

#### DIAMOND DRILLING

010

TOWNSHIP: Teck

REPORT No.: 47

WORK PERFORMED BY: Eden Roc Minerals

| CLAIM NO. | HOLE NO. | FOOTAGE | DATE   | Note    |
|-----------|----------|---------|--------|---------|
| L 491650  | l        | 936.0   | Dec/82 | (1) (2) |

NOTES: (1) #11-83 (2) O.M.E.P. Submital: #OM82-6-C-144

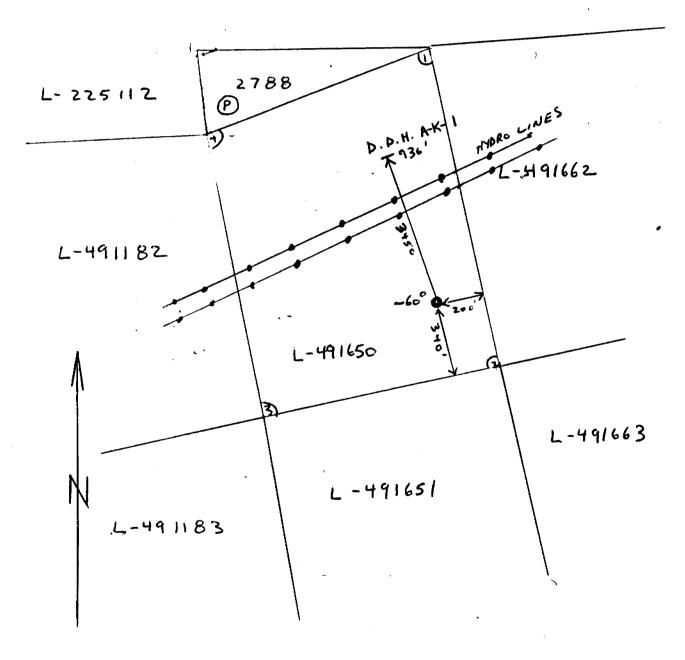
OM 82 -6-C-144

/



ROCK DESCRIPTIONS HOLE #1 AMALGAMATED KIRKLAND FOR EDEN ROC MINERAL CORP.

#### DIPS


| Depth | Apparent Dip | True Dip |
|-------|--------------|----------|
| 200   | 60°          | 53°      |
| 485   | 55°          | 48°      |
| 936   | 54°          | 47°      |

Drilling took place between December 13/82 and December 24, 1982.

Hole logged by Bernard MacIsaac.

EDEN ROC MINERAL CORP.

SKETCH OF B.B.H. A-K-1 -TECK TOWNSHIP SCALE: 1"=500' JAN.13/83



SKETCH BY C. FORBES

•

#### PORPHYRITIZED SEDIMENT (GREYWACKE)

This unit has been referred to previously as greywacke and was encountered in the drilling of A-5 & A-6 drilled on either side of the present hole. The rock's textural and compositional make-up would dictate a more descriptive term hence porphyritized sediment. This unit belongs to the Timiskaming series which is found throughout the underground workings of the entire Kirkland Lake Gold Camp.

The unit is medium to coarse grained with local fine grained zones. Color near the top is light to dark greenish grey, below 76.9 feet the ground mass is purplish grey in color. Phenocrysts are typically less than 1 cm wide and usually consist of red or white feldspar and dark mafic fragments. There is also the occasional fragment usually felsic in composition which is  $\leq 5$  cm. Some of these phenocysts (fragments) show reaction, others do not and hence the name porphyritized sediment. These phenocrysts (fragments) are usually angular to subrounded.

There is minor regular and irregular fracturing throughout the unit, with local zones of heavier fracturing and brecciation. The fractures are usually infilled by quartz, graphite or mafic material. These fracture zones are usually < 1 cm wide averaging approximately 2 mm wide. The fractures are also carbonatized. These fractures when regular are usually between 45° and 90° to the core axis.

Dominant veining material is quartz which forms regular and irregular veins  $\leq 3$  cm wid; regular veins usually form angles between 60° and 80° to the core axis. There seems to be two or more generations of quartz veins and veinlets. One generation is associated with local altered zones consisting of bleaching, feldspathization and epidotization, whilst the other(s) shows very little alteration. Local quartz-carbonate veins and veinlets occur which usually show ankerite , these veins also have regular and irregular habits .Regular veins are usually oriented between 60° to 80° to the core axis. They are typically  $\leq$  cm wide and contain ankerite which has a distinctive rusty appearance. Locally all veins and veinlets can show slight offsets.

As you proceed down hole in the unit carbonatization and chlortiic alteration becomes more prevesive rather than just locally alterating the rock. Mafic and graphite infilling also increases as one proceeds through the unit. The unit becomes very chloritic as one approaches the diabase unit below it. There is also minor chert like bands and fragments in this area of the unit.

The unit has local intrusions of small syenite dikes which are typically < 30 cm wide which can be heavily fractured with quartz infilling and graphite occurring along fracture planes. The fractures cross the section at approximately 60° to the core



axis. Their contacts are sometimes gradational and sometimes sharp.

Sulphides consist of very finely disseminated pyrite and cholhopyrite occurring throughout the rock. Graphite slips sometimes show splashes of pyrite. Pyrite and chalcopyrite show a minor association with quartz and quartz carbonate veinlets throughout the unit. There were no indications of visible gold in this rock type.

#### DIABASE

The diabase dike encountered in this hole strikes across the entire property. It past Algoman in age and is thus the youngest rock encountered in this hole.

The rock is dark greyish green in color, medium grained (less than 2 mm), with finer grained sections near the upper and lower contacts because of the chilling effect. There are occasional carbonate veinlets traversing the unit with a quite shallow orientation of 20° to 50° to the core axis. minor epidote stringers occur throughtout the unit. The unit is carbonatized throughout with the margin zones being more carbonatized. In general the unit has a salt and pepper appearance.

Sulphides are restricted to pryite which occurs as fine disseminations throughout.

#### PROPHYRITIC SYENITE

The unit is Algoman in age and is known throughout the Kirkland Lake area.

It is typically dark dull orangish red in color with local redder and purplish zones due to alteration or fracturing with mafic infilling and mafic zenoliths.

The groundmass is typically fine grained. The phenocrysts are usually rounded and  $\leq 3mm$  in color. The phenocrysts are a lighter orange in color and probably feldspathic in composition. Duteric alteration or contanimation probably causes the orangish color.

The unit is typically massive but has undergone fracturing resulting in a locally brecciated appearance. The fractures are welded by quartz, carbonate, graphite and mafic material. The fractures do show a preferred orientation at between 50° and 80° to the core axis however they do deviate locally and sometimes show no particular orientation. Where these fractures are intruded by quartz the adjacent rock is altered exhibiting red coloration.

The unit is locally carbonatized, with carbonate minerals locally in microfractures and tension gashs or carbonatization of the ground mass. The unit is also locally carbonatized along fractures.

The unit has the occasional mafic xenolith, sometimes being

quite large (1 to 7 cm). Mafic material also occurs as fracture fillings sometimes giving the unit a pseudo breccia appearance. Specular hematite when found is frequently associated with this mafic material and usually forms a core of small veinlets and stringers. Specular hematite also occurs as a fine dusting around the boundries of mineral grains.

Sulphides consisting of pyrite are typically very fine and disseminated throughout the rock. Pyrite is also associated with veinlets locally occurring on borders and as splashes associated with graphite slips.

Contacts can be sharp or gradational.

SYENITE

The unit is Algoman in age and is found scattered throughout the hole.

The unit is typically reddish orange in color. There are also local dark red zones and lighter orange sections due to alteration.

The unit is fine to medium grained and is locally porphyritic.

The unit is typically fractured however, local massive sections occur. These fractures are frequently infilled by quartz, carbonate, quartz carbonate, mafic material and graphite. These fractures are usually less than 2 mm wide. Numerous microfractures and tension gashes occur which are infilled by carbonate, quartz and quartz carbonate throughout. Some of these veinlets cause bleaching epidotization and feldspathization while others do not suggesting multiple generations of intrusion. The unit is also locally brecciated and infilled.

Local occurrences of specular of hematite are usually mixed with mafic material as stringers and veinlets throughout. Hematite usually forms the core of these structures. Sulphides consist predominately of pyrite and chalcopyrite,occurring both as fine disseminations and associated with veinlets. There are also local concentrations of pyrite associated with carbonate and splashes on graphite slips.

Contacts are usually @ 60° to core axis.

