010

OPAP TECHNICAL REPORT

SUBMISSION

GRAVEL PIT PROPERTY

OTTO TOWNSHIP

LARDER LAKE MINING DIVISION ONTARIO

JANUARY 4, 1991

L.M.DYMENT

#### LOCATION AND ACCESS

The property is located in Otto Twp., Larder lake Mining Division, approximately 3 miles Southwest of the town of Kirkland Lake, on Highway 112.

Access is by a timber road off highway 112 that leads to the center of the property.

#### CHANGES TO ORIGINAL PROPOSAL

No changes were made to the original proposal but there was an addition made when a major mining company, Battle Mountain Canada (Inc.), asked for and were granted permission to pressure hose, diamond saw, geologically map and sample stripped area #1, thus allowing the prospector to expand the emphasis and expenditure to other areas of the property. This additional exploration was a direct result of the mechanical stripping undertaken as proposed under the original OPAP submission, which stripping uncovered an interesting geological situation. As will be found further in this report, the sampling produced negative results, but the entire exercise shows how effective OPAP can be in encouraging further investment in exploration.

#### GEOLOGICAL SURVEY

A geological map at a scale of 1 " = 300 ' was drawn up using an existing grid on the property. The only other mapping on this property was done by Noranda in 1976, though not handed in for assessment credits. This map was later donated by Noranda to the Kirkland Lake assessment office. In 1985, the property was completely timbered and the access and outcrop exposure was greatly improved and a much more complex geological picture emerged.

The Southern half of the property contains highly foliated basalt which are probably of magnesium tholiitic origin. Within this horizon are numerous oxide iron formation bands, crenelated quartz, apilitic inclusions and lamprophyr dikes, possibly influenced by the Otto stock to the South,

To the North of the foliated basalt and in contact with it is a meta-sedimentary horizon showing lithic wacke, tuffs, mudstones, chert, conglomerate, fragmentals, and graphitic areas. Cu and Zn showings can also be found within this horizon.

A series of tholiitic flows, un-differentiated basalt, and inter-flow sediments, mainly graphite, were mapped North of the meta-sedimentary horizon where there is sparse outcropping.

PAGE 2

#### SAMPLING AND STRIPPING PROGRAM

As shown by the accompanying stripping and sampling maps, certain areas were selected after a review of previous geological and geo-physical maps.

Areas where bedrock could not be reached were filled back in.

A detailed geological map was drawn of stripped areas and sample locations were noted. The areas were stripped by Martin Lautaoja Construction Ltd. using a Case excavator.

#### GEOCHEMICAL SURVEY

A geochemical survey was conducted using an existing grid (1989) with the results shown on separate maps within this report at a scale of 1 " = 300 '.

The "B" horizon was sampled by shovel and the samples were assayed for Cu, Zn, and Ag. 189 samples were taken with areas #1 to #4 showing interesting correlations in the minerals sampled.

#### RESULTS AND RECOMMENDATIONS

A better understanding of the property potential has resulted from the OPAP program. The geology and geochemistry surveys have given the prospector new areas of focus in the future.

Sufficient data has been obtained to make this an excellent starting point for a major mining company with money to spend in this area.



A Division of Assayers Corporation Ltd.

#### Assaying - Consulting - Representation

Page 1 of 5

### Geochemical Analysis Certificate

0W-1679-SG1

Company:

L.M.DYMENT

Date: NOV-07-90

Project: Attn: Copy 1. P.O.BOX 66,SWASTIKA,ONT. POK 1TO

We hereby certify the following Geochemical Analysis of 148 SOIL samples submitted OCT-29-90 by .

