600 metres to test the overall potential of the zone on the property in order to determine if more detailed drilling or underground exploration would be warranted. Subsequent programs would provide progressive in-fill drilling in areas of stronger mineralization, prior to either close-spaced surface drilling or underground exploration in order to establish the mineral reserves along this system. No further exploration is recommended at this time of the mineralized zones in the Amalgamated Kirkland syenite which were drilled in 1991. However, the structural relationships between the strike and dip of the "102/103" zone and the southern contact of the syenite indicate that the zone should enter into the syenite at a depth of about 700 metres at the west end of the property, and at progressively greater depths to the east. Most of the historical production in the Kirkland Lake district has been from a complex syenite body that is almost identical to the Amalgamated Kirkland syenite; therefore, the potential for economic mineralization along the "102/103" zone is probably greater at depth, after it intersects the syenite body.

REFERENCES

- Benham, W., 1990, Report on Geological Mapping, Amalgamated Kirkland Property, Kirkland Lake Project, Teck Township, Larder Lake Mining Division, Ontario; Battle Mountain (Canada) Inc.
- Benham, W., 1990a, Report on Overburden Stripping, Detailed Mapping and Channel Sampling, Amalgamated Kirkland Property, Kirkland Lake Project, Teck Township, Larker Lake Mining Division, Ontario; Battle Mountain (Canada) Inc.
- Benham, W., 1990b, Diamond Drilling Report, Amalgamated Kirkland Property (October-December, 1990), Teck Township, Larder Lake Mining Division, Ontario; Battle Mountain (Canada) Inc.
- Bottrill, T.J., 1990, Report on Overburden Stripping, Outcrop Washing and Channel Sampling, Amalgamated Kirkland Property (July-December, 1989) Teck Township, Larder Lake Mining Division, Ontario; Battle Mountain (Canada) Inc.
- Roth, J., 1990, Report on a Magnetometer Survey, Amalgamated Kirkland Property, Kirkland Lake, Ontario for Battle Mountain (Canada) Inc.; Stratagex Ltd.
- Roth, J., 1990a, Report on an IP/Resistivity Survey, Amalgamated Kirkland Lake, Ontario for Battle Mountain (Canada) Inc.; Stratagex Ltd.

d:\wp5\data\kl\reports\ak-drill.doc January 24, 1992

Amalgamated Kirkland Drilling

TABLE 1

SUMMARY LISTING OF DIAMOND DRILL HOLES

Individual Assays > 1.0 g/t Au or Intersection Averages > 100 ppb Au over > 3.0 metres

		Col	lar		Length		Dates		Intersections				
Hole No.	Easting	Northing	Dip	Azimuth	Proposed	Total	Started	Completed	Zone	From To	Au	Length	
	U	Ű	•		•		(19	91)	ł	(metre	g/t	0	
AK91-29	8700	10155	-62	341	225.00	206.85	29-Jul	01-Aug	102	158.00 170.00	0.47	12.00	
										163.20 166.40	1.05	3.20	
AK91-30	8600	10400	-56	161	300.00	387.45	01-Aug	06-Aug	103	107.00 118.30 including	1.80	11.30	
							and			107.50 112.00 and	2.88	4.50	
				-			13-Aug	14-Aug		107.50 108.00 and	4.01	0.50	
										107.50 109.00 and	4.88	1.50	
		1								110.50 112.00	3.71	1.50	
				•						112.00 118.30	1.15	6.30	
				•			•			117.90 118.30	15.12	0.40	
									102	No significant a	ssays		
AK91-31	8190	10370	-65	161	300.00	409.75	06-Aug	13-Aug	103	258.40 261.50 including	3.63	3.10	
										260.50 260.90	27.12	0.40	
									102	359.10 364.25 including	9.70	5.15	
										359.10 359.60 and	42.43	0.50	
										361.90 362.20 and	12.52	0.30	
										363.40 364.25	23.43	0.35	
AK91-32	8400	10035	-60	341	300.00	390.80	15-Aug	20-Aug	102	No significant a	55£Y3		
AK91-33	8000	10370	-65	161	250.00	454.75	21-Aug	28-Aug	103	No significant a	usays		
									102	No significant a	issays		

Battle Mountain (Canada) Inc.

¢.

Novermber, 1991

Amalgamated Kirkland Drilling

Kirkland Lake, Project

TABLE 1

SUMMARY LISTING OF DIAMOND DRILL HOLES

Individual Assays > 1.0 g/t Au or Intersection Averages > 100 ppb Au over > 3.0 metres

		Col	lar		Length		Dates		<u> </u>	Intersections			
Hole No.	Easting	Northing	Dip	Azimuth	Proposed	Total	Started C	ompleted	Zone	From	To	Au	Length
							(1991	l)			(metre	g/t	_
AK91-34	8191	10365	-55	341	375.00	450.00	29-Aug	05-Sep	105	205.50	208.90	0.28	3.40
									106	246.00	251.00	0.27	5.00
									A5,6	337.10	337.80	1.15	0.70
									107	422.40	431.00	0.28	8.60
AK91-35	7600	10100	-50	341	375.00	365.50	06-Sep	12-Sep	102	223.00	226.00	0.13	3.00
					:				103	344.05 includia	347.50	3.11	3.45
										344.05	344.60	18.88	0.55
AK91-36	7600	10010	-50	341	140.00	132.80	12-Sep	14-Sep		No sig			
AK91-37	7500	10245	-61	341	300.00	301.35	15-Sep	21-Sep	106	182.00 includi	192.20	0.44	10.20
										182.00	183.00	2.39	1.00
									A5,6	239.00 includia	264.00 •8	0.18	25.00
										239.50	240.00	1.46	0.50
AK91-38	8190	10388	-74	161	600.00	619.10	22-Sep	03-Oct	103	387.35 includi	390.10	0.41	2.75
										389.50	390.10	1.14	0.60
						1			102	546.90 includi	552.00 ng	1.97	5.10
	,									546.90	547.35	8.18	0.45
									102	568.80	573.50	0.20	4.70
:									102	577.60 includi	578.60 ng	2.66	1.00
										578.10	578.60	4.55	0.50
TOTAL					3165.00	3743.35				<u></u>			

d:\qpro\data\kl\91-assay\intersum.wq1 27-Jan-92
CHECK ASSAYING-QUARTERED CORE

					SWA	STIKA		Į	BOND	AR-CLEO	3G	1	1
				Ot	iginal San	nple 1/2 C	ore		1/4	Core			96
Hole No.	From	To	Length	Sample	Au 1	Au 2	Avg.	Sample	Au 1	Au 2	Avg.	Diff.	Diff
AK90-05	58.00	58.50	0.50	6518	0.10			13851	0.07			-0.03	-30
	58.50	59.00	0.50	6519	0.13		1	13852	0.09			-0.04	-31
	59.00	59.50	0.50	6520	0.18			13853	0.19	1		0.01	6
1	59.50	60.00	0.50	6521	0.12			13854	0.12			0	0
	60.00	60.50	0.50	6522	0.25	0.25	0.25	13855	0.11			-0.14	-56
	60.50	61.00	0.50	6523	0.07			13856	< 0.07			0	0
	61.00	61.50	0.50	6524	0.28	0.26	0.27	13857	0.25			-0.03	-11
	61.50	62.00	0.50	6525	0.11			13858	0.10			-0.01	و۔
AK90-18	61.00	62.00	1.00	7029	0.18			13859	0.11			-0.07	-39
	62.00	63.00	1.00	7030	2.09			13860	1.93			-0.16	-8
	63.00	63.60	0.60	7031	-0.10			13861	0.12			0.02	-20
	63.60	64.40	0.80	7032	0.05			13862	0.07			0.02	40
	64.40	64.90	0.50	7033	0.07			13863	<0.07			-0.01	-14
	64.90	65.50	0.60	7034	0.49			13864	0.61			0.12	24
	65.50	66.20	0.70	7035	0.27			13865	0.16			-0.11	-41
	66.20	67.20	1.00	7036	0.12			13866	0.09			-0.03	-25
	67.20	67.70	0.50	7037	16.27	16.53	16.40	13867	16.33	16.38	16.36	-0.04	-0
AK90-24	136.25	136.50	0.25	7769	0.50			13868	۵.07			-0.43	-86
	136.50	137.00	0.50	7770	0.20			13869	0.31			0.11	55
	137.00	137.50	0.50	7771	0.61			13870	0.31			-0.30	-49
	137.50	138.50	1.00	7772	0.24			13871	< 0.07			-0.25	-104
	138.50	139.00	0.50	7773	7.44	5.63	6.54	13872	5.89	6.02	5.96	-0.58	-8
	139.00	140.00	1.00	7774	6.31	6.19	6.25	13873	3.68	4.20	3.94	-2.31	-37
	140.00	141.00	1.00	<i>71</i> 75	0.05			13874	<0.07			0	0
AK90-25	102.65	103.40	0.75	7817	0.25			13875	0.24			-0.01	-4
	103.40	103.90	0.50	7818	0.04			13876	<0.07			0.00	0
	103.90	104.40	0.50	7819	7.70	8.32	8.01	13877	5.51	6.10	5.81	-2.20	-29
	104.40	104.90	0.50	7820	0.12			13878	<0.07			-0.06	-50
	104.90	105.50	0.60	7821	0.02			13879	<0.07			0	0
	105.50	106.00	0.50	7822	0.15			13880	<0.07			-0.09	-60
AK90-26	120.00	120.45	0.45	7858	0.31			13881	0.15			-0.16	-52
	120.45	121.20	0.75	7859	7.63	6.60	7.12	13882	6.64	6.93	6.79	-0.33	-4
	121.20	121.65	0.45	7860	1.00			13883	1.01			-0.01	-1
	121.65	122.35	0.70	7861	2.30			13884	2.02			-0.28	-12
	122.35	123.00	0.65	7862	0.42			13885	0.40			-0.02	-5
AK91-38	559.15	559.60	0.45	9295	0.02			13886	1.48			1.46	(7300)
	559.60	560.10	0.50	9296	0.46			13887	0.11			-0.35	-76
	560.10	560.60	0.50	9297	0.20			13888	< 0.07			0.14	70
	560.60	569.30	8.70	9312	0.76			13889	0.66			-0.10	-13
	569.30	569.80	0.50	9313	0.12			13890	0.16			0.04	33
	569.80	570.30	0.50	9314	0.02			13891	< 0.07			0	0
	570.30	571.00	0.70	9315	0.09			13892	< 0.07			-0.03	-33
	571.00	\$71.50	0.50	9316	0.36			13893	0.14			-0.22	-61
	571.50	572.00	0.50	9317	NIL			13894	0.09			0.09	100
	572.00	572.50	0.50	9318	NIL			13895	< 0.07			0	100
	572.50	573.00	0.50	9319	0.02			13896	<0.07			0	0
	573.00	573.50	0.50	9320	0.46			13897	0.43			-0.03	-7
Average					1.24				1.06				-12

Note: Samples 9295 and 9296 were probably switched in the Swastika Laboratory

CHECK ASSAYING-REJECTS

					SWA	STIKA		BO	NDAR-C	LEGG	I	
					Origina	al Sample		Rejec	t from Sw	vastika		%
Hole No.	From	То	Length	Sample	Au 1	Au 2	Avg.	Au 1	Au 2	Avg.	Diff.	Diff
			ł									
AK90-01	59.40	59.90	0.50	6244	0.86			0.87			0.01	1
	59.90	60.40	0.50	6245	0.36			0.70			0.34	94
AK90-03	65.60	66.10	0.50	6416	0.83			0.73			-0.10	-12
	71.40	72.10	0.70	6423	2.13	2.14	2.14	2.02			-0.12	-6
	72.10	73.00	0.90	6424	0.31			0.60			0.29	94
	73.00	74.00	1.00	6425	0.31			0.33			0.02	6
	74.00	74.60	0.60	6426	0.53			0.57			0.04	8
	74.60	75.10	0.50	6427	0.10			0.17			0.07	70
	75.10	75.80	0.70	6428	0.02			0.10			0.08	400
	75.80	76.60	0.80	6429	0.97			0.93			-0.04	-4
AK90-05	58.00	58.50	0.50	6518	0.10			0.20			0.10	100
	58.50	59.00	0.50	6519	0.13			0.13			0	0
	59.00	59.50	0.50	6520	0.18			0.23			0.05	28
	59.50	60.00	0.50	6521	0.12			0.13			0.01	8
	60.00	60.50	0.50	6522	0.25	0.25	0.25	0.27			0.02	8
	60.50	61.00	0.50	6523	0.07			0.10			0.03	43
	61.00	61.50	0.50	6524	0.28	0.26	0.27	0.20			-0.08	-29
	61.50	62.00	0.50	6525	0.11			0.10			-0.01	-9
	82.00	83.00	1.00	6538	0.15			0.10			-0.05	-33
	83.00	84.00	1.00	6539	0.03			0.10			0.07	233
	84.00	85.00	1.00	6540	0.12			0.17			0.05	42
	85.00	86.00	1.00	6541	0.17	0.15	0.16	0.17			0.01	6
	86.00	87.00	1.00	6542	0.01			0.20			0.19	1900
	87.00	88.00	1.00	6543	0.06			0.07			0.01	17
1700.00	88.00	89.00	1.00	6544	0.08			0.10			0.02	25
AK90-06	26.00	26.40	0.40	6583	0.23			0.33			0.10	43
	20.40	27.00	0.60	6584	25.46	27.63	26.55	24.20			-2.35	-9
	27.00	27.50	0.50	800	3.93			3.67		n	-0.26	· -7
	27.50	28.00	0.50	0360	/.1/			5.73			-1.44	-20
	20.00	20.30	0.50	008/	6.22	9.24	8.73	8.53			-0.20	-2
	20.30	29.10	0.00	0066 (500	4.92			4.33			-0.59	-12
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29.10	91.00	0.90	0309	1.60			1.80	i		-0.05	-3
71230-07	00.50	01.00	1.00	0040	<u> </u>			2.05			-0.19	-9
	82.00	02.00 92.00	1.00	0047	0.03			< 0.07			022	100
	83.00	84.00	1.00	6640	0.55	5.44	5.54	< 1.07			-0.33	-100
	84 00	84 SA	1.00	6650	5.45 A 11	5.00	5,50	J.45 0.10			-0.02	-0
	84 50	85 20	0.50	6651	V.11 A 19			0.10			-0.01	
AKONIN	74 00	75 00	1.00	6697	2 08			2 /2			0.02	17
	75.00	75.85	0.85	6688	002			013			0.35	333
	75.85	76.55	0.70	6680	0.06	10.12	10.04	11 52			1 40	15
AK90-00	93.65	94.25	0.60	6741	11.42	11 0.12	11 25	1000			15	-1
				V / 14	a 40 140		+ 4, 6 07	10,75			~	-1

CHECK ASSAYING-REJECTS

				SWA	STIKA		BO	NDAR-C	LEGG	1		
					Origina	al Sample		Rejec	t from Sv	vastika	1	%
Hole No.	From	To	Length	Sample	Au 1	Au 2	Avg.	Au 1	Au 2	Avg.	Diff.	Diff
AK91-29	158.50	159.00	0.50	7629	0.11		:	0.14			0.03	27
	159.00	159.50	0.50	7630	0.72			0.71			-0.01	-1
	159.50	160.15	0.65	7631	0.99			0.98			-0.01	-1
	160.15	161.00	0.85	7632	0.04			< 0.07			0	0
	161.00	162.00	1.00	7633	0.01	1		0.21		ļ	0.20	2000
	162.00	162.80	0.80	7634	0.02			< 0.07			0	0
	162.80	163.20	0.40	7635	0.13			0.13			0	0
	163.20	163.70	0.50	7636	0.89			1.16			0.27	30
	163.70	164.50	0.80	7637	1.64			1.77			0.13	8
	164.50	165.00	0.50	7638	0.20			0.23			0.03	15
	165.00	166.00	1.00	7639	1.17			1.10			-0.07	-6
	166.00	166.40	0.40	7749	0.84			0.74			-0.10	-12
	166.40	167.30	0.90	7750	0.32			0.21			-0.11	-34
	167.30	167.80	0.50	7751	0.30			0.23			-0.07	-23
	167.80	168.30	0.50	7752	0.06			0.09			0.03	50
	168.30	169.20	0.90	7753	0.46			0.41			-0.05	-11
	169.20	170.00	0.80	7754	0.10			0.09			-0.01	-10
AK91-30	107.00	107.50	0.50	7660	0.23			0.28			0.05	22
	107.50	108.00	0.50	7661	10.63	11.38	11.01	10.51	12.30	11.41	0.40	4
	108.00	109.00	1.00	7662	1.82			1.74			-0.08	-4
	109.00	110.00	1.00	7663	0.04			< 0.07			0	0
	110.00	110.50	0.50	7664	0.03			< 0.07			0	0
AK91-30	110.50	111.00	0.50	7665	3.50	·		2.81			-0.69	-20
	111.00	112.00	1.00	7666	3.81			4.49	4.72	4.61	0.80	21
	112.00	113.00	1.00	7667	0.58			0.39			-0.19	-33
	113.00	114.00	1.00	7668	0.07			0.07			0	0
	114.00	115.00	1.00	7669	0.24			0.29			0.05	21
	115.00	116.00	1.00	7670	NIL			< 0.07			0	
	116.00	117.00	1.00	7671	0.12			< 0.07			-0.06	-50
	117.00	117.90	0.90	7672	0.22			0.26			0.04	18
	117.90	118.30	0.40	7673	16.39	13.85	15.12	12.76			-2.36	-14
AK91-31	258.40	259.00	0.60	7847	0.15			0.11			-0.04	-27
	259.00	260.00	1.00	7848	0.10			0.09			-0.01	-10
	260.00	260.50	0.50	7849	0.16			0.20			0.04	25
	260.90	261.50	0.60	7851	0.25			0.47			0.22	88
	358.60	359.10	0.50	7940	0.14			0.07		•	-0.07	-50
	359.10	359.60	0.50	7941	45.09	39.77	42.43	40.44			-1.99	-4
	359.60	360.00	0.40	7942	2.90			2.50			-0.40	-14
	360.00	360.50	0.50	7943	0.22			0.26			0.04	18
	360.50	361.00	0.50	7944	1.94			1.77			-0.17	-9
	361.00	361.50	0.50	7945	2.73			2.71			-0.02	-1
	361.50	361.90	0.40	7946	0.95			0.82			-0.13	-14
	361.90	362.20	0.30	7947	12.52			12.69			0.17	1

CHECK ASSAYING-REJECTS

				SWA	STIKA		BON	DAR-C	LEGG			
					Origina	I Sample		Reject	from Sw	/astika		%
Hole No.	From	То	Length	Sample	Au 1	Au 2	Avg,	Au 1	Au 2	Avg.	Diff.	Diff
AK91-31	362.20	362.70	0.50	7948	0.86			0.34			-0.52	-60
	362.70	363.10	0.40	7949	0.07			0.26			0.19	2/1
	363.10	363.40	0.30	7950	2.09			2.80		00.54	0.71	34
	363.40	363.85	0.45	7951	20.78	05.54		18.96	22.05	20.51	-0.27	-1
	363.85	364.25	0.40	7952	21.21	23.54	20.41	23.54			-2.87	-11
A 77 04 00	364.25	364.65	0.40	/953	0.13			0.19			0.06	40
AK91-33	231.20	231.33	0.00	0203	0.02							0
	272.10	213.00	0.90	0311	0.05			< 0.07				0
	273.00	213.30	1.00	0312	0.02			< 0.07				125
	215.50	274.50	1.00	0313	0.04			-0.07			0.05	120
i	214.50	275.30	1.00	0014	0.02			0.07			-0.05	-38
	275.30	270.10	0.00	8316	0.13		1	<0.00			-0.03	-50
	378.00	378 80	0.90	8366	0.01			<0.07			ň	Ň
	378.80	370.00	0.00	8367	0.05			0.00			-0.07	-44
	370.00	380.00	0.45	8368	0.03			0.13			0.10	333
AK01.38	387.35	388.00	0.65	9170	0.11			0.09	i		-0.02	-18
111171-00	388.00	388.90	0.90	9180	0.39			0.36			-0.03	-8
	388.90	389.50	0.60	9181	0.03			0.11			0.08	267
	389.50	390.10	0.60	9182	1.09	1.18	1.14	0.86			-0.28	-26
	546.30	546.90	0.60	9270	0.09			0.08			-0.01	-11
i	546.90	547.35	0.45	9271	8.37	7.99	8.18	7.19			-0,99	-12
	547.35	547.75	0.40	9272	0.22			0.28			0.06	27
	547.75	548.45	0.70	9273	2.76			2.65			-0.11	-4
	548.45	549.00	0.55	9274	0.05			< 0.07			0	0
	549.00	549.50	0.50	9275	1.62			1.15			-0.47	-29
	549.50	550.00	0.50	9276	0.96			1.06			0.10	10
	550.00	550.50	0.50	9277	0.75			0.83			0.08	11
	550.50	551.00	0.50	9278	2.33			2.04			-0.29	-12
	551.00	551.50	0.50	9279	1.25			1.00			-0.25	-20
	551.50	552.00	0.50	9280	1.74			2.02			0.28	16
	559.15	559.60	0.45	9295	0.02			1.71	1.90	1.81	1.79	8950
	559.60	560.10	0.50	9296	0.46			0.21			-0.25	-54
	560.10	560.60	0.50	9297	0.20			< 0.07			-0.14	-70
	566.50	567.00	0.50	9308	0.29			0.25			-0.04	-14
	567.00	567.50	0.50	9309	0.02			< 0.07	i		0	0
	567.50	568.00	0.50	9310	0.02			< 0.07			0	0
	568.00	568.80	0.80	9311	0.03			< 0.07			0	0
	568.80	569.30	0.50	9312	0.76			0.64			-0.12	-16
	569.30	569.80	0.50	9313	0.12			0.15			0.03	25
	569.80	570,30	0.50	9314	0.02			<0.07				
	570.30	571.00	0.70	9315	0.09			<0.07			-0.03	-55
	5/1.00	5/1.50	0.50	9516	U.30			0.12	1	1	-0.24	-0/
	571.50	51200	0.50	y31/				< 0.0/	1]		

.

TABLE 3

CHECK ASSAYING-REJECTS

					SWA	STIKA		BON	DAR-C	LEGG		
					Origina	l Sample		Reject	from Sw	/astika		%
Hole No.	From	То	Length	Sample	Au 1	Au 2	Avg.	Au 1	Au 2	Avg.	Diff.	Diff
AK91-38	572.00	572.50	0.50	9318	NIL			< 0.07			0	
	572.50	573.00	0.50	9319	0.02			<0.07			0	0
	573.00	573.50	0.50	9320	0.46			0.32			-0.14	-30
	573.50	574.00	0.50	9321	0.02			< 0.07			0	0
	574.00	574.50	0.50	9322	NIL			< 0.07			0	
	574.50	575.00	0.50	9323	0.04			< 0.07			0	0
	577.60	578.10	0.50	9329	0.76			0.75	0.65	0.70	-0.06	-8
	578.10	578.60	0.50	9330	4.56	4.53	4.55	3.19	3.84	3.52	-1.04	-23
	578.60	579.10	0.50	9331	0.02			< 0.07			0	0
	579.10	579.60	0.50	9332	0.13			0.13			0	0
	579.60	580.10	0.50	9333	0.03			< 0.07			0	0
	580.10	580.50	0.40	9334	0.02			< 0.07			0	0
	580.50	581.00	0.50	9335	0.01			< 0.07			0	0
	581.00	581.50	0.50	9336	0.23			0.10			-0.13	-57
Average					2.01		, <u></u>	1.88			-0.08	12.94

Kirkland Lake Project

APPENDIX I

DIAMOND DRILL LOGS

Battle Mountain (Canada) Inc.

November, 1991

HOLE: AK-91-29

PAGE: 1 of 9

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED LOGGED BY	July 30, 1991 - Augu Mark Masson	st 2, 1991	EASTING	8700.8	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 447419 July 29, 1991 August 1, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Ware B.M.C.I.	house	ELEVATION COLLAR SURVEY	313.5 Northland Technical 206.85	Note:	See table at	end of sumn	ary log
PURPOSE	To test "102" structure			INP	CORE SIZE	metres NQ			Juriejs	
COMMENTS	"102" gold zone @ 158.0	0 - 170.00, 12.0 m.	SIGNED BY	(W. Benham)						

	SUMI	MARY LOG		AS	SSAY SUMM	ARY
INTERVAL From To	DESCRIPTION	INTERVAL From To	DESCRIPTION	INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
0.00 10.40 10.40 45.70 45.70 52.55 52.55 54.00 73.80 73.80 73.80 75.60 83.60 106.00 106.00 144.00 150.00 159.50 159.50 160.15 163.70 166.00	OVERBURDEN ASH TUFF ASH/LAPILLI TUFF Hematitic ASH TUFF CONGLOMERATE ASH TUFF CONGLOMERATE ASH TUFF 94.00 3 mm chalcopyrite + quartz vein LAPILLI TUFF Sericitic LAPILLI TUFF Bleached, chlorite + sericite. LAPILLI TUFF Chlorite ± sericite. 158.10 Quartz + pyrite + chalcopyrite vein, 2 cm wide. QUARTZ + PYRITE BRECCIA ZONE GRAYWACKE Weakly sericitic. 162.90 - 163.20 Quartz + pyrite + sericite. MUDSTONE	166.00 169.60 169.60 177.20 177.20 206.85 260.85	Sericitic, trace pyrite, 1-3% quartz veins. GRAYWACKE Chloritic, trace pyrite, 2-10% white quartz veins. 166.40 - 166.90 Fault @ 10-15° tca. 168.30 - 169.20 Fault @ 15° tca. GRAYWACKE/CONGLOMERATE GRAYWACKE 186.60 - 196.00 Fault zone @ 5° tca. E. O. H.	158.00 170.00 including 163.20 166.40	12.00 3.20	0.47 1.05

HOLE: AK-91-29

PAGE: 2 of 9

PROPERTY	Amalgamated Kirkland	DATE LOGGED	July 30, 1991 - August 2, 199	91	EASTING	8700.8	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 447419 July 29, 1991 August 1, 1991	DOGGED BY DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Mark Masson Heath & Sherwood Kirkland Lake Warehouse B.M.C.I.		NORTHING ELEVATION COLLAR SURVEY LENGTH UNITS	10152.7 313.5 Northland Technical 206.85 metres	Note:	See table b downhole su	clow for all rveys	
PURPOSE	To test "102" structure				CORE SIZE	NQ				
COMMENTS	"102" gold zone @ 158.0	0 - 170.00, 12.0 m.	SIGNED BY (W. Benham)						

						ASSAY SUM	MARY								
INTERVAL From To			DESCR	IPTION		INTERVAL From To			DESC	RIPTION			INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
		Depth	Method	Azimuth	Dip		D	epth	Method	Azimuth	Dip				
		Collar	Compass	341	62										
		12.2			62										
		46.0			51										
		93.3			50				-						
		120.0			49										
		137.2			47										
	[185.0			45										
								**********************				1			
												1			
		· · · · · ·								·····					
		<u></u>	<u>.</u>	<u></u>								3			

HOLE: AK-91-29

PAGE: 3 of 9

INTE	RVAL	DESCRIPTION	1			SAN	IPLE				AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Pv	%0V	%Ser		Au. e/t	Au Check
0.00	10.40	OVERBURDEN Sand-boulder till.									110, gr	
10.40	45.70	 ASH TUFF Massive to finely bedded @ 40° tca. Light grey-green to dirty brown, generally fine to very fine grained with weak, patchy magnetics. Unit is quite homogeneous but displays zones of strong fracturing and brecciation probably associated with late cross-faulting. (Murdock Fault) and numerous sharp, tight chloritic faults. Overall the unit is weakly sericitic with fine spotty sericite throughout. 12.80 - 13.40 Fine, pebble conglomerate horizon comprised of 80% buff-brown, aphanitic clasts averaging 0.5 cm (moderate to strong elongation @ 35° tca) and 20% fine heterolithic clasts (jasper and mafic volcanics). Upper contact sharp chlorite + sericite + quartz fault @ 50° tca. Lower contact somewhat gradational. 16.10 - 17.30 Fractured, brecciated zone. Moderately well fractured to brecciated ash tuff. Grey-brown aphanitic ash displaying fractured to brecciated texture cut by fine chlorite + 	7551 7552 7553 7554 7555	14.00 15.00 16.00 16.50 17.30	15.00 16.00 16.50 17.30 18.00	1.00 1.00 0.50 0.80 0.70					0.01 0.01 0.02 0.01	
		sericite ± quartz infilling (in-situ). Upper and lower contacts marked by sharp, tight chlorite ± quartz slips @ 20° tca. No visible sulphide mineralization.	7556 7557	18.00 19.00	19.00 20.00	1.00 1.00					0.01 NIL 0.01	
		20.00 - 24.00 Pseudo-brecciated to brecciated ash tuff with irregular, anastomosing chlorite + sericite ± quartz infilling gives zone a patchwork, mottled texture. Patchy non- mineralized areas which are quite hard and probably partially silicified.	7558 7559 7560 7561 7562 7562	20.00 20.50 21.50 22.00 23.00	20.50 21.50 22.00 23.00 24.00	0.50 1.00 0.50 1.00 1.00			10-15	Sil.	0.01 0.01 0.01 0.01 0.02	
		27.00 - 31.00 Rubbly broken section due to open, vuggy quartz + ankerite + chlorite slips, up to 3 cm wide, spaced at approximately 0.5 m intervals.	7564 7565 7566 7567	34.00 35.00 36.00 37.00	35.00 36.00 37.00 37.50	1.00 1.00 1.00 0.50					0.02 0.02 0.02 0.01	
		 37.50 - 45.70 Brecciated, sericitized ash tuff fractured by 20-25% chlorite ± quartz breccia veins, up to 1-2 cm wide, @ 0-20° tca. Matrix is patchy, irregularly sericitized tuff (?) with anastomosing alteration fronts and irregular quartz ± albite blebs and veinlets. Non-mineralized. 	7568 7569 7570 7571 7572	37.50 38.00 39.00 40.00 41.00	38.00 39.00 40.00 41.00 42.00	0.50 1.00 1.00 1.00 1.00		1-2 1-2 1-2 1-2 1-2	25 25 25 25 25 25		0.03 0.02 0.01 0.01 0.01 0.01	

HOLE: AK-91-29

PAGE: 4 of 9

INTE	RVAL	DESCRIPTION				SA	MPL	E					AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	9	6Py	%QV	%Ser			Au, g/t	Au.Check
45.70	52.55	ASH/LAPILLI TUFF Dark grey-green to purple, massive, fine-grained, hematitic ash tuff (trachyte), very homogeneous.	7573 7574 7575 7576	42.00 43.00 44.00 45.00	43.00 44.00 45.00 45.70	1.00 1.00 1.00 0.70			1-2 1-2 Tr.	25 25 5			NIL NIL NIL 0.01	
		 45.70 - 46.50 Lapilli tuff comprised of 10% red, trachytic clasts up to 5 mm (subrounded) floating in an aphanitic ash matrix. Grades to ash tuff. 49.70 - 50.70 Bleached, weakly silicified fractured and brecciated zone. Displays patchy, diffuse bleaching (buff-brown sericitization) of matrix giving mottled texture and fragmentation or brecciation of host rock by small chloritic sutures and veinlets. Contact very sharp and irregular. 	7577 7578 7579 7580 7581 7582	45.70 46.50 47.00 48.00 49.00 49.70	46.50 47.00 48.00 49.00 49.70 50.70	0.80 0.50 1.00 1.00 0.70 1.00				20	Chi	Sil	0.02 0.01 NIL 0.01 0.01 0.01	
		50.90 - 51.40 Quartz + sericite + chlorite breccia zone with sharp chloritic fault contacts @ 43° tca. Comprised of 50% white to buff quartz veining and flooding with bleached, sericitized wall rock inclusions. Strong chloritic micro-fracturing. Non-mineralized.	7583 7584 7585	50.70 51.40 52.00	51.40 52.00 52.55	0.70 0.60 0.55			40	15			0.02 0.03 0.02	
52.55	54.00	ASH TUFF Very distinctive, light brown "speckled" unit comprised of 5% very fine, black chloritic spots and laths (up to 1 mm) displaying a subparallel alignment (trachytic) @ 35° tca floating in a light brown, non-magnetic, aphanitic ash matrix. Very sharp, abrupt contact @ 45° tca. Unit contains 2% narrow chlorite veinlets and narrow chloritic breccia veinlets (≤ 2 mm) throughout.	7586 7587	52.55 53.00	53.00 54.00	0.45 1.00							NIL 0.01	
54.00	73.80	CONGLOMERATE Quite fine grained with pebbles averaging 0.5-1 cm in size and comprised of angular to subrounded polymicitc, lithic fragments in a fine grained graywacke matrix. Entire unit is moderately to strongly deformed (foliated) with pervasive wispy sericite cleavage developed @ 25-30° tca and strong clast elongation. 1% late barren quartz \pm albite veinlets cross-cutting foliation.	7588	54.00	55.00	1.00				20			NIL	

HOLE: AK-91-29

PAGE: 5 of 9

INTE	RVAL	DESCRIPTION		-		SAN	IPLE					AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser		Au	g/t	Au,Check
		55.00 - 55.25 Two barren quartz + albite veins up to 6 cm wide. Unit is also in part, intercalated with fine ash and graywacke horizons with spotty sericite alteration and non- distinguishable contacts up to 1.5 m wide. Frequently displays alternating hematite/sericite alteration.	7589 7590	55.00 55.50	55.50 56.50	0.50 1.00		10-15	20		0 0	.01 .01	
73.80	75.60	ASH TUFF Well bedded ash tuff. Light grey-green, very fine grained, scricitic tuff with very fine lamellae @ 45° tca. Pervasive sericite alteration (very soft).											
75.60 83.60	83.60	 CONGLOMERATE Quite fine grained with pebbles averaging 0.5-1 cm in size and comprised of angular to subrounded polymicitc, lithic fragments in a fine grained graywacke matrix. Entire unit is moderately to strongly deformed (foliated) with pervasive wispy sericite cleavage developed @ 25-30° tca and strong clast elongation. 1% late barren quartz ± albite veinlets cross-cutting foliation. 77.90 Fault @ 42° tca., 1-2 mm chloritic mud gouge. 78.90 - 79.20 Fault @ 30° tca., Strong tight chloritic mud breaks within highly deformed chloritic shear. Dry, barren with minor late calcite veining. ASH TUFF Chlorite + Hematite. Massive to well bedded @ 50° tca. very fine grained 											
		 dark green to grey-brown to malve where hematitic. Patchy, strong magnetics. Intercalated with lapilli tuff horizons up to 1 m with gradational contacts. Lower contact of ash tuff unit is sharp @ 50° tca. 93.00 - 93.10 Fault @ 70° tca. Sharp chlorite + sericite slip with 2% late quartz ± albite veining and bleached, sericitic alteration halo for 10 cm around slip. 94.00 Chalcopyrite + quartz vein @ 20° tca., 3-5 mm wide, chalcopyrite + pyrite + quartz/calcite veinlet displaying good zonation from wall to core consisting of quartz + calcite-+ quartz ± pyrite-+ chalcopyrite. 96.50 - 102.30 Extremely well bedded, dark green to mauve, hematitic ash tuff with minor, tight chloritic faults. Bedded @ 40° tca. 	7591 7592 7593 7594	92.00 92.90 93.40 93.90	92.90 93.40 93.90 94.30	0.90 0.50 0.50 0.40	Tr.	Tr. 1	10	Сру че	0 0 N in 0	01 02 'IL .04	

HOLE: AK-91-29

PAGE: 6 of 9

INTE	RVAL	DESCRIPTION				SA	MPLE		AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py %QV	%Ser	Au, g/t	Au,Check
		 96.70 Fault @ 50° tca. Sericite + chlorite. Sharp, tight chlorite slip, with a 0.5 cm wide, quartz + calcite veinlet and 3 cm width of foliated and sericitized tuff proximal to slip. 98.80 Fault @ 50° tca. Sericite + chlorite. Sharp, strong chloritic slip with minor quartz veining and 5-8 cm of sericitic bleaching and shearing symmetrically around fault slip. 105.50 Fault @ 55° tca. Sericite + chlorite + quartz. Strong, tight sericitic slip with 1 cm quartz veinlets and irregular blebs. Moderate to strong sericite alteration of wallrock for up to 15 cm from fault slip. Barren, non-mineralized. 	7595 7596 7597 7598	103.00 104.00 104.50 105.20	104.00 104.50 105.20 106.00	1.00 0.50 0.70 0.80	Tr. Tr.	5 5-10	0.02 0.01 0.01 0.02	
106.00	144.00	 LAPILLI TUFF Massive to moderately well foliated with prominent clast elongation @ 50° tca. Comprised of angular to subrounded, heterolithic (trachytes) lapilli clasts to 4 cm, avg. 1 cm, and varying from 5-20% of unit. Matrix is a fine grained lithic ash. Typically notable are two distinct clasts types: 1) Aphanitic light green to brown trachyte which is frequently sericitized. 2) Porphyritic (trachytoid) clasts which are dark brown to yellow-green with black euhedral phenocrysts. Matrix displays moderate spotty and wispy sericite alteration throughout. Sericitization and deformation of tuff increases and while to foult @114.5m 								
		 107.50 - 111.00 Broken and rubbly due to strong, chloritic fracturing and tight fault slips subparallel tca. 114.50 - 114.60 Fault @ 35° tca. Broken, rubbly with strong sericite slips and late quartz veins. 114.60 - 116.00 Extractor bergetitie with entering and strong sericite slips. 	7599 7600 7601 7602 7603 7604 7605 7606 7607	106.00 107.00 108.00 110.00 111.00 112.00 113.00 114.00	107.00 108.00 109.00 110.00 111.00 112.00 113.00 114.00 115.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		5-10	0.01 0.01 NIL 0.01 NIL 0.01 0.01 0.03 0.03	
		 114.00 - 116.40 Strongly hematitic with patchy, sericitic zones displaying diffuse alteration fronts giving a very mottled appearance. 119.20 - 119.70 Fault @ 10-15° tca. Tight, irregular chlorite + sericite slip with minor quartz veining. 128.50 - 128.60 Fault @ 50° tca. Sericite + quartz. Strongly foliated to schistose, sericitic shear with 4 cm white-buff qtz vein. 	7608 7609	115.00 116.00	116.00 116.50	1.00 0.50			0.01 0.01	

HOLE: AK-91-29

PAGE: 7 of 9

INTE	RVAL	DESCRIPTION	Γ		in the second second	SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		128.60 - 144.00 Massive to weakly foliated, typically green-brown, 0-15% clasts and quite variable from weakly sericitic to chloritic and hematitic. Lower contact is gradational over 1 m.	7610 7611 7612	142.00 142.50 143.30	142.50 143.30 144.00	0.50 0.80 0.70		2	5	NIL 0.03 0.03	
144.00	150.00	LAPILLI TUFF Bleached, spotted, chlorite + sericite. Unit is comprised of 5% angular pink-brown trachytoid textured lapilli clasts in a "spotted" yellow-green chlorite + sericite matrix. Lapilli clasts often display altered corroded boundaries which fade into a highly altered matrix comprised of dark green chlorite spots within an aphanitic, sericitized groundmass which gives the unit a distinctive spotted appearance. Quite massive and only weakly deformed but pervasively altered.									
		145.50 Fault @ 40° tca. Sericite + quartz. 4 cm wide sericite schist zone with barren quartz veins.	7613 7614 7615 7616 7617 7618	144.00 145.00 146.00 147.00 148.00 149.00	145.00 146.00 147.00 148.00 149.00 150.00	1.00 1.00 1.00 1.00 1.00 1.00				0.02 0.01 0.01 NIL NIL 0.02	
150.00	159.50	LAPILLI TUFF Chlorite + sericite altered. 5-7% angular lapilli clasts which are chloritized (dark green) and stretched @ 50° tca floating in a bleached, sericitized, buff-brown matrix with 3% spotty sericite throughout. Frequently clasts display corroded and diffuse boundaries. Unit is quite massive to moderately foliated, but highly altered, non-magnetic and contains 1% late barren quartz veinlets.	7619 7620	150.00 151.00	151.00 152.00	1.00 1.00				NIL 0.01	
		153.40 - 153.60 Fault @ 30° tca. Sericite + quartz + calcite. Strong sericitic, mud gouge shear with late barren quartz ± calcite veinlets up to 4 mm wide.	7621 7622 7623	152.00 153.00 154.00	153.00 154.00 154.50	1.00 1.00 0.50				0.01 0.03 0.02	
		154.50 - 155.20 Altered tuff with 5% quartz veining or stockworking as dark green quartz + chlorite veins and later buff-white quartz veins. Trace disseminated pyrite.	7624 7625 7626 7627	154.50 155.20 156.00 157.00	155.20 156.00 157.00 158.00	0.70 0.80 1.00 1.00	Tr. Tr.	5 Tr.	30	0.01 0.02 0.03 NIL	
		158.10 Quartz + pyrite + chalcopyrite vein. 1-2 cm wide irregular white quartz vein @ 35° tca with 1-2% fine grained pyrite and trace chalcopyrite on sericitic seams within vein.	7628 7629 7630	158.00 158.50 159.00	158.50 159.00 159.50	0.50 0.50 0.50	0.5	2	30	0.33 0.11 0.72	

HOLE: AK-91-29

PAGE: 8 of 9

INTE	RVAL	DESCRIPTION				S.	AMPLE	3			AS	SAYS
FROM	то		No.	From	То	Length %Re	c %P	y 9	%QV	%Ser	Au, g/t	Au, Check
159.50	160.15	QUARTZ + PYRITE BRECCIA ZONE Upper and lower contacts are sharp sericite slips with milk-white quartz \pm albite veinlets @ 50° tca. Zone consists of fractured, brecciated, sericitized, tuff infilled by at least three generations of quartz which are light grey, bluish grey and later cross-cutting white veinlets. Numerous tight sericitic slips and sutures, which often carry fine grained pyrite, cut quartz and frequently displaces the later barren white veins. Pyrite (trace-1%) occurs as very fine grained disseminations on sericitic sutures and fractures and as fine grained disseminations within quartz.	7631	159.50	160.15	0.65	0.5	-1	15	30	0.99	
160.15	163.70	GRAYWACKE Massive, fine grained, dark green graywacke with 5% sericite spotting. Unit is comprised of fine lithic clasts, up to 1 mm, predominantly quartz, lithics, feldspar and jasper in decreasing order and 0.5% angular mudstone clasts.										
		 160.15 - 161.00 Moderately, pervasively sericitized which gradually fades out @ 161.0 m. 162.90 - 163.20 Quartz + sericite ± pyrite zone. Sharp sericitic contacts @ 55° tca. Zone contains 5-10% buff-white to grey quartz veins, up to 1 cm wide, in a foliated, sericitized graywacke. Contains 0.5% finely disseminated pyrite. 	7632 7633 7634 7635 7636	160.15 161.00 162.00 162.80 163.20	161.00 162.00 162.80 163.20 163.70	0.85 1.00 0.80 0.40 0.50	0 1	0.5 Tr.	5-10 <1	10-15 25-30 20	0.04 0.01 0.02 0.13 0.89	
163.70	166.00	MUDSTONE Aphanitic, light to dark green mudstone displaying fine bedding and tight isoclinal folding @ 164.0 m. Lower contact is gradational to graywacke.	7637 7638 7639	163.70 164.50 165.00	164.50 165.00 166.00	0.80 0.50 1.00	ר ני ני	ľr. ľr. ľr.	<1 1 3	20 25 20	1.64 0.20 1.17	
166.00	169.60	GRAYWACKE/MUDSTONE Massive, fine grained, dark green, chloritic graywacke with 10% intercalated mudstone beds and angular mudstone clasts up to 2 cm. Mudstone beds are generally very irregular, frequently contorted and disrupted. 2% barren white quartz veinlets throughout. Weak spotty sericitization.	7740	1// 00	177.40				_			
		 166.40 - 175.00 Low angle chlorite ± mudstone breaks running subparallel tca. and oscillating in and out of core. Very tight, strong chloritic breaks. 166.40 - 166.90 Fault @ 10-15% tca. Chlorite + sericite. Strong, tight, chloritic mud slip up to 0.5 cm wide. Graywackes 	7749	166.00 166.40	166.40 167.30	0.40 0.90			2	10	0.84 0.32	

HOLE: AK-91-29

PAGE: 9 of 9

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SSAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		 proximal to slip are moderately sericitized and contain 3- 5% barren white quartz ± albite veins, up to 2 cm, @ 60- 70° tca. 167.40 2 cm wide, white buff, quartz ± albite vein @ 20° tca with strong sericitic slip contacts. Trace disseminated pyrite in wallrock adjacent to the vein. 168.30 - 169.20 Fault @ 15° tca. Strong tight chloritic mud break, 0.5 - 1 cm wide, with 10% white quartz veinlets in wallrock parallel to slip face. 	7751 7752 7753	167.30 167.80 168.30	167.80 168.30 169.20	0.50 0.50 0.90	Tr.	10 2-3 5-10	25 25	0.30 0.06 0.46	
169.60	177.20	GRAYWACKE/CONGLOMERATE/MUDSTONE Intercalated graywackes, mudstones (35%) and conglomerates which are comprised of 70% dark green chloritized fragments (angular to subrounded and possibly tuffaceous) and 30% lithics (mudstone, jasper + quartz) in a fine grained graywacke matrix. Mudstone occurs as narrow interbeds, up to 30 cm, and as large rip-up clasts to 7 cm. 1-2% barren quartz veining throughout.	7754 7755 7756	169.20 170.00 171.00	170.00 171.00 172.00	0.80 1.00 1.00				0.10 0.02 0.01	
177.20	206.85	 GRAYWACKE Massive, fine grained, grey-green, well sorted, very clean graywacke with 1% intercalated mudstone horizons, up to 0.5 m, and angular mudstone clasts, up to 3 cm, scattered throughout. 181.60 - 181.90 Fault @ 45° tca. Chlorite + sericite + quartz. Strongly schistose, sericitized graywacke with 5-7% white irregular quartz veins, up to 1.5 cm wide, which are generally barren. 0.5% disseminated pyrite in sericitized wallrock. 186.60 - 196.00 Fault @ 5° tca. Chlorite + sericite + gouge ± quartz. Strong tight chloritic, mud break, 1 cm wide, subparallel tca. Contains sporadic broken quartz veins and pods oscillating in and out of core. END OF HOLE Casing pulled. 	7640 7641 7642 7643 7644	179.00 180.00 181.00 181.60 182.00	180.00 181.00 181.60 182.00 183.00	1.00 1.00 0.60 0.40 1.00	Tr.	5-7	25	0.02 NIL 0.02 0.04 0.01	

HOLE: AK-91-30

PAGE: 1 of 11

PROPERTY TOWNSHIP CLAIM No.	Amalgamated Kirkland Teck L 500057, L 477419	DATE LOGGED LOGGED BY DRILLED BY	August 3, 1991 - Au Mark Masson Heath & Sherwood	ugust 7, 1991	EASTING NORTHING ELEVATION	8598.7 10398.9	Depth	Method	Azimuth	Dip
STARTED COMPLETED	Aug 1/91 ; Aug 13/91 Aug 6/91 : Aug 14/91	CORE LOCATION DOWNHOLE SUBVEYOR	Kirkland Lake War	ehouse	COLLAR SURVEY	Northland				
	U U	SURVEY INSTRUMENT	Divide.		LENGTH UNITS CORE SIZE	387.45 metres	Note:	See table at for downhol	end of sumn surveys	ary log
PURPOSE	To test "102" structure			1 B						
COMMENTS	Hole extended from 321. "103" gold zone @ 107.0	.70 to 387.45. 0 - 118.30, 11.3 m.	SIGNED BY	(W. Benham)						

	SUM	MARY LOG		A	SSAY SUMM	IARY
INTERVAL From To	DESCRIPTION	INTERVAL From To	DESCRIPTION	INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
0.00 6.50 C 6.50 8.80 F 8.80 83.50 C 83.50 90.70 G 90.70 100.50 C 100.50 122.00 C 1122.00 128.00 C 128.00 147.00 C 147.00 154.00 L 154.00 196.00 C 196.00 210.50 G 210.50 222.30 C 222.30 229.00 G 229.00 237.00 L 237.00 237.70 F 237.70 299.70 L	OVERBURDEN FAULT @ 10° TCA Sericite + chlorite + ankerite + quartz. CONGLOMERATE Chloritic GRAYWACKE CONGLOMERATE Weakly sericitic 107.60 - 107.90 Silicified zone with 0.5% pyrite. 117.95 - 118.25 Sericite + quartz + 1% pyrite. CONGLOMERATE ± SYENITE (?) Hematized. CONGLOMERATE Chloritic LAPILLI TUFF CONGLOMERATE GRAYWACKE CONGLOMERATE GRAYWACKE/MUDSTONE LAPILLI TUFF FAULT ZONE - CHLORITE + SERICITE LAPILLI TUFF	299.70 304.00 304.00 322.15 322.15 347.00 347.00 352.00 352.00 353.00 353.00 359.90 363.50 369.45 369.45 371.80 371.80 387.45	GRAYWACKE GRAYWACKE/CONGLOMERATE Bleached, sericitic. ASH TUFF Bleached sericitic. ASH/LAPILLI TUFF Hematitic CONGLOMERATE Weakly sericitic. ASH TUFF Hematitic CONGLOMERATE ASH/LAPILLI TUFF Hematitic FAULT-SHEAR ZONE Sheared mudstones and conglomerates. LAPILLI TUFF Hematitic E. O. H.	42.00 43.00 107.00 118.30 Including 107.50 112.00 107.50 109.00 107.50 108.00 110.50 112.00 112.00 118.30 117.90 118.30	1.00 11.30 4.50 1.50 0.50 1.50 6.30 0.40	0.44 1.80 2.88 4.88 11.01 3.71 1.15 15.12

HOLE: AK-91-30

PAGE: 2 of 11

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED	August 3, 1991 - August Mark Masson	7, 1991	EASTING	8598.7	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 500057, L 477419 Aug 1/91 ; Aug 13/91 Aug 6/91 ; Aug 14/91	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Warehous B.M.C.I.	e	ELEVATION COLLAR SURVEY LENGTH UNITS CODE SIZE	330.2 Northland Technical 387.45 metres	Note:	See table b downhole su	clow for all rveys	
I CRI OSE	To test 102 structure				CORE SILE	ŅŲ				
COMMENTS	Hole extended from 321. "103" gold zone @ 107.00	70 to 387.45. 0 - 118.30, 11.3 m.	SIGNED BY —	(W. Benham)						

				SUI	MMARY LOG						ASSAY SUMMARY INTERVAL LENGTH AVER. From To in metres Aug				
INTERVAL From To		DESCR	RIPTION		INTERVAL From To		DESC	RIPTION		 INTERV From	VAL To	LENGTH in metres	AVERAGE Au g/t		
	Depth Collar 7.9 29.0 93.0 124.0 154.0 185.0 215.0 246.0 290.0	Method Compass	Azimuth 161	Dip 56 56 56 55 54 53 52 50 49 48		Depth 366.0	Method		Dip 44						
						L									

HOLE: AK-91-30

PAGE: 3 of 11

INTE	RVAL	DESCRIPTION				SA	MPLE	ASSAYS	
FROM	то		No.	From	То	Length %Rec	%Py %OV %Ser	Aborto An Charle	
0.00	6.50	OVERBURDEN Sand + boulder till.					1019 1021 1000	Au, gri Au, Check	
6.50	8.80	FAULT @ 10-15° TCA. Sericite + chlorite + ankerite + quartz. Open, vuggy sericitic shear with strong ankeritic staining. Strong shear, 5-10 cm wide, comprised of strong sericitic slips with wispy chlorite and 10% white quartz veinlets and in places a strong talcose fault gouge is developed.	7645 7646 7647	6.50 7.00 7.90	7.00 7.90 8.90	0.50 0.90 1.00	5-10 40-50 5 40-50 5 40-50	0.05 0.05 0.05	
8.80	45.00	 CONGLOMERATE Massive, undeformed, chloritic, polymictic pebble conglomerate comprised of well rounded polymictic clasts up to 10 cm. Varies from tightly packed, framework to matrix supported, to a poor conglomerate comprised predominantly of graywacke and 1-2% scattered pebbles. Pristine. Weak clast elongation @ 40° tca. Minor intercalated graywacke horizons up to 50-75 cm wide. 23.20 Fault @ 35° tca. Sericite + chlorite + quartz. Strong, 1 cm wide, sericite + chlorite slip with fragmented white county unicles. 							
		 33.50 - 34.00 Fault @ 5-10° tca. Sericite + ankerite ± quartz. Tight sericitic slip with moderate to strong ankeritic staining and moderate gouge development. 43.30 - 47.10 Fault @ 5-10° tca. Tight (1-3 mm) sericitic slip which oscillates in and out of core and contains irregular white quartz veinlets, up to 0.5 cm wide, adjacent to slip. In places quite open and vuggy with drusy quartz ± calcite development. 	7648 7649 7650	42.00 43.00 44.00	43.00 44.00 45.00	1.00 1.00 1.00		0.24 0.05 0.02	
45.00 50.20	50.20 83.50	GRAYWACKE Massive, fine grained, grey-green with weak spotty sericite. Upper and lower contacts are faulted by irregular sericite + chlorite ± quartz shears @ 40° tca.	7651 7652 7653 7654 7655 7656	45.00 46.00 47.00 48.00 49.00 50.00	46.00 47.00 48.00 49.00 50.00 50.70	1.00 1.00 1.00 1.00 1.00 0.70		NIL 0.01 0.01 0.01 0.03 0.04	
		Massive, undeformed, chloritic, polymictic pebble conglomerate comprised of well rounded polymictic clasts up to 10 cm. Varies from tightly packed, framework to matrix supported, to a poor conglomerate comprised							

HOLE: AK-91-30

PAGE: 4 of 11

INTE	RVAL	DESCRIPTION					SAN	IPLE				AS	SAYS
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
		predominantly of graywacke and 1-2% scattered pebbles. Pristine. Weak clast elongation @ 40° tca. Minor intercalated graywacke horizons up to 50-75 cm wide.											
83.50	90.70	GRAYWACKE Massive, fine grained, grey-green, well sorted, very clean, non-deformed graywacke. Upper contact sharp @ 35° tca. Lower contact gradational over 1 m. Contains 0.5% narrow quartz veinlets (≤ 0.5 cm) with sericitic alteration halos 1-3 mm wide. 0.5% angular mudstone clasts scattered throughout.											
90.70	100.50	CONGLOMERATE Massive, undeformed, chloritic, polymictic pebble conglomerate. Jasperoidal matrix supported, poorly sorted. Classic Timiskaming conglomerate.											
100.50	122.00	CONGLOMERATE Gradual bleaching of matrix evident due to pervasive, weak sericitization. Unit is massive, non-deformed polymictic conglomerate. Mafic clasts show evidence of border corrosion caused by sericitization of matrix, while harder clasts (jasper, quartz, porphyry's) retain sharp boundaries. Lower contact is sharp sericite + quartz fault @ 50° tca.	7657 7658 7659	104.00 105.00 106.00	105.00 106.00 107.00	1.00	- - - - -					NIL 0.01	
		107.10 0.5 cm wide quartz + pyrite veinlets @ 60° tca. White quartz ± albite veinlet with sharp chloritic walls and 0.5% disseminated pyrite on vein marcin.	7660	107.00	107.50	0.50		Tr.	Tr.	5-10		0.23	
		107.60 - 107.90 Silicified zone with 0.5% disseminated pyrite centred on a sharp, tight, sericitic slip (crack) @ 50° tca. No prominent structure evident.	7661 7662 7663 7664	107.50 108.00 109.00 110.00	108.00 109.00 110.00 110.50	0.50 1.00 1.00 0.50		0.5		5-10	Sil	10.63 1.82 0.04 0.03	11.38
		110.50 - 112.00 Trace to 0.5% dissemination pyrite in weakly sericitic conglomerate, < 0.5%, 1-2 mm wide, chlorite and chlorite quartz filled fractures.	7665 7666 7667 7668 7669 7670 7670 7671 7672	110.50 111.00 112.00 113.00 114.00 115.00 116.00 117.00	111.00 112.00 113.00 114.00 115.00 116.00 116.00 117.00 117.90	0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.90		Tr.				3.50 3.81 0.58 0.07 0.24 NIL 0.12 0.22	
		117.95 - 118.25 Sericite + pyrite + quartz zone. Foliated to schistose, sericitized conglomerate with sharp contacts @ 70° tca.	7673 7674	117.90 118.30	118.30 119.00	0.40 0.70		1	1	25	Sil	16.39 0.04	13.85

HOLE: AK-91-30

PAGE: 5 of 11

INTE	RVAL	DESCRIPTION				SAN	IPLE		AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py %()V %Ser	Au, g/t	Au,Check
		Crushed and broken clasts within a silicified matrix carrying 1% finely disseminated pyrite and minor late quartz + chlorite veinlets.	7675 7676 7677	119.00 120.00 121.00	120.00 121.00 122.00	1.00 1.00 1.00			0.04 NIL 0.01	
122.00	128.00	CONGLOMERATE (SYENITE?) Massive, reddish-brown to mauve, hematized unit with pervasive hematization of matrix and containing 1-3% sub-angular to rounded clasts. In places appears to be partially syenitized, weakly porphyritic with fragments or xenoliths of conglomerate trapped within a fine grained to weakly porphyritic syenitic matrix. Very diffuse contacts.	7678 7679 7680 7681 7682 7683	122.00 123.00 124.00 125.00 126.00 127.00	123.00 124.00 125.00 126.00 127.00 128.00	1.00 1.00 1.00 1.00 1.00 1.00			0.02 NIL 0.01 0.01 0.01	
128.00	147.00	CONGLOMERATE Massive, undeformed, chloritic, polymicitc pebble conglomerate. In part intercalated with minor lapilli tuff horizons up to 1 m wide. Lower contact is somewhat gradational.	,005	101	1203.00				0.01	
147.00	154.00	LAPILLI TUFF Light grey-green, massive, undeformed, unaltered tuff comprised of 5-7% angular buff-grey trachytic clasts, up to 2 cm, avg. 1 cm, in a very fine grained ash/graywacke matrix.								
154.00	196.00	 CONGLOMERATE Massive, undeformed, chloritic pristine polymictic pebble conglomerate (jasperoidal). Varies from framework to matrix supported and contains minor intercalated graywacke horizons up to 0.5 m wide. Poorly sorted with well rounded to sub-angular clasts ranging form a few millimetres to 20 cm's in a dark grey-green, chloritic, graywacke matrix. Lower contact gradational over 0.5 m. 182.00 - 183.00 Fault @ 5° tca. Tight sericitic fracture, 1-2 mm wide, with a 0.5 cm wide quartz vein on slip margin. Moderate fuchsite alteration of mafic clasts evident proximal to sericite slip. 182.50 - 185.10 Moderately sericitic, foliated conglomerate (yellow-green) with fuchsitic altered mafic pebbles and a weak penetrative fabric @ 10° tca. Probably proximal to low- angle cross fault. 								