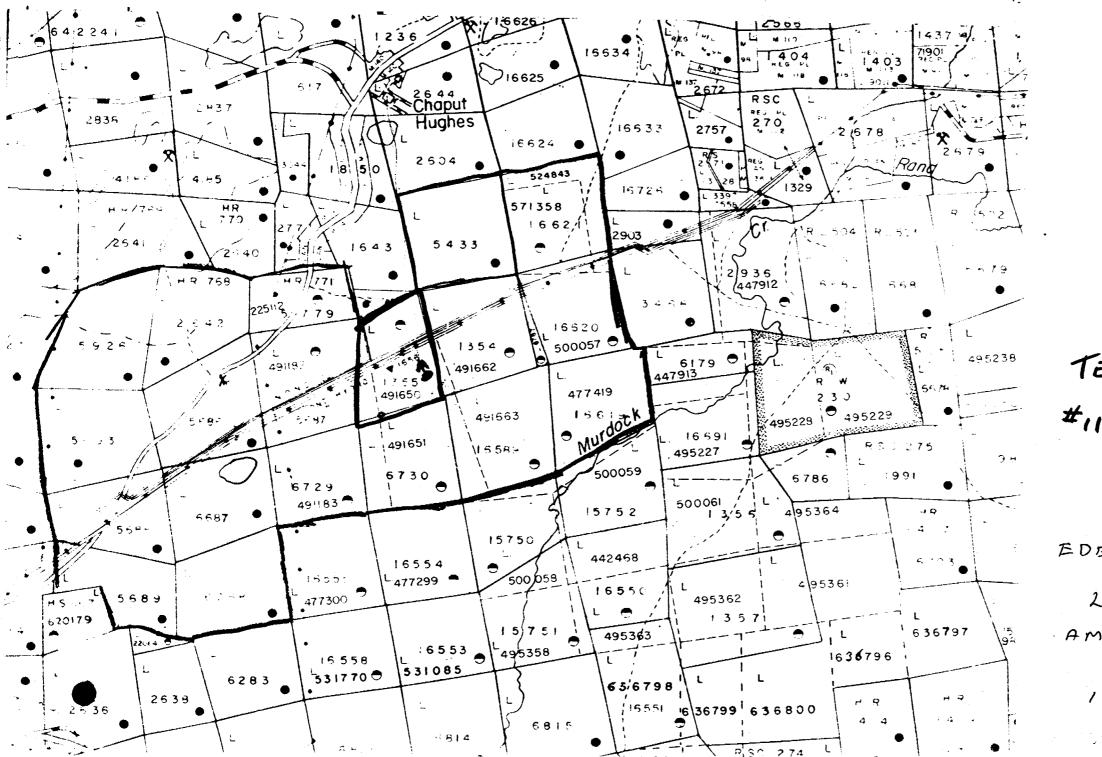
#### BASIC SYENITE

The unit is Algoman in age and is considered the oldest syenitic unit in the area.

The rock is reddish grey in color with local redder zones due to alteration caused by carbonate veinlets. Grain size ranges up to .5 cm with individual grains as large as .75 cm in the porphyritic sections. There are occassional mafic fragment which can be quite large in size  $0 \leq 5$  cm. Phenocysts found in porphyritic sections are typically angular to subrounded.

The unit is lightly fractured throughout with local areas of heavy fracturing. These fractures are typically infilled by mafic material, sometimes giving a pseudo breccia appearance with up to 50% mafic material, quartz carbonate, graphite and carbonate. Quartz and carbonate also occur as veinlets and infillings in microfractures and tension gashes. Some of these quartz carbonate and carbonate veinlets cause alteration resulting in bleaching, feldspathization and epidotization. The unit can also be locally chloritic . Some of these veinlets can also show small offsets.

The unit as a whole is carbonatized with both the groundmass and phenocrysts reacting to HCL. Microfractures are quite prevalent and are also reactive. There are local non-carbonatized sections.


Specular hematite occurs locally as stringers and veinlets associated with mafic material. Hematite usually forms the Core of these structures. Sulphides consisting of pyrite usually occurs as fine disseminations throughout the unit or associated with quartz and quartz carbonate structures. Possible visible gold was found at 777.4 in a quartz veinlet interground with pyrite.

Contracts are typically gradational.

#### CONCLUSION

The conglomerate found at the bottom of the hole belongs to the Timiskaming series and is common to this hole as well as A5 + A6 marking the foot wall of the syenites.

It is greenish grey in color with large subgrounded clasts, some being syenitic. It also has local fine grained sections. The unit has minor epidote and irregular quartz carbonate veinlets and fracture fillings. It shows local schistosity @ 70° to CA. Pyrite occurs as very fine dessiminations and is rare.



TECK TWP. #11-83

EDEN ROC MINERALS LOCATION MAP AMALGAMATED KIRKLAND 1"= 1/4 mile

OM 82-6-C-144

## **DIAMOND DRILL RECORD**

NAME OF PROPERTY Amalgamated Kirkland

HOLE NO. \_\_\_\_\_ SHEET NO. \_\_\_\_

| FOO  | TAGE |               | DESCRIPTION                                                                                                                 |              |         | SAMP         | LÉ            |       |     |   | ASSAYS |        |  |
|------|------|---------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------------|---------------|-------|-----|---|--------|--------|--|
| FROM | то   |               | DESCRIPTION                                                                                                                 | NO.          | % SULPH | FROM         | FOOTAGE       |       | 1 7 | 7 | OZ/TON | OZ/TON |  |
| 0    | 33   | Casing        |                                                                                                                             |              | IDES    | FRUM         | то            | TOTAL | 1   |   |        |        |  |
| 33   | 363  | -             | zized Sediment                                                                                                              |              |         |              |               |       |     |   |        |        |  |
|      |      | -33.5         | .5 cm qtz, veinlet @ 45° to C.A.                                                                                            | 8901         | Tr      | 33           | 34            |       |     |   |        |        |  |
|      |      | -36.5<br>- 39 | .5 cm qtz/carb veinlet @ 65° to C.A.<br>.75 cm qtz veinlet @ 45° to C.A.                                                    |              |         |              |               |       |     |   |        |        |  |
|      |      | - 45          | carb zone-rusty weathering (ankenite)                                                                                       | 8902         | Tr      | 45           | 46            |       |     |   |        |        |  |
| i    |      | - 46-47.5     | irregular qtz fracture filling                                                                                              | 8903         |         | 47.5         | 48.5          | -     |     |   |        |        |  |
|      |      | - 47.9-48.2   | 2 basic syenite dike (heavily fractured and qtz infilled)                                                                   |              |         |              |               |       |     |   |        |        |  |
|      |      | - 51.5-54.3   | slight carbonatization, finer grained locally fractured. fewer pebbles                                                      | 8904<br>8905 | -       | 51.5<br>54.3 | 54.3<br>57.15 |       | · . |   |        |        |  |
|      |      | - 54.3-61.1   | no pebbles, med. gr. few fractures lighter grey in color                                                                    |              |         |              |               |       |     |   |        | ./     |  |
|      |      | - 57-57.15    | fracture zone                                                                                                               |              |         | -            |               |       |     |   |        |        |  |
|      |      | - 60.7-61.2   | ankerite alteration, slightly fractured.                                                                                    | 8906         |         | 60.7         | 61.2          |       |     |   |        |        |  |
|      |      | - 61.1-61.5   | veinlets @ 60°-90° to C.A.<br>rock breaks @ 70-90° to C.A.                                                                  | 8907         |         | 61.2         | 65            |       |     |   |        |        |  |
|      |      | - 65-67       | alteration, bleached, fractured local ankerite<br>along fractures, graphitic infilling along<br>fractures @ 50°-70° to C.A. | 8908         |         | 65           | 67 -          |       |     |   |        |        |  |
|      |      | - 75.8-76.2   | syenite dike, contacts sharp @ 60° to C.A., slightly fractured                                                              |              |         |              |               |       | ,   |   |        |        |  |
|      |      | - 76.9-77.9   | carbonatization due to carb veinlet < 5 cm<br>wide along,strike rusty, fractured                                            | 8909         |         | 76.9         | 79.2          |       |     |   |        |        |  |
|      |      | - 81.8-82.5   | syenite dike, massive, contacts sharp @ .<br>75°-85° to C.A.                                                                |              |         | -            |               |       |     |   |        |        |  |
|      |      |               |                                                                                                                             |              |         |              |               |       |     |   |        |        |  |
|      |      |               |                                                                                                                             |              |         | -            |               |       |     | - |        |        |  |