| Sample<br>Number | Ag<br>ppm | Cu<br>ppm | Zn<br>ppm | • |
|------------------|-----------|-----------|-----------|---|
| MD#1             | 0.1       | 15        | 51        |   |
| MD#2             | 0.1       | 27        | 35        |   |
| MD#3             | 0.2       | 43        | 169       |   |
| MD#4             | 0.1       | 15        | 64        |   |
| MD#5             | 0.2       | 28        | 72        |   |
| MD#6             | 0.2       | 16        | 56        |   |
| MD#7             | 0.1       | 26        | 78        |   |
| MD#8             | 0.1       | 9         | 30        |   |
| MD#9             | 0.5       | 19        | 254       |   |
| MD#10            | 0.3       | 48        | 126       |   |
| MD#11            | 0.5       | 49        | 421       |   |
| MD#12            | 1.1       | 181       | 506       |   |
| MD#13            | 0.1       | 46        | 71        |   |
| MD#14            | 0.1       | 16        | 93        |   |
| MD#15            | 0.1       | 4         | 11        |   |
| MD#16            | 0.2       | 81        | 61        |   |
| MD#17            | 0.2       | 34        | 105       |   |
| MD#18            | 0.1       | 6         | 21        |   |
| MD#19            | 0.1       | 5         | 20        |   |
| MD#20            | 0.2       | 24        | 52        |   |
| MD#21            | 0.1       | 13        | 38        |   |
| MD#22            | 0.1       | 8         | 28        |   |
| MD#23            | 0.3       | 32        | 79        |   |
| MD#24            | 0.2       | 20        | 69        |   |
| MD#25            | 0.1       | 21        | 52        |   |
| MD#26            | 0.1       | 14        | 55        |   |
| MD#27            | 0.1       | 24        | 41        |   |
| MD#28            | 0.1       | 38        | 65        | 1 |
| MD#29            | 0.1       | 18        | 21        |   |
| MD#30            | 0.1       |           | 17        |   |

Certified by Donna Hardner



A Division of Assayers Corporation Ltd.

### Assaying - Consulting - Representation

Page 2 of 5

### Geochemical Analysis Certificate

0W-1679-SG1

Company: L.M.DYMENT

Date: NOV-07-90

Project: Attn:

Copy 1. P.O.BOX 66, SWASTIKA, ONT. POK 1TO

We hereby certify the following Geochemical Analysis of 148 SOIL samples submitted OCT-29-90 by .

| Sample<br>Number | Ag         | Cu     | Zn       |                                         |
|------------------|------------|--------|----------|-----------------------------------------|
|                  | ppm        | ppm    | ppm      | •                                       |
| MD#31            | 0.1        | 18     | 32       |                                         |
| MD#32<br>MD#33   | 0.1        | 16     | 55<br>20 |                                         |
| MD#33<br>MD#34   | 0.1        | 7<br>7 | 29       |                                         |
| MD#35            | 0.1<br>0.2 | 16     | 26<br>42 |                                         |
|                  |            |        |          |                                         |
| MD#36            | 0.1        | 14     | 34       | •                                       |
| MD#37            | 0.1        | 16     | 83       |                                         |
| MD#38            | 0.2        | 41     | 93       |                                         |
| MD#39            | 0.1        | 10     | 66       |                                         |
| MD#40            | 0.1        | 8      | 18       |                                         |
| MD#41            | 0.1        | 12     | 45       |                                         |
| MD#42            | 0.1        | 9      | 26       |                                         |
| MD#43            | 0.1        | 10     | 32       |                                         |
| MD#44            | 0.3        | 59     | 364      |                                         |
| MD#45            | 0.1        | 4      | 25       | •                                       |
| MD#46            | 0.1        | 13     | 48       |                                         |
| MD#47            | 0.1        | 33     | 74       |                                         |
| MD#48            | 0.1        | 37     | 70       |                                         |
| MD#49            | 0.1        | 13     | 19       |                                         |
| MD#50            | 0.1        | 18     | 136      |                                         |
| MD#51            | 0.2        | 25     | 54       |                                         |
| MD#52            | 0.2        | 19     | 432      | •                                       |
| MD#53            | 0.3        | 39     | 261      |                                         |
| MD#54            | 0.2        | 24     | 110      |                                         |
| MD#55            | 0.3        | 70     | 258      |                                         |
| MD#56            | 0.3        | 21     | 137      | ••••••••••••••••••••••••••••••••••••    |
| MD#57            | 0.1        | 19     | 40       |                                         |
| MD#58            | 0.1        | 6      | 15       |                                         |
| MD#59            | 0.1        | 10     | 41       |                                         |
| MD#60            | 0.2        | 34     | 192      |                                         |
|                  |            |        |          | *************************************** |



A Division of Assayers Corporation Ltd.

