

DIAMOND DRILLING

TOWNSHIP: Grenfell

REPORT No.:

19

WORK PERFORMED BY: Orcana Resources Ltd.

CLAIM No.	HOLE No.	FOOTAGE	DATE	NOTE
L 550941	84-1	364.5	Aug/84	(1)

NOTES: (1) #356-84

をおける。 このでは、このでは、10mmで

PAGE: 1 of 7 GRENFELL - ORCANA RESOURCES LIMITED

OVERBURDEN DRILL HOLE 84-1

BQ size core

STARTED: 9 Aug. 18

LATITUDE: 8+00 E

BEARING: S 40° W

FINISHED:14 Aug. 8

LOCATION: GRENFELL TWP.

Claim 550941

DEPARTURE: 9+50 N

ANGLE DIP: -480

	CI	aim 550941			J. C	. Arch	IDGI
FROM	то	REMARKS	SAMPLE NO	SAMPLE LENGTH	Au Oz/ton		d
0	22.0	CASING - Overburden	·				
22.0	364.5	METAVOLCANICS - Intermediate to basic, massive. Basalts, andesites to medium grained diorites - undifferentiated. 22.0 - 100.0 diorite like, with specks of chlorite and leucoxene throughout. Some bleaching along fracture selvages with odd carbonate stringer @ 50° to core axis					٠
		Chlorite filled slips.	84-1-1	1.0	Nil	•	
		<pre> 63.0°, 1/2" quartz-carbonate stringer, odd speck disseminated pyrite. 65.0 - 67.0, broken core 73.0 - 93.0, increased flow banding and brecciation. Marbled flow @ 15° to C.A. 83.0 - 85.0, flow banded with</pre>	B4-1-2	2.0°	Nil	est.	

PAGE: 2 of 7 GRENFELL - ORCANA RESOURCES LIMITED

OVERBURDEN DRILL HOLE 84-1

STARTED:

LATITUDE:

BEARING:

FINISHED:

LOCATION: GRENFELL TWP. Claim 550941

DEPARTURE:

ANGLE DIP:

	1	Claim 550941	SAMPLE	SAMPLE	Au	
FROM	10	REMARKS	NO	LENGTH	oz/ton	
	·		·			
e Para		93.0 - 100.0, more porphyritic, fine grain			1	
•		phase of basic volcanics, less leucoxene.			<u> </u>	
			84-1-3	2.0	Nil	
		with carb/chlorite filling			1	
		@ 45° to 80° to core axis				
•	1.	(tension fracture filling)				
		plus specks dissem. pyrite.				
	1	100.0 - 149.0, very leucoxene rich in fine grained				
		dark grey groundmass, more chloritic rich				
•		odd speck pyrite disseminated throughout.				· .
	1	104.0 - 107.0, rusty, altered, ankeritic	84-1-4	3.0	Nil	
		with carbonate filling @ all angles,		,		
		less than 1% disseminated pyrite.				
		111.0 - 114.0, carbonate fracture filling	84-1-5	3.0	Nil	
		at all angles, flow banded @ 30° to C.A.	1			
		118.0 - 124.0, increased bleaching				·
£4		alteration in breccia.				
		120.0 - 127.0, rusty quartz-carb.	84-1-6	7.0	Nil	
		fracture filling @ 121.0',				
		brecciated.				1
•		125.0 - 127.0, harder, odd				
	₹.	speck dissem. pyrite				
		137.0 - 139.0, carbonate fracture filling	,	2.0	Nil	
		in brecciated volcanics.] • [''	
£ i	1	an alcoulated tolonicol	1		{	
la . Se e e e e]	· · · · · · · · · · · · · · · · · · ·	1	l	1 1	ì

PAGE: 3 of 7 GRENFELL - ORCANA RESOURCES LIMITED

OVERBURDEN DRILL HOLE 84-1

STARTED:

FI

FINISHED:

LATITUDE:

BEARING:

LOGGED BY:

LOCATION: GRENFELL TWP.

DEPARTURE:

ANGLE DIP:

**************************************		Claim 550941		1		Y	- ₁
FROM	ТО	REMARKS	SAMPLE NO	SAMPLE LENGTH	Au oz/ton		
#4 #				ł			
	1	@ 138.5, 4" mud seam, ankeritic,	1				
1		chlorite rich.	1		1		
		140.0 - 142.0, carbonated tension fracts.		2.0'	.005		
57 57 58		every 1/2" @ 70° to C.A. Odd slip pyrite				<u>'</u>	
	1	filled.					İ
		149.0 - 159.0, altered, spotted with light/dark				1	
		chlorite and leucoxene rich laminations.	,				
		151.0 - 153.0, carbonate fracture					1
100 mm m		filling, mainly at 70° to core axis.	B4-1-9	2.0	Nil		
	.	159.0 - 200.0, dark grey-green, homogeneous	1			٠	1
		with carbonate stringers at all angles.					
r H		162.0 - 163.5, rusty brown, carbonate	84-1-1	b 1.5	Nil		
		fracture filling at 45° to C.A. up to					1
		2" wide. Poorly mineralized.				!	
		@ 169.0, 2" flow banding at 30° to C.A.	1				1
		@ 173.0, 1" " "	1.				
		@ 176.0, 4" " "	1	1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		177.0 - 178.0, rusty, carbonate stringers	84-1-1	h 1.0'	Nil		
排		around inclusions/flows at 50° to C.A.	΄		****		1
100 m		196.0 - 197.0, brecciated.]		
	1	200.0 - 209.0, rusty, carbonate rich with odd	ļ		İ	ŀ	
					•		ļ
	T	bleb and stringer of pyrite at 30° to 40° to core axis.					1
	1	40 co core avis.		:			
A.	1 ·		1	1		I	1

PAGE: 4 of 7 GRENFELL - ORCANA RESOURCES LIMITED

OVERBURDEN DRILL HOLE 84-1

STARTED:

FINISHED:

LOCATION:

DEPARTURE:

LATITUDE:

ANGLE DIP:

BEARING:

FROM	то	laim 550941 REMARKS	SAMPLE NO	SAMPLE LENGTH	Au oz/tor		_
•							-
Riginal Control of the Control of th		200.0 - 204.0 <u>s</u>	<u>ample</u> 84-1-1	2 4.0	Nil		
		204.0', 1/2" stringer of	f pyrite.	1			
		209.0 - 250.0, basic, flow banded, fine		1			
		green-grey, odd carbonate strin	nger	1			
•		at 60° to 80° to core axis. Le	eucoxene	l .]		
		rich sections.			1		
		216.0 - 218.0, flow banded at 10	0 ⁰ to	2.0 لا.	Nil		
\$ 		core axis, carbonated, marbled	, odd				
		speck pyrite.					
		220.0 - 222.0, carbonate rich f.	low 84-1-1	4 2.0	Nil	,	•
••		banding with odd speck disseming	nated				
		pyrite throughout (less than 2)	% pyrite).				
To a second	ł	229.5 - 232.0, carbonate string	ers	.b 2.5°	Nil		
		at 229.5° (1") at 50° to C.A.	then flow				
i. G		banded. Dissem. pyrite along c	hloritic		1		
F		slips.					
		233.0 - 234.0, 3" carbonate str	inger in 84-1-1	16 1.0°	002		ı
	·	brecciated rusty volcanic @ 45	to C.A.				ı
	·	245.0 - 247.0, 3" carbonate str	inger	坪 2.0 °	.002		ı
		at 45° to C.A., dissem. pyrite	filling				
· •		tension fractures.					i
	7			,			į
	}		1 `	1	1		1

PAGE: 5 of 7 GRENFELL - ORCANA RESOURCES LIMITED

OVERBURDEN DRILL HOLE 84-1

STARTED:

FINISHED:

LATITUDE:

DEPARTURE:

ANGLE DIP:

BEARING:

LOGGED BY:

LOCATION: GRENFELL TWP.

FROM	то	REMARKS	SAMPLE NO	SAMPLE LENGTH	Au. oz/ton	
		ciated (tension fracture filling) and flow banding (6") at 252.0', less than 1% disseminated pyrite along carbonate	34-1-1	8 3.0'	Nil	
The second secon	٠.	stringers. 255.0 - 258.0, tension fractures at 450 to C.A. with carbonate filling.	34-1-1	9 3.0*	Nil	
\$		258.0 - 259.0, massive, more siliceous, ankeritic, i.e. quartz-carbonate stringers with up to 10% pyrite.	34-1-2	0 1.0	.002	
5. 5. 6.		263.5 - 264.5, 6" quartz-carbonate breccia @ 80° to C.A., odd speck pyrite.	84-1-2	1 1.0	Nil	
		269.0 - 270.0, 3" quartz carbonate fracture filling/brecciated @ 45° to C.A. 272.0 - 289.0, becomes more homogeneous, brown, rusty, less carbonate filling @ 35° C.A. some disseminated pyrite in flow banding		2 1.0'	Nil	
		282.0 - 283.0, 2" quartz-carbonate stringer at 85° to core axis, odd speck pyrite.	84-1-2	3 1.0	Nil	

PAGE: 6 of 7 GRENFELL - ORCANA RESOURCES LIMITED

OVERBURDEN DRILL HOLE 84-1

STARTED:

FINISHED:

LATITUDE:

BEARING:

LOGGED BY:

LOCATION:

DEPARTURE:

ANGLE DIP:

FROM	10	Claim 550941 REMARKS	SAMPLE NO	SAMPLE LENGTH	Au. oz/ton		·
· · · ·		288.0 - 290.0, 3" quartz-carbonate	84-1-2				
		stringer in rusty flow banded volcanic				j	
		at 80° to core axis.					
		② 288.0 - flow banding ② 15° to C.A.					
		289.0 - 3" quartz-carbonate					
• •		stringer at 55° to C.A.					
		289.0 - 323.0, increasingly fractured, filled					
		with chlorite @ 50° to core axis.					
		292.5 - 294.5, flow banded with chlorite	84-1-2	5 2.0	Nil		
		in slips/tension fractures @ 50° to C.A.					·
		less than 1% disseminated specks pyrite throughout.					
· .			84-1-2	6 1.0'	.005		
:		stringers at 60° to core axis with	i				
		disseminated 1 20% pyrite.					
		323.0 - 350.0, basic, increased flow banding,	·				
		dioritic, chlorite slips and carbonate				:	
•		stringers (tension filling) @ 45° to C.A					
	·	330.0 - 331.0, 1" carbonate stringer at 45° to C.A., poorly mineralized.	84-1-2	/ 1.0.	.002	:	
	1	334.0 - 335.0, chlorite and carbonate	84-1-2	8 1.0	Nil		
		rich stringer at 45° with dissem pyrite.					
	I	348.0 - 350.0, quartz-carb. fracture	84-1-2	9 2.0	Nil		
		filling at 10° to C.A.					1
. •	1						1

- ORCANA RESOURCES LIMITED

DIAMOND DRILL HOLE 84-1

STARTED:

FINISHED:

GRENFELL TWP. LOCATION:

LATITUDE:

DEPARTURE:

ANGLE DIP:

BEARING:

	tocknon.	Claim 550941				· .	
FROM	ТО	REMARKS	SAMPLE NO	SAMPLE LENGTH	Au. oz/ton		
		350.0 - 364.5, dark green, odd carbonate stringer or tension fracture filling. After 362.0, core blocky, broken, with rusty carbonate stringers at 30° to 45° to core axis.					
		362.0 - 364.5, rusty carbonate stringers.	84-1-3	0 2.5	Nil		
	364.5	END OF HOLE					•
		Casing pulled, core delivered to -				•	
The second secon		Kirkland Core Storage Library.					
				•			

LEGEND

Vein

Sulphides

Andesite

Feldspar porphyry

Carbonate Stringer Zone

- Fault

GRENFELL TWP.

ORCANA RESOURCES LIMITED

DIAMOND DRILL SECTION HOLE 84-1

SCALE

1 INCH = 50 FEET

Name and Postal Address of

ORCANA RESOURCES LIMITED

T-1032

P. O. Box 162, Toronto-Dominion Centre, Toronto, Ontario. M5K 1H6

The Minii

otal Work Days Cr. claimed	ħ	stribution of Cre	Work	N	lining Claim	Work	Mir	ning Claim	Work
378.5	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number	Days Cr
or Performance of the following	L	579503	20	L	550945	20			
vork, (Check one only) Manual Work		579504	20		550946	20			,
Shaft Sinking Drifting or		566639	20		550957	57.2			
other Lateral Work. Compressed Air, other		566640	60						
Power driven or mechanical equip.		550941	40				on the control of		
Power Stripping		550942	40				\$. 5 1		
Diamond or other Core drilling		550943	40				110		
Land Survey		550944	41.3						

Required Information eg: type of equipment, Names, Addresses, etc. (See Table Below)

The above assessment credit days includes 364.5 feet of drilling for putting the core in the using BQ size core plus 14 credit days Larder Lake Diamond Drill Core Library.

R. Todorovich The diamond driller was -

R.R. 2, McLean Drive LAKE ONTARIO GEOLOGICAL SURVEY ASSESSMENT PANES C3 RESEARCH OFFICE RECORDEDA SFP 1 1 1984 ΛM 7 18 19 21112131415

RECEIVED Date of Report

Recorded Holder or Agent (Signature)

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

C. W. Archibald, 702-100 Adelaide Street West

Name and address of Ontario land surveyer.

Date Certified

Certified by (Signature)

M5H 183 Toronto, Ontario.