366-1168

**TORONTO** 

LANGRIDGES

NAME OF PROPERTY\_\_\_\_Amalgamated Kirkland

HOLE NO. \_\_\_\_\_

SHEET NO. \_\_\_\_\_

| FOOT | AGE |                                                                                                                                             |      |         | SAMF  | PLE     |       | 1 | -                                             | ASSAYS |        |   |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------|---------|-------|---|-----------------------------------------------|--------|--------|---|
| FROM | то  | DESCRIPTION                                                                                                                                 | NO.  | % SULPH | 1     | FOOTAGE |       |   | <u>r                                     </u> | г      | r1     | r |
| FROM |     |                                                                                                                                             |      | IDES    | FROM  | то      | TOTAL | * | 7                                             | OZ/TON | OZ/TON |   |
|      |     | - 82.9-83.4 syenite dike - massive but slightly fractured<br>qtz + mafic material infilling contacts<br>sharp                               |      |         |       |         |       |   |                                               |        |        |   |
|      |     | - 84.3-85.5 qtz veinlet along strike, brecciated<br>between 84.6 - 85.2                                                                     | 8910 |         | 84.3  | 85.5    |       |   |                                               |        |        |   |
|      |     | - 92.5-92.6 alteration, bleached because of qtz veinlet<br>~1 cm wide @ 85° to C.A.                                                         |      |         |       |         |       |   |                                               |        |        |   |
|      |     | - 93.3-95.5 numerous qtz veinlets bleached, locally<br>carbonated < 1 cm wide some @ 60°-80° to C.A. mafic<br>infilled fractures            | 8911 |         | 93.3  | 95.5    |       |   |                                               |        |        |   |
|      |     | - 96.1-97 same as 93.3 -95.5                                                                                                                | 8912 |         | 96.1  | 97      |       |   |                                               |        |        |   |
|      |     | - 99.1-99.2 same as 93.3 - 95.5                                                                                                             |      |         |       |         |       |   |                                               |        |        |   |
|      |     | -103.5-105.2 bleached zone due to numerous qtz veinlets<br>< 1.5 cm @ 55° - 75° to C.A., mafic infilled<br>fractures                        | 8913 |         | 103.5 | 105.2   |       |   |                                               |        |        |   |
|      |     | -105.5-106.2 breccia zone                                                                                                                   | 8914 |         | 105.2 | 110     |       |   |                                               |        |        |   |
|      |     | -106.7-107.7 breccia zone with slight carbonate on fractures                                                                                |      | -       |       |         |       |   | -                                             |        |        |   |
|      |     | -108.2-110 altered zone due to qtz veinlet                                                                                                  |      |         |       |         |       |   |                                               |        |        |   |
|      |     | -113.8-114.8 irregular qtz veinlets, minor bleaching                                                                                        | 8915 |         | 114.5 | 116.2   |       |   |                                               |        |        |   |
|      |     | -114.5-116.2 local epidote alt in association with qtz intrusion                                                                            |      |         |       |         |       |   |                                               |        |        |   |
|      |     | -118.6-119.6 qtz veinlet along strike < 1.5 cm along<br>strike, slightly bleached, epidote                                                  | 8916 |         | 118.6 | 122.45  |       | , |                                               |        |        |   |
|      |     | -119.6-122.45 lat— bleached + epidote & feldspathized,<br>locally brecciated due to qtz veinlets<br>regular @ 45° - 60° to C.A. & irregular |      |         |       |         |       |   |                                               |        |        |   |
|      |     | -124.30-124.5 bleached, qtz @ 45° to C.A.                                                                                                   | 8917 |         | 124.3 | 127.    |       |   |                                               |        |        |   |
|      |     | -128-128.4 carb zone, veinlets @ 60° to C.A.                                                                                                | 8918 |         | 127.5 | 128.4   |       |   |                                               |        |        |   |
|      |     |                                                                                                                                             |      |         |       |         |       |   |                                               |        |        |   |

NAME OF PROPERTY Amalgamated Kirkland

HOLE NO. 1 \_\_\_\_\_ SHEET NO. 3

| FOOT | AGE |                            | DESCRIPTION                                                                                                            |      |         | SAMP  | PLE     |                                                                                                                  |   |   | ASSAYS |        |          |
|------|-----|----------------------------|------------------------------------------------------------------------------------------------------------------------|------|---------|-------|---------|------------------------------------------------------------------------------------------------------------------|---|---|--------|--------|----------|
| OM   | то  |                            | DESCRIPTION                                                                                                            | NO.  | % SULPH |       | FOOTAGE | and the second | 7 | 7 | OZ/TON | OZ/TON | <u> </u> |
|      |     | - 128.5 - 129              | fine grained & massive, light grey<br>purple in color                                                                  |      | IDES    | FROM  | <u></u> | TOTAL                                                                                                            |   |   |        | 02/104 |          |
|      |     | - 124.5-127                | feldspathization, minor epidote                                                                                        |      |         |       |         |                                                                                                                  |   |   |        |        | i        |
|      |     | - 135.7-138                | bleaching & epidotization due to irregular<br>qtz veining                                                              | 8919 |         | 135.7 | 138     |                                                                                                                  |   |   |        |        |          |
|      |     | - 151.3-152.8              | irregular qtz veining, brecciated between 152–152.3                                                                    | 8920 |         | 151.3 | 152.3   |                                                                                                                  |   |   |        |        |          |
|      |     | - 155.9-156.2              | locally chlorite, less qtz veining                                                                                     |      |         |       |         |                                                                                                                  |   |   |        |        |          |
|      |     | - 160.8-163.2              | qtz/carb zone, mainly qtz with bleaching<br>& epidote along with minor carbonatization<br>contacts @ 40° - 45° to C.A. | 8921 |         | 160.8 | 163.2   |                                                                                                                  |   |   |        |        |          |
|      |     | - 174.3-174.6              | irregular qtz veinlets                                                                                                 |      |         |       |         |                                                                                                                  |   |   |        |        |          |
|      |     | - 174.6-175.6              | Irregular qtz veinlets with associated                                                                                 | 8922 |         | 174.3 | 175.0   | <b>.</b> .                                                                                                       |   |   |        |        |          |
|      |     | - 176.4-177.2              | same as 174.6 -175.6                                                                                                   |      |         |       |         |                                                                                                                  |   |   |        |        |          |
|      |     | - 177.3-178                | syenite dike contacts @ 60° to C.A.                                                                                    | 8923 |         | 176.4 | 179.2   |                                                                                                                  |   |   |        |        |          |
|      |     | - 179.8-181.4              | bleached zone assoc. with $qtz \leq .5$ cm @ 45° - 60° to C.A.                                                         | 8924 |         | 179.8 | 181.4   |                                                                                                                  |   |   |        |        |          |
|      |     | - 186.5-189                | bleached zone assoc. with qtz veinlet $\leq 1$ cm wide                                                                 | 8925 |         | 186.5 | 189     |                                                                                                                  |   |   |        |        |          |
|      |     | - 190-191.2                | same as 186.5-189                                                                                                      | 8926 |         | 190   | 191.2   |                                                                                                                  |   |   | -      |        |          |
|      |     | - 192-193                  | carb & epidote                                                                                                         | 8927 |         | 192   | 199.5   |                                                                                                                  | , |   |        |        |          |
|      |     | - 196.6                    | 2.5 cm qtz /carb veinlet                                                                                               |      |         |       |         |                                                                                                                  |   |   |        |        |          |
|      |     | - 197.5-199.5              | same as 192-193                                                                                                        |      |         |       |         |                                                                                                                  |   |   |        |        |          |
|      |     | - 203.9-204                | minor irregular gtz/carb veining                                                                                       |      |         |       |         |                                                                                                                  |   |   |        |        |          |
|      |     | - 213. <del>2-</del> 217.5 | minor qtz veinlets @ 80° to C.A.                                                                                       |      |         |       |         |                                                                                                                  | ĺ |   |        |        |          |
|      |     | - 222.5-226.5              | minor qtz/carb veinlets @ 45° - 60° to C.A.                                                                            |      |         |       |         |                                                                                                                  |   |   |        |        |          |
|      | ·   | - 246.7-247                | slight bleaching due to qtz veinlet<br>@ 70° - 80° to C.A.                                                             |      |         |       |         |                                                                                                                  |   |   |        |        |          |

-ANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY\_ Amalgamated Kirkland

1

HOLE NO.

SHEET NO.\_\_\_\_

4

| F00' | TAGE |                                |                                                                                                                                                                                                                                      |      |         | SAMP | LE      |       | <u> </u> |   | ASSAYS |        |           |
|------|------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|---------|-------|----------|---|--------|--------|-----------|
| FROM | то   | 1                              |                                                                                                                                                                                                                                      | NO.  | % SULPH |      | FOOTAGE |       | 7        | 7 | OZ/TON | OZ/TON |           |
|      |      | - 258.5-260                    | carbonatization, qtz veinlets @ 55° to C.A.,<br>local chert fragments.                                                                                                                                                               |      | IDËS    | FROM | TO      | TOTAL |          |   |        |        | <u></u> , |
|      |      | - 270.5-280.6                  | greenish grey greywacke, minor qtz veining<br>@ 55° - 65° to C.A., locally carbonatization                                                                                                                                           |      |         |      |         |       |          |   |        |        |           |
|      |      | - 280.6-303                    | chloritized, locally carbonatized, minor qtz veining, dark green in color                                                                                                                                                            |      |         |      |         |       |          |   |        |        |           |
|      |      | - 303-320                      | carbonate zones, dark green in color,<br>chloritized, minor carb veinlets. schistose<br>@ 45°-90° to C.A.                                                                                                                            |      |         |      |         |       |          |   |        |        |           |
|      |      | - 320-363                      | dark green chlorite, non-carbonatized minor<br>tuff bands & fragments, numerous carb veinlets,<br>schisted @ 50° to C.A.                                                                                                             |      |         |      |         |       |          |   |        |        |           |
| 363  | 402  | DIABASE                        |                                                                                                                                                                                                                                      |      |         |      |         |       |          |   |        |        |           |
|      | r    | grained to 37<br>veinlets @ 20 | h, massive med. gr. ( <zmm) epidote="" finer<br="" locally="">4. rock breaks @ 60° - 90° to C.A. minor carb<br/>° - 50° to C.A. epidote as stringers. Rock generally<br/>pepper look about, slightly carbonatized throughout.</zmm)> |      |         |      |         |       |          |   | r      |        |           |
| 402  | 418  | Finer grained                  | version of diabiase, heavier carb. no epidote.                                                                                                                                                                                       |      |         | -    |         |       |          |   |        |        |           |
| 418  | 459  | SEDIMENT (GR                   | EYWACKE)                                                                                                                                                                                                                             |      |         |      |         |       |          |   |        |        |           |
|      |      | schistose @ 6                  | e to medium grained, heavily carbonatized,<br>0° to C.A., relatively massive, locally<br>cal epidote, upper contact @ 80° to C.A. lower<br>to C.A.                                                                                   |      |         |      |         |       | ,        |   |        |        |           |
|      |      | - 424-432                      | massive zone                                                                                                                                                                                                                         |      |         |      |         |       |          |   |        |        |           |
|      |      | - 432-459                      | coarser grained zone                                                                                                                                                                                                                 |      |         |      |         |       |          |   |        |        |           |
|      |      | - 451                          | 2.5 cm carb stockwork @ 45° to C.A.                                                                                                                                                                                                  |      |         |      |         |       |          |   |        |        |           |
|      |      | - 455-458                      | carbonatized and heavily schisted<br>gouge @ 457                                                                                                                                                                                     | 8929 |         | 455  | 458     |       |          |   |        |        |           |
|      |      |                                |                                                                                                                                                                                                                                      |      |         |      |         |       |          |   |        |        |           |