HOLE: AK-91-30

PAGE: 6 of 11

INTE	RVAL	DESCRIPTION				SAM	IPLE			AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
196.00	210.50	 GRAYWACKE Massive, grey-green, unaltered, undeformed, fine grained graywacke with up to 1% scattered pebble clasts up to 2 cm. Comprised of fine lithic polymictic fragments up to 2 mm in size. 196.10 - 197.20 Fault @ 5-10° tca. Tight, 1-2 mm, sericite slip which oscillates through core. Patchy quartz veining adjacent to slip up to 2 cm wide. 									
210.50	222.30	 CONGLOMERATE Massive to weakly foliated @ 55° tca. Unaltered polymictic pebble conglomerate. Framework to matrix supported, poorly sorted. 222.10 - 222.30 Fault @ 70° tca. Sericite + chlorite. Moderately to strongly sericitic shear with 3% barren white quartz veinlets and pods. Moderate wispy and spotty sericite alteration of graywacke matrix proximal to shear marks lower contact of conglomerates. 	7684 7685 7686 7687 7688 7689 7690	216.00 217.00 218.00 219.00 220.00 221.00 222.00	217.00 218.00 219.00 220.00 221.00 222.00 223.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00				0.02 0.01 0.02 0.03 0.02 0.03 0.02	
222.30 229.00	229.00	 GRAYWACKE/MUDSTONE Moderately sericitized graywacke with wispy to spotty sericite alteration and tight sericite slips throughout @ 70° tca. Intercalated aphanitic mudstone beds, range from a few millimetres to 15 cm wide, @ 40° tca. 227.0 Minor patchy pyrite (primary) within the graywacke. LAPILLI TUFF Chlorite ± hematite. Massive to weakly foliated, dark green-brown to purple. Comprised of 2-7%, angular, buff-brown to green, trachytic clasts, 	7691 7692 7693 7694 7695 7696	223.00 224.00 225.00 226.00 227.00 228.00	224.00 225.00 226.00 227.00 228.00 229.00	1.00 1.00 1.00 1.00 1.00 1.00				0.01 0.02 0.22 0.01 0.01 NIL	
		 ranging from 2 mm to 5 cm, floating in a fine grained ash matrix. Upper contact is obscure but appears to be gradational over 1-2 m with a few exotic pebbles (i.e. quartz) scattered through the predominantly tuffaceous rock. Unit displays patchy moderate magnetics. 233.20 Fault @ 30° tca. Sericite + chlorite + quartz. Moderately strong shear, 6 cm wide, comprised of tight sericite + chlorite slips and 10% barren, white quartz. 	7697 7698 7699 7700 7701 7702 7703	229.00 230.00 231.00 232.00 232.70 233.40 234.00	230.00 231.00 232.00 232.70 233.40 234.00 235.00	1.00 1.00 1.00 0.70 0.70 0.60 1.00		Tr.	30	NIL NIL 0.01 NIL NIL NIL NIL	

HOLE: AK-91-30

PAGE: 7 of 11

INTE	ERVAL	DESCRIPTION					SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser	Au, g/t	Au.Check
		235.00 - 236.50 Rubbly zone due to tight fracture subparallel tca. Moderate gouge development on chloritic slips.	7704 7705 7706	235.00 235.50 236.50	235.50 236.50 237.00	0.50 1.00 0.50	70 70				0.01 0.01 0.01	
237.00	237.70	FAULT ZONE @ 70°TCA. Chlorite + sericite. Strongly foliated to schistose zone with strong chloritic mud breaks and 5% fractured and boudinaged quartz pods. Barren, non- mineralized.	7707	237.00	237.70	0.70	95		5		0.01	
237.70	299.70	 LAPILLI TUFF Chlorite + hematite. Massive to moderately well foliated with clast elongation @ 30° tca. Dark green to purple (patchy hematization). Comprised of 10-15% sub-angular, heterolithic trachytic clasts up to 4 cm (avg. 1 cm), in a very fine grained ash matrix. Quite homogeneous. Predominant clast types (50-60%) are a very fine grained, light grey to brown, trachyte and reddish-pink trachyte. Patchy moderate magnetics. In places unit appears to be a conglomerate due to the heterolithic nature of clasts, however no quartz or jasper evident as clasts or in matrix. Lower contact sharp @ 55° tca. 261.00 - 291.00 Numerous, barren, white quartz ± albite veinlets @ 0-15° tca up to 2-3 cm wide. 282.95 - 283.05 Fault @ 50° tca. Sericite + quartz. Sharp, 0.5 cm wide, sericitic shear zone with 10 cm wide quartz and brecciated, milk-white quartz vein cut by narrow chlorite + sericite fractures @ 20° tca. No visible sulphides. 284.10 - 284.90 Shear zone @ 45° tca. Sericite + quartz + pyrite. Moderate strongly shear comprised of well foliated tuff with strong sericite slips, up to 2-3 cm wide and containing 5-7% quartz veins. Two generations of veining are evident; blue-grey narrow, irregular quartz veinlets up to 0.5 cm wide. Trace disseminated pyrite @ 284.4 m. 	7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7740 7741 7742 7743 7744 7745 7746 7747 7748	237.70 238.50 239.00 240.00 241.00 242.00 243.00 244.00 245.00 246.00 247.00 280.00 281.00 282.00 282.00 283.30 284.00 285.00 286.00	238.50 239.00 240.00 241.00 243.00 244.00 245.00 246.00 247.00 248.00 280.00 282.00 282.00 283.30 284.00 283.30 284.00	0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.0		Tr.	5 5-10	10-15 15-20	0.02 0.01 0.01 0.01 NIL 0.01 0.01 0.01 0.05 NIL 0.01 0.02 0.01 0.02 0.01 NIL 0.02	

HOLE: AK-91-30

PAGE: 8 of 11

INTE	ERVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
299.70	304.00	GRAYWACKE Massive, fine grained, grey-green, chloritic graywacke with 0.5% angular mudstone chips scattered throughout. Weak spotty pervasive sericite alteration. 1% late, barren quartz \pm albite veinlets. Well sorted, very clean.	7719 7720 7721	301.00 302.00 303.00	302.00 303.00 304.00	1.00 1.00 1.00		Tr.		0.01 NIL NIL	
304.00	322.15	GRAYWACKE/CONGLOMERATE (?) Massive, undeformed, pervasively altered, sericitized graywacke and conglomerate. Comprised of 5% scattered polymictic pebbles (mafic volcanics, jasper etc.) in a very fine grained, bleached, buff to brown matrix which is pervasively altered. Mafic clasts are typically fuchsite altered with diffuse boundaries, while more competent clasts (quartz, porphyry, jasper, etc.) are unaltered. Matrix may in fact be tuffaceous ash but is too highly altered to discern.	7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 8015	304.00 305.00 306.00 307.00 309.00 310.00 311.00 311.00 313.00 314.00 315.00 316.00 316.00 316.00 319.00 320.00 321.00 321.00	305.00 306.00 307.00 308.00 310.00 311.00 312.00 313.00 314.00 315.00 316.00 316.00 319.00 320.00 321.00 321.70 322.15	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			40	NIL 0.01 NIL 0.01 0.01 0.01 0.02 NIL NIL 0.03 0.01 0.01 0.02 NIL 0.01 0.02	
322.15	347.00	 ASH TUFF Massive to finely bedded @ 40° tca. Greyish green to buff to reddish brown, due to variation in alteration intensity. Bedding evident as very fine laminations visible due to variation in colour and alteration type, i.e. whether sericitic or hematitic. 322.15 - 325.60 Yellow-green sericite and chloritic clots, with very irregular diffuse boundaries, which may represent remnant lapilli clasts are scattered throughout the unit. Matrix is very fine grained to aphanitic, pervasively moderately sericitized ash, which is bleached out. 322.15 - 322.85 Series of 4 narrow (1-3 mm) quartz + chlorite veinlets sub-parallel tca which carry 0.5% disseminated to clotty pyrite. White quartz with black chloritic walls. 	8016 8017 8018 8019	322.15 322.90 323.50 324.00	322.90 323.50 324.00 325.00	0.75 0.60 0.50 1.00	Tr.	0.05	Chi.	0.02 0.01 0.02 0.01	

HOLE: AK-91-30

PAGE: 9 of 11

INTE	RVAL	DESCRIPTION				SAN	APLE		· · · · · · · · · · · · · · · · · · ·	AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. g/t	Au.Check
		325.60 - 325.65 Fault @ 50° tca. Chlorite + sericite + quartz. 4 cm wide white to greyish green chloritic, quartz veining centred on a sharp tight sericitic slip. Blue-green quartz vein, 2 cm wide, on up-hole side of slip is fractured and brecciated and carries trace fine straight marite	8020 8021 8022 8023 8024	325.00 325.50 325.75 326.50 327.00	325.50 325.75 326.50 327.00 327.70	0.50 0.25 0.75 0.50 0.70	Tr.	5		0.02 0.03 0.02 NIL NIL	
		 327.70 - 330.50 Unit takes on a mottled reddish pink colouration with irregular, diffuse, patchy zones of yellow-green sericitization which is associated with narrow healed fractures and narrow quartz veinlets. 330.50 - 344.00 Massive to bedded, undeformed ash tuff, finely bedded @ 40° tca. Beds, ≤ 1 mm, appear to be hematized magnetite layers. 	8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041	327.70 328.20 329.00 330.00 331.00 332.00 333.00 334.00 335.00 335.00 336.00 337.00 338.00 339.00 340.00 341.00 342.00	328.20 329.00 330.00 331.00 332.00 333.00 334.00 335.00 336.00 336.00 338.00 339.00 340.00 340.00 341.00 342.00	0.50 0.80 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.0	Tr.	Tr. Tr.		0.02 NIL 0.01 0.02 NIL 0.03 NIL 0.01 NIL 0.02 0.01 NIL 0.02 0.01 NIL 0.01 NIL	
		 342.30 - 342.45 Fault @ 65° tca. 10 cm wide zone comprised of 10% irregular white to buff quartz veinlets with trace pyrite in a sheared, sericitic host. 344.00 - 347.00 Strong, pervasive sericitization gradually gives way to less altered, hematitic tuffs. 346.40 - 346.60 Narrow quartz + chlorite + specularite veinlets (1-2 mm) stockworking in a massive, fine grained, weakly hematitic ash. 	8042 8043 8044 8045 8046 8047 8048 8049 8050	342.30 342.55 343.30 343.80 344.50 345.00 346.00 346.40 346.80	342.55 343.30 343.80 344.50 345.00 346.00 346.40 346.80 347.50	0.25 0.75 0.50 0.70 0.50 1.00 0.40 0.40 0.70	Tr.	5-10 10-15 5	30 Spec. Spec.	0.02 NIL 0.04 NIL 0.03 0.01 0.01 0.03 0.01	
347.00	352.00	ASH/LAPILLI TUFF Massive to well bedded, grey-green to purple, fine grained hematitic ash with intercalated lapilli tuff horizons up to 65 cm wide. Well developed bedding @ 50° tca. Lapilli horizons display gradational contacts with the ash tuff and is comprised of 5-7% subrounded to elliptical, heterolithic trachytic clasts, 3 mm -3 cm, dark green, red and purple, fine grained to	8051 8052 8053 8054 8055	347.50 348.00 349.00 349.50 350.00	348.00 349.00 349.50 350.00 350.50	0.50 1.00 0.50 0.50 0.50	Tr. Tr.	Tr. Tr.	Spec. 5-10	0.01 0.05 0.02 0.01 0.04	

HOLE: AK-91-30

PAGE: 10 of 11

INTE	RVAL	DESCRIPTION	SAMPLE						 AS	SAYS	
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		porphyritic. Patchy strong magnetics. Very minor irregular quartz + specularite ± pyrite veinlets up to 1 cm wide.	8056 8057 8058	350.50 351.00 351.50	351.00 351.50 352.00	0.50 0.50 0.50				0.05 0.04 0.03	
352.00	353.00	CONGLOMERATE 15% well rounded, polymictic pebbles in a light grey-green, fine grained, trachyte ash matrix. Contacts are gradational with surrounding ash tuff and marked by a gradual increase in the pebble content. Virtually undeformed and weakly sericitic.	8059	352.00	353.00	1.00				0.03	
353.00 359.90	359.90 363.50	 ASH TUFF Massive to well bedded @ 30° tca. Hematitic green-brown, to purple, fine grained heterolithic trachyte ash with clasts up to 2 mm. Bedding occurs as fine laminations and grain size sorting 1-3 mm wide. Unit is also intercalated with minor lapilli tuff horizons and contains the odd lapilli clast scattered throughout the predominantly ash component. 357.75 - 359.90 Unit is cut by 5% barren, massive, white to buff, quartz ± albite veins which display penetrative alteration halos for up to 15 cm into wallrock. These sericitic halos are light green and give the core a mottled appearance. 359.00 - 359.40 Semi-massive, quartz + albite vein. Very irregular. CONGLOMERATE Massive, weakly foliated, polymictic pebble conglomerate. Light grey-green, weakly sericitic. 15-25% well rounded polymictic pebbles, to 4 cm, in a fine grained graywacke matrix. Poorly sorted and matrix supported. 	8060 8061 8062 8063 8064 8065 8066 8067 8068	353.00 354.00 355.00 357.00 357.70 358.20 358.95 359.50	354.00 355.00 357.00 357.70 358.20 358.95 359.50 360.00	1.00 1.00 1.00 0.70 0.50 0.75 0.55 0.50		2 2 70	5	0.04 0.01 0.02 0.03 NIL 0.03 0.01 NIL 0.03	
363.50	369.45	 ASH/LAPILLI TUFF Intercalated well bedded ash tuffs and massive heterolithic lapilli tuff with pervasive hematization. Bedding ranging from a few millimetres to 65 cm wide. Thin bedding laminations @ 45° tca are frequently magnetite-bearing. Patchy strong magnetics. Lower contact of unit is a strong sharp chloritic break, 3 mm wide @ 40° tca. 367.50 - 367.85 Shear zone @ 50° tca. Sericite + chlorite + quartz. 3 cm wide, barren, white buff quartz + albite vein in foliated sericitized tuff. 	8069 8070 8071	367.50 367.90 368.70	367.90 368.70 369.45	0.40 0.80 0.75		7	15	0.01 NIL 0.01	

HOLE: AK-91-30

PAGE: 11 of 11

INTE	ERVAL	DESCRIPTION				SAI	MPLE				CAVC
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au ett	Au Check
369.45	371.80	FAULT ZONE Strongly deformed, crushed chloritic mudstone and conglomerate containing 5% strong tight, 1-5 mm wide, chloritic mud breaks @ 40-45° tca. In places, these blue-grey mud gouges, which may contain smeared molybdenite, display strong slickenside development. Interstitial to these slips, the sediments are strongly deformed and crushed and contain patchy zones with 5% fractured, dislocated, white quartz and trace disseminated pyrite. Lower contact is a very strong, 0.5-1 cm wide chloritic mud fault gouge.	8072 8073 8074 8075	369.45 370.00 370.50 371.20	370.00 370.50 371.20 371.80	0.55 0.50 0.70 0.60	Tr. Tr.	1 1 Tr.	Chi. Chi.	NIL 0.01 0.01 NIL	Au, Olitek
371.80	387.45	 LAPILLI TUFF Massive, undeformed, dark purple, hematitic lapilli tuff with weak patchy magnetics. Comprised of 3-15% (variable) sub-angular, heterolithic, lapilli clasts, averaging 0.5 cm in size, in fine to very fine grained trachyte ash matrix. 371.80 - 376.60 Moderately well foliated proximal to the above fault zone. Wispy sericite development in hematitic lapilli tuff. 	8076	371.80	372.80	1.00				0.03	
	387.45	END OF HOLE Casing left in hole.									

HOLE: AK-91-31

PAGE: 1 of 17

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED LOGGED BY DBULED BY	August 7, 1991 - Au Mark Masson	gust 13, 1991	EASTING NORTHING	8190.1 10366.4	Depth	Method	Azimuth	Dip
STARTED COMPLETED	August 6, 1991 August 13, 1991	DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Kirkland Lake Ware B.M.C.I.	house	LEVATION COLLAR SURVEY LENGTH UNITS CODE SIZE	331.8 Northland Technical 409.75 metres	Note:	See table at for downhol	end of sumn surveys	ary log
PURPOSE	To test "102" structure			1B						
COMMENTS	"103" gold zone @ 258.4 "102" gold zone @ 359.1	10 - 261.50, 3.10 m. 10 - 369.25, 10.15 m.	SIGNED BY	(W. Benham)						

	SUM	MARY LOG		AS	SAY SUMM	IARY
INTERVAL	DESCRIPTION	INTERVAL	DESCRIPTION	INTERVAL	LENGTH	AVERAGE
From To		From To		From To	in metres	Au g/t
0.00 3.65	OVERBURDEN	306.80 307.70	MUDSTONE			
3.65 41.00	LAPILLI TUFF	307.70 333.80	GRAYWACKE	237.10 239.10	2.00	0.27
	Chloritic		Sericitic			
41.00 69.10	LAPILLI TUFF		316.05 - 316.40 Quartz + chlorite + pyrite vein	258.40 261.50	3.10	3.63
69.10 79.40	LAPILLI TUFF		317.20 - 317.65 Quartz and quartz + chlorite	including		
	Sericitic + hematitic		pyrite	260.50 260.90	0.40	27.12
79.40 86.30	LAPILLI/ASH TUFF	333.80 339.50	TRACHYTIC FLOW			
86.30 113.00	LAPILLI TUFF	339.50 362.00	GRAYWACKE	334.50 335.00	0.50	0.43
	Leucitic		Sericitic + chloritic + pyritic			
113.00 127.60	GRAYWACKE/MUDSTONE/CONGLOMERATE		348.60 - 349.20 Quartz and quartz + chlorite	47.40 348.00	0.60	0.16
127.60 230.00	GRAYWACKE		pyrite veins.			
230.00 246.20	CONGLOMERATE		359.15 - 359.20 Quartz + chlorite + pyrite zor	e 358.60 359.10	0.50	0.14
246.20 247.30	DIABASE DYKE		with VISIBLE GOLD.			
247.30 256.90	CONGLOMERATE	362.00 368.40	CONGLOMERATE	359.10 364.25	5.15	9.70
	Chloritic		Sericitic	including		
256.90 270.10	GRAYWACKE		362.00 - 362.20 5-7% quartz + albite veins, 1-29	6 359.10 359.60	0.50	42.43
	260.60 - 260.90 Quartz + pyrite + sericite vein.		quartz flooding with 1% pyrit	. 361.90 362.20	0.30	12.52
270.10 273.20	LAPILLI TUFF		0.5% pyrite in matrix.	363.40 364.25	0.85	23.43
273.20 277.20	ASH TUFF		363.40 - 364.25 Silicified, 50% quartz veins ar	d		
277.20 282.40	GRAYWACKE/MUDSTONE/LAPILLI/ASH TUFF		quartz flooding, 0.5 -1% pyrite.	364.25 364.65	0.40	0.23
282.40 284.10	MUDSTONE/SILTSTONE	368.40 369.65	SILTSTONE			
284.10 306.80	ASH TUFF	369.65 372.00	GRAYWACKE	366.20 367.00	0.80	0.22
l i	Unionitic + nematitic.	372.00 373.20	CONGLOMERATE		}	
	L	1				1

HOLE: AK-91-31

PAGE: 2 of 17

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED	August 7, 1991 - August 13 Mark Masson	3, 1991	EASTING	8190.1	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 491662, L 491663 August 6, 1991 August 13, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Warehouse B.M.C.I.		ELEVATION COLLAR SURVEY LENGTH UNITS	331.8 Northland Technical 409.75 metres	Note:	See table at for downhole	end of sumn surveys	ary log
PURPOSE	To test "102" structure				CORE SIZE	NQ				
COMMENTS	"103" gold zone @ 258.40 "102" gold zone @ 359.10	0 - 261.50, 3.10 m. 0 - 369.25, 10.15 m.	SIGNED BY	(W. Benham)						

	SUM	MARY LOG		AS	SSAY SUMM	IARY
INTERVAL From To	DESCRIPTION	INTERVAL From To	DESCRIPTION	INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
373.20 375.15 375.15 377.00 379.30 379.30 379.30 382.40 382.40 389.30 389.30 395.60 395.60 409.75 409.75	MUDSTONE Sericitic and foliated. GRAYWACKE Sericitic and foliated. 376.45 - 377.00 Sheared, quartz + sericite + pyrite zone. MUDSTONE GRAYWACKE CONGLOMERATE MUDSTONE GRAYWACKE 398.60 - 399.40 Fault @ 40° tca, sericite + quartz + pyrite. 406.40 - 406.50 Fault @ 60° tca 406.75 - 406.80 Fault @ 65° tca E. O. H.			372.60 373.20 382.40 383.00 387.00 388.00	0.60 0.60 1.00	0.13 0.15 0.17

HOLE: AK-91-31

PAGE: 3 of 17

PROPERTY	Amalgamated Kirkland	DATE LOGGED	August 7, 1991 - Aug	gust 13, 1991	EASTING	8190.1	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 491662, L 491663 August 6, 1991 August 13, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Mark Masson Heath & Sherwood Kirkland Lake Warel B.M.C.I.	house	NORTHING ELEVATION COLLAR SURVEY LENGTH UNITS	10366.4 331.8 Northland Technical 409.75 metres	Note:	See table b downhole su	clow for all rveys	
PURPOSE	To test "102" structure				CORE SIZE	NQ				
COMMENTS	"103" gold zone @ 258.40 "102" gold zone @ 359.10) - 261.50, 3.10 m.) - 369.25, 10.15 m.	SIGNED BY	(W. Benham)						

	SUMMARY LOG												ASSAY SUMMARY		
INTERVAL From To		······	DESCR	RIPTION	·····		INTERVAL From To			DESC	RIPTION		 INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
	[Depth	Method	Azimuth	Dip			Ĩ	Depth	Method	Azimuth	Dip			
		Collar	Compass	161	65				305.0			56			
		8.0			65				338.0			55			
		30.5			64				366.0			54			
		61.0			63				396.0			53			
		91.0			62										
		122.0			61										
		152.0			60										
		183.0			60										
:		215.0			59										
		244.0			58										
		275.0			57										

HOLE: AK-91-31

PAGE: 4 of 17

FROM TO No. From To Length %Rec %Py %Q 0.00 3.65 OVERBURDEN 3.65 41.00 LAPILLI TUFF Massive, undeformed, chloritic, grey-green lapilii tuff. Comprised of 5-15% subangular clasis, up to 3-4 cm (arg. 0.5-1 cm), in a very fine grained, light grey to buff, trachyte. Clasts are subangular and average 1 cm. Lesser quantities of various dark red to dark green, trachytic clasts, are scattered throughout. Moderately magnetic. Contains 1% narrow quartz veinets, 51 cm wide, adjacent to veins. Unit is in part intercalated with ash tuff horizons of equivalent composition, up to 2-3 metres wide, which are frequently well bedded @ 60° tca. Lower contact of unit is gradational over 2 metres. 10.00 - 10.70 Weakly altered, scricitic + hematilic zone due to numerous tight chloritic ± ankerite slips at 60°, 25° and 40° tca. 16.80 Fault @ 40° tca. Chlorite + scricit + ankerite + quartz. 1 cm wide, string frequently strong break with moderate gouge development and moderately strong angute frequent 2. 10.00 - 10.70 Weakly altered, scricitic + hemitic zone due to numerous tight chloritic ± ankerite slips at 60°, 25° and 40° tca. 16.80 Fault @ 40° tca. Chlorite + scricit + ankerite + quartz. 1 cm wide, strong break with moderate gouge development and moderately strong angute frequent 2. 18.60 - 24.00 Well bedded strong 60° tca. Bedding ranges from 1.2 mm to 15-20 cm. 21.50 - 21.60 Fault @ 65° tca. Scricit + chlorite + calcite. Sharp, tight scricitic shears with a 7 cm wide, white to 5000000000000000000000000000000000000	ROM TO 0.00 3.65 OVERBURDEN 1.65 41.00 LAPILLI TUFF Massive, undeformed, chlo subangular clasts, up to 3 massive ash matrix. Predon to buff, trachyte. Clasts are of various dark red to throughout. Moderately m.	Acc %Py %QV %Ser A	Au, g/t Au, Check
 0.00 3.65 OVERBURDEN 3.65 41.00 LAPILLI TUFF Massive, undeformed, chloritic, grey-green lapilli tuff. Comprised of 5-15% subangular clasts, up to 3-4 cm (avg. 0.5-1 cm), in a very fine grained, massive ash matrix. Predominant clast type (75%) is fine grained, light grey to buff, trachyte. Clasts are subangular and average 1 cm. Lesser quantilities of various dark red to dark green, trachytic clasts, are scattered throughout. Moderately magnetic. Contains 1% narrow quartz venilets, 51 cm wide, which frequently display buff-brown moderate alteration halos, up to 3 cm wide, adjacent to veins. Unit is in part intercalated with ash tuff horizons of equivalent composition, up to 2-3 metres wide, which are frequently well bedded @ 60° tca. Lower contact of unit is gradational over 2 metres. 10.00 - 10.70 Weakly altered, sericitic + hematitic zone due to numerous tight chloritic ± ankerite alips at 60°, 25° and 40° tca. 16.80 Fault @ 40° tca. Chlorite + sericite + ankerite + quartz. 1 cm wide, strong break with moderate gouge development and moderately group ankerite staining. 18.60 - 24.00 Well bedded ash tuff @ 60° tca. Bedding ranges from 1-2 mm to 15-20 cm. 21.50 - 21.60 Fault @ 65° tca. Sericite + chlorite + quartz + calcite. Sharp, tight sericitic shears with a 7 cm wide, white to 	 3.65 OVERBURDEN 3.65 41.00 LAPILLI TUFF Massive, undeformed, chio subangular clasts, up to 3 massive ash matrix. Predon to buff, trachyte. Clasts are of various dark red to throughout. Moderately m. 		, 6
 10.00 - 10.70 Weakly altered, sericitic + hematitic zone due to numerous tight chloritic ± ankerite slips at 60°, 25° and 40° tca. 16.80 Fault @ 40° tca. Chlorite + sericite + ankerite + quartz. 1 cm wide, strong break with moderate gouge development and moderately strong ankerite staining. 18.60 - 24.00 Well bedded ash tuff @ 60° tca. Bedding ranges from 1-2 mm to 15-20 cm. 21.50 - 21.60 Fault @ 65° tca. Sericite + chlorite + quartz + calcite. Sharp, tight sericitic shears with a 7 cm wide, white to 	cm wide, which frequently up to 3 cm wide, adjacent t horizons of equivalent co frequently well bedded @ (
 41.00 69.10 LAPILLI TUFF Massive, undeformed, unaltered. Comprised of 10-20% angular to subrounded lapilli clasts, which are predominantly red trachyte fragments up to 7 cm (avg. 1-2 cm), and constitute 80% of clast types. Matrix is very dark green to black, very fine grained ash. Strongly magnetic. 69.10 Fault @ 85° tca. Chlorite + sericite + ankerite Strong 7751 68.00 69.00 1.00 7761 68.00 69.00 1.00 7761 68.00 69.00 1.00 	 10.00 - 10.70 Weakly a numerous 40° tca. 16.80 Fault @ 4 16.80 Fault @ 4		0.03 0.01 NIL 0.01 0.02

HOLE: AK-91-31

PAGE: 5 of 17

INTE	RVAL	DESCRIPTION	SAMPLE							AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
69.10	79.40	 ALTERED LAPILLI TUFF Sericite + hematite. Purplish-red to yellow-green with strong mottled appearance due to irregular, patchy hematite + sericite alteration. Unit contains 5-10%, angular to subrounded, heterolithic lapilli clasts up to 3 cm (avg. 1 cm). Some clasts are fractured and cut by secondary quartz veinlets, ≤ 0.5 cm wide, which frequently display irregular, buff-brown, alteration halos which coalesce in places giving rise to a patchy mottled appearance. Matrix is very fine grained with variable sericite + hematite alteration. Strongly magnetic. Lower contact is sharp and somewhat irregular @ 30° tca. 73.35 - 73.45 Fault @ 40° tca. Chlorite + sericite + quartz + calcite. Sharp sericite + chlorite slip boundaries with fractured and brecciated quartz + calcite veins in a sericitic host interstitial to slips. 74.10 Fault @ 55° tca. Sericite + quartz. Moderately foliated, sericitized zone with sharp sericite slips and 2 cm wide irregular, white to buff, quartz flooding. 76.70 - 76.90 Fault @ 50° tca. Chlorite 1 + sericite shear with 10% white-pink quartz + calcite veining, which is fractured to weakly brecciated. 77.80 - 78.50 Fault zone @ 60° tca. Sericite + chlorite + quartz. Strongly foliated to schistose zone with patchy, fractured output z wining a (2%) 	7763 7764 7765 7766 7767 7768 7770 7770 7771 7772 7773 7774 7775	69.50 70.00 71.00 73.00 73.50 74.00 75.00 76.00 76.50 77.30 77.80 78.50	70.00 71.00 72.00 73.50 74.00 75.00 76.00 76.50 77.30 77.80 78.50 79.40	0.50 1.00 1.00 1.00 0.50 0.50 0.50 0.50	NIY	5	10 10-15	0.04 0.01 0.02 0.01 0.02 0.01 0.02 NIL 0.02 NIL 0.02 NIL 0.02 NIL	Au,Cleck
79.40	86.30	 LAPILLI/ASH TUFF Massive, grey-green, fine grained ash tuff with intercalated lapilli tuff horizons up to 1.5 metres wide. Lapilli tuff comprised of 5-10%, angular to subrounded clasts, up to 3 cm (avg. 1 cm), which are typically buffbrown to grey, fine grained to finely porphyritic and display trachytoid textures. Patchy strong magnetics. Lower contact is sharp and marked by a 1 cm wide quartz vein and 1 cm wide sericitic schist. 81.50 - 81.90 Fault @ 15° tca. Chlorite + sericite + quartz. Laminated to brecciated quartz vein 2 cm wide, with sharp chlorite + sericite slip boundaries with moderate calcitic mud development. 	7776 7777 7778 7779 7780 7781 7782 7783 7783 7784	79.40 80.10 81.00 81.50 82.00 83.00 84.00 85.00 85.50	80.10 81.00 81.50 82.00 83.00 84.00 85.00 85.50 85.50 86.40	0.70 0.90 0.50 1.00 1.00 1.00 0.50 0.90	10	20		NIL NIL 0.01 0.02 0.02 NIL 0.01 NIL	

HOLE: AK-91-31

PAGE: 6 of 17

INTE	RVAL	DESCRIPTION	SAMPLE							AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
86.30	113.00	LEUCITIC LAPILLI TUFF Very distinctive unit. Massive, undeformed, weakly chloritic but very fresh in appearance. Comprised of 5-10%, buff-brown to grey, angular lapilli clasts, up to 5 cm (avg. 1-2 cm), generally fine grained to weakly porphyritic. Matrix is light grey-green, very fine grained to aphanitic, weakly chloritic with 5% pseudo-hexagonal leucite crystals up to 0.5 cm in size. Leucites are light grey with somewhat vague, altered, grain boundaries giving the rock a distinctive spotted appearance. Patchy strong magnetics. Lower contact is gradational over 2 m.	7785 7786	86.40 87.00	87.00 88.00	0.60 1.00				NIL 0.02	
		 96.85 - 96.90 3 cm wide, barren, white quartz vein with sharp, chloritic boundaries @ 40° tca. 110.80 - 111.00 Fault @ 20° tca. Sericite + quartz + chlorite. Strong sericite + gouge shear with 10% fractured and brecciated quartz and chlorite veins. 									
113.00	127.60	GRAYWACKE/MUDSTONE/CONGLOMERATE Intercalated graywacke, mudstone, and poor conglomerates, (pebbly graywacke). Zone comprised of 75% massive, fine grained graywacke with narrow pebbly sections with 1-2% polymictic pebbles and intercalated, aphanitic mudstone horizons which frequently display irregular contacts and flame structures due to soft mud deposition.	7787 7788 7789	113.00 114.00 115.00	114.00 115.00 115.40	1.00 1.00 0.40				0.02 0.01 NU	
		115.40 - 115.65 Quartz + sericite zone comprised of 30% white-grey quartz within schistose sericitized sediments. Quartz vein, 2-3 mm wide, with 1% pyrite.	7790 7791 7792 7793 7794 7795 7796	115.40 115.70 116.50 117.00 118.00 119.00 120.00	115.70 116.50 117.00 118.00 119.00 120.00 121.00	0.30 0.80 0.50 1.00 1.00 1.00 1.00	Tr.	30	60	0.02 NIL 0.01 NIL NIL NIL 0.01	
		 121.10 - 121.30 Fault @ 70° tca. Sericite + qtz. 10 cm wide, barren white quartz vein with strong, sharp sericite slip boundaries. 121.30 - 124.00 Well bedded, aphanitic mudstone, bedding @ 25-30° tca. 	7797 7798 7799 7800 7801	121.00 121.40 122.00 123.00 124.00	121.40 122.00 123.00 124.00 124.90	0.40 0.60 1.00 1.00 0.90		15	40	0.01 0.01 NIL NU	
		 125.10 Strong chloritic mud break @ 60° tca. Down hole side of this fault bedding turns from 25° to 60-70° tca. 125.00 - 125.30 Brecciated mudstone, in-situ brecciation of mudstone by quartz + chlorite fracture fillings. 	7802 7803	124.90 125.50	125.50 126.00	0.60 0.50		5-10		0.01 0.01	

HOLE: AK-91-31

PAGE: 7 of 17

INTERVAL		DESCRIPTION	SAMPLE								ASSAYS		
FROM	ТО		No.	From	То	Length %Rec	%Pv	%OV	%Ser		<u> </u>	An Cheele	-
127.60	230.00	 GRAYWACKE Massive, undeformed, unaltered, very uniform, fine grained, grey-green graywacke. Generally very clean, well sorted, but contains some poor conglomerate. (pebbly graywacke) sections which contain less than 5% scattered polymictic pebbles. Lower contact of unit is gradational to conglomerate. 131.10 Fault @ 70°tca. Chlorite + quartz. 1 cm wide fault gouge with a 3 cm wide, barren, quartz vein at upper contact of fault. 135.00 - 135.20 Fault @ 50° tca. Chlorite + quartz. 9 cm wide, white, barren quartz vein with internal sericitic fractures bounded by strong sharp chloritic sulp with 0.5 cm wide quartz + calcite veinlet sub-parallel tca. 144.30 - 144.90 Fault @ 10° tca. Tight chloritic slip with 0.5 cm wide quartz + calcite veinlet sub-parallel tca. 154.00 - 172.00 Pebbly greywacke/conglomerate, predominantly massive, fine grained, graywacke with 3-5% scattered polymictic pebbles. Weak pervasive spotty sericite. Mafic clasts are frequently fuchsitic. Gradational contacts. 163.30 - 163.80 Shear zone @ 30° tca. Sericite + silica. Moderately silicified shear comprised of irregular wispy sericite (35%) and crushed, silicified graywacke matrix. No visible mineralization. 165.20 Fault @ 20° tca. Sericite + quartz 0.5 cm wide sericitic shear with a 3 mm wide, barren, white quartz + sericite veinlet. 168.25 - 168.35 Fault @ 60° tca. Sericite + chlorite + quartz ± pyrite. Laminated schistose zone with 25% fractured and boundinaged, white quartz with interstitial wispy sericite + chlorite. Trace disseminated pyrite. 173.60 - 173.75 Fault @ 65° tca. Sericite + chlorite + quartz 5 cm wide, or the province. 	No. 7804 7805 7806 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824	From 158.00 159.00 160.00 161.00 162.00 163.30 164.50 165.50 165.50 165.00 165.50 165.00 165.50 166.00 167.00 168.00 168.00 169.50 170.00 171.00 173.00 173.60	To 159.00 160.00 161.00 162.00 163.30 164.50 165.50 165.50 165.00 165.50 165.00 165.50 165.00 165.50 165.00 163.30 164.50 165.50 165.00 170.00 171.00 172.00 173.00 173.60 174.35	Length %Rec 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 1.00	%Py	%QV 5 1	%Ser 35 10	Sil.	Au, g/t 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.04 0.03 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Au,Check	
		schistose, sericitized wall rock.											

HOLE: AK-91-31

PAGE: 8 of 17

INTERVAL		DESCRIPTION	SAMPLE							SAYS
FROM	то		No.	From	То	Length %Rec	%Py %QV	%Ser	Au, g/t	Au.Check
		 174.10 - 174.35 Fault @ 75° tca. Sericite + chlorite + quartz. 174.25 Strong mud break, 1 cm wide, with fractured white quartz with chloritic sutures and schistose sericitized graywacke wallrock. 174.90 - 175.00 Fault @ 60° tca. Sericite + chlorite + quartz 4 cm wide 	7825	174 35	175.00	0.45		20	0.00	
		 white, fractured quartz vein with chloritic sutures in sericitized, foliated graywacke. 195.95 Fault @ 25° tca. Chlorite + quartz + calcite. 1 cm wide, chloritic breccia with 5% brecciated quartz. Strong calcitic mud on chlorite slips. 201.00 Weak bedding @ 45° tca. 	7826	175.00	176.00	1.00	5	20	0.02 NIL	
		214.00 - 221.00 Chlorite ± quartz breccia veinlets, 1-5 mm wide, @ 5-15° tca. These veins are comprised of dark green, chloritic matrix with either angular wallrock fragments and/or white quartz fragments.	7827	214.00	215.00	1.00	2		0.01	
		215.20 - 215.40Fault @ 70° tca. Sericite + chlorite + quartz.215.20Mud break, 1 cm wide, with fractured, barren, white	7828	215.00	215.50	0.50	5-7	25	0.02	
		quartz vein with chloritic sutures in sericitized, sheared graywacke.	7829 7830 7831 7832 7833 7833	215.50 216.00 217.00 218.00 219.00 220.00	216.00 217.00 218.00 219.00 220.00 220.80	0.50 1.00 1.00 1.00 1.00 0.80	1		0.01 0.04 0.01 0.01 0.02 0.01	
		221.00 - 221.20 Sericite + quartz + pyrite shear @ 25° tca. Moderately foliated, sericitized, silicified graywacke with 0.5% pyrite on, 1-3 mm wide, quartz veinlets.	7835 7836 7837	220.80 221.20 222.00	221.20 222.00 223.00	0.40 0.80 1.00	Tr. 5-10	10	0.01 0.02 0.01	
230.00	246.20	CONGLOMERATE Massive, non-bedded, unaltered, undeformed, polymictic pebble conglomerate. Poorly sorted, matrix supported and jasperoidal. Moderate pebble elongation @ 30° tca.								
		 236.70 - 237.00 Fault @ 15° tca. Sericite + quartz. 237.00 Strong, tight sericitic mud slip with 15% fractured, disrupted quartz veins and pods. 238.70 - 238.85 4 cm wide, white buff, quartz vein with sharp sericite slip 	7838 7839 7840 7841	236.60 237.10 238.00 238.65	237.10 238.00 238.65 239.10	0.50 0.90 0.65 0.45	10	30 10	0.04 0.43 0.17 0.11	
		walls @ 35° tca. Fractured and cut by irregular sericitic sutures.								

HOLE: AK-91-31

PAGE: 9 of 17

INTE	RVAL	DESCRIPTION	SAMPLE									ASSAYS		
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser		Au. g/t	Au.Check		
246.20	247.30	DIABASE DYKE Massive, dark green, fine grained diabase with sharp intrusive contacts @ 25° tca. Well developed aphanitic chill margins 2-3 cm wide. Non-magnetic.		******										
247.30	256.90	 CONGLOMERATE Massive, pristine, polymictic pebble conglomerate with a dark green, chloritic graywacke matrix. Matrix supported. 255.00 - 256.90 Spotty, moderate sericite alteration. 256.90 Fault contact @ 40° tca. Chlorite + sericite + quartz. 1 cm wide, chlorite + sericite slip with barren white quartz marks contact with graywacke. 	7842 7843 7844	254.00 255.00 256.00	255.00 256.00 256.90	1.00 1.00 0.90			5 10-15		0.05 0.08 0.02			
256.90	270.10	GRAYWACKE Massive, fine grained, grey-green graywacke with 2% scattered pebbles, (pebbly + graywacke) including angular mudstone clasts. Trace disseminated pyrite.	- - -											
:		256.90 - 264.60 Unit displays, 5-7%, weak to moderate, spotty sericite development and sericitization and fuchsite alteration of mafic clasts. Moderate foliation developed @ 35° tca.	7845	256.90	257.40	0.50	Tr.		5		0.01			
		257.40 - 258.40 Yellow-green, sericitic, aphanitic mudstone with very fine, disrupted bedding @ 60° tca.	7846 7847 7848 7849	257.40 258.40 259.00 260.00	258.40 259.00 260.00 260.50	1.00 0.60 1.00 0.50		Tr.	10-15 5 5		0.03 0.15 0.10			
		260.60 - 260.90 Quartz + sericite + pyrite vein. Somewhat irregular, buff to grey, quartz vein with irregular anastomosing sericite + pyrite suturing 0.5% year fine grained price	7850 7851 7852	260.50 260.90	260.90 261.50	0.40 0.60	0.5	25	15		24.58 0.25	29.66		
		 262.70 - 262.80 Fault @ 30° tca. Sericite + quartz. Moderately strong, sericitic shear with 10% milk-white to greyish green, quartz ± chlorite veins and trace, coarse grained, euhedral pyrite. 	7852 7853 7854 7855 7856 7857	261.50 262.50 263.00 264.00 265.00 265.00	262.50 263.00 264.00 265.00 266.00	1.00 0.50 1.00 1.00 1.00	Tr.	10	15		0.01 0.03 NIL NIL 0.02			
		266.60 - 267.80 Moderately strong foliation and sericitization of graywackes.	7858	266.60	267.00	0.40		3	25		0.01			
		267.10 - 267.40 Fault @ 20° tca. Sericite + chlorite + quartz. Strong calcitic mud gouge, 2 mm wide, with fractured, irregular quartz + chlorite veining and strong sharp sericitic slips.	7859 7860 7861 7862	267.00 267.40 268.00 269.00	267.40 268.00 269.00 269.65	0.40 0.60 1.00 0.65		15	40 10		0.03 NIL NIL NIL			

HOLE: AK-91-31

PAGE: 10 of 17

INTE	RVAL	DESCRIPTION	SAMPLE									SAYS
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		269.65 - 270.10 Contact zone. Moderately deformed and marked by pink quartz + calcite veins, up to 15 cm wide, with sharp sericitic slips on vein boundaries.	7863	269.65	270.10	0.45			<u> </u>	Qtz / Cal	0.02	
270.10	273.20	LAPILLI TUFF Massive, medium green, strongly magnetic tuff comprised of 5% angular, light brown to green, trachytic clasts, up to 3 cm (avg. 0.5 cm), floating in a very fine grained, grey-green, ash matrix. Undeformed and unaltered. Lower contact sharp @ 45° tca.									*	
273.20	277.20	ASH TUFF Massive, very fine grained, brown-green, ash tuff with 1% scattered angular lapilli clasts to 3 cm. Strongly magnetic. Non-descriptive. Lower contact marked by a 1 cm wide, quartz + sericite vein @ 50° tca.										
277.20	282.40	GRAYWACKE/MUDSTONE/TUFF Very irregular appearance due to intimately intercalated graywackes, mudstones and tuffaceous material including trachytic lapilli clasts. Entire section has a dirty mottled appearance with no particular unit being well developed. Graywacke contains irregular mudstone clasts as well as, 1-2%, scattered lapilli clasts in a quartz poor chloritic matrix. Weak to moderate wispy sericite alteration is pervasive while dark green, chloritic spotting is patchy but well developed in places which gives the section an overall mottled, spotty appearance.										
282.40	284.10	MUDSTONE/SILTSTONE Very fine grained to aphanitic, light green, massive siltstone. Non-bedded, very homogeneous. Lower contact sharp @ 15° tca.										
284.10	306.80	ASH TUFF Chlorite \pm hematite. Massive, undeformed medium green to purple where hematitic. Very fine grained, non-bedded, homogeneous ash with less than 0.5% scattered lapilli clasts. Patchy strong magnetics.										
		 286.00 - 293.00 Hematitic. 294.00 - 306.80 Unit looks very similar to a graywacke but contains little to no quartz, no jasper or exotic clasts. 	7864 7865 7866	304.00 305.00 306.00	305.00 306.00 306.70	1.00 1.00 0.70					NIL NIL	
HOLE: AK-91-31

PAGE: 11 of 17

INTE	RVAL	DESCRIPTION				SAN	MPLE				AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
306.80	307.70	MUDSTONE Well bedded @ 45°tca (1 mm to 4 cm wide beds). Rhythmically layered, dark and light green, aphanitic mudstone and fine grained graywacke beds. Grades to predominantly graywacke @ 307.7 m.	7867	306.70	307.70	1.00					NIL	,
307.70	333.80	 GRAYWACKE Massive, fine grained, light green, well sorted graywacke with 0.5% scattered angular mudstone clasts and minor intercalated mudstone horizons to 1 metre wide. Pervasive weak to moderate, spotty sericite development. Contains 0.5%, barren, white quartz veinlets. 310.00 Fault @ 75° tca. 1 cm wide, strong sericitic, mud slip. Dry and barren. 314.50 - 315.40 Light green, sericitic, aphanitic mudstone with sharp faulted contacts. 316.05 - 316.40 Quartz + chlorite + pyrite vein. 25 cm wide, somewhat irregular, white quartz vein with strong chloritic suturing to weak brecciation within sericitized graywacke. Chloritic slips have a blue-grey tinge due to smeared sulphides. Minor, coarser grained, disseminated pyrite on yein 	7868 7869 7870 7871 7872 7873 7874 7875 7876 7876 7877 7878 7879	307.70 308.50 309.00 310.40 311.00 312.00 313.00 314.00 314.50 315.50 316.00	308.50 309.00 310.40 311.00 312.00 313.00 314.00 314.50 315.50 316.00 316.45	0.80 0.50 0.80 0.60 1.00 1.00 1.00 0.50 1.00 0.50 0.45	Tr.	25	30	Ch1.	0.03 NIL NIL NIL NIL NIL 0.02 NIL 0.01 NIL NIL	
		 boundaries within sericitic graywacke. 316.40 - 317.70 Graywackes are moderately sericitized and foliated and contain 2% irregular quartz and quartz chlorite veinlets. Trace disseminated pyrite. 317.20 Fault @ 80°tca. Strong, 2 cm wide, sericitic, mud gouge. 317.20 - 317.65 Quartz and quartz + chlorite veining. Barren, milk-white to blue-grey, quartz veining. Blue-grey veins are fractured with chlorite + sericite sutures and carry minor pyrite. 	7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7889 7890 7891 7892	316.45 316.80 317.20 317.70 318.20 319.00 319.50 320.00 321.00 322.00 323.00 324.00 325.00	316.80 317.20 317.70 318.20 319.00 319.50 320.00 321.00 322.00 323.00 324.00 325.00 326.00	0.35 0.40 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.0	Tr. Tr. Tr. Tr.	2 25 Tr.	15 15 30 5-7	Ch1.	0.07 0.04 NIL 0.03 NIL 0.01 NIL 0.01 NIL 0.03 NIL 0.01	

HOLE: AK-91-31

PAGE: 12 of 17

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		 331.15 - 331.30 Fault @ 45° tca. Sericite + quartz + chlorite ± pyrite. 7 cm wide, milk-white quartz ± albite vein with internal sericite + chlorite sutures @ 45°. Secondary quartz vein, 4 mm wide, with 0.5% pyrite which crosscuts earlier quartz veins at right angles. 333.80 Lower contact of unit is marked by a 5 cm wide, quartz + sericite ± albite vein. Milk-white, late, barren vein with sericitic slips contacts @ 60° tca. 	7893 7894 7895 7896 7897 7898 7899 7900 7901 7901	326.00 327.00 328.00 328.50 329.00 330.00 331.00 331.40 332.00 333.00	327.00 328.00 328.50 329.00 330.00 331.00 331.40 332.00 333.00 333.80	1.00 1.00 0.50 0.50 1.00 1.00 0.40 0.60 1.00 0.80	Tr.	1 10 Tr.	5	NIL NIL NIL 0.01 0.03 0.07 0.02 NIL 0.02 0.02	
333.80	339.50	TRACHYTIC FLOW ? Very distinctive unit. Massive to weakly poikilitic texture, light yellow-green with black spotting (phenocrysts?). Unit is comprised of 10-15%, sub to euhedral, black, chloritized laths (amphibole), up to 2 mm in length (avg. 0.75 mm), in an aphanitic, yellow-green, sericitized matrix. These crystals and crystal masses display a moderate trachytoid texture in places, possibly flow texture. Non-magnetic, quite soft. In places weak spotty leucoxene is developed. Lower contact is very sharp moderately sericitic and somewhat irregular.	7903 7904 7905 7906 7907 7908 7909	333.80 334.50 335.00 336.00 337.00 338.00 339.00	334.50 335.00 336.00 337.00 338.00 339.00 339.50	0.70 0.50 1.00 1.00 1.00 1.00 0.50				NIL 0.43 0.02 NIL NIL 0.07 NIL	
339.50	362.00	 GRAYWACKE Massive, light grey-green, fine grained, moderately well sorted. Graywackes are virtually non-deformed but are weakly to moderately pervasively sericitized which occur as: small spots tight sericitic wisps which wrap around quartz and lithic clasts as sericitization (± fuchsite) alteration of certain clasts types (trachyte, mafic volcanics). 341.60 - 345.40 Scattered, irregular, narrow, black chlorite and quartz + chlorite veinlets and seams, 1-3 mm wide, at various core angles. Occasional traces of fine grained pyrite associated with these veinlets. 	7910 7911 7912 7913 7914 7915 7916 7917	339.50 340.00 341.00 341.60 342.30 343.00 343.40 344.00	340.00 341.00 341.60 342.30 343.00 343.40 344.00 344.45	0.50 1.00 0.60 0.70 0.70 0.40 0.60 0.45	Tr. Tr.	3 1-2	10-15 Chl.	0.01 0.04 0.01 0.02 0.01 0.01 0.02 NIL	

HOLE: AK-91-31

PAGE: 13 of 17

INTE	RVAL	DESCRIPTION				SAN	NPLE				AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
		 344.45 - 345.40 3-5%, quartz + chlorite veins @ 15° tca. Quartz is lig green due to diffuse scattered chlorite. Chlorite + quar veinlets are dark green-black, 1-3 mm wide, and wi trace, sporadic, disseminated pyrite. 347.40 - 348.60 Blue-green, 1 cm wide, quartz + chlorite vein @ 15° t with thin hairline, chloritic cracks emanating from the vein into the wallrock. Trace pyrite associated with chloritic veins and 0.5% scattered regite in the greuwerk. 	t 7918 z 7919 h 7920 7921 7922 a 7923 c 7924 h	344.45 345.00 345.50 346.00 347.00 347.40 348.00	345.00 345.50 346.00 347.00 347.40 348.00 348.60	0.55 0.50 0.50 1.00 0.40 0.60 0.60	Tr. Tr. Tr. Tr.	5 5 1 1		Chi. Chi. Chi. Chi.	NIL NIL 0.01 0.02 0.03 0.16 0.03	A state of the sta
		 348.60 - 349.20 Quartz and quartz + chlorite + pyrite in the graywace 348.60 - 349.20 Quartz and quartz + chlorite + pyrite zone. 10 irregular, white quartz veins cut by later light gree quartz + chlorite veins with trace pyrite. 349.00 3 cm wide, quartz + sericite vein @ 55° tca which fractured and sutured by tight, sericite slips with 1 pyrite. 	5. 6 7925 7926 6 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7938 7939	348.60 349.20 350.00 351.30 352.00 353.00 354.00 354.60 355.40 356.00 356.50 357.50 357.50 358.10	349.20 350.00 350.60 351.30 352.00 354.00 354.00 354.00 354.00 355.40 356.00 356.50 357.00 357.50 358.10 358.60	0.60 0.80 0.60 0.70 0.70 1.00 1.00 0.60 0.80 0.60 0.50 0	0.5	10-15 5 Tr.	15 10-15 10	Chi.	NIL 0.01 NIL 0.02 0.03 0.03 0.01 NIL NIL 0.01 0.01 0.03 0.02 0.02 0.02 0.05	
		359.15 - 359.60 QUARTZ + CHLORITE + PYRITE + GOLD ZONE Upper contact is a sharp, strong sericite slip @ 67° to Lower contact somewhat more irregular but sharp at narrow quartz + chlorite vein @ 30° tca. Zone comprised of 70% irregular, white to blue-grey, quar flooding which is fractured and cut by siliceous, chlorit fracture fillings intruding weakly deformed and serici graywackes. Remnant jasper clasts still evident within th silicified zone. Pyrite (1-2%) occurs as aphanitic dusti on chloritic fractures and as fine disseminations in quar veins and graywacke matrix. VISIBLE GOLD evident very fine grains and dusting within white to grey quar veining.	7940 7941 d s z c c s s g z z z z	358.60 359.10	359.10 359.60	0.50 0.50	1-2	70	5-10	V.G.	0.14 45.09	39.77

HOLE: AK-91-31

PAGE: 14 of 17

INTE	RVAL	DESCRIPTION				· · · · · · · · · · · · · · · · · · ·	SAN	NPLE			······································	AS	SAYS
FROM	то		No.	From	To	Length	%Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
362.00	368.40	 359.60 - 362.00 Weakly sericitic, massive, grey-green graywacke with trace, spotty pyrite. Very weakly deformed as evident by weak wispy sericite developed interstitial to rounded quartz grains and lithic clasts. CONGLOMERATE Upper contact marked by a 1 cm wide, white quartz vein adjacent to a sharp sericite slip @ 25° tca which carries 1% fine grained pyrite. Unit is typically a massive, undeformed, weakly sericitic polymictic pebble conglomerate. 	7942 7943 7944 7945 7946 7947	359.60 360.00 360.50 361.00 361.50 361.90	360.00 360.50 361.00 361.50 361.90 362.20	0.40 0.50 0.50 0.50 0.40 0.30	bite	Tr-0.5 Tr. Tr. Tr. Tr. Tr. 0.5	7	10 5-10 10		2.90 0.22 1.94 2.73 0.95 12.52	Aujuliuk
		362.00 - 362.20 Unit is cut by 5-7% milk-white, irregular quartz ± albite veins which have trace spotty pyrite. Conglomerate is moderately foliated, sericitic and contains 0.5% fine grained disseminated pyrite in matrix. 1-2% blue-grey ouartz flooding with 10% pyrite.	7948 7949	362.20 362.70	362.70 363.10	0.50 0.40		Tr. Tr.				0.86 0.07	
		 363.10 - 364.20 Weakly deformed, sericitized conglomerate with patchy blue-grey silicification and 0.5-1% finely disseminated pyrite. 363.15 - 363.25 6 cm wide, white quartz + sericite + chlorite vein @ 55° tca. No visible pyrite. 	7950	363.10	363.40	0.30		Tr.				2.09	
		363.40 - 363.85 Moderately silicified section with a blue-grey silicification and lesser white quartz veinlets. Zone carries 0.5-1% very finely disseminated pyrite.	7951	363.40	363.85	0.45		0.5-1	25	15	Sil.	20.78	
		363.85 - 364.25 Strongly silicified section with 50% irregular white to grey quartz veining and flooding and 0.5-1% disseminated pyrite.	7952 7953 7954 7955 7956 7957 7958 7958 7959 7960	363.85 364.25 364.65 365.15 365.70 366.20 367.00 367.50 368.00	364.25 364.65 365.15 365.70 366.20 367.00 367.50 368.00 368.40	0.40 0.40 0.50 0.55 0.50 0.80 0.50 0.50 0.40		0.5-1 Tr.	50	10	Sil.	27.27 0.13 0.06 0.02 0.01 0.22 0.04 0.06 0.01	25.54
368.40	369.65	SILTSTONE Massive, fine to very fine grained grey-brown siltstone. Contains 10% thin hairline sericitic fractures and 0.5% very fine grained pervasive pyrite. Non-descriptive. Upper and lower contacts are very sharp @ 40-50° tca and represent primary bedding.	7961 7962	368.40 369.00	369.00 369.65	0.60 0.65		Tr. Tr.				0.07 0.03	

HOLE: AK-91-31

PAGE: 15 of 17

INTE	RVAL	DESCRIPTION		*************		SAN	NPLE		······	·····	AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	N	Au, g/t	Au.Check
369.65	372.00	GRAYWACKE Massive, undeformed, fine grained, grey-green graywacke. Weak, spotty sericitization. Very clean, well sorted. Lower contact is somewhat irregular and undeformed with pebble conglomerate unit.	7963 7964 7965	369.65 370.10 371.00	370.10 371.00 372.00	0.45 0.90 1.00					0.04 0.02 NIL	1.0,0100.
372.00	373.20	CONGLOMERATE Massive, undeformed, pristine, polymictic pebble conglomerate. Matrix supported, 20% well rounded clasts, up to 5 cm, in weakly sericitized graywacke matrix.	7966 7967	372.00 372.60	372.60 373.20	0.60 0.60					NIL 0.13	
373.20	375.15	MUDSTONE Deformed and sericitized. Aphanitic, yellow-green, massive to finely bedded mudstone with 20% intercalated graywacke. Very soft, pervasively sericitic. Bedding is highly contorted and deformed and the entire unit is cut by 10% irregular ptygmatically folded, white, barren qtz veins with fine black chloritic boundaries. Upper and lower contacts are sharp @ 35-40° tca.	7968 7969 7970 7971	373.20 373.70 374.20 374.70	373.70 374.20 374.70 375.20	0.50 0.50 0.50 0.50		5 10			0.01 0.01 0.01 0.01	
375.15	377.00	GRAYWACKE Deformed, moderately sericitized and foliated graywacke with strong fault zones throughout this section.										
		 375.15 - 375.95 Foliated sericitized graywacke with sharp sericitic slips @ 30° tca and 0.5% pyrite. 375.55 - 375.95 Moderately silicified zone with weak blue-grey quartz flooding carrying 0.5% disseminated pyrite and trace chalcopyrite. 	7972	375.20	376.10	0.90	0.5	10	35	Тг. Сру.	0.09	
		376.05 - 376.10 Fault gouge @ 70° tca. Sericite + quartz + pyrite. Strongly sericitic mud gouge with 15%, blue-grey to white, quartz veins and 0.5% disseminated pyrite.	7973	376.10	376.45	0.35	Tr.				0.01	
		 376.45 - 377.00 Sheared quartz + scricite + pyrite zone. Strong scricitic shearing developed @ 45-55° tca. Zone contains 10-15% white to blue-grey quartz veins up to 7 cm wide which are fractured and pseudo-brecciated by scricite and have 0.5-1% finely disseminated pyrite. 	7974	376.45	377.00	0.55	0.5-1	10-15	50		0.04	
377.00	379.30	MUDSTONE Massive to poorly bedded, green-brown aphanitic mudstone with 5% irregular graywacke finely intercalated with the mudstone. Poor bedding developed @ 40° tca. Lower contact is marked by a 7 cm wide, quartz + sericite shear @ 55° tca.	7975 7976 7977 7978	377.00 377.50 378.00 378.60	377.50 378.00 378.60 379.40	0.50 0.50 0.60 0.80					0.05 0.06 0.04 0.08	

HOLE: AK-91-31

PAGE: 16 of 17

INTE	RVAL	DESCRIPTION	SAMPLE							AS	SAYS
FROM	то		No.	From	То	Length %Re	ec %Py	%QV	%Ser	Au, g/t	Au,Check
379.30	382.40	GRAYWACKE Massive, fine grained, light grey-green. Very clean, well sorted. Undeformed with weak, spotty sericite development in matrix. Lower contact sharp @ 30° tca.	7979 7980 7981 7982	379.40 380.00 381.00 381.00	380.00 381.00 381.00 382.40	0.60 1.00 0.00 1.40				0.01 NIL 0.04 0.01	
382.40	389.30	CONGLOMERATE Massive, poorly sorted, polymictic pebble conglomerate. Classic pristine Timiskaming conglomerate. Weak spotty sericitization of matrix. Moderate clast elongation @ 40° tca. Some trachytic and mafic clasts are notably sericitized and frequently display dark chloritic boundaries. Harder clasts (quartz, jasper, etc.) retain roundness and primary condition.	7983 7984 7985 7986 7987 7988 7989 7989	382.40 383.00 384.00 385.00 386.00 387.00 388.00 388.70	383.00 384.00 385.00 386.00 387.00 388.00 388.70 388.70 389.30	0.60 1.00 1.00 1.00 1.00 1.00 0.70 0.60				0.15 0.09 0.02 0.04 0.06 0.17 0.08 0.07	
389.30	395.60	MUDSTONE Massive to poorly bedded, undeformed, unaltered, dark grey-green, aphanitic mudstone with minor intercalated graywacke. Upper and lower contacts sharp and somewhat irregular.	7991 7992 7993 7994 7995 7996 7997	389.30 390.00 391.00 392.00 393.00 394.00 395.00	390.00 391.00 392.00 393.00 394.00 395.00 395.60	0.70 1.00 1.00 1.00 1.00 1.00 0.60				0.02 0.04 0.08 0.03 0.03 0.03 0.03	
395.60	409.75	 GRAYWACKE Massive, fine grained, light grey-green. Well sorted, very clean graywacke with minor intercalated mudstone horizons up to 0.5 m wide. Unit contains 2-3% irregular barren white quartz stockworking veinlets, ≤ 1 cm wide, throughout which frequently display weak to moderate bleaching alteration halos up to 0.5 cm from vein contacts. 398.60 - 399.40 Fault zone @ 40° tca. Sericite + quartz ± pyrite + strong mud fault gouge. Interstitial to these breaks is strongly deformed graywacke with 60% quartz flooding which is chloritic white to green-tinged with strong sericitic fracturing. Trace disseminated pyrite. 398.60 Strong fault mud gouge. 	7998 7999 8000 8001 8002	395.60 396.50 397.50 398.00 398.60	396.50 397.50 398.00 398.60 399.50	0.90 1.00 0.50 0.60 0.90	Tr.	60	40	0.03 0.05 0.06 0.03 0.01	

HOLE: AK-91-31

PAGE: 17 of 17

FROM TO Mo. From To Length %Rec %By %OV %Ser Au.gr Au.Check 803 399-50 400.00 0.50 0.01 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04 0.04 0.05 0.01 0.04 0.02 0.00 0.05 0.01 0.04 0.02 0.00 0.01 0.04 0.02 0.00 0.01 0.04 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.01 0.03 </th <th>INTE</th> <th>RVAL</th> <th colspan="2">DESCRIPTION</th> <th></th> <th></th> <th>SAM</th> <th>IPLE</th> <th></th> <th colspan="2">ASSAYS</th>	INTE	RVAL	DESCRIPTION				SAM	IPLE		ASSAYS	
405.40 - 406.50 Fault @ 60° tea. Sericite + quartz. 5 cm wide, throng, sericitic mud break with 15% barren, while, quartz vein. 5003 399.50 400.00 0.50 0.01 8007 402.80 0.80 0.01 0.01 0.01 8007 402.80 0.80 0.01 0.02 0.01 8007 402.80 0.80 0.01 0.01 0.02 8007 402.80 0.80 0.01 0.01 0.01 8007 402.80 0.80 0.01 0.01 0.01 8007 402.80 0.80 0.00 0.03 0.01 8007 402.80 0.80 1.00 0.01 0.01 8007 402.80 402.00 1.00 0.01 0.01 8007 402.00 402.00 1.00 0.01 0.01 8016 402.80 640.00 1.00 0.01 0.01 8012 407.00 465.00 460.00 1.00 0.01 8012 409.00	FROM	то		No.	From	То	Length %Rec	%Py %Q	V %Ser	Au. g/t	Au.Check
		409.75	 406.40 - 406.50 Fault @ 60° tca. Sericite + quartz. 5 cm wide, strong, sericitic mud break with 15% barren, white, quartz vein. 406.75 - 406.80 Fault @ 65° tca. Sericite + quartz. Strong tight, 1 cm wide, mud break with a 2 cm wide, white quartz + sericite vein. END OF HOLE Casing left in hole. 	8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014	399.50 400.00 401.00 402.00 402.80 403.50 404.00 405.00 406.00 407.00 408.00 409.00	400.00 401.00 402.00 402.80 403.50 404.00 405.00 406.00 407.00 408.00 409.00 409.75	0.50 1.00 1.00 0.80 0.70 0.50 1.00 1.00 1.00 1.00 0.75	xry xo	<u>v</u> %oSer	Au, g/t 0.01 0.04 0.02 0.01 0.03 0.01 NIL 0.03 0.01 0.04 0.03	Au,Check

HOLE: AK-91-32

PAGE: 1 of 12

TOWNSHIP CLAIM No.	Amaigamated Kirkland Teck L 491663	DATE LOGGED LOGGED BY DRILLED BY	August 15, 1991 - August 21, Mark Masson Heath & Sherwood	1991 EASTING NORTHING ELEVATION	8400.4 10032.0	Depth	Method	Azimuth	Dip
STARTED COMPLETED	August 15, 1991 August 20, 1991	CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Kirkland Lake Warehouse B.M.C.I. Tropari	COLLAR SURVEY LENGTH UNITS CODE SIZE	Northland Technical 390.80 metres	Note:	See table at	end of sumn	ary log
PURPOSE	To test "102" structure			B	1102				
COMMENTS	No anomalous assays		SIGNED BY	Benham)					

	SUM	MARY LOG		AS	SSAY SUMMARY
INTERVAL	DESCRIPTION	INTERVAL	DESCRIPTION	INTERVAL	LENGTH AVERAGE
riom 10		From To		From To	in metres Au g/t
0.00 7.00	OVERBURDEN	179.50 221.10	ASH TUFF		
7.00 15.10	ASH TUFF	221.10 249.20	LAPILLI TUFF		
15 10 17 40	Foliated @ 20° tca.	249.20 272.00	ASH TUFF		
13.10 17.40	CONGLOMERATE EAULT DREGOLA CONTROL		269.70 - 270.00 Fault @ 40° tca.		
17.40 17.70	ACH THEE	272.00 279.50	LAPILLI TUFF		
17.70 50.20	Hematitic	279.50 298.10	ASH TUFF		
	$27.95 \cdot 28.40$ Fault @ 25° too	298.10 307.00	GRAYWACKE/SILTSTONE		
	$29.70 \cdot 30.20$ Quartz + chlorite + purite using	207 00 210 50	305.20 - 305.40 Fault @ 50° tca.		
30.20 33.40	CONGLOMERATE	307.00 318.30	ASH/LAPILLI TUFF		
33.40 35.20	ASH TUFF	318.30 327.00	GRAY WACKE/SILTSTONE		
35.20 60.00	CONGLOMERATE/TUFF	321.00 333.00	Dissected		
	Foliated @ 5-25° tca to 43.0 m.	333.00 354.50	CDAVWACKE		
60.00 77.70	CONGLOMERATE	000100 004100	336.60 + 337.40 Otz + oblogite breeze + surface		
	Chloritic		$343.50 \cdot 344.55$ Otz + chlorite breezia + minite		
77.70 92.20	ASH TUFF		$347.50 \cdot 348.20$ Otz + chlorite breccia + pyrite.		
	Hematitic		350.60 - 351.70 Otz + chlorite breccia + pyrite.		
	82.70 - 83.40 Fault @ 15° tca.	354.50 361.10	GRAYWACKE/CONGLOMERATE		
92.20 106.60	LAPILLI TUFF		359.10 - 359.50 Fault @ 45° tca.		
	Chloritic, hematitic	361.10 390.80	GRAYWACKE		
106.60 107.70	FAULT ZONE @ 45° TCA				
107.70 119.10	ASH TUFF				
119.10 179.50	LAPILLI TUFF/CONGLOMERATE	390.80	Е. О. Н.		