#### Assaying - Consulting - Representation

Page 3 of 5

## Geochemical Analysis Certificate

0W-1679-SG1

Company:

L.M.DYMENT

Date: NOV-07-90

Project: Attn: Copy 1. P.O.BOX 66,SWASTIKA,ONT. POK 1TO

We hereby certify the following Geochemical Analysis of 148 SOIL samples submitted OCT-29-90 by .

| Samp l e        | Ag  | Cu  | Zn   |   |
|-----------------|-----|-----|------|---|
| Number          | ppm | ppm | ppm  |   |
| MD#61           | 0.2 | 36  | 208  |   |
| MD#62           | 0.1 | 23  | 155  |   |
| MD#63           | 0.1 | 15  | 59   |   |
| MD#64           | 0.2 | 19  | . 37 |   |
| MD#65           | 0.1 | 7   | 56   |   |
| MD#66           | 0.1 | 12  | 73   |   |
| MD#67           | 0.2 | 26  | 126  |   |
| MD#68           | 0.2 | 13  | 54   |   |
| MD#69           | 0.1 | 11  | 43   |   |
| MD#70           | 0.1 | 15  | 27   |   |
| MD#71           | 0.1 | 8   | 18   |   |
| MD#72 not rec'd |     |     |      |   |
| MD#73           | 0.1 | 4   | 17   |   |
| MD#74           | 0.1 | 26  | 44   |   |
| MD#75           | 0.1 | 10  | 35   |   |
| MD#76           | 0.1 | 8   | 33   |   |
| MD#77           | 0.1 | 8   | 34   | • |
| MD#78           | 0.2 | 51  | 130  |   |
| MD#79           | 0.1 | 11  | 75   |   |
| MD#80           | 0.2 | 22  | 155  |   |
| MD#81 ·         | 0.2 | 20  | 177  |   |
| MD#82           | 0.3 | 168 | 91   |   |
| MD#83           | 0.2 | 41  | 175  |   |
| MD#84           | 0.1 | 11  | 50   |   |
| MD#85           | 0.1 | 9   | 46   |   |
| MD#86           | 0.3 | 27  | 61   |   |
| MD#87           | 0.1 | 8   | 24   |   |
| MD#88           | 0.2 | 9   | 19   |   |
| MD#89           | 0.1 | 17  | 44   |   |
| MD#90           | 0.1 | 10  | 30   |   |

Certified by Donna Landmon



A Division of Assayers Corporation Ltd.

#### Assaying - Consulting - Representation

Page 4 of 5

### Geochemical Analysis Certificate

0W-1679-SG1

Company:

L.M.DYMENT

Date: NOV-07-90

Project:

Copy 1. P.O.BOX 66, SWASTIKA, ONT. POK 1TO

Attn:

We hereby certify the following Geochemical Analysis of 148 SOIL samples submitted OCT-29-90 by .