GRIDGES - TORONTO - 366-1168

NAME OF PROPERTY \_\_\_\_\_ Amalgamated Kirkland

HOLE NO. \_\_\_\_\_ 1 \_\_\_\_ SHEET NO. \_\_\_\_ 5

| 1001 | AGE |                    | DESCRIPTION                                                                                             |              |         | SAMP  | LË           |       |    |   | ASSAYS |        |   |
|------|-----|--------------------|---------------------------------------------------------------------------------------------------------|--------------|---------|-------|--------------|-------|----|---|--------|--------|---|
| FROM | τŌ  |                    |                                                                                                         | NO.          | % SULPH | FROM  | FOOTAGE      | TOTAL | 7. | 7 | OZ/TON | OZ/TON | Γ |
|      |     | - 458 <b>-</b> 459 | bleaching & feldspathization, reaction margin                                                           | 8930         |         | 458   | 460          |       |    |   |        |        |   |
| 459  | 483 | SYENITE            |                                                                                                         |              |         |       |              |       |    |   |        |        |   |
|      |     | - 459.6-460.4      | chilled margin, bleached                                                                                |              |         |       |              |       |    |   |        |        |   |
|      |     | - 460.8            | chert fragment                                                                                          | 8931         |         | 460   | 464.4        |       |    |   |        |        |   |
|      |     | - 461.5-465.0      | bleached, upper contact sharp @ 90° to C.A<br>lower contact @ 75° to C.A.                               |              |         |       |              |       |    |   |        |        |   |
|      |     | - 467-469          | $\sim$ 1% py as disseminations & stringers                                                              | 8932         |         | 464.6 | 469.5        |       |    |   |        |        |   |
|      |     | - 467.2-467.7      | deep red in color due to minor qtz/carb<br>veinlets                                                     |              |         |       |              |       |    |   |        |        |   |
|      |     | - 469.5-470.3      | deep red as 467.2-467.7                                                                                 |              |         |       |              |       |    |   |        |        | İ |
|      |     | - 472-473          | breccia zone, bleached                                                                                  | 8933         |         | 469.5 | 474.5        |       |    |   |        |        | ĺ |
|      |     | - 473.1-475        | deep red as 467.2-467.7 local epidote                                                                   |              |         |       |              |       |    |   |        |        | İ |
|      |     | - 474.5-480.4      | specular hematite, mixed with mafic<br>material occurring as veinlets & stringers<br>< 0.5% < 1 cm wide | 8934         |         | 474   | 478          |       |    |   |        |        |   |
|      |     | - 480.4            | qtz veinlets @ 55° to C.A.                                                                              | 8935<br>8936 |         |       | 483<br>488.5 |       |    |   |        |        |   |
| 483  | 560 | PORPHYRITIC SY     | ENITE                                                                                                   |              |         |       |              |       |    |   |        |        |   |
|      |     | - 484              | carb veinlets @ 70° - 80° to C.A.                                                                       |              |         |       |              |       | ,  |   |        |        | İ |
|      |     | - 488.9            | graphite slips @ 40° to C.A.                                                                            | 8937         |         | 488.5 | 493.4        |       |    |   |        |        | ĺ |
|      |     | - 490              | carb along fractures = .5mm @ 35° to C.A.                                                               | 8938         |         | 493.4 | 497          |       |    |   |        |        |   |
|      |     | - 496.1-496.3      | qtz veinlet < cm @ 50° to C.A.                                                                          | 8939         |         | 497   | 501.8        |       |    |   |        |        |   |
|      |     | - 499.6-501.6      | qtz veinlets mixed with matic material<br>@ 15° - 25° to C.A. ≤ 2 cm wide, minor<br>carb veinlets.      | 8940         |         | 501.8 | 506.5        |       |    |   |        |        |   |

NAME OF PROPERTY\_\_\_\_\_Amalgamated Kirkland

. 0

HOLE NO. \_\_\_\_\_ SHEET NO. \_\_\_\_\_

\_\_\_\_

. .

6

1

| FOO  | TAGE  |                                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |         | SAMP                                                       | PLE                                                                      |       | ł  |    | ASSAYS |        |
|------|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|------------------------------------------------------------|--------------------------------------------------------------------------|-------|----|----|--------|--------|
| FROM | то    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NO.                                                                          | % SULPH | FROM                                                       | FOOTAGE<br>TO                                                            | TOTAL | 7. | 7. | OZ/TON | OZ/TON |
|      |       | - 501.8-506.5                  | minor graphite slips @ 45° to C.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |         |                                                            |                                                                          |       |    |    |        |        |
|      |       | - 502.5-503                    | py stringers $\leq 2 \text{ mm}$ occassional mafic xenolith.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |         |                                                            |                                                                          |       |    |    |        |        |
|      |       | - 506.7                        | sepcular hematite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8941                                                                         |         | 506.5                                                      | 511.2                                                                    |       |    |    |        |        |
|      |       | - 506.8                        | specular hematite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |         |                                                            |                                                                          |       |    |    |        |        |
|      |       | - 510                          | graphite slips @ 45° -50° to C.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |         |                                                            |                                                                          |       |    |    |        |        |
|      |       | rock is carbona                | atized between 501.8 - 524.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |         |                                                            |                                                                          |       |    |    |        |        |
|      |       | - 525                          | veinlets @ 50° to C.A. graphite slips @                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8942                                                                         |         | 511.7                                                      | 516.6                                                                    |       |    |    |        |        |
|      |       |                                | 60° - 70° to C.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8943                                                                         |         | 516.6                                                      | 521.4                                                                    |       |    |    |        |        |
|      |       | - 530                          | qtz carb veinlet <lcm 55°="" @="" c.a.<="" td="" to=""><td>8944</td><td></td><td>521.4</td><td>525</td><td></td><td></td><td></td><td></td><td></td></lcm>                                                                                                                                                                                                                                                                                                                                       | 8944                                                                         |         | 521.4                                                      | 525                                                                      |       |    |    |        |        |
|      |       | - 535.8-536.2                  | specular hematite, assoc. with mafic<br>xenoliths as thin stringers n 1-2% gph<br>slips @ 45° to C.A.                                                                                                                                                                                                                                                                                                                                                                                            | 8945<br>8946<br>8947                                                         |         | 525<br>530<br>535 <b>.</b> 7                               | 529.6<br>535.7<br>540.6                                                  |       |    |    |        |        |
|      |       | - 550                          | veinlets @ 60° to C.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8948<br>8949                                                                 |         |                                                            | 550.3                                                                    |       |    |    |        |        |
| 560  | 598.4 | locally zones a irregular carb | In color, carbonatized throughtout, porphynitic,<br>are redder because of carbonate intrusion,<br>veinlets, occasional mafic infilled frac-<br>gles @ 60° to C.A. local fine grained zones,<br>ally chloritic<br>altered zone, qtz + carb intrusion rather<br>than strictly carbonate veining $\leq 1.5$ cm,<br>locally brecciated + epidote. qtz/carb<br>$\sim 1$ % of total. $\sim 1$ % py-cpy throughout c<br>3mm either diss. or associated with veinlets<br>core angles @ 70° - 90° to C.A. | 8950<br>8951<br>8952<br>8953<br>8954<br>8955<br>8956<br>8957<br>8958<br>8959 |         | 553<br>557.2<br>562<br>567<br>571.9<br>576.2<br>580<br>583 | 553<br>557.2<br>562<br>567<br>571.9<br>576.2<br>580<br>583<br>586<br>590 |       |    |    |        |        |

NAME OF PROPERTY Analgamated Kirkland

HOLE NO. \_\_\_\_\_\_ SHEET NO. \_\_\_\_7

| FOOT  | TAGE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |         | SAMF                         | LE                             |       |    |        | ASSAYS |        |  |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|------------------------------|--------------------------------|-------|----|--------|--------|--------|--|
| FROM  | то    |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO.                          | % SULPH | FROM                         | FOOTAGE                        | TOTAL | ₩. | 7.     | OZ/TON | OZ/TON |  |
| 598.4 | 603.5 | <ul> <li>- 583-586 fine grained</li> <li>- 590 rock fractures @ 60° - 90° to C.A.</li> <li>CONTACT ZONE</li> </ul>                                                                                                                                                                                                                                                                                                                                         |                              |         |                              |                                |       |    |        |        |        |  |
|       |       | greenish grey in color, epidote, bleached, olive<br>green phenocrysts, local hematite cones, schistose<br>appearance $(30^{\circ} - 40^{\circ} \text{ to C.A. } \sim 0.5\%$ py throughout<br>as blebs & diss $\frac{\text{S}}{-}$ with veinlets and/or on their own lower<br>contact gradational.                                                                                                                                                          | 8960<br>8961<br>8962<br>8963 |         | 590<br>594<br>598.4<br>603.5 | 594<br>598.4<br>603.5<br>610.1 |       |    |        |        |        |  |
| 603.5 | 611   | SYENITE<br>reddish pink in color, slightly porphyritic,<br>carbonatized in microfractures throughout.<br>locally epidote due to qtz intrusion, occasional<br>black (mafic) xenolith, minor qtz veining @ n 50° to<br>C.A. sulphides (py) -0.5% occur as fine diss-<br>and blebs throughout either associated with fracture<br>fillings and/or on their own minor py as cubes ≤ lmm<br>Occasional gph slip lower contact @ 60° to C.A.<br>610-eptidote zone | 8964                         |         | 610.1                        | 614.5                          |       |    |        |        |        |  |
| 611   | 662.5 | BASIC SYENITE<br>same as above<br>carbonate on microfractures and as narrow veinlets<br>Phenocrysts are locally larger < .75 cm . mafic<br>material up to 50% locally giving a pseudo breccia appearance<br>occasional graphite slip. deep red zones + bleaching assoc.<br>with minor qtz veinlets.                                                                                                                                                        | 8965<br>8966<br>8967         |         | 614.5<br>619.4<br>624.3      | 619.4<br>624.3<br>627.5        |       |    | -<br>- |        |        |  |

366-1168 2 ANGHIDGES

.