HOLE: AK-91-32

PAGE: 2 of 12

PROPERTY	Amalgamated Kirkland	DATE LOGGED	August 15, 1991 - August 21, 1991	EASTING	8400.4	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 491663 August 15, 1991 August 20, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Warehouse B.M.C.I. Tropari	ELEVATION COLLAR SURVEY LENGTH UNITS	314.3 Northland Technical 390.80 metres	Note:	See table b downhole su	clow for all rveys	
PURPOSE	To test "102" structure			CORE SIZE	NQ				
COMMENTS	No anomalous assays		SIGNED BY (W. Benham)						

					SUN	SUMMARY LOG								AS	SAY SUMM	ARY
INTERVAL From To			DESCR	IPTION			INTERVAL From To			DESC	RIPTION			INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
		Depth	Method	Azimuth	Dip				Depth	Method	Azimuth	Dip				
		Collar	Compass	341	60				307.0			49				
		7.3			60				335.0			47				
		30.0 60							365.0			47				
		61.0 59							387.1	Tropari	337	47				
		91.0			57		1									
		122.0			56											
		154.0			55							•				
		185.0			54											
	215.0 53															
	246.0 52															
	275.0 51															
								_			,					

HOLE: AK-91-32

PAGE: 3 of 12

INTE	RVAL	DESCRIPTION	-			SAN	IPLE			ASSAYS		
FROM	то		No.	From	То	Length %Rec	%Py	%QV %	6Ser	Au. g/t	Au.Check	
0.00	7.00	OVERBURDEN										
7.00	15.10	 ASH TUFF Deformed, sericitized, dirty brown-green, fine grained, massive to strongly foliated @ 20° tca, to red-brown and micro-fractured. Comprised of 70%, thin, 1-3 mm, red-pink to grey trachyte clasts which are angular and typically crushed, and fractured in a very fine grained wispy sericitic matrix. Strong fine fracturing or "crackle" texture is evident. Unit contains 5-6% quartz + chlorite fracture fillings and breccia veinlets @ 5-20° tca which represent late fracture fillings associated with cross-faulting and range from hairline cracks which open to barren quartz + chlorite breccia veinlets up to 1-2 cm wide. Lower contact moderately to strongly deformed, with sharp, irregular chlorite + sericite slips @ 25° tca. 7.00 - 43.00 Ground is strongly fractured and rubbly due to low angle cross-faults and fracturing @ 5-25° tca. 97% recovery. 10.40 - 10.80 Fault @ 20° tca. Chlorite + sericite + quartz + calcite. Strong, 1 cm wide, chloritic mud break and brecciated white quartz vein centred @ 10.6 m. Wall rock for 20-30 										
		 10.80 - 15.10 Unit is somewhat more massive, less strongly foliated and sericitic but evidence of grain crushing, fine hairline fracturing and 20% irregular wispy sericite in matrix is still prevalent. 12.60 2 cm wide quartz + chlorite breccia vein @ 25° tca. 										
15.10	17.40	CONGLOMERATE Strongly deformed, fractured, polymictic pebble conglomerate with a wispy to spotty sericitized matrix and fractured, broken and elongated pebbles. Strong chloritic \pm quartz infilling on anastomosing fractures subparallel tca. Late barren quartz veinlets also seen penetrating fractures in framework pebbles.	8077 8078 8079	15.00 16.00 17.00	16.00 17.00 17.40	1.00 1.00 0.40		- 15		NIL 0.02 0.01		
17.40	17.70	FAULT BRECCIA @ 35° TCA 35% angular, lithic fragments up to 2 cm, avg. 0.5 cm, in a fine grained black quartz + chlorite breccia matrix. Breccia fragments are predominantly red-pink trachyte (?) and/or broken feldspars with lesser amounts of wall rock fragments including jasper from the above sediments.	8080	17.40	17.70	0.30			Chl.	0.01		

HOLE: AK-91-32

PAGE: 4 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au.Check
17.70	30.20	 ASH TUFF Quite massive, hematitic, fine grained, red-brown tuff. Very hard and syenitic in appearance. Comprised of 75% very fine grained, red trachyte/syenite ash and broken, crushed feldspar in an aphanitic ground mass (25%). A few minor sedimentary clasts (i.e. quartz + jasper) are scattered throughout the unit and total < 0.5%. Unit shows deformation of a mere brittle character such as strong chloritic fracturing and open quartz + chlorite breccia veinlets @ 0-20° tca. Earlier 2% barren white quartz veinlets @ 60° tca are cut by later chloritic fracturing at low angles. Trace pyrite on some chloritic fractures. 27.95 - 28.40 Fault zone @ 25° tca. Chlorite + quartz ± calcite. Strong, rubbly, chloritic gouge with white-pink quartz + calcite. 29.70 - 30.20 Quartz + chlorite + pyrite veins @ 10° tca. 1.4 mm wide, irregular, anastomosing white-grey, quartz/chlorite veining 	8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094	17.70 18.50 19.00 19.50 20.00 20.50 21.00 21.50 26.00 27.00 27.85 28.50 29.00 29.70	18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 27.00 27.00 27.85 28.50 29.00 29.70 30.25	0.80 0.50 0.50 0.50 0.50 0.50 0.50 0.50	Tr. Tr.	7 2 1 5 5		0.04 0.02 0.02 0.03 0.04 0.01 NIL 0.01 NIL 0.03 0.01 NIL 0.02	- Mijoneek
30.20	33.40	 with 1-2% very fine pyrite veinlets and seam filling. CONGLOMERATE Strongly fractured, sericitized, deformed, polymictic conglomerate with stretched and fractured clasts within a foliated sericitized matrix. Strong chloritic fracturing and 5% narrow quartz + chlorite breccia veinlets @ 10-35° tca. 31.15 - 31.65 Narrow, 1-3 mm, blue-grey cherty vein @ 5° tca with fine grained, semi-massive pyrite on cherty fractures and as thin veinlets (0.5% pyrite). 	8095 8096 8097 8098	30.25 30.75 31.15 31.65	30.75 31.15 31.65 32.40	0.50 0.40 0.50 0.75	0.5	3	15	NIL NIL 0.03 NIL	
33.40	35.20	ASH TUFF Massive, hard, fine grained, red-brown, syenitic in appearance but comprised of 70%, red trachyte/syenite clasts, (avg. 1 mm) which are somewhat crushed. Non-magnetic. Brittle deformation with 2-3% quartz + chlorite breccia veinlets. Lower contact is foliated, sericitized @ 30° tca.									
35.20	60.00	CONGLOMERATE/TUFF 35.20 - 43.00 Moderately, strongly deformed, foliated to sheared, polymicitc pebble conglomerate. Strong clast elongation @ 5-25° tca. Entire section contains 5% strong sericite +									

HOLE: AK-91-32

PAGE: 5 of 12

INTE	RVAL	DESCRIPTION				SAN	APLE		Mat <u>a</u> 1 a a a a a a	AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py %	QV %Se		Au, g/t	Au.Check
		 chlorite ± quartz slips and shears up to 5 cm wide @ 20-30° tca and 2-3% barren, late quartz veinlets. Matrix is fine grained, weakly to moderately sericitic and may be in part comprised of fine, red trachytic ash. 43.00 - 60.00 Unit becomes less deformed, massive, chloritic, polymictic conglomerate. Comprised of 25-30% well rounded to subangular polymictic clasts from 2-3 mm to 10-15 cm in size. Poorly sorted. Matrix is somewhat variable from a chloritic quartz arenite (graywacke), to a red-brown, fine grained, trachytic ash, comprised predominantly of 0.5-1 mm red, aphanitic trachyte and minor quartz and lithics. Unit is intimately associated with ash tuffs horizons as evidenced by sections comprised predominantly of fine grained trachyte ash with 1-2% scattered rounded polymictic pebbles. Grades into a more typically arenaceous, chloritic conglomerate @ #60.0 metre. 48.00 - 51.50 Ash tuff, massive to finely bedded @ 15° tca. Comprised of 70%, fine, well sorted, red-brown trachyte, ≤ 1 mm, in an aphanitic, chloritic ground mass. 1% scattered, well rounded, polymictic pebbles. Contacts with conglomerate are gradational over 0.5 m. Weak, natchy magnetics 									
60.00	77.70	CONGLOMERATE Classic, massive, chloritic, polymictic pebble conglomerate. 10-40% well rounded polymictic clasts, in a fine grained, grey-green, chloritic graywacke matrix. Matrix supported. Undeformed, unaltered with minor late, barren, white irregular quartz veinlets.									
77.70	92.20	 ASH TUFF Hematitic, red-brown to mauve coloured, massive fine grained trachyte ash. Comprised predominantly of very fine grained red trachyte/syenite clasts, ≤ 1 mm, with lesser amounts of fine, broken feldspar and minor lithics. Scattered through unit is <1% rounded polymictic clasts (pebbles), including quartz, jasper and mafic volcanics, floating in the fine ash matrix. This gives unit a locally poor conglomerate nature. Patchy strong magnetics Contact with upper unit is sharp and somewhat irregular @ 35° tca. 82.70 - 83.40 Fault @ 15° tca. Chlorite + quartz. 0.5%-1 cm wide chloritic fracture with 15% irregular white-pink quartz veining. Rubbly broken ground. 75% recovery. 									

HOLE: AK-91-32

PAGE: 6 of 12

INTE	RVAL	DESCRIPTION				S	MPLE			AS	SAYS
FROM	то		No.	From	То	Length %Re	: %Pv	%OV	%Ser	Au. o/t	Au Check
92.20	106.60	LAPILLI TUFF-HETEROLITHIC Chloritic + hematitic. Massive, dark grey-green to red, undeformed, unaltered. Comprised of 5-15% angular to well rounded lapilli clasts and pebbles in a very fine grained trachyte/syenite ash matrix with little to no quartz. Clasts vary from angular red-brown trachyte to trachyte porphyry and dark green mafic volcanics. No quartz or jasper clasts evident. Unit is conglomerate in places but lacks the characteristic arenaceous matrix. Moderately, to strongly magnetic. 101.20 - 106.60 Unit has a red-brown syenitic appearance.									Aujoitek
106.60	107.70	FAULT ZONE @ 45° TCA Quartz + sericite. 25-30% barren, white quartz ± albite veins, up to 2 cm wide, within sheared, sericitized fault zone. Barren, non-mineralized. 106.60 - 107.00 Rubbly broken core.									
107.70	119.10	ASH TUFF Massive to well bedded @ 35° tca. Very fine grained, grey-green to brown. Bedding defined by fine laminations, <1 mm wide. Minor scattered, chloritized lapilli clasts. Moderately magnetic. Finely intercalated with heterolithic, lapilli tuff horizons, up to 1 m wide. Lower contact somewhat gradational.									
119.10	179.50	LAPILLI TUFF/CONGLOMERATE Heterolithic, chloritic + hematitic, massive, undeformed, unaltered. Grey- green to mauve where pervasively hematitic. Unit is quite variable, containing 1-20% angular to sub-rounded heterolithic clasts up to 6 cm (avg. 1-2 cm) in a fine grained, dark green to red, trachyte ash matrix. In part tuffaceous conglomerate. In places, small sections, < 1 m wide, are conglomerate in appearance with rounded clasts and the occasional jasper pebble. Unit is intimately intercalated with ash tuff horizons up to 3 m wide. These ash tuff horizons are of equivalent composition, massive to finely bedded, @ 40-50° tca, with both gradational and sharp contacts. All sections are moderately to strongly magnetic. Clasts are variable but predominantly trachyte and range from buff to grey, red-pink to dark green and fine grained to porphyritic. (<1% pebbles) Very massive, hard, competent ground.							, , ,		

HOLE: AK-91-32

PAGE: 7 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		 121.70 Fault @ 55° tca. Chlorite + sericite + quartz. 2 cm wide chlorite shear with white, fractured quartz veinlet within foliated, sericitic tuff. 154.30 - 154.45 Fault @ 25° tca. Sericite + chlorite + quartz/calcite. 10-12 cm wide, sericitized tuff with strong, tight, chloritic slips and 15% white-pink quartz + calcite veining which is fractured and disrupted. 									
179.50	222.10	ASH TUFF Chloritic + hematitic, massive, non-bedded, dark grey-green, very fine grained with a weak, purplish hue. Comprised of 30% red-pink, very fine grained, trachytic ash in an aphanitic, chloritic ground mass. Very homogeneous, monotonous. Weak, wispy bedding @ 30° tca. Strongly magnetic and contains <1% late, white to pink, quartz ± calcite veinlets. 221.60 - 221.90 Fault @ 35° tca. Sericite + chlorite + quartz + calcite. Strongly foliated to schistose, sericitic tuff with 2% barren, white-pink quartz + calcite veining up to 2 cm wide. Marks bedding contact.									
222.10	249.20	LAPILLI TUFF Chloritic + hematitic, massive, undeformed, unaltered, dark red-black. Quite coarse lapilli (fine block) tuff, comprised predominantly of angular, red-brown, trachyte clasts from 2-3 mm to 5-6 cm (avg. 2 cm) in size, in a very fine, dark ash matrix. Clasts comprise 15-20% of unit, predominantly monolithic (80%) and displays aphanitic to trachytoid textures. Strongly magnetic. Equivalent to monolithic block tuff unit. Lower contact gradational over 1 m.									
249.20	272.00	 238.60 - 239.20 Fault @ 5° tca. Chlorite + quartz + calcite. 2 mm wide, strong, chloritic fracture @ 5° tca with barren white-pink quartz + calcite veining adjacent to slip. ASH TUFF Chloritic + hematitic, massive, undeformed, unaltered, dark grey-green to black. Generally fine to very fine grained trachyte ash in an aphanitic, chloritic ground mass. A few minor lapilli clasts scattered through unit. Strongly magnetic. Hard, competent ground. Quite homogeneous and nondescript. Lower contact gradational over 1-2 m. 			·						

HOLE: AK-91-32

PAGE: 8 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLE		· · · · · · · · · · · · · · · · · · ·	AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au.Check
		269.70 - 270.00 Fault @ 40° tca. Sericite + chlorite + quartz. Buff- brown, bleached, sericitized tuff with sharp, strong chlorite + sericite slips and minor barren quartz veining.				· · · · · · · · · · · · · · · · · · ·					
272.00	279.50	LAPILLI TUFF Chloritic + hematitic, massive, undeformed, unaltered, dark green to red- brown, strongly magnetic. Comprised of 5-10% angular trachyte clasts up to 2 cm (avg. 0.5 -1 cm) which are predominantly dark red-brown in a fine grained dark green ash matrix.									
279.50	298.10	ASH TUFF Chloritic + hematitic, massive, fine grained, dark green to mauve with pervasive hematization. Nondescript. Poorly developed bedding @ 50° tca. Undeformed, unaltered and strongly magnetic. Lower contact of unit is marked by a 1 cm wide sericite + quartz shear @ 55° tca.									
		 288.10 Fault. Chlorite + specularite + quartz. 0.5 cm wide, purple chloritic slip with smeared hematite staining and minor quartz veining. 292.00 - 298.10 Unit grades to a poor lapilli tuff comprised of 1-2% buff, angular trachyte clasts in a red-mauve, hematitic, very fine grained ash matrix as above. 									
298.10	307.00	 GRAYWACKE/SILTSTONE Massive to crudely bedded, chloritic, finely intercalated graywacke, siltstone and conglomerate horizons displaying irregular, sharp to gradational contacts. Units are grey-green chloritic and vary from massive, very fine grained siltstones, fine grained graywackes and poor pebble conglomerates. Pebbly graywackes ranging from 10 cm to 75 cm in width. Cut by 1-2% white to pink quartz ± calcite veinlets at various core angles. 305.20 - 305.40 Fault zone @ 50° tca. Sericite + quartz + calcite. 20 cm wide, irregularly deformed, crenulated, sericitic shear with 10-15% irregular white-pink quartz + calcite veining. 	80999 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110	298.10 298.50 299.00 300.90 301.00 302.00 303.00 304.00 304.50 305.10 305.60	298.50 299.00 300.00 301.00 302.00 303.00 304.00 304.50 305.10 305.60 306.50	0.40 0.50 1.00 0.90 0.10 1.00 1.00 1.00 0.50 0.60 0.50 0.90		Tr. 2 10-15	Tr. 2 25	0.02 NIL 0.02 0.01 0.02 0.02 NIL 0.02 0.01 0.01 0.03 0.02	

HOLE: AK-91-32

PAGE: 9 of 12

INTE	ERVAL	DESCRIPTION				SAN	MPLE	ASSAYS
FROM	то		No.	From	То	Length %Rec	%Py %QV %Ser	Au, g/t Au, Check
		306.90 - 307.00 Sheared, sericitized contact with 2% narrow, 1-3 mm wide, irregular white quartz veinlets within crenulated, sericitic matrix.	8111	306.50	307.25	0.75	5 10-15	0.01
307.00	318.50	ASH/LAPILLI TUFF Massive, grey-green to red-brown, fine to very fine grained trachyte ash tuff with 1-2% scattered, angular lapilli clasts. Buff to grey. Comprised of very fine grained trachyte lithic clasts and feldspar (≤ 2 mm) in a dark aphanitic ground mass. Moderately magnetic. Lower contact of unit is gradational over 1 m with gradual increase in siltstone and graywackes.						
		 307.00 - 307.20 White-pink quartz + calcite breccia veinlets, ≤ 2 cm wide, with angular wall rock inclusions. 311.00 - 312.80 Fault @ 7° tca. Tight, strong, chloritic slip with dextral slickenslides and a 1 cm wide quartz + calcite veinlet on slip walls. 	8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123	307.25 308.00 309.00 310.00 311.00 312.00 313.00 314.00 315.00 316.00 317.00 318.00	308.00 309.00 310.00 311.00 312.00 313.00 314.00 315.00 316.00 317.00 318.00 318.50	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		0.03 NIL 0.02 0.02 0.01 0.01 0.02 0.01 NIL 0.02 0.01 0.01
318.50	327.00	 GRAYWACKE/SILTSTONE Massive, undeformed, intercalated, graywacke and siltstone. Grey-green, chloritic with irregular, sharp contacts. Siltstone horizons, up to 30 cm, wide in a predominantly graywacke host. Lower contact, sharp and marked by a tight sericite slip and 0.5 m irregular quartz veinlet. 324.30 - 327.00 Fine grained graywacke. Massive, well sorted, very clean, unaltered and undeformed. 10% fine quartz in matrix. 326.50 - 326.90 Quartz stockwork. 3-5%, barren, white quartz stockwork in weakly sericitic graywacke. Veinlets range from 2 mm to 1 cm and display two generations of crosscutting veinlets. 	8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135	318.50 319.00 319.50 320.00 320.50 321.50 322.00 323.00 324.00 325.00 326.00 326.50	319.00 319.50 320.00 320.50 321.50 322.00 323.00 324.00 325.00 326.00 326.50 327.00	0.50 0.50 0.50 1.00 0.50 1.00 1.00 1.00	3 10	0.02 0.03 NIL 0.02 0.03 0.01 0.02 0.01 0.01 0.03 0.01 0.01

.

HOLE: AK-91-32

PAGE: 10 of 12

INTERV	VAL	DESCRIPTION		<u></u>			SAN	APLE			A	SSAYS
FROM T	то		No.	From	То	Length 9	%Rec	%Py	%QV	%Ser	Au, g/t	Au.Check
327.00 333	\$3.00	LAPILLI TUFF Dirty green-brown to buff coloured tuff comprised of 5-7% angular, grey- brown, lapilli clasts up to 4 cm (avg. 1-2 cm) in a very fine grained to aphanitic bleached matrix. In places, fine, narrow, black euhedral magnetic grains up to 1 mm are evident within an aphanitic bleached ground mass. Pervasively sericitized. Moderately magnetic. Lower contact is moderately deformed and sericitic with 10% irregular quartz + calcite veining.	8136 8137 8138 8139 8140 8141 8142 8143	327.00 327.50 328.00 329.00 330.00 331.00 332.00 332.50	327.50 328.00 329.00 330.00 331.00 332.00 332.50 333.00	0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.50					0.01 NIL 0.04 0.02 NIL 0.02 0.01 0.01	
333.00 390	ю.80	 GRAYWACKE Massive, fine grained, undeformed graywacke. Light grey-green with weak, spotty, pervasive sericitization. Unit contains < 1% mudstone chips. 333.00 - 335.00 Few scattered, angular lapilli clasts. 336.60 - 337.40 Quartz stockwork zone. 2-3% irregular white quartz and quartz breccia veinlets, 2 mm to 2 cm wide, stockworking, in weakly sericitic graywackes. Veinlets frequently have light green chloritic boundaries and carry trace disseminated pyrite and very minor chalcopyrite. Breccia veins have angular, included wall rock fragments and secondary milk-white albite. 336.10 - 336.30 Broken rubbly ground, 90% recovery, with a quartz ± albite + chlorite breccia vein with trace, 0.05%, disseminated pyrite. 336.30 - 337.40 Quartz breccia vein and stockworking, 1-7 mm wide, subparallel tca with chloritic boundaries and trace scattered pyrite. 	8144 8145 8146 8147 8148 8149 8150 8151 8152 8152 8153 8154 8155 8156 8157 8158 8159	333.00 333.50 334.00 335.50 335.50 336.00 336.40 337.00 336.40 337.00 338.00 338.50 338.00 338.50 339.00 339.50 340.00 340.50	333.50 334.00 334.50 335.50 336.00 336.40 337.50 337.50 337.50 338.00 338.50 338.50 339.00 339.50 340.00 340.50 341.00	0.50 0.50 0.50 0.50 0.50 0.40 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.5	95	Tr. Tr. Tr0.5	1 3-4 5 2-3	Tr. 5 2 2	0.01 0.01 NIL 0.02 0.02 0.01 0.01 0.02 0.02 0.01 NIL NIL NIL NIL NIL 0.02	

HOLE: AK-91-32

PAGE: 11 of 12

INTE	RVAL		DESCRIPTION					SAM	IPLE			AS	SAYS
FROM	ТО			No.	From	To	Length %	Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
FROM	TO	343.00 - 343.50 343.50 - 344.55 347.50 - 348.20	Aphanitic, yellow-green, sericitic mudstone interbed with very weak chloritic fracturing. Quartz + chlorite breccia veining. Open, strong, chlorite + calcite fracture @ 0° tca which post-dates previous veining episode. Mineralized veins are blue-grey, wispy, chlorite \pm quartz fracture filling and veining predominantly @ 0-30° tca. Very irregular and range from hairline cracks to quartz + chlorite veins to 1 cm. These fine chloritic fractures, carry very finely disseminated pyrite, while host graywackes are non- mineralized. 10% quartz + chlorite breccia and stockwork veining with included graywacke fragments. Very minor trace pyrite on vein boundaries	No. 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174	From 341.50 342.00 342.50 343.00 343.50 344.00 344.60 345.50 346.00 345.50 346.00 346.50 347.50 347.50 347.50	To 342.00 342.50 343.00 343.50 344.00 344.60 345.00 346.50 346.00 346.50 346.50 346.50 346.70 348.20 348.20 348.20	Length % 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	SAN Rec 97	Tr. 7r-0.5 7r. 7r. 7r. 7r. 7r. 7r. 7r. 7r. 7r. 7r.	%QV 5 3 Tr. 3-4 1 Tr. 10 2	%Ser 10 Tr. 15	As Au, g/t NIL 0.02 NIL 0.01 0.02 0.01 0.03 0.05 0.02 0.04 0.03 0.05 0.02	Au,Check
		350.60 - 351.70 353.00 354.50 - 361.10	vein boundaries. Quartz + chlorite breccia veining. Irregular quartz + chlorite stockworking with dark chloritic boundaries and trace disseminated pyrite and minor blebby chalcopyrite. 10%, 1 mm-2 cm wide, quartz veins. Predominant vein fracturing is subparallel tca with irregular quartz + chlorite stockworking, splaying out from this main fracture set. Quartz + chlorite stockworking and veining dissipates. Poor conglomerate, pebbly graywacke with 2-3%, scattered, polymictic pebbles. Quartz, jasper, mudstone and fuchsitic volcanics, in a very clean, well sorted,	8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189	348.70 349.20 349.70 350.20 350.60 351.10 351.60 352.00 352.50 353.00 353.50 354.00 354.50 355.00 355.00	349.20 349.70 350.20 350.60 351.10 351.60 352.00 352.50 353.50 353.50 354.00 354.50 355.00 356.00 357.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		Tr. Tr. Tr. Tr.	2 Tr. 2 Tr.	10	0.02 0.01 0.05 0.02 0.03 0.03 0.01 0.04 0.01 0.02 0.01 0.04 0.01 0.02	
		359.10 - 359.50	graywacke matrix. Fault @ 45° tca. Sericite + quartz. Rubbly, broken ground with strong calcitic mud breaks, up to 1 cm wide, in strongly deformed, sericitic graywacke. Probable cross- fault.	8190 8191 8192	357.00 358.00 359.00	358.00 359.00 359.60	1.00 1.00 0.60	95			40	0.04 0.02 0.01	

HOLE: AK-91-32

PAGE: 12 of 12

INTE	RVAL	DESCRIPTION			· · · · · ·	SAM	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		359.50 - 390.80 Unit is massive, monotonous, well sorted, clean graywacke with ≤ 1% scattered mudstone and lithic pebbles. Massive, non-bedded with a weak, pervasive, spotty sericite development. Non-magnetic, undeformed.	8193 8194 8195 8196 8197 8198 8199 8200 8201 8202	359.60 360.20 361.00 362.00 363.00 364.00 365.00 366.00 366.00 367.00	360.20 361.00 362.00 363.00 364.00 365.00 365.00 366.00 367.00 368.00 269.00	0.60 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.0				0.03 0.01 0.03 NIL 0.02 0.02 0.01 0.03 0.04	
		370.10 - 370.55 Semi-massive quartz ± albite vein within sericitic mudstone horizon which is very irregular. Trace subhedral pyrite evident in places on vein margin.	8202 8203 8204 8205 8206 8207	369.00 370.00 370.60 371.00 372.00	370.00 370.60 371.00 372.00 373.00	1.00 1.00 0.60 0.40 1.00 1.00	Tr.	40		0.02 0.02 0.02 0.01 0.01 0.02	
	390.80	END OF HOLE Casing left in hole.									
						-					

HOLE: AK-91-33

PAGE: 1 of 12

PROPERTY TOWNSHIP CLAIM No.	Amalgamated Kirkland Teck L 491650. L 491651	DATE LOGGED LOGGED BY DRILLED BY	August 22, 1991 - Au Mark Masson Heath & Shenwood	ugust 29, 1991	EASTING NORTHING	7914.6 10391.9	Depth	Method	Azimuth	Dip	
STARTED COMPLETED	August 21, 1991 August 28, 1991	CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Kirkland Lake Warel B.M.C.I. Tropari	house	LENGTH UNITS CODE SIZE	344.4 Northland Technical 454.75 metres	Note:	See table at for downhol	end of sumn surveys	ary log	
PURPOSE	To test "102" structure			IVB		1102			-		
COMMENTS	"103" gold zone @ 275.56 "102" gold zone @ 378.86	0 - 276.10, 0.60 m. 0 - 379.25, 0.45 m.	SIGNED BY	(W. Benham)							

	SUM	MARY LOG		AS	SSAY SUMM	ARY
INTERVAL From To	DESCRIPTION	INTERVAL	DESCRIPTION	INTERVAL	LENGTH	AVERAGE
11011 10		From To		From To	in metres	Au g/t
0.00 2.13	OVERBURDEN		275.50 - 276.10 Shear zone @ 40° tca.			
2.13 26.90	LAPILLI/ASH TUFF	282.90 337.70	ASH TUFF	275.50 276.10	0.60	0.13
	25.00 - 25.50 Fault @ 15-40° tca.		306.90 - 307.20 Fault zone @ 50° tca.			
26.90 62.80	SILTSTONE/MUDSTONE	337.70 370.70	LAPILLI TUFF	378.80 379.25	0.45	0.16
	54.80 - 55.10 Fault @ 30° tca.		340.50 - 350.00 Fractured, sericitic, bleached. 1-			
62.80 228.10	LAPILLI TUFF		3% quartz + calcite and chlorite			
	139.70 - 139.90 Fault @ 55° tca.		veinlets @ 10-15° tca.	:		
	146.90 - 147.30 Fault @ 45° tca.	370.70 389.10	LAPILLI TUFF			
	189.00 - 189.01 Fault @ 35° tca.		Sericitic			
	212.80 - 213.50 Shear zone @ 25° tca.		389.00 - 389.10 Fault @ 60° tca.			
	$220.50 \cdot 220.90$ Fault @ 60° ica.	389.10 398.00	LAPILLI TUFF/SILTSTONE			
220 10 220 (0	$227.00 \cdot 228.10$ Fault @ 65° ica.	398.00 411.00	LAPILLI TUFF			
228.10 229.00	GRAYWACKE	411.00 414.90	SILTSTONE			
229.00 232.70	MUDSTONE	414.90 423.80	LAPILLI TUFF			
232.70 240.20	CDANNA CKE	423.80 432.30	SILTSTONE/MUDSTONE			
240.20 240.90			427.40 - 429.00 Shear zone @ 45° tca.			
240.90 248.90	LAPILLI TUFF MUDOTONE/OU TOTONE	432.30 454.75	GRAYWACKE			
248.90 255.90	MUDSIONE/SILISIONE		442.90 Fault @ 30° tca.			
	$231.23 \cdot 231.33$ Quartz + sericite + pyrite vein @					
255 90 282 90	O ICA.	464.75	P.O.H.			
200.50 202.50	1.20% quarte + oblacite vaialate @ 15 (59 tes trace	454.75	Е. О. Н.			
	1-270 qualizer chorne vennels (@ 15-05" ica, irace					
	pyrne.]		

HOLE: AK-91-33

PAGE: 2 of 12

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED LOGGED BY	August 22, 1991 - August 29, 199 Mark Masson	1 EASTING	7914.6	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 491650, L 491651 August 21, 1991 August 28, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Warehouse B.M.C.I. Tropari	ELEVATION COLLAR SURVEY LENGTH UNITS	344.4 Northland Technical 454.75 metres	Note:	See table b downhole su	clow for all rveys	
PURPOSE	To test "102" structure			CORE SIZE	NQ				
COMMENTS	"103" gold zone @ 275.50 "102" gold zone @ 378.80) - 276.10, 0.60 m.) - 379.25, 0.45 m.	SIGNED BY (W. B	enham)					

				SUI	MMARY LOG						A	SSAY SUMM	IARY
INTERVAL From To		DESCR	RIPTION		INTERVAL From To		DESC	RIPTION			INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
	Depth	Method	Azimuth	Dip		Depth	Method	Azimuth	Dip				
	Collar	Compass	161	65		277.0			60				
	3.0			65		305.0			59				
	30.0			65		335.0			60				
	48.0	Tropari	166	63		368.0			58				
	61.0			64		396.0	Tropari	169	57				
	93.0			63		398.0			57				
	124.0			63		450.0	Tropari	170	59				
	152.0			63									
	185.0			62									
	215.0			60									
	246.0			59									
				·····						4			

HOLE: AK-91-33

PAGE: 3 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLE			SCAVC	
FROM	то		No.	From	То	Length %Rec	%Pv %(OV %Ser	Au at	Au Check	
0.00	2.13	OVERBURDEN						2. ,000	Au, gr	Au,CiltCk	
2.13	6.80	 ASH TUFF Massive, fine grained, red-brown to purple. Comprised of 30% fine red trachyte/syenite clasts up to 1 mm in a aphanitic ground mass. Moderately magnetic. Unit is fractured and rubbly in places, due to low angle fracturing and faulting @ 10° tca. (cross faulting). Strong chlorite + ankerite + quartz slips @ 10° tca. 3-5% late barren, fracture filling quartz veinlets up to 1 cm @ 30° tca. Strong hematitic coloration gives way gradually to a more chloritic assemblage @ 6.8 m. 5.20 - 6.00 Fault @ 10° tca. Chlorite + ankerite + quartz ± calcite. Ankerite stained chloritic slip with 10% quartz + calcite breccia veining with included, angular wall rock inclusions. 									
6.80	26.90	LAPILLI/ASH TUFF Dark grey-green, chloritic, massive lapilli tuff with intercalated ash tuff horizons up to 1 m wide. Lapilli tuffs contain 3-5% angular trachytic clasts up to 3 cm (avg. 0.5-1 cm) in a very fine ash matrix. Clasts vary from buff- brown, to grey, to red, generally fine grained trachyte, occasionally porphyritic. Ash tuff horizons display gradational contacts and in places bedding is well developed @ 20° tca. Moderately to strongly magnetic. Unit contains 2% barren white quartz veins @ 15-30° tca which frequently have buff-brown, weakly sericitic alteration halos up to 2-3 cm wide, proximal to veins. 15.70 - 15.80 Fault @ 15° tca. Chlorite + quartz \pm calcite. 3 cm wide		·							
		 chlorite + quartz breccia vein with wall rock and quartz vein inclusions proximal to a sharp, strong, chloritic slip. 25.00 - 25.06 Strong 6 cm wide quartz + sericite fault @ 40° tca. 25.00 - 25.30 Fault zone @ 15-40° tca. Sericite + chlorite + quartz. 25.30 - 25.50 Strong, tight sericite + quartz + ankerite fault @ 15° tca. Barren, late, non-mineralized. 26.80 - 26.90 Fault breccia @ 45° tca. Angular, fractured and brecciated white-pink quartz fragments in a very fine grained black, chlorite ± quartz ground mass. Non-mineralized. 									

HOLE: AK-91-33

,

PAGE: 4 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
26.90	62.80	 SILTSTONE/MUDSTONE Massive to well bedded, very fine grained to aphanitic. Dark grey-green, chloritic and non-magnetic. Undeformed, unaltered siltstone/mudstone displaying irregular fine bedding which varies from 5-40° tca. Bedding and small scale step-faulting (dextral). Minor pebbly horizons up to 20 cm wide occur in places. Unit is also in part intercalated with narrow lapilli tuff horizons, up to 75 cm wide, which are comprised of buff-grey and brown, angular trachyte lapilli clasts, to 2 cm, in a fine grained mixed arenaceous to tuffaceous matrix. Cut by at least two generations of barren quartz ± albite veinlets, 1 mm -1 cm wide, which frequently display buff-brown, bleached, alteration halos up to 5 cm wide. Lower contact is a sharp bedding contact @ 30° tca. 38.30 - 40.85 Polymictic pebble conglomerate horizon with sharp irregular contacts. Weakly sericitic, matrix supported. 51.00 - 54.20 Well bedded, finely laminated mudstone/siltstone @ 25° tca. 54.80 - 55.10 Fault @ 30° tca. Quartz + chlorite + sericite. 80% massive to fractured and sheared quartz ± albite veining with interstitial chlorite + sericite slips and slip walls. Minor gouge developed. Minor trace chalcopyrite on fine fractures. 	8208 8209 8210 8211 8212 8213 8214	51.00 52.00 53.00 54.00 54.75 55.20 56.00	52.00 53.00 54.00 54.75 55.20 56.00 57.00	1.00 1.00 1.00 0.75 0.45 0.80 1.00		80	20 Tr. Cpy	0.01 NIL 0.01 0.01 NIL 0.01	
62.80	101.00	 LAPILLI TUFF Massive, undeformed, unaltered, grey-green, chloritic. Comprised of 5-10% angular light grey to buff brown, heterolithic, trachyte clasts (avg. 0.5 cm) in a very fine grained, light grey-green, possibly augite-bearing, chloritized ground mass. Patchy strong magnetics. Lapilli tuff unit is massive, non-bedded but is intercalated with narrow sedimentary horizons @ 5-15° tca. These sedimentary horizons are predominantly mudstones but include a small quantity of graywacke and pebbly graywackes. 66.70 - 67.40 Siltstone interbed @ 5° tca. 71.50 - 72.80 Mudstone bed, finely laminated @ 5° tca. 97.30 - 100.60 Aphanitic mudstone/siltstone bed @ 10-20° tca. Oscillates in and out of core. 									

HOLE: AK-91-33

PAGE: 5 of 12

INTE	RVAL	DESCRIPTION					SAN	ADI E			 40	SAVC
FROM	ТО		No	Erom	To	Length	%Dec		<i>¢</i> ov	01. S	 AS	SAIS
101.00	228.10	LAPILLI TUFF Chloritic, massive, undeformed, unaltered. Comprised of 5-15% coar angular heterolithic trachyte clasts up to 7 cm (avg. 2-3 cm) in a da green, very fine grained chloritic ash matrix. Lapilli clasts vary from ru brown to grey to brown, generally fine grained to weakly porphyrir Strong, pervasive magnetics. Unit is cut by 1% barren, white quartz calcite veinlets and displays a moderate hydrochloric acid reaction with matrix.	rk, rk d- ic. ±	110	10	Lengui	<i>b</i> Rec	701 y	70QV	70501	 Au, g/t	Au,Check
		 101.00 Unit becomes gradually coarser grained and increasing more magnetic. 112.00 - 113.20 Dark green aphanitic mudstone with fine beddi laminations @ 35° tca. 139.30 - 140.50 Weak wall rock alteration evident as narrow buff-brow bleaching halos, up to 1 cm, around 1-5 mm wide qua veinlets. 139.70 - 139.90 Fault @ 55° tca. Sericite ± quartz. Rubbly, brok section comprised of strongly foliated to schisto sericitized tuff with fragmented and fractured clasts w interstitial sericite slips. 5% barren, narrow qua veinlets. 144.80 - 145.40 1 cm wide chlorite + calcite slip @ 15° tca. 	ly 8215 8216 8217 970 8218 12 8219 8220 en ee, 8221 14 8222 12 8223 8224 8225 8226	136.00 137.00 138.00 139.50 140.00 140.50 141.00 142.00 143.00 144.00 144.80	137.00 138.00 139.00 139.50 140.00 140.50 141.00 142.00 143.00 144.00 144.80 145.80	1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00			2 5 2-3	70	NIL 0.01 0.01 0.04 NIL NIL 0.05 NIL 0.01 0.02 0.03	
		 146.90 - 147.30 Fault @ 45° tca. Sericite + quartz/calcite. Strong foliat to schistose, sericitic shear with strong wispy seric within sheared fractured tuff. 5% late barren white pink quartz + calcite veining. 147.20 Ground fault gouge. 	8227 ed 8228 te to	145.80 146.80	146.80 147.30	1.00 0.50	90		5	75	0.01 0.01	
		 174.00 Narrow section of ash tuff showing well develop bedding @ 15° tca. 181.30 - 181.70 Fault @ 45° tca. Foliated lapilli tuff with strong, sha sericitic slips and 3% barren, white quartz ± alb veinlets up to 0.5 cm wide. 189.30 Fault @ 35° tca. 1 cm strong chloritic fault with gou development and late quartz + calcite infilling. 	8229 8230 ed p, te ge	147.30 147.80	147.80 148.80	0.50 1.00					NIL NIL	

HOLE: AK-91-33

PAGE: 6 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		205.00 - 208.10 Unit contains numerous, multi-generational, white barren quartz ± albite veins and stringers at all angles tca. Occasionally these veins display a buff-brown alteration halo, up to 2 cm wide, which frequently coalesce to give a patch-work bleaching appearance to the unit.	8231 8232 8233 8234 8235 8236 8237 8238	205.00 206.00 207.00 208.00 209.00 210.00 211.00	206.00 207.00 208.00 209.00 210.00 211.00 212.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00				0.01 0.02 0.03 NIL 0.01 0.01 0.01	
		212.80 - 213.50 Shear zone @ 25° tca. Sericite + chlorite + quartz. Sheared, sericitized tuff with 25% silicification in the form of 5% barren, late, white quartz ± albite veinlets and as a buff-brown pale silicification with strong interstitial sericite slip. Wall rock shows foliated to fractured and brecciated lapilli tuff.	8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248	212.00 212.70 213.60 214.10 221.00 222.00 223.00 224.00 225.00 225.50 226.00	212.70 213.60 214.10 215.00 222.00 223.00 224.00 225.00 225.50 226.00 226.50	0.70 0.90 0.50 1.00 1.00 1.00 1.00 0.50 0.50 0.5		25	50	0.02 0.01 0.01 NIL 0.01 0.01 0.01 0.01 NIL NIL	
		 226.50 - 226.90 Fault-shear zone @ 60° tca. Sericite + chlorite + quartz ± pyrite. Strongly foliated, crenulated tuff with strong sericitic slip and shears developed. Crushed, mylonitic texture. Shear zone contains 3% quartz ± albite veins up to 2 cm wide, with sharp, black chloritic boundaries. 226.90 Narrow, 2 mm wide, pyritic veinlet with sub to euhedral pyrite. 	8249	226.50	227.00	0.50	Tr.	3	75	NIL	
		 227.00 - 227.60 Weakly deformed chloritic lapilli tuff with 2-3% quartz ± albite veining and sharp sericitic slips with buff-brown sericite alteration halos . Zone carries weak, spotty, sericite ± leucoxene and 0.5% fine disseminated pyrite in matrix. Trace fine grained pyrite, is also evident on sericitic hairline slips and fractures. 227.60 Strong, tight, sericitic gouge, 3 mm wide, @ 65° tca. 227.60 Vall rock is moderately foliated and bleached, sericitic, wid survival and strong to the bleached, sericitic, 	8250	227.00 227.60	227.60 228.10	0.60 0.50	0.5	2	15 50	NIL	
228.10	229.60	 and contains 1% quartz + chlorite veinlets and chloritic fracturing. No sulphides. GRAYWACKE Massive, light, grey-green, fine grained. Weakly deformed and sericitic. Deformation evident as small interstitial wispy sericite wrapped around weakly crushed quartz and lithic clasts. Pervasive, bleached, sericitic ground 	8252 8253	228.10 228.80	228.80 229.60	0.70 0.80		1-2 1-2	30 30	NIL NIL	

HOLE: AK-91-33

PAGE: 7 of 12

INTE	RVAL	DESCRIPTION					SAN	IPLE			 AS	SAYS
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser	 Au, g/t	Au.Check
229.60	232.70	 mass. Contains 1-2% barren, white quartz ± albite veinlets. Lower contacts, sharp and irregularly interfingered with mudstone. MUDSTONE Massive to finely bedded, dark green, chloritic, very fine grained to aphanitic. Irregular, anastomosing, wispy mudstone ± siltstone beds @ 25° tca. Contains minor intercalated graywacke. Lower contact is very irregular and interfingered.	8254 8255 8256 8257	229.60 230.30 231.00 231.50	230.30 231.00 231.50 232.20	0.70 0.70 0.50 0.70					NIL NIL 0.01	
232.70	240.20	 LAPILLI TUFF Chloritic, massive, grey-green, undeformed. Comprised of 5-7% angular, heterolithic lapilli clasts from 0.5 -7 cm (avg. 1-2 cm) in a very fine grained chloritic matrix. Lapilli clasts are dark green to grey to brown, generally fine grained trachyte. Unit appears quite mafic, possibly augite-bearing. In places, appears to be sedimentary but contains no quartz or exotic lithics. Non-magnetic. Sharp lower bedding contact @ 35° tca. 233.70 - 234.20 Semi-massive, barren, white quartz ± albite veining up to 5 cm wide in light green sericitized tuff. 234.20 Strong, sharp, quartz + sericite slip. 	8258 8259 8260 8261 8262 8263 8264 8265 8266 8267	232.20 232.70 233.20 233.70 234.25 235.00 236.00 237.00 238.00 239.00	232.70 233.20 233.70 234.25 235.00 236.00 237.00 238.00 239.00 239.00 239.60	0.50 0.50 0.50 0.55 0.75 1.00 1.00 1.00 1.00 0.60			25	40	NIL NIL 0.01 0.01 0.01 NIL 0.01 NIL 0.01	
240.20 246.90	246.90 248.90	GRAYWACKE Massive, very fine grained, light grey-green. Undeformed, weak pervasive spotty sericitization. Very clean, well sorted, with minor, angular mudstone chips. Unit is cut by 2-3% multi-generational, barren white quartz ± albite veinlets, 0.5 mm to 1 cm wide, at all angles tca. Very minor, scattered trace pyrite is evident.	8268 8269 8270 8271 8272 8273 8274 8275	239.60 240.20 241.00 242.00 243.00 244.00 245.00 246.00	240.20 241.00 242.00 243.00 244.00 245.00 246.00 246.90	0.60 0.80 1.00 1.00 1.00 1.00 1.00 0.90		Tr. Tr.	2 2-3	10 10	0.01 NIL 0.02 0.01 NIL NIL 0.01 NIL	
		lapilli clasts up to 10 cm (avg. 2-3 cm) in a light grey tuffaceous matrix. Lapilli clasts up to 10 cm (avg. 2-3 cm) in a light grey tuffaceous matrix. Lapilli clasts are dark green and buff-brown trachyte. Intercalated with these tuffaceous units are narrow, irregular, siltstone beds @ 25° tca. Non- magnetic. Sharp lower bedding contact @ 55° tca.	8276 8277 8278	246.90 247.50 248.00	247.50 248.00 248.90	0.60 0.50 0.90					NIL NIL 0.01	

HOLE: AK-91-33

PAGE: 8 of 12

INTE	RVAL	DESCRIPTION		SAMPLE No. From To Length %Rec %Py %QV %Ser 8279 248.90 249.50 0.60 8280 249.50 250.00 0.50 8280 249.50 250.00 0.50 8281 250.00 250.70 0.70 8282 250.70 251.20 0.50 8283 251.20 251.55 0.35 1 10 25 8284 251.55 252.00 0.45 8285 252.00 23.00 1.00 8285 252.00 253.00 1.00 8283 255.00 1.00 8286 253.00 255.00 1.00 Tr. Tr. 8289 255.50 256.00 0.50 Tr. Tr. 8291 257.00 1.00 Tr. Tr. 8293 259.00 260.00 1.00 8293 259.00 260.00 1.00 Tr. Tr. 8293 259.00 1.00 <t< th=""><th></th><th>AS</th><th>SAYS</th></t<>						AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
248.90	255.90	 MUDSTONE/SILTSTONE Very finely laminated, light grey, very fine grained siltstone and aphanitic, dark green mudstone beds @ 50° tca. Bedding ranges from a few millimetres to 50 cm's wide. Very clean, undeformed, unaltered. Very sharp lower contact @ 65° tca. 251.25 - 251.35 Quartz + sericite + pyrite vein @ 70°. Sheared, fractured, white-grey quartz ± albite vein with interstitial wispy mudstone and pyritic sericite sutures up to 3 mm wide, 1-2% pyrite total. Vein material shows evidence of crushing and shearing to give a pseudo-mylonitic appearance. 	8279 8280 8281 8282 8283	248.90 249.50 250.00 250.70 251.20	249.50 250.00 250.70 251.20 251.55	0.60 0.50 0.70 0.50 0.35	1	10	25	0.01 NIL 0.01 NIL 0.02	
		251.50 A 2 cm wide barren quartz \pm albite vein with sharp, chloritic slip contacts.	8284 8285 8286 8287 8288 8289	251.55 252.00 253.00 254.00 255.00 255.50	252.00 253.00 254.00 255.00 255.50 256.00	0.45 1.00 1.00 0.50 0.50	Tr	Tr.		NIL NIL 0.01 NIL 0.03	
255.90	282.90	 GRAYWACKE Massive, fine grained, grey-green, lithic graywacke. Very clean, well sorted, with minor scattered mudstone chips and very minor jasper. Very monotonous. Unit is cut by 1-2% fine quartz + chlorite veinlets which range from dark hairline cracks to 0.5 cm wide quartz + chlorite veinlets @ 15-65° tca. Graywacke carries trace disseminated, fine grained pyrite scattered throughout and trace pyrite on veins. Prominent chloritic vein fracture @ 10° tca with braided, anastomosing quartz + chlorite veinlets extending outward, which in places, brecciates the graywacke wall rock. 268.50 - 268.60 Barren white quartz + chlorite breccia vein @ 60° tca. 269.40 - 269.80 Irregular quartz/chlorite breccia vein with angular included wall rock clasts and quartz fragments. 270.70 - 272.00 Deformed, sheared to foliated, sericitized graywacke @ 	8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8306 8306 8307	256.00 257.00 258.00 259.00 260.00 261.00 261.80 262.30 263.00 264.00 264.00 264.60 265.10 266.00 267.00 268.00 268.50 269.10 270.00 270.70	257.00 258.00 259.00 260.50 261.00 261.80 262.30 264.00 264.00 264.60 265.10 266.00 266.00 266.00 266.00 268.00 269.10 270.00 270.70 271.50	1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50	Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr	Tr. Tr. Tr. Tr. Tr. Tr. Tr. 1 1-2 1-2 1-2 Tr. Tr. 3-5	35	0.02 0.03 NIL NIL 0.02 0.02 0.02 0.02 0.03 NIL 0.03 0.01 0.02 0.05 0.01 0.02 0.01 0.02 0.01 0.02 0.04 0.01	

HOLE: AK-91-33

PAGE: 9 of 12

FROM TO No. From To Length %Rec %Py %QV %Ser Au, gt Au, Chr 30° tca, with 5-7% quartz and quartz + chlorite veining and breccia veinlets. Trace dissemlated pyrite. 8310 271.50 271.50 57 35 0.01 311 271.00 0.60 Tr. 5.7 35 0.02 0.02 275.50 276.10 Shear zone @ 40° tca. Sericite + chlorite quartz. 3115 271.50 1.00 2 50 0.01 3131 271.50 276.10 Shear zone @ 40° tca. Sericite + chlorite quartz. 3116 271.50 275.00 0.02 0.01 3131 271.50 275.00 0.50 Tr. 2 50 0.01 312 272.00 0.50 Tr. 2 1.00 NIL 322 282.60 282.90 Barren, white-pink brecciated quartz vein with chloritic 8319 77.00 0.50 NIL 322 282.00 282.00 1.00 8324 282.20 25.0 1.01<	INTERVAI	DESCRIPTION				SAN	IPLE			AS	SAYS
282.90 337 tos, with 5-7% quartz and quartz + chlorite veining and breccia veiniets. Trace disseminated pyrite. 8310 271.50 272.10 0.60 Tr. 5.7 35 0.01 301 275.50 276.10 Shear zone @ 40° tca. Scricite + chlorite + quartz. Strongly foliated to sheared, crushed graywacke with strong scricite silps and incregular hairline holtrife facture fillings. Strong, sharp, sericitic contacts. Below this shear, quartz + chlorite frecture veining decreases noiceably and gives way to barren quartz ± albite veiniets. 8310 271.50 275.00 250 0.01 8312 272.00 273.00 0.50 Tr. 2 50 0.01 8316 271.50 276.10 0.60 2 50 0.01 8317 271.00 273.50 275.00 77.0 0.50 Tr. 2 0.01 8318 271.50 271.00 0.70 0.50 Tr. 2 0.01 8319 278.00 275.00 1.00 0.01 NIL 0.01 8310 272.00 280.00 1.00 0.02 0.01 0.01	FROM TO		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
315.00 - 320.00 Unit takes on a notable purple hue due to a moderate, pervasive hematization. Unit also displays a moderately well developed bedding consisting of intercalated fine grained ash and coarser grained ash, to fine grained lanilit tuff horizons from 2.3 cm to 75 cm wide Bedding 0.02	FROM TO 282.90 337.70	 30° tca, with 5-7% quartz and quartz + chlorite veining and breccia veinlets. Trace disseminated pyrite. 275.50 - 276.10 Shear zone @ 40° tca. Sericite + chlorite + quartz. Strongly foliated to sheared, crushed graywacke with strong sericite slips and irregular hairline chlorite fracture fillings. Strong, sharp, sericitic contacts. Below this shear, quartz + chlorite fracture veining decreases noticeably and gives way to barren quartz ± albite veinlets. 282.60 - 282.90 Barren, white-pink brecciated quartz vein with chloritic fracturing and irregular sericitic boundaries, marks lower contact of unit. ASH TUFF Light grey-brown to green, chloritic ± hematitic, massive to poorly bedded @ 45° tca as marked by fine, ≤ 1 mm wide, magnetite lamellae. Unit is very nondescript, fine to very fine grained, strongly magnetic and may contain 1% fine grained chloritized amphibole in ground mass. Contains a few scattered lapilli clasts and is also in part intercalated with lapilli tuff horizons up to 1 m wide which are comprised of 5% grey-brown, angular trachyte clasts within a very fine grained ash matrix. Generally gradational contacts from ash to lapilli tuff. Lower contact gradational over 0.5 m. 306.90 - 307.20 Fault-shear zone @ 50° tca. Sericite + chlorite + quartz + calcite. Strongly foliated to sheared tuff with sharp, strong sericite + chlorite slip boundaries and interstitial slip planes. Intruded by 15% white-pink quartz + calcite veining. 315.00 - 320.00 Unit takes on a notable purple hue due to a moderate, pervasive hematization. Unit also displays a moderated fine grained ash and coarser grained ash, to fine grained lapilli tuff horizons form 2.3 cm 0.7 cm wide Bedding lapilli tuff horizons form 2.3 cm 0.7 cm wide Bedding lapilli tuff horizons form 2.3 cm 0.7 cm wide Bedding lapilli tuff horizons form 2.3 cm 0.7 cm wide Bedding lapilli tuff horizons form 2.3 cm 0.7 cm wide Bedding lapilli tuff horizons form 2.3 cm 0.7 cm wide Bedding lapilli tuff h	No. 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332	From 271.50 272.10 273.00 273.50 274.50 275.50 276.10 277.00 277.00 280.00 280.00 282.00 282.50 283.00 305.00 306.00 306.00 308.00 335.00 335.00 337.00	To 272.10 273.00 273.50 274.50 275.50 276.10 277.00 277.00 280.00 282.00 283.00 200 200 200 200 200 200 200 200 200	Length %Rec 0.60 0.90 0.50 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50	%Py Tr. Tr. Tr.	%QV 5-7 1 3-5 2 2 2 25 25	%Ser 35 50 10 25	Au, g/t 0.01 0.03 0.02 0.04 0.02 0.13 0.01 NIL NIL NIL NIL NIL NIL NIL NIL	Au,Check

HOLE: AK-91-33

PAGE: 10 of 12

INTE	RVAL	DESCRIPTION				SAN	APLE		AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py %QV	%Ser	Au, g/t	Au,Check
337.70	370.70	 LAPILLI TUFF Chloritic, hematitic. Massive, dark green to purple-brown heterolithic lapilli tuff. Comprised of 15-20% angular to subrounded trachyte clasts up to 5 cm (avg. 1-2 cm) frequently tightly packed in a very fine grained ash matrix. Clasts vary from buff- grey, brown-red and black in colour and aphanitic to trachytoid textured. Strongly magnetic. 340.50 - 350.00 Fractured, sericitized, weakly bleached lapilli tuff due to abundant strong fracturing @ 5° tca. Prominent fracture system at low core angles infilled with quartz + calcite veinlets and also 3% strong, sharp chloritic slips @ 10-15° tca. Due to this fracturing, the unit is weakly sericitic with pervasive spotty and wispy sericite development and a strong chloritic fracturing throughout. No visible mineralization. 350.00 - 370.70 Massive, undeformed, unaltered, heterolithic, lapilli tuff with 1-5% angular trachyte clasts up to 5 cm. Strongly magnetic, with clasts being predominantly light grey and buff-brown in colour. 	8335 8336 8337 8338 8340 8341 8342 8343 8344 8345 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8355 8355 8355 8355	337.70 338.50 339.50 340.50 341.00 341.50 342.00 343.00 344.00 344.00 344.50 345.00 345.60 345.60 345.60 345.00 347.50 348.00 348.50 349.00 350.00 369.50 370.00 370.50	338.50 339.50 340.50 341.00 341.50 342.00 343.00 343.00 344.00 344.50 345.00 344.50 345.60 345.60 345.60 345.60 346.40 347.50 348.50 349.00 349.50 351.00 351.00 369.50 370.00 370.50 371.00	0.80 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 0	1 2 1 1 2 2-3 5-7 1 1 1 Tr.	10 10 5-10 5-10 5-10 5-10 15	0.02 0.01 0.02 0.01 0.02 0.01 0.02 NIL NIL 0.02 NIL 0.02 NIL 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	
370.70	389.10	LAPILLI TUFF Massive, undeformed but pervasively sericitized ground mass. 3-5% angular pink-brown, trachyte lapilli clasts up to 7 cm (avg. 1-2 cm) in a very fine grained, light grey to buff coloured, sericitic, groundmass, which frequently contains 2-3% very fine magnetite, ≤ 0.5 mm, and 1-2%, mottled grey- green, fine grained augite. In places, a dirty mottled texture is developed where spots of the remnant chloritic groundmass are still evident. These chloritic spots have diffuse, shadowy borders, which fade into the surrounding buff-brown, sericitic groundmass. Otherwise unit is very massive.	8359 8360 8361 8362 8363 8364 8365	371.00 372.00 373.00 374.00 375.00 376.00 377.00	372.00 373.00 374.00 375.00 376.00 377.00 378.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00			0.01 0.04 0.02 NIL NIL 0.01 0.01	

HOLE: AK-91-33

PAGE: 11 of 12

INTE	ERVAL	DESCRIPTION					SAN	NDI E				A	CAVO
FROM	то		No.	From	То	Length	%Rec	%Pv	%0V	%Ser			SA IS
		 378.80 - 379.20 Breccia vein @ 20° tca. Angular, unaltered, wall rock breccia fragments up to 4 cm, in a pink-brown siliceous matrix, with sharp, hairline, chloritic boundaries. Barren, non-mineralized and cut by a few later pink quartz + calcite veinlets. 389.00 - 389.10 Fault @ 60° tca. Chlorite + sericite + quartz + calcite. Sharp, tight, chlorite + sericite slips infilled with late, barren white-pink quartz ± calcite ± albite veining. 	8366 8367 8368 8369	378.00 378.80 379.25 380.00	378.80 379.25 380.00 381.00	0.80 0.45 0.75 1.00			65	70361	Bx.	0.03 0.16 0.03 NIL	Au,Check
389.10	398.00	LAPILLI TUFF/SILTSTONE Massive, deformed, unaltered, grey- green lapilli tuff with 5% angular trachyte clasts, grey to brown, up to 5 cm (avg. 0.5-1 cm) in a fine grained, lithic ash matrix which is intercalated with massive to poorly bedded, very fine grained, dark green siltstone. Bedding is very irregular and interfingered and ranges from a few cm's to 2-3 m and appears to be about 15-20° tca. Tuff horizons display patchy strong magnetics.											
398.00	411.00	LAPILLI TUFF Similar to above unit but this section contains no sediments. Massive, grey- green tuff comprised of 5% angular trachyte clasts, buff- brown to green, up to 5 cm in a very fine grained, grey-green, chloritic ash matrix which contains 5% chloritized, subhedral amphibole. Patchy strong magnetics.											
411.00	414.90	SILTSTONE Massive, light green, very fine grained to aphanitic siltstone and minor irregular mudstone. Very clean, massive, nondescript. Lower contact very sharp, non-deformed @ 30° tca. Contains a minor amount of hairline sericitic fractures which display dark green, chloritic halos up to 0.5 cm.											
414.90	423.80	LAPILLI TUFF Light grey-green, massive lapilli tuff. Undeformed, unaltered, comprised of 5% angular, light grey to green, trachyte clasts up to 4 cm (avg. 1 cm) with aphanitic to trachytoid textures. Matrix is a very fine grained chloritic ash with 2-3% chloritized amphibole evident. Patchy strong magnetics. Sharp irregular lower contact.	8370 8371 8372	421.00 422.00 423.00	422.00 423.00 423.80	1.00 1.00 0.80						0.02 0.01 0.01	
423.80	432.30	SILTSTONE/MUDSTONE Massive to poorly bedded. Light grey-green, very fine grained siltstone and dark green, aphanitic mudstone with very poorly developed, irregular, wispy bedding.	8373 8374 8375	423.80 424.50 425.50	424.50 425.50 426.50	0.70 1.00 1.00						0.02 0.02 0.01	

HOLE: AK-91-33

PAGE: 12 of 12

INTE	RVAL	DESCRIPTION				SAM	IPLE		 	AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au.Check
		 427.40 - 429.00 Shear zone @ 45° tca. Sericite + chlorite + quartz. Light yellow-green, ubiquitously sericitized siltstone with sharp, strong, sericite and chlorite slip planes @ 10-20 cm intervals. Interstitial silts contain irregular wispy sericitic fracturing. 429.00 Fault gouge 1 cm wide. Section is cut by 3% late, barren, white quartz veinlets. 	8376 8377 8378 8379 8380 8381 8382 8383	426.50 427.40 428.00 428.50 429.00 430.00 431.00 431.50	427.40 428.00 428.50 429.00 430.00 431.00 431.50 432.30	0.90 0.60 0.50 0.50 1.00 1.00 0.50 0.80		5-7 3-5 5	30 60 70 10	0.02 0.03 0.01 0.01 0.01 0.01 0.02 0.02	
432.30	454.75	 GRAYWACKE Massive, very fine grained, light grey-green, undeformed graywacke, (quartz arenite). Very clean, well sorted and comprised of 75-85% fine grained, rounded quartz clasts (≤ 1 mm) and 15-25% scattered lithics, including jasper and mudstone chips. Matrix is weakly sericitic with spotty to wispy sericite development. Unit is cut by 2% late white quartz veinlets, up to 1-2 cm wide, @ 5-45° tca. These veinlets are generally barren but the odd speck of coarse pyrite is visible. Unit also contains 0.5% of finely disseminated pyrite in matrix, generally scattered throughout the unit, possibly primary. 442.90 Fault @ 30° tca. 442.90 Fault @ 30° tca. 442.90 contains 65% quartz stockworking within sericitic graywacke. 	8384 8385 8386 8387 8388 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407	432.30 433.00 434.00 435.00 436.00 437.00 438.00 439.00 440.00 441.00 442.00 442.90 443.50 444.00 445.00 445.00 445.00 445.00 445.00 445.00 445.00 450.00 451.00 452.00 453.00	433.00 434.00 435.00 435.00 438.00 439.00 440.00 442.00 442.90 443.50 444.00 445.00 445.00 445.00 445.00 445.00 451.00 452.00 451.00 452.00 454.75	$\begin{array}{c} 0.70\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 0.50\\ 1.00\\$	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	1-2 1-2 102 1-2 65 2 Tr. 1 5 Tr. 1 5 Tr. Tr. Tr.	25	0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01	
	454.75	END OF HOLE Casing left in hole								N.	