| Samp le          | Ag  | Cu  | Zn  |     |
|------------------|-----|-----|-----|-----|
| Number           | ppm | ppm | ppm |     |
| MD#91            | 0.1 | 15  | 50  | *** |
| MD#92            | 0.1 | 15  | 87  |     |
| MD#93            | 0.1 | 12  | 51  |     |
| MD#94            | 0.1 | 9   | 38  |     |
| MD#95            | 0.1 | 6   | 39  |     |
| MD#96            | 0.2 | 9   | 43  |     |
| MD#97            | 0.3 | 30  | 65  | •   |
| MD#98            | 0.1 | 11  | 76  |     |
| MD#99            | 0.1 | 14  | 51  |     |
| MD#100           | 0.2 | 16  | 76  |     |
| MD#101           | 0.1 | 17  | 78  |     |
| MD#102           | 0.1 | 20  | 41  |     |
| MD#103           | 0.2 | 10  | 75  |     |
| MD#104 not rec'd |     |     |     | •   |
| MD#105           | 0.1 | 24  | 51  |     |
| MD#106           | 0.1 | 18  | 69  |     |
| MD#107           | 0.5 | 41  | 68  |     |
| MD#108           | 0.1 | 10  | 292 |     |
| MD#109           | 0.1 | 16  | 50  |     |
| MD#110           | 0.1 | 10  | 28  | •   |
| MD#111           | 0.1 | 14  | 44  |     |
| MD#112           | 0.2 | 36  | 37  |     |
| MD#113           | 0.5 | 41  | 113 |     |
| MD#114           | 0.2 | 15  | 66  |     |
| MD#115           | 0.3 | 16  | 57  |     |
| MD#116           | 0.2 | 9   | 71  |     |
| MD#117           | 0.3 | 9   | 62  |     |
| MD#118           | 0.3 | 35  | 165 |     |
| MD#119           | 0.1 | 7   | 18  |     |
| MD#120           | 0.2 | 30  | 56  |     |

Certified by Lana Landner



A Division of Assayers Corporation Ltd.

#### Assaying - Consulting - Representation

Page 5 of 5

## Geochemical Analysis Certificate

0W-1679-SG1

L.M.DYMENT

Date: NOV-07-90

Project:

Copy 1. P.O.BOX 66, SWASTIKA, ONT. POK 1TO

Attn:

We hereby certify the following Geochemical Analysis of 148 SOIL samples submitted OCT-29-90 by.