NAME OF PROPERTY\_\_\_Amalgamated Kirkland

HOLE NO. \_\_\_\_\_1

SHEET NO.

8

| F001  | TAGE  |                                    | DESCRIPTION                                                             |              |         | SAMP           | ۹LE            | 1     | L        |    | ASSAYS |          |
|-------|-------|------------------------------------|-------------------------------------------------------------------------|--------------|---------|----------------|----------------|-------|----------|----|--------|----------|
| FROM  | то    |                                    |                                                                         | NO.          | % SULPH |                | FOOTAGE        |       | 1        | T  | 1      | <u> </u> |
|       |       |                                    |                                                                         |              | IDES    | FROM           | то             | TOTAL | <u> </u> | 7. | OZ/TON | OZ, TON  |
| 627.5 | 628.8 | CONTACT ZONE                       |                                                                         |              |         |                |                |       |          |    |        |          |
|       |       |                                    |                                                                         |              |         |                | ĺ              |       |          |    |        |          |
|       |       | gradational conta<br>same as above | ct into porphyrite red syenite,                                         |              |         |                |                |       |          |    |        |          |
| 628.8 | 662.5 | PORPHYRITIC SYENI                  | IE                                                                      | 8968<br>8969 |         | 627.5<br>633.7 | 633.7<br>638.6 |       |          |    |        |          |
|       |       | same as above. mo                  | re mafic infilling and veinlets.                                        | 8970         |         |                | 643.4          |       |          |    |        |          |
|       |       |                                    | ebs, microfractures throughout,                                         | 8971         |         | 643.4          | 647.2          |       |          |    |        |          |
|       |       |                                    | 70° - 80° to C.A. carb veining                                          | 8972         |         | 647.2          |                |       |          |    |        |          |
|       |       |                                    | er contact is a carb vein <<br>e @ 40° to C.A. Minor diss py throughout | 8973<br>8974 |         | 652<br>656.4   | 656.4<br>662.2 |       |          |    |        |          |
|       |       | -                                  |                                                                         | 8975         |         |                | 666.2          |       |          |    |        |          |
|       |       |                                    | slightly darker in color with<br>xccasional black xenolith carbonatized |              |         |                |                |       |          |    |        |          |
| 662.2 | 666.2 | CONTACT ZONE                       |                                                                         |              |         |                |                |       |          |    |        |          |
|       |       |                                    | conatized, purplish grey in color,                                      |              |         |                |                |       |          |    |        |          |
|       |       |                                    | ore carbonatized than groundmass.                                       |              |         |                |                |       |          |    |        |          |
|       |       | Tr py disseminated                 | and/or qtz veining locally chloritc.<br>I throughout.                   |              |         |                |                |       |          |    |        |          |
| 666.2 | 712   | BASIC SYENITE                      |                                                                         | 8976<br>8977 |         | 662.2<br>670.4 | 670.4<br>674.2 |       |          |    |        |          |
|       |       | same as above, por                 | phyrite, locally fine grained car-                                      | 8978         | 1       |                | 679.6          |       | -        |    |        |          |
|       |       |                                    | ally phenocrysts. minor irregular                                       | 8979         |         | 679.6          | 684.6          |       |          |    |        |          |
|       |       | qtz - carb veinlet                 | s + fracture fillings                                                   | 8980<br>8981 |         |                | 691.5<br>696   |       |          |    |        |          |
|       |       |                                    | bleached zone associated with narrow                                    | 8982         |         | 696            | 702.2          |       |          |    |        |          |
|       |       |                                    | qtz veinlet (<1.5 cm ) $@$ 80° to C.A.                                  | 8983         | ľ       | 702.2          | 706.8          |       |          |    |        |          |
|       |       | units has occasior                 | al graphite slips @ 60° to C.A.                                         | 8984         |         | 706.8          | 711            |       |          |    |        |          |
|       |       | - 693                              | 4 cm qtz vein with intermixed carb.                                     |              |         |                |                |       |          |    |        |          |
|       |       |                                    | has local reddish stain probably due                                    |              |         |                |                |       |          |    |        |          |
|       |       |                                    | to carbonate.                                                           |              |         |                |                |       |          |    |        |          |
|       |       |                                    |                                                                         |              |         |                |                | I     |          |    |        |          |

366-1168 1

**TORONTO** 

IGRIDGES

NAME OF PROPERTY\_\_\_\_\_ Amalgamated Kirkland

HOLE NO. \_\_\_\_\_ SHEET NO. \_\_\_\_

| FOOTAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |         | SAMF                                                                                                                    | PLE                                                                            |       | I        |   | ASSAYS   |             | ······   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|----------|---|----------|-------------|----------|
| FROM TO   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO.                                                                                                          | % SULPH | ·[                                                                                                                      | FOOTAGE                                                                        |       | <b>}</b> | 1 | <u> </u> | · · · · · · | <u> </u> |
| FROM 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | IDES    | FROM                                                                                                                    | то                                                                             | TOTAL | <u> </u> | - | OZ/TON   | OZ/TON      | L        |
| 712 766.5 | <pre>matic material heavier as veinlets - irregular<br/>fracture fillings between 691.5-696. This is<br/>where most of the alteration is evident ie.<br/>local breccia zones + larger non carbonate<br/>fragments (&lt; 2 cm 694-695 ) local specular<br/>hematite as narrow stringers + veinlets.<br/>- 696-698 redder in color,local rusty zones<br/>core angles @ 45° - 60° to C.A.<br/>lower contact sharp @ 70° to C.A.<br/>- 707-712 mafic xenoliths<br/>PORPHYRITIC SYENITE<br/>slightly caronatized due to microfracture infillings<br/>occasional graphite slips @ ~ 35° to C.A. 0&lt;&lt; black<br/>fragments &lt; 2 cm , local rusty zones (minor) unit<br/>tends to fracture @ 75° - 35° to C.A. 0&lt;&lt; black<br/>fragments &lt; 2 cm , local rusty zones (minor) unit<br/>tends to fracture @ 75° - 35° to C.A. 0&lt;&lt; black<br/>fragments &lt; 2 cm , local rusty zones (minor) unit<br/>tends to fracture @ 75° - 35° to C.A. 0&lt;&lt; black<br/>fragments &lt; 100 rusty zones (minor) unit<br/>tends to fracture @ 75° - 35° to C.A. 0&lt;</pre> | 8985<br>8986<br>8987<br>8988<br>8990<br>8991<br>8992<br>8993<br>8994<br>8995<br>8996<br>8997<br>8998<br>8999 |         | 711<br>716.2<br>721.2<br>725.6<br>730.7<br>735.8<br>739.6<br>744<br>748.6<br>753<br>758<br>762.2<br>767<br>771.5<br>776 | 730.7<br>735.8<br>739.6<br>744<br>748.6<br>753<br>758<br>762.2<br>767<br>771.5 |       |          |   |          |             |          |

NAME OF PROPERTY\_\_\_\_\_Amalgamated Kirkland

HOLE NO. \_\_\_\_\_ SHEET NO.\_\_

10

J. mary

-

. .

| FOOTAGE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |                                                                                             | SAM                                                                                                             | IPLE                                                                                                      |                                                                                                                  |  | ASSAY  | 'S         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--------|------------|
| ROM TO  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO.                                                                                                                                                          |                                                                                             | the second second second second second second second second second second second second second second second se | FOOTAG                                                                                                    | and the second second second second second second second second second second second second second second second |  |        | 1          |
|         | DESCRIPTIONTO80BASIC SYENITEcarbonatized as veinlets + microfractures<br>minor narrow graphite slips throughout. slightly<br>prophyritic, occasional mafic fragment (< 5 cm)<br>locally redder incolor, locally chloritic, locally<br>non carbonatized, minor qtz as phenocrysts + stringers<br>as well as carb stringers. core angles @ 60° - 90°<br>to C.A. Py occurs as fine disseminations scattered<br>throughout + associated with mafic material as veinlets<br>+ fractures777.4V.G? in narrow qtz vein. Au intergrown<br>with pypy also assoc. with qtz veinlets + graphite slips | 9000<br>2501<br>2502<br>2503<br>2504<br>2505<br>2506<br>2507<br>2508<br>2509<br>2510<br>2511<br>2512<br>2513<br>2514<br>2513<br>2514<br>2515<br>2516<br>2517 | D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D |                                                                                                                 | T0<br>T0<br>786<br>791<br>796<br>801<br>805<br>810<br>814<br>828.5<br>833<br>837.7<br>842.7<br>847<br>852 |                                                                                                                  |  | OZ TON | - <u>r</u> |