HOLE: AK-91-34

PAGE: 1 of 19

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED LOGGED BY	August 30, 1991 - Se Mark Masson	eptember 6, 1991	EASTING NORTHING	8191.0 10361.0	Depth	Method	Azimuth	Dip
STARTED COMPLETED	August 29, 1991 September 5, 1991	CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Kirkland Lake Ward B.M.C.I.	chouse	ELEVATION COLLAR SURVEY LENGTH UNITS CORE SIZE	331.3 Northland Technical 450.00 metres NO	Note:	See table at for downhole	end of sumn surveys	ary log
PURPOSE	To test Amalgamated Ki	irkland Syenite		IVE						
COMMENTS	"105" gold zone @ 205.5 "106" gold zone @ 246.0 "A56" gold zone @ 337. "107" gold zone @ 422.4	5 - 208.9, 3.4 m. 9 - 251.0, 5.0 m. 1 - 337.8, 0.7 m. 5 - 431.0, 8.6 m.	SIGNED BY	(W. Benham)						

	SUM	ASSAY SUMMARY					
INTERVAL	DESCRIPTION	INTERVAL	DESCRIPTION	INTERVAL	LENGTH	AVERAGE	
From To		From To		From To	in metres	An oft	
					in mono		
0.00 3.00	OVERBURDEN	263.00 273.50	MAFIC SYENITE	193.00 194.00	1.00	0.15	
3.00 8.00	ASH TUFF	273.50 281.00	TRACHYTE/SYENITE PORPHYRY	196.00 197.00	1.00	0.11	
8.00 15.55	LAPILLI TUFF	281.00 313.40	MAFIC SYENITE	205.50 208.90	3.40	0.28	
15.55 22.80	ASH TUFF	313.40 318.10	SYENITE PORPHYRY	246.00 251.00	5.00	0.27	
22.80 40.00	LAPILLI TUFF	318.10 327.00	TRACHYTE/SYENITE PORPHYRY	254.50 255.50	0.50	0.15	
40.00 52.60	ASH TUFF	327.00 345.00	SYENITE PORPHYRY	259.00 261.30	2.30	0.28	
52.60 79.30	LAPILLI TUFF	345.00 363.70	LEUCITE-AUGITE TRACHYTE PORPHYRY	337.10 337.80	0.70	1.15	
79.30 91.30	LAPILLI/BLOCK TUFF	363.70 368.00	SYENITE PORPHYRY	363.00 365.00	2.00	0.17	
91.30 99.00	ASH TUFF	368.00 378.50	LEUCITE-AUGITE TRACHYTE PORPHYRY	367.00 368.00	1.00	0.10	
99.00 114.00	LAPILLI TUFF	378.50 450.00	TRACHYTE/ASH TUFF	394.50 395.00	0.50	0.12	
	Monolithic		400.50 - 405.80 Syenite porphyry	417.00 418.00	1.00	0.12	
114.00 125.10	LAPILLI TUFF		406.30 - 406.60 Syenite porphyry				
125.10 161.60	LAPILLI TUFF		419.20 - 419.60 Syenite porphyry	422.40 431.00	8.60	0.28	
	Monolithic		420.60 - 427.20 Syenite porphyry	including			
161.60 177.00	ASH TUFF		435.00 - 435.20 Syenite porphyry	423.00 426.65	3.65	0.52	
177.00 179.60	LAPILLI TUFF SILTSTONE						
179.60 182.30	LAPILLI TUFF			436.00 438.00	2.00	0.14	
182.30 190.65	TUFF/GRAYWACKE/MUDSTONE	450.00	E. O. H.				
	Bleached, sericitic						
190.65 231.40	GRAYWACKE/MUDSTONE/TUFF						
	Brecciated, sericitic						
231.40 247.00	DIABASE						
247.00 263.00	TRACHYTE/SYENITE PORPHYRY						
1				I		1 1	

HOLE: AK-91-34

PAGE: 2 of 19

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED LOGGED BY	August 30, 1991 - Septemb Mark Masson	EASTING NORTHING	8191.0	Depth	Method	Azimuth	Dip	
CLAIM No. STARTED COMPLETED	L 491662 August 29, 1991 September 5, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Warehouse B.M.C.I.		ELEVATION COLLAR SURVEY	331.3 Northland Technical 450.00	Note:	See table b downhole su	clow for all	
PURPOSE	To test Amalgamated Ki	rkland Syenite.		•	CORE SIZE	NQ				
COMMENTS	"105" gold zone @ 205.5 "106" gold zone @ 246.0 "A56" gold zone @ 337.1 "107" gold zone @ 422.4	- 208.9, 3.4 m. - 251.0, 5.0 m. - 337.8, 0.7 m. - 431.0, 8.6 m.	SIGNED BY	(W. Benham)						
		SUM	IMARY LOG		<u>_</u> _			ASSAV S	TINANAADV	

SUMMARY LOG												ASSAY SUMMARY				
INTERVAL From To	DESCRIPTION					INTERVAL From To		DESC	RIPTION		, IN Fr	TERVAL om To	LENGTH in metres	AVERAGE Au g/t		
		Depth	Method	Azimuth	Dip		Depth	Method	Azimuth	Dip						
		Collar	Compass	341	55		305.0			46						
		3.7			55		335.0			45						
		30.0			53		365.0			46						
		61.0			51		400.0			45						
		91.0			49		430.0			45						
		122.0			47											
		153.0			48											
		183.0			49											
		214.0			48											
		244.0			48											
	L	275.0			47											

HOLE: AK-91-34

PAGE: 3 of 19

INTE	RVAL	DESCRIPTION			ASSAYS					
FROM	то		No.	From	То	Length %Rec	%Py %Q	/ %Ser	Au, g/t	Au.Check
0.00	3.00	OVERBURDEN								
3.00	8.00	ASH TUFF Massive, fine to very fine grained, chloritic, dark green ash tuff with a weakly developed, fine bedding @ 25° tca. Very massive, nondescript and strongly magnetic. Lower contact gradational over 0.5 metre.	-							
8.00	15.55	LAPILLI TUFF Massive, dark grey-green. Comprised of 5% angular, light grey to brown, trachyte clasts (avg. 0.5-1 cm) in a very fine grained, grey-green, chloritic ash matrix. Strongly magnetic. Contains 1% late, barren quartz \pm calcite veinlets throughout.								
		15.40 - 15.55 Fault @ 70° tca. Sericite + quartz + ankerite. Upper and lower contacts are sharp, tight, sericitic slips with minor quartz veining up to 0.5 cm wide. Interstitial to slips is sericitized, moderately foliated tuff with moderate ankerite staining.								
15.55	22.80	ASH TUFF Massive, dark green, fine to very fine grained ash, with $< 1\%$ scattered lapilli clasts. Non-bedded, strongly magnetic. Comprised of very fine grained, chloritic, trachyte ash tuff and may contain some small chloritized amphibole (augite) but difficult to distinguished due to grain size.								
22.80	40.00	 LAPILLI TUFF Massive, undeformed, chloritic grey-green with variable heterolithic clasts. Quite variable with clasts ranging from 1-15% of unit. Clasts range from light grey to brown to red and range from 0.5 cm to 10 cm in size. Matrix is very fine grained, chloritized, lithic ash tuff. Strongly magnetic. 1% barren, quartz veinlets. Lower contact is gradational over 1 metre. 36.40 Fault @ 30° tca. Sericite + ankerite ± quartz. 1 cm wide, strong sericite slip with strong ankeritic staining and very minor quartz ± albite veinlets. 38.40 - 39.10 Strong chloritic + ankeritic fracture @ 5° tca. Broken. 								
		rubbly section.								

HOLE: AK-91-34

PAGE: 4 of 19

INTERVAL		DESCRIPTION				ASSAYS					
FROM	то		No.	From	То	Length %Rec	%Py %QV	%Ser		Au, g/t	Au.Check
40.00	52.60	 ASH TUFF Chlorite ± hematite. Massive, very fine grained, dark green to purple, due to patchy hematization. Strongly magnetic. Lower contact of unit is moderately sericitic and foliated @ 45° tca. 41.90 - 42.20 Irregular sericitic fault with 5% pink quartz + calcite veinlets. Strong sericitic fracture @ 15° tca. Unit proximal to fault shows a weak to moderate, buff brown colour due to sericitization for up to 25 cm from fault zone. 42.20 - 49.50 Unit is somewhat deformed and fractured, containing numerous strong hematitic fracturing slips and a weaker pervasive crackle type fracturing with chlorite + hematite infilling giving unit a pseudo-brecciated "crack and seal" texture. Zone is also cut by 5% white-pink, quartz ± calcite to patches we to moderate to be been been been been been been been	8408 8409 8410 8411 8412 8413 8414	41.20 41.80 42.20 43.00 44.00 44.50 45.00	41.80 42.20 43.00 44.00 44.50 45.00 46.00	0.60 0.40 0.80 1.00 0.50 0.50 1.00	1 1 2 2 Tr. 1-2	65 5 5 15 5		0.02 0.04 0.01 NIL NIL NIL NIL NIL	Au, Cneck
		 calcite veinlets, up to 1 cm wide, at all core angles. 47.60 - 48.00 Silicified section of hematitic tuff with 1% quartz veinlets and a pervasively silicified and hematized matrix. 	8415 8416 8417 8418 8419 8420 8421	46.00 47.00 47.50 48.00 48.50 49.00 49.50	47.00 47.50 48.00 48.50 49.00 49.50 50.00	1.00 0.50 0.50 0.50 0.50 0.50 0.50	2-3 Tr. 1 Tr. Tr. 1-2	Tr. Tr. Tr. Tr. Tr. 15	Sil.	NIL 0.01 NIL NIL 0.01 NIL	
52.60	79.30	 LAPILLI TUFF Chlorite ± hematite. Massive, dark green, heterolithic lapilli tuff with purple hues due to patchy, irregular hematization. Predominant, 60%, clast type, is red-brown, fine grained to porphyritic trachyte with lesser amounts of dark green, grey, and brown clasts. Clasts are angular to sub-rounded, poorly sorted and range from 0.5 cm to 10 cm. (avg. 2 cm). Matrix is fine grained, heterolithic ash. Strongly magnetic. Lower contact of unit is somewhat gradational and arbitrary. 57.30 - 57.45 Quartz + albite vein with internal chloritic fracturing and brecciation. Milk-white, barren, late vein @ 45° tca. 67.50 - 70.50 Unit takes on a purple-green patchwork due to irregular, weak to moderate sericite alteration proximal to small quartz veinlets and tight sericitic slips within a predominantly hematitic matrix. 69.85 Strongly foliated to schistose zone, 10 cm wide, with sharp chlorite + sericite slips and late quartz veinlets in adjacent wall rock. Shearing @ 52° tca. 									

HOLE: AK-91-34

PAGE: 5 of 19

INTE	RVAL		DESCRIPTION	SAMPLE									ASSAYS		
FROM	ТО			No.	From	То	Length %R	Rec	%Py	%QV	%Ser		Au, g/t	Au,Check	
79.30	91.30	 71.25 - 71.30 71.40 - 71.55 74.70 - 75.20 78.90 - 79.30 MONOLITHIC Chlorite + hem packed, predomi and is comprised to 3 mm, in an packed, 25% of the trachytoid fragm rounded. These is strongly magnetic throughout. 82.20 82.60 - 82.90 85.10 - 87.00 	Fault @ 70° tca. 1 cm wide, sericite \pm chlorite \pm quartz \pm wall rock breccia veinlet, with angular quartz \pm wall rock tragments, to 3 mm, in a dark chlorite \pm sericite groundmass. Sharp, strong, mud contacts. Diabase. Massive, aphanitic, medium green diabase with sharp and somewhat irregular intrusive contacts @ 65° tca. Broken rubbly ground due to strong, irregular, chloritic, fracture slip @ 5° tca. Fault @ 10° tca. Chlorite \pm sericite \pm quartz. Sharp, strong, chloritic slips infilled by a 1 cm wide, white-pink quartz vein, which is internally fractured with wispy sericite. Non-mineralized. LAPILLI/BLOCK TUFF atite. Previous heterolithic tuff, grades to more tightly inantly monolithic tuff. Matrix is dark green to black-red to 60% fine, red, sub-rounded, syenite/trachyte clasts, up a aphanitic groundmass. Clasts are scattered to tightly unit is dark red, syenite and trachyte, very fine grained to tents, up to 7 cm (avg. 2-3 cm), and are angular to subred trachyte clasts constitute \approx 85-90% of the clasts. Very ic, massive, hard. 1-2% late barren, white quartz veinlets Fault @ 15° tca. Strong, tight, 2-5 mm, chloritic mud slip with fracturing and shearing evident up to 3 cm into wall rock, which is weakly silicified.	8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433	80.00 81.00 82.55 83.00 83.50 84.00 84.50 85.00 85.70 86.20 87.00	81.00 82.00 82.55 83.00 84.50 85.00 85.70 85.70 86.20 87.00 88.00	1.00 1.00 0.55 0.45 0.50 0.50 0.50 0.50 0.50 0			Tr. 1-2 1-2 1-2	10 15 15 10	Sil.	0.01 NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL		
			patchy sericite alteration.												
HOLE: AK-91-34

PAGE: 6 of 19

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то	·	No.	From	То	Length %Rec	%Py 9	6QV	%Ser	Au. g/t	Au.Check
		 89.80 - 91.30 Diabase dyke. Massive, dark green, very fine grained to aphanitic. Sharp, chilled intrusive contacts @ 45° tca. Weak, patchy magnetics. Strong internal chloritic joint/fracture set. 									
91.30	99.00	ASH TUFF Chlorite \pm hematite. Lower contact gradational over 1 metre.									
		 91.30 - 92.20 Unit is dark red-purple, strongly hematized, very fine grained to aphanitic ash tuff which is fractured and partly intruded by narrow fingers of diabase and late white to pink quartz veinlets. 92.20 Fault @ 25° tca. Chlorite ± quartz. 3 mm wide, strong chloritic slip with small fractured podiform quartz veining. 92.20 - 99.00 Unit grades to a less hematitic, dark green, massive, fine grained ash tuff. Very homogeneous monotonous and strongly magnetic. 2% barren white quartz veins. 									
99.00	114.00	 MONOLITHIC LAPILLI TUFF Chlorite + hematite. Massive, dark green to black, very fine grained ash matrix comprised of 40-50% red syenite + trachyte fragments, to 2-3 mm, in a dark aphanitic groundmass. Lapilli clasts are dark red, fine grained syenite + trachyte, from 0.5 cm to 4 cm, angular to sub-rounded, frequently fractured. Clasts range from 5-20% of unit. Very strongly magnetic, hard, competent. Often intercalated with narrow ash tuff horizons (≤ 1-2 m) of same composition. Lower contact gradational over 1 metre. 112.95 - 113.15 Quartz ± albite breccia vein with angular, included wall rock fragments up to 2 cm. Barren, non-mineralized. 									
114.00	125.10	LAPILLI TUFF Massive, grey-green heterolithic, chloritic lapilli tuff comprised of 5-10% angular heterolithic lapilli clasts from 0.5 -3 cm (avg. 1 cm) in a very fine chloritic ash matrix. Clasts vary from light grey to brown to dark green. Strongly magnetic. Unit shows evidence of patchy, brittle deformation in the form of irregular wispy sericite and abundant irregular multiple quartz veinlets associated with the strong break @ 125.0 m.	8434 8435 8436 8437 8438 8439 8440 8441	117.00 118.00 119.00 120.00 121.00 122.00 123.00 123.50	118.00 119.00 120.00 121.00 122.00 123.00 123.50 124.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50		Tr. Tr. Tr. Tr. Tr. 2-3 Tr.		NIL NIL NIL NIL NIL NIL 0.02	

HOLE: AK-91-34

PAGE: 7 of 19

INTE	ERVAL	DESCRIPTION				SAN	APLE			AS	SAYS
FROM	то		No.	From	To	Length %Rec	%Py %	ov e	%Ser	Au. g/t	Au Check
		125.00 - 125.10 Fault @ 35° tca. Chlorite + quartz + calcite. Strong chloritic mud gouge walls with internal fractured and boudinaged, white to pink, quartz + calcite veinlets within a dark, chloritic groundmass. Non-mineralized.	8442 8443 8444	124.00 124.50 125.00	124.50 125.00 125.50	0.50 0.50 0.50		2-3 10	5 10	NIL NIL 0.01	
125.10	161.60	 MONOLITHIC LAPILLI TUFF Chlorite + hematite. Massive, undeformed. Comprised of 5-7% dark red, trachyte + syenite clasts, up to 5 cm, (avg. 2 cm) in a very fine grained, dark green-black, trachytic ash matrix. Clasts are angular to sub-rounded, very fine grained to porphyritic, with irregular distribution. Strongly magnetic, hard, competent and cut by 1% late, barren quartz ± albite veinlets up to 2 cm wide. Unit is in part intercalated with minor, narrow ash tuff horizons (≤ 1 m) of same composition and displaying gradational contacts. Lower contact marked by a fault @ 57° tca. 161.45 - 161.60 Fault is marked by sharp, tight, chloritic slips with interstitial, open vuggy, pink quartz + calcite veining. Drusy quartz + calcite in cavities 	8445 8446 8447 8448 8449	125.50 126.00 127.00 161.00 161.40	126.00 127.00 128.00 161.40 161.70	0.50 1.00 1.00 0.40 0.30		2-3 2 Tr. 15	Cal.	NIL NIL NIL NIL NIL	
161.60	177.00	 ASH TUFF Chloritic, fine to very fine grained, dark grey-green, massive to poorly bedded @ 55° tca. Bedding defined by faint, somewhat irregular (1-3 mm) magnetite beds. Unit is comprised of very fine grained lithic ash, where visible, and contains 2% black, chloritized spots (amphibole?), up to 1 mm in size, in a quite soft, aphanitic groundmass. Patchy, strong magnetics. 166.70 - 167.20 Fault zone @ 45° tca. Sericite + quartz + calcite ± specularite. Upper contact marked by a 2 cm wide, quartz + chlorite breccia vein, with angular quartz fragments, to 0.5 cm, in a very fine grained chloritic matrix. Lower contact is a sharp, chlorite + specularite slip with 0.5 cm wide quartz veinlet and irregular, red-brown chlorite + specularite veinlets. Interstitial to these slips, unit is buffbrown, sericitized, massive to weakly foliated, with 2% barren, ≤ 1 mm wide, quartz ± chlorite veinlets. 	8450 8451 8452 8453 8454 8455 8456 8455 8458 8459	161.70 162.50 163.00 163.50 164.00 165.00 166.00 166.70 167.25 168.00	162.50 163.00 163.50 164.00 165.00 166.70 167.25 168.00 169.00	0.80 0.50 0.50 1.00 1.00 0.70 0.55 0.75 1.00		2 1 2-3 1 Tr.	60	NIL NIL 0.01 0.01 0.01 0.02 NIL 0.01	

HOLE: AK-91-34

PAGE: 8 of 19

INTE	RVAL	DESCRIPTION				SAM	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		 169.00 - 172.00 Unit is cut by 1-5% barren, white, irregular quartz and quartz breccia veining with angular included wall rock clasts and weak patchy sericite alteration halos. 171.75 - 171.90 Fault @ 60° tca. Sericite + chlorite + quartz. Strongly deformed, crushed tuff with sharp, tight, chloritic slip walls and interstitial fractured and brecciated quartz veinlets. 172.00 - 177.00 Occasional, dispersed lapilli clasts and minor lapilli horizons, up to 30 cm wide, scattered through predominantly ash tuff. 	8460 8461 8462 8463 8464 8465 8466 8466 8466 8467 8468 8469	169.00 170.00 171.00 171.50 172.00 173.00 174.00 174.50 175.00 176.00	170.00 171.00 171.50 172.00 173.00 174.00 174.50 175.00 176.00 176.90	1.00 1.00 0.50 0.50 1.00 1.00 0.50 0.50		4 2 1 1-2 Tr. Tr. 1 1	65	0.01 0.01 NIL NIL NIL NIL NIL NIL NIL	
177.00	179.60	LAPILLI TUFF/SILTSTONE Dark grey-green, massive lapilli tuff with 3% angular buff to grey lapilli clasts in a very fine grained, chloritic ash matrix. These tuff horizons are intimately intercalated and interfingered with massive to finely bedded, very fine grained siltstone horizons up to 75 cm wide. Bedding ranges from 15- 45° tca. Contacts are sharp, irregular and interfingered. Tuffs are moderately magnetic, while siltstones are non-magnetic. Upper contact is sheared and filled by a 3 cm barren quartz \pm albite vein. Lower contact sharp and somewhat irregular @ 40° tca.	8470 8471 8472 8473	176.90 177.50 178.00 179.00	177.50 178.00 179.00 179.60	0.60 0.50 1.00 0.60		2 Tr.	10-15 Hem. Tr.	NIL NIL 0.01 0.02	
179.60	182.30	LAPILLI TUFF Massive, coarse tuff comprised of 15-20%, subangular to subrounded, heterolithic clasts, up to 5 cm, in a dark green, chloritic ash matrix. Clasts are poorly sorted and vary from light brown to buff to dark green, generally very fine grained to weakly porphyritic. Unit appears conglomeratic but contains no visible quartz, jasper, etc. Patchy strong magnetics. Lower contact is sheared.	8474 8475 8476	179.60 180.30 181.30	180.30 181.30 182.30	0.70 1.00 1.00		Tr.	Tr.	0.01 0.01 0.01	
182.30	190.65	TUFF/GRAYWACKE/MUDSTONE Massive, dirty green-brown mottled unit comprised of 3% fine black chloritic laths and masses or spots, up to 3 mm, (avg. ≤ 1 mm) which appear to be chloritized amphibole. These crystals are floating in a "blitzed", aphanitic, sericitized groundmass of unknown origin. In places, spots coalesce so as to give the appearance of corroded lapilli clasts. Non- magnetic. Lower contact marked by irregular mudstone bed.									

HOLE: AK-91-34

PAGE: 9 of 19

INTE	ERVAL	DESCRIPTION				SAI	MPLE				AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py 9	%QV	%Ser		Au, g/t	Au.Check
		 182.30 - 182.50 Shear zone @ 60° tca. Sericite + quartz + chlorite ± hematite. Strongly deformed, crushed, crenulated, mylonitized fault zone with 75-80%, wispy sericite. 10% white, fractured and brecciated quartz + chlorite veinlets and irregular chlorite + hematite fracturing. 186.80 - 188.80 Definitely sedimentary, with intercalated graywacke + mudstone and notable quartz + jasper clasts evident. 188.80 - 190.65 Spotted unit with 5% fine, black laths and spots in an 	8477 8478 8479 8480 8481 8482 8483 8483 8484 8485	182.30 182.80 183.50 184.00 185.00 186.00 186.85 187.80 188.80	182.80 183.50 184.00 185.00 186.00 186.85 187.80 188.80 189.80	0.50 0.70 0.50 1.00 1.00 0.85 0.95 1.00 1.00	Tr.	2 1 1-2 1 1-2 Tr.	50 30-40 40 35 35 50		0.01 0.01 0.03 0.04 0.01 0.01 NIL 0.01 0.03	The, circle
		aphanitic, dirty green-brown, sericitic groundmass.	8486	189.80	190.65	0.85		Tr.	50		NIL	
190.65	231.40	 GRAYWACKE/MUDSTONE Deformed interbedded massive, fine grained, lithic graywacke and aphanitic mudstone. Units are pervasively, weakly to moderately, sericitic with 5-15%, wispy and spotty sericite development. Units are ubiquitously deformed, brittle and display the following: "Crack and seal" texture, chloritic, hairline cracks and tight quartz + chlorite veinlets cutting weakly sericitic graywacke. Increasing to pseudo-breccia with in situ, non-rotational fracturing of graywacke infilled with quartz, chlorite or both. Fragmented and brecciated graywacke with disrupted angular wall rock clasts, up to 3 cm, within a dark chlorite ± quartz matrix up to 35 cm wide. Irregular, angular, fragmented and brecciated mudstone horizons and beds. Very minor, scattered, disseminated pyrite evident. Quartz ± chlorite breccia vein material typically non-mineralized. Occasional dark green-purple hematite ± chlorite ± quartz veinlets are evident. 206.00 A fairly strong, tight, chloritic mud slip with 15 cm chloritic breccia with angular mudstone inclusions. Weakly silicified. 208.90 - 212.40 Ash tuff. Massive, very fine to fine grained, dark green, chloritic ash with < 1% scattered lapilli clasts. Virtually undeformed with very minor late quartz veining. Ubiquitous hydrochloric acid reaction. Lower contact gradational over 10 cm. 	8487 8488 8499 8490 8491 8492 8493 8494 8495 8499 8500 8501 8502 8503 8504 8505 8504 8505 8506 8507 8508 8507 8508 8509 8510 8511 8512 8513	190.65 191.50 192.00 193.00 194.00 195.00 196.00 197.00 199.00 200.00 201.00 201.00 201.00 203.50 204.00 205.50 205.50 205.50 206.05 207.00 208.00 208.90 209.50 210.00 211.00 212.00	191.50 192.00 193.00 194.00 195.00 196.00 197.00 199.00 201.00 201.00 201.00 203.50 204.00 205.50 206.05 207.00 208.00 208.90 209.50 211.00 212.00	0.85 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Tr.	1 Tr. 2 Tr. 1 1 1 1 1 1 Tr. 2 Tr. 1 Tr. 2 1	15 Si Ch	il.	0.01 0.07 0.05 0.15 0.03 0.03 0.11 0.08 0.02 0.02 0.01 0.01 0.08 0.06 0.08 0.09 0.04 0.03 0.02 0.03 0.02 0.37 0.45 0.02 0.01 0.01 0.01 0.01	

. .

HOLE: AK-91-34

PAGE: 10 of 19

INTE	RVAL	DESCRIPTION				SAN	IPLE				AS	SAYS
FROM	TO		No.	From	To	Length %Rec	%Py	%QV	%Ser		Au, g/t	Au.Check
		 212.40 - 225.00 Unit is predominantly aphanitic mudstone with very fine, irregular bedding from 1 mm to 3 cm wide. Beds are frequently disrupted, fractured and brecciated by irregular chlorite infilling and show small scale folding, crenulation and faulting. Mudstones occasionally are buff-brown with a cherty appearance but are very soft and sericitic. . 225.00 - 225.60 Irregularly bedded, brown, aphanitic mudstone and dark green, intercalated siltstone. Mudstones are finely laminated and cherty in appearance. Section is pervasively silicified and very hard. 225.60 - 230.20 Deformed, silicified graywacke and conglomerate. Section is dark blue-green with 2-3%, polymictic pebbles, up to 6 cm wide, in a very fine grained altered matrix. Both pebbles and matrix show strong internal fracturing and "crack and seal" texture. Unit varies from quite soft and contact alteration. Section carries traces of fine grained pyrite frequently on hairline sutures. 230.20 - 231.40 Contact zone. Silicified and hematitic. Dirty, red-brown and blue-green, finely laminated @ 50° tca. Section, which has been pervasively silicified and mudstone which appear to be very fine grained silicified. Strong internal hairline fracturing infilled by quartz, chlorite and specularite. Very minor pyrite on fracture planes. Sections show evidence of strong internal brecciation with angular, red-brown, silicified mudstone clasts, up to 3 cm, in a very fine grained, dark, silicified matrix. Within matrix are patchy, irregular, chloritic wisps and veinlets which are partially silicified. 	8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537	212.50 213.00 214.00 215.00 216.00 217.00 218.00 220.00 220.00 221.00 223.00 224.00 225.00 225.00 225.00 225.00 226.10 227.50 228.00 229.50 230.20 230.20 230.80	213.00 214.00 215.00 216.00 219.00 220.00 221.00 222.00 223.00 225.00 225.00 225.00 225.00 225.00 227.00 227.00 227.50 228.00 229.00 229.50 230.20 230.80 231.40	0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.50 0.60 0.50 0	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	Si Si Si Si Si Si Si Si Si	I. I. I. I. I. I. I. I. I. I. I. I. I. I	0.02 0.01 0.03 0.02 NIL 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02	Au, Circck

HOLE: AK-91-34

PAGE: 11 of 19

INTE	RVAL	DESCRIPTION				S	SAM	PLE			AS	SAYS
FROM	то		No.	From	То	Length %R	lec	%Py %	6QV	%Ser	Au. g/t	Au.Check
231.40	247.00	 DIABASE/GABBRO Mafic intrusive comprised of an 80-90%, dark green, fine grained, chloritic matrix, which frequently display subhedral augite phenocrysts to 2 mm. Interstitial to this mafic groundmass are small, irregular, red-brown and yellow-green spots comprised of altered K-spar and sericite ± epidote. Unit also contains, 1-2% subhedral magnetite crystals, up to 1 mm. Strongly magnetic. Unit is very massive and cut by numerous, 1-2%, hairline fractures and tight slips which display such assemblages as chlorite + specularite + calcite and chlorite + specularite + sericite ± epidote ± calcite. Occasionally, small light blue veinlets are evident on fractures and appear to be calcite ± quartz and possibly sodic amphibole. Lower contact is gradational over * 1 metre. Locally, this mafic intrusive resembles a mafic syenite but it is probably an altered gabbroic diabase. 231.40 - 232.00 Very fine grained, dark green, with 1-2 mm, very fine subhedral augite phenocrysts (2%) in an aphanitic, mafic groundmass which is quite soft. Grades to massive, fine to medium grained, mafic intrusive, typically dark green with patchy red-green matrix. 	8538 8539 8540 8541 8542 8543 8544 8545 8546	231.40 232.00 233.00 234.00 235.00 236.00 244.00 245.00 246.00	232.00 233.00 234.00 235.00 236.00 237.00 245.00 246.00 247.00	0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00					Au, gri NiL NiL NiL NiL O.01 NIL NIL NIL 0.36	Au, CRECK
247.00	263.00	 SYENITE/SYENITE PORPHYRY (TRACHYTE FLOW?) Massive, red-brown to brick red, very fine grained to porphyritic with up to 10%, sub to euhedral, white plagioclase phenocrysts, up to 2-3 mm, in a very fine to aphanitic syenitic groundmass. May be a trachyte flow. Unit typically contains numerous, irregular, hairline chloritic cracks and sharp chloritic fractures which frequently causes unit to be quite rubbly in core and gives it a "crack and seal" texture in places. Very minor, late barren, white quartz veinlets. 248.50 - 257.90 Very fine grained, weakly porphyritic, dark red-brown, hematitic. Contains strong "crack and seal" to pseudo-brecciated texture with interstitial chlorite + specularite ± quartz infilling. A few massive, specularite + hematite veinlets evident up to 1 cm wide. Very minor, trace pyrite on chloritic fractures. 	8547 8548 8549 8550 8551 8552 8553 8554 8555	247.00 247.50 248.00 248.50 249.00 249.50 250.00 251.00 252.00	247.50 248.00 248.50 249.00 249.50 250.00 251.00 252.00 252.50	0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00			Tr.		0.17 0.04 0.06 0.18 0.10 0.08 0.66 0.03 0.05	

HOLE: AK-91-34

PAGE: 12 of 19

INTE	RVAL	DESCRIPTION					SAN	APLE		· · · · · · · · · · · · · · · · · · ·	AS	SAYS
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
263.00	273.50	 252.50 A 1-2 cm wide, blocky fault of chlorite + calcite and brecciated wall rock fragments. 253.50 - 257.90 Rubbly broken section due to strong chloritic fracturing with 80-85% recovery. 261.30 - 261.50 Syenite is brecciated with 20%, red syenite fragments, to 0.75 cm, in a fine, black, chloritic groundmass. 261.50 - 261.55 Fault @ 75° tca. Chlorite + quartz + calcite. Sharp, strong chlorite + mud gouge fault infilled with quartz + calcite veinlets. 261.55 - 262.00 Syenite is buff-brown, sericitic with pseudo-brecciated texture and carries 0.5% disseminated pyrite. 262.00 - 263.00 Massive, undeformed, very fine grained, grey-green with sharp intrusive contacts. Possibly tuffaceous. Strongly magnetic. Contains 0.5% finely disseminated pyrite. 	8556 8557 8558 8559 8560 8561 8562 8563 8564 8563 8564 8565 8566 8567 8568	252.50 253.00 253.50 254.50 255.00 257.00 257.00 257.90 258.50 259.00 259.50 260.50 261.30	253.00 253.50 254.50 255.00 256.00 257.00 257.90 258.50 259.00 259.50 260.50 261.30 262.00	0.50 0.50 1.00 0.50 1.00 0.60 0.50 0.50 0.50 1.00 0.80 0.70	85 85 80 80 85	Tr. 0.5	Tr.		0.02 0.02 0.01 0.15 NIL 0.03 0.02 NIL 0.21 0.33 0.26 0.03	
	275.50	 Marte Granne Massive, dark green-red to red-brown and quite variable from dark augite porphyry to red feldspar porphyry to fine grained equivalents of both. Strongly magnetic. 263.00 - 264.00 Strongly fractured, bleached, light brown and silicified. Contains 10% chloritic ± specularite filled fracturing "crack and seal" texture. Augite phenocrysts in groundmass are pale green, altered and subhedral, up to 	8570 8571	263.00 263.50	263.50 264.00	0.50 0.50		Tr. Tr.		Spec / Sil Spec / Sil	NIL NIL	
		 3 mm. 263.25 Strong, tight, chloritic fault @ 50° tca. 264.00 Syenite is a dirty red-brown to green with irregular mottled appearance due to patchy hematization and variability of intrusive from more felsic to mafic. Complex, composite syenitic stock. 	8572 8573 8574 8575 8576 8577	264.00 264.50 265.00 266.00 267.00 268.00	264.50 265.00 266.00 267.00 268.00 269.00	0.50 0.50 1.00 1.00 1.00 1.00		Tr. Tr. Tr. Tr. Tr. Tr.		Spec / Sil	NIL NIL 0.01 NIL 0.02	

HOLE: AK-91-34

PAGE: 13 of 19

INTE	RVAL	DESCRIPTION				SA	MPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
			8578 8579 8580 8581 8582	269.00 270.00 271.00 272.00 273.00	270.00 271.00 272.00 273.00 273.50	1.00 1.00 1.00 1.00 0.50	Tr. Tr. Tr. Tr.	1-2	Bl. / Sil	0.01 NIL 0.01 NIL NIL	
273.50	281.00	TRACHYTE/SYENITE PORPHYRY Hematitic trachyte flow. Dark red-brown, massive with 5-10%, sub to euhedral plagioclase phenocrysts, up to 6 mm, in a dark red, aphanitic, syenitic groundmass. Within groundmass are 3-5%, irregular, corroded augite and chlorite masses. Unit is strongly magnetic. Contains abundant chlorite \pm specularite fracture fillings. Lower contact gradational over 1 metre marked by gradual decline in red, felsic syenite and plagioclase phenocrysts and increase in augite and mafic groundmass.	8583	273.50	274.00	0.50				0.01	
281.00	313.40	 MAFIC SYENITE Massive, dark red-black to green. Contains 3-5%, pale green, augite phenocrysts, up to 3 mm, and 1-2% plagioclase phenocrysts, 1-3 mm, in a very fine grained, dark red-black, syenitic groundmass. Trace spotty pyrite on chlorite fractures. Strongly magnetic with 1% chlorite + specularite fracture fillings. Dirty heterogeneous syenite + trachyte. Difficult to describe the variability within these intrusives or flows as changes can occur very abruptly or gradationally over 1-2 m. Mafic to felsic and porphyritic to aphanitic syenite + trachyte. These mafic syenites are quite different in appearance than those in Kirkland Lake Stock (i.e. Macassa) and may in fact represent trachyte volcanism. These rocks tend to be more coarsely porphyritic with rapid textural changes and lack the characteristic felsic "ribs" usually associated with the augite syenites. More felsic varieties of syenite porphyry are very similar to the magnetic, porphyritic trachyte on the Rand property. 287.25 - 287.30 Fault @25° tca. Chlorite + sericite + quartz + calcite. Tight, chloritic slips with interstitial, fractured, brecclated quartz + calcite veinlets. Adjacent wall rock is buffbrown, fractured and siliceous with 1-2% specularite veinlets, up to 1 cm, down to 287.80. 	8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594	284.00 285.00 286.00 287.00 287.80 288.50 289.00 290.00 291.00 292.00 293.00	285.00 286.00 287.00 287.80 288.50 289.00 290.00 291.00 292.00 292.00 293.00 294.00	1.00 1.00 1.00 0.80 0.70 0.50 1.00 1.00 1.00 1.00 1.00	Tr. Tr. Tr. Tr.		Spec.	NIL NIL NIL 0.04 0.01 0.02 NIL NIL 0.02	

HOLE: AK-91-34

PAGE: 14 of 19

INTE	RVAL	DESCRIPTION				SAN	MPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Pv %	60V	%Ser	Au. 9/1	Au Check
		294.10 - 294.25 Fault @ 50° tca. Quartz + chlorite ± calcite. Strong, sharp, chloritic fault boundaries infilled by white-pink, quartz ± albite ± calcite veining. Barren with bleached, serioitic well reach clearer tion	8595 8596	294.00 294.50	294.50 295.00	0.50 0.50		2	10	0.06 NIL	
		295.30 Fault @ 25° tca. 1 cm wide, quartz + calcite on chloritic slips.	8597 8598	295.00 295.50	295.50 296.00	0.50 0.50		1		0.03 NIL	
		310.00 - 310.50 Fractured "crack and seal" textured syenite cut by 1-2%,	8599 8600 8601 8602 8603	306.00 307.00 308.00 309.00 310.00	307.00 308.00 309.00 310.00 310.50	1.00 1.00 1.00 1.00 0.50		Tr. 1		0.02 NIL NIL NIL NIL	
		sharp, strong chloritic slips and quartz + chlorite breccia veinlets.	8604 8605	310.50 311.00	311.00 311.50	0.50 0.50				0.02 NIL 0.03	
		311.80 - 312.05 Fault @ 50° tca. Chlorite ± sericite ± quartz. Strong tight mud gouge, 5 mm wide, @ 311.80. Lower contact is a hairline chloritic slip. Interstitial material is foliated to pseudo-brecciated with chloritic, "crack and seal" texture.	8606	311.50	312.05	0.55	Tr.	Tr.		NIL	
		312.05 - 312.85 Unit becomes increasingly bleached, yellow-brown and contains 3% chlorite ± quartz ± specularite fracture fillings. Weak, pseudo-brecciation. Zone carries trace pyrite on fracture planes.	8607	312.05	312.50	0.45	Tr.	Tr.		NIL	
		312.85 - 313.40 Fault breccia contact. Pseudo-brecciated to brecciated zone with strong chlorite slip contacts @ 70° tca. Interstitial to slips, unit contains strong internal fracturing to brecciation with angular syenite fragments in a fine chloritic groundmass.	8608 8609	312.50 313.00	313.00 313.50	0.50 0.50	0.5 Tr.	Tr. Tr.		NIL	
313.40	318.10	SYENITE PORPHYRY Hematitic, massive, brick-red syenite with 7-10% fine, subhedral plagioclase phenocrysts, up to 2-3 mm, in a dark red, aphanitic syenite matrix. Typical angular mafic xenolithics, up to 3-4 cm, scattered throughout the unit. 1% fine, chloritic fracturing. Moderately magnetic. Lower contact is sharp but irregular.	8610 8611 8612 8613 8614	313.50 314.00 315.00 316.00 317.00	314.00 315.00 316.00 317.00 318.00	0.50 1.00 1.00 1.00 1.00				NIL NIL NIL NIL 0.01	
318.10	327.00	TRACHYTE PORPHYRY Massive, dark red-brown. Contains 5-15% phenocrysts in an aphanitic trachyte + syenite groundmass. Phenocrysts are of three varieties:									

HOLE: AK-91-34

PAGE: 15 of 19

INTER	VAL	DESCRIPTION					SAM	IPLE			A	SSAYS	
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser	Au, g/t	Au,Check	
		 Plagioclase; subhedral buff-white to pink feldspar, up to 5 mm, and constitute 50% of phenocrysts. Augite; generally subhedral, dark to pale green crystals and crystal masses, up to 3 mm, 25% of phenocrysts. Leucite; subrounded to pseudo-hexagonal, pale grey to light green leucites, altered, up to 3-4 mm, 25% of phenocrysts. This crystal mush gives the unit a strongly porphyritic texture but may represent a trachyte flow. Strongly magnetic. 325.00 - 327.00 Blocky, rubbly section due to chloritic fracturing. 80-85% recovery. 	8615 8616 8617 8618 8619 8620 8621 8622 8623	318.00 319.00 320.00 321.00 322.00 323.00 324.00 325.00 326.00	319.00 320.00 321.00 322.00 323.00 324.00 325.00 326.00 327.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	85 80				NIL NIL 0.01 0.02 NIL NIL NIL NIL		
327.00 3	345.00	 SYENITE PORPHYRY Massive, red-pink, very fine grained syenitic groundmass, with 5-7%, fine, sub to euhedral, plagioclase phenocrysts, up to 2-3 mm. Unit contains characteristic mafic xenoliths, up to 3-4 cm, scattered throughout. These xenoliths have sharp, distinct boundaries and display weak, internal sericitization. Moderately magnetic with scattered specularite veinlets. Contains trace of fine grained pyrite on chloritic fractures. Lower contact obscured in rubbly ground. 333.10 - 333.80 Unit is fractured and cut by white-pink quartz + calcite veining which is fractured and pseudo-brecciated by yellow-green sericite. Remnant augite phenocrysts still evident. Zone also contains strong chlorite ± specularite fracturing and trace clotty pyrite. Contacts seem to be sharp, strong, chloritic slips. 336.60 - 338.35 Bleached, sericitized augite syenite. Semi-massive to fractured and brecciated unit which is purple-brown to yellow-green. 3-5% subhedral to euhedral, light green corroded augite phenocrysts, to 3 mm, in an aphanitic hematite + sericite groundmass. 338.35 - 341.00 Syenite porphyry contains patchy, yellow-green areas of moderate sericitization, proximal to sharp chloritic slips and strong specularite fracture fillings. 341.00 - 352.40 Broken, rubbly ground due to strong chloritic fracturing. 70% recovery. At = 341.70 m appears to be sericitic fault where porphyry is yellow-green, sericitic with strong 	8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8633 8634 8635 8636 8637 8638 8639 8640 8641	327.00 328.00 329.00 331.00 332.00 333.00 334.00 335.00 336.00 336.60 337.10 337.80 338.35 339.00 339.50 340.00 341.00	328.00 329.00 330.00 331.00 332.00 334.00 335.00 336.60 336.60 337.10 337.80 338.35 339.00 339.50 339.50 340.00 341.00 342.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	80 85 95	Tr. Tr. Tr. Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr	Tr. Tr. Tr.	Spec. 10 15-20 5-10 3 5	NIL NIL NIL NIL NIL NIL NIL NIL 0.05 1.18 0.09 0.01 NIL NIL 0.01 NIL	1.11	

HOLE: AK-91-34

PAGE: 16 of 19

INTE	RVAL	DESCRIPTION					SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser	Au. g/t	Au.Check
345.00	363.70	specularite fracturing proximal to a 1-2 cm wide zone of sericite schist.										
		Trachyte/phonolite. Massive, dark red-brown to mauve coloured unit comprised of 5-10%, pale green-white, prismatic to pseudo-hexagonal, leucite crystals (feldspathoids) (H=4), up to 0.5 cm wide, in a dark aphanitic groundmass. Occasionally sub-euhedral, dark green augite phenocrysts, 2-3%, up to 3 mm wide, are evident in groundmass. Very strongly magnetic. Pervasive, weak to moderate, hydrochloric acid reaction. Scattered throughout unit are the occasional open vesicles and small gashes which are infilled with drusy quartz + calcite + pyrite and are frequently limonite stained. Lower contact is a strong, 2 cm wide, chloritic mud break with small open vugs with small quartz + pyrite crystals. Fault @ 25° tca. 359.55 - 359.65 Fault @ 45° tca. Open vuggy zone with irregular chlorite + pyrite seams interstitial to leucite crystals and pink, altered groundmass. 1% fine grained euhedral pyrite on chlorite and open vugs.	8642 8643 8644 8645 8646 8647 8648	358.00 359.00 359.50 360.00 360.50 361.00 362.00	359.00 359.50 360.00 360.50 361.00 362.00 363.00	1.00 0.50 0.50 0.50 0.50 1.00 1.00		0.5 Tr. Tr.			0.02 0.05 0.04 0.07 0.04 0.07 0.06	
363.70	368.00	SYENITE PORPHYRY Massive, red-purple with 5-10%, subhedral, white plagioclase phenocrysts, up to 3 mm, in an aphanitic, syenitic groundmass. Contains characteristic angular mafic xenoliths, up to 4 cm, which display sharp boundaries and weak internal spotty alteration, sericite \pm leucoxene. Moderately magnetic. Lower contact is sharp, irregular, intrusive contact.	8650 8651 8652 8653 8654	363.00 363.70 364.20 365.00 366.00 367.00	363.70 364.20 365.00 366.00 367.00 368.00	0.70 0.50 0.80 1.00 1.00 1.00		Tr.			0.29 0.05 0.14 0.06 0.06 0.10	
368.00	378.50	LEUCITE/AUGITE TRACHYTE PORPHYRY Massive, coarsely porphyritic with open vesicular texture. Comprised of 5- 10%, lath-shaped to pseudo-hexagonal leucite crystals. Pale green to white, up to 6 mm wide, in a dark aphanitic groundmass which carries 1-2% corroded, subhedral augite phenocrysts up to 3 mm. Scattered throughout unit are irregular open vesicles, up to 1 cm wide, which are infilled with drusy quartz + calcite + pyrite and frequently display bright green sericite \pm epidote (zeolite?) boundaries and dusting inside cavities. Frequently vesicles have euhedral pyrite grains. Strongly magnetic. Intercalated with coarsely porphyritic unit are narrow irregular aphanitic zones, ≤ 25 cm wide, which are hematitic and appear to be fine grained trachyte. Lower contact sharp @ 45° tca.	8655 8656	377.00 378.00	378.00 378.50	1.00 0.50		Tr. Tr.			0.05 0.01	

HOLE: AK-91-34

PAGE: 17 of 19

INTE	RVAL		DESCRIPTION					SAN	APLE	•		AS	SAYS
FROM	то			No.	From	To	Length	%Rec	%Pv	%0V	%Ser	Au c/	Au Check
378.50	450.00	TRACHYTE/AS Massive, dark gr with a very find specks, up to 1 Occasionally uni which appears to In places open v + calcite and so These open por magnetic. In pla be some sort of 379.55	H TUFF een-brown, fine to very fine grained. Very dark mafic unit grained to aphanitic matrix with 2-3% black chloritic mm, and what appears to be very fine grained augite. t contains yellow-green spots, up to 0.5 cm, with pink cores be a sericite \pm epidote alteration around K-spar grains. vesicles and cracks are evident which contain drusy quartz cometimes pyrite crystals. Cracks reach up to 5 cm long. rous spaces are ubiquitous throughout unit. Moderately ces, unit appears to be faintly bedded @ 45° tca and may ash tuff, (See 388.00 - 390.00 m for example). 3 cm wide, quartz + calcite + pyrite vein @ 60° tca.	8657	378.50 379.40	379.40	0.90 0.40	<i>bi</i> ke		7000	70501	0.03	Au,Check
			Open, vuggy calcite + quartz vein with 2% fine grained pyrite on fractures within quartz and disseminated in wall rock.	8659 8660 8661 8662 8663	379.80 380.50 388.00 389.00 390.00	380.50 381.50 389.00 390.00 391.00	0.70 1.00 1.00 1.00 1.00		0.5	11.		0.04 0.03 0.06 0.03 0.04	
		391.00 - 391.70	Open vuggy crack @ 15° tca.	8664 8665 8666 8667	391.00 392.00 393.00 394.00	392.00 393.00 394.00 394.50	1.00 1.00 1.00 0.50					0.02 NIL 0.01 0.02	
		394.60 - 394.80	Finely laminated ash tuff beds, 1-2 mm wide, fractured and disrupted by open, vuggy chloritic stringers with coarse euhedral pyrite in cavities.	8668 8669	394.50 395.00	395.00 396.00	0.50 1.00		Tr.		Chl.	0.12 0.02	
		396.00	Unit is very well bedded @ 60° tca, very fine grained, magnetic ash tuff.	8670 8671 8672 8673 8674	396.00 397.00 398.00 399.00 400.00	397.00 398.00 399.00 400.00 400.50	1.00 1.00 1.00 1.00 0.50					0.03 0.02 0.01 NIL 0.02	
		400.50 - 405.80	Syenite porphyry, massive, red-brown syenite with 10-15% subhedral, white, plagioclase phenocrysts, up to 3 mm wide, in a very fine grained syenite matrix. Matrix contains 1-2% sub to euhedral amphibole laths, up to 1 mm, in a very fine grained, syenitic groundmass. Moderately magnetic with scattered, angular mafic xenoliths, up to 2 cm. Sharp, irregular, intrusive contacts. Trace, patchy, fine grained pyrite throughout.	8675 8676 8677 8678 8679 8680 8680 8681	400.50 401.00 402.00 403.00 404.00 405.00 405.80	401.00 402.00 403.00 404.00 405.00 405.80 406.30	0.50 1.00 1.00 1.00 1.00 0.80 0.50		Tr. Tr. Tr. Tr. Tr. Tr.			NIL NIL 0.01 NIL NIL 0.05	
		406.30 - 406.60	Narrow syenite porphyry dyke as above with strong chloritic fracturing and brecciated lower contact.	8682 8683	406.30 406.65	406.65 407.50	0.35 0.85		Tr.			0.04 0.04	

HOLE: AK-91-34

PAGE: 18 of 19

INTE	RVAL		DESCRIPTION				SAN	IPLE		· · · · · · · · · · · · · · · · · · ·	AS	SAYS
FROM	то			No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
-		413.90	Fault @ 45° tca. Chlorite + quartz + calcite. Strong, 1 cm wide chloritic mud slip with pink white quartz +	8684 8685	407.50 408.00	408.00 409.00	0.50 1.00				NIL NIL	
		110.00 410 40	calcite veinlets.	8686 8687 8688	416.00 417.00 418.00	417.00 418.00 419.00	1.00 1.00 1.00				0.01 0.12 0.03	
		419.20 - 419.60	Syenite porphyry with very irregular, intrusive contacts and included wall rock fragments in syenite. Svenite porphyry, Massive, brick red with 10-15%	8689 8690 8691	419.00 419.70 420.60	419.70 420.60 421.10	0.70 0.90 0.50	Tr.			0.02	
			subhedral plagioclase laths, up to 3-4 mm, in a very fine grained to aphanitic, syenitic groundmass. 2-3% fine,	8692 8693	421.10 421.90	421.90 422.40	0.50 0.80 0.50	Tr. Tr.			0.09 0.03	
			Unit is quite pitted with open cracks and holes infilled with chlorite, quartz, calcite and occasionally euhedral pyrite. Upper contact, sharp, chloritic slip @ 25° tca. Lower contact sheared @ 60° tca.	8694 8695	422.40 423.00	423.00 423.50	0.60 0.50	Tr. Tr.			0.11 0.21	
		423.60	Fault @ 40° tca. Open, vuggy, chloritic shear, 2 cm wide, with drusy calcite + pyrite.	8696 8697 8698 8698	423.50 424.00 425.00 426.00	424.00 425.00 426.00 426.65	0.50 1.00 1.00	Tr. Tr. Tr. Tr.			0.37 0.86 0.49	
		426.65 - 427.20 427.20 - 450.00	Two strong chlorite \pm sericite shears at contact. Ash tuffs are dark green to purple with moderate pervasive hematization. Fine "crack and seal" texture developed throughout with fine hairline cracks filled with chlorite \pm specularite. This "crack and seal" texture	8700 8701 8702 8703 8867	426.65 427.20 428.00 429.00 430.00	427.20 428.00 429.00 430.00 431.00	0.55 0.80 1.00 1.00 1.00	Tr.		10	0.41 0.07 0.09 0.10 0.14 0.10	
			drusy quartz, calcite and sometimes pyrite.	8869 8870 8871	432.00 433.00 434.00	432.00 433.00 434.00 435.00	1.00				0.06 0.03 0.07	
		435.00 - 435.20	Syenite porphyry dykelet with sharp, irregular, intrusive contacts.	8872 8873 8874 8875 8876 8877 8878 8879 8880 8881	435.00 436.00 437.00 438.00 439.00 440.00 441.00 442.00 443.00 444.00	436.00 437.00 438.00 439.00 440.00 441.00 442.00 443.00 444.00 445.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00				0.04 0.16 0.11 0.02 0.05 0.02 0.03 NIL NIL 0.01	

HOLE: AK-91-34

PAGE: 19 of 19

INTE	RVAL	DESCRIPTION					SAN	APLE				SAVS
FROM	то		No.	From	То	Length	%Rec	%Py 9	%QV (%Ser	Au of	Au Check
			8882 8883 8884 8885 8886	445.00 446.00 447.00 448.00 449.00	446.00 447.00 448.00 449.00 450.00	1.00 1.00 1.00 1.00 1.00				<u></u>	0.02 0.03 0.03 0.03 0.02	Augonock
	450.00	END OF HOLE Casing left in hole.										

HOLE: AK-91-35

PAGE: 1 of 12

TOWNSHIP CLAIM No.	Teck L 491182, L 491183	DATE LOGGED LOGGED BY DRILLED BY	September 7, 1991 - Mark Masson Heath & Sherwood	September 12, 1991	EASTING NORTHING ELEVATION	7599.6 10097.4	Depth	Method	Azimuth	Dip
STARTED COMPLETED	September 6, 1991 September 12, 1991	CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Kirkland Lake Ware B.M.C.I.	chouse	COLLAR SURVEY	Northland Technical 365.50 metres	Note:	See table at for downhold	end of sumn surveys	ary log
PURPOSE	To test "102" and "103" a	structures.		IR		•••				
COMMENTS	"102" gold zone @ 223.0 "103" gold zone @ 344.0	0 - 226.00, 3.00 m. 5 - 347.50, 3.45 m.	SIGNED BY	(W. Benham)						

	ASSAY SUMMARY					
INTERVAL DESCRIPTION INTERVAL DESCRIPTION INTERVAL LEN	H AVERAGE					
From To From To In me	s Au g/t					
0.00 4.00 OVERBURDEN Weakly sericitic.						
4.00 15.60 LAPILLI TUFF 321.10 - 321.20 Sheared, sericitic, 5-7% quartz, 223.00 226.00 3.	0.13					
$\frac{15.00}{30.60} + \frac{42.00}{30.60}$ Sericitic, foliated @ 40-55° tca 30.60 - 42.00 Sericitic, foliated @ 40-55° tca 325.00 - 326.20 Sharmed @ 70° tax 20° surgery 0.40 co 0.41 co						
49.60 65.70 GRAYWACKE 340.50 341.50 1.	0.10					
Sericitic, trace pyrite, 1-2% quartz. 336.95 - 337.10 Quartz + sericite + chlorite + 344.05 347.50 3.	3.11					
65 70 86 60 MUDSTONE/SULTSTONE						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.88					
$97.20 - 102.50$ Sericitic 340.10 Fault @ 40° tca.						
121.00 - 121.15 Fault @ 40° tca. 340.10 343.25 CONGLOMERATE/GRAYWACKE						
132.50 159.60 ASH/LAPILLI TUFF 343.25 344.10 SYENITE						
159.60 180.00 LAPILLI TUFF 344.10 354.85 CONGLOMERATE						
180.00 220.90 ASH/LAPILLI TUFF 344.40 Blue grey, silicified zone. 8-10%						
206.00 - 209.50 Sericitic, trace pyrite, 2-3% pyrite < 0.5% chalcopyrite and						
$220.80 - 220.90 \text{Fault source } 0.65^\circ \text{ tea} \qquad 244.40 245.40 1.20^\circ \text{ source statistics}$						
220.90 239.80 CONGLOMERATE 347.50 348.50 Serioitio 5% quarte union terms						
Chloritic, foliated @ 50° tca.						
239.80 254.20 GRAYWACKE 354.85 360.40 GRAYWACKE						
254.20 275.60 ASH TUFF 360.40 365.50 CONGLOMERATE						
275.60 313.50 LAPILLI TUFF						
313.50 340.10 GRAYWACKE 365.50 E. O. H.						

HOLE: AK-91-35

PAGE: 2 of 12

Т

Т

PROPERTY	Amalgamated Kirkland	DATE LOGGED	September 7, 1991 - September 12	, 1991 EASTING	7599.6	Depth	Method	Azimuth	Dip
TOWNSHIP CLAIM No. STARTED COMPLETED	Teck L 491182, L 491183 September 6, 1991 September 12, 1991	LOGGED BY DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Mark Masson Heath & Sherwood Kirkland Lake Warehouse B.M.C.I.	NORTHING ELEVATION COLLAR SURVEY LENGTH UNITS	10097.4 337.3 Northland Technical 365.50 metres	Note:	See table b downhole su	clow for all rveys	
PURPOSE	To test "102" and "103" s	tructures.		CORE SIZE	NQ				
COMMENTS	"102" gold zone @ 223.0 "103" gold zone @ 344.0	0 - 226.00, 3.00 m. 5 - 347.50, 3.45 m.	SIGNED BY (W. Be	nham)					

				SUN	IMARY LOG						AS	SAY SUMM	ARY
INTERVAL From To	· · · · · · · · · · · · · · · · · · ·	DESCR	RIPTION		INTERVAL From To		DESC	RIPTION		INTERV From	'AL To	LENGTH in metres	AVERAGE Au g/t
	Depth Collar 6.0 91.0 122.0 152.0 183.0 214.0	Method Compass	Azimuth 341	Dip 50 50 49 47 47 47 46 45 45		Depth 336.0	Method		Dip 43				
	244.0 44 274.0 44 305.0 43												

HOLE: AK-91-35

PAGE: 3 of 12

INTE	ERVAL	DESCRIPTION	<u> </u>									
FROM	то		<u> </u>			SA	<u>APLE</u>			AS	SAYS	
			No.	From	То	Length %Rec	%Py	%QV %	Ser	Au, g/t	Au,Check	
0.00	4.00	OVERBURDEN										
4.00	15.60	 LAPILLI TUFF Massive to moderately well foliated, chloritic, light grey-green, heterolithic lapilli tuff. Comprised of 5-7% angular trachytic clasts, which are light grey, buff and dark green, in a very fine grained, light green ash matrix. Clasts range from 0.5-6 cm (avg. 1 cm) and are very fine grained to spotted trachyte. Unit carries 0.5 - 1% spotty to wispy sericite development. Non-magnetic. Cut by numerous, strong, ankeritic stained shears and 1% irregular, barren, white quartz ± albite veining. Lower contact is sheared, sericitic, with moderate rusty ankerite stain. 5.90 - 6.30 Fault @ 35° tca. Chlorite + sericite + ankerite. Strong, open, chloritic mud slips with pitted ankerite infilling. 										
		 Interstitial to strong slips, unit is foliated to sheared and somewhat hematitic with strong, wispy, sericite + ankerite ± limonitic staining. Barren cross fault. 9.30 - 10.00 Strong ankerite staining on moderately foliated tuff with minor open vuggy slips, with strong ankerite ± limonite. 14.25 - 14.30 Fault @ 60° tca. Sericite + ankerite. Strong, tight, sericitic shear with moderately rusty ankerite stain. 										
15.60	49.00	MUDSTONE/SILTSTONE Light green to brown, aphanitic mudstone and dark green siltstone finely interbedded. Mudstones are finely laminated with slumping flame structures, microfolding and faulting evident. Bedding ranges from, 1 mm - 10 cm wide, bedding swings very rapidly from 5° tca to 80° tca due to internal folding. Frequently limbs and noses are stepped due to small scale (≤ 1.2 mm) micro-faults. Lower contact of unit is sheared, sericitic and has 5% late, barren, quartz \pm albite veinlets.										
		 15.60 - 16.60 Yellow-green to red-brown due to pervasive sericitization of muds and rusty, ankerite staining of silty horizons. Bedding @ 10° tca. 23.00 - 28.50 Bedding predominantly @ 55° tca then at 28.50 shows abrupt, tight internal folding with irregular, wispy bedding. 30.60 - 42.00 Mudstones become increasingly deformed with irregular, wispy, sericite foliation, developed @ 40-55° tca, while interbedded siltstones are weakly deformed with spotty 	8704 8705 8706 8707 8708	29.00 30.00 30.60 31.30 32.00	30.00 30.60 31.30 32.00 32.50	1.00 0.60 0.70 0.70 0.50	Tr.	Tr. Tr. 1-2 10-1 Tr. 10-1 5-7 2	5 5 0	0.04 NIL NIL NIL		

HOLE: AK-91-35

PAGE: 4 of 12

INTE	ERVAL	DESCRIPTION	T					·····
FROM	то					SAN	MPLE	ASSAYS
			No.	From	To	Length %Rec	%Py %QV %Ser	Au, g/t Au, Check
		 sericite. Gradual increase in white quartz ± albite veins which are irregular, podiform to ptygmatically folded. Generally barren with minor spotty pyrite. A crosscutting, post-foliation, vein fracture set cuts foliation @ 5° tca. Varies from a hairline crack to 5 mm wide, quartz + sericite vein with minor scattered pyrite. 42.00 - 45.40 Strong, irregular, open vein/fracture @ 5° tca with sericite + quartz development. On one side of fracture is deformed sericitized mudstones and on the other side is a quartz breccia vein. Milk-white quartz ± albite flooding, up to 55%, with angular wall rock inclusions, up to 3 cm. Veining is typically barren, multi-generational, with province labourie O 50° to many series. 	8709 8710 8711 8712 8713 8714 8715 8716 8717 8716 8717 8718 8719 8720 8721 8722 8721 8722 8723 8724 8725 8726	32.50 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 40.50 41.00 41.50 42.00 43.00 44.00 44.50 45.40 45.40	33.00 34.00 35.00 35.00 36.00 37.00 38.00 39.00 40.50 41.00 41.00 41.00 41.00 42.00 43.00 44.50 44.50 45.40 46.00 47.00	0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 0.50 0.50 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00	3 20-30 Tr. 5-10 Tr. 5-10 1 5-10 Tr. 5-10 1 5-10 Tr. 5-10 Tr. 5-10 Tr. 5-10 Tr. 5-20 1-2 10-15 Tr. 5-7 Tr. 10 25-30 17. Tr. 10 25-30 17. Tr. 10 25-30 17. 10 25-30 Tr. 25 30 17. 25 30 Tr. 30 30 2 230 2-3	Au, gr Au, Check NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
49.00	65.70	 GRAYWACKE Massive, fine grained, grey-green, lithic graywacke with 2-3% wispy-spotty sericite alteration throughout. Comprised of 60-70% quartz and/or feldspar grains and fine lithic clasts including jasper. Lower contact marked by an irregular quartz ± albite vein, 1 cm wide. 51.40 - 52.50 Fault breccia @ 15-30° tca. Strong, open fault breccia with cemented gouge and rock fragment fault walls. Interstitial material is brecciated wall rock and quartz ± albite fragments, up to 2 cm, in a light to blue-grey quartz + calcite matrix. Very strong, reworked fault zone with nil to trace pyrite. 55.00 - 55.20 Irregular, folded quartz ± albite vein with 0.5% fine pyrite in adjacent wall rock, up to 2 cm, from vein. 57.70 - 57.85 Irregular quartz breccia vein with angular wall rock inclusions and 1% fine grained pyrite on fractures within vein material and in adjacent well well. 	8720 8727 8728 8729 8730 8731 8732 8733 8734 8735 8734 8735 8736 8737 8738 8739 8740 8741 8742	46.00 47.00 48.00 49.00 49.50 50.40 51.40 52.00 52.50 53.00 54.00 55.50 56.00 57.00 57.00 57.50 58.00	47.00 48.00 49.00 50.40 51.40 52.50 53.00 54.00 55.50 55.50 55.50 55.50 55.00 57.50 55.00 57.50 58.00 59.00	1.00 1.00 1.00 1.00 0.50 0.50 1.00 0.50 1.00 1.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL

HOLE: AK-91-35

PAGE: 5 of 12

INTE	RVAL	DESCRIPTION				SAN	NPLE			AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. g/t	Au.Check
65.70	86.60	MUDSTONE/SILTSTONE Yellow-green to brown, aphanitic, laminated mudstone intercalated with very fine, dark grey-green siltstone. Bedding is very irregular, ranges from ≤ 1 mm to 10 cm wide, and varies from 50° to 5° tca, with sharp, internal folding evident. Bedding contacts are sharp to irregular to interfingered to fluted. Very soft, sericitic. Also intercalated with the sediments are narrow horizons consisting of 10% sub-euhedral, black, chloritized crystals and crystal masses, up to 3 mm, in an aphanitic, sericitic groundmass. These crystal tuff horizons show sharp, intimate contacts and reach up to 25 cm wide. Lower contact gradational over 1 metre. 75.00 Small scale folding evident with small scale faulting and bedding evident.	8744	59.50	60.00	0.50				NIL	
86.60	132.50	ASH TUFF Chlorite \pm hematite. Massive to well bedded @ 25-35° tca. Somewhat variable, light grey to green to mauve and very fine to fine grained. Comprised of 30%, fine grained, heterolithic, trachyte clasts, up to 1-2 mm, in a fine grained groundmass. In places, light green, subhedral, augite crystals, $\leq 1-2$ mm, are evident within the groundmass. Bedding defined by alternating fine and coarse grained beds and occasionally by hematized magnetite lamellae. Less than 1% scattered lapilli clasts. Patchy strong magnetics.									
		 96.50 - 96.60 Fault @ 35° tca. Quartz + sericite + chlorite. Tight, sharp, chlorite + sericite slip walls infilled by quartz ± albite vein with internal sericitic fracturing. 97.20 - 102.50 Dirty green-brown, mottled, sericitized zone with 5% black, hazy spotting, up to 1-2 cm. Ground mass is pervasively sericitic and altered to an aphanitic buffbrown to green. Spots appear to primary remnant, nonaltered, chloritic matrix which show hazy irregular boundaries grading to more highly altered material surrounding these clots. Section also contains 1-2% primary lapilli clasts of trachyte porphyry which generally retain sharply defined outlines. Faint primary bedding evident @ 25° tca. Massive, non-deformed with gradational upper and lower contacts. No associated structures. 									

.