| Namber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample | Ag  | Cu  | Zn  |   |                                         |       | 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|-----|---|-----------------------------------------|-------|---|
| MD#122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number | ppm | ppm | ppm |   |                                         |       |   |
| MD#122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#121 | 0.4 | 16  | 29  |   |                                         |       |   |
| MD#124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#122 | 0.2 |     |     |   |                                         |       |   |
| MD#126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#123 |     | 10  |     |   |                                         |       |   |
| MD#126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |     |     |     | • |                                         |       |   |
| MD#127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#125 | 0.2 | 15  | 33  |   |                                         |       |   |
| MD#127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#126 | 0.2 | 23  | 56  |   | • • • • • • • • • • • • • • • • • • • • |       |   |
| MD#128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |     |     |     |   |                                         |       |   |
| MD#130     0.2     15     55       MD#131     0.3     15     94       MD#132     0.1     30     223       MD#133     0.1     37     224       MD#134     0.1     30     220       MD#135     0.1     43     216       MD#136     0.2     38     97       MD#137     0.1     17     28       MD#138     0.2     44     76       MD#139     0.1     28     74       MD#140     0.1     42     94       MD#141     0.3     55     80       MD#142     0.3     67     91       MD#143     0.1     18     69       MD#144     0.1     10     50       MD#145     0.1     51     95       MD#147     0.8     403     245       MD#148     0.4     123     128       MD#149     0.1     26     52                                                                                                                                                                                                    | MD#128 | 0.1 | 20  |     |   |                                         |       |   |
| MD#131       0.3       15       94         MD#132       0.1       30       223         MD#133       0.1       37       224         MD#134       0.1       30       220         MD#135       0.1       43       216         MD#136       0.2       38       97         MD#137       0.1       17       28         MD#138       0.2       44       76         MD#139       0.1       28       74         MD#140       0.1       42       94         MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52 | MD#129 | 0.2 | 26  | 106 |   |                                         |       |   |
| MD#132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#130 | 0.2 | 15  | 55  |   |                                         |       |   |
| MD#132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#131 | 0.3 | 15  | 94  |   |                                         |       |   |
| MD#133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD#132 |     |     |     |   |                                         |       |   |
| MD#135       0.1       43       216         MD#136       0.2       38       97         MD#137       0.1       17       28         MD#138       0.2       44       76         MD#139       0.1       28       74         MD#140       0.1       42       94         MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                           | MD#133 | 0.1 |     |     |   |                                         |       |   |
| MD#136       0.2       38       97         MD#137       0.1       17       28         MD#138       0.2       44       76         MD#139       0.1       28       74         MD#140       0.1       42       94         MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                                                                       |        |     | 30  | 220 |   |                                         |       |   |
| MD#137       0.1       17       28         MD#138       0.2       44       76         MD#139       0.1       28       74         MD#140       0.1       42       94         MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                                                                                                                  | MD#135 | 0.1 | 43  | 216 |   |                                         |       |   |
| MD#137       0.1       17       28         MD#138       0.2       44       76         MD#139       0.1       28       74         MD#140       0.1       42       94         MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                                                                                                                  | MD#136 | 0.2 | 38  | 97  |   |                                         |       |   |
| MD#138       0.2       44       76         MD#139       0.1       28       74         MD#140       0.1       42       94         MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                                                                                                                                                             | MD#137 |     |     |     |   |                                         |       |   |
| MD#140       0.1       42       94         MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MD#138 |     | 44  |     |   |                                         |       |   |
| MD#141       0.3       55       80         MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MD#139 | 0.1 |     | 74  |   |                                         |       |   |
| MD#142       0.3       67       91         MD#143       0.1       18       69         MD#144       0.1       10       50         MD#145       0.1       51       95         MD#146       0.4       130       118         MD#147       0.8       403       245         MD#148       0.4       123       128         MD#149       0.1       26       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MD#140 | 0.1 | 42  | 94  |   |                                         |       |   |
| MD#142     0.3     67     91       MD#143     0.1     18     69       MD#144     0.1     10     50       MD#145     0.1     51     95       MD#146     0.4     130     118       MD#147     0.8     403     245       MD#148     0.4     123     128       MD#149     0.1     26     52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MD#141 | 0.3 | 55  | 80  |   |                                         | ••••• |   |
| MD#144     0.1     10     50       MD#145     0.1     51     95       MD#146     0.4     130     118       MD#147     0.8     403     245       MD#148     0.4     123     128       MD#149     0.1     26     52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |     | 67  | 91  |   |                                         | •     |   |
| MD#145     0.1     51     95       MD#146     0.4     130     118       MD#147     0.8     403     245       MD#148     0.4     123     128       MD#149     0.1     26     52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.1 | 18  | 69  |   |                                         |       |   |
| MD#146 0.4 130 118<br>MD#147 0.8 403 245<br>MD#148 0.4 123 128<br>MD#149 0.1 26 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |     |     |     |   |                                         |       |   |
| MD#147 0.8 403 245<br>MD#148 0.4 123 128<br>MD#149 0.1 26 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MD#145 | 0.1 | 51  | 95  |   |                                         |       |   |
| MD#148 0.4 123 128<br>MD#149 0.1 26 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 0.4 | 130 | 118 |   |                                         |       |   |
| MD#149 0.1 26 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 0.8 | 403 |     |   |                                         |       |   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |     |     |     |   |                                         |       |   |
| MD#150 0.1 9 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |     |     |     |   |                                         |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MD#150 | 0.1 | 9   | 21  |   |                                         |       |   |



A Division of Assayers Corporation Ltd.