NAME OF PROPERTY\_\_\_Amalgamated Kirkland

HOLE NO. \_\_\_\_\_

SHEET NO. \_\_\_\_\_

| ſ                              | FOOTAGE DESCRIPTION |     | DESCRIPTION |                                                                              |      |                                                                        |                                                                          | ASSAYS | SSAYS |        |        |  |  |
|--------------------------------|---------------------|-----|-------------|------------------------------------------------------------------------------|------|------------------------------------------------------------------------|--------------------------------------------------------------------------|--------|-------|--------|--------|--|--|
| Γ                              |                     |     | NO.         | SULPH<br>IDES                                                                | FROM | FOOTAGE<br>TO                                                          | TOTAL                                                                    | ~.     | ۰.    | OZ/TON | OZ/TON |  |  |
|                                | 917.9               | 936 |             | 2519<br>2520<br>2521<br>2522<br>2523<br>2524<br>2525<br>2526<br>2527<br>2528 |      | 871<br>875.5<br>881.5<br>885<br>890<br>895<br>900<br>905<br>910<br>914 | 875.5<br>881.5<br>885<br>890<br>895<br>900<br>905<br>910<br>914<br>917.8 |        |       |        |        |  |  |
|                                | -                   | 936 | END OF HOLE |                                                                              |      |                                                                        |                                                                          |        |       |        |        |  |  |
| ANGHUCCES - TOHONTO - 366-1168 |                     |     |             |                                                                              |      |                                                                        |                                                                          |        |       |        |        |  |  |



ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

OM82-6-C -144

#### Certificate of Analysis

| Certificate No. | 54395              |                      | Date: Decem  | ber 28, 1982    |   |
|-----------------|--------------------|----------------------|--------------|-----------------|---|
| Received Decemb | er 22, 1982        | 28 Samples of        | Split        | Core            |   |
| Submitted by    | ACA Howe Internati | ional Limited, Toron | to, Ontario  |                 | _ |
|                 | "Eden Roc Minerals | Corp. Project"       | Samples Per: | Mr. B. MacIsaac |   |
| SAMPLE          | NO. GOLD           |                      |              |                 |   |
| JARI LL         | 0z./ton            |                      | SAMPLE NO.   | GOLD<br>Oz./ton |   |
| 8901            |                    |                      | 8920         | 0.001           |   |
| 8902            |                    |                      | 8921         | 0.001<br>Nil    |   |
| 8903            |                    |                      | 8922         | Nil             |   |
| 8904            |                    |                      | 8923         | Nil             |   |
| 8905            |                    |                      | 8924         | Nil             |   |
| 8906            |                    |                      | 8925         | Nil             |   |
| 8907            |                    |                      | 8926         | Ni 1            |   |
| 8908            |                    |                      | 8927         | Ni 1            |   |
| 8909            |                    |                      | 8928         | Nil             |   |
| 8910            |                    |                      |              |                 |   |
| 8911            | 0.001<br>0.001     |                      |              |                 |   |
| 8912            |                    |                      |              |                 |   |
| 8913            |                    |                      |              |                 |   |
| 8914            | Nil                |                      |              |                 |   |
| 8915            | Ni l               |                      |              |                 |   |
| 8916            | Nil                |                      |              |                 |   |
| 8917            | 0.001<br>0.001     |                      |              |                 |   |
| 8918            | Nil                |                      |              |                 |   |
| 8919            | Nil                |                      |              |                 |   |

Per

G. Lebel - Manager

**ESTABLISHED 1928** 



## SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

#### Certificate of Analysis

|                 |                 |                    | с.,             | -<br>- , 4 |             | $(-q^{-1}) = (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q^{0}) + (q$ |  |
|-----------------|-----------------|--------------------|-----------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Certificate No. | 54417           |                    |                 | Date: _    | January 4   | 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Received Dec    | .29/82          | Sa                 | mples of        | split      | core        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Submitted by    | ACA Howe Inter  | rnational Ltd., To | pronto, On      | tario      | Samples per | : Mr. B. MacIsaac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                 |                 | "Eden Roc Pro      | ject"           |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SAMPLE NO.      | GOLD<br>Oz./ton | SAMPLE NO.         | GOLD<br>Oz./ton |            | SAMPLE NO.  | GOLD<br>OZ./ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 8929            | 0.002           | 8946               | 0.002           |            | 8963        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8930            | 0.001           | 8947               | 0.001           |            | 8964        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8931            | 0.002           | 8948               | 0.002           |            | 8965        | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8932            | 0.003           | 8949               | 0.001           |            | 8966        | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8933            | 0.002           | 8950               | 0.001           |            | 8967        | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8934            | 0.002           | 8951               | 0.002           |            |             | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8935            | 0.002           | 8952               | 0.014           |            | 8968        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8936            | 0.002           |                    | 0.018           |            | 8969        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8937            | 0.004           | 8953               | 0.003           |            | 8970        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8938            | 0.003           | 8954               | 0.004           |            | 8971        | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                 | 0.002           | 8955               | 0.005           |            | 8972        | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8939            | 0.002           | 8956               | 0.005           |            | 8973        | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8940            | 0.003           | 8957               | 0.002           |            | 8974        | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8941            | 0.005<br>0.004  | 8958               | 0.006           |            | 8975        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8942            |                 | 8959               | 0.002           |            | 8976        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                 | 0.004           | 8960               | 0.003           |            | 8977        | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 8943            | 0.006           | 8961               | 0.003           |            | 8978        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8944            | 0.006           | 8962               | 0.001           |            | 8979        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8945            | 0.003           |                    |                 |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Per\_

G. Lebel - Managér

#### ESTABLISHED 1928

. )



## SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

#### Certificate of Analysis

| Certificate No. 54418             |        | -          | Date: <u>January 4 1983</u>        |  |
|-----------------------------------|--------|------------|------------------------------------|--|
| Received Jan. 3/83                | 35     | Samples of | Split core                         |  |
| Submitted by ACA Howe Internation | al Ltd | Toronto.   | . Ontario Samples per: B. MacIsaac |  |

| SAMPLE NO. | GOLD<br>Oz./ton | SAMPLE NO. | GOLD<br>Oz./ton |
|------------|-----------------|------------|-----------------|
| 8501       | 0.009           | 8984       | 0.006           |
| 8502       | 0.016           | 8985       | 0.004           |
| 0007       | 0.015           | 8986       | 0.002           |
| 8503       | 0.015           | 8987       | 0.004           |
| 8504       | 0.007           | 8988       | 0.004           |
| 8505       | 0.004           | 8989       | 0.003           |
| 8506       | 0.007           | 8990       | 0.003           |
| 8507       | 0.005           | 8991       | 0.007           |
| 8508       | 0.005           | 8992       | 0.004           |
| 8509       | 0.005           | 8993       | 0.010           |
| 8510       | 0.013<br>0.011  | 8994       | 0.010           |
| 8511       | 0.008           | 8995       | 0.012<br>0.009  |
| 8512       | 0.005           | 8996       |                 |
| 8513       | 0.005           |            | 0.007           |
| 8514       | 0.005           | 8997       | 0.004           |
| 8980       | 0.002           | 8998       | 0.005           |
| 8981       | 0.002           | 8999       | 0.006           |
| 8982       | 0.006           | 9000       | 0.008<br>0.009  |
| 8983       | 0.012           |            | 0.007           |
| 070/       | 0.013           | ·          |                 |

Per. G. Lebel - Manager

ESTABLISHED 1928



## SWASTIKA LABORATORIES LIMITED

P.O. BOX 10, SWASTIKA, ONTARIO POK 1T0 TELEPHONE: (705) 642-3244 ANALYTICAL CHEMISTS • ASSAYERS • CONSULTANTS

#### Certificate of Analysis

| Certificate No. 54423                 |               | Date:          | January 7 1982               |
|---------------------------------------|---------------|----------------|------------------------------|
| Received Jan. 5/83 14                 | _ Samples of  | split_         | <u>core</u>                  |
| Submitted byACA Howe International Lt | d., Toronto,  | <u>Ontario</u> | Samples per: Mr. B. MacIsaac |
| Ede                                   | en Roc Projec | et             |                              |
|                                       |               |                |                              |
| SAMPL                                 | E NO.<br>Oz   | GOLD<br>./ton  |                              |
| 851                                   | .5            | 0.006          |                              |
| 851                                   | .6            | 0.006          |                              |
| 851                                   | .7            | 0.008          |                              |
| 851                                   |               | 0.011<br>0.014 |                              |
| 851                                   | 9             | 0.013          |                              |
| 852                                   | 0             | 0.022          |                              |
| 852                                   |               | 0.025<br>0.025 |                              |
| 852                                   | 2             | 0.011          |                              |
| 852                                   | 3             | 0.005          |                              |
| 852                                   | 4             | 0.004          |                              |
| 852                                   | 5             | 0.003          |                              |
| 852                                   | 6             | 0.002          |                              |
| 852                                   | 7             | 0.003          |                              |
| 852                                   |               | 0.004<br>0.002 |                              |