HOLE: AK-91-35

PAGE: 6 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLI	E			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%I	Ру 9	%QV	%Ser	Au, g/t	Au,Check
		 Fault @ 30° tca. Chlorite + quartz. Sharp, 1 mm wide, chloritic slip with 0.5 cm wide quartz + chlorite veinlet. 121.00 - 121.15 Fault @ 40° tca. Chlorite + sericite + quartz. Foliated to brecciated ash tuff with angular wall rock fragments, to 1 cm, in a pink-white quartz vein matrix, non-mineralized. Sharp chloritic slip @ 121.15 metre. 125.80 - 132.50 Dark red-brown to mauve ash tuff comprised predominantly of fine red trachyte clasts, ≤ 1 mm, in a dark mafic groundmass. Massive to finely bedded @ 40° tca. Strongly magnetic. Equivalent to monolithic blocky tuffs. Sharp, regular bedding contact. 										
132.50	159.60	 ASH/LAPILLI TUFF Chloritic, hematitic, massive, undeformed, grey-green to dark green to mauve. Intercalated ash and lapilli tuff horizons from 10 cm to 2-3 m wide, generally with gradational contacts. Lapilli tuff horizons are heterolithic with up to 10% angular trachyte clasts up to 5 cm (avg 1-2 cm) in a fine grained ash matrix. Clasts range from grey to dark green to red and from aphanitic to porphyritic. Ash tuff horizons are generally massive to poorly bedded and are of equivalent composition as lapilli tuffs. Lower contact sharp but faint and somewhat irregular. 148.10 - 148.20 Fault @ 40° tca. Chlorite + sericite + quartz + calcite. Sharp, strong chloritic slip with irregular wispy sericite in wall rock infilled by barren, white-pink quartz + calcite veining. 										
159.60	180.00	 LAPILLI TUFF Chloritic ± hematitic, massive, undeformed, dark green, heterolithic lapilli tuff. Comprised of 5-10% angular trachyte clasts, up to 2-3 cm, (avg. 0.5-1 cm) in a fine grained ash matrix. Clasts are grey-green, black, brown and red-pink and range from aphanitic to porphyritic. Patchy, strong magnetics. Cut by 1% barren quartz ± albite veinlets. Lower contact is gradational over 1-2 m. 173.35 Fault @ 60° tca. Chlorite + quartz + calcite. Sharp chloritic slip, with 1 cm wide, quartz + calcite veinlet on slip wall. 										

HOLE: AK-91-35

PAGE: 7 of 12

INTE	RVAL	DESCRIPTION				SAN	MPLE			AS	SAVS
FROM	то		No.	From	То	Length %Rec	%Py %C	V %Se	r	Au. e/t	Au Check
180.00	220.90	ASH/LAPILLI TUFF Chloritic \pm hematitic, massive to very well bedded and undeformed. Light grey-green to dark green to maroon, very fine to fine grained ash tuff with well developed bedding @ 45° tca. Comprised of fine, heterolithic + trachyte clasts, up to 1 mm, in a dark green mafic matrix, generally poorly sorted. Unit is strongly magnetic and thin, discreet, magnetite lamellae are evident in places. In part intercalated with lapilli tuff horizons, up to 1 m wide (\leq 10%) with 3-5% heterolithic clasts. Weak to moderate, patchy hematization.								110, git	Au ₃ Citek
		201.70 Fault @ 70° tca. 1 cm wide, quartz + albite vein with internal wispy sericite and sharp chloritic slip walls.									
		205.50 - 206.00 Very irregular, anastomosing quartz ± calcite veining with fine hairline chlorite boundaries and internal chloritic fractures. Wall rock is bleached yellow-brown and carries 15-20%, fine, wispy, sericite interstitial to fine ash clasts.	8745 8746 8747	204.00 205.00 205.50	205.00 205.50 206.00	1.00 0.50 0.50	1	10 20		NIL 0.07 0.01	
		206.00 - 209.50 Dirty yellow-brown with 15-20%, fine, wispy sericite as above. Section is cut by 2-3% sharp chlorite slips and narrow chlorite breccia veinlets, ≤ 1 cm, with angular wall rock fragments in a black, chloritic ground mass. Trace spotty pyrite. No prominent structure evident and contacts are gradational over 0.5 -1 metre.	8748 8749 8750 8751 8752 8753	206.00 206.50 207.10 208.00 209.00 209.50	206.50 207.10 208.00 209.00 209.50 210.50	0.50 0.60 0.90 1.00 0.50 1.00	Tr.	20 20 20	Chi.	0.04 NIL NIL 0.01 0.02	
		220.00 - 220.80 Unit becomes increasingly deformed with irregular, wispy sericite and patchy buff bleaching (sericitization) of matrix.	8754 8755 8756	219.00 219.45 220.00	219.45 220.00 220.50	0.45 0.55 0.50		10-15 10		NIL 0.02 0.06	
		220.80 - 220.90 Fault @ 65° tca. Chlorite + sericite + quartz. Strong, tight, 2 mm wide, chlorite mud gouge at 220.85 with surrounding, sericitized sheared zone with late, barren quartz ± calcite infilling. Marks lower contact of unit.	8757	220.50	221.00	0.50		2 15-25	Fault	0.04	
220.90	239.80	CONGLOMERATE Massive to weakly foliated @ 50° tca, dark green, chloritic, polymictic pebble conglomerate. Poorly sorted, matrix supported with 10-25%, well rounded to sub-angular, polymictic pebbles from 0.5 cm to >10 cm, in a fine grained, chloritic, graywacke matrix. Foliation outlined by pebble	8758 8759 8760 8761	221.00 221.50 222.00 223.00	221.50 222.00 223.00 223.50	0.50 0.50 1.00 0.50	Tr. T	r. 5 r. 5-10		NIL 0.01 0.02 0.11	

HOLE: AK-91-35

PAGE: 8 of 12

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. g/t	Au.Check
		elongation and weakly developed foliation in matrix. Non-magnetic, cut by 1% , ≤ 2 cm wide, quartz \pm albite veinlets.	8762 11901 11902 11903 11904	223.50 224.00 225.00 226.00 227.00	224.00 225.00 226.00 227.00 228.00	0.50 1.00 1.00 1.00 1.00 1.00			3	0.36 0.02 0.13 0.01 NIL	
239.80	254.20	GRAYWACKE Massive, undeformed, dark green, fine grained graywacke. Comprised of 10-15% fine quartz grains, 50% lithics and 35-40% very fine grained, chloritic groundmass. Weak, spotty sericite throughout. Very clean pristine.	8763	241.00	242.00	1.00	Tr.	Tr.		NIL	
		Lower contact of unit is a sharp, sericite + quartz slip @ 65° tca. 244.30 - 244.40 Semi-massive pyrite lamellae @ 40° tca. Series of very fine grained semi-massive pyrite bands up to 2 mm wide	8764 8765 8766	242.00 243.00 244.00	243.00 244.00 244.50	1.00 1.00 0.50	Tr. Tr. 2	Tr. Tr. Tr.		0.01 NIL NIL	
		 244.50 - 246.50 Unit contains scattered irregular quartz ± albite ± calcite veinlets with, weak to moderate, sericite alteration, chloritic fracturing and trace sporadic pyrite. 248.00 - 254.20 Graywacke contains up to 2-3%, polymictic pebbles conglomerate beds with gradational contacts. 	8767 8768 8769 8770 8771 8772 8773 8773	244.50 245.00 245.50 246.00 246.50 247.00 248.00 249.00	245.00 245.50 246.00 246.50 247.00 248.00 249.00 250.00	0.50 0.50 0.50 0.50 1.00 1.00 1.00	Tr. Tr. Tr. Tr.	Tr. 1 Tr. 2		0.01 0.03 NIL 0.04 NIL NIL 0.07 NIL	
254.20	275.60	 ASH TUFF Massive, dark green, fine to very fine grained, strongly magnetic ash tuff. Non-bedded, undeformed, chloritic, nondescript. Unit has 0.5% scattered, subrounded pebbles, up to 3-4 cm, floating in ash matrix. Pebbles are quite variable but appear to be predominantly trachyte. Lower contact gradational over 0.5 metres. 258.50 - 262.60 Unit carries 5% rounded pebbles, up to 5 cm, in a dark green, chloritic ash matrix which is strongly magnetic. Pebbles are dark green, aphanitic mafic volcanics, pinkbrown trachyte and minor mudstone. Gradational 									
275.60	313.50	contacts. LAPILLI TUFF - TUFFACEOUS CONGLOMERATE Massive, undeformed, grey-green, chloritic poorly sorted. Comprised of 10- 15%, sub-angular to well rounded, heterolithic clasts and pebbles, up to 5-6									

HOLE: AK-91-35

PAGE: 9 of 12

INTE	ERVAL	DESCRIPTION	1			SAN	IPLE			AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. g/t	Au.Check
		 cm, in a very fine ash matrix. Clasts are dark green, grey-green, red-brown trachyte which are generally very fine grained to weakly porphyritic or spotted. Matrix is very fine grained, chloritic ash which is moderately to strongly magnetic. No quartz, jasper, granitoid, etc., evident in matrix or framework. Unit has a matrix supported conglomeratic appearance but lacks the exotic pebbles, i.e. jasper, quartz, porphyry, etc. in the matrix. Lower contact of unit is sharp but somewhat irregular and faint. 288.50 - 289.00 Unit is intercalated with massive, very fine grained ash tuffs. Sharp, irregular contacts @ 5-10° tca. 291.00 - 294.70 Ash tuff. Massive, dark green, fine grained ash, comprised of 5%, fine, broken, grey-white, subhedral plagioclase crystals, up to 1 mm, in a dark mafic ash groundmass. Very minor, scattered pebble clasts, < 0.5%. Moderately magnetic. Weak bedding @ 10° tca. Contacts with pebbly horizons are sharp to gradational. 310.70 - 310.95 Quartz + calcite + chlorite breccia vein with angular wall rock and quartz + calcite fragments floating in a dark green chlorite groundmass. Very minor, spotty pyrite. 	8775 8776 8777 8778 8779 8780 8781	308.00 309.00 310.00 311.00 311.00 313.00	309.00 310.00 310.50 311.00 312.00 313.00 313.50	1.00 1.00 0.50 0.50 1.00 1.00 0.50	Tr.	Tr. 5	Chl.	NIL 0.03 0.03 0.01 0.03 0.01 0.01	
313.50	340.10	GRAYWACKE Massive to poorly bedded, fine grained, grey-green graywacke, comprised of 10-15%, fine quartz grains, ≤ 1 mm, and 35%, fine lithics, including jasper, in an aphanitic, chloritic groundmass. Weak, spotty sericite is pervasive throughout as well as trace disseminated pyrite. 316.00 - 320.00 Unit takes on a patchwork appearance, due to a set of irregular hairline cracks, which have dark green, chloritic, alteration halos, up to 1-2 mm, from cracks. Fractures are generally tight with quartz ± calcite ± sericite infilling. Very minor pyrite associated with these fractures. Prominent fracture set @ 30-45° tca. Where fractures cross-cut each other, dark alteration halos coalesce into small masses. 321.10 - 321.20 Sheared sericitic schist with fractured, boudinaged quartz ± albite veinlets, up to 0.5 cm wide. Minor trace pyrite. 321.30 Vein is on downhole side of 1 cm wide sericitic shear.	8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796	313.50 314.00 315.00 315.80 316.50 317.00 317.50 318.00 318.50 319.00 319.50 320.00 320.50 321.00 321.50	314.00 315.00 315.80 316.50 317.00 317.50 318.00 319.00 319.00 319.50 320.00 320.50 321.00 321.50 322.00	0.50 1.00 0.80 0.70 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	1-2 10-15 2-3	NIL NIL 0.01 NIL NIL NIL NIL NIL 0.01 0.01 0.02 0.02	

HOLE: AK-91-35

PAGE: 10 of 12

INTE	RVAL		DESCRIPTION				SAN	MPLE			 AS	SAYS
FROM	то			No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		321.30 - 321.50 322.00 - 325.90	White to pink, fractured quartz vein with internal sericite suturing and fracture fillings which carry minor euhedral pyrite. Polymictic pebble conglomerate horizon. Upper contact	8797	322.00	323.00	1.00	Tr	1-2	2.3	0.01	
			gradational. Lower contact sheared @ 70° tca.	8798 8799 8800	323.00 324.00 325.00	324.00 325.00 325.90	1.00	Tr. Tr. Tr.	1-2 Tr.	2-3 2-3 2-3	0.01 0.1 NIL	
	-	325.90 - 326.20	Sheared zone with 15-20%, wispy, sericitic foliation @ 70° tca and 3% fractured to boudinaged, quartz \pm albite veinlets, up to 0.5 cm wide.	8801	325.90	326.40	0.50	1	3	2-3 25	0.01	
		326.15	A 2 cm wide section with 5% very fine grained pyrite on sericitic foliation.	8802 8803 8804	326.40 327.00 327.50	327.00 327.50 328.00	0.60 0.50 0.50	Tr. Tr. Tr.	1 0.5	2-3	0.01 0.01 0.02	
		328.50 - 328.90	Yellow-green, aphanitic, laminated mudstone @ 55° tca. Minor chloritic fracturing and late, barren quartz veinlets.	8805 8806	328.00 328.50	328.50 329.00	0.50 0.50	Tr. Tr.	Tr. Tr.		NIL NIL	-
		328.90	Graywacke is massive, fine grained, with weak, pervasive, spotty sericite. Unit carries, trace to 0.5%, disseminated fine grained pyrite throughout and 1-2% fine, hairline chloritic fracturing and ≤ 2 cm wide, minor chlorite breccia veinlets.	8807 8808 8809 8810 8811 8812 8813	329.00 330.00 331.00 332.00 333.00 334.00 335.00	330.00 331.00 332.00 333.00 334.00 335.00 335.70	1.00 1.00 1.00 1.00 1.00 1.00 0.70	Tr. Tr. Tr. Tr. Tr. Tr. Tr.	1-2 Tr. Tr. Tr. Tr. Tr. Tr.		0.02 0.02 0.01 NIL 0.01 0.01	
		335.70 - 336.30 336.95 - 337.10	Massive, aphanitic, mudstone bed @ 45° tca. Quartz + sericite + chlorite + pyrite vein @ 75° tca.	8814 8815 8816 8817	335.70 336.30 336.95 237.40	336.30 336.95 337.40	0.60 0.65 0.45	Tr. 1-2	Tr. 5	5-7	0.01 NIL 0.03	
	-		with internal wispy sericite and pyrite suturing up to 0.5 cm wide. Pyrite on sutures is very fine grained and semi- massive. Sharp, strong, chlorite slip boundaries.	8818	338.00	339.00	1.00	Tr.	1 r .		NIL NIL	
	1	339.20 - 339.30	Quartz + sericite + pyrite vein @ 75° tca. Irregular quartz \pm albite vein with strong, internal sericite suturing and weak vein brecciation. 1-2% very fine grained pyrite on sericite slips and fractures.	8819 8820	339.00 339.50	339.50 340.00	0.50 0.50	1 Tr.	5 Tr.	10	NIL NIL	
		340.10	Fault @ 40° tca. 1.5 cm wide, chlorite breccia with sharp, strong, chloritic slip walls and internal sericitic foliation and minor brecciated quartz \pm albite fragments. Marks lower contact of unit.	8821	340.00	340.50	0.50				0.01	

HOLE: AK-91-35

PAGE: 11 of 12

INTE	RVAL	DESCRIPTION		· · · · · · · · · · · · · · · · · · ·		SAN	MPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
340.10	343.25	CONGLOMERATE Massive to weakly foliated, chloritic, polymictic, pebble conglomerate with 0.5%, 0.2 cm wide, quartz + albite veins. 341.85 - 342.35 Graywacke, medium grained, green-grey, massive.	8822 8823 8824	340.50 341.50 342.50	341.50 342.50 343.20	1.00 1.00 0.70		0.5 0.5 0.5		0.10 0.02 0.05	
343.25	344.10	SYENITE Red-brown, medium grained, fractured, weakly porphyritic syenite with $< 1\%$, 1-2 mm, white feldspar phenocrysts and $< 0.5\%$ specularite and chlorite filled fractures. Trace disseminated pyrite. Sharp upper contact marked by specularite veinlet @ 45° tca. Sharp lower contact marked by a chlorite slip @ 60° tca.	8825	343.20	344.05	0.85	Tr.		Hem. Chi.	0.08	
344.10	354.85	CONGLOMERATE Poorly sorted, loosely packed, polymictic pebble conglomerate. Angular to well rounded, jasper, quartz, trachyte, syenite and mafic volcanic clasts, 0.5- 6 cm wide, in a weakly chloritic, graywacke matrix.									
		 344.10 - 344.40 Silicified, sericitic, pyrite zone. Blue-grey to yellow-green. 8-10%, fine to medium grained, disseminated pyrite. < 0.5% molybdenite finely disseminated and on chloritic fracture planes. < 0.5% fine grained chalcopyrite in clusters. Sharp, undulating lower contact marked by chloritic slip @ 70° tca. 344.40 - 344.60 Trace to 0.5%, finely disseminated pyrite in graywacke matrix of conglomerate. 3%, 0.5-1.5 cm wide, pyrite clasts 	8826	344.05	344.60	0.55	8-10	1	15 Sil. Mo.Cp.	18.65	19.10
		or clots. 344.40 - 345.40 1-2% scattered clusters of subrounded to rounded, 0.5-4 cm wide, pyrite clasts or clots which are fine grained and massive or medium to fine grained and fractured.	8827 8828 8829	344.60 345.50 346.50	345.50 346.50 347.50	0.90 1.00 1.00	1-2			0.25 0.02 0.11	
		347.50 - 348.50 Sericitic and chloritic. Weakly to moderately foliated @ 30° tca. 5% irregular, 0.5-2 cm wide, white to pink, quartz + calcite veinlets. Trace finely disseminated pyrite in	8830 8831	347.50 348.50	348.50 349.50	1.00 1.00	Tr.	5	10 Chl.	0.02	
		veins and along vein contacts. 348.30 Chloritic mud gouge, 0.2 cm wide, @ 30° tca.									

HOLE: AK-91-35

PAGE: 12 of 12

INTE	RVAL	DESCRIPTION	SAMPLE							AS	SAYS	
FROM	ТО		No.	From	То	Length 9	%Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
354.85	360.40	 GRAYWACKE Green to brown-green, fine grained, chloritic graywacke. 356.40 - 357.20 Brown, weakly sericitic, brecciated zone. 1-2% chlorite-filled fractures. 										
360.40	365.50	CONGLOMERATE Chloritic, pebble-poor, polymictic conglomerate with 0.2-5 cm rounded clasts and 1%, 0.1-2 cm, irregular, wispy to rectangular, dark green, chloritic mafic volcanic clasts in chloritic, weakly sericitic graywacke matrix. Weakly foliated @ 70° tca. < 0.5% irregular calcite veinlets.										
	365.50	END OF HOLE Casing left in hole.										

HOLE: AK-91-36

PAGE: 1 of 5

PROPERTY	Amalgamated Kirkland	DATE LOGGED	September 14, 1991 -	September 15, 1991	EASTING	7599.9	Depth	Method	Azimuth	Dip	
CLAIM No.	L 491183	DRILLED BY	Heath & Sherwood		ELEVATION	10008.6 337.1	Collar	Compass	341	50	
STARTED COMPLETED	September 12, 1991 September 14, 1991	CORE LOCATION DOWNHOLE SURVEYOR	Kirkland Lake Ware B.M.C.I.	house	COLLAR SURVEY	Northland Technical	6.1			48	
		SURVEY INSTRUMENT			LENGTH UNITS	132.80 metres	30.5			47	
PURPOSE	To test low magnetic and	omaly and shear zone.		IK	CORE SIZE	NQ	61.0			47	
COMMENTS	No anomalous assays.		SIGNED BY	When			91.0			46	
				(W. Benham)			121.90			46	

		SUM	MARY LOG		AS	SSAY SUMM	ARY
INTE	RVAL	DESCRIPTION	INTERVAL	DESCRIPTION	INTERVAL	LENGTH	AVERAGE
From	То		From To		From To	in metres	Au g/t
0.00	3.35	OVERBURDEN					
3.35	11.35	BLOCK TUFF					
11.35	23.00	ASH/LAPILLI TUFF					
23.00	40.45	CONGLOMERATE					
		37.70 - 40.45 Chloritic, fractured.					
		40.45 Fault @ 55-65° tca.	:				
40.45	45.20	SYENITE					
45.20	54.70	GRAYWACKE					
		Sericitic, trace pyrite.					
54.70	63.00	BLOCK/LAPILLI TUFF					
63.00	69.35	ASH LAPILLI TUFF	i				
69.35	77.70	BLOCK/LAPILLI TUFF					
		72.70 - 73.50 Fault zone.					
77.70	95.45	ASH/LAPILLI TUFF					
95.45	100.00	LAPILLI TUFF					
100.00	106.92	BLOCK TUFF					
10/ 02	110.00	103.00 - 106.90 Bleached					
106.92	118.00	LAPILLI/ASH TUFF					
110.00	126.75	Sericitic, entoritic, weakly foliated @ 55° tea.					
116.00	120.75	Adm/LAPILLI TUFF Weakly containing and ablantic					
126 75	122.00						
120.75	132.00	T A U					
	134.00	E. O. H.		· ·			

HOLE: AK-91-36

PAGE: 2 of 5

INTE	RVAL	DESCRIPTION					SAN	APLE				AS	SAYS
FROM	то		No.	From	То	Length	%Rec	%Py	%QV	%Ser		Au. g/t	Au.Check
0.00 3.35	3.35 11.35	OVERBURDEN BLOCK TUFF Dark green to red, hematitic, limonite stained, fractured, "monolithic" block tuff with 90%, 1-10 cm, subrounded, irregular, elongate, red trachyte clasts and 10%, < 2 cm, green to light green heterolithic clasts in a dark green, coarse grained, ash tuff matrix. Clasts and matrix are strongly magnetic											10,0100
11.25	22.00	Lower contact is ground.											
	23.00	 11.35 - 14.20 Tightly packed, 0.5-4 cm, rounded to subrounded, grey, green and maroon, heterolithic, trachyte clasts in 10% green ash matrix. Moderately magnetic. 14.20 - 21.45 Dark green, massive, fine grained ash tuff. Occasional, 0.5-1 cm, grey lapilli clasts. Strongly magnetic. 21.45 - 23.00 Tightly packed, 0.5-4 cm, rounded to subrounded, grey, green and maroon, heterolithic, trachyte clasts in a green ash matric. 22.65 - 22.85 Foliated @ 55° tca. 5% barren, white quartz + calcite veins, 0.01-0.3 cm wide, in a chloritic tuff. 							·				
23.00	40.45	CONGLOMERATE											
		 23.00 - 37.70 Poorly sorted, moderately tightly packed, pebble conglomerate. Well rounded to angular, 0.2-10 cm wide, clasts of feldspar porphyry, mafic volcanics, trachyte and jasper, in a dark green, medium to fine grained, quartz-poor matrix which locally appears to be tuffaceous. Weak to moderately magnetic. 37.70 - 40.45 Chloritic, fractured conglomerates. Weakly foliated @ 55° 	8832	37.45	38.45	1.00	ı		1	Ch		NIL	
		 tca. Lower contact marked by 1 cm fault gouge @ 55-65° tca. 39.30 - 39.90 Brown-red, bleached, altered, sericitic, fractured, syenite dyke with 10-15% irregular network of white, 1-3 mm wide, quartz + ankerite veinlets. Contacts are at 65° tca. 	8833 8834 8835	38.45 39.00 39.90	39.00 39.90 40.50	0.55 0.90 0.60)		10	Chi Chi	. Hem.	0.02 NIL 0.01	
40.45	45.20	SYENITE Red to purple, hematitic, silicified syenite dyke with 2-5%, 1-4 mm wide, plagioclase phenocrysts, in a fine grained, syenite matrix. Moderately											

HOLE: AK-91-36

PAGE: 3 of 5

INTE	RVAL	DESCRIPTION	SAMPLE No. From To Length %Rec %Py %QV %Ser					AS	SAYS		
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		 magnetic. Intruded by 5-10%, irregular network of 0.5-3 mm wide, quartz + ankerite veinlets. Trace pyrite and chalcopyrite along contacts of the quartz veinlets. 43.50 - 44.25 Very fine grained, silicified, vaguely porphyritic, strongly magnetic. 45.05 - 45.20 Sericitic, bleached, very irregular lower contact. 	8836 8837 8838 8839 8840	40.50 41.20 42.20 43.50 44.30	41.20 42.20 43.50 44.30 45.20	0.70 1.00 1.30 0.80 0.90	Tr. Tr. Tr. Tr. Tr.	5 10 10 2 2	Hem. Hem. Hem. Cp. Hem. Cp. Hem.	NIL NIL NIL 0.01 0.01	********
45.20	54.70	GRAYWACKELight grey-green, green, grey to dark grey, sericitic altered, massive graywacke. Locally contains 5% sub angular, 0.2-1 cm wide, altered mafic volcanic clasts. Trace jasper. Pervasive sericitic alteration of matrix wrapped around quartz grains. Weak chlorite alteration developed in irregular, wispy fractures. Trace disseminated pyrite.52.40 - 52.90White, opaque quartz vein @ 15-20° tca.	8841 8842 8843 8844 8845 8846 8847 8848 8847 8848 8849 8850	45.20 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00	46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 54.70	0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	15	10 10 5 Chl. 10 10 10 15 15 15	NIL 0.02 0.02 NIL NIL NIL NIL NIL	
54.70	63.00	BLOCK/LAPILLI TUFF Red, dark red,green, chloritic, heterolithic, block to lapilli tuff. Moderately tightly packed, 0.5-8 cm, irregular, subrounded, red to green trachyte clasts, in 15%, medium grained, green, chloritic, weakly sericitic, ash tuff matrix. Strongly magnetic. 1-2% irregular quartz + ankerite veinlets.	8851	54.70	55.70	1.00				NIL	
63.00	69.35	 ASH/LAPILLI TUFF Dark green, massive, medium grained, ash tuff. Lapilli tuff sections, up to 0.5 m wide, with 0.2-1 cm, heterolithic, trachyte lapilli clasts. Moderately magnetic. 64.60 - 64.95 Bedding @ 70-80° tca defined by, 1-3 mm thick, magnetite beds. 									
69.35	77.70	 BLOCK/LAPILLI TUFF Dark green to red, 0.5-10 cm, trachyte and feldspar porphyritic clasts in chloritic ash matrix. 72.70 - 73.50 Fault zone. Broken, rubbly, rusty core, 50% recovery. 									

HOLE: AK-91-36

PAGE: 4 of 5

INTE	RVAL	DESCRIPTION					SAN	IPLE				AS	SAYS
FROM	ТО		No.	From	То	Length	%Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
77.70	95.45	 75.60 - 77.40 Bleached, fractured. 5%, 1-2 m wide, quartz veinlet. 76.70 - 77.10 Breccia zone with 5%, black, chloritic breccia veinlets. ASH/LAPILLI TUFF Grey-green, fine to medium grained, massive ash tuff, intercalated with, 0.5-1.5 m wide beds of heterolithic, grey-green, lapilli tuff. Strongly magnetic. 					·-··-						
95.45	100.00	LAPILLI TUFF Dark grey-green, heterolithic lapilli tuff, with 0.5-1.5 cm wide, subangular to subrounded, grey, green and pink, trachyte clasts in a medium grained, dark green, ash matrix. Strongly to moderately magnetic. Contacts are gradational.											
100.00	106.92	BLOCK TUFF Strongly magnetic, heterolithic block tuff, with the same clast composition as the lapilli tuff unit at 95.45-100.00. 1-15 cm wide, grey, green, pink and red trachyte clasts, loosely packed in a medium grained, grey-green, lapilli to ash tuff matrix.											
		 103.00 - 106.90 Bleached, weak sericite alteration, 1-2%, 0.2-1 cm wide, irregular, white quartz + albite veinlets. 104.90 0.5 cm wide, irregular, vuggy, drusy quartz veinlet @ 5-40° tca, with 1%, pyrite cubes and trace chalcopyrite. 	8852 8853	104.70 105.50	105.50 106.20	0.80)		0.5		Ch.	0.01 NIL	
106.92	118.00	LAPILLI/ASH TUFF Green, grey to yellow-grey, weakly to moderately sericitic and chloritic, altered lapilli to ash tuff. The contact of the intercalated lapilli and ash horizons are poorly defined due to the chlorite and sericite alteration. Lapilli tuff sections consists of 0.5-4 cm, subrounded to subangular, grey to green, trachyte clasts in a medium grained, weakly sericitic and chloritic, ash matrix. Occasional leucite porphyritic, dark green, trachyte clasts with traces of pyrite. Weakly foliated @ 55° tca. 1-2%, 0.2-2 cm wide, white, very irregular quartz + albite veinlets and discontinuous veins.	8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865	106.20 108.00 109.00 110.00 111.00 112.00 113.00 114.00 115.00 116.00 117.00	108.90 109.00 110.00 111.00 112.00 113.00 114.00 115.00 116.00 117.00 118.00	1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00			1 <1 <1 <1 <1 <1 <1 <1 <1 2 3.5 1 1 <1	5 5 5 5 5 5 5 5 10 10 10 10 10		0.01 0.08 NIL 0.01 0.01 NIL 0.01 NIL NIL NIL NIL	

HOLE: AK-91-36

PAGE: 5 of 5

INTE	RVAL	DESCRIPTION	SAMPLE		·····	AS	SAYS					
FROM	то		No.	From	То	Length 9	%Rec	%Py	%QV	%Ser	' Au, g/t	Au, Check
118.00	126.75	ASH/LAPILLI TUFF Fine to medium grained, green-grey ash tuff, with 0.5-1 m wide, interbeds of heterolithic lapilli tuff. Weakly sericitic and chloritic. Sharp lower contact @ 60° tca.	8866	118.00	119.00	1.00			Tr.	5	NIL	
126.75	132.80	 GRAYWACKE Massive, yellow-grey, very weakly sericitic, fine to medium grained graywacke. Scattered, 0.5-1 cm, rounded, light brown, siltstone pebbles and 0.5-1 mm jasper clasts. < 0.5%, 1-3 mm wide, barren quartz veinlets. 126.75 - 127.20 Bleached, sericitic and silicified. 15-20% quartz ± chlorite breccia veining at upper contact of graywacke unit. 										
	132.80	END OF HOLE Casing pulled.										
									v			

HOLE: AK-91-37

.

PAGE: 1 of 13

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED LOGGED BY	September 16, 1991 Mark Masson	- September 22, 1991	EASTING NORTHING	7500.2 10423.3	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 491182 September 15, 1991 September 21, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Ware B.M.C.I.	shouse	ELEVATION COLLAR SURVEY LENGTH UNITS CORE SIZE	328.4 Northland Technical 301.35 metres NQ	Note:	See table at for downhold	end of sumn surveys	ary log
PURPOSE	To test Amalgamated Ki	rkland Syenite		11B	1		2			
COMMENTS	"106" gold zone @ 182.0 "A56" gold zone @ 239.0	0 - 192.20, 10.20 m. 00 - 264.00, 25.00 m.	SIGNED BY	(W. Benham)						

	SUMN	MARY LOG		ASSAY SUMMARY				
INTERVAL	DESCRIPTION	INTERVAL	DESCRIPTION	INTERVAL	LENGTH	AVERAGE		
From To		From To		From To	in metres	Au g/t		
0.00 6.70	OVERBURDEN	191.80 192.70	HORNBLENDE-FELDSPAR PORPHYRY	125.50 126.00	0.50	0.20		
6.70 7.80	LAPILLI TUFF		Silicified with quartz + pyrite breccia veins.	134.40 137.70	0.30	0.15		
7.80 31.80	DIABASE	192.70 201.00	SYENITE PORPHYRY					
	Mafic intrusive.		Hematitic, trace pyrite.	156.50 157.10	0.60	0.15		
31.80 32.80	TRACHYTE/SYENITE	201.00 225.15	POLYMICTIC PEBBLE CONGLOMERATE					
32.80 35.00	FAULT ZONE	225.15 301.35	SYENITE PORPHYRY	182.00 192.20	10.20	0.44		
35.00 127.50	LEUCITE-AUGITE TRACHYTE PORPHYRY		Hematitic, trace pyrite.	including				
127.50 128.50	SYENITE PORPHYRY			182.00 183.00	1.00	2.39		
128.50 130.20	NOKNBLENDE-FELDSPAK POKPHYKY	201.25	FOU	102 15 102 50	0.26	0.05		
130.20 131.33	STENITE PORFITIKI Hodnri Endeferi depad doddhvdv	301.33	E. U. H.	193.15 193.50	0.55	0.25		
131.33 134.00	SVENITE PORPHYRY			203.00 204.00	1.00	0.19		
154.00 142.00	134.40 - 134.70 = 2% pyrite on 1 cm quartz vein.			205.00 204.00	1.00	0.17		
142.00 148.60	HORNBLENDE-FELDSPAR PORPHYRY			239.00 264.00	25.00	0.18		
148.60 157.00	SYENITE PORPHYRY			including				
157.00 188.70	HORNBLENDE-FELDSPAR PORPHYRY			239.00 240.00	1.00	0.79		
	180.00 - 187.70 Weakly bleached.			including				
	182.40 - 182.90 Sericitic, 1% quartz + calcite			239.50 240.00	0.50	1.46		
	veins, < 0.5% pyrite, trace			and				
	chalcopyrite.			243.00 244.00	1.00	0.12		
188.70 191.80	SYENITE PORPHYRY			245.00 257.00	12.00	0.21		
	Hematitic, trace pyrite.	1		259.60 260.70	1.10	0.33		
				263.00 264.00	1.00	0.29		

HOLE: AK-91-37

PAGE: 2 of 13

PROPERTY TOWNSHIP CLAIM No.	Amalgamated Kirkland Teck L 491182	DATE LOGGED LOGGED BY DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	September 16, 1991 - September 22, 1991 Mark Masson Heath & Sherwood Kirkland Lake Warehouse B.M.C.I.	EASTING NORTHING ELEVATION COLLAR SURVEY LENGTH UNITS CORE SIZE	7500.2 10423.3 328.4 Northland Technical 301.35 metres	Depth	Method	Azimuth	Dip
STARTED COMPLETED	September 15, 1991 September 21, 1991					Note:	See table b downhole su	clow for all	
PURPOSE	To test Amalgamated Kin	rkland Syenite			NQ				
COMMENTS	"106" gold zone @ 182.00 "A56" gold zone @ 239.0) - 192.20, 10.20 m. 0 - 264.00, 25.00 m.	SIGNED BY (W. Benham)						

	SU	AS	SSAY SUMMARY		
INTERVAL From To	DESCRIPTION	INTERVAL DESC From To	CRIPTION	INTERVAL From To	LENGTH AVERAGE in metres Au g/t
	Depth Method Azimuth Dip Collar Compass 341 61 6.0 60 60 30.0 60 60 60.0 59 59	Depth Method	Azimuth Dip		
	120.0 61 150.0 60 180.0 61 210.0 61 240.0 60 270.0 60				

HOLE: AK-91-37

PAGE: 3 of 13

INTE	RVAL	DESCRIPTION	SAMPLE							ASSAVS	
FROM	TO		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. e/t	Au Check
0.00	6.70	OVERBURDEN					-			, g.	
6.70	7.80	LAPILLI TUFF Massive to well foliated @ 35° tca with very irregular, anastomosing, wispy sericite which occurs in small patches, 10-20 cm wide, in an otherwise fairly massive tuff. Unit is dark green-brown with 2-3% angular, dark green, lapilli clasts, up to 1 cm, scattered in a very fine grained to aphanitic matrix. Clasts are chloritic, display pale green, altered boundaries and frequently contain secondary pyrite crystals. Foliated sections typically carry 1-5% quartz + calcite flooding interstitial to wispy sericite. Aphanitic groundmass, 1% fine spotty sericite. Non-magnetic.	8887 8888	6.70 7.20	7.20 7.80	0.50 0.60	Tr. Tr.	Tr. Tr.	10 3-5	0.05 0.06	
7.80	31.80	MAFIC INTRUSIVE/GABBRO/DIABASE Unit is massive, crystalline, fine to medium grained, dark green, with patchy pink hues (potassium feldspar) in groundmass and an overall gabbroic texture. Comprised of 10-15%, sub to euhedral, lath-shaped, dark grey crystals, up to 5 mm long, in a pale green, chloritized matrix. Frequently these feldspar crystals display a poikilitic texture within the pale green, altered, amphibole matrix. Unit also contains 1-2% small acicular, dark brown crystals and crystal masses, up to 2 mm, possibly actinolite or ilmenite. Groundmass is fine grained to aphanitic, quite hard. This rock was previously noted as a diabase sill in early 1940's mapping and may represent gabbroic diabase versus Matachewan-type diabase. Unit is strongly magnetic and has sharp, chilled intrusive contacts. Contacts are non-magnetic up to 25 cm. Pervasive moderate hydrochloric acid reaction. Minor specularite veinlets.		30.00 31.00	31.00 31.80	1.00 0.80				0.01 NIL	
31.80	32.80	TRACHYTE/SYENITE(?) Unit is very hard and baked with a moderate internal chloritic micro- fracturing which carries 0.5% fine pyrite and trace chalcopyrite. Non- magnetic.									
		 31.80 - 32.50 Unit is comprised of 50-60%, dark red, aphanitic (syenitic) potassium feldspar(?) in a very fine grained, dark groundmass. 32.00 Red matrix appears as small, rounded fragments less than 	8891	31.80	32.30	0.50	0.5			0.01	
		 1 cm in size and comprising 25% of unit. 32.50 Unit contains 2-3%, anhedral, buff-white plagioclase phenocrysts, up to 3-4 mm. 	8892	32.30	32.80	0.50	0.5			0.03	

HOLE: AK-91-37

PAGE: 4 of 13

INTE	RVAL	DESCRIPTION	SAMPLE					ASSAYS	
FROM	TO		No.	From	То	Length %Rec	%Pv %OV %Ser	Au e/t Au Check	
32.80	35.00	FAULT ZONE @ 50° TCA Strong fault breccia to fault mud gouge. Entire zone is non-mineralized.		<u>, , , , , , , , , , , , , , , , , , , </u>					
		 32.80 - 33.00 33.00 - 34.15 Fault breccia comprised of 3-5%, rounded, pinkish clasts, to 1 cm, in a semi-coherent, strong, chloritic mud fault. Augen-type texture. Sharp mud slips display well developed slickenslides which suggest dextral displacement. 	8893 8894	32.80 33.30	33.30 34.00	0.50 0.70	Chl.Bx	0.04 0.07	
		34.15 - 35.00 Sheared to brecciated section with sharp, strong, chloritic slips and brecciation with angular wall rock fragments, from 1 mm to 2 cm, in a dark chloritic groundmass.	8895 8896	34.00 34.50	34.50 35.00	0.50 0.50	5 10	0.02 0.02	
35.00	127.50	LEUCITE-AUGITE PORPHYRY (TRACHYTE) Unit contains 1-2%, barren, white-pink, quartz + calcite veinlets, ≤ 2.3 cm wide, and scattered ≤ 0.5 cm wide hematite \pm specularite veinlets. Also has a strong chlorite \pm specularite joint/fracture set which makes unit quite blocky in places. This section also displays gradual increase in fracturing with a moderate "crack and seal" texture developed towards contact. Fractures are lined with specular hematite and minor spotty pyrite. Pyrite is subhedral, irregular clots and small masses, up to 1 cm. Magnetism drops sharply as magnetite> hematite. Lower contact is a sharp, strong, 1 cm wide, chlorite \pm section also 70° tca.							
		35.00 - 37.40 Unit is hematitic altered and fractured, bright red, aphanitic groundmass with 5% pale green, sericitized, subhedral augite phenocrysts, up to 4 mm and 2-3%, light yellow-green, altered leucites, up to 4-5 mm. "Crack and seal" type fracturing infilled with chlorite + hematite and trace fine pyrite.	8897 8898 8899 8900	35.00 35.50 36.00 36.50	35.50 36.00 36.50 37.40	0.50 0.50 0.50 0.90	Tr. Tr. Tr. Tr. Tr.	0.02 0.01 0.01 0.05	
		37.40 - 39.80 Unit is bright yellow-green, pervasively sericitized with buff-pink, euhedral leucite phenocrysts and green augite in a foliated, wispy, sericitic groundmass. Prominent foliation @ 50° to a marked by sericite and irregular hematitic veinlets to 0.5 cm.	8901	37.40	38.00	0.60 90	35 Hem.	0.01	
		 38.40 - 39.80 Later crosscutting fracture slip cuts core @ 5° tca and contains smeared sericite + calcite + hematite. 39.80 Unit is massive, strongly porphyritic, dark red-brown to 	8902 8903 8904 8905	38.00 38.60 39.20 39.80	38.60 39.20 39.80 40.80	0.60 0.60 0.60	35 Hem. 35 35	0.01 0.01 0.03	
		maroon, hematitic, with 5-7%, light green to buff,	8906	40.80	41.80	1.00	Tr.	0.02	

HOLE: AK-91-37

PAGE: 5 of 13

INTE	RVAL	DESCRIPTION			SAMPLE							A 60 A 3/0	
FROM	то			No.	From	То	Length %Rec	M LL	%OV	04 San	A3	SAIS	
		41.80 - 41.90	euhedral leucite laths with pseudo-hexagonal cross sections, up to 7 mm, avg 3-4 mm, and 2-3% dark green, subhedral augite phenocrysts, to 4 mm, in an aphanitic groundmass. Phenocrysts are randomly oriented, (i.e. no flow textures). Strongly magnetic with moderate, pervasive hydrochloric acid reaction. Very homogeneous. 5-10% fine grained pyrite on irregular chloritic fractures cut by late barren quartz + calcite veinlets.	8907 8908	41.80 42.30	42.30 43.00	0.50 0.70	0.5	70014	Qtz+Cal	0.04 0.02	Au,Check	
		63.00 - 63.80 65.20 - 65.50	Unit is sericitized, yellow-green, proximal to sharp, strong chlorite shear @ 63.3 m. Phenocrysts are sericitic and are bright green to buff in a moderately foliated matrix. Fault @ 50° tca. Bright green, sericite alteration of unit with a sharp, tight, chlorite + sericite + calcite slip @ 65.4 m.	8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919	61.00 62.00 63.00 63.80 64.40 65.00 65.50 66.00 66.80 67.40 72.00	62.00 63.00 63.80 64.40 65.00 65.50 66.00 66.80 67.40 68.00 72.80	1.00 1.00 0.80 0.60 0.50 0.50 0.80 0.60 0.60 0.80		2	40 10 5 25 Spec. 10	0.02 NIL 0.04 0.02 NIL 0.01 0.01 0.01 0.02 0.01 0.02		
		73.35 74.90 - 75.10 75.65 - 75.75 77.35 - 77.45	Fault @ 45° tca. Chlorite + specularite + calcite. 1 cm wide, sharp chloritic slip with smeared specularite + calcite. Moderate sericitization of wall rock, up to 2 cm. Sheared porphyry @ 30° tca with sharp chlorite + sericite + calcite slips and 1-2% fine pyrite on slip walls. Tight chloritic slip @ 45° tca @ 75.7 m. Surrounding slip is irregular quartz + calcite veining with 1% subhedral pyrite on vein boundaries and on chloritic fractures. Fault @ 80° tca. Chlorite + sericite + quartz + calcite. Sharp, strong chloritic slips with sheared interstitial wall rock and fractured quartz + calcite veinlets.	8920 8921 8922 8923 8924 8925 8926 8927 8928	72.80 73.30 73.80 74.80 75.30 75.60 76.00 77.00 77.50	73.30 73.80 74.80 75.30 75.60 76.00 77.00 77.50 78.00	0.50 0.50 1.00 0.50 0.30 0.40 1.00 0.50 0.50	Tr. Tr. 1-2 Tr.	2 1-2 Tr. 5	10 20 10 10	0.03 0.03 0.01 0.03 0.02 0.01 0.01 0.01 0.03		
		90.00 - 121.50	Unit is very blocky and rubbly due to strong, close-spaced chlorite \pm specularite joint sets @ 15°, 30°, 55° and 70° tca. Most boxes are coarse gravel-size fragments.										
HOLE: AK-91-37

PAGE: 6 of 13

INTE	RVAL	DESCRIPTION				SAN	APLE		·····	AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. e/t	Au Check
		123.00 - 127.50 Unit becomes increasingly bleached and altered towards contact with syenite porphyry. Groundmass grades from dark red-brown to light pink-brown to light green-brown at contact due to gradual increase in sericite.	8929 8930 8931 8932 8933 8934 8935 8936	122.00 123.00 124.00 125.00 125.50 126.00 126.50 127.00	123.00 124.00 125.00 125.50 126.00 126.50 127.00 127.50	1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50	Tr. Tr. 0.5 Tr. Tr. Tr. Tr.	Tr. Tr. 1 1 1	Spec. Spec. Spec. Spec. Spec. Spec. Spec. Spec.	0.04 0.01 0.07 0.20 0.03 0.01 NIL 0.03	Au, check
127.50	128.50	SYENITE PORPHYRY Massive, brick red syenite porphyry comprised of 3-5% subhedral, buff- white to vitreous plagioclase phenocrysts in an aphanitic matrix. Phenocrysts are typically stubby laths to subrounded in appearance and range from 1-5 mm in length. Scattered, angular mafic xenoliths. Unit has a relatively strong internal fracturing which consists of quite irregular hairline fractures infilled with chlorite and occasionally small pyrite grains. Non-magnetic. Lower contact extremely sharp hairline crack @ 75° tca.									
:		128.45 A 10 cm wide, pink quartz + calcite vein.	8937 8938	127.50 128.00	128.00 128.50	0.50 0.50		2		NIL NIL	
128.50	130.20	 HORNBLENDE-FELDSPAR PORPHYRY Massive, medium grained, dirty red-brown-green, non-magnetic, very unique and identifiable unit. Lower contact is a chloritic, sharp hairline crack @ 45° tca. Comprised of four distinct crystalline phenocryst forms: 5% dark green, acicular to lath-shaped needle crystals and small crystal masses of chloritized hornblendes, from 1-4 mm in size. In places these needles show sub-parallel alignment but also display random orientations. 5% subhedral, rectangular, light grey-brown, feldspar crystals from 0.5-3 mm. 2-3% light grey to white, subhedral, round to rectangular plagioclase phenocrysts from 2-5 mm. 1-2% pink-white, stubby, rectangular to pseudo-hexagonal to lath-shaped feldspar crystal outlines. Crystals are pink-red potassium feldspar with small milk-white spots 	8939 8940 8941	128.50 129.00 129.80	129.00 129.80 130.20	0.50 0.80 0.40				NIL 0.02 0.02	

HOLE: AK-91-37

PAGE: 7 of 13

INTE	RVAL	DESCRIPTION					SAM	IPLE	<u> </u>			AS	SAYS
FROM	то		No.	From	То	Length 9	%Rec	%Py	%QV	%Ser		A11. 9/1	Au Check
		texture. Appears to be albite interstitial to potassium feldspar background and in places a moderate crystal cleavage is developed. Frequently has red hematitic dusting. Groundmass is a dirty green-brown, aphanitic mush which appears to be moderately sericitized and is quite soft.									44		
130.20	131.35	SYENITE PORPHYRY Massive, brick red syenite with 3-5%, subhedral plagioclase phenocrysts from 1-4 mm, in an aphanitic, dark red, syenitic, hematitic groundmass. Frequently phenocrysts have red hematitic dusting. 1% scattered, angular, mafic xenoliths, up to 3-4 cm. Weak, internal, chloritic fracturing. Non- mineralized and undeformed. Lower contact is 2 cm wide, chlorite + sericite + quartz + calcite shear @ 60° tca.	8942 8943	130.20 130.80	130.80 131.35	0.60 0.55		Tr.	Tr.			0.02 0.01	
131.35	134.00	HORNBLENDE-FELDSPAR PORPHYRY Lower contact is a sharp, wavy, 1 mm wide, chloritic slip, @ 20° tca.											
		131.35 - 132.10 Unit is bleached, altered, with strong internal fracturing and hairline sutures, infilled with chlorite ± quartz and trace fine grained pyrite. Unit is pervasively sericitized light green with buff-brown phenocrysts, 1-4 mm, readily apparent in altered groundmass. Very hard though as if baked by surrounding sygnite porphyry: i.e. sygnite porphyry post-dates this unit.	8944	131.35	132.10	0.75		Tr.	Tr.		Sil.	0.02	
		132.10 - 134.00 Massive, medium grained, hornblende-feldspar porphyry as at 128.50-130.20 m.	8945 8946	132.10 133.00	133.00 134.00	0.90 1.00						0.04 0.03	
134.00	142.00	SYENITE PORPHYRY Massive, brick red syenite with 3-4%, subhedral, white plagioclase phenocrysts, 1-5 mm, in an aphanitic, hematitic groundmass. 1% scattered, angular mafic xenoliths. Phenocrysts frequently and coated with red hematitic stain. Massive, homogeneous. Moderate patchy magnetics.	0045	104.00	101 /-								
		134.40 - 134.70 Green spotted dyke or possible large xenolith. Dirty green-brown, aphanitic, sericitized groundmass with 5-7% dark green-black, acicular to lath-shaped, chloritized amphibole (hornblende) crystals from 1-5 mm and 1-2% buff-brown, altered, euhedral feldspar laths to 3 mm. Pervasively sericitized. Sharp contacts @ 80° tca. Upper	8947 8948	134.00 134.40	134.40 134.70	0.40 0.30		1	3	50		NIL 0.15	

HOLE: AK-91-37

PAGE: 8 of 13

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	TO		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au.Check
		 contact intruded by 1 cm wide, white-brown, quartz ± albite, carbonate vein with 2% small, euhedral pyrite within vein and proximal to vein wall. 135.10 - 135.20 Sharp chloritic slip @ 35° tca. Porphyry is bleached, yellow-green and sericitic up to 7 cm from vein and is cut by small quartz + sericite slips with very fine grained pyrite on slips. Pyrite, 1-2%, also occurs as small euhedral grains dispersed around slips and up to sericite alteration front. 	8949 8950 8951 8952 8953 8954 8955 8956 8957	134.70 135.20 136.00 137.00 139.00 139.00 140.00 141.00 141.50	135.20 136.00 137.00 138.00 139.00 140.00 141.00 141.50 142.00	0.50 0.80 1.00 1.00 1.00 1.00 1.00 0.50 0.50	0.5 Tr. Tr.	1	1 Spec.	0.07 0.02 NIL NIL 0.03 0.01 NIL 0.02 0.12	
142.00	148.60	HORNBLENDE-FELDSPAR PORPHYRY Massive, medium grained with 5% acicular, chloritized hornblende, 0.5-3 mm, 5-7%, grey-white, subhedral to subrounded plagioclase, 1-4 mm and 1-2%, pink-white, rectangular to prismatic feldspar crystals. Potassium feldspar, 4 mm -1 cm, in a very fine grained to aphanitic, dirty green-brown groundmass. Non-mineralized and non-magnetic. Lower contact sharp, wavy, chloritic slip @ 45° tca.	8958 8959 8960	142.00 142.50 148.00	142.50 143.00 148.60	0.50 0.50 0.60				NIL 0.06 0.09	
148.60	157.00	SYENITE PORPHYRY Massive, brick red, hematitic, fine grained syenite. Weakly porphyritic with 3-4% anhedral, white feldspar phenocrysts, up to 4 mm, avg 1-2 mm, in an aphanitic, red groundmass. Within groundmass are 2-3% pale green, very fine grained, altered, chloritized mafic mineral crystals and small masses up to 2 mm, possibly altered augite. Plagioclase phenocrysts are typically dusted with hematite. Strong hematite on fractures and as small veinlets. Unit is strongly magnetic. 1% scattered, angular mafic xenoliths, up to 7 cm. Unit contains trace fine grained disseminated pyrite throughout, generally on fine micro-fractures. Lower contact is a somewhat irregular chlorite + quartz + calcite shear, 2 cm wide, @ 15° tca.	8961 8962 8963 8964 8965 8966 8967 8968 8969 8969 8970	148.60 149.25 150.00 151.00 152.00 153.00 154.00 155.00 156.00 156.50	149.25 150.00 151.00 152.00 153.00 154.00 155.00 156.00 156.50 157.10	0.65 0.75 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.60	Tr.	2	Chi.	0.03 0.01 0.02 0.02 0.02 NIL 0.05 0.01 0.05 0.15	
157.00	188.70	HORNBLENDE-FELDSPAR PORPHYRY Massive, medium grained, dark grey-brown, mafic porphyry. Comprised of: 1) 2-5% fine, black, chloritized, acicular hornblende, 0.5-3 mm long, 2) 5% milk white, subhedral plagioclase phenocrysts, 2-5 mm, 3) 1-2% coarse, sub to euhedral, pink-white, poikilitic potassium feldspar phenocrysts, (laths, rectangular to hexagonal), from 3 mm to 1 cm long. These coarse phenocrysts have white albite spots internally and in places appear to be									

HOLE: AK-91-37

PAGE: 9 of 13

INTE	RVAL	DESCRIPTION				SAN	APLE			······································	٨٩	SAVS
FROM	то		No.	From	То	Length %Rec	%Pv	%0V	%Ser		Au a/t	Au Check
		porphyritic but may represent exsolution, 4) Groundmass is very fine grained to aphanitic, dark green-brown and quite mafic in appearance. In places appears to be fine biotite development in matrix. Massive, homogeneous with patchy, strong magnetics. Contains 1-2%, fine calcite- filled fracturing. 1% scattered, angular, black mafic xenoliths, up to 2 cm. Lower contact sharp, @ 40° tca, looks intrusive, very abrupt but no chilling, etc.	8971 8972 8973	157.10 157.90 158.50	157.90 158.50 159.00	0.80 0.60 0.50	Tr.	Tr.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.07 0.01 0.05	AujUlick
		174.50 Fault @ 55° tca. Chlorite + hematite + calcite. 1 cm wide, open, vuggy, chlorite + hematite shear infilled with white-pink calcite.	8974 8975	174.00 174.50	174.50 175.20	0.50 0.70					0.01 0.02	
		175.40 - 175.50 Fault @ 25° tca. Chlorite + quartz + calcite ± hematite. Open, vuggy, quartz + calcite veining on sharp chloritic slips. Interstitial material is sheared host rock with chlorite ± hematite foliation developed. Spotted, biotite	8976 8977 8978 8979	175.20 175.70 176.50 177.50	175.70 176.50 177.50 178.00	0.50 0.80 1.00 0.50		2-3 Tr.		Bio.	0.05 0.02 0.02 0.04	
		$\begin{array}{rcl} + & \text{nematile alteration on down hole side, 5-6 cm wide.} \\ 178.60 & \text{Two, 1 cm wide, open, vuggy, chlorite + calcite } \\ & \text{hematite slips @ 50-60^{\circ}} \end{array}$	8980 8981	178.00 178.50	178.50 179.00	0.50 0.50		1			NIL NIL	
		 178.70 Two, 1 cm wide, open, vuggy, chlorite + calcite ± hematite slips @ 50-60° tca. 180.00 - 188.70 Unit is weakly bleached, light grey-green and seems to contain a few more mafic xenoliths. 182.40 - 182.90 Yellow-green, sericitic, chloritic fractured zone. Upper and lower contacts are marked by 0.25 cm wide, white-pink quartz + calcite veinlets @ 80° tca. Trace chalcopyrite in 1%, 0.2-4 cm wide, quartz + calcite veins. 	8982 8983 8984 8985	179.00 180.00 181.00 182.00	180.00 181.00 182.00 183.00	1.00 1.00 1.00 1.00	<0.5	1	20	Tr. Cp.Chl.	NIL NIL 0.06 2.48	2.30
		< 0.5% finely disseminated pyrite in altered syenite. 182.65 - 182.70 Quartz + calcite vein @ 80° tca with 10% wall rock inclusions and 10% late irregular white albite veining. 1% very fine grained disseminated pyrite in wall rock inclusions and in wall rock up to 2 cm from the vein contacts. Trace chalcopyrite.	8986 8987 8988 8989 8990 8991 8992	183.00 184.00 185.00 186.00 187.00 187.60 188.10	184.00 185.00 186.00 187.00 187.60 188.10 188.70	1.00 1.00 1.00 0.60 0.50 0.60		1			0.03 0.01 0.30 0.02 0.37 0.07 0.01	
188.70	191.80	SYENITE PORPHYRY Hematitic, massive, brick red, coarse syenite porphyry comprised of 5-10%, sub to euhedral, white plagioclase phenocrysts from 2 mm to 1 cm long. These phenocrysts are lath- shaped to rectangular and hexagonal, have	8993 8994 8995	188.70 189.50 190.00	189.50 190.00 190.50	0.80 0.50 0.50	Tr. Tr. 0.5	1			0.23 0.30 0.81	

HOLE: AK-91-37

PAGE: 10 of 13

INTE	RVAL	DESCRIPTION				SAN	IPLE				AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser		Au. g/t	Au.Check
		sharp grain boundaries and are frequently dusted with hematite. In places red-brown cores are evident, which may represent some primary zonation. Groundmass is dark red, very fine grained and contains 2-3%, dark green, irregular, mafic, chloritized anhedral augite minerals and small clusters, to 2-3 mm. Trace pervasive, fine, grained scattered pyrite clots with black chlorite rims, clots ≤ 1 cm.	8996 8997 8998	190.50 191.00 191.45	191.00 191.45 191.80	0.50 0.45 0.35	Tr. Tr. 0.5	Tr. Tr. 1-2	<u></u>		0.73 0.23 0.11	
191.80	192.70	HORNBLENDE-FELDSPAR PORPHYRY Deformed, silicified hornblende-feldspar porphyry with quartz + pyrite breccia veins. Fractured, silicified fault-bounded unit. Primary, coarse, euhedral feldspar phenocrysts, to 1 cm and finer hornblende and plagioclase phenocrysts which are still evident in a bleached, brown to buff, aphanitic groundmass. Entire section is pervasively silicified and sericitized.										
		 191.80 - 191.92 Brecciated wall rock fragments in a micro-fractured, silicified matrix, with 3-5%, fine, sub-euhedral pyrite on sericitic sutures and disseminated throughout wall rock. Contacts are sharp, tight, chloritic slips @ 60° tca. 191.92 - 192.70 Silicified, fractured porphyry with wispy sericitic suturing and patchy zones of sub-euhederal pyrite, ≤ 1%. Lower contact is a strong, 3 cm wide, chlorite + calcite fault breccia. 	8999 9000	191.80 192.20	192.20 192.70	0.40 0.50	2-3 0.5			Sil. Sil.	0.69 0.03	
192.70	201.00	SYENITE/SYENITE PORPHYRY Massive, hematitic brick red porphyry as at 188.7-191.8, but is fine grained to weakly porphyritic as opposed to the coarse phenocrysts above. Contains 2-3%, subhedral, white plagioclase phenocrysts, from 1-3 mm, in a dark red, fine grained syenitic groundmass. Lower contact is sharp, irregular intrusive type @ 25° tca.	9001	192.70	193.15	0.45	Tr.	1	Tr.		0.02	
		 193.15 - 193.30 Fault zone @ 55° tca. 1 cm wide, chloritic fault gouge. Below gouge is 4 cm wide, chlorite + quartz/calcite shear with trace pyrite on slips. Above vein is sericitized and silicified fractured hornblende-feldspar porphyry with nil to trace pyrite. 	9002	193.15	193.50	0.35	Tr.	10	10		0.25	
		193.30 - 196.00 Syenite contains numerous, strong, chlorite ± hematite fractures and slips and 1-3%, irregular, wispy to spotty, sericite alteration. Trace scattered pyrite and 1-2%, barren quartz veinlets.	9003 9004 9005 9006 9007	193.50 194.00 195.00 195.50 196.00	194.00 195.00 195.50 196.00 197.00	0.50 1.00 0.50 0.50 1.00	Tr. Tr. Tr. Tr. Tr.	2 1 2-3 1-2	10 5 3-5 3-5		0.05 0.07 0.01 0.02 0.03	

HOLE: AK-91-37

PAGE: 11 of 13

INTE	RVAL	DESCRIPTION				SAN	MPLE	ASSAYS
FROM	TO		No.	From	То	Length %Rec	%Py %QV %Ser	Au, g/t Au.Check
201.00	225.15	POLYMICTIC PEBBLE CONGLOMERATE Massive, hematitic, dark green-brown with purple hues. Poorly sorted, framework supported with well rounded, syenite porphyry, leucite trachyte porphyry, mafic volcanics and jasper framework, 1-10+ cm. Very minor quartz, Lower contact is sharp, irregular intrusive type.	9008 9009 9010 9011	197.00 198.00 199.00 200.00	198.00 199.00 200.00 201.00	1.00 1.00 1.00 1.00	Tr. Tr. Tr. Tr. Tr.	0.02 0.03 0.03 0.03
225.15	301.35	 201.00 - 203.00 Unit is moderately altered and baked at contact with syenite. 203.50 - 204.00 Small, very irregular syenite porphyry intruding sediment and has angular fragments and rounded pebbles included in it. 208.40 Open, vuggy slip with euhedral specularite. 	9012 9013 9014 9015 9016 9017 9018	201.00 201.50 202.00 203.00 223.00 224.00 224.50	201.50 202.00 203.00 204.00 224.00 224.50 225.15	0.50 0.50 1.00 1.00 1.00 0.50 0.65		0.01 0.06 0.08 0.19 0.04 0.03 0.03
		 Massive, homogeneous, dark red-brown syenite with 5-10% subhedral, white, plagioclase phenocrysts, 1-5 mm, in a very fine grained, syenitic groundmass which has 1-2% spotty and wispy sericite development. Non-deformed, pervasively hematitic. Non-magnetic and has characteristic 1% angular, mafic xenoliths, ≤ 7 cm, which are frequently moderately sericitized. Unit carries trace ubiquitous pyrite, as fine grained sub to euhedral grains. Typically has 0.5% barren, white, quartz veinlets and 1% hairline, chloritic ± hematitic fracturing. 239.70 Minor, blebbly chalcopyrite in quartz + chlorite veinlet and hairline fracture, 1-5 mm wide. 	9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034	225.15 226.00 227.00 228.00 230.00 231.00 232.00 233.00 234.00 235.00 235.00 236.00 237.00 238.00 239.00 239.50	226.00 227.00 228.00 230.00 231.00 232.00 233.00 234.00 235.00 236.00 237.00 238.00 239.00 239.00 239.50 240.00	0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	0.02 0.03 0.02 0.07 0.05 NIL 0.05 0.06 0.05 0.04 0.01 0.02 0.06 0.08 0.12 1.41 1.51

HOLE: AK-91-37

PAGE: 12 of 13

INTE	RVAL	DESCRIPTION	Τ			SAN	IPLE			٨٩	SAVS
FROM	TO		No.	From	То	Length %Rec	%Pv	%0V	%Ser	An ett	Au Check
		 249.90 - 250.30 Two, 0.5-1 cm wide, quartz + albite veins @ 20° tca with 1% sub to euhedral pyrite grains on vein boundaries. Clotty to spotty pyrite often with dark rims of specularite ± chlorite. Also 0.5%, semi-massive chalcopyrite clots on thin chlorite fractures. 256.50 - 256.90 Quartz stockwork. 5% white-buff, quartz + albite veinlets, 0.5-1 cm wide, @ 20° and 45° tca, crosscutting each other. Veins have light grey-buff, quartz-walls and milk-white albite cores. Within vein are ≤ 0.5% small, "spidery", blue-grey galena fracture-fillings, up to 2 mm wide. 1-2% subhedral spotty pyrite disseminated through wall rock and within vein system, and proximal within fine, hairline sericitic sutures in wall rock. 259.70 - 259.85 Quartz stockwork. 5-10%, grey to cream, quartz + albite breccia veinlets with angular, sericitized porphyry fragments, ≤ 0.5 cm, included in vein material. Veinlets are very irregular stockworking mass, up to 5 cm wide, where veins coalesce. Trace 0.5% fine euhedral pyrite and minor spotty specularite grains. Host rock is moderately well fractured to pseudo-brecciated. Infilled with chlorite ± quartz. 275.00 - 301.35 Syenite is massive, medium grained with 10-15% subhedral, white plagioclase phenocrysts, 1-3 mm, randomly oriented in a fine grained, dark red, syenitic matrix. 	9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065	240.00 241.00 242.00 243.00 244.00 245.00 246.00 246.00 246.00 246.80 247.30 249.80 250.30 251.00 252.00 253.00 255.00 250.00 25	241.00 242.00 243.00 244.00 244.00 245.00 246.80 247.30 248.00 248.00 249.80 250.30 250.00 250.00 250.00 255.00 25	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	1 1 Tr. Tr. Tr. 2 5 Tr. 10 2	10 5-7 Spec. Tr. 10 15 5-7	Au, gr 0.03 0.05 0.06 0.12 0.39 0.32 0.38 0.13 0.31 0.41 0.35 0.18 0.03 0.07 0.21 0.02 0.08 0.37 0.03 0.01 NIL NIL 0.32 0.34 0.04 0.05 0.29	Au, Check

HOLE: AK-91-37

PAGE: 13 of 13

INTE	RVAL	DESCRIPTION				541						
FROM	то		No.	From	 To	Length %Rec	M LC	, 01.1	212	2 Ser		SAYS
		 295.95 Fault @ 65° tca. Chlorite + quartz + calcite. 1.5 cm wide, laminated quartz + calcite + chlorite vein with sharp, strong chlorite slip walls. Trace spotty pyrite in vein material. 300.10 - 300.13 Quartz + sericite + specularite veining @ 80° tca. 0.5 cm wide and 1 cm wide, quartz ± albite veins situated in moderately sericitized, micro-fractured syenite with sharp, hairline, chloritic slips. Quartz veinlets are internally fractured and contain sericite + specularite. Trace pyrite grains on fractures external to vein. 	9066 9067 9068 9069 9070	297.00 298.00 299.00 300.00 300.50	298.00 299.00 300.00 300.50 301.35	1.00 1.00 1.00 0.50 0.85	Tr	r.	3	5-7	Au, g/t NIL 0.06 0.07 NIL 0.05	Au,Check
	301.35	END OF HOLE Casing left in hole.										