#### Assaying - Consulting - Representation

Page 1 of 2

## Geochemical Analysis Certificate

0W-1680-SG1

Company:

L.M.DYMENT

Date: NOV-08-90

Project: Attn: Copy 1. P.O.BOX 66, SWASTIKA, ONT. POK 1TO

We hereby certify the following Geochemical Analysis of 41 SOIL samples submitted OCT-29-90 by .

| Samp le  | Ag  | Cu  | Zn  |                                         |
|----------|-----|-----|-----|-----------------------------------------|
| Number   | ppm | ppm | ppm |                                         |
| MD#151   | 0.1 | 17  | 30  |                                         |
| MD#152   | 0.2 | 48  | 60  |                                         |
| MD#153   | 0.1 | 34  | 28  |                                         |
| MD#154   | 0.3 | 122 | 144 |                                         |
| MD#155   | 0.1 | 36  | 109 |                                         |
| MD#156   | 0.5 | 43  | 177 |                                         |
| MD#157   | 0.2 | 58  | 165 |                                         |
| MD#158   | 0.3 | 55  | 122 |                                         |
| MD#159   | 0.2 | 67  | 112 |                                         |
| MD#160 ' | 0.1 | 24  | 58  |                                         |
| MD#161   | 0.1 | 19  | 60  |                                         |
| MD#162   | 0.1 | 37  | 43  |                                         |
| MD#163   | 0.1 | 41  | 50  |                                         |
| MD#164   | 0.1 | 40  | 48  |                                         |
| MD#165   | 0.1 | 92  | 65  |                                         |
| MD#166   | 0.1 | 20  | 57  |                                         |
| MD#167   | 0.1 | 11  | 42  |                                         |
| MD#168   | 0.1 | 26  | 53  |                                         |
| MD#169   | 0.1 | 39  | 41  |                                         |
| MD#170   | 0.1 | 394 | 437 |                                         |
| MD#171   | 0.2 | 40  | 66  |                                         |
| MD#172   | 0.1 | 42  | 344 |                                         |
| MD#173   | 0.1 | 12  | 68  |                                         |
| MD#174   | 0.1 | 10  | 52  |                                         |
| MD#175   | 0.1 | 43  | 20  |                                         |
| MD#176   | 0.1 | 5   | 12  | *************************************** |
| MD#177   | 0.1 | 11  | 18  |                                         |
| MD#178   | 0.1 | 2   | 17  |                                         |
| MD#179   | 0.1 | 3   | 18  |                                         |
| MD#180   | 0.1 | 5   | 19  |                                         |
|          |     | ·   |     |                                         |

Certified by Donna Land, a



A Division of Assayers Corporation Ltd

### Assaying - Consulting - Representation

Page 2 of 2

### Geochemical Analysis Certificate

0W-1680-SG1

Company:

L.M.DYMENT

Date: NOV-08-90 Copy 1. P.O.BOX 66, SWASTIKA, ONT. POK 1T0

Project:
Attn:

We hereby certify the following Geochemical Analysis of 41 SOIL samples

submitted OCT-29-90 by.

| Sample | Ag  | Cu  | Zn  |  |
|--------|-----|-----|-----|--|
| Number | ppm | ppm | ppm |  |
| MD#181 | 0.2 | 67  | 150 |  |
| MD#182 | 0.1 | 11  | 40  |  |
| MD#183 | 0.1 | 21  | 22  |  |
| MD#184 | 0.1 | 11  | 32  |  |
| MD#185 | 0.1 | 7   | 32  |  |
| MD#186 | 0.1 | 4   | 26  |  |
| MD#187 | 0.1 | 19  | 85  |  |
| MD#188 | 0.1 | 15  | 54  |  |
| MD#189 | 0.1 | 29  | 112 |  |
| MD#190 | 0.1 | 17  | 64  |  |
| MD#191 | 0.1 | 19  | 67  |  |

Certified by Coma Sandre



A Division of Assayers Corporation Ltd.