28 August 1984

Nit

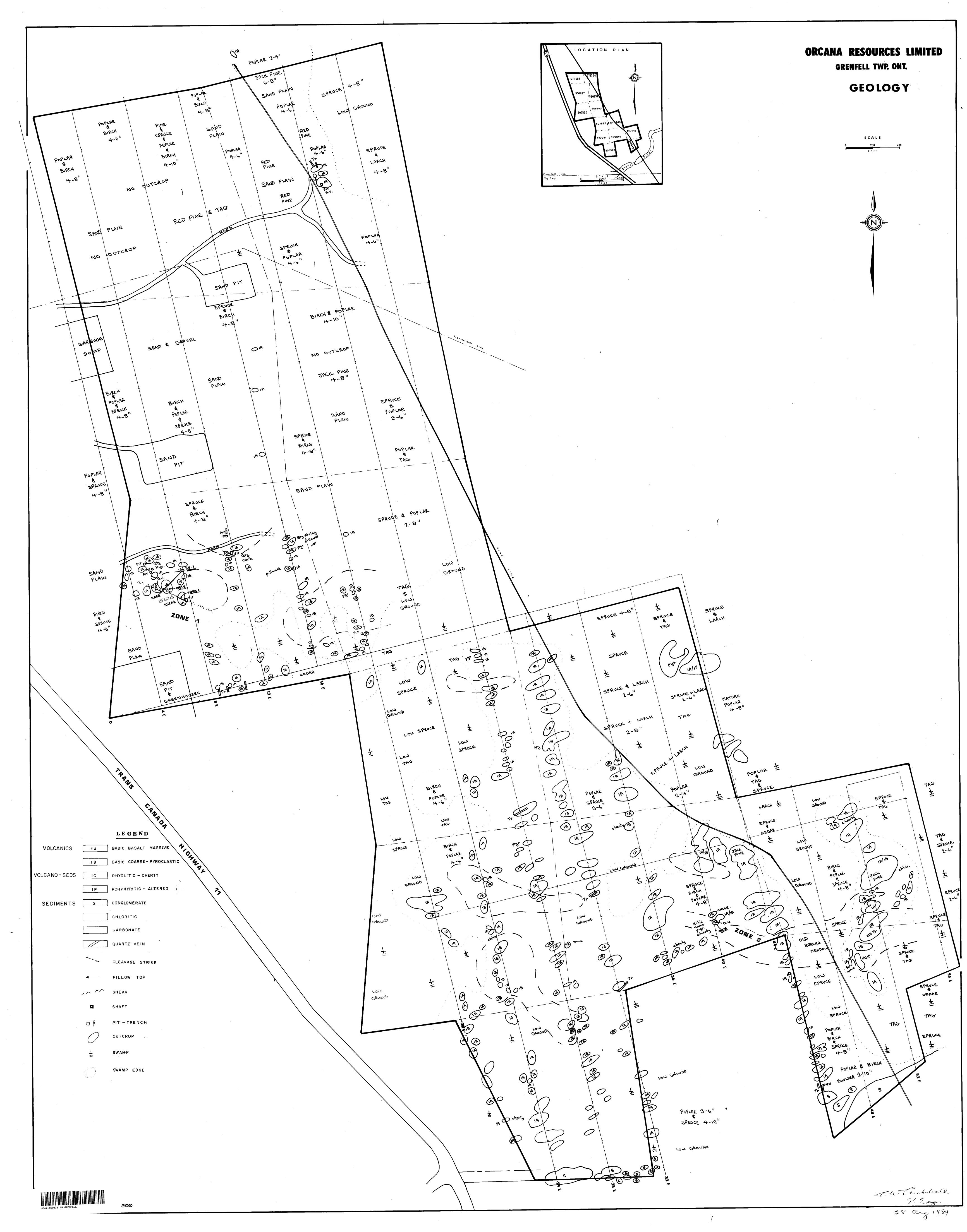
Nil

Table of Information/Attachments Required by the Mining Recorder Attachments Other information (Common to 2 or more types) Specific information per type Type of Work Manual Work Nil Names and addresses of men who performed Work Sketch: these Shaft Sinking, Drifting or other Lateral Work manual work/operated equipment, together are required to show with dates and hours of employment. the location and extent of work in Type of equipment Compressed air, other power relation to the driven or mechanical equip. nearest claim post. Type of equipment and amount expended. Note: Proof of actual cost must be submitted Power Stripping Names and addresses of owner or operator within 30 days of recording. together with dates when drilling/stripping done. Work Sketch (as Signed core log showing; footage, diameter of Diamond or other core above) in duplicate core, number and angles of holes. drilling

768 (81/3)

Land Survey

DIAMOND DRILL CORE RECEIVING FORM


Received from Orcana Resources Inc.

19 boxes of diamond drill core at the Larder Lake
Diamond Drill Core Library.

DDH#	BOXES	FEET/METERS	TOWNSHIP	LOG	LOCATION
84-1	19	364.5	Grenfell.		
	-				
					•
	: : :			0	1

Date Ang 14/84 Received by De It is

N.B. Core donation may be used for Assessment Credits under the Mining Act at a rate of 1 day for every 25 feet of drilling.