HOLE: AK-91-38

PAGE: 1 of 23

PROPERTY TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED	September 23, 1991 Mark Masson	- October 4, 1991	EASTING	8189.1	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 491662, L 491663 September 22, 1991 October 3, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Ware B.M.C.I. Tropari	chouse	LENGTH	10384.3 333.0 Northland Technical 619.10	Note:	See table at for downhole	end of sumn	ary log
PURPOSE	To test "102" and "103" s	tructures.		1.B	CORE SIZE	NQ				
COMMENTS	"103" gold zone @ 387.3 "102" gold zone @ 546.9	5 - 390.10, 2.75 m 0 - 578.16, 31.26 m	SIGNED BY	(W. Benham)						

	SUMI	MARY LOG		AS	SSAY SUMM	IARY
INTERVAL	DESCRIPTION	INTERVAL	DESCRIPTION	INTERVAL	LENGTH	AVERAGE
From 10		From To		From To	in metres	Au g/t
0.00 1.50	OVERBURDEN		432.80 - 432.90 Chlorite + guartz + pyrite			
1.50 33.50	ASH/LAPILLI TUFF		breccia vein.	387.35 390.10	2.75	0.41
33.50 55.40	LAPILLI TUFF	433.40 441.60	CONGLOMERATE/GRAYWACKE/MUDSTONE	including	-,	
55.40 84.40	LAPILLI TUFF	441.60 451.80	LAPILLI TUFF	389.50 390.10	0.60	1.14
04.40 110.70	Monolithic		Sericitic			
112 20 125 55	LAPILLI TUFF/SILTSTONE	451.80 459.30	ASH TUFF			
125.55 144.00	LAPILLI TUFF		Hematitic	546.90 552.00	5.10	1.97
133.33 144.00	CDAVWACKE	459.30 469.50	LAPILLI TUFF	including		
241 50 261 00	CONCLOMEDATE	100 50 545 00	Sericitic	546.90 547.35	0.45	8.18
241.50 201.90	Folisted @ 30° tos	409.30 343.00	LAPILLI TUFF			
261 00 200 40		545.00 540.10	Zones of hematite, sericite and chlorite alteration.			
299.40 320.90	GRAVWACKE	545.00 560.10	LAPILLI TUFF	559.60 560.60	1.00	0.33
320.90 357.70	CONGLOMERATE		Sericitic, Ionated (# 35-40° Ica.			
357.70 369.05	LAPILLI TUFF		$340.93 \cdot 547.50$ Sencice + pyrite + quartz vein @	566.50 567.00	0.50	0.29
369.05 398.90	CONGLOMERATE		547.80 ± 548.37 Serioite + minite + questa usin	560.00 570.00	4.50	
	381.50 - 390.00 Foliated @ 30° tca. sericite.		30° too	508.80 573.50	4.70	0.20
	389.70 - 390.00 Fault @ 55-60° tca. 25% quartz.		559.20 - 559.55 sericite + purite + quertz vein			
	1% pyrite.		35º tra	577 60 570 60	1.00	24
398.90 420.30	SILTSTONE/MUDSTONE	560.10 564.10	CONGLOMERATE/GRAYWACKE	including	1.00	2.00
420.30 427.90	CONGLOMERATE		Sericitic	578.10 578.60	0.50	455
427.90 433.40	GRAYWACKE	564.10 583.10	LAPILLI TUFF		0.50	
	431.30 1 cm quartz + pyrite vein.		Sericitic, foliated @ 30° tca.			

HOLE: AK-91-38

PAGE: 2 of 23

PROPERTY TOWNSHIP	Amalgamated Kirkland	DATE LOGGED	September 23, 1991 - October 4, 1991 Mark Masson	EASTING	8189.1	Depth	Method	Azimuth	Dip
CLAIM No. STARTED COMPLETED	L 491662, L 491663 September 22, 1991 October 3, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Warehouse B.M.C.I. Tropari	ELEVATION COLLAR SURVEY LENGTH UNITS	333.0 Northland Technical 619.10 metres	Note:	See table at for downhold	end of sumn surveys	ary log
PURPOSE	To test "102" and "103" si	tructures.		CORE SIZE	NQ				
COMMENTS	"103" gold zone @ 387.35 "102" gold zone @ 546.90	5 - 390.10, 2.75 m) - 578.16, 31.26 m	SIGNED BY (W. Benham)						

	SUN	MARY LOG		A	SSAY SUMM	IARY
INTERVAL From To	DESCRIPTION	INTERVAL From To	DESCRIPTION	INTERVAL From To	LENGTH in metres	AVERAGE Au g/t
583.10 619.10 619.10	 564.10 - 564.40 0.5% pyrite 566.70 - 566.80 Foliated tuff with 1% pyrite and 2 cm quartz + albite vein @ 30° tca with 2% pyrite and trace galena. 571.15 - 571.25 Sericite + pyrite + quartz vein @ 30° tca. 573.15 - 573.40 Fault zone @ 35-50° tca 1-2% pyrite, 1-2% quartz veins. 574.75 1 cm quartz + pyrite vein @ 45° tca. 577.70 - 578.55 Sericite + quartz + pyrite zone @ 35° tca. LAPILLI TUFF Hematitic E. O. H. 			579.10 579.60 581.00 581.50	0.50	0.13 0.23

HOLE: AK-91-38

PAGE: 3 of 23

TOWNSHIP	Amalgamated Kirkland Teck	DATE LOGGED LOGGED BY	September 23, 1991 - October 4, 1991 Mark Masson	EASTING NORTHING	8189.1 10384.3	Depth	Method	Azimuth	Dip]
CLAIM No. STARTED COMPLETED	L 491662, L 491663 September 22, 1991 October 3, 1991	DRILLED BY CORE LOCATION DOWNHOLE SURVEYOR SURVEY INSTRUMENT	Heath & Sherwood Kirkland Lake Warehouse B.M.C.I. Tropari	ELEVATION COLLAR SURVEY LENGTH UNITS CORE SIZE	333.0 Northland Technical 619.10 metres NQ	Note:	See table be downhole su	low for all rveys		
PURPOSE	To test "102" and "103" a	structures.			-					
COMMENTS	"103" gold zone @ 387.3 "102" gold zone @ 546.9	05 - 390.10, 2.75 m 90 - 578.16, 31.26 m	SIGNED BY (W. Benham)							

				SUN	MMA	RY LOG						ASSAY	SUMM	ARY
INTERVAL From To	 	DESCR	RIPTION			INTERVAL From To		DESC	RIPTION		INTERVAL From To	L LEN in m	NGTH etres	AVERAGE Au g/t
	Depth	Method	Azimuth	Dip			Depth	Method	Azimuth	Dip	Depth	Method	Azimuth	Dip
	Collar	Compass	161				275.0	Tropari	160	69	580.0			60
	5.0			74			275.0	Acid		69	610.0	Tropari		60
-	30.0			74			305.0			69				
	60.0			74			335.0			69				
	90.0			73			365.0			68				
	100.0	Tropari	160	72			400.0			67				
	122.0			73			425.0			66				
	150.0			72			455.0			66				
	183.0			72			488.0			64				
	213.0			71			518.0			63				
	243.0			69			548.0			61				
	243.0 69													

HOLE: AK-91-38

PAGE: 4 of 23

INTE	RVAL		DESCRIPTION					SAN	IPLE	•				AS	SAYS
FROM	то			No.	From	То	Length	%Rec	%Py	%QV	%Ser			Au, g/t	Au,Check
0.00	1.50 33.50	OVERBURDEL ASH/LAPILLI Chloritic, massi with very dark sorted heteroli trachyte/syenite interdigitated w display gradatic rounded red-pi matrix. Modera barren, white-p associated with 0.5 metre. 11.50 14.40 - 14.60 23.50 - 30.00 28.30 - 28.90 28.60 - 28.75 28.30 - 28.90 32.00	N TUFF we to poorly bedded, fine grained dark grey-green ash tuff mafic appearance. Comprised of very fine grained, well thic clasts consisting of approximately 10-15% red-pink \pm fragments in a dark aphanitic groundmass. Finely with lapilli tuff horizons up to 1 metre wide which generally onal contacts and are comprised of 5-7% angular to sub- nk to grey lapilli clasts, 0.5-5 cm, in the fine grained ash tely to strongly magnetic. Cut by 1-2% low angle, 0-30°tca, ink quartz \pm albite \pm calcite veinlets, up to 1 cm wide, late cross-faulting. Lower contact of unit gradational over Sharp, tight chlorite + sericite slip with 3 cm of ankerite stained wall rock. Slip @ 25° tca. 10 cm wide white quartz \pm albite + calcite breccia vein with angular included wall rock fragments, \leq 1.5 cm, centred on two sharp strong chloritic slips @ 25° tca. Barren, non-mineralized, moderate ankeritic staining, open vuggy cross fault. Massive, dark grey-green, heterolithic lapilli tuff horizon with gradational contacts over 1 metre. Comprised of 5- 7% angular lapilli clasts, 0.5-1.5 cm, floating in very fine grained massive ash. Clasts are light grey to green to pink-brown. Fault zone @ 40° tca. Chlorite + sericite + quartz + ankerite. Strong, 1 mm-0.5 cm wide, chlorite \pm mud gouge slips with 0.5-1 cm wide, buff-pink quartz + calcite veinlets interstitial to slip planes. Unit is strongly ankerite stained with numerous tight sericitic slips and micro-fractures. Cross fault type. Well developed bedding @ 60° tca ranging 2-3 mm to 2- 3 cm wide.	9071 9072 9073 9074 9075 9075	26.00 27.00 27.60 28.30 29.00 29.50	27.00 27.60 28.30 29.00 29.50 30.50	1.00 0.60 0.70 0.70 0.50 1.00))))	2019	1 2-3	<u>жэсг</u> 35	Hem Ank.	Ser	Au, g/t 0.02 0.02 0.01 0.01 0.02 0.01	Au, Cneck
															•

HOLE: AK-91-38

PAGE: 5 of 23

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
33.50	55.40	 LAPILLI TUFF Chlorite + hematite. Massive, dark grey-green to purple-maroon, where pervasively hematitic. Poorly sorted, heterolithic lapilli tuff comprised of 5-15% angular to subrounded lapilli clasts from 2 mm -7 cm, in a fine grained, lithic ash matrix. Clasts are 65% red-brown, fine grained to porphyritic, trachyte + syenite. Remaining 35% of lapilli clasts are dark green to black and light grey to buff trachytes in roughly equal proportions. Matrix is of equivalent composition as framework. Unit is somewhat variable in matrix:clast ratio and is intimately interdigitated with narrow ash tuff horizons up to 1 metre wide. Moderately to strongly magnetic, undeformed and cut by 1-2% irregular white-pink calcite ± quartz veinlets generally at low angles to core axis. Frequently small spots of hematite + specularite are visible in late veinlets. 48.70 S cm calcite + quartz veinlet with sharp strong chloritic slip boundaries @ 65° tca. 52.75 - 52.80 Fault @ 60° tca. Sericite + chlorite + calcite. Strong chloritic mud slip, open and vuggy, 3 mm wide, with foliated sericitic wall rock. Moderate pervasive calcite. 55.40 Appears to be a sharp, intact contact @ 75° tca. 		4							
55.40	84.40	 LAPILLI TUFF Massive, undeformed dark green lapilli tuff very similar to above unit but is predominantly monolithic with 90-95% of clasts being red-brown, fine grained to porphyritic trachyte + sericite in a fine grained chloritic lithic ash matrix. Fragments are angular to subrounded, 2 mm -5 cm, avg 1 cm, and comprise 3-20% of unit. Unit displays a crude grading from 55.40-56.50 metres, fine>coarse, where unit consists of 2-4%, ≤ 0.5 cm, red trachyte clasts gradually increasing in size and abundance to 5-20% and up to 3-5 cm in size. Equivalent to monolithic blocky tuffs. Strongly magnetic. Lower contact of tuff is sharp, somewhat irregular @ 25° tca. 78.30 - 79.60 Massive, very fine grained grey-green crystal tuff horizon comprised of 10-15% fine euhedral crystals and crystal fragments, ≤ 1 mm, which are light grey-white to green feldspar and/or augite. Groundmass is dark green aphanitic. Very strongly magnetic, quite hard. Upper contact very sharp and somewhat irregular and interfingered. Contains minor scattered angular lapilli clasts. Lower contact is sheared and silicified. 	9077 9078 9079 9080 9081	76.00 77.00 77.50 78.30 79.00	77.00 77.50 78.30 79.00 79.60	1.00 0.50 0.80 0.70 0.60				0.01 0.01 0.01 NIL 0.01	

HOLE: AK-91-38

PAGE: 6 of 23

INTE	RVAL	DESCRIPTION	[SAN	APLE		ASSAVS	<u></u>
FROM	то		No.	From	То	Length %Rec	%Pv %OV	%Ser		1.
		 79.60 - 80.00 Sheared, silicified contact zone. Chlorite + sericite + quartz + hematite. 79.60 - 79.85 Fractured silicified tuff with a prominent fracture cleavage @ 60° tca which are infilled with quartz ± calcite + hematite. This 60° fabric is cut by a later quartz ± calcite + hematite fracture slip set @ 25° tca. 79.85 - 79.90 Strongly sheared chloritic fault with 1 cm wide quartz + calcite vein. Pervasively silicified, non-mineralized. 	9082 9083 9083	79.60 80.10 81.00	80.10 81.00 82.00	0.50 0.90 1.00	10	Sil.	NIL	<u>K</u>
84.40	112.70	LAPILLI TUFF/SILTSTONE Chloritic, massive, medium green, heterolithic lapilli tuff with intercalated and interfingered, aphanitic siltstone horizons, up to 2 m wide and as thin as a few centimetres wide. Lapilli tuffs are deformed, poorly sorted matrix supported with 5% angular, heterolithic clasts, 2 mm-5 cm, in a very fine grained chloritic matrix. Very minor quartz and jasper are evident within matrix representing gradational sedimentary and volcanic mixing. Gritty texture to matrix, grading to graywacke. Lapilli clasts are predominantly of two types: 1) Pink-brown spotted trachyte, 2) Light grey to buff, fine grained to porphyritic trachyte. Minor dark green mafic clasts. Contains 2% irregular, barren white quartz veinlets.								
		 91.40 - 93.40 Dark green, finely banded aphanitic siltstone with sharp, undeformed sedimentary bedding contact @ 25° tca. Minor lapilli tuff beds up to 2 cm wide. In places bedding is somewhat wispy, convoluted and very irregular. 106.00 - 109.00 Numerous, strong chloritic mud slips and shears @ 35-50° tca which have strongly foliated sericitized wall rock and frequently carry barren, white-buff quartz ± calcite veining. 107.40 Strong 1 cm wide, chloritic mud gouge slips with strongly foliated sericitized wall rock alteration and deformation up to 25 cm from slips. Appears to be a late cross fault zone. 108.10 Strong 1 cm wide, chloritic mud gouge slips with strongly foliated sericitized wall rock alteration and deformation 	9085 9086 9087 9088 9088	104.00 105.00 106.00 107.00	105.00 106.00 107.00 108.00	1.00 1.00 1.00 1.00	1-2 1 3-5 1-2 Tr.	Tr. 5 15	0.01 0.01 0.01 0.01 0.01	
		up to 25 cm from slips. Appears to be a late cross fault zone.	9090	108.50	109.10	0.60	Tr.	15-20	0.01	

HOLE: AK-91-38

PAGE: 7 of 23

INTE	ERVAL	DESCRIPTION	1			SA	MPLE		······································		SAVS
FROM	то		No.	From	То	Length %Rec	%Pv %	- ov	%Ser	Au at	Au Chaole
112.70	135.55	 109.00 - 112.70 Strongly foliated to schistose with 10-20% wispy irregular sericitic and numerous sharp, strong chlorite + sericite slips @ 35° tca. LAPILLI TUFF Chloritic ± sericitic, massive grey-green to mottled brown. Comprised of 5% angular, heterolithic lapilli clasts, 2 mm -2 cm, in a very fine grained white-green groundmass. Clasts are pink-brown, porphyritic, light grey and dark green fine grained trachyte, generally quite angular. In places unit has a snowflake texture due to milk white feldspar masses which are irregular and show no crystal form, floating in a very fine mottled groundmass. Unit displays a patchy, mottled sericite alteration of matrix where unit will have diffuse shadowy boundaries grading to unaltered dark green matrix. These patchy sericite alteration zones give unit distinctive mottled appearance. This alteration is evident proximal to small, ≤ 0.5 cm wide, quartz veinlets but also as discreet patches with no apparent veining. Displays moderate patchy magnetics. Non-mineralized and cut by 2% barren, white quartz ± albite. 135.00 - 135.55 Fault zone @ 40-60° tca. Sericite + chlorite + quartz. 0.5-1 cm wide strong chlorite + quartz breccia veinlets with sharp, chlorite slip boundaries @ 135.0, 135.35 and 135.55 m. Interstitial to these slips tuff is fractured to sheared with strong sericitization at faults grading to lesser deformed spotty sericitization in cores. Non-mineralized. 	9091 9092 9093 9094 9094 9095 9096 9097 9098 9099 9100 9101 9102	109.10 110.00 111.00 112.00 130.00 131.00 131.00 131.00 133.00 134.00 135.00	110.00 111.00 112.00 112.70 112.70 112.70 112.70 112.70 112.70 112.70 112.70 112.70 112.70 112.70 112.70 113.00 131.00 133.00 135.00 135.60	0.90 1.00 1.00 0.70 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.60	7019 7	2-3 Tr. Tr. Tr. Tr. Tr. Tr. Tr. 1 5-7	10 10-15 15-20 10 25 15 3-5 1-2 2-3 2-3 25	Au, g/t 0.01 0.02 0.03 0.01 NIL NIL NIL NIL NIL NIL 0.01 NIL NIL 0.01 NIL	Au,Check
135.55	144.00	 LAPILLI TUFF Chloritic, massive, poorly sorted, grey-green heterolithic tuff. Comprised of 3-5% matrix supported lapilli clasts which are angular to sub-rounded and range from, 2 mm to 15 cm, avg 2 cm. Clasts consist of salmon-pink, buff-brown and dark green trachytes and minor sedimentary siltstone and jasper clasts. Matrix is very fine grained, grey-green chloritic ash with traces of scattered jasper evident. Patchy moderate magnetics. Lower contact is a 3 mm wide chlorite + quartz slip @ 35° tca. 143.20 - 143.50 Fault zone @ 50° tca. Sericite + chlorite + quartz. Strongly foliated to sheared, sericitized tuff with sharp strong chlorite + quartz breccia slip contacts. Section 	9103 9104 9105 9106 9107	135.60 141.00 142.00 143.00 143.50	136.50 142.00 143.00 143.50 144.00	0.90 1.00 1.00 0.50 0.50		Tr. 1-2 1 10	25 10-15	0.01 0.01 0.01 NIL 0.02	

HOLE: AK-91-38

PAGE: 8 of 23

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	ТО		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. e/t	Au Check
		carries 10-15% milk-white quartz ± albite veining and irregular internal sericitic suturing. Non-mineralized. 143.00 - 144.00 Surrounding tuff is bleached and sericitized.									
144.00	241.30	GRAYWACKE Massive, non-bedded, undeformed, light to dark green fine grained graywacke with a pervasive, weak spotty sericite. Comprised of very fine quartz and lithics in roughly equal proportions. Very clean, well sorted and contains minor scattered angular mudstone chips (yellow-green, aphanitic) and disrupted, fragmented mudstone beds up to 25 cm's. In places unit carries 3-4% rounded polymictic pebbles of mudstone, spotted trachyte and fuchsitic mafics (pebbly graywacke). Lower contact of unit is marked by abrupt increase in pebble content, not a sharp definite contact.	9108	144.00	144.75	0.75					
		144.75 - 146.75 Unit is cut (pseudo-brecciated) by quartz ± albite + chlorite veining. Veins display zonation with chloritic walls and milk white to buff quartz ± albite cores. In places small angular wall rock (graywacke) fragments are evident within veins. Gives unit distinctive "crack and seal" texture. No visible mineralization.	9108 9109 9110 9111	144.00 144.75 145.40 146.00	144.75 145.40 146.00 146.75	0.75 0.65 0.60 0.75		5 1-2 2-3	Chi. Chi. Chi.	NIL NIL NIL NIL	
		 146.75 - 147.00 Fault @ 70° tca. Sericite + chlorite + quartz. 10-15% irregular white-buff quartz ± albite veinlets intruding sericitized graywacke. Strong 1 cm wide chlorite + sericite + quartz slip @ 147.0 m. Contains trace very fine grained pyrite. 	9112 9113 9114 9115 9116 9117	146.75 147.20 148.00 155.00 156.00	147.20 148.00 149.00 156.00 157.00	0.45 0.80 1.00 1.00 1.00	Tr.	10 Tr. 1-2 Tr.	20 Tr. 5 Tr. Chl+Qtz 2% Tr1	0.01 NIL 0.01 NIL 0.01	
		158.00 Fault @ 20° tca. Chlorite + sericite + quartz. 3 cm wide chlorite + sericite shear with 10-15% fragmented, fractured and boudinaged quartz veining. Strong wispy internal sericitic fracturing.	9118 9119	157.80 158.30	158.30 159.00	0.50 0.50 0.70	1 Tr.	3 1	5 3-5	NIL 0.06 0.02	
		158.20 Small semi-massive (primary?) pyrite beds up to 0.5 cm wide @ 60° tca. Quite fine grained euhedral pyrite. Beds offset ≈ 0.5 cm sinistrally by a hairline fracture subparallel tca.	9120	159.00	160.00	1.00	2	1	3-5	NIL	
		161.35 - 161.45 Fault @ 50° tca. Chlorite + sericite + quartz ± pyrite. Milk white fractured quartz veining with strong internal sericite + chlorite suturing with 1% fine pyrite on slip walls. Also some blebby pyritic clots in quartz chlorite veining adjacent to fault zone.	9121 9122 9123	160.00 161.00 161.50	161.00 161.50 162.00	1.00 0.50 0.50	Tr.	1 5 Tr.	2-3 10 1-2	0.01 NIL 0.01	

HOLE: AK-91-38

PAGE: 9 of 23

INTE	ERVAL	DESCRIPTION	[SAN	IPLE	·			SAVS
FROM	то		No.	From	То	Length %Rec	%Pv	%0V	%Ser		Au Chaok
INTE	TO	 178.45 Fault @ 65° tca. Sericite + quartz. Strong sericitic mud gouge walls with 1 cm wide, crushed, fractured sericite + quartz interstitial to slips. 184.55 - 184.70 Fault @ 60° tca. Sericite + chlorite + quartz. Strongly foliated to sheared, sericitized graywacke with a 3 cm wide brecciated quartz + chlorite + sericite vein in sharp chloritic slips. 201.50 Fault @ 30° tca. Sericite + chlorite + quartz. 3 mm wide, strong, grey, muddy slip with strong slickenside development. Up hole side has a 5 cm wide, fractured to brecciated quartz vein with strong internal sericitic suturing. Fault slip has trace smeared pyrite. 202.00 - 203.50 Few sporadic narrow, ≤ 5 mm wide pyritic beds (primary) @ 60-70° tca. 215.10 Sharp tight, 1-2 mm, chlorite + sericite slip @ 60° tca. 215.10 - 227.00 A 1-3 mm wide, open late fault @ 0-5° tca. Very irregular, wavy and oscillates in and out of core. Lined with quartz + calcite + chlorite. This fracture fault set displaces late barren quartz veinlets and appears to be quite late but it is also apparently truncated in places by faults at steeper core angles. Proximal to these fractures the graywackes are moderately sericitic with ubiquitous sericit spotting, wispy sericitic suturing, fracturing and sericitization of clasts or pebbles (ie mudstones and trachyte). 224.75 - 224.90 Broken rubbly fault zone with strong sharp sericitic slips with weak gouge developed and minor barren quartz veining. 229.25 - 229.40 Fault @ 55° tca. Sericite + quartz ± albite. White to apprent the sericite spotting. 	No. 9124 9125 9126 9127 9128 9129	From 199.00 200.00 201.80 201.80 202.80	To 200.00 200.80 201.30 201.80 202.80 203.50	SAN Length %Rec 1.00 0.80 0.50 1.00 0.70	IPLE %Py Tr. Tr.	%QV Tr. 2-3	%Ser 5-7	AS Au, g/t 0.01 NIL 0.01 NIL NIL NIL	SAYS Au,Check
		buff, sheared, fractured, late barren quartz ± albite. While to buff, sheared, fractured, late barren quartz ± albite vein with sharp chlorite slip walls. Vein has a banded appearance due to chlorite + sericite lameliae and suturing (5%).									
241.50	261.90	CONGLOMERATE Massive to moderately foliated @ 30° tca. Poorly sorted, light grey-green polymictic pebble conglomerate. Varies from framework to matrix supported with 10-30% pebbles in a fine grained graywacke matrix. Pebbles									

HOLE: AK-91-38

PAGE: 10 of 23

INTE	RVAL	DESCRIPTION				SAN	APLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py %C	v e	%Ser	Au. g/t	Au Check
		 are comprised of: 1) dark green, aphanitic mafic volcanics; 2) buff-grey to yellow-green aphanitic mudstone; 3) pink-brown to buff-green spotted trachyte and minor quartz and jasper. Note absence of any granitoid type fragments. Lower contact is a sharp hairline chlorite + quartz slip @ 35° tca. 246.90 - 247.15 Fault @ 15° tca. Chlorite + sericite + quartz. Strong, muddy chlorite + sericite slips and sericitization of wall rock. Fault zone carries 5% fractured broken milk white quartz ± albite pods and veins up to 1 cm wide. 257.35 - 257.50 Fault @ 50° tca. Chlorite + sericite + quartz. 4 cm wide, barren quartz ± albite vein in strongly foliated to sheared conglomerate with sharp chloritic slip planes. 258.00 - 260.50 Graywacke horizon with weak spotty sericite. Upper contact 2 mm wide chlorite + quartz + calcite slip @ 55° tca. Lower contact marked by pebble content. 263.90 - 266.00 Strong chlorite + quartz fracture/slip oscillates in and out of core @ 0-10° tca. Lined with grey-brown calcite. 									
261.90	299.40	LAPILLI TUFF Chlorite + hematite. Massive, non-bedded, grey-green to purple where unit is more hematitic. Typically unit is bleached, sericitic \pm chloritic near faults, slips and fractures and is more hematitic where less deformed. Unit is predominantly monolithic, comprised of 5-10% angular lapilli clasts from 3 mm to 5 cm (avg. 1-2 cm) in a very fine grained ash matrix. Clasts are 85% light grey to buff brown, very fine grained to spotted trachyte while remainder are dark green to black fine grained trachytes. Unit is weakly to non-magnetic. Lower contact of unit is weakly sericitic and marked by a tight, 1-2 mm, chlorite + sericite + quartz slip @ 45° tca.									
		274.30Strong tight chlorite slip @ 20° tca.274.20 - 274.65Unit is strongly foliated with wispy sericite + chlorite and strong clast elongation.	9130	273.90	274.65	0.75	г	'n.	10	NIL	
		 274.65 - 275.20 rault zone @ 60° tca. Chlorite + sericite + quartz. Upper contact is a 3 mm wide, strong chlorite slip. 274.65 - 275.00 White-pink quartz vein with internal cross fracturing and chloritic suturing parallel to slip. 	9131	274.65	275.20	0.55	1	50	15	NIL	
		275.00 - 275.20 Strongly foliated to sheared sericitized tuff. Non- mineralized.	9132	275.20	276.00	0.80				NIL	

HOLE: AK-91-38

PAGE: 11 of 23

INTE	ERVAL	DESCRIPTION	T		<u></u>	SA	MPLE				SAV6
FROM	то		No.	From	То	Length %Rec	%Pv 4	%ΩV	%Ser	A	SATS
			1			Longin Voltee	<i>inty</i>		70501	Au, g/t	Au, Check
		276.15 276.40 Two 0.5 cm wide, strong sharp chlorite + sericite ±	9133	276.00	276.50	0.50		Tr	10	NTT	
		quartz shears @ 50° and 40° tca respectively. Interstitial	9134	276.50	277.00	0.50			10	NIL	
		to these slips tuff is bleached and sericitic with a well	9135	277.00	278.00	1.00				NIL	
		developed internal fabric @ 20° tca (fragment	9136	278.00	278.50	0.50				NIL	
		elongation).	9137	278.50	279.00	0.50		Tr.	2-3	NIL	
			9138	279.00	280.00	1.00				NIL.	
			9139	280.00	281.00	1.00				NIL	
		281.20 - 281.30 Fault @ 50° tca. Chlorite + sericite + quartz. Strongly	9140	281.00	281.60	0.60		3-5	5-10	NIL	
		fractured and brecciated quartz veinlets (10%) within	9141	281.60	282.15	0.55			Tr.	NIL	
		strongly sneared to tragmented chlorite + quartz + wall									
		rock fragments groundmass. Strong, tight 1-2 mm chlorite	9142	291.00	292.00	1.00				0.01	
		siip walls.	9143	292.00	293.00	1.00				NIL	
			9144	293.00	293.70	0.70		Tr.	Tr.	NIL	
		294.15 - 294.50 Fractured white aream quarter to alkite and mild of	9145	293.70	294.15	0.45		Tr.		NIL	
		internal sericitic fracturing and irregular suturing the	9146	294.15	294.60	0.45		60	10-15	NIL	
		contact is tight sericitic slip while lower contact is charm									
		and irregular.									
		294.15 - 294.60 Fault @ 75° tca. Quartz + sericite + chlorite									
		294.60 - 295.00 Tuff is moderately sericitic and weakly deformed	0147	201 60	205 10	0.50		-			
		the second and housing determined.	0148	294.00	295.10	0.50		Tr.	15	NIL	
			1140	275.10	270.00	0.90				NIL	
299.40	320.90	GRAYWACKE									
8		Massive, non-bedded very fine grained, grey-green. Well sorted,									
		undeformed with approximately 35-40% fine rounded quartz grains evident									
		in matrix with remainder being lithics. Pervasive weak spotty sericite. Minor									
		scattered angular mudstone chips, very clean.									
		302.00 - 302.05 Fault @ 35° tca. Chlorite + quartz. Barren, fractured									
		quartz vein with chloritic sutures on sharp, chloritic slips.	9149	312.00	313.00	1.00				NII	
			9150	313.00	313.50	0.50		Tr.	Tr.	0.01	
		314.20 Fault slip @ 65° tca. Tight, hairline sericite + chlorite +	9151	313.50	314.20	0.70		Tr.	Tr.	NIL.	
		quartz slip plane.	1								
		514.20 - 514.70 Graywacke is cut by 3% barren white quartz stringers at	9152	314.20	314.70	0.50	Tr.	5-7	10	NIL	
		all angles $(\leq 1 \text{ cm})$. These veins have up to 2 cm wide,									
		yellow-green sericite alteration halos giving graywacke a	1								
	1	patenwork appearance.					1				
		rault w 50° ica. Unionic + quariz + calcite. 1-2 cm wide	9153	314.70	315.35	0.65	1	5-7	25	NIL	
		and infilled by yuggy pink quarter to antita unit to	1								
		and minice by vuggy pink quartz + calcite veinlets.					1			!	

HOLE: AK-91-38

PAGE: 12 of 23

INTI	ERVAL	DESCRIPTION				SAI	MPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. g/t	Au Check
		 315.35 - 316.00 Graywacke is moderately sericitized and strongly fractured "crack and seal" by chlorite and chlorite + quartz slips and veinlets. 315.60 - 315.70 2% fine grained pyrite on irregular anastomosing chlorite slips and fracturing. Tight prominent bairline slips (@ 306) 	9154	315.35	316.00	0.65	Tr.	1	5	0.02	
		tca with irregular braided pyrite stringers proximal to slip.	9155 9156 9157 9158 9159	316.50 317.00 318.00 319.00	317.00 318.00 319.00 320.00	0.50 0.50 1.00 1.00 1.00		2	3-5	NIL NIL NIL NIL NIL	
		to sheared contact zone with moderate mud gouge developed on chlorite slips with strongly sheared graywacke/conglomerate interstitial to slips.	9160	320.00	320.70	0.70		2-3	5	NIL	
320.90	357.70	CONGLOMERATE Massive, coarse, poorly sorted, framework supported polymictic pebble- cobble conglomerate. Pebbles range from 2-3 mm to 15+ cm in a grey- green chloritic graywacke matric. Lower contact of unit is sharp and somewhat irregular with ash tuff wrapping around polymictic pebbles.									
		 320.90 - 322.00 Unit is moderately deformed and foliated @ 40° tca with a few strong chloritic shears up to 1 cm wide. Also cut by 3% milk white, irregular quartz ± albite veining with very minor, spotty pyrite. 	9161 9162 9163 9164 9165	320.70 321.20 322.20 323.00 324.00	321.20 322.20 323.00 324.00 325.00	0.50 1.00 0.80 1.00 1.00	Tr.	5 3	15 10	NIL NIL NIL 0.01	
		345.35 - 346.00 Diabase dyke. Massive very fine grained, light green with 0.5 cm wide chilled margins. Contacts are chlorite + quartz + calcite slips @ 20° tca.								0.00	
		 351.00 rault @ 40° tca. Chlorite + sericite. 5 cm wide, moderately strong chlorite + sericite schist. Contains minor boudinaged quartz ± calcite pods. 353.80 Fault @ 60° tca. Strong sharp dry sericitie rud school 									
		shear.									
357.70	369.05	LAPILLI TUFF Chloritic + sericitic. Massive, light grey-green, predominantly monolithic lapilli tuff. Comprised of 5-10% angular, buff-grey to brown, very fine grained, moderately sericitized trachyte(?) fragments from 2-3 mm to 10 cm (avg 2 cm) in a very fine grained grey-white matrix. Also contains 1%									

HOLE: AK-91-38

PAGE: 13 of 23

INTE	RVAL	DESCRIPTION				SA	MPLE				SAVE
FROM	то		No.	From	То	Length %Rec	%Pv	%OV	%Ser	Au e/t	Au Check
		 dark green aphanitic angular clasts (mafic volcanics?) up to 4 cm (avg 0.5-1 cm) scattered throughout. Occasionally these clasts are altered to sericite ± fuchsite. Unit is massive, undeformed and non-magnetic. 365.00 - 369.00 1-2%, well rounded, polymictic pebbles of quartz, mudstone, trachyte and minor porphyry. Pebbles, from 0.5 cm to 8 cm, are inter-mixed with angular lapilli clasts. Matrix also appears to be gradually increasing in quartz and lithics content, i.e. grading to graywacke. 368.00 - 369.00 Unit is intruded by 10%, massive barren bull white quartz ± albite veins and stringers up to 7-8 cm wide. 369.00 - 369.05 Fault @ 45° tca. Sericite + calcite. Sharp, strong, weakly muddy break, minor quartz + calcite smearing on slips. 									AujUlieck
369.05	398.90	 CONGLOMERATE Massive, undeformed light grey-green, matrix supported, pebble poor, polymictic conglomerate. Comprised of 5% sub-angular to very well rounded pebbles of quartz, quartzite, mafic volcanics, mudstones, trachytes and jasper randomly oriented. Matrix is very fine grained, grey-white lithic graywacke. Pebbles range from 0.5 cm to 10 cm. Lower contact of unit is a regular sharp sedimentary contact @ 30° tca. 381.50 - 390.00 Weakly to moderately deformed, foliated and sericitized with spotty sericite and wispy irregular sericite interstitial to fine quartz and lithics in matrix. 382.00 Moderately strong open sericite + quartz shear and breccia vein with sericitized inclusions in a 0.5 cm wide quartz + calcite vein. Wall rock is quite foliated and sericitic up to 4 cm around vein (75° tca). 382.40 Sharp hairline sericite slip and 0.5 cm sericitic foliation @ 30° tca carries trace spotty fine grained pyrite on irregular hairline fractures and sericitic sutures. 383.80 2 cm wide irregular anstomorging sericite + chlorita clima 	9166 9167 9168 9169 • 9170 9171 9172 0172	379.00 380.00 381.00 381.50 382.00 382.50 383.00	380.00 381.00 381.50 382.00 382.50 383.50 383.50	1.00 1.00 0.50 0.50 0.50 0.50 0.50	Tr.	Tr. Tr. 1 Tr. Tr.	5-10 10 Tr. Tr.	0.02 0.02 0.02 0.02 0.06 0.06	
		 384.50 - 385.05 Fault-shear zone @ 40° tca. Upper contact sharp sericitic shear. Lower contact 2 cm wide, brecciated quartz + calcite vein on sericitic slip. Interstitial to slips unit is foliated to sheared to brecciated. Angular sericitized wall rock fragments in a quartz + chlorite breccia matrix and 	9173 9174 9175	383.50 384.00 384.50	384.00 384.50 385.10	0.50 0.50 0.60	Tr. Tr.	2 Tr. 5	15 5 15	0.03 0.04 0.03	

HOLE: AK-91-38

PAGE: 14 of 23

то	 angular fragments in white quartz + calcite veinle Minor trace pyrite on fractures and sericite suturing. 385.55 Fault @ 35°. Chlorite + sericite + quartz. 3-4 cm wi barren white buff quartz vein on up-hole side of a 0.5 wide, strong chlorite + sericite shear. 387.00, 387.10 Two, 1 mm to 1 cm wide, quartz + chlorite + pyr veins. Veins have green chlorite boundaries and 1% f grained subhedral pyrite in veins and on vein walls. 387.10 Branches into three smaller veinlets which intrude w rock 	No. s. e, 9176 m 9177 te 9178	From 385.10 386.00 387.00	To 386.00 387.00 387.35	Length 0.90 1.00	%Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
	 angular fragments in white quartz + calcite veinle Minor trace pyrite on fractures and sericite suturing. 385.55 Fault @ 35°. Chlorite + sericite + quartz. 3-4 cm wi barren white buff quartz vein on up-hole side of a 0.5 wide, strong chlorite + sericite shear. 387.00, 387.10 Two, 1 mm to 1 cm wide, quartz + chlorite + pyr veins. Veins have green chlorite boundaries and 1% f grained subhedral pyrite in veins and on vein walls. 387.10 Branches into three smaller veinlets which intrude w rock. 	s. e, 9176 m 9177 te 9178	385.10 386.00 387.00	386.00 387.00 387.35	0.90 1.00						0.03	
	IOCK.	11			0.35		Tr.	1	10		0.03	
	 388.90 - 389.50 Very irregular aphanitic laminated mudstone horiz which is deformed and fractured by strong sericitic sl @ 35° tca and a very irregular anastomosing seric fracture set @ 10° tca. 	9179 9180 9181 9181	387.35 388.00 388.90	388.00 388.90 389.50	0.65 0.90 0.60		Tr.	Tr. Tr. Tr.	5 5 20		0.11 0.39 0.03	
	 389.75 Quartz is barren, white-grey quartz ± albite. 389.70 - 390.00 Fault zone @ 55-60° tca. Sericite + chlorite + quar Strong tight, 1-3 mm wide, sericite slip contacts with 2: interstitial light grey to buff quartz veining, which carr 1% very finely disseminated pyrite at 389.70-389.75 m 	z. 9182 z. 9183 % 9184 ss 9185 9186 9187 9188 9189 9190 9191 9192	389.50 390.10 390.60 391.30 392.00 393.00 394.00 395.00 396.00 397.00 398.00	390.10 390.60 391.30 392.00 393.00 394.00 395.00 396.00 397.00 398.00 398.00	0.60 0.50 0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.90		Tr.	25 Tr. 2	25 5-10 5-10		1.09 0.01 NIL NIL NIL NIL 0.02 0.02 0.02 0.02	1.18
20.30	SILTSTONE/MUDSTONE											
	 398.90 - 399.50 Yellow-green aphanitic massive to finely laminat mudstone. 399.05 2 cm wide, laminated chlorite + quartz shear. 399.10 - 399.50 Unit is cut by 5% irregular milk white quartz ± alb veins and pods. 399.50 - 420.30 Dark to light green, well bedded siltstone with mir intercalated mudstone and graywacke horizons. Beddi ranges from a few mm to cm wide and is very sharp interfingered and irregular @ 40-50° tca. Very pristik 	d 9193 c 9194 g 9194 g 9195 c	398.90 399.50 400.00	399.50 400.00 401.00	0.60 0.50 1.00			5 Tr. 1	25 5 Tr.		0.01 0.02 0.01	
20	9.30	 SILTSTONE/MUDSTONE SILTSTONE/MUDSTONE 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 399.50 Vellow-green aphanitic massive to finely laminate mudstone. 399.05 2 cm wide, laminated chlorite + quartz share. 399.10 - 399.50 Unit is cut by 5% irregular milk white quartz ± albit weins and pods. 399.50 - 420.30 Dark to light green, well bedded siltstone with minor intercalated mudstone and graywacke horizons. Beddin ranges from a few mm to cm wide and is very sharp t interfingered and irregular @ 40-50° tca. Very pristing non-deformed. Lower contact gradational over 0.5 metro 	 1910 1910 1910 1910 1910 1910 1910 1910	 138.30 138.3	 1.30 SILTSTONE/MUDSTONE 389.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 2 cm wide, laminated chlorite + quartz share. 399.05 400.00 401.00 9194 399.50 400.00 9195 400.00 401.00 	 1300 1300 1300 1300 1300 1300 1300 1300	 131 383.90 389.30 0.00 132 389.70 390.00 Fault zone @ 55-60^o tca. Sericite ± hlorite + quartz. Strong tight, 1-3 mm wide, sericite slip contacts with 25% interstitial light grey to buff quartz veining, which carries 1% very finely disseminated pyrite at 389.70-389.75 m. 1% very finely disseminated pyrite at 389.70-389.75 m. 184 390.60 391.30 0.70 9186 392.00 393.00 1.00 9187 393.00 394.00 1.00 9188 394.00 395.00 1.00 9191 397.00 398.00 1.00 9192 398.00 398.90 0.90 100 9191 397.00 398.00 1.00 9192 398.00 399.50 0.60 9193 398.90 399.50 0.60 9194 399.50 400.00 0.50 9195 400.00 401.00 1.00 9194 399.50 400.00 0.50 9195 400.00 401.00 1.00 	 13.0 SILTSTONE/MUDSTONE 339.50 Yellow-green aphanitic massive to finely laminated mudstone noise and production of the state of th	 13.0 SILTSTONE/MUDSTONE 339.50 Yellow-green aphanitic mainted militated multione inologing anges from a few mm to cm wide and graywacke horizons. Bedding ranges from a few mm to cm wide and is very straine, non-deformed. Lower contact gradational over 0.5 metre. 14. Strain 1.3 mm inde, sericite silp contacts with 25% 9181 389.50 390.10 0.60 Tr. 25 15. Strong tight, 1.3 mm wide, sericite silp contacts with 25% 9182 389.50 390.10 0.60 Tr. 25 16. Strong tight, 1.3 mm wide, sericite silp contacts with 25% 9183 390.10 390.60 0.50 9184 390.60 391.30 0.70 9185 391.30 392.00 0.70 9185 391.30 392.00 0.70 9185 391.30 392.00 1.00 9187 393.00 394.00 1.00 9187 393.00 394.00 1.00 9189 395.00 395.00 1.00 9190 396.00 397.00 1.00 9189 395.00 395.00 1.00 9191 397.00 398.00 1.00 9191 397.00 398.00 1.00 9191 397.00 398.00 1.00 9191 397.00 398.00 1.00 9191 397.00 398.00 1.00 9191 397.00 398.00 1.00 9191 397.00 398.00 1.00 9191 397.00 398.00 1.00 9192 398.00 399.50 0.60 Tr. 399.50 Vellow-green aphanitic massive to finely laminated mudstone. 399.50 - 420.30 Dark to light green, well bedded siltstone with minor intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to interfingered and irregular @ 40.50 tea. Very pristine, non-deformed. Lower contact gradational over 0.5 metre. 	 389.70 1900 Failt soft of and fractured by strong sericitic slips (@ 35° to and a very irregular anastomosing sericitic fractures set (@ 10° toa. 389.70 Quartz is barren, white-grey quartz ± albite. 389.70 - 390.00 Fault zone (@ 55.60° toa. Sericite + chlorite + quartz. Strong tight, 1-3 mm wide, sericite slip contacts with 25% interstitial light grey to bulk quartz / slines, which carries 11% very finely disseminated pyrite at 389.70-389.75 m. 380.80 - 399.50 Yellow-green aphanitic massive to finely laminated mudstone. 399.50 - 2 cm wide, laminated chlorite + quartz ± albite veins and pods. 399.50 - 420.30 Drak to light green, well bedded siltstone with minor intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to interforgered and irregular (@ 40.50° tca. Very pristine, non-deformed. Lower contact gradational over 0.5 metre. 399.50 - 420.30 Drak to light green, well bedded siltstone with minor intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very sharp to intercalated mudstone and graywacke horizons. Bedding ranges from a few mm to cm wide and is very pristine, non-deformed. Lower contact gradational over 0.5 metre.<td> 130 SILTSTONE/MUDSTONE 339.00 Support of the source of</td><td>389.75 Quartz is barren, white-grey quartz ± albite. 9182 389.50 390.10 0.60 Tr. 20 0.03 389.75 Quartz is barren, white-grey quartz ± albite. 9182 389.10 390.10 0.60 Tr. 25 52 1.09 389.75 Quartz is barren, white-grey quartz ± albite. 9182 389.10 390.10 0.60 55 25 1.09 389.70 -390.00 Fault zone @ 55-60° tca. Sericite + chlorite + quartz. 9182 389.10 390.00 0.50 9183 390.10 0.60 101 NILL 1% very finely disseminated pyrite at 389.70-389.75 m. 9186 392.00 393.00 1.00 9187 393.00 1.00 9183 394.00 1.00 9183 395.00 1.00 9183 395.00 1.00 9192 398.00 1.00 9192 398.00 399.50 1.00 0.02 9190 396.00 399.50 1.00 9192 398.00 399.50 2.510 0.01 .30 SILTSTONE/MUDSTONE 9193 398.90 399.50 0.60 5 2</td>	 130 SILTSTONE/MUDSTONE 339.00 Support of the source of	389.75 Quartz is barren, white-grey quartz ± albite. 9182 389.50 390.10 0.60 Tr. 20 0.03 389.75 Quartz is barren, white-grey quartz ± albite. 9182 389.10 390.10 0.60 Tr. 25 52 1.09 389.75 Quartz is barren, white-grey quartz ± albite. 9182 389.10 390.10 0.60 55 25 1.09 389.70 -390.00 Fault zone @ 55-60° tca. Sericite + chlorite + quartz. 9182 389.10 390.00 0.50 9183 390.10 0.60 101 NILL 1% very finely disseminated pyrite at 389.70-389.75 m. 9186 392.00 393.00 1.00 9187 393.00 1.00 9183 394.00 1.00 9183 395.00 1.00 9183 395.00 1.00 9192 398.00 1.00 9192 398.00 399.50 1.00 0.02 9190 396.00 399.50 1.00 9192 398.00 399.50 2.510 0.01 .30 SILTSTONE/MUDSTONE 9193 398.90 399.50 0.60 5 2

HOLE: AK-91-38

PAGE: 15 of 23

INTE	RVAL	DESCRIPTION				SAN	MPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au. g/t	Au.Check
		401.10 - 401.30 Fault @ 45° tca. Sericite + quartz (dextral). Upper contact 3 mm wide sericitic mud gouge. Lower contact tight sericitic slip. Interstitial to slips are irregular almost sigmoidal (extensional) quartz ± calcite veins up to 1 cm wide with strong wispy sericitized mudstone between veins. Non-mineralized.	9196 9197 9198	401.00 401.50 402.00	401.50 402.00 403.00	0.50 0.50 1.00		10-15	20	0.02 0.01 NIL	
420.30	441.60	CONGLOMERATE Massive, undeformed, poorly sorted, chloritic, matrix to framework supported, polymictic pebble conglomerate. Comprised of dark green very fine grained mafic volcanics, green spotted trachyte, mudstone, quartz									
		granitoid and jasper clasts from 0.5 cm to 15+ cm in size. Matrix is a very fine grained grey-green gravwacke	9199	425.00	426.00	1.00				0.01	
		the Brance Broy Broom Braymacke.	9200	420.00	427.00	1.00				0.02	
		427.90 - 433.40 Graywacke, massive non-bedded, non-deformed. Fine grained, comprised of # 20% quartz and 80% fine lithics in a grey-green aphanitic groundmass. Weak pervasive spotty sericite.	9202	427.90	428.40	0.50		Tr.	Tr.	0.01 NIL	
		428.50 Three small subparallel chlorite + quartz stringers @ 45°	9203	428.40	428.75	0.35	Tr.	Tr.	Tr.	0.06	
		tca, 1-5 mm wide, which carry 1% very fine grained pyrite	9204	428.75	429.30	0.55	Tr.	Tr.	Tr.	NIL.	
		within and on veinlet boundaries.	9205	429.30	430.00	0.70	Tr.	Tr.	Tr.	0.02	
			9206	430.00	430.50	0.50		Tr.	Tr.	0.02	
		430.80 - 430.90 Weak to moderate scricitic shearing @ 25° tca with internal crushing and scricitization of graywacke. Contains minor buff-white quartz ± calcite veinlets and pods.	9207	430.50	431.00	0.50		1	2-3	NIL	
-		431.30 1 cm wide chlorite + quartz vein on strong tight chloritic	9208	431.00	431.50	0.50	Tr.	1	1	0.01	
		slip @ 40° tca. Vein carries 1% finely disseminated to	9209	431.50	432.00	0.50		Tr.	Tr.	0.03	
		patchy pyrite on hairline fractures in vein and on vein wall.	9210	432.00	432.50	0.50			Tr.	0.01	
		432.60 - 432.80 Narrow packed pebble conglomerate horizon with sharp contacts @ 45° tca (bedding).	9211	432.50	433.00	0.50	Tr.	1	1-2	0.02	
		 432.80 - 432.90 Chlorite + quartz + pyrite breccia veinlet. Angular light green aphanitic silicified (mudstone?) fragments to 0.5 cm and 5% angular brecciated buff-white quartz fragments in a dark green weakly silicified chloritic vein material which is cut by a later buff-grey quartz vein 0.5 cm wide. Pyrite (1%) occurs along, within and proximal to this later vein. 433.40 - 441.60 Intercelated zone of conglomerate comprise software. 	0212	422.00	422.50	4.50					
		mudstone. Zones of pebble rich horizons and graywacke and horizons from 15 cm to 1 m wide and finely laminated	9212 9213	433.00 433.50	433.50 434.00	0.50				NIL NIL	

HOLE: AK-91-38

PAGE: 16 of 23

INTE	RVAL	DESCRIPTION					SAM	IPLE		······································	AS	SAYS
FROM	то		No.	From	То	Length %	Rec	%Py	%QV	%Ser	Au, g/t	Au.Check
		 mudstones from 1 cm to 0.5 m wide. Well developed laminations @ 30° tca. Note conglomerate horizons are typically comprised of dark green-grey trachyte, mudstones, quartz and jasper fragment/ pebbles but no visible granitoid type clasts evident. Mudstones are typically sericitic while conglomerates/graywackes are weakly to moderately sericitic with 2-3% spotty and wispy sericite development in matrix. 441.00 - 442.50 Grades to predominantly lapilli tuff. 										
441.60	451.80	LAPILLI TUFF Sericitic, massive to weakly foliated (clast elongation @ 30° tca). Heterolithic lapilli tuff comprised of 5-7% angular lapilli clasts, 2 mm to 10 cm, avg 2-3 cm, in a very fine grained dirty green-brown, sericitized ash matrix. Clasts are of three main types: 1) 50% are dark green, chloritic, very fine grained to finely spotted (trachytoid) trachyte. 2) 30% pink- brown, fine grained trachyte. 3) 20% grey-brown trachyte. Non-magnetic. Matrix appears to be pervasively altered, sericitic, and is a dirty green- brown and has white streak. Too fine grained to determine composition. Lower contact very sharp intact weakly sericitic @ 25° tca.										
451.80	459.30	 ASH TUFF Massive to weakly foliated @ 30° tca. Fine grained, purple-maroon and pervasively hematized. Unit is comprised of a very fine grained mottled matrix which is very homogeneous and nondescript. Contains ≤ 1% scattered angular dark green chloritic fragments up to 1 cm (lapilli). Non-magnetic. Lower contact somewhat subjective. 458.70 - 459.30 Weakly sericitic. Alteration is probably associated with a fault at 460.30 m. 	9214 9215 9216	457.00 458.00 458.50	458.00 458.50 459.30	1.00 0.50 0.80					NIL 0.01 NIL	
459.30	469.50	LAPILLI TUFF Sericitic, massive to weakly foliated with pervasive spotty and wispy irregular sericite throughout. Matrix is a light yellow-green-white, very fine grained ash which is somewhat mottled and pervasively sericitized. Strong white streak. Moderate pervasive crenulation foliation. Lapilli clasts constitute 5% of unit and consist of: 1) 70% dark green, chloritic, angular clasts often with vague hazy boundaries due to sericitization in matrix.										

HOLE: AK-91-38

PAGE: 17 of 23

INTE	RVAL	DESCRIPTION				SAN	APLE		ASSA	YS
FROM	ТО		No.	From	То	Length %Rec	%Py %C	V %Ser	Au e/t A	u Check
		 2) 20% fine grained buff-brown trachyte. 3) 10% light grey trachyte. Clasts range from 2 mm to 5 cm. Lower contact gradational over 1 metre. 460.25 - 460.40 Fault @ 15° tca. Chlorite + sericite + quartz. Strong chlorite + sericite ± mud slips, 2 mm to 0.5 cm wide, with minor quartz veinlets. Strong internal sericitic fracturing and crushing interstitial to slips. 461.55 - 461.80 Fault @ 60° tca. Sericite + chlorite ± quartz. Strong tight sericite ± mud gouge slips. Interstitial to slips unit is crushed fractured with strong irregular wispy sericite development. Contains 1-2% barren white-grey quartz veinlets. 463.80 A hairline sericitic slip @ 35° tca with 3-4 mm wide chlorite ± quartz halo developed. Chlorite + quartz carries 0.5-1% very fine grained pyrite. 464.85 - 464.90 Fault @ 75° tca. Chlorite + sericite + quartz. Milk white quartz vein has strong internal chlorite fracturing but is non-mineralized. Trace disseminated pyrite in foliated sericitic wall rock adjacent to vein. 	9217 9218 9219 9220 9221 9222 9223 9224 9224 9225 9226 9227 9228 9229 9230 9231	459.30 460.00 460.50 461.00 461.50 462.00 463.00 463.65 464.00 465.00 465.00 466.00 466.00 466.00 468.00 469.00	460.00 460.50 461.00 461.50 462.00 463.00 463.00 463.65 464.00 464.50 465.00 465.00 465.00 465.00 469.00 469.50	0.70 0.50 0.50 0.50 0.50 1.00 0.65 0.35 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50	1 Tr. 1 Tr.	1 20 2 25 r. Perv. 3 15	Au, gr Au NIL 0.02 0.01 NIL 0.01 0.01 0.01 NIL NIL NIL NIL NIL 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	AU, UNECK
469.50	545.00	 LAPILLI TUFF Hematite + chlorite + sericite. Massive dark green to purple, heterolithic lapilli tuff. Irregular mottled colouration due to patchy zones of chlorite, sericite and hematite alteration. Unit is comprised of 5-7% angular lapilli clasts from 3 mm to 5 cm long in a very fine grained massive ash matrix. Clasts are comprised of: 1) 60% dark green spotted trachyte. 2) 30% light brown, fine grained trachyte. 3) 10% variable trachyte and/or mafic volcanic. Typically matrix is a purple-maroon with pervasive hematization which grades to chlorite and sericite altered tuffs generally proximal to faults and/or quartz ± albite veins and occasionally as broad zones of sericitization which grades to hematite with no apparent controlling structure. 469.50 - 472.50 Moderately pervasively silicified and is cut by an irregular stockworking of quartz and quartz breccia veins with angular wall rock clasts up to 2 cm. Appears to be late, non-mineralized vein system. 	9232 9233 9234 9235	469.50 470.30 471.00 471.50	470.30 471.00 471.50 472.00	0.80 0.70 0.50 0.50	5	7 10 7 10 3 5-7	NIL NIL NIL 0.02	

HOLE: AK-91-38

PAGE: 18 of 23

INTE	RVAL		DESCRIPTION				SAN	IPLE				AS	SAYS
FROM	ТО			No.	From	То	Length %Rec	%Py %	QV	%Ser		Au, g/t	Au,Check
				9236	472.00	472.50	0.50		2	5	1	0.01	
				9237	472.50	473.10	0.60					NIL	
				9238	473.10	474.00	0.90					NIL	
				9239	474.00	475.00	1.00		Tr.	5	1	NIL	
				9240	475.00	476.00	1.00					0.01	
		176 75 179 10	Madamataka faliatad mide miana antista (C. 400 a.g. 11.1.	9241	476.00	476.75	0.75					NIL	
		470.75 - 478.10	Moderately tonated with wispy sericite @ 40° ica which	9242	476.75	477.50	0.75					NIL	
			is cut by a strong anastomosing chlorite + quartz iracture	9243	477.50	478.10	0.60		3-5	15		NIL	
			sip $@ 10$ ica. Numerous barren white quartz \pm albite	9244	478.10	479.00	0.90		3-5	15	1	NIL	
			vennets crosscutting tonation and subparallel ica.	9245	479.00	480.00	1.00					NIL	
		100 00 102 20	Fault rong @ 759 ton Cariaita i ablanita i augusta	9240	480.00	480.80	0.80					NIL	i
		481.00 - 481.70	Crushed, fractured and sericitized tuff with irregular crenulated sericite and 3% barren white irregular quartz	9241	400.00	481.70	0.90		3-3	15-25		0.01	
		481.70 - 482.10	Strongly deformed, crushed and fractured tuff with strong tight chlorite mud slips. 5-7% quartz as, laminated quartz $+$ chlorite at slips and late barren crosscutting quartz \pm albite veins.	9248	481.70	482.40	0.70		5-7	20		NIL	
		482.10 - 483.20	Less crushed, more foliated tuff with 10% wispy sericite and prominent clast elongation @ 30° tca.	9249	482.40	483.20	0.80		2	10		0.01	
		483.15 - 483.20	1.5 cm white quartz vein with sharp chlorite + sericite	9250	483.20	484.00	0.80					NIL	
			slip boundaries @ 40° tca.	9251	484.00	485.00	1.00					NIL.	
			• -	9252	485.00	485.50	0.50		Tr.	2-3		NIL.	
		485.50	Fault @ 50°. Sericite + chlorite + quartz. 2 cm wide	9253	485.50	486.00	0.50		Tr.	5-10		NIL.	
			foliated quartz vein with internal sericitic suturing and	9254	486.00	487.00	1.00		1-2	5-10		0.02	
			chloritic boundaries on a tight chlorite slip.	9255	487.00	488.00	1.00					NIL.	
		485.50 - 487.00	Unit is moderately well foliated @ 50° tca with patchy wispy sericite and a weak to moderate patchy pervasive sericite alteration and is cut by 1-2%, \leq 0.5 cm wide,										
			barren quartz \pm albite veinlets parallel to foliation.	9256	488.00	489.00	1.00	1				NIL	
				9257	489.00	490.00	1.00					NIL	
		490.40	Fault @ 60° tca. Sericite + quartz. Sharp strong sericitic	9258	490.00	490.50	0.50		1	5-10		0.01	
			slip with 2-3 cm wide wispy irregular sericitic bleaching of wall rock on either side of slip.	9259	490.50	491.00	0.50					NIL	
		491.00 - 491.40	Fault @ 15° tca. Sericite + chlorite + quartz. Very	9260	491.00	491.50	0.50		2-3	10-15		0.01	
			irregular 1 cm wide quartz + chlorite breccia vein with	9261	491.50	492.00	0.50	1				NIL	
			angular included wall rock fragments. Wall rock contains	9262	492.00	493.00	1.00					NIL	
		L	irregular chloritic fracturing and wispy sericite cut by late barren white quartz pods veinlets.	9263	493.00	494.00	1.00					NIL	

HOLE: AK-91-38

PAGE: 19 of 23

INTE	ERVAL	DESCRIPTION				SAN	IPLE			· · · · · · · · · · · · · · · · · · ·	AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
		 500.15 - 500.30 Fault @ 55° tca. Sericite + chlorite + quartz. Marked by two strong tight, 1 cm wide, sericite + chlorite slips. Interstitial to slips, tuff is buff-brown sericitic with 5% barren quartz ± albite veinlets (≤ 1 cm). 510.00 - 516.00 Sericitized lapilli tuff. No prominent structure evident. 510.00 - 510.70 Upper contact is gradational with sericitization proximal to quartz ± albite veinlets. 510.70 Pervasively sericitized with alteration evident in matrix and also of lapilli clasts. 528.60 Fault @ 40° tca. Sericite + chlorite + quartz. Strong wispy sericitic foliation over a width of 7 cm proximal to hairline chloritic slips with barren quartz ± albite veinlets. 533.50 - 545.00 Gradational hematiticsericitic, patchy pervasive sericitization of unit with intercalated zones of hematitic tuff grading to yellow-green sericitized tuffs. Massive to moderately foliated with sericitic fabric and clast elongation @ 35° tca. 	9264 9265 9266 9267	541.00 542.00 543.00 544.00	542.00 543.00 544.00 545.00	1.00 1.00 1.00 1.00		1-2 Tr. Tr. Tr.	10 10 10 10-15		0.03 0.02 0.01 0.01	
545.00	560.10	 LAPILLI TUFF Sericitic, massive, moderately well foliated, heterolithic lapilli tuff. Comprised of 5-10% angular heterolithic lapilli clasts from 0.5-5 cm, avg 1-2 cm, frequently elongated parallel to foliation @ 35-40° tca. Clasts consist of: 1) 80% black-white spotted chloritic trachyte(?). 2) 15% dark green, chloritic to fuchsitic altered aphanitic volcanics. 3) 5% light grey to buff to pink very fine grained trachyte frequently sericitic. Matrix is very fine grained to aphanitic light buff to yellow-green, pervasively sericitized (soft white streak) with a foliated wispy sericitic fabric developed. Non-magnetic. 546.30 - 546.60 1 cm white-cream quartz ± albite vein crosscutting foliation @ 15° tca. Vein carries 0.5% spotty pyrite located on small blue-grey patches (quartz?) up to 1 cm wide within barren white vein. 	9268 9269 9270	545.00 545.50 546.30	545.50 546.30 546.90	0.50 0.80 0.60	0.5		25-30 25-30 25-30	Perv. Perv.	0.02 NIL 0.09	
		 546.95 - 547.30 Quartz + sericite + pyrite vein @ 30-40° tca. Upper and lower contacts are 0.5-1 cm wide, foliated to schistose wispy sericite with 2% very finely disseminated pyrite. Vein comprised of at least two generations: 1) Milk white to cream somewhat irregular quartz ± albite (75%) non-mineralized. 2) Blue-grey quartz and wispy banded 	9271	546.90	547.35	0.45	3-4	70	15-20		8.37	7.99

.