#### Assaying - Consulting - Representation

## Geochemical Analysis Certificate

0W-1511-RG1

Company:

L.M. DYMENT

Date: OCT-10-90

Project:

Copy 1. P.O.BOX 66, SWASTIKA, ONT. POK 1TO

Attn:

We hereby certify the following Geochemical Analysis of 11 ROCK samples submitted OCT-05-90 by L.M. DYMENT.

| Sample | Au      |   |
|--------|---------|---|
| Number | ppb     |   |
| MD-#1  | Ni l    |   |
| MD-#2  | Ni l    |   |
| MD-#3  | Ni l    |   |
| MD-#4  | 10/Ni l |   |
| MD-#5  | Ni l    | · |
| MD-#6  | Ni l    |   |
| MD-#7  | Ni l    |   |
| MD-#8  | Ni l    |   |
| MD-#10 | 21/27   |   |
| MD-#11 | Ni l    |   |
| MD-#12 | 29      |   |

Certified by

G. Lebel / Manager



A Division of Assayers Corporation Ltd.

### Assaying - Consulting - Representation

## Geochemical Analysis Certificate

0W-1574-RG1

Company:

L. M. DYMENT

Date: OCT-18-90

Project: Attn: Copy 1. BOX 66 SWASTIKA ONT. POK 1TO

We hereby certify the following Geochemical Analysis of 7 ROCK samples submitted OCT-16-90 by .

| Sample<br>Number                               | Au<br>ppb            | Ag<br>ppm         | Cu<br>ppm  | Zn<br>ppm               | N |
|------------------------------------------------|----------------------|-------------------|------------|-------------------------|---|
| MD# 12<br>MD# 13<br>MD# 14<br>MD# 15<br>MD# 16 | Ni l<br>Ni l<br>Ni l | 0.4<br>0.6<br>1.2 | 208<br>258 | 341<br>49<br>184<br>442 |   |
| MD# 17<br>MD# 18                               | Ni l                 | 0.6               |            | 175<br>123              |   |

Certified by

G. Lebel / Manager



A Division of Assayers Corporation Ltd.

Assaying - Consulting - Representation

## Geochemical Analysis Certificate

0W-1681-RG1

Company:

L.M.DYMENT

Project:
Attn:

Date: NOV-01-90

Copy 1. P.O.BOX 66, SWASTIKA, ONT. POK 1TO

We hereby certify the following Geochemical Analysis of 2 ROCK samples submitted OCT-29-90 by.

| Sample         | Au          | Ag         | Cu  | Zn  |
|----------------|-------------|------------|-----|-----|
| Number         | ppb         | ppm        | ppm | ppm |
| MD#19<br>MD#20 | 34/38<br>31 | 0.1<br>0.2 | 353 | 59  |

Certified by Donna Landina



A Division of Assayers Corporation Ltd.

### Assaying - Consulting - Representation

Page 1 of 2

### Geochemical Analysis Certificate

0W-1183-RG1

Company:

BATTLE MOUNTAIN CANADA INC.

Date: AUG-21-90

Project:

75-JV-28

Copy 1. HOLD COPY 567-4840

Attn:

**WAYNE BENHAM** 

We hereby certify the following Geochemical Analysis of 33 ROCK samples submitted AUG-16-90 by WAYNE BENHAM.

| Sample | Au    |   |
|--------|-------|---|
| Number | ppb   |   |
| 11465  | 7     |   |
| 11466  | 14/7  |   |
| 11467  | 10    |   |
| 11468  | Ni l  |   |
| 11469  | Ni l  |   |
| 11470  | 10    |   |
| 11471  | Ni 1  |   |
| 11472  | Ni l  |   |
| 11473  | Ni l  |   |
| 11474  | Ni 1  |   |
| 11475  | Nil   |   |
| 11476  | Ni l  |   |
| 11477  | 3     |   |
| 11478  | Ni l  |   |
| 11479  | Nil   |   |
| 11480  | Nil   |   |
| 11481  | 10/17 |   |
| 11482  | Ni l  |   |
| 11483  | Nil   | • |
| 11484  | Nil   |   |
| 11485  | 3     |   |
| 11486  | 10/3  |   |
| 11487  | 3     |   |
| 11488  | Nil   |   |
| 11489  | Nil   |   |
| 11490  | Nil   |   |
| 11491  | 3     |   |
| 11492  | Ni l  |   |
| 11493  | Ni l  |   |
| 11494  | Ni l  |   |
|        |       |   |

Certified by\_

G. Lebel / Manager



A Division of Assayers Corporation Ltd

#### Assaying - Consulting - Representation

Page 2 of 2

### Geochemical Analysis Certificate

0W-1183-RG1

Company:

BATTLE MOUNTAIN CANADA INC.