Per\_

G. Lebel - Manager

ESTABLISHED 1928

| NUMBER | FOOTAGE      | WIDTH | OZ/TON AU |
|--------|--------------|-------|-----------|
| 8931   | 460-464.6    | 4.6   | .002      |
| 8932   | 4646.6-469.5 | 4.9   | .003      |
| 8933   | 469.5-474.5  | 5     | .002      |
| 8934   | 474-478      | 4     | .002      |
| 8935   | 478-483      | 5     | .002      |
| 8936   | 483-488.5    | 5.5   | .002      |
| 8937   | 488.5-493.4  | 4.0   | .004      |
| 8938   | 93.4-497     | 3.6   | .003      |
| 8939   | 497-501.8    | 4.8   | .002      |
| 8940   | 501.8-506.5  | 4.2   | .003      |
| 8941   | 506.5-511.2  | 4.7   | .005      |
| 8942   | 511.2-516.6  | 5.4   | .004      |
| 8943   | 516.6-521.4  | 4.8   | .006      |
| 8944   | 521.4-525    | 4.6   | .006      |
| 8945   | 525-529.6    | 4.6   | .003      |
| 8946   | 530-535.7    | 5.7   | .002      |
| 8947   | 535.7-540.6  | 4.9   | .001      |
| 8948   | 540.6-545.5  | 4.9   | .002      |
| 8949   | 545.5-550.3  | 4.8   | .001      |
| 8950   | 550.3-553    | 2.7   | .001      |
| 8951   | 553-557.2    | 4.2   | .002      |
| 8952   | 557.2-562    | 4.8   | .014 —    |
| 8953   | 562-571.9    | 5     | .003      |
| 8954   | 571.9-576.2  | 4.9   | .004      |
| 8955   | 576.2-580    | 4.3   | .005      |
| 8956   | 580-583      | 3.8   | .005      |
| 8957   | 583-586      | 3     | .002      |
| 8958   | 586-590      | 3     |           |
| 8959   | 590-594      | 4     |           |
| 8960   | 594-598.4    | 4     |           |
| 8961   | 594-598.4    | 4.4   |           |
| 8962   | 598.4-603.4  | 5.1   |           |

2

,

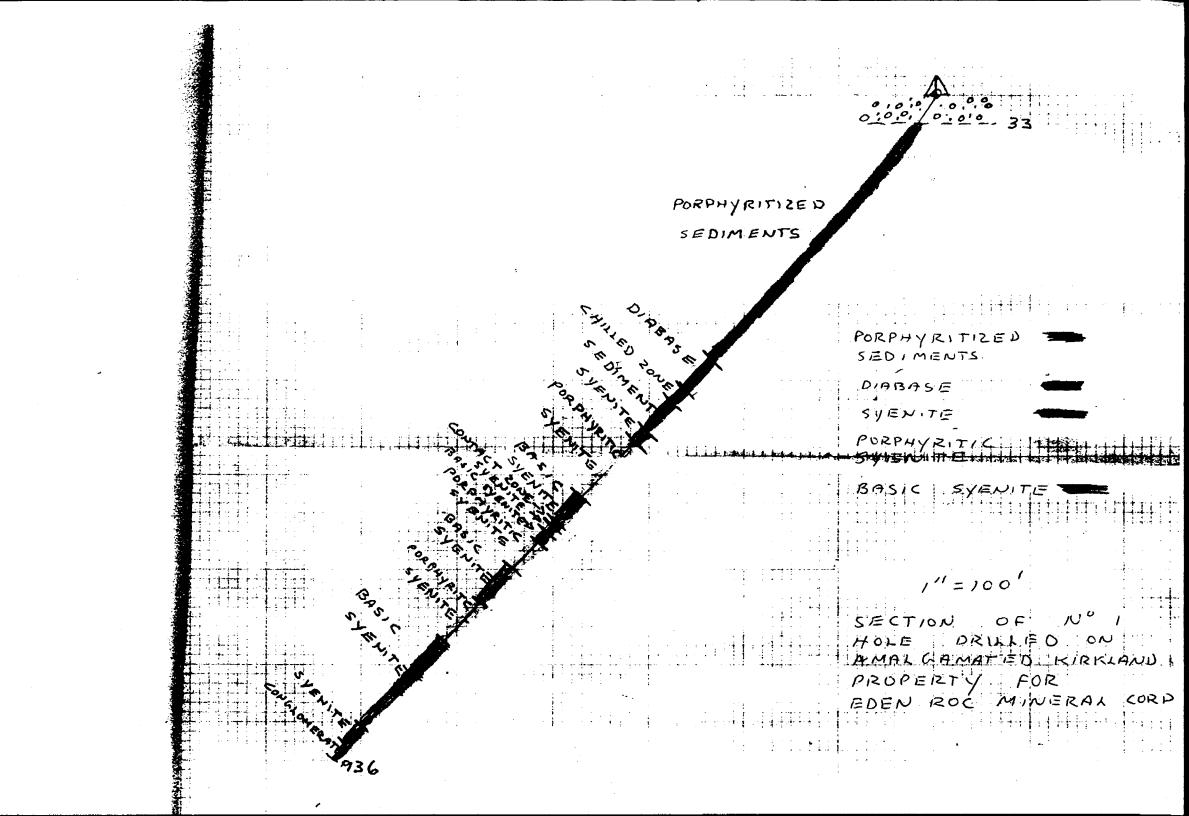
| NUMBER  | FOOTAGE     | WIDTH | OZ/TON AU |
|---------|-------------|-------|-----------|
| 0.0.5.0 |             |       |           |
| 8963    | 603.5-610.1 | 6.6   | •         |
| 8964    | 610.1-614.5 | 4.4   |           |
| 8965    | 614.5-619.4 | 4.9   |           |
| 8966    | 619.4-624.3 | 4.9   |           |
| 8967    | 624.3-627.5 | 3.2   | ٠,        |
| 8968    | 627.5-633.7 | 6.2   |           |
| 8969    | 633.7-638.6 | 4.9   |           |
| 8970    | 638.6-643.4 | 4.8   |           |
| 8971    | 643.4-647.2 | 3.8   |           |
| 8972    | 647.2-652   | 4.8   |           |
| 8973    | 652-656.4   | 4.4   |           |
| 8974    | 656.4-662.2 | 5.8   |           |
| 8975    | 662.2-666.2 | 4     |           |
| 8976    | 666.2-670.4 | 8.2   |           |
| 8977    | 670.4-674.2 | 3.8   |           |
| 8978    | 674.2-679.6 | 5.4   |           |
| 8979    | 679.6-684.6 | 5     |           |
| 8980    | 684.6-691.5 | 6.9   |           |
| 8981    | 691.5-696   | v     |           |
| 8982    | 696-702.2   | .62   |           |
| 8983    | 702.2-706.8 | 4.6   |           |
| 8984    | 706.8-711   | 4.2   |           |
| 8985    | 711-716.2   | 5.2   |           |
| 8986    | 716.2-721.2 | 5     |           |
| 8987    | 721.2-725.6 | 4.3   |           |
| 8988    | 725.6-730.7 | 5.1   |           |
| 8989    | 730.7-735.8 | 5.1   |           |
| 8990    | 735.8-739.6 | 3.8   |           |
| 8991    | 739.6-744   | 4.4   |           |

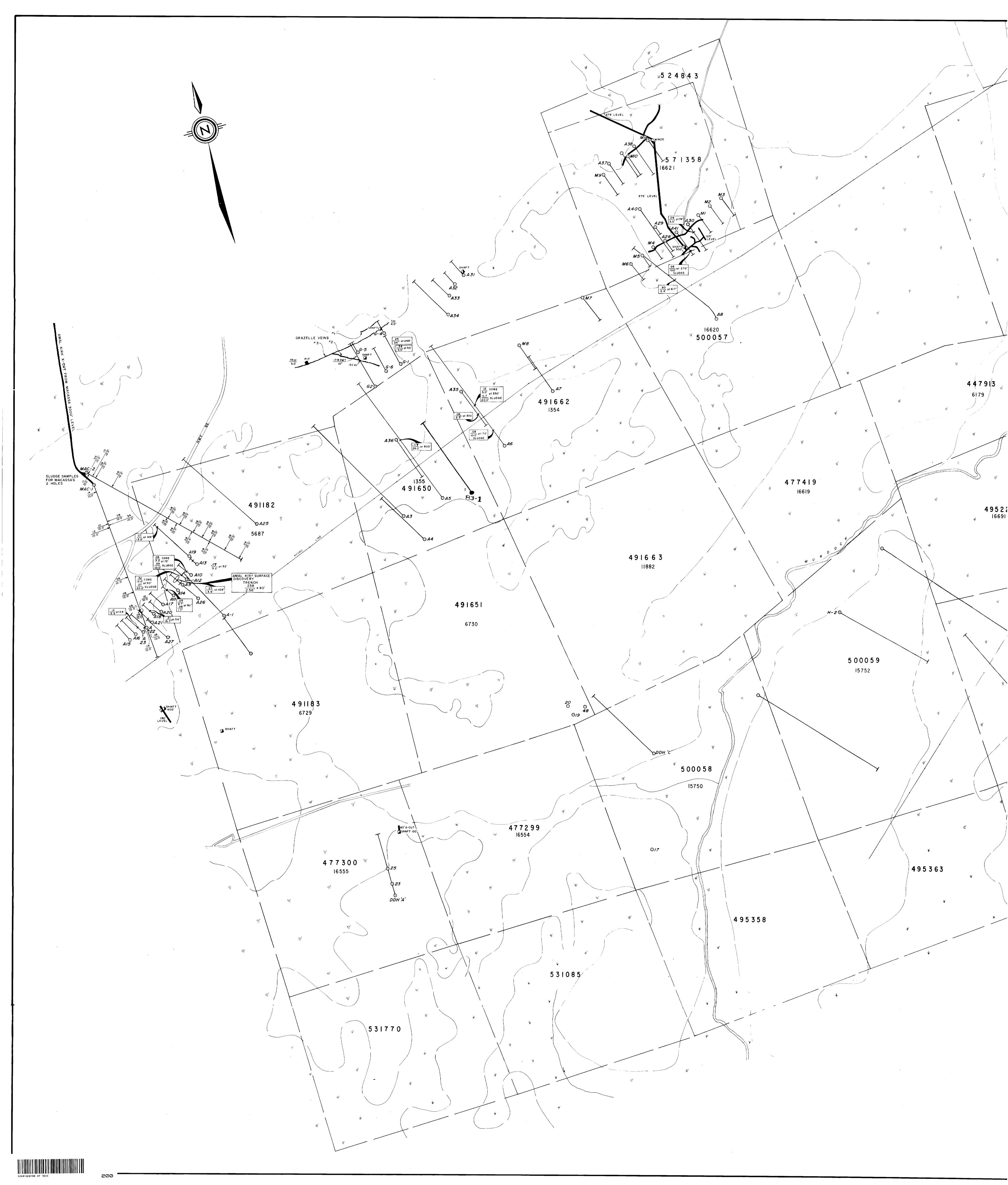
| NUMBER | FOOTAGE     | WIDTH | OZ/TON AU |
|--------|-------------|-------|-----------|
| 8992   | 744-748.6   | 4.6   |           |
| 8993   | 748.6-753   | 4.4   |           |
| 8994   | 753-758     | 5     |           |
| 8995   | 758-762.2   | 4.2   |           |
| 8996   | 762.2-767   | 4.8   |           |
| 8997   | 767-771.5   | 4.5   |           |
| 8998   | 771.5-776.4 | 4.9   |           |
| 8999   | 776.4-781   | 5     |           |
| 9000   | 781-786     | 5     |           |
|        |             |       |           |