HOLE: AK-91-38

PAGE: 20 of 23

INTER	VAL	DESCRIPTION					SAN	IPLE				AS	SAYS
FROM	то		No.	From	То	Length 9	%Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
		 sericite + 3-5% pyrite, suturing @ 40° tca and fracture fillings within earlier white quartz. 547.30 - 547.75 Foliated sericitic lapilli tuff with 0.5-1% finely disseminated pyrite. 1% proximal to vein for * 5 cm dropping off rapidly to 0.5% to trace, away from above vein. Cut by 2% barren white-buff quartz albite veins eligible obligues to foliation and ergent foliation. 	9272	547.35	547.75	0.40		0.5-1				0.22	
		 547.80 - 548.37 Quartz + sericite + pyrite vein. Upper contact marked by a somewhat irregular white-cream barren quartz ± albite vein which is cut by an irregular anastomosing hairline sericite + pyrite slip @ 10-15° tca. Down-hole of this slip, the white quartz is cut by irregular anastomosing 3-5% blue-grey quartz + sericite + pyrite sutures and fracture filling. Lower contact is foliated to sheared @ 30° tca with wispy sericite and 1% fine grained pyrite up to 7 cm from vein. 	9273	547.75	548.45	0.70		2-3	65	15	Perv.	2.76	
		548.50 - 550.50 An irregular, 1 mm to 1 cm wide, anastomosing chlorite + quartz fracture slip @ 0-15° tca which offsets earlier quartz ± albite vein ≤ 0.5 cm.	9274 9275 9276 9277	548.45 549.00 549.50 550.00	549.00 549.50 550.00	0.55 0.50 0.50		0.5 Tr.	1 1 Tr.	10 10 10-20		0.05 1.62 0.96	
		550.50 - 555.00 Sericitic lapilli tuff contains widely spaced sporadic quartz ± albite veins, ≤ 2-3 cm wide, which occasionally carry trace euhedral spotty pyrite. Veins are milk white to buff in cores and appear to be late.	9278 9279 9280 9281 9282	550.00 550.50 551.00 551.50 552.00 552.50	551.00 551.50 552.00 552.50 553.00	0.50 0.50 0.50 0.50 0.50		Tr. Tr. Tr.	1-2 2 1-2	10-20 10-20 10-20 20 20		0.75 2.33 1.25 1.74 0.01 0.01	
		 553.55 - 553.60 Fault @ 65° tca. Chlorite + sericite + quartz. Laminated sutured quartz ± albite vein with internal chlorite + sericite wisps bounded by sharp chloritic slips. 559.20 - 559.55 Fault @ 35° tca. Quartz + sericite + pyrite vein. 	9283 9284 9285 9286 9287 9288 9290 9291 9292 9293 9294 9295	553.00 553.50 554.00 555.00 555.50 556.00 556.50 557.50 557.50 558.00 558.50 558.50 558.51	553.50 554.00 555.50 555.50 556.00 556.50 556.50 557.50 557.50 558.50 558.50 558.50 558.50 558.50 559.15 559.60	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		1 Tr. 2-3	1-2 Tr. 1	25 30 25 25 15-20 15-20 15-20 15-20 15-20 15-20 30-40		0.02 0.02 NIL 0.02 NIL NIL 0.02 NIL NIL NIL 0.02	

HOLE: AK-91-38

PAGE: 21 of 23

.

INTE	RVAL	DESCRIPTION				SAN	IPLE			AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py	%QV	%Ser	Au, g/t	Au,Check
		 559.20 - 559.35 Strong chlorite + sericite + gouge shear @ 35° tca with 3-5% fractured to brecciated white quartz and trace disseminated pyrite. 559.35 - 559.55 Crushed, fractured and sericitized tuff with two irregular 1-3 cm wide, blue-grey quartz veins and anastomosing braided fractures with wispy internal sericite and 3-5% very fine grained pyrite. 560.00 - 560.10 Fault @ 30-55° tca. Upper contact is a blue-grey, 2-3 mm wide, mud gouge slip @ 30° tca. May contain smeared sulphides. Lower contact is a 5 mm wide chloritic mud gouge @ 55° tca. Interstitial to breaks is foliated sericitic tuff with tight chloritic slips and trace disseminated pyrite. 	9296	559.60	560.10	0.50	Tr.	1-2	25	0.46	
560.10	564.10	 CONGLOMERATE/GRAYWACKE Chlorite + sericite. Interdigitated massive to foliated graywacke, pebbly graywacke and conglomerate horizons which are pristine and undeformed with a weak pervasive spotty sericitization. Lower contact of sediments is a sharp strong chloritic slip @ 50° tca. 560.10 - 561.00 Pebbly graywacke (1-2% pebbles) which is yellow-green, moderately sericitized but virtually undeformed. This grades to polymictic conglomerate from 561.0-562.1 m. 562.10 - 562.60 Massive graywacke, minor mudstone chips. 562.60 - 564.10 Tightly packed polymictic pebble conglomerate. 	9297 9298 9299 9300 9301 9302 9303	560.10 560.60 561.10 562.10 562.60 563.10 563.60	560.60 561.10 562.10 562.60 563.10 563.60 564.10	0.50 0.50 1.00 0.50 0.50 0.50 0.50	Tr. Tr.	1 Tr.	5-10 5 5-7	0.20 0.03 NIL 0.02 0.05 0.01 NIL	
564.10	583.10	LAPILLI TUFF Moderately well foliated @ 30° tca, pervasively sericitized heterolithic lapilli tuff. Readily distinguishable by its overall spotted appearance due to predominantly dark green to black-white spotted angular lapilli clasts in a light green sericitic matrix. Clasts are: 1) 80% dark green-black, frequently white spotted, angular trachyte, 0.5-5 cm. 2) 15% very fine grained, chloritic to fuchsitic altered, mafic(?) volcanics. 3) 5% light grey to buff- brown fine, grained trachyte. Matrix is very fine grained light green-white with 30-50% pervasive and wispy sericite.									
		564.10 - 564.40 0.5% finely disseminated pyrite in matrix.	9304 9305 9306	564.10 564.60 565.10	564.60 565.10 566.00	0.50 0.50 0.90	Tr.	Tr.	25-30 20-30 20-30	0.02 0.01 NIL	

HOLE: AK-91-38

PAGE: 22 of 23

PROM TO No. From To Length %Rec %Fy %OV %Ser Au. gh Au. gh Au. Check 566.70 - 566.80 Foliated row waldy schitose tuff with a 2 cm wide mith white quartz ± ablie win @ 30° tca, parallel to foliation. Vein carries 1-2% patchy print: closs which appear to be focated on and proxima to raming which have a ted blue mineral (galena?) smeared on fractures. Foliated scriftic tuff adjacent to vein carries 1 % very finely disseminated print: 16% very finely disseminated print: 16% very finel and strong Violated wardy internative finel and strong Violated 16% very finel and strong Violated 16% very finel ward with very internative and thing from to 2 cm ward with to grey-blue, sulphide-tured 'track & are ward with wardy internative and mark with to grey-blue, sulphide-tured 'track are after are print evalues and ships from the orgen care after and track very into well spacet with haring bulk very internative finel and strong Violated very internative track (are after are after are with what to grey-blue, sulphide-tured 'track are after are print evalues and staff from the orgen care after are with a finel bulk well spacet with haring bulk very internative track are after after are print evalues and staff from the orgen are after are were after at the print with are print. "The age after are print evalues are anastronosing bulk sprint error after are after are print evalues anastronosing bulk sprint for the orgen are after are print evalues anastronosing bulk sprint are from harithe careak which tend to braid and aplay out into wall ro	INTE	RVAL	DESCRIPTION	Ι				SAN					4.0	0.4.320
100 100 <td>FROM</td> <td>то</td> <td></td> <td></td> <td>T</td> <td></td> <td></td> <td>SAN</td> <td></td> <td></td> <td></td> <td></td> <td>AS</td> <td>SAYS</td>	FROM	то			T			SAN					AS	SAYS
566.70 - 566.80 Foliated to weaky schiatose tuff with a 2 cm wide milk white (aurtz ± abite vein @ 30" tea, parallel to foliation. Vein carries 1-2% patchy pritic clos which appear to be located on and proximal to small halfune (arriter ing which have a steel blue mineral (galena?) smarced on fractures. Foliated servicits uff adjacent to vein carries 1% very finely discentiated to yrite. The step of t				<u> </u>	From	10	Length	%Rec	%Py	%QV	%Ser		Au, g/t	Au,Check
566.70 - 566.80 Foliated to weakly schistose tuff with a 2 cm wide milk white quarts ± albite vein @ 30° tos, parallel to foliation. Vein artise 1.2% packly privile closs with appear to be located on and proximal to small haifine fracturing which have a site blue minarel (galerar) smarted on fractures. Foliated service to unit adjacent to vein carries 1% very finely disseminated prive weing, Well foliated accombandia blue fractures. Foliated service rounded up to throughout. Section and slips from 1 mm to 2 cm wide. Vein arte milk white to pervidue, suphibide-inged quarts ± albite veins with winy internal service the prive tand atomogy foliated service the prive indice grant weine @ 30° tas. 3 cm wide, well spaced within non-mineralized lapilit utff. 9314 569.80 570.30 0.50 2 5 15 Sil. 0.50 7.7. Tr. 20.30 0.02 571.15 - 571.20 Quarts ± service + prive is and milk white fractured 'trick & seal' quart z + brive weing finated service prive weing @ 30° tas. 3 cm wide, well spaced within non-mineralized lapilit utff. 9314 569.80 570.30 0.50 Tr. 7.1.5 1 20.30 0.002 Tr. 20.30 0.002 571.15 - 571.20 Quarts ± service + prive weing @ 30° tas. 3 cm wide well spaced within non-mineralized lapilit utff. 9314 569.80 570.30 0.50 Tr. 7. 12 0.30 0.002 Tr. 20.30 0.002 571.15 - 571.20 Quarts ± service + prive weing @ 30° tas. 3 cm wide well spaced within non-mineralized lapilit utff. 9314 569.80 570.30 0.50 Tr. 7. 12 0.30 0.002 Tr. 20.30 0.002 571.15 - 571.20 Quarts ± service + prive weing @ 30° tas. 3 cm wide well spaced within mortalized lapilit utff. 9314 569.80 570.30 0.50 Tr. 7. 12 0.30 0.002 Tr. 12 0.30 0.002 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
300.0° 306.0° 701460 in Weakly Xentistice tuit with 2 cm wide milk parent to foliated in White quarts ± ablie vein (30° 40°, parallel to foliation Vein earries 1:2% patchy pyrite. close with sericite ± quarts ± pyrite with weak and provide to earries 1% explicit of galaxies. To biased earries 1% explicit of galaxies and the pyrite include and pyrite. Total pyrite and acceleration with sericite ± quarts ± pyrite veins and thigh fractured with non-mineralized tappil to 1.2% 9310 567.00 550.00 0.50 20.30 0.02 568.85 569.80 Silicified foliated zone-what allicitied rescilic to 4 quarts ± pyrite veins and taips for the dyrite throughy foliated sericite ± pyrite and accellar to yrite. Total pyrite 1-2%. 9312 568.80 569.80 0.50 2 5 15 Sil. 0.12 569.80 511.5 512.00 0.50 2 5 15 Sil. 0.12 568.85 569.80 511.5 569.80 550.80 509.80 50.00 2 3 15 Sil. 0.12 569.80 511.5 512.00 569.80 570.30 570.00 7.7 Tr. 7.20.30 0.02 569.80 511.5 512.00 520.00 570.30 570.00 570.00 7.7 Tr. 7.20.30 0.02 511.5 512.00				9307	566.00	566.50	0.50		Tr.	Tr.	20-30		NIL	
winte quartz z haline Vein (g 30° tes, partiel to toliation. 9309 9370 567.50 0.50 20.30 0.02 vein carrie 1-2% partiel point ice in straint hairine fracturing which have a steed blue mineral (gesterar) marged on fractures. 9310 567.50 568.80 0.80 20.30 0.02 568.85 569.80 licitifed foilated zone with sericite + quartz + prite vein series 9311 568.80 569.30 0.50 2 5 15 Sil. 0.76 568.85 569.80 licitifed foilated zone with sericite + quartz + prite vein series 15 Sil. 0.76 2 3 15 Sil. 0.76 568.85 569.80 licitifed foilated zone with sericite + quartz + prite vein series 15 Sil. 0.76 2 3 15 Sil. 0.76 569.80 strong registrat = series + prite vein series strong registrat = series			500.70 - 500.80 Foliated to weakly schistose tult with a 2 cm wide milk	9308	566.50	567.00	0.50		0.5	1-2	20-30		0.29	
Vent Charles 1-2% patchy pyrtic clobs which appear to be located on and proximal to same hairing resturing which have a steel blue mineral (galena?) smeared on fractures. Foliated secnicits utf adjacent to vein carries 1% very finely disseminated pyrite. 9311 568.00 568.00 0.50 20.30 0.03 568.85 - 569.80 Sili field conservate at licities to weining. Well foliated zone with a silicities to gravity and the pyrite region and aligns from 1 mm to 2 cm wide. Veins are milk white to gravity blue, subpide-inged, quartz ± abite veins with well spaced within non-mineralized lapill tuff. 9314 569.80 570.30 0.50 2 5 15 Sili. 0.12 569.80 - 571.00 Quartz + sericite + pyrite wing and transphy foliated sericite + pyrite aigns veinets, 5 0.5 cm wide, well spaced within non-mineralized lapill tuff. 9314 569.80 570.30 0.50 Tr. Tr. 20.30 0.02 571.15 - 571.20 Quartz + sericite + pyrite vein @ 30° tca. 3 cm wide well spaced within non-mineralized lapill tuff. 9314 569.80 570.30 0.50 Tr. Tr. 20.30 0.02 571.15 - 571.20 Quartz + sericite + pyrite vein @ 30° tca. 3 cm wide well spaced within non-mineralized lapill tuff. 9314 569.80 570.30 0.50 Tr. Tr. 20.30 0.02 571.15 - 571.40 Quartz + sericite + pyrite with sharp foliated sericite pyrite vein @ 30° tca. 3 cm wide milk white folicer/or galena?) fracture filings or saaling. 2% pyrite. 57			white quartz \pm abute vein @ 30° tca, parallel to foliation.	9309	567.00	567.50	0.50				20-30		0.02	
biological on and proximal to small haltine fracturing which have a sited blue mineral (galean?) smaller of infactures Foliated sericitic tuff adjacent to vein carries 1% very finely disseminated prite. 9311 568.00 569.30 0.50 2 5 15 Sil. 0.76 568.85 509.80 Silicified foliated zone with sericite + quartz + prite veining. Well foliated somewhat silicified lapilit utff with 1% very finely disseminated prite throughout. Section carries five prominent quartz + sericite + prite veina and slips from 1 mm to 2 m wide. Veina ser milk white to grey-blue, subplide-inged, quartz ± ablic veins with wispy internal sericite + prite silps veinites, 5 0.5 m wide milk white fractured 'track & seal' quartz vein with barry follated sericitic pritic boundaries. Vein is internally finely firet sericite + prite veing 0 *01 ca. 3 cm wide milk white fractured 'track & seal' quartz vein with barry follated sericitic pritic boundaries. Vein is internally finely firet very strong. chorite md smared, irreguita motybdenite or galean?) fracture fillings or sealing. 2% prite. 9314 569.80 570.30 0.50 Tr. Tr. 20.30 0.02 571.15 571.25 Out Care Vein Strong. Chorite md smared, irreguita motybdenite or galean?) fracture fillings or sealing. 2% prite. 9314 569.80 571.30 573.00 Tr. Tr. 20.30 0.02 574.75 1 cm wide white-buff, barren quartz ± ablic vein disseminated prite: 9317 573.00 573.00 <			vein carries 1-2% patchy pyritic clots which appear to be	9310	567.50	568.00	0.50		1		20-30		0.02	
Note a lace to be mineral (gateral) sincered on fractures. Foliated servicite util adjacent to vein carries 1% very finely disseminated pyrite.9312568.80569.300.502515Sil.0.76568.85 - 569.09Silicited foliated zone with servicit + quartz + pyrite veining. Well foliated zone with servicit + quartz + pyrite veining from 1 mm to 2 mm vide. Veining of grey-bule, subjide-linged, quartz ± abite veins with well space attribute to grey-bule, subjide-linged, quartz ± abite veins with well space attribute to grey-bule, subjide-linged, quartz ± abite veins with well space attribute to grey-bule, subjide-linged, quartz ± abite veins with well space attribute to 2 mm vide. Vein is internally foliated servicit e pyrite sign with exist. \$ 0.5 cm wide, well space attribute to 2 mide. Vein is internally foliated servicit e pyrite veins @ 307 tc.3. \$ 0.50Tr.Tr. 20-300.02569.80 - 571.00Quartz + servicit e pyrite wing @ 307 tc.3. 5 mm vide, well space attribute bound area. Vein is internally foliated servicit e pyrite veins @ 307 tc.3. \$ 0.50Tr.Tr. 20-300.02573.15 - 573.40Fault zone @ 35-50° tcs. Servicite + chorite + quartz + pyrite. Yery strong, chloritic mud smazerd, irregular anastomosing bue-grey sips with 1-2%. for adian space you into wall rock. Internally foliated and carries 1% finely disseminated pyrite. These silp planes range from halfine cracks which terd to baid and splay out into wall rock. Internally to strate foliated and carries 1% finely disseminated pyrite. Not and applay out into wall rock. Internally to strate foliated and carries 1% finely disseminated pyrite with servicite + pyrite foliation @ 45° tc. Carries 0.51% finely disseminated pyrite adjacent to barren vein.<			located on and proximal to small hairline fracturing which	9311	568.00	568.80	0.80				20-30		0.03	
 568.85 - 599.80 Silicified foliated zone with sericite + quartz + pyrite veins and slips from 1 mm to 2 cm wide. Veins are mik while to grey-blue, sulphide-inged, quartz ± ablie veins with wikey functional sericite + pyrite and strongy foliated sericite pyrite boundaries. Vein is internally foliated sericite pyrite in boundaries. Vein is internally foliated sericite pyrite vein genary) foliated sericite + pirite serice + quartz + purite in strongy foliated sericite pyrite boundaries. Vein is internally foliated sericite pyrite boundaries. Vein is internally foliated periodic pyrite. Texture fillings or sealing. 2% pyrite. 573.15 - 573.40 Fauit zone @ 35.50° tas. Sericite + chorite + quartz + pyrite. Very strong, chorite mud smared, irreguide sericite + pyrite angle and play out into wall recase which tend to braid and play out into wall recase which tend to braid and pay out into wall recase which tend to braid and pay out into wall recase which tend to braid and pay out into wall recase shift brief foliation @ 45° tas. Carrise 05.1% finely disseminated pyrite foliation @ 45° tas. Carrise 05.1% finely disseminated pyrite and pyrite and and pay out into wall recase for the prite disseminate pyrite with % 575.50 for tool for the prite serief out parts + abite tend @ 575.50 for tool for the prite serie 05.1%			nave a steel blue mineral (galena?) smeared on fractures.											
568.85 - 569.80 Sile foliated somewhat silicified lapilit utf, with 1% very finely disseminated pryrite hroughout. Section and slips from 1 mm to 2 cm wide. Veins are milk white to grey-blue, sulpilde-inged, quartz + sericite + pryrite are milk white tradition remember 1.2 moly blue spirate 1.2 moly blue			Fonated sericitic full adjacent to vein carries 1% very											
508.85 - 509.80 Silicitical tolilitation zone with sensite + quartz + pyrite veining. Well foliated somewhat silicified apilit uity 1% very finely disseminated pyrite throughout. Section carries five prominent quartz + sercite + pyrite and strongy foliated sercite + pyrite ang strong y foliated sercite + pyrite sing sercites, s 0.5 cm wide, well spaced within non-mineralized lapilit uff. 9314 569.80 570.30 0.50 9314 569.80 570.30 0.50 Tr. 0.5 1 20.30 0.00 9315 570.30 571.00 0.70 Tr. 0.5 1 20.30 0.00 9316 571.00 571.50 572.00 0.50 Tr. 0.5 1 20.30 0.02 9316 572.00 0.50 Tr. 1 20-30 0.02 9316 572.50 0.50 Tr. 1 20-30 0.02 9316 572.50 0.50 Tr. 1 20-30 0.02 9316 572.50 0.50 Tr. 1 20-30 0.02 9316 573.00 573.50 0.50 Tr. 0.50 Tr. 0.51 120.30 0.02 9322 574.00 575.50 0.50 Tr. 0.51 120.30 0.02 9325 575.50 0.50 Tr. 0.51 120.30 0.02 9325 575.50 0.50 Tr. 0.51 120.30 0.04 9325 575.50 0.50 Tr. 0.51 120.30 0.04 9325 575.50 0.50 Tr. 0.51 120.30 NiL			tinely disseminated pyrite.											
veining, wein loalized somewhat saticlied applit uff with 1% very finely disseminated pyrite throughout. Section carries five prominent quartz + sericite + pyrite veins and aligs from 1 mn to 2 cm wide. Veins are mitk to grcy-bue, sulphide-tinged, quartz ± albite veins with wispy internal sericite + pyrite and strongly foliated sericite + pyrite angins. Total pyrite 1-2%. 9314 569.80 570.30 0.50 Tr. Tr. 20-30 0.02 569.80 - 571.00 Quartz + sericite + pyrite sips veinlets, 5 0.5 cm wide, well spaced within no-mineralized lapilit uff. 9314 569.80 570.30 0.50 Tr. Tr. 20-30 0.009 0.02 571.15 - 571.25 Quartz + sericite + pyrite vein@ 30° (ca. 3 cm wide molybolenite or galena?) fracture filings or sealing. 2% pyrite. 9314 569.80 570.30 0.50 Tr. Tr. 20-30 0.009 0.02 9315 573.15 - 573.40 Fault Due grey sips with 1-2% fine grained pyrite. These sip pis piss with 1-2% fine grained pyrite. These sip piss with 1-2% fine grained pyrite adjacent to barren vein. 9323 574.50 575.00 0.50 Tr. Tr. 20-30 NIL 9323 575.50 0.50 Tr. Tr. 20-30 NIL 9325 575.50 0.50 Tr. Tr. 20-30 NIL 9326 576.50 575.00 0.50 Tr. Tr. 20-30 NIL 9326 576.50 575.00 0.50 Tr. Tr. 20-30 NIL 9326 576.50 575.00 0.50 Tr. Tr. 20-30 NIL			508.65 - 509.80 Shicilied foliated zone with sericite + quartz + pyrite	9312	568.80	569.30	0.50		2	5	15	Sil.	0.76	
 1% very linely disseminated pyrite throughout. Section carries five prominent quartz + sericite + pyrite vensa and slips from 1 mm to 2 cm wide. Veins are milk white to grey-blue, subplication of the pyrite slips events and slips from 1 mm to 2 cm wide. Veins are milk white pyrite slips events and slips from 1 mm to 2 cm wide. Veins are milk white pyrite slips events to sericit + pyrite slips events to sericit + pyrite slips events to sericit + pyrite slips events to serie the serie term with sharp foliated sericitie + pyrite slips events to serie term with sharp foliated sericitie pyrite boundaries. Vein is internally 9316 571.00 0.50 Tr. Tr. 20.30 0.00 0.00 0.00 0.00 0.00 0.00 0.			veining. Well foliated somewhat silicitied lapilli tuff with	9313	569.30	569.80	0.50		2	3	15	Sil.	0.12	
 carries u/p prominent quartz + sericite + pyrite vein mik white to grey-blue, sulphide-tinged, quartz ± abite veins with wispy internal sericite + pyrite and strongly foliated sericitic + pyrite margins. Total pyrite 1.26. 569.80 • 571.00 Quartz + sericite + pyrite silps veinlets, 5 0.5 cm wide, well spaced with non-mineralized lapilli tuff. 571.15 • 571.25 Quartz + sericite + pyrite vein @ 30° tca. 3 cm wide milk white fractured "crack & seal" quartz vein with sharp foliated sericitic pyrite boundries. Vein is internally finely fractured "crack & seal" quartz vein with sharp foliated sericitic pyrite boundries. Vein is internally finely fractured with hairline blue-grey quartz + pyrite (± molybdenite or galena?) fracture filings or sealing. 2% pyrite. 573.15 • 573.40 Fault zone @ 35.50° tca. Sericite + chlorite + quartz + pyrite (± molybdenite or galena?) fracture filings or sealing. 2% pyrite. 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite disseminated pyrite. 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite disseminated pyrite adjacent to barren vein. 9323 574.50 575.00 0.50 Tr. Tr. 20.30 NiL 9323 576.50 0.50 Tr. Tr. 20.30 NiL 9324 575.50 575.00 0.50 Tr. Tr. 20.30 NiL 9325 575.50 575.00 0.50 T	ľ		1% very linely disseminated pyrite throughout. Section											
 and sing thin 1 min to 2 cm whole verins are mink white to grey-blue, subjide-inegal, quartz ± a bitic verins whith wispy internal sericite + pyrite alips veinlets, s 0.5 cm wide, well spaced within non-mineralized lapilit tuff. 569.80 - 571.00 Quartz + sericite + pyrite silps veinlets, s 0.5 cm wide, well spaced within non-mineralized lapilit tuff. 571.15 - 571.25 Quartz + sericite + pyrite wime 30° test. 3 cm wide milk white fractured "crack & seal" quartz vein with sharp foliated sericitic pyrite iboundaries. Vein is internally finely fractured with hairline blue-grey quartz + tyrite (± molybdenite or galena?) fracture filings or sealing. 2% pyrite. 573.15 - 573.40 Fault zone @ 35.50° tca. Sericite + chorite + quartz + pyrite. (± molybdenite or galena?) fracture filings or sealing. 2% pyrite. 574.75 1 cm wide white-buff, barren quartz + albite vein @ &0° tea crossouting an earlier quartz + sericite + pyrite is 10° stips unit is crusshed, foliated and carries 1% finely disseminated pyrite. To subdef, foliated and carries 1% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz + albite vein @ 60° tea. Carries 0.51% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz + albite vein @ 60° tea. Carries 0.51% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz + albite vein @ 60° tea. Carries 0.51% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz + albite vein @ 60° tea. Carries 0.51% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz + albite vein @ 60° tea. Carries 0.51% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz + albite vein @ 60° tea. Carries 0.51% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quar			and sline from 1 mm to 2 cm mide Males are with white											
59:19:000: subjinderinged, quartz ± anote vens win weil spaced within non-mineralized lapilit uff. 50:11:5 - 571.25 Quartz + sericite + pyrite vin @ 30° tca. 3 cm wide milk white fractured "crack & seal" quartz vin with sharp foliated sericitic pyritic boundaries. Ven is internally finely fractured "crack & seal" quartz vin with sharp pyrite. 9314 569.80 570.30 0.50 Tr. Tr. 20-30 0.02 571.15 571.25 Quartz + sericite + pyrite vin @ 30° tca. 3 cm wide milk white fractured "crack & seal" quartz vin with sharp foliated sericitic pyritic boundaries. Ven is internally finely fractured with haritine blue-grey quartz + pyrite (± molybdenite or galena?) fracture filings or sealing. 2% pyrite. 9310 572.50 573.00 0.50 Tr. Tr. 20-30 NIL 573.15 573.40 Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite. Very strong, chlorite mud smered, irregular anastomosing blue-grey slips with 1-2% fine grained pyrite. These slip planes range from hairline cracks which teen do braid and splay out into wall rock. Interstitial to slips unit is crushed, foliated and carries 1% finely disseminated pyrite. 9323 574.50 575.00 0.50 Tr. 0.5 1 20-30 0.04 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite pyrite adjacent to barren vein. 9323 574.50 575.00 0.50 Tr. 0.5 1 20-30 0.04			to gray blue, subbide timeed, subtide the sub-											
secretical = yprite and strongy loaded secretical = yprite and strongy loaded well spaced within non-mineralized lapilit uff. 9314 569.80 570.30 0.50 Tr. Tr. Tr. 20-30 0.02 571.15 571.25 02nart z + sericite + pyrite win @ 30' tea. 3 cm wide milk white fractured "crack & seal" quartz vein with sharp foliated sericitic pyritic boundaries. Vein is internally finety fractured with hairine blue-grey quart z + pyrite (±) 9314 569.80 570.30 571.00 77. Tr. 77. 20-30 0.02 9317 571.50 572.00 0.50 Tr. Tr. 77. 20-30 0.36 9318 572.00 0.50 Tr. Tr. 20-30 NIL 9319 572.50 573.00 0.50 Tr. 1 20-30 0.02 9319 572.50 573.00 0.50 Tr.			to grey-olde, surpline-iniged, quartz \pm alone veins with											
569.80 - 571.00 Quartz + sericite + pyrite sips venites, s 0.5 cm wide, well spaced within non-mineralized lapilit utf. 9314 569.80 570.30 0.50 Tr. Tr. 20-30 0.02 571.15 - 571.25 Quartz + sericite + pyrite vein @ 30° tca. 3 cm wide, milk while fractured "crack & seal" quartz vein with sharp foliated sericitic pyritic boundaries. Vein is internally finely fractured with hairline blue-grey quartz + pyrite (± molybdenite or galena?) fracture fillings or sealing. 2% pyrite. 9314 569.80 570.30 571.00 0.70 Tr. Tr. 20-30 0.02 573.15 - 573.40 Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite (± molybdenite or galena?) fracture diftings or sealing. 2% pyrite. 9310 572.50 573.00 573.00 0.50 Tr. Tr. 20-30 NIL 573.15 - 573.40 Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite. These slip planes range from hairline cracks which tend to braid and splay out into wall rock. Interstitiat to slips unit is crushed, foliated and carries 1% finely disseminated pyrite. 9323 574.50 575.00 0.50 Tr0.5 1 20-30 NIL 574.75 1 cm wide white-buff, barren quartz ± ablie vein @ 80° tca crosscutting an earlier quartz + sericite + pyrite foliation @ 45° tca. Carriee 0.5-1% finely disseminated pyrite. 9323 574.50 575.00 575.00 Tr0.5 1 20-30 NIL			sericite + purite marging Total marite 1.30											
571.15 - Strike a price args to interact and price. These args to interact args to interac			569.80 - 571.00 Quartz + sericite + purite sline veinlete < 0.5 cm wide	0214	640.00	500.00			_	-				
571.15 - 571.25 Quartz + sericite + pyrite vein @ 30° tca. 3 cm wide milk white fractured "crack & seal" quartz vein with sharp foliated sericitic pyritic boundaries. Vein is internally finely fractured with hairline blue-grey quartz + pyrite (± molybdenite or galena?) fracture fillings or sealing. 2% pyrite. 9315 571.50 571.50 571.50 572.00 0.50 17. 120.30 0.36 573.15 - 573.40 Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite. Very strong, chloritic mud smeared, irregular anastomosing blue-grey sips with 1-2% fine grained pyrite. These slip planes range from hairline cracks which tend to braid and splay out into wall rock. Interstitial to slips unit is crushed, foliated and carries 1% finely disseminated pyrite. 9323 574.50 575.00 0.50 Tr. 0.5 1 20.30 0.04 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 9323 574.50 575.00 0.50 Tr. 0.5 1 20.30 0.04 9324 575.00 575.00 0.50 Tr. 0.5 1 20.30 NIL 9324 576.00 575.00 0.50 Tr. 0.5 1 20.30 0.04 9324 576.00 575.00 0.50 Tr. 0.5 1 20.30 0.04 <			well snaced within non-mineralized lapilli tuff	9514	509.80	570.50	0.50		Ir.	Tr.	20-30		0.02	
 bills white fractured "grack & seal" guartz vein with sharp foliated sericitic pyritic boundaries. Vein is internally finely fractured with hairline blue-grey guartz + pyrite (± molybdenite or galena?) fracture fillings or sealing. 2% pyrite. 573.15 - 573.40 Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite. Very strong, chloritic mud smeared, irregular anastomosing blue-grey slips with 1-2% fine grained pyrite. These slip planes range from hairline cracks which tend to braid and splay out into wall rock. Interstitial to slips unit is crushed, foliated and carries 1% finely disseminated pyrite. 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 574.75 1 cm wide white-buff, barren quartz ± abite vein @ 80° tca crosscutting an earlier quartz + sericite + pyrite (575.00 575.00 0.50 Tr. Tr. 20.30 NIL 20.			571.15 - 571.25 Ouartz + sericite + pyrite vein @ 30° tos 3 cm wide	9313	571.00	571.00	0.70	:	110.5	1	20-30		0.09	
Image: State of the construction of the constructi			milk white fractured "crack & seal" quarta vein with share	9310	571.00	571.50	0.50		1-2	2	20-30		0.36	
Inely fractured with hairline bilae-grey quartz + pyriteS72.50S72.50S72.50S73.00LosonDot573.15 - 573.40Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite.9319S72.50S73.000.50Tr.1 20-300.02573.15 - 573.40Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite.9320573.00573.500.501-21-230-400.469321S73.50574.000.50Tr.Tr.20-300.469322S74.00573.500.50Tr.Tr. 25-300.029322S74.00574.500.50Tr.Tr. 20-30NIL9324S75.50575.000.50Tr.Tr. 20-30NIL9325S75.50575.000.50Tr.1 20-300.049324S75.00S75.500.50Tr.1 20-300.049325S75.50575.000.50Tr.1 20-30NIL9324S75.00S75.500.50Tr.1 20-30NIL9325S75.50576.00575.500.50Tr.1 20-30NIL9324S75.50S75.500.50Tr.Tr. 20-30NIL9325S76.50S76.00575.500.50Tr.Tr.20-309325S76.50S76.00S75.500.50Tr.Tr.20-309325S76.50S76.50S77.000.50Tr.Tr.20-309326 <td>1</td> <td></td> <td>foliated sericitic puritic boundaries. Vein is internally</td> <td>0210</td> <td>572.00</td> <td>572.00</td> <td>0.50</td> <td></td> <td>Ir.</td> <td>1r.</td> <td>20-30</td> <td></td> <td>NIL</td> <td></td>	1		foliated sericitic puritic boundaries. Vein is internally	0210	572.00	572.00	0.50		Ir.	1 r .	20-30		NIL	
 Sing Sing Sing Sing Sing Sing Sing Sing	1		finely fractured with hairline blue area quarted + minite (+	0210	572.00	572.30	0.50		_		20-30		NIL	
 573.15 - 573.40 Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite. Very strong, chloritic mud smeared, irregular anastomosing blue-grey slips with 1-2% fine grained pyrite. These slip planes range from hairline cracks which tend to braid and splay out into wall rock. Interstitial to slips unit is crushed, foliated and carries 1% finely disseminated pyrite. 574.75 1 cm wide white-buff, barren quartz ± ablte vein @ 80° tca crosscutting an earlier quartz + sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 9320 573.00 573.50 0.50 9320 573.00 573.50 0.50 1-2 1-2 30-40 0.46 9321 573.50 574.00 0.50 Tr. Tr. 20-30 NIL 9323 574.50 575.00 0.50 Tr. Tr. 20-30 NIL 9324 575.00 575.50 0.50 Tr. Tr. 20-30 NIL 9325 575.50 576.00 0.50 Tr. Tr. 20-30 NIL 9326 576.00 576.50 0.50 Tr. Tr. 20-30 NIL 9327 576.50 577.00 0.50 Tr. Tr. 20-30 NIL 			molybdenite or galena?) fracture fillings or sealing 2%	9319	512.50	575.00	0.50		1 r .	1	20-30		0.02	
573.15 - 573.40 Fault zone @ 35-50° tca. Sericite + chlorite + quartz + pyrite. Very strong, chloritic mud smeared, irregular anastomosing blue-grey slips with 1-2% fine grained pyrite. These slip planes range from hairline cracks which tend to braid and splay out into wall rock. Interstitial to slips unit is crushed, foliated and carries 1% finely disseminated pyrite. 9320 573.00 574.50 0.50 Tr. Tr. 25-30 0.20 574.75 1 cm wide white-buff, barren quartz ± albite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 9323 574.50 575.00 0.50 Tr. Tr. 20-30 0.04 9324 576.50 576.00 0.50 Tr. Tr. 20-30 NIL 9327 576.50 576.00 0.50 Tr. Tr. 20-30 NIL 9324 576.50 577.00 0.50 Tr. Tr. 20-30 NIL 9327 576.50 577.00 0.50 Tr. Tr. Tr. 20-30 NIL			nory oconne of gatemary tractate minings of scannig. 270											
pyrite.Very strong, chloritic mud smeared, irregular anastomosing blue-grey slips with 1-2% fine grained pyrite. These slip planes range from hairline cracks which tend to braid and splay out into wall rock. Interstitial to slips unit is crushed, foliated and carries 1% finely disseminated pyrite.9323573.50574.000.50 0.50Tr.Tr.25.300.02 0.20574.751 cm wide white-buff, barren quartz ± albite vein @ 80° tca crosscutting an earlier quartz + sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein.9323574.50575.000.50Tr.Tr. 20-300.049323574.50575.000.50Tr.Tr. 20-300.049324575.00575.500.50Tr.120-300.049327576.50576.000.50Tr.120-30NIL9327576.50577.000.50Tr.Tr. 20-30NIL9327576.50577.000.50Tr.Tr. 20-30NIL			$573.15 \cdot 573.40$ Fault zone @ 35.50° tca. Sericite + chlorite + quartz +	9320	573.00	572 50	0.50	1	1 1 2	1.0	20.40		A 1/2	
574.751 cm wide white-buff, barren quartz ± albite vein @ 80° tca crosscutting an earlier quartz + sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein.9323574.50575.000.50Tr.Tr.Tr.20-30NIL9323574.50575.000.50Tr.Tr.20-300.049324575.50575.500.50Tr.Tr.20-30NIL9325576.00576.000.50Tr.Tr.20-30NIL9326576.00576.500.50Tr.Tr.20-30NIL9327576.50577.000.50Tr.Tr.20-30NIL9327576.50577.000.50Tr.Tr.20-30NIL			pyrite. Very strong, chloritic mud smeared irregular	0321	573.00	574.00	0.50		1•2 T-	1.2	30-40		0.46	
Size574.75Inc. granted pyrite. These slip planes range from hairline cracks which tend to braid and splay out into wall rock. Interstitial to slips unit is crushed, foliated and carries 1% finely disseminated pyrite.574.75Inc. wide white-buff, barren quartz ± albite vein @ 80° tca crosscutting an earlier quartz + sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein.9323574.50575.000.50 0.50Tr. 0.51 20-300.04 0.049323574.50575.000.50Tr. 0.51 20-300.049324575.00575.000.50Tr. 7r. 20-30NIL9326576.00576.500.5020-30NIL9327576.50577.000.50Tr. Tr. 20-30NIL9327576.50577.000.50Tr. Tr. 20-30NIL			anastomosing blue-prev slips with 1.2% fine grained	0322	573.50	574.00	0.50		117. Tu	1r. T-	23-30		0.02	
574.751 cm wide white-buff, barren quartz ± albite vein @ 80° tca crosscutting an earlier quartz + sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein.9323574.50575.000.50Tr0.5120-300.049324575.00575.000.50Tr.Tr. 20-30NIL9325575.50576.000.5020-30NIL9326576.00576.500.50Tr.Tr. 20-30NIL9327576.50577.000.50Tr.Tr. 20-30NIL9327576.50577.000.50Tr.Tr. 20-30NIL	1		Dvrite. These slip planes range from hairline cracks which	1366	574.00	574.50	0.50		1r.	1 r .	20-30		NIL	
slips unit is crushed, foliated and carries 1% finely disseminated pyrite. 574.75 1 cm wide white-buff, barren quartz ± albite vein @ 80° tca crosscutting an earlier quartz ± sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 9324 575.00 575.50 0.50 Tr. Tr. 20-30 NIL 9325 575.50 576.00 0.50 20-30 NIL 9326 576.00 576.50 0.50 Tr. Tr. 20-30 NIL 9326 576.00 576.50 0.50 Tr. Tr. 20-30 NIL 9327 576.50 577.00 0.50 Tr. Tr. 20-30 NIL	1		tend to braid and solay out into wall rock. Interstitial to											
disseminated pyrite. 574.75 1 cm wide white-buff, barren quartz ± albite vein @ 80° 9323 574.50 575.00 0.50 Tr0.5 1 20-30 0.04 tca crosscutting an earlier quartz + sericite + pyrite 9324 575.00 575.00 0.50 Tr. Tr. 20-30 NIL foliation @ 45° tca. Carries 0.5-1% finely disseminated 9325 575.50 576.00 0.50 20-30 NIL 9326 576.00 576.50 0.50 Tr. Tr. 20-30 NIL 9327 576.50 576.50 0.50 Tr. Tr. 20-30 NIL			slips unit is crushed, foliated and carries 1% finely											
574.75 1 cm wide white-buff, barren quartz ± albite vein @ 80° 9323 574.50 575.00 0.50 Tr0.5 1 20-30 0.04 tca crosscutting an earlier quartz + sericite + pyrite 9324 575.00 575.00 0.50 Tr. Tr. 20-30 NIL foliation @ 45° tca. Carries 0.5-1% finely disseminated 9325 575.50 576.00 0.50 20-30 NIL 9326 576.00 576.00 577.00 0.50 Tr. Tr. 20-30 NIL 9327 576.50 577.00 0.50 Tr. Tr. 20-30 NIL			disseminated pyrite.											
tca crosscutting an earlier quartz + sericite + pyrite foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 9324 575.00 575.50 0.50 Tr. Tr. 20-30 NIL 9324 576.00 576.00 0.50 20-30 NIL 9324 576.50 576.50 0.50 20-30 NIL 9326 576.50 576.50 0.50 20-30 NIL 9327 576.50 577.00 0.50 Tr. Tr. 20-30 NIL			574.75 1 cm wide white-buff, barren quartz \pm albite vein @ 80°	9323	574 50	575.00	0.50		Tr .05	1	20.20			
foliation @ 45° tca. Carries 0.5-1% finely disseminated pyrite adjacent to barren vein. 9325 575.50 576.00 0.50 20-30 NIL 9326 576.00 576.50 0.50 20-30 NIL 9327 576.50 576.50 0.50 20-30 NIL			tca crosscutting an earlier quartz + sericite + pyrite	9324	575.00	575 50	0.50		T-0.5	т. Т.	20-30		0.04	
pyrite adjacent to barren vein. 9326 576.00 576.50 0.50 20-30 NIL 9327 576.50 577.00 0.50 Tr. Tr. 20-30 NIL			foliation @ 45° tca, Carries 0.5-1% finely disseminated	9325	575 50	576.00	0.00		11.	1 ľ.	20-30			
9327 576.50 577.00 0.50 Tr. Tr. 20-30 NIL			pyrite adjacent to barren vein.	9326	576.00	576.50	0.50				20-30			
NIL			••	9327	576.50	577.00	0.50		Τr	Tr-	20-30			
9328 577.00 577.60 0.60 Tr 1.2 20.20 NTT				9328	577.00	577.60	0.50		T+	1.2	20-30		NIL	
577.70 - 578.55 Quartz + sericite + pyrite zone. Weakly silicified, well 9329 577.60 578.10 0.50 2.3 3.5 20.20 NiL			577.70 - 578.55 Quartz + sericite + pyrite zone. Weakly silicified. well	9329	577.60	578.10	0.50		2.2	2.5	20-20			
foliated @ 35° tca to sheared lapilli tuff with 10-15% 9330 578.10 578.60 0.50 1.2 5.7 20.30			foliated @ 35° tca to sheared lapilli tuff with 10-15%	9330	578.10	578.60	0.50		1.2	5.7	20.30		U./O	152
white to blue-grey quartz + sericite + pyrite veins and 9331 578.60 579.10 0.50 Tr. Tr. 20.30 0.02			white to blue-grey quartz + sericite + pyrite veins and	9331	578.60	579.10	0.50		Tr.	Tr.	20-30		1.30	4.33

HOLE: AK-91-38

PAGE: 23 of 23

INTE	RVAL	DESCRIPTION				SAM	MPLE	AS	SAYS
FROM	то		No.	From	То	Length %Rec	%Py %QV %Ser	Au, g/t	Au,Check
		 slips which carry 3-5% very fine grained pyrite. Blue-grey mineral on small hairline fractures appears to be galena in places. Total zone carries 1-2% pyrite. 581.00 - 583.10 Quite strongly deformed and foliated with strong wispy sericite and 3-5% milk white to buff quartz ± albite veinlets. This section however carries very minor to trace pyrite. Lower contact is a sharp irregular sericite slip @ 20° tca. 	9332 9333 9334 9335 9336 9337 9338 9339	579.10 579.60 580.10 580.50 581.00 581.50 582.00 582.50	579.60 580.10 580.50 581.00 581.50 582.00 582.50 583.20	0.50 0.50 0.40 0.50 0.50 0.50 0.50 0.70	15-20 15-20 15-20 10-15 Tr. 3-4 25 Tr. 5 25 Tr. 2 20-25 Tr. 2 25	0.13 0.03 0.02 0.01 0.23 0.02 0.01 0.01	
583.10	619.10	 LAPILLI TUFF Chlorite + hematite. Massive dark green to maroon where pervasively hematitic. Comprised of 5-7% angular heterolithic lapilli clasts from 0.5-5 cm in a very fine grained massive ash matrix. Clasts consist of: 1) 70% fine grained light purple-brown, hematitic, trachyte. 2) 25% light grey to buff fine grained trachyte. 3) 5% variable clasts from dark green, chloritic, aphanitic volcanic to a few minor spotted trachyte clasts. Unit is nonmagnetic and is cut by 1-2% barren white quartz ± albite veinlets, ≤ 1 cm wide, at all angle to core axis. 599.80 Fault @ 40° tca. Sericite + chlorite + quartz. 1 cm wide sericitic shear with minor barren quartz veinlets. 599.80 Taulfs are moderately foliated and sericitic. 613.00 - 618.80 Unit becomes increasingly sericitized with very irregular patchy wispy sericite ± quartz veinlets @ 45° tca. 618.80 - 619.10 Fault @ 10° tca. Chlorite + sericite + quartz + calcite. 0.5 cm wide strong irregular chlorite + sericite slip with an open vuggy pink quartz + calcite vein. Cross-fault type. END OF HOLE 	9340 9341 9342 9343	583.20 584.00 585.00 585.50	584.00 585.00 585.50 586.00	0.80 1.00 0.50 0.50	1-2 3	0.02 NIL 0.03 0.03	

Kirkland Lake Project

Amalgamated Kirkland Drilling

APPENDIX II

ASSAY CERTIFICATES

Battle Mountain (Canada) Inc.

November, 1991

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

1W-3599-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-09-91
Project: Attn:	75-JV-28 W. BENHAM	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1 2 FAX TO 567-6448
		2. TAA 10 001-0440

We hereby certify the following Assay of 70 SPLIT CORE samples submitted AUG-05-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7551	0.01		
7552	0.01		
7553	0.01		
7554	0.02		
7555	0.01		
7556	Ni l		
7557	0.01		
7558	0.01	Nil	
7559	0.01		
7560	0.01		
7561	0.01		
7562	0.02		
7563	0.02		
7564	0.02		
7565	0.03	0.01	
7566	0.01		
7567	0.03		
7568	0.02		
7569	0.01		
7570	0.01		
7571	0.01		
7572	0.01		
7573	Ni l		
7574	Ni l		
7575	Ni l		
7576	0.01		
7577	0.02		
7578	0.02	Ni l	
7579	Ni l		
7580	0.01		

Certified by Donna Hardner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705) 642-3300

)

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-3599-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-09-91
Project:	75-JV-28	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 70 SPLIT CORE samples submitted AUG-05-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7581	0.01		
7582	0.01		
7583	0.02		
7584	0.03		
7585	0.02		
7586	Nil		
7587	0.01		
7588	Ni l		
7589	0.01		
7590	0.01		
7591	0.01		
7592	0.02		
7593	Ni l		
7594	0.03	0.04	
7595	0.02		
7596	0.01		
7597	0.01		
7598	0.02		
7599	0.01		
7600	0.01		
7601	Ni l		
7602	0.01		
7603	Ni l		
7604	0.01		
7605	0.01		
7606	0.03		
7607	0.03		, .
7608	0.01		
7609	0.01		
7610	Ni l		
Au was determi	ined using 1 AT fusio	ns	

Certified by Donna Sardner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3599-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	
Project:	75-JV-28	Сору
Attn:	W. BENHAM	

Date: AUG-09-91 Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 70 SPLIT CORE samples submitted AUG-05-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7611	0.03		
7612	0.03		
7613	0.02		
7614	0.01		
7615	0.01		
7616	Nil		
7617	Ni 1		
7618	0.02		
7619	Nil		
7620	0.01	0.01	

Au was determined using 1 AT fusions

Certified by Donna Hardner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705) 642-3300

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

1W-3621-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-15-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 63 CORE samples submitted AUG-07-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
7621	0.01	0.01		
7622	0.03			
7623	0.02			
7624	0.01			
7625	0.02			
7626	0.03			· · · · · ·
7627	Ni l			
7628	0.33		ų I	
7629	0.11			
7630	0.72			
7631	0.99	0.99		
7632	0.04			
7633	0.01			
7634	0.02			
7635	0.13			
7636	0.89			
7637	1.64			
7638	0.20			
7639	1.17	1.17		
7640	0.02			
7641	Ni l			
7642	0.02			
7643	0.04			
7644	0.01			
7645	0.05			
7646	0.05			
7647	0.05			
7648	0.20	0.27		
7649	0.05			
7650	0.02			
Au was determin	ed using 1 AT fusio	ns		

Certified by Donna Landner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-3621-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-15-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 63 CORE samples submitted AUG-07-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne	Au 2nd g/tonne	
7651	Nil			
7652	0.01			
7653	0.01			
7654	0.01			
7655	0.03			
7656	0.04			
7657	Ni l			
7658	0.01			
7659	Nil			
7660	0.23]
7661	10.29	10.97	11.38	NVC- II
7662	1.71	1.92		N AD
7663	0.04			450
7664	0.03			
7665	3.43	3.57		
7666	3.43	4.18		Anor
7667	0.58			
7668	0.07			
7669	0.24			1
7670	Ni l			
7671	0.12			{
7672	0.22			
7673	16.39	16.39	13.85	
7674	0.04			
7675	0.04			
7676	Nil			
7677	0.01			
7678	0.02			
7679	Ni l			
7680	0.01			
Au was determin	ned using 1 AT fusio	ns		

Certified by Donna Sarahan

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3621-RA1

Company:BATTLE MOUNTAIN CANADA INC.Project:75-JV-28Attn:WAYNE BENHAM

Date: AUG-15-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 63 CORE samples submitted AUG-07-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne	Au 2nd g/tonne	
7681 7682 7683	0.01 0.01 0.01			

Au was determined using 1 AT fusions

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-3652-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-15-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FA TO 567-6448

We hereby certify the following Assay of 56 CORE samples submitted AUG-08-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7684	0.02		
7685	0.01		
7686	0.02		
7687	0.03		
7688	0.02		
7689	0.03		
7690	0.02		
7691	0.01		
7692	0.02		
7693	0.23	0.21	
7694	0.01		
7695	0.01		
7696	Ni l		
7697	Ni l		
7698	Ni l		
7699	0.01		
7700	Ni 1		
7701	Ni l		
7702	Ni l		
7703	Ni l		
7704	0.01		
7705	0.01		
7706	0.01		
7707	0.01		
7708	0.02	0.02	
7709	0.01		
7710	0.01		
7711	0.01		
7712	Ni l		
7713	Ni l		
Au was determine	ed using 1 AT fusio	ns	

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3652-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-15-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FA TO 567-6448

We hereby certify the following Assay of 56 CORE samples submitted AUG-08-91 by M. MASSON.

Samp 1 e	Au	Au check	
Number	g/tonne	g/tonne	
7714	0.01		
7715	0.01		
7716	0.01		
7717	0.07	0.03	
7718	Ni l		
7719	0.01		
7720	Ni l		
7721	Ni l		
7722	Ni l		
7723	0.01		
7724	Ni l		
7725	0.01		
7726	0.01		
7727	Ni l		
7728	0.01		
7729	0.01		
7730	0.02		
7731	Ni 1	Ni l	
7732	Ni l		
7733	Ni l		
7734	0.03		
7735	0.01		
7736	0.01		
7737	0.01		
7738	0.02		
7739	Ni l		

Au was determined using 1 AT fusions

Certified by Donna Sardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-3653-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-15-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 17 CORE samples submitted AUG-08-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7740	0.01	0.01	
7741	0.01		
7742	0.02		
7743	0.01		
7744	0.02		
7745	0.01		
7746	0.01		
7747	Ni l		
7748	0.02		
7749	0.84	0.84	
7750	0.29	0.35	
7751	0.30		
7752	0.06		,
7753	0.45	0.47	
7754	0.10		
7755	0.02		
7756	0.01		

Au was determined using 1 AT fusions

Certified by Donna Landre

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

NF

Assay Certificate

1W-3671-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-14-91
Project:	75-JV-28	Copy 1. P.O.Box 635, Kirkland Lake, Ont. P2N 3K1
Attn:	W.BENHAM	2. Fax to 567-6448
Project: Attn:	75-JV-28 W.BENHAM	Copy 1. P.O.Box 635, Kirkland Lake, Ont. P2N 3 2. Fax to 567-6448

We hereby certify the following Assay of 81 core samples submitted AUG-12-91 by M. Masson.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7757	0.03		
7758	Ni 1	0.01	
7759	Ni 1		
7760	0.01		
7761	0.02		
7762	0.01		
7763	0.04		
7764	0.01		
7765	0.02		
7766	0.01		
7767	0.02		
7768	0.01		
7769	0.02		
7770	Ni l		
7771	0.02		
7772	Ni l		
7773	0.03	0.01	
7774	0.02		
7775	Ni l		
7776	Ni l		
7777	Ni l		
7778	Nil		
7779	0.01		
7780	0.02		
7781	0.01	0.02	
7782	Ni l		
7783	0.01		
7784	Nil		
7785	Nil		
7786	0.02		
Au was determin	ed using 1 AT fusic		

Au was determined using 1 AT fusions

Certified by Donna Landra

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-3671-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-14-91
Project:	75-JV-28	Copy 1. P.O.Box 635, Kirkland Lake, Ont. P2N 3K1
Attn:	W.BENHAM	2. Fax to 567-6448

We hereby certify the following Assay of 81 core samples submitted AUG-12-91 by M. Masson.

Sample	Au	Au check
Number	g/tonne	g/tonne
7787	0.02	
7788	0.01	
7789	Ni l	
7790	0.02	
7791	Ni 1	
7792	0.01	
7793	Ni l	
7794	Ni l	
7795	Nil	
7796	0.01	
7797	Ni 1	
7798	0.01	
7799	Ni l	0.01
7800	Ni l	
7801	Ni l	
7802	0.01	
7803	0.01	
7804	0.02	
7805	0.01	
7806	0.02	
7807	0.01	
7808	0.03	
7809	0.04	
7810	0.03	
7811	0.01	
7812	0.02	
7813	0.01	0.02
7814	0.01	
7815	0.01	
7816	0.01	
Au was determin	ed using 1 AT fusio	

Au was determined using 1 AT fusions

Certified by Donna I Jaraner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3671-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-14-91
Project:	75-JV-28	Copy 1. P.O.Box 635, Kirkland Lake, Ont. P2N 3K1
Attn:	W.BENHAM	2. Fax to 567-6448

We hereby certify the following Assay of 81 core samples submitted AUG-12-91 by M. Masson.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7817	0.01		
7818	0.02		
7819	0.03		
7820	0.01		
7821	0.02		
7822	0.03		
7823	0.01		
7824	0.02		
7825	0.01	0.03	
7826	Nil		
7827	0.01		
7828	0.02		
7829	0.01		
7830	0.04		
7831	0.01		
7832	0.01		
7833	. 0.02		
7834	0.01		
7835	0.01		
7836	0.02		
7837	0.01	0.01	

Au was determined using 1 AT fusions

Certified by Donna Hanchen

Company:

Project:

Attn:

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

75-JV-28

WAYNE BENHAM

1W-3694-RA1

Date: AUG-23-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 54 SAWN CORE samples submitted AUG-13-91 by M. MASSON.

BATTLE MOUNTAIN CANADA INC.

submitted AUG-1	3-91 by M. MASS	ON.	RECEIVED SEP = 3 1001			
Sample	Au	Au check	Au 2nd	0.01 9 (99)		
Number	g/tonne	g/tonne	g/tonne			
7838	0.04					
7839	0.38	0.48				
7840	0.17					
7841	0.11					
7842	0.05					
7843	0.08					
7844	0.02					
7845	0.01					
7846	0.03					
7847	0.15					
7848	0.10					
7849	0.16					
7850	25.77	23.38	29.66			
7851	0.25					
7852	0.01					
7853	0.03					
7854	Ni l					
7855	Ni l					
7856	0.02					
7857	0.01					
7858	0.01					
7859	0.02	0.03				
7860	Ni l					
7861	Ni 1					
7862	Ni l					
7863	0.02					
7864	Ni l					
7865	Ni l					
7866	Ni l					
7867	Ni 1					
Au was determin	ned using 1 AT fusion	ons				

andin Certified by

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3694-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-23-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 54 SAWN CORE samples submitted AUG-13-91 by M. MASSON.

Sample	Au	Au check	Au 2nd		
Number	g/tonne	g/tonne	g/tonne	 	
7868	0.03				
7869	Ni l				
7870	Ni l				
7871	Ni l				
7872	Ni l			 	
7873	Ni l			 	
7874	Ni l				
7875	0.02				
7876	Ni l				
7877	0.01			 	
7878	Nil				
7879	Ni l				
7880	0.07				
7881	0.04				
7882	Nil			 	
7883	0.02	0.03			
7884	Ni l				
7885	0.01				
7886	Ni l				
7887	0.01			 	
7888	Ni l				
7889	Ni 1				
7890	0.04	0.02			
7891	Ni l				

Au was determined using 1 AT fusions

P. landin Certified by

Company:

Project:

Attn:

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

75-JV-28

WAYNE BENHAM

1W-3695-RA1

Date: AUG-21-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 40 CORE samples submitted AUG-13-91 by M. MASSON.

BATTLE MOUNTAIN CANADA INC.

submitted AUG-I	3-91 0y IVI. IVIASS		RECEIVED SEP - 2 1001
Sample Number	Au g/tonne	Au check g/tonne	
7892	0.01		
7893	Ni 1		
7894	Ni l		
7895	Ni l		
7896	0.01		
7897	0.03		
7898	0.04	0.09	
7899	0.02		
7900	Ni l		
7901	0.02		
7902	0.02		
7903	Ni l		
7904	0.46	0.39	
7905	0.02		
7906	Nil		
7907	Nil		
7908	0.07		
7909	Ni l		
7910	0.01		
7911	0.04		
7912	0.01		
7913	0.02		
7914	0.01		
7915	0.01		
7916	0.02		
7917	Nil		
7918	Nil		
7919	Nil		
7920	0.01		
7921	0.02		
Au was determi	ned using 1 AT fus	ions	

andin Certified by

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

1W-3695-RA1

Assay Certificate

Date: AUG-21-91

BATTLE MOUNTAIN CANADA INC. Company:

75-JV-28 Project: WAYNE BENHAM Attn:

Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 40 CORE samples submitted AUG-13-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne	
7922 7923 7924 7925 7926	0.03 0.12 0.03 Ni1 0.01	0.20	
7927 7928 7929 7930 7931	Ni1 0.02 0.03 0.03 0.01		

Au was determined using 1 AT fusions

P. landini Certified by_____

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-3692-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.	Date: AUG 15 01
Project:	75-JV-28	Date: AUU-13-91
Att	W RENILAM	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 1K3
Atul.		2. FAX TO 567-6448

We hereby certify the following Assay of 48 CORE samples submitted AUG-13-91 by M.MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
7932	Nil			
7933	Ni l			
7934	0.01			
7935	0.01			
7936	0.03			
7937	0.02			
7938	0.02			
7939	0.05			
7940	0.14			
7941	45.22	44.95	39.77	
7942	2.98	2.81		• • • • • • • • • • • • • • • • • • • •
7943	0.22			
7944	1.82	2.06		
7945	2.78	2.67		
7946	0.93	0.96		
7947	12.48	12.55		
7948	0.86			
7949	0.07			,
7950	2.33	1.85		
7951	20.98	20.57		
7952	27.39	27.15	25.54	
7953	0.13		20.01	
7954	0.06			
7955	0.02			
7956	0.01			
7957	0.22			
7958	0.04			
7959	0.06			
7960	0.01			
7961	0.07	0.06		
Au was determin	ned using 1 AT fusion	s		

Certified by Donna Hardnan

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3692-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.	Date: AUG-15-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 1K3
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 48 CORE samples submitted AUG-13-91 by M.MASSON.

Sample Number	Au g/tonne	Au check g/tonne	Au 2nd		
7962	0.03			 	
7963	0.03				
7964	0.04				
7965	Nil				
7966	Nil				
7967	0.11	0.14		 	
7968	0.01				
7969	0.01				
7970	0.01				
7971	0.01				
7972	0.09			 	
7973	0.01				
7974	0.04				
7975	0.05				
7976	0.06				
7977	0.04	0.03		 	
7978	0.08				
7979	0.01				

Au was determined using 1 AT fusions

Certified by Donna Sardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

1W-3752-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-27-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 71 CORE samples submitted AUG-15-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
7980	Ni l		
7981	0.04		
7982	0.01		
7983	0.16	0.14	
7984	0.09		
7985	0.02		
7986	0.04		
7987	0.06		
7988	0.14	0.20	
7989	0.08		
7990	0.07		
7991	0.02		
7992	0.04		
7993	0.08		
7994	0.03		
7995	0.03		
7996	0.03		
7997	0.03		
7998	0.03		
7999	0.06	0.03	
8000	0.06		
8001	0.03		
8002	0.01		
8003	0.01		
8004	0.04		
8005	0.02		
8006	0.01		
8007	0.03		
8008	0.01		
8009	Nil		
An was determined using 1AT fusions			

Au was determined using 1AT fusions.

Certified by Donna Landna

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-3752-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-27-91	
Project: Attn:	75-JV-28 WAYNE BENHAM	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448	

We hereby certify the following Assay of 71 CORE samples submitted AUG-15-91 by M. MASSON.

Number			
INUIDEI	g/tonne	g/tonne	
8010	0.03		
8011	0.01		
8012	0.01		
8013	0.04		
8014	0.03	0.02	
8015	0.01	********	
8016	0.02		
8017	0.01		
8018	0.02		
8019	0.01		
8020	0.02		
8021	0.03		
8022	0.02		
8023	Ni l		
8024	Ni l		
8025	0.02		
8026	Ni 1		
8027	Ni l		
8028	0.01		
8029	0.02		
8030	Nil		
8031	0.03		
8032	Ni l		
8033	0.01		
8034	0.01		
8035	Nil		
8036	Ni l		
8037	0.02	0.01	
8038	0.01		
8039	Ni 1		

Certified by Donna Handner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3752-RA1

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	WAYNE BENHAM

Date: AUG-27-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 71 CORE samples submitted AUG-15-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne
		B , () u
8040	0.01	
8041	Nil	
8042	0.02	
8043	Ni l	
8044	0.04	
8045	Nil	
8046	0.03	
8047	0.01	
8048	0.01	
8049	0.02	0.03
8050	0.01	

Au was determined using 1AT fusions.

Certified by Donna Handner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-3717-RA1

Company:	BATTLE MOUNTAIN CANADA INC	Date: AUG-22-91
Project:	75-JV-28	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 26 CORE samples submitted AUG-16-91 by M. MASSON.

Sample	Au	Au check
Number	g/tonne	g/tonne
8051	0.01	
8052	0.05	
8053	0.02	
8054	0.01	
8055	0.04	
8056	0.05	
8057	0.04	
8058	0.03	
8059	0.03	
8060	0.04	
8061	0.01	
8062	0.01	0.03
8063	0.03	
8064	Nil	
8065	0.03	
8066	0.01	
8067	Ni l	
8068	0.03	
8069	0.01	
8070	Ni l	
8071	0.01	
8072	Ni l	
8073	0.01	
8074	0.01	
8075	Ni l	
8076	0.03	0.02

Au was determined using 1 AT fusions

Plandin Certified by____

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-3725-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-22-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 22 CORE samples submitted AUG-19-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne	RECEIVED SEP - 3 1991
8077	Nil		
8078	0.02		
8079	0.01		
8080	0.01		
8081	0.04		
8082	0.02		
8083	0.02		
8084	0.03		
8085	0.04		
8086	0.01	0.01	
8087	Nil		
8088	Ni l		
8089	0.01		
8090	Ni l		
8091	0.03	0.02	
8092	0.01		
8093	Ni l		
8094	0.02		
8095	Ni l		
8096	Nil		
8097	0.03		
8098	Ni l		

Au was determined using 1 AT fusions

& landini Certified by

Company:

Project:

Attn:

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 4

RECEIVED SEP - 3 1991

Assay Certificate

1W-3773-RA1

BATTLE MOUNTAIN CANADA INC. 75-IV-28	Date: AUG-28-91	
	Copy 1. P.O.BOX 635, KIRKLAND LAKE ONT. P2N 3K1	
W.BENHAM	2. FAX TO 567-6448	

,

We hereby certify the following Assay of 109 CORE samples submitted AUG-22-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8099	0.02		
8100	Ni l		
8101	0.02		
8102	0.01	Ni l	
8103	0.02		
8104	0.02		
8105	Ni l		
8106	0.02		
8107	0.01		
8108	0.01		
8109	0.03		
8110	0.02		
8111	0.01		
8112	0.03	0.02	
8113	Nil		
8114	0.02		
8115	0.02		
8116	0.01		
8117	0.01		
8118	0.02		
8119	0.01		
8120	Nil		
8121	0.02		
8122	0.01		
8123	0.01		
8124	0.02		
8125	0.03	0.03	
8126	Nil		
8127	0.02		
8128	0.03		
Au was deter	mined using 1AT fusio	ns.	

Certified by Donna Sardner

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

,

Page 2 of 4

Assay Certificate

1W-3773-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-28-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE ONT. P2N 3K1
Attn:	W.BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 109 CORE samples submitted AUG-22-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8129	0.01		
8130	0.02		
8131	0.01		
8132	0.01		
8133	0.03	0.03	
8134	0.01		
8135	0.01		
8136	0.01		
8137	Ni l		
8138	0.04		
8139	0.02		
8140	Ni l		
8141	0.02		
8142	0.01		
8143	0.01		
8144	0.01		
8145	0.01		
8146	Ni 1		
8147	0.02	0.02	
8148	0.02		
8149	0.01		
8150	0.01		
8151	0.01		
8152	0.02		
8153	0.01		
8154	0.02		
8155	0.01		
8156	Ni l		
8157	Ni l		
8158	Ni l		
Au was determi	ned using 1AT fusion	s.	

Certified by Donna Landner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 4

Assay Certificate

1W-3773-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-28-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE ONT. P2N 3K1
Attn:	W.BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 109 CORE samples submitted AUG-22-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8159	0.02		
8160	0.01		
8161	Ni l		
8162	0.02		
8163	Ni l		
8164	0.01		
8165	0.02		
8166	0.01		
8167	0.01		
8168	0.03	0.03	
8169	0.05		
8170	0.02		
8171	0.04		
8172	0.03		
8173	0.01		
8174	0.05		
8175	0.02		
8176	0.01		
8177	0.05		
8178	0.02	0.02	
8179	0.03		
8180	0.03		
8181	0.01		
8182	0.04		
8183	0.01		
8184	0.02		
8185	0.01		
8186	0.04		
8187	0.04		
8188	0.01		
An was dat	armined using 1AT fusion		

Au was determined using 1AT fusions.

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 4 of 4

Assay Certificate

1W-3773-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-28-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE ONT. P2N 3K1
Attn:	W.BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 109 CORE samples submitted AUG-22-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8189	0.02		
8190	0.04		
8191	0.02		
8192	0.01		
8193	0.03		
8194	0.01		
8195	0.03		
8196	Ni l		
8197	0.02		
8198	0.02		
8199	0.01		
8200	0.03	0.02	
8201	0.04		
8202	0.02		
8203	0.02		
8204	0.02		
8205	0.01		
8206	0.01		
8207	0.02		

Au was determined using 1AT fusions.

Certified by Donna Sarane

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-3798-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-29-91		
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1		
Attn:	WAYNE BENHAM	2. FAX TO 567-6448		

We hereby certify the following Assay of 34 SPLIT CORE samples submitted AUG-26-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8208	0.01		
8209	Nil		
8210	0.01		
8211	0.01		
8212	0.01		
8213	Nil		
8214	0.01		
8215	Ni l	Ni l	
8216	0.01		
8217	0.01		
8218	0.01		
8219	0.04		
8220	Ni 1		
8221	Ni l		
8222	0.06	0.03	
8223	Nil		
8224	0.01		
8225	0.02		
8226	0.03		
8227	0.01		
8228	0.01		
8229	Ni l		
8230	Ni l		
8231	0.01		
8232	0.02		
8233	0.02	0.04	
8234	Ni 1		
8235	0.01		
8236	0.01		
8237	0.01		
Au was deter	mined using 1AT fusion	s.	

Certified by andrer

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3798-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: AUG-29-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 34 SPLIT CORE samples submitted AUG-26-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne	
8238	0.02		
8239	0.01		
8240	0.01		
8241	Ni l		

Au was determined using 1AT fusions.

andne Certified by

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-3807-RA1

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	W. BENHAM

Date: AUG-28-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 8 CORE samples submitted AUG-27-91 by M. MASSON.

RECEIVED SEP - 3 1991

Sample Number	Au g/tonne	Au check g/tonne	
8278	0.01	0.01	
8279	0.01		
8280	Ni 1		
8281	Ni 1	0.01	
8282	Ni 1		
8283	0.02		
8284	Ni l		
8285	Ni l		

Au was determined using 1AT fusions.

Certified by Donna Landner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

1W-3823-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-03-91
Project:	75-JV-28	Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 76 CORE samples submitted AUG-28-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8242	0.01	*********	
8243	0.01	Ni l	
8244	0.01		
8245	0.01		
8246	0.01		
8247	Ni l		
8248	Ni 1		
8249	Ni l		
8250	Ni 1		
8251	Ni l		
8252	Nil		
8253	Ni 1		
8254	Ni l		
8255	Ni 1		
8256	0.01		
8257	Nil		•••••••••••••••••••••••••••••••••••••••
8258	Ni l		
8259	Ni l		
8260	0.01		
8261	0.01		
8262	0.01	0.01	
8263	Ni 1		
8264	0.01		
8265	Ni l		
8266	Ni 1		
8267	0.01		
8268	0.01		
8269	Ni l		
8270	0.02		
8271	0.01		

Certified by Donna Landner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244. FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-3823-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-03-91
Project: Attn:	75-JV-28 WAYNE BENHAM	Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 76 CORE samples submitted AUG-28-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8272	Ni l		
8273	Ni l		
8274	0.01	Ni 1	
8275	Ni l		
8276	Ni l		
8277	Nil		
8286	Ni l		
8287	0.01		
8288	Ni l		
8289	0.03		
8290	0.02		
8291	0.03		
8292	Ni l		
8293	Ni l		
8294	0.02		
8295	0.02	0.01	
8296	0.02		
8297	0.03		
8298	Ni l		
8299	0.03		
8300	0.01		
8301	0.02		
8302	0.06	0.04	
8303	0.01		
8304	0.02		
8305	0.01		•••••••••••••••••••••••••••••••••••••••
8306	0.01		
8307	0.02		
8308	0.04		
8309	0.01		
Au was determine	d using 1 AT fusion	18	

Certified by Donna Sandner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3823-RA1

Company: BATTLE MOUNTAIN CANADA INC.	Date: SEP-03-91
Project: 75-JV-28	Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1
Attn: WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 76 CORE samples submitted AUG-28-91 by M. MASSON.

Number $g/tonne$ 83100.0183110.0383120.0283130.0483140.0283150.1483160.018317Ni18318Ni18320Ni18321Ni183220.018323Ni18324Ni18325Ni1	Sample	Au	Au check	
8310 0.01 8311 0.03 8312 0.02 8313 0.04 8314 0.02 8315 0.14 0.11 8316 0.01 8317 Ni1 8318 Ni1 8320 Ni1 8321 Ni1 8322 0.01 8323 Ni1 8324 Ni1 8325 Ni1	Number	g/tonne	g/tonne	
8311 0.03 8312 0.02 8313 0.04 8314 0.02 8315 0.14 0.11 8316 0.01 8317 Ni1 8318 Ni1 8320 Ni1 8321 Ni1 8322 0.01 8323 Ni1 8324 Ni1 8325 Ni1	8310	0.01		
8312 0.02 8313 0.04 8314 0.02 8315 0.14 0.11 8316 0.01 8317 Ni1 8318 Ni1 8320 Ni1 8321 Ni1 8322 0.01 8323 Ni1 8324 Ni1 8325 Ni1	8311	0.03		
8313 0.04 8314 0.02 8315 0.14 0.11 8316 0.01 8317 Ni1 8318 Ni1 8320 Ni1 8321 Ni1 8322 0.01 8323 Ni1 8324 Ni1 8325 Ni1	8312	0.02		
8314 0.02 8315 0.14 0.11 8316 0.01 8317 Ni1 8318 Ni1 8319 Ni1 8320 Ni1 8321 Ni1 8322 0.01 8323 Ni1 8324 Ni1 8325 Ni1	8313	0.04		
8315 0.14 0.11 8316 0.01 8317 Ni1 8318 Ni1 8319 Ni1 8320 Ni1 8321 Ni1 8323 Ni1 8324 Ni1 8325 Ni1	8314	0.02		
8316 0.01 8317 Ni1 8318 Ni1 8319 Ni1 8320 Ni1 8321 Ni1 8322 0.01 8323 Ni1 8324 Ni1 8325 Ni1	8315	0.14	0.11	
8317 Ni l 8318 Ni l 8319 Ni l 8320 Ni l 8321 Ni l 8322 0.01 8323 Ni l 8324 Ni l 8325 Ni l	8316	0.01		
8318 Ni l 8319 Ni l 8320 Ni l 8321 Ni l 8322 0.01 8323 Ni l 8324 Ni l 8325 Ni l	8317	Ni 1		,
8319 Nil 8320 Nil 8321 Nil 8322 0.01 8323 Nil 8324 Nil 8325 Nil	8318	Ni 1		
8320 Ni 1 8321 Ni 1 8322 0.01 8323 Ni 1 8324 Ni 1 8325 Ni 1	8319	Ni l		
8321 Ni l 8322 0.01 8323 Ni l 8324 Ni l 8325 Ni l	8320	Nil		
8322 0.01 8323 Ni 1 8324 Ni 1 8325 Ni 1	8321	Ni 1		
8323 Ni 1 8324 Ni 1 8325 Ni 1	8322	0.01		
8324 Ni l 8325 Ni l	8323	Ni 1		
8325 Nil	8324	Ni 1		
	8325	Ni l		

Au was determined using 1 AT fusions

Certified by Donna Handner

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244.

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

1W-3836-RA1

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	WAYNE BENHAM

Date: SEP-05-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 64 CORE samples submitted AUG-29-91 by M. MASSON.

RECEIVED SEP 1 6 1991

Sample Number	Au g/toppe	Au check	
8326		g/ tonne	
8320	0.01		
8328	0.03 Ni 1		
8329	0.01		
8330	0.02		
8331	0.02		
8332	0.01		
8333	0.02	0.04	
8334	0.02		
8335	0.02		
8336	0.01		
8337	0.02		
8338	0.01		
8339	0.01		
8340	0.02		
8341	Ni l		
8342	Ni l		
8343	0.02		
8344	Ni l		
8345	0.01		
8346	0.01		
8347	0.01		
8348	Ni l		
8349	0.05		
8350	0.02		
8351	0.02		
8352	0.02	0.02	
8353	0.02		
8354	0.02		
8355	0.02		

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-3836-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-05-91
Project: Attn:	75-JV-28 WAYNE BENHAM	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 64 CORE samples submitted AUG-29-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8356	0.02	***********	
8357	0.02		
8358	0.01		
8359	0.01		
8360	0.04		
8361	0.02		
8362	Ni 1		
8363	Ni l		
8364	0.01		
8365	0.01		
8366	0.03		
8367	0.14	0.17	
8368	0.03		
8369	Ni 1		
8370	0.02		
8371	0.01		
8372	0.01		
8373	0.02		
8374	0.02	0.01	
8375	0.01		
8376	0.02		
8377	0.03		
8378	0.01		
8379	0.01		
8380	0.01		
8381	0.01		
8382	0.02		
8383	. 0.02	0.01	
8384	0.02		
8385	0.01		
Au was determine	d using 1 AT fusion	S	

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3836-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-05-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 64 CORE samples submitted AUG-29-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8386	0.02		
8387	0.01		
8388	0.02		
8389	0.01		

Au was determined using 1 AT fusions

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-3841-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.	Date: SEP-04-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE ONT. P2N 3K1
Attn:	W.BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 18 SPLIT CORE samples submitted AUG-30-91 by M.MASSON.

Sample Number	Au g/tonne	Au check g/tonne	
8390	0.01		
8391	0.01		
8392	0.01	0.02	
8393	0.01		
8394	0.01		
8395	0.01		
8396	Ni 1		
8397	0.01		
8398	0.01		
8399	Nil		
8400	0.01		
8401	0.01	0.01	
8402	0.01		
8403	0.01		
8404	0.01		
8405	0.01		
8406	0.02		
8407	0.02		

Au was determined using 1 AT fusions

Certified by Donna Dardner

P.O. Box 10, Swastika, Ontario P0K 1T0 FAX (705)642-3300 Telephone (705) 642-3244

Company:

Project:

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

75-JV-28

BATTLE MOUNTAIN CANADA INC.

1W-3854-RA1

Attn:	WAYNE BENHAM		2. FAX TO 567-6448
We herei	by certify the following Assa	iy of 40 CORE samp	les PECEWER OFF the met
Submitte	a 5151 -05-71 by M. MA550		RECEIVED SEP 1 6 1991
Sample	Au	Au check	
Number	g/tonne	g/tonne	
8408	0.02		
8409	0.05	0.02	
8410	0.01		
8411	Nil		
8412	Ni l		
8413	Nil		
8414	Nil		
8415	Ni l		
8416	0.01		
8417	Ni l		
8418	Nil		
8419	Nil		
8420	0.01		
8421	Ni l		
8422	0.01		
8423	Nil	Ni 1	
8424	Nil		
8425	Ni l		
8426	Ni l		
8427	Ni l		
8428	Nil		
8429	Nil		
8430	Nil		
8431	0.01		
8432	Ni 1		
8433	Nil		
8434	Nil		
8435	Ni l		
8436	Ni l	Ni l	
8437	Nil		
A	dotomning during 1 AT fusio		

Au was determined using 1 AT fusions

Certified by Donna Handner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P4N 3K1

Date: SEP-06-91

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3854-RA1

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	WAYNE BENHAM

Date: SEP-06-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P4N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 40 CORE samples submitted SEP-03-91 by M. MASSON.

Sample	Au	Au check
Number	g/tonne	g/tonne
8438	Nil	
8439	Ni l	
8440	Ni l	
8441	0.02	
8442	Nil	
8443	Nil	
8444	0.01	
8445	Nil	
8446	Ni l	
8447	Ni l	Ni 1

Au was determined using 1 AT fusions

Certified by Donna Hardner

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

RECEIVED SEP 1 6 1991

Page 1 of 3

HIMACC ...

DRILLING

Assay Certificate

1W-3865-RA1

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	WAYNE BENHAM

Date: SEP-09-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 79 CORE samples submitted SEP-04-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8448	Nil		
8449	Ni l		
8450	Ni 1		
8451	Ni 1		
8452	Ni l		
8453	0.01		
8454	0.01		
8455	0.01		
8456	0.01		
8457	0.01	0.02	
8458	Nil		
8459	0.01		
8460	0.01		
8461	0.01		
8462	Nil		
8463	Nil		
8464	Ni 1		
8465	Ni l		
8466	Ni 1		
8467	Ni l		
8468	Nil		
8469	Ni 1		
8470	Nil		
8471	Nil		
8472	0.01		
8473	0.01	0.02	
8474	0.01		
8475	0.01		
8476	0.01		
8477	0.01		
Au was detern	nined using 1 AT fusion	2	

Certified by Donna Hardner

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

RECEIVED SEP 1 6 1991 1W-3865-RA1

Company:BATTLE MOUNTAIN CANADA INC.Date: SEP-09-91Project:75-JV-28Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1Attn:WAYNE BENHAM2. FAX TO 567-6448

We hereby certify the following Assay of 79 CORE samples submitted SEP-04-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8478	0.01		•••••••••••••••••••••••••••••••••••••••
8479	0.03		
8480	0.04		
8481	0.01		
8482	0.01		
8483	Ni l		
8484	0.01		
8485	0.03		
8486	Ni l		
8487	0.01		
8488	0.07		
8489	0.05		
8490	0.12	0.18	
8491	0.03		
8492	0.03		
8493	0.11		
8494	0.08		
8495	0.02		
8496	0.02		
8497	0.01		
8498	0.01		
8499	0.08		
8500	0.06		
8501	0.08		
8502	0.09		
8503	0.04		
8504	0.03		
8505	0.30	0.29	
8506	0.02		
8507	0.37		
Au was determin	ned using 1 AT fusion	. 	

Certified by Donna Landner

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3865-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-09-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 79 CORE samples submitted SEP-04-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8508	0.58	0.32	
8509	0.02		
8510	0.01		
8511	0.01		
8512	0.01		
8513	0.01		
8514	0.02		
8515	0.01		
8516	0.03		
8517	0.02		
8518	Ni l		
8519	0.01		
8520	0.02		
8521	0.02		
8522	0.01		
8523	0.01		•••••••••••••••••••••••••••••••••••••••
8524	0.01	0.02	
8525	0.02		
8526	0.01		

Au was determined using 1 AT fusions

Certified by Donna Landna

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 4

Assay Certificate

1W-3889-RA1

Company:	BATTLE MOUNTAIN (CANADA) LTD.
Project:	75-JV-28
Attn:	W. BENHAM

Date: SEP-11-91 Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 110 CORE samples submitted SEP-06-91 by M. MASSON.

				RECEIVED SEP 1 6 100
Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
8527	0.03	0.01		
8528	Ni l			
8529	0.01			
8530	Ni l			
8531	Ni l			
8532	Nil			
8533	Ni l			
8534	Ni l			
8535	Ni l			
8536	0.02			
8537	0.02			
8538	Ni 1			
8539	Ni l			
8540	Ni l			
8541	Ni l			
8542	0.01			
8543	Ni l			
8544	Ni l			
8545	Ni 1			
8546	0.36	0.36		
8547	0.17			
8548	0.04			
8549	0.06			
8550	0.18			
8551	0.10			
8552	0.08			
8553	0.62	0.70		
8554	0.03		·	
8555	0.05			
8556	0.02			
ONE ASSAY TO	N PORTION USE	D		

Certified by Donna Hardne

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 4

Assay Certificate

1W-3889-RA1

Company:	BATTLE MOUNTAIN (CANADA) LTD.	Date: SEP-11-91
Project:	75-JV-28	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 110 CORE samples submitted SEP-06-91 by M. MASSON.

Samp l e	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
8557	0.02			
8558	0.01			
8559	0.15			
8560	Ni l			
8561	0.03			
8562	0.03			
8563	0.02			
8564	Ni l			
8565	0.21			
8566	0.36	0.30		
8567	0.26			
8568	0.03			
8569	Ni 1			
8570	Ni l			
8571	Ni 1			
8572	Ni 1			
8573	Ni 1			
8574	Ni l			
8575	0.01			
8576	Ni 1			
8577	0.01	0.03		
8578	0.01			
8579	Ni l			
8580	0.01			
8581	Ni l			
8582	Ni 1			
8583	0.01			
8584	Ni l			
8585	Ni l			
8586	Ni l			
ONE ASSAY TO	N PORTION USE)		

Certified by Donna Handna

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 4

Assay Certificate

1W-3889-RA1

Company:	BATTLE MOUNTAIN (CANADA) LTD.	Date: SEP-11-91
Project:	75-JV-28	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 110 CORE samples submitted SEP-06-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
8587	0.04	0.03		
8588	0.01			
8589	0.01			
8590	0.02			
8591	Ni 1			
8592	Ni l			•••••••••••••••••••••••••••••••••••••••
8593	Ni l			
8594	0.02			
8595	0.06			
8596	Ni l			
8597	0.03			
8598	Ni 1			
8599	0.02			
8600	Ni 1			
8601	Ni 1			
8602	Ni l			•••••••••••••••••••••••••••••••••••••••
8603	Ni l			
8604	0.03	0.01		
8605	Ni l	Ni l		
8606	0.03			
8607	Ni l			
8608	Ni l			
8609	Ni l			
8610	Ni l			
8611	Ni l			
8612	Ni l			
8613	Ni l			
8614	0.01			
8615	Ni 1			
8616	Ni 1			
ONE ASSAY TO	N PORTION USED)		

Certified by Donna Handner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 4 of 4

Assay Certificate

1W-3889-RA1

Company:	BATTLE MOUNTAIN (CANADA) LTD.	Date: SEP-11-91
Project:	75-JV-28	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 110 CORE samples submitted SEP-06-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
8617	0.01			
8618	0.03	0.01		
8619	Ni l			
8620	Ni l			
8621	Ni l			
8622	Nil			
8623	Ni l			
8624	Ni l			
8625	Ni l			
8626	0.02			
8627	Ni l			
8628	Ni l			
8629	Ni l			
8630	Ni 1			
8631	Ni l			
8632	Ni l			
8633	Ni l			
8634	0.05			
8635	1.21	1.14	1.11	
8636	0.09			

ONE ASSAY TON PORTION USED

Certified by Donna Handner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

1W-3913-RA1

Company:	BATTLE MOUNTAIN (CANADA INC.	Date: SEP-13-91
Project:	75-JV-28		Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM		2. FAX TO 567-6448
We herei submitte	by certify the following Assa d SEP-09-91 by M. MASSO	ay of 67 CORE samples	8
Sample	Au	Au check	
Number	g/tonne	g/tonne	
0/27	······································		

8637	0.01		
8638	Ni 1		
8639	Ni 1		
8640	0.01		
8641	Ni l		
8642	0.02		***************************************
8643	0.05		
8644	0.04		
8645	0.07		
8646	0.04		
8647	0.07		
8648	0.06		
8649	0.20	0.37	
8650	0.05		
8651	0.14		
8652	0.06		
8653	0.06		
8654	0.10		
8655	0.05		
8656	0.01		
8657	0.03		
8658	0.04		
8659	0.04		
8660	0.03		
8661	0.06	0.06	
8662	0.03		
8663	0.04		
8664	0.02		
8665	Ni l		
8666	0.01		

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-3913-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-13-91
Project: Attn:	75-JV-28 WAYNE BENHAM	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 67 CORE samples submitted SEP-09-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8667	0.02		
8668	0.13	0.10	
8669	0.02		
8670	0.03		
8671	0.02		
8672	0.01		
8673	Ni l		
8674	0.02		
8675	Ni l		
8676	Ni l		
8677	0.01		***************************************
8678	Ni 1		
8679	Ni 1		
8680	Ni 1		
8681	0.05		
8682	0.04		
8683	0.04		
8684	Ni l		
8685	Ni 1		
8686	0.01		
8687	0.12	0.12	
8688	0.03		
8689	0.02		
8690	0.08		
8691	0.05		
8692	0.09		
8693	0.03		
8694	0.11		
8695	0.21		
8696	0.36	0.38	
Au was determin	ned using 1 AT fusion	ns	

Certified by Sonna Handman

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-3913-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	
Project:	75-JV-28	
Attn:	WAYNE BENHAM	

Date: SEP-13-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 67 CORE samples submitted SEP-09-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne	
8697 8698 8699 8700 8701	0.88 0.49 0.41 0.07 0.09	0.83	
8702 8703	0.10 0.14		· · · · · · · · · · · · · · · · · · ·

Au was determined using 1 AT fusions

Certified by Donna Handner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-3916-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-13-91
Project: Attn:	75-JV-28 W. BENHAM	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 41 CORE samples submitted SEP-10-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8704	0.04		
8705	Ni l		
8706	Ni 1		
8707	Ni l	Ni 1	
8708	0.02		
8709	Nil		
8710	Ni l		
8711	Ni l		
8712	Ni 1		
8713	Ni 1		
8714	Nil		
8715	Ni l		
8716	Ni l	Ni l	
8717	Ni l		
8718	Ni 1		
8719	Nil		
8720	Nil		
8721	Ni 1		
8722	Ni 1		
8723	Ni l		
8724	Ni l		
8725	Ni l		
8726	Ni l		
8727	Ni l		
8728	Ni l		
8729	Nil		
8730	Nil		
8731	Ni l	Ni l	•
8732	Ni l		
8733	Ni l		
Au was determin	ned using 1 AT fusion	ns	

Certified by Donna Hardno

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3916-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-13-91
Project:	75-JV-28 W BENHAM	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
mui,		2. FAX 10 507-0448

We hereby certify the following Assay of 41 CORE samples submitted SEP-10-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8734	0.02		
8735	Nil		
8736	Ni l		
8737	0.01		
8738	Nil	Ni 1	
8739	Nil		
8740	Ni l		
8741	0.02		
8742	0.01		
8743	Ni l		
8744	Nil		

Au was determined using 1 AT fusions

Certified by Dona Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-3941-RA1

Company: Project: Attn:	BATTLE MOUNTAIN CANADA INC. 75-JV-28 W. BENHAM	Date: SEP-16-91 Copy 1. P.O.BOX 635,, KIRKLAND LAKE ONT P2N 3K1 2. FAX TO 567-6448		
<i>We herel</i> submitte	by certify the following Assay of 30 CORE samples d SEP-11-91 by M. MASSON.			
Samole	Au Au check	RECEIVED SEP 2 3 1991		

Number	g/tonne	g/tonne	·
0745			
8/43 9746			
8/40 9747	0.07		
0/4/ 0710	0.01		
0/40 97/0	0.04 Ni 1		
0/47			
8750	Ni l	Ni l	
8751	Ni l		
8752	0.01		
8753	0.02		
8754	Ni l		
8755	0.02		
8756	0.06		
8757	0.04		
8758	Ni l		
8759	0.01		
8760	0 02		
8761	0.11		
8762	0.33	0.38	
8763	Nil	0.00	
8764	0.01		
8765	Ni 1		
8766	Nil		
8767	0.01		
8768	0.03		
8769	Ni l		
8770	0.04		
8771	Ni l		
8772	Ni l		
8773	0.07		
8774	Ni l		
Au was determined	using 1 AT fusions	}	

Certified by Jonna Landner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-3948-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.	Сору	Date: SEP-17-91
Project:	75-JV-28		1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM		2. FAX TO 567-6448
TT7. 1			

We hereby certify the following Assay of 47 CORE samples submitted SEP-12-91 by .

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8775	Nil		***************************************
8776	0.03		
8777	0.03		
8778	0.01		
8779	0.03		
8780	0.01	0.01	
8781	0.01		
8782	Ni l		
8783	Ni l		
8784	Nil		
8785	0.01		
8786	Ni l		
8787	Ni l		
8788	Ni l		
8789	Nil		
8790	Nil		
8791	Ni l		
8792	0.01		
8793	0.01	0.01	
8794	0.01		
8795	0.02		
8796	0.02		
8797	0.01		
8798	0.01		
8799	Ni l		
8800	Ni l		
8801	0.01		
8802	0.01		
8803	0.01		
8804	0.02		
Au was deter	rmined using 1 AT fusior	ns	

Certified by Donna Aardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3948-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.	Date: SEP-17-91
Project:	75-JV-28	Copy 1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 47 CORE samples submitted SEP-12-91 by .

Sample	Au	Au check
Number	g/tonne	g/tonne
8805	Nil	
8806	Ni l	
8807	0.02	
8808	0.02	
8809	0.01	
8810	Nil	
8811	0.01	
8812	0.01	
8813	0.01	0.01
8814	0.01	
8815	Nil	
8816	0.03	
8817	Ni 1	
8818	Ni 1	
8819	Ni l	
8820	Nil	
8821	0.01	

Au was determined using 1 AT fusions

Certified by Donna Standne-

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-3951-RA1

Company:	BATTLE MOUNTAIN CANADA INC	Date: SEP-18-91
Project:	75JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE ONT P2N 1K3
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 10 CORE samples submitted SEP-13-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
8822	0.10			
8823	0.02			
8824	0.05			
8825	0.06	0.10		
8826	18.82	18.48	19.10	
8827	0.22	0.27		
8828	0.02			
8829	0.11			
8830	0.02			
8831	0.04			

Au was determined using 1 AT fusions

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-3969-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-20-91
Project:	75-JV-28	Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448
We hard	hu cartify the following Assou of 55 CODE complex	

We hereby certify the following Assay of 55 CORE samples submitted SEP-16-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8831 not rec'd			
8832	Ni 1		
8833	0.02		
8834	Ni l		
8835	0.01		
8836	Ni l		
8837	Ni 1		
8838	Ni 1		
8839	0.02	Ni 1	
8840	0.01		
8841	Nil		
8842	Ni l		
8843	0.02		
8844	0.02		
8845	Ni l		
8846	Nil		
8847	Ni l		
8848	Ni 1		
8849	Ni l		
8850	Ni l		
8851	Ni 1		
8852	0.01		
8853	Ni l		
8854	0.01		
8855	0.05	0.10	
8856	Nil		
8857	0.01		
8858	0.01		
8859	Ni l		
8860	0.01		

Certified by Donna Handner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3969-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-20-91
Project:	75-JV-28	Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 55 CORE samples submitted SEP-16-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8861	0.01		
8862	Ni l		
8863	Ni l		
8864	Nil		
8865	Ni l		
8866	Ni l		
8867	0.09	0.10	
8868	0.06		
8869	0.03		
8870	0.07		
8871	0.09		
8872	0.04		
8873	0.16		
8874	0.11		
8875	0.02	0.02	
8876	0.05		
8877	0.02		
8878	0.03		
8879	Ni l		
8880	Nil		
8881	0.01		
8882	0.02		
8883	0.03		
8884	0.03		
8885	0.03		
8886	0.02		
8887			

Au was determined using 1 AT fusions

Certified by Donna Hardner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

1W-3999-RA1

Company:BATTLE MOUNTAIN CANADA INC.Date: SEP-25-91Project:75-JV-28Copy 1. P.O.BOX 635, KIRKLAND LAKE,ONT. P2N 3K1Attn:WAYNE BENHAM2. FAX TO 567-6448We hereby certify the following Assay of 42 CORE samples
submitted SEP-18-91 by M. MASSON.SampleSampleAu Au check

Number g/tonne g/tonne 8886 not rec'd 8887 0.05 8887 0.06 0.05 8888 0.06 0.05 8889 0.01 8890 8890 Nil 8891 8891 0.01 8892 8892 0.03 8893 8893 0.04 8894 8895 0.02 8896 8896 0.02 8898 8899 0.01 8898 8900 0.05 8901 8901 0.01 8903 8902 0.01 8904 8903 0.01 8903 8904 0.03 8904 8905 0.02 8907 8906 0.02 8907 8906 0.02 8906 8905 0.02 8907 8906 0.02 8907 8907 0.04 0.03 8908 0.02 8909 <th>Junpio</th> <th></th> <th>, a onoon</th> <th></th>	Junpio		, a onoon	
8886 not rec'd 8887 0.05 8888 0.06 0.05 8889 0.01 8890 Ni1 8891 0.01 8892 0.03 8893 0.04 8894 0.07 8955 0.02 8896 0.01 8897 0.02 8898 0.01 8900 0.01 8900 0.02 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8909 0.02 8909 0.02 8911 0.04 901 Ni1 901 0.02 903	Number	g/tonne	g/tonne	
8887 0.05 8888 0.06 0.05 8890 Ni1 8891 0.01 8892 0.03 8893 0.04 8894 0.07 0.07 8895 0.02 8896 0.02 8897 0.02 8898 0.01 8897 0.02 8898 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8906 0.02 8906 0.02 8907 0.01 8908 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8911 0.04	8886 not rec'd			
8888 0.06 0.05 8890 Ni1 8891 0.01 8892 0.03 8893 0.04 8894 0.07 0.07 8895 0.02 8896 0.02 8897 0.02 8898 0.01 8899 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8909 0.02 8910 Ni1 8911 0.04 912 0.02 8913 Ni1 8914 0.01 915 0.01 Au was determined using 1 AT fusi	8887	0.05		
8889 0.01 8890 Ni1 8891 0.01 8892 0.03 8893 0.04 8894 0.07 0.07 8895 0.02 8896 0.02 8897 0.02 8898 0.01 8897 0.02 8898 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02	8888	0.06	0.05	
8890 Ni1 8891 0.01 8892 0.03 8893 0.04 8894 0.07 0.07 8895 0.02 8896 0.01 8897 0.02 8898 0.01 8899 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8907 0.04 8908 0.02 8909 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01	8889	0.01		
8891 0.01 8892 0.03 8893 0.04 8894 0.07 0.07 8895 0.02 8896 0.02 8897 0.02 8898 0.01 8900 0.01 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8909 0.02 8901 0.02 8902 0.02 8903 0.02 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01 <	8890	Ni l		
8892 0.03 8893 0.04 8894 0.07 0.07 8895 0.02 8896 0.02 8897 0.02 8898 0.01 8999 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01 4u was determined using 1 AT fusions	8891	0.01		
8893 0.04 8894 0.07 0.07 8895 0.02 8896 0.02 8897 0.02 8898 0.01 8999 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8901 0.04 8902 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01 Au was determined using 1 AT fusions	8892	0.03		
8894 0.07 0.07 8895 0.02 8896 0.02 8897 0.02 8898 0.01 8899 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8906 0.02 8907 0.04 8908 0.02 8909 0.02 8909 0.02 8909 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01 Au was determined using 1 AT fusions	8893	0.04		
8895 0.02 8896 0.02 8897 0.02 8898 0.01 8999 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01 Au was determined using 1 AT fusions	8894	0.07	0.07	
8896 0.02 8897 0.02 8898 0.01 8899 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01 4u was determined using 1 AT fusions	8895	0.02		
8897 0.02 8898 0.01 8899 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 3914 0.01 3915 0.01	8896	0.02		
8898 0.01 8899 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 3914 0.01 3915 0.01	8897	0.02		
8899 0.01 8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 3914 0.01 3915 0.01 Au was determined using 1 AT fusions	8898	0.01		
8900 0.05 8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 3914 0.01 3915 0.01	8899	0.01		
8901 0.01 8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 3914 0.01 3915 0.01 Au was determined using 1 AT fusions	8900	0.05		
8902 0.01 8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 3915 0.01 Au was determined using 1 AT fusions	8901	0.01		
8903 0.01 8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni 1 8911 0.04 8912 0.02 8913 Ni 1 8914 0.01 3915 0.01 Au was determined using 1 AT fusions	8902	0.01		
8904 0.03 8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni 1 8911 0.04 8912 0.02 8913 Ni 1 8914 0.01 3915 0.01 Au was determined using 1 AT fusions	8903	0.01		
8905 0.02 8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 3915 0.01 Au was determined using 1 AT fusions	8904	0.03		
8906 0.02 8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni 1 8911 0.04 8912 0.02 8913 Ni 1 8914 0.01 3915 0.01 Au was determined using 1 AT fusions	8905	0.02		
8907 0.04 0.03 8908 0.02 8909 0.02 8910 Ni 1 8911 0.04 8912 0.02 8913 Ni 1 8914 0.01 3915 0.01	8906	0.02		
8908 0.02 8909 0.02 8910 Ni1 8911 0.04 8912 0.02 8913 Ni1 8914 0.01 8915 0.01	8907	0.04	0.03	
8909 0.02 8910 Ni 1 8911 0.04 8912 0.02 8913 Ni 1 8914 0.01 8915 0.01 Au was determined using 1 AT fusions	8908	0.02		
8910 Ni 1 8911 0.04 8912 0.02 8913 Ni 1 8914 0.01 8915 0.01 Au was determined using 1 AT fusions	8909	0.02		
8911 0.04 8912 0.02 8913 Nil 8914 0.01 8915 0.01 Au was determined using 1 AT fusions	8910	Ni l		
8912 0.02 8913 Nil 8914 0.01 8915 0.01	8911	0.04		
8913Ni l89140.0189150.01Au was determined using 1 AT fusions	8912	0.02		
8914 0.01 8915 0.01 Au was determined using 1 AT fusions	8913	Ni l		
8915 0.01 Au was determined using 1 AT fusions	8914	0.01		
Au was determined using 1 AT fusions	8915	0.01		
	Au was determined us	sing 1 AT fusion	S	

Jonna Landner Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

Established 1928

Assay Certificate

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-3999-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-25-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 42 CORE samples submitted SEP-18-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8916	0.01		
8917	0.02		
8918	0.01		
8919	0.02		
8920	0.03		
8921	0.03		
8922	0.01		
8923	0.04	0.02	
8924	0.02		
8925	0.01		
8926	0.01		
8927	0.01		
8928	0.03		

Au was determined using 1 AT fusions

Certified by Donna Landner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-4006-RA1

BATTLE MOUNTAIN CANADA INC.	
75-JV-28	Conv
WAYNE BENHAM	ထမ္မွာ
	BATTLE MOUNTAIN CANADA INC. 75-JV-28 WAYNE BENHAM

Date: SEP-26-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 45 CORE samples submitted SEP-19-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
8929	0.04	0.03	
8930	0.01		
8931	0.07		
8932	0.20		
8933	0.03		
8934	0.01		
8935	Nil		
8936	0.03		
8937	Ni l		
8938	Ni l		
8939	Nil		
8940	0.02		
8941	0.02		
8942	0.02		
8943	0.01		
8944	0.02		
8945	0.04		
8946	0.03		
8947	Ni l		
8948	0.15	0.15	
8949	0.07		
8950	0.02		
8951	Ni l		
8952	Ni l		
8953	0.03		
8954	0.01		
8955	Nil		
8956	0.02		
8957	0.13	0.11	
8958	Nil		
Au was det	ermined using 1 AT fusion	 S	

febr Certified by_

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-4006-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-26-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 45 CORE samples submitted SEP-19-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne
8959	0.06	
8960	0.09	
8961	0.03	·
8962	0.01	
8963	0.02	
8964	0.02	
8965	0.02	
8966	Nil	
8967	0.05	
8968	0.01	
8969	0.05	
8970	0.16	0.13
8971	0.07	
8972	0.01	
8973	0.05	

Au was determined using 1 AT fusions

Febr Certified by

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-4019-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-26-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 46 CORE samples submitted SEP-20-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
8974	0.01			
8975	0.02			
8976	0.05	0.05		
8977	0.02			
8978	0.02			
8979	0.04			
8980	Ni l			
8981	Ni l			
8982	Ni l			
8983	Ni l			
8984	0.06			
8985	2.26	2.69	2.30	
8986	0.03			
8987	0.01			
8988	0.30			
8989	0.02			
8990	0.37			
8991	0.07			
8992	0.01			
8993	0.23			
8994	0.30			
8995	0.85	0.77		
8996	0.73			
8997	0.23			
8998	0.11			
8999	0.68	0.70		
9000	0.03			
9001	0.02			
9002	0.25			
9003	0.05			
Au was determined	using 1 AT fusion	ns		~

Certified by _____

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-4019-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-26-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 46 CORE samples submitted SEP-20-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
9004	0.07			
9005	0.01			
9006	0.02			
9007	0.03			
9008	0.02			
9009	0.03			
9010	0.03			
9011	0.03			
9012	0.01			
9013	0.06			
9014	0.08			
9015	0.17	0.20		
11901	0.02			
11902	0.13			
11903	0.01			
11904	Ni l			

Au was determined using 1 AT fusions

film Certified by_

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-4026-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.			
Project:	75-JV-28	Сору	1.	B
Attn:	W. BENHAM		2.	F

Date: SEP-27-91 Copy 1. BOX 635, KIRKLAND LAKE, ONT P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 61 CORE samples submitted SEP-23-91 by M. MASSON.

RECEIVED OCT - 7 1991

Sample Number	Au g/tonne	Au check g/tonne	Au 2nd g/tonne	
9016	0.04			· · · · · · · · · · · · · · · · · · ·
9017	0.03			
9018	0.03			
9019	0.02			
9020	0.03			
9021	0.02			
9022	0.07	0.07		
9023	0.05			
9024	Ni l			
9025	0.05			
9026	0.06			
9027	0.05			
9028	0.04			
9029	0.01			
9030	0.02			
9031	0.06			
9032	0.08			
9033	0.12			
9034	1.49	1.33	1.51	
9035	0.03			
9036	0.05			
9037	0.06			
9038	0.12			
9039	0.03			
9040	0.12			
9041	0.32	0.45		
9042	0.32			
9043	0.38			
9044	0.13			
9045	0.31			
Au was determin	ed using 1 AT fusion	ns		

Certified by Donna Landner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-4026-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.	Date: SEP-27-91
Project:	75-JV-28	Copy 1. BOX 635, KIRKLAND LAKE, ONT P2N 3K1
Attn:	W. BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 61 CORE samples submitted SEP-23-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
9046	0.31			· · · · · · · · · · · · · · · · · · ·
9047	0.41			
9048	0.42	0.27		
9049	0.18			
9050	0.03			
9051	0.07			
9052	0.21			
9053	0.02			
9054	0.08			
9055	0.37			
9056	0.03			
9057	0.01			
9058	Ni l			
9059	Nil			
9060	0.32			
9061	0.32	0.35		
9062	0.04			
9063	0.06			
9064	0.05			
9065	0.29			
9066	Ni l			
9067	0.06			
9068	0.07			
9069	Ni l			
9070	0.05			
9071	0.02			
9072	0.02			
9073	0.01			
9074	0.01			
9075	0.02			
9076	0.01			
Au was determine	d using 1 AT fusio	ons		

Certified by Donna Sandner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-4068-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: SEP-30-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 18 CORE samples submitted SEP-26-91 by M. MASSON.

Sample Number	Au g/tonne	Au check g/tonne	
9077	0.01		
9078	0.01		
9079	0.01		
9080	Ni 1		
9081	0.01		
9082	0.01	0.01	
9083	Ni 1		
9084	0.01		
9085	0.01		
9086	0.01		
9087	0.01		
9088	0.01		
9089	0.01		
9090	0.01		
9091	0.01		
9092	0.02		
9093	0.03		
9094	0.01		

Au was determined using 1 AT fusions

Certified by Donna Handner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-4075-RA1

BATTLE MOUNTAIN 75-JV-28 W. BENHAM	Date: OCT-01-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT.P2N 1K 2. FAX:567-6448
	BATTLE MOUNTAIN 75-JV-28 W. BENHAM

We hereby certify the following Assay of 29 SAWN CORE samples submitted SEP-27-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
9095	Nil		
9096	Nil		
9097	Ni l		
9098	0.01		
9099	Ni l		
9100	Nil		••••••
9101	0.01		
9102	Nil	Ni l	
9103	0.01		
9104	0.01		
9105	0.01		
9106	Ni l		
9107	0.02		
9108	Ni l	Ni l	
9109	Ni l		
9110	Ni l		
9111	Ni l		
9112	0.01		
9113	Nil		
9114	0.01		
9115	Ni l		
9116	0.01		
9117	Ni l		
9118	0.05	0.06	
9119	0.02		
9120	Nil		
9121	0.01		
9122	Nil		
9123	0.01		

Au was determined using 1 AT fusions

Certified by Donner Landner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-4086-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.	Date: OCT-02-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAKE, , ONT., P2N 1K3
Attn:	W.BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 42 CORE samples submitted SEP-30-91 by R.PEEVER.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
9124	0.01		·
9125	Ni l		
9126	0.01		
9127	Ni l	Nil	
9128	Ni l		
9129	Nil		
9130	Ni l		
9131	Ni l		
9132	Ni 1		
9133	Ni l		
9134	Ni 1		
9135	Ni 1		
9136	Ni 1		
9137	Ni 1		
9138	Ni l		
9139	Nil		
9140	Ni l		
9141	Ni l		
9142	0.01		
9143	Nil		
9144	Nil		
9145	Ni l		
9146	Ni l		
9147	Ni l		
9148	Nil		
9149	Nil		
9150	0.01	0.01	
9151	Ni 1		
9152	Ni l		
9153	Ni l		
Au was determin	ned using 1 AT fusio	ns	

Certified by Donna Handner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-4086-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.		Date: OCT-02-91
Project:	75-JV-28	Copy 1	P.O.BOX 635, KIRKLAND LAKE, , ONT., P2N 1K3
Attn:	W.BENHAM	2	FAX TO 567-6448

We hereby certify the following Assay of 42 CORE samples submitted SEP-30-91 by R.PEEVER.

Sample Au Number g/tonne	Au check g/tonne
9154 0.02	· · · · · · · · · · · · · · · · · · ·
9155 Nil	
9156 Nil	
9157 Nil	·
9158 Ni l	
9159 Nil	
9160 Nil	
9161 Ni l	
9162 Ni l	Ni l
9163 Ni l	
9164 0.01	
9165 0.06	

Au was determined using 1 AT fusions

certified by Donna Sardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-4097-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: OCT-	03-91
Project:	75-JV-28	Copy 1. P.O.BOX 635, KIRKLAND LAK	E, ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448	

We hereby certify the following Assay of 33 CORE samples submitted OCT-01-91 by R. PEEVER.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
9166	0,02	0.02		· · · · · · · · · · · · · · · · · · ·
9167	0.02			
9168	0.02			
9169	0.02			
9170	0.06			
9171	0.03			
9172	0.03			
9173	0.03			
9174	0.04			
9175	0.03			
9176	0.03			
9177	. 0.03			
9178	0.08			
9179	0.11			
9180	0.39			
9181	0.03			
9182	1.05	1.12	1.18	
9183	0.01			
9184	Ni l			
9185	Nil			
9186	Nil			
9187	Ni l			
9188	Ni l			
9189	0.02			
9190	0.02			
9191	0.02			
9192	0.04	0.05		
9193	0.01			
9194	0.02			
9195	0.01			
Au was datarmi	ad using 1 AT fusio			

Au was determined using 1 AT fusions

Certified by Doma Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-4097-RA1

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	WAYNE BENHAM

Date: OCT-03-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE, ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 33 CORE samples submitted OCT-01-91 by R. PEEVER.

Sample Number	Au g/tonne	Au check g/tonne	Au 2nd g/tonne	
9196 9197 9198	0.02 0.01 Nil			· · · · · · · · · · · · · · · · · · ·

Au was determined using 1 AT fusions

Certified by Donna Hardner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

1W-4110-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: OCT-07-91
Project:	75-JV-28 W DENHAM	Copy 1. P.O.Box 635, Kirkland Lake, Ont. P2N 3K1 2 Eas to 567-6448
Aun:		2. Tax to 507-0446

We hereby certify the following Assay of 48 core samples submitted OCT-02-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
9199	0.01		
9200	0.02		
9201	0.01		
9202	Ni l		
9203	0.06	0.06	
9204	Ni 1		
9205	0.02		
9206	0.02		
9207	Ni l		
9208	0.01		
9209	0.03	0.03	
9210	0.01		
9211	0.02		
9212	Ni l		
9213	Ni l		
9214	Ni l		
9215	0.01		
9216	Ni l		
9217	Ni l		
9218	0.02	0.02	
9219	0.01		
9220	Ni l		
9221	0.01		
9222	0.01		
9223	0.01		
9224	0.01		
9225	Ni l		
9226	Ni 1		
9227	Ni l		
9228	Ni l		
9228 Au was determin	Nil Ned using 1 AT fusio	ns	

Certified by Donna Landner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

1W-4110-RA1

Company:	BATTLE MOUNTAIN CANADA INC.		Date: OCT-07-91
Project:	75-JV-28	Copy 1	P.O.Box 635, Kirkland Lake, Ont. P2N 3K1
Attn:	W.BENHAM	2	. Fax to 507-0448

We hereby certify the following Assay of 48 core samples submitted OCT-02-91 by M. MASSON.

Sample	Au	Au check	
Number	g/tonne	g/tonne	
9229	0.01		,
9230	0.01		
9231	0.02		
9232	Ni l		
9233	Ni l		
9234	Ni l		
9235	0.02	0.02	
9236	0.01		
9237	Ni l		
9238	Ni l		
9239	Nil		
9240	0.01		
9241	Nil		
9242	Nil		
9243	Ni l		
9244	Nil		
9245	Ni l		
9246	Ni l		

Au was determined using 1 AT fusions

Certified by Donna Landner

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Established 1928

Assay Certificate

1W-4117-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: OCT-04-91
Project: Attn:	75-JV-28 W.BENHAM	Copy 1. P.O.Box 635, Kirkland Lake, Ont. P2N 3K1 2. Fax to 567-6448

We hereby certify the following Assay of 17 core samples submitted OCT-03-91 by M. MASSON.

Sample	Au	
Number	g/tonne	
9247	0.01	
9248	Ni l	
9249	0.01	
9250	Ni l	
9251	Nil	
9252	Nil	
9253	Ni l	
9254	0.02	
9255	Ni 1	
9256	Ni l	
9257	Nil	
9258	0.01	
9259	Ni l	
9260	0.01	
9261	Ni l	
9262	Nil	•••••••••••••••••••••••••••••••••••••••
9263	Ni 1	

Au was determined using 1 AT fusions

Certified by Donna Landna

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

1W-4120-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: OCT-07-91
Project:	75-JV-28	Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1
Attn:	WAYNE BENHAM	2. FAX TO 567-6448

We hereby certify the following Assay of 62 CORE samples submitted OCT-03-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
9264	0.03			
9265	0.02			
9266	0.01			
9267	0.01			
9268	0.02			
9269	Ni l			
9270	0.09			
9271	8.30	8.43	7.99	
9272	0.22			
9273	2.67	2.85		
9274	0.05			
9275	1.62			
9276	0.96			
9277	0.75			
9278	2.33			
9279	1.25			•••••
9280	1.70	1.78		
9281	0.01			
9282	0.01			
9283	0.02			
9284	0.02			•••••••••••••••••••••••••••••••••••••••
9285	Nil			
9286	0.02			
9287	Ni l			
9288	Nil			
9289	Nil			
9290	0.02			
9291	Ni l			
9292	Ni l			
9293	Ni l			
Au was determi	ned using 1 AT fusior	1S		

Certified by Donna Handner

Established 1928

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 2 of 3

Assay Certificate

1W-4120-RA1

Company:	BATTLE MOUNTAIN CANADA INC.	Date: OCT-07-91
Project: Attn:	75-JV-28 WAYNE BENHAM	Copy 1. P.O.BOX 635, KIRKLAND LAKE, ONT. P2N 3K 2. FAX TO 567-6448

We hereby certify the following Assay of 62 CORE samples submitted OCT-03-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
9294	Ni l			
9295	0.02			
9296	0.58	0.34		
9297	0.20			
9298	0.03			
9299	Ni l			
9300	0.02			
9301	0.05			
9302	0.01			
9303	Ni l			
9304	0.02			
9305	0.01			
9306	Ni 1			
9307	Ni l			
9308	0.29			
9309	0.02			
9310	0.02			
9311	0.03			
9312	0.69	0.82		
9313	0.12			
9314	0.02			
9315	0.09			
9316	0.36			
9317	Ni l			
9318	Ni l			
9319	0.02			
9320	0.44	0.48		
9321	0.02			
9322	Ni l			
9323	0.04			
Au was determine	d using 1 AT fusio	ns		

Certified by Donna Dardnar

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

1W-4120-RA1

Company:	BATTLE MOUNTAIN CANADA INC.
Project:	75-JV-28
Attn:	WAYNE BENHAM

Date: OCT-07-91 Copy 1. P.O.BOX 635,KIRKLAND LAKE,ONT. P2N 3K1 2. FAX TO 567-6448

We hereby certify the following Assay of 62 CORE samples submitted OCT-03-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
9324	Nil			,
9325	Ni l			

Au was determined using 1 AT fusions

Certified by Donna Hardna

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300

Swastika Laboratories

A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

Assay Certificate

1W-4124-RA1

Company:	BATTLE MOUNTAIN (CANADA) INC.		Date: OCT-07-91
Project:	75-JV-28	Сору	1. BOX 635, KIRKLAND LAKE P2N 3K1
Attn:	W. BENHAM		2. FAX TO 567-6448

We hereby certify the following Assay of 18 CORE samples submitted OCT-04-91 by M. MASSON.

Sample	Au	Au check	Au 2nd	
Number	g/tonne	g/tonne	g/tonne	
9326	Ni l			· · · · · · · · · · · · · · · · · · ·
9327	Ni 1			
9328	Ni l			
9329	0.76			
9330	4.66	4.46	4.53	
9331	0.02			
9332	0.13			
9333	0.03			
9334	0.02			
9335	0.01			
9336	0.25	0.21		
9337	0.02			
9338	0.01			
9339	0.01			
9340	0.02			
9341	Nil			
9342	0.03			
9343	0.03	0.03		

Au was determined using 1 AT fusions

Certified by Doma ardner

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244, FAX (705) 642-3300 Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 9G2 (613) 749-2220 Telex 053-3233

• •

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: 091-42940.4 (COMPLETE)				REFERENCE INFO:	
LIENT: BATTLE MOUNTAIN (CANADA) INC. ROJECT: NONE				SUBMITTED BY: W. BENHAM Date printed: 13-NOV-91	
ORDER ELEMENT	NUMBER OF Analyses	LOWER DETECTION LIMIT	EXTRACTION	N METHOD	
1 Au Gold 2 AUR1 Au Re-assay grav.	148 2	0.07 grams/ 0.03 G/T			
3 AUR2 Au Reassay of reject 4 AUR2 Au Reassay of reject	9 2	0.03 G/T 0.03 G/T			
SAMPLE TYPES NUMBER	SIZE FR	ACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER	
DRILL CORE 149	-20	0	149	Pulverizing 102 Crush,Pulverize -200 47	
ALL PREVIOUS COPIES OF THE ALL PREVIOUS COPIES OF THE ALL THE SAMPLES THAT WERE F RE-PREPARED, EXCEPT FOR SAM FIRST RE-TEST OF SAMPLE 929 ON THE ORIGINAL PULPS. RE-ANALYSIS SHOWED THAT SAM WERE INADVERTENTLY SWITCHED ASSAYING.	FICATE AND REPORT. FOR RE-ANAL APLES 7941 95 WHO WERE APLES 9329 DURING TH	SUPERCEDES YSIS WERE AND THE DONE AND 9330 E ORIGINAL			
FAX: 705-567-6448			INVO	ICE TO: MR. WAYNE BENHAM	
]
]
-					

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa Ontario KIJ 9G2 (613) 749-2220 Telex 053-3233

•

Certificate of Analysis

			A DIVI	ISION OF INCE	ICAPE INSPECTION	EXTENTING SERVICES	13-NOV-9	1	
REPORT: 091	-42940.4 (COMPLETE)					PROJECT: NONE		PA	GE 1
AMPLE NUMBER	ELEMENT AU UNITS grams/	AUR1 G/T	AUR2 G/T	AUR2 G/T	SAMPLE NUMBER	ELEMENT Au UNITS grams/	AUR1 G/T	AUR2 G/T	AUR2 G/T
7629	0.14		·······		7544	1.77			
7630	0.71				7945	2.71			
7631	0.98				/946	0.82			
7632	0,07 0.21				7947	12.09			
	0.21				/ 340	0.54			
7634	<0.07				7949	0.26			
/635	0.13				7950	2.80			
/030 7627	1.10				/951	18.95		22.05	
7638	1.77				7952	23.54			
	0.25				(903	0,19			
7639	1.10				8283	<0.07			
7000	0.28		10.00		8311	<0.07			
7662	11.14		12.30		8312	<0.07			
7663	<0.07				8313 8314	U.U9 20.07			
					0,514	\U.U/			
7664	<0.07				8315	0.08			
7665	2.81				8316	<0.07			
/666	4.49		4.72		8366	<0.07			
7669	0.39				8357	0.09			
1000	0.07				0300	0.13			
7669	0.29			<u></u>	9179	0.09			
7670	<0.07				9180	0.36			
10/1	<0.07				9181	0.11			
7672	0.20				9182	0.80			
1013	10.13				9270	0.00			
7749	0.74				9271	7.26			
7750	0.21				9272	0.28			
7752	U.23 0.00				9273	2.65			
7753	0.05				9274	1 15			
					JZIJ	T : T]			
7754	0.09				9276	1.06			
7847	0.11				9277	0.83			
7848	D.09				9278	2.04			
7850	U,14 TC				9279 0200	1.00			
/030	·····				5200	2.02			
7851	0.47				9295	1.70	1.71	1.95	1.85
/940	0.07		• -		9296	0.21			
7941	39.08	41.80	IS		9297	<0.07			
₽ / 24Z 70/13	2,5U 0,25				9308	U.25			

Bondar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 9G2 (613) 749-2220 Telex 053-3233

.

Certificate of Analysis

Æ

				A DIV	SION OF INCH	ICAPE INSPECTION &	TESTING SERVIC	ES PRINTED+	13-NOV-91	١	
REPORT: 091-	42940.4 (COM	PLETE)					PROJE	CT: NONE	.1.3	PA	SE 2
AMPLE HUMBER	ELEMENT UNITS	Au grams/	AUR1 G/T	AUR2 G/T	AUR2 G/T	SAMPLE NUMBER	ELEMENT UNITS	Au grams/	AUR1 G/T	AUR2 G/T	AUR2 G/T
9310 9311 9312 9313 9314		<0.07 <0.07 0.64 0.15 <0.07				1 3869 1 3870 1 3871 1 3872 1 3873		0.31 0.31 <0.07 5.89 3.68		6.02 4.20	
9315 9316 9317 9318 9319		<0.07 0.15 <0.07 <0.07 <0.07				13874 13875 13876 13877 13878		<0.07 0.24 <0.07 5.51 <0.07		6.10	
9320 9321 9322 9323 9329		0.32 <0.07 <0.07 <0.07 <0.07 0.75	IS	0.65	IS	13879 13880 13881 13882 13883		<0.07 <0.07 0.15 6.64 1.01		6.93	
9330 9331 9332 9333 9334		4.15 <0.07 0.13 <0.07 <0.07	1\$	3.81	3.87	13884 13885 13886 13887 13888		1.97 0.40 1.48 0.11 <0.07	<u></u>		
9335 9336 13851 13852 13853		<0.07 0.10 0.07 0.09 0.19				13889 13890 13891 13892 13893		0.66 0.16 <0.07 <0.07 0.14			
13854 13855 13856 13857 13858		0.12 0.21 <0.07 0.25 0.10				13894 13895 13896 13897		0.09 <0.07 <0.07 0.43			
13859 13860 13861 13862 13863		0.11 1.93 0.12 0.07 <0.07									
13864 13865 13866 13867 13868		0.71 0.16 0.09 16.33 0.07		16.38							

Bóndar-Clegg & Company Ltd. 5420 Canotek Road Ottawa, Ontario K1J 9G2 (613) 749-2220 Telex 053-3233

٩

Certificate of Analysis

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES										
KEPORT: 091-42940.4 (C)	OMPLETE)		······································			PROJ	ECT: NONE		PAG	iE 3
TANDARD ELEMENT MAME UNITS	Au grams/	AUR1 G/T	AUR2 G/T	AUR2 G/T	STANDARD NAME	ELEMENT UNITS	Au grans/	AUR1 G/T	AUR2 G/T	AUR2 G/T
umber of Analyses	-	~	-	-					· · · · · · · · · · · · · · · · · · ·	
Standard Deviation	-	-	-	-						
Accepted Value	-	-	-	-						
Number of Analyses	-	-	-	-						
tandard Deviation	-	-	-	-						
Accepted Value	-	-	-	-						
CANMET REF. STD.		-	17.60	•						
ean Value	-	-	17.600	-						
Standard Deviation	-	-	-	-						
							Æ	0		

Kirkland Lake Project

Amalgamated Kirkland Drilling

APPENDIX III

CERTIFICATE OF QUALIFICATIONS

Battle Mountain (Canada) Inc.

November, 1991

CERTIFICATE OF QUALIFICATIONS

I, Wayne Benham of 921 Willowdale Ave. in the City of Toronto in the Province of Ontario.

DO HEREBY CERTIFY:

- 1. That I am a graduate of Queen's University, Kingston, Ontario with a Bachelor of Science (B.Sc.), Geological Science, 1970.
- 2. That I have been practising my profession as an exploration geologist since 1970.
- 3. That I have personally supervised the work described in this report.

Signed *N*

Wayne Benham Kirkland Lake, Ontario

.

Dated this November 29, 1991.

Battle Mountain (Canada) Inc.

KIRKLAND LAKE PROJECT

REPORT ON DIAMOND DRILLING PROGRAMME JULY TO OCTOBER, 1991

AMALGAMATED KIRKLAND PROPERTY TECK TOWNSHIP, LARDER LAKE MINING DIVISION ONTARIO, CANADA

YOLUME II

Kirkland Lake, Ontario November 29, 1991

W. Benham T. J. Böttrill Battle Mountain (Canada) Inc.

a anna aisealaistean an an taola laitean anna an taolacht an taolacht. Sa bhailte a' anna an taolacht anna an t

KIRKLAND LAKE PROJECT

REPORT ON DIAMOND DRILLING PROGRAMME

JULY TO OCTOBER, 1991

AMALGAMATED KIRKLAND PROPERTY TECK TOWNSHIP, LARDER LAKE MINING DIVISION ONTARIO, CANADA

VOLUME II

Kirkland Lake, Ontario November 29, 1991

W. Benham T. J. Bottrill

THE REAL PROPERTY AND

Battle Mountain (Canada) Inc.

KIRKLAND LAKE PROJECT

REPORT ON DIAMOND DRILLING PROGRAMME

JULY TO OCTOBER, 1991

AMALGAMATED KIRKLAND PROPERTY TECK TOWNSHIP, LARDER LAKE MINING DIVISION

ONTARIO, CANADA

Kirkland Lake, Ontario November 29, 1991 W. Benham T. J. Bottrill ank. - onkorite

Kirkland Lake Project

Sector sector

Amalgamated Kirkland Drilling

A REAL AND AND A SOLA AND AND A SALES

TABLE OF CONTENTS

٢

h Line?

VOLUME II

LIST OF DRAWINGS

Drawing Number	<u>Description</u>	Scale
1	Location Map	1.100.000
2	Property Map	1.100,000
GL-026	Geology Plan	1.20,000
GL-027	Geology Plan	1.2,500
GL-028	Geology Plan	1.2,500
GL-029	Geology Plan	1.2,500
DP-003	Drill Plan with Claims	1.2,500
DL-006	Longitudinal Section "102" Structure	1:2,500
DL-007	Longitudinal Section *103* Structure	1:2,300
DC-010-1 to 3	Section 8190 E. Holes AK91-31, 34 & 38	1:2,300
DC-017-1 & 2	Section 8400 E. Hole AK91-32	1:500
DC-022-1 & 2	Section 8600 E. Hole AK91-30	1:500
DC-034	Section 8700 E. Hole AK91-29	1:500
DC-035	Section 8400 E. Hole AK91-32	1:500
DC-036-1 & 2	Section 8000 E. Hole AK01-32	1:500
DC-037-1 & 2	Section 8190 E. Hole AK91-34	1:500
DC-038	Section 7600 E. Hole AK91-34	1:500
DC-039-1 & 2	Section 7600 E, Hole AK91-36	1:500
DC-040-1 & 2	Section 7000 E, 1016 AK-35 & 36	1:500
	Section 7500 E, Hole AK91-37	1:500