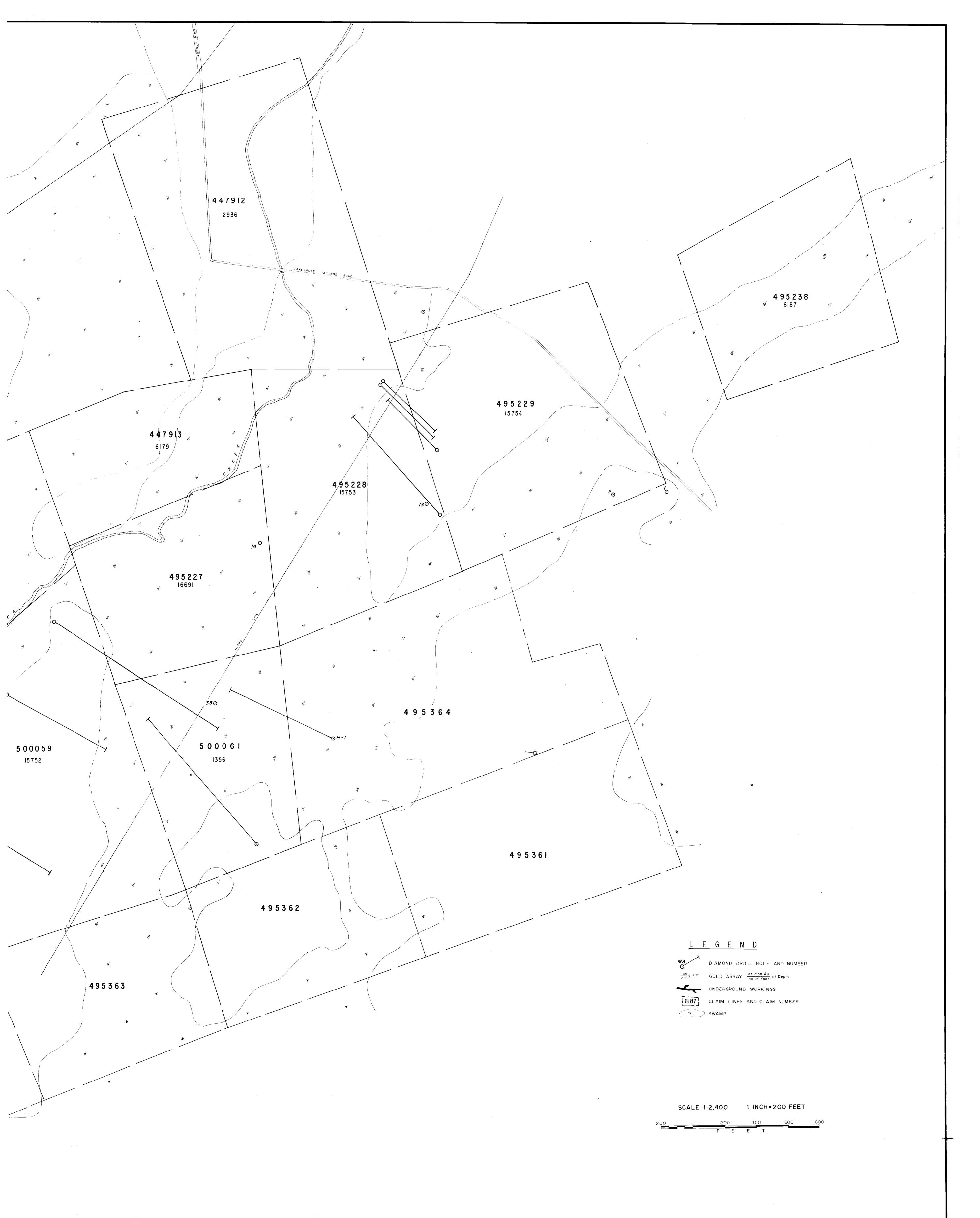
,

| NUMBER | FOOTAGE      | WIDTH | OZ/TON AU |
|--------|--------------|-------|-----------|
| 8901   | 33-34        | 1     |           |
| 8902   | 45-46        | 1     |           |
| 8903   | 47.5-48.5    | 1     |           |
| 8904   | 51.5-54.3    | 2.8   | 2         |
| 8905   | 54.3-57.15   | 2.85  |           |
| 8906   | 60.7-61.2    | 0.5   |           |
| 8907   | 61.2-65      | 3.8   |           |
| 8908   | 65-67        | 2     | ·         |
| 8909   | 76.9-79.2    | 2.3   |           |
| 8910   | 84.3-85.5    | 1.2   |           |
| 8911   | 93.3-95.5    | 2.2   |           |
| 8912   | 96.1-97      | 0.9   |           |
| 8913   | 103.5-105.2  | 1.7   |           |
| 8914   | 105.2-111    | 5.8   |           |
| 8915   | 115.4-116.2  | 1.7   |           |
| 8916   | 118.6-122.45 | 3.85  |           |
| 8917   | 124.3-127    | 2.7   |           |
| 8918   | 127.5-128.4  | 0.9   |           |
| 8919   | 135.7-138    | 2.3   |           |
| 8920   | 151.3-152.3  | 1     |           |
| 8921   | 160.8-163.2  | 2.4   |           |
| 8922   | 174.3-175.6  | 1.3   |           |
| 8923   | 176.4-179.2  | 2.8   |           |
| 8924   | 179.8-181.4  | 1.6   |           |
| 8925   | 186.5-189    | 2.5   |           |
| 8926   | 190-191.2    | 1.2   |           |
| 8927   | 192-199.2    | 7.2   |           |
| 8928   | Composite    | -     |           |
| 8930   | 455-458      | 3     |           |

SAMPLES


| NUMBER | FOOTAGE     | WIDTH |
|--------|-------------|-------|
| 2501   | 786-791     | 5     |
| 2502   | 791-796     | 5     |
| 2503   | 796-801     | 5     |
| 2504   | 801-805     | 4     |
| 2505   | 805-810     | 5     |
| 2506   | 810-814     | 4     |
| 2507   | 814-819     | 5     |
| 2508   | 819-824     | 5     |
| 2509   | 824-828.5   | 4.5   |
| 2510   | 828.5-833   | 4.5   |
| 2511   | 833-837.7   | 4.7   |
| 2512   | 837.7-842.7 | 5     |
| 2513   | 842.7-847   | 4.3   |
| 2514   | 847-852     | 5     |
| 2515   | 852-856.6   | 4.6   |
| 2516   | 856.6-861   | 4.4   |
| 2517   | 861-866     | 5     |
| 2518   | 866-871     | 5     |
| 2519   | 871-875.5   | 4.6   |
| 2520   | 875.6-881.5 | 5.9   |
| 2521   | 881.5-885   | 4.5   |
| 2522   | 885-890     | 5     |
| 2523   | 890-895     | 5     |
| 2524   | 895-900     | 5 ·   |
| 2525   | 900-905     | 5     |
| 2526   | 905-910     | 5     |
| 2527   | 910-914     | 4     |
| 2528   | 914-917.8   | 3.8   |


•


A CONTRACTOR

OZ/TON AU

۰.,







# SURFACE PLAN SHOWING DIAMOND DRILL HOLE LOCATIONS

#### AMALGAMATED KIRKLAND PROPERTY

KIRKLAND LAKE, ONTARIO LARDER LAKE MINING DIVISION

FOR