Date: AUG-21-90

Project:

75-JV-28

Copy 1. HOLD COPY 567-4840

Atta:

**WAYNE BENHAM** 

We hereby certify the following Geochemical Analysis of 33 ROCK samples submitted AUG-16-90 by WAYNE BENHAM.

| Au<br>ppb |
|-----------|
| 3         |
| 10        |
| 7         |
|           |

Certified by\_

G. Lebel / Manager



A Division of Assayers Corporation Ltd

### Assaying - Consulting - Representation

## Geochemical Analysis Certificate

0W-1190-RG1

Company:

**BATTLE MOUNTAIN CANADA INC** 

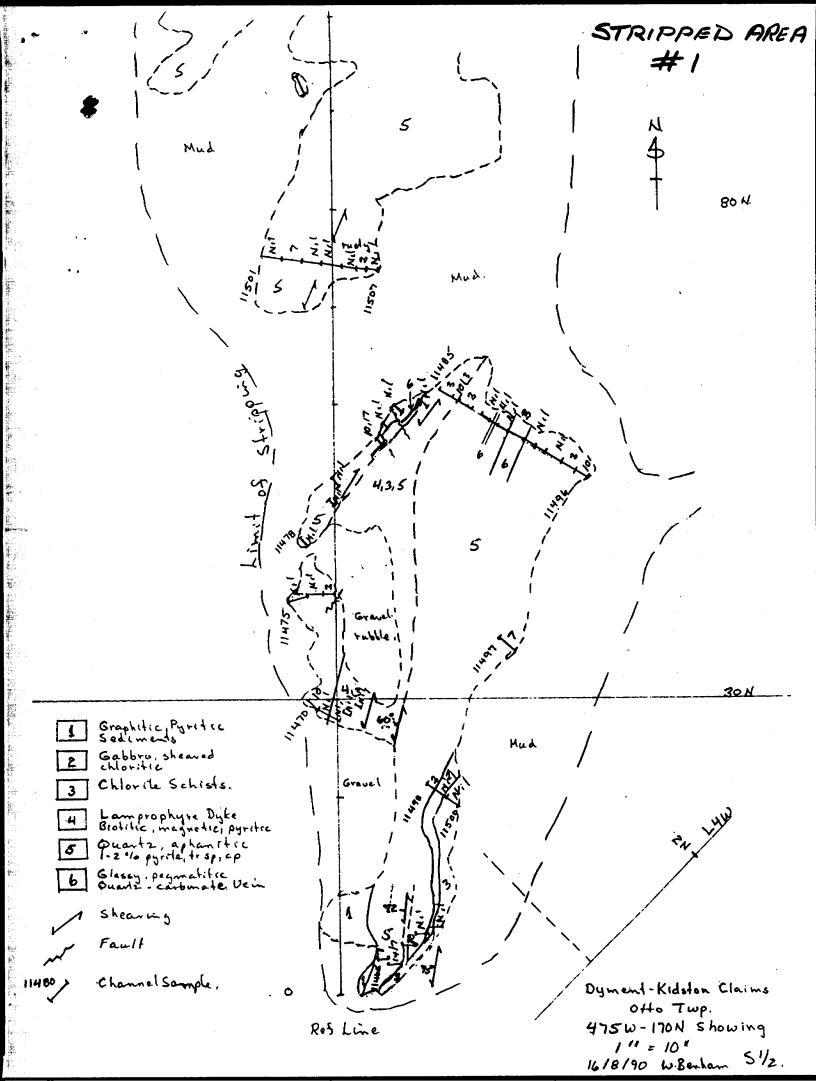
Date: AUG-22-90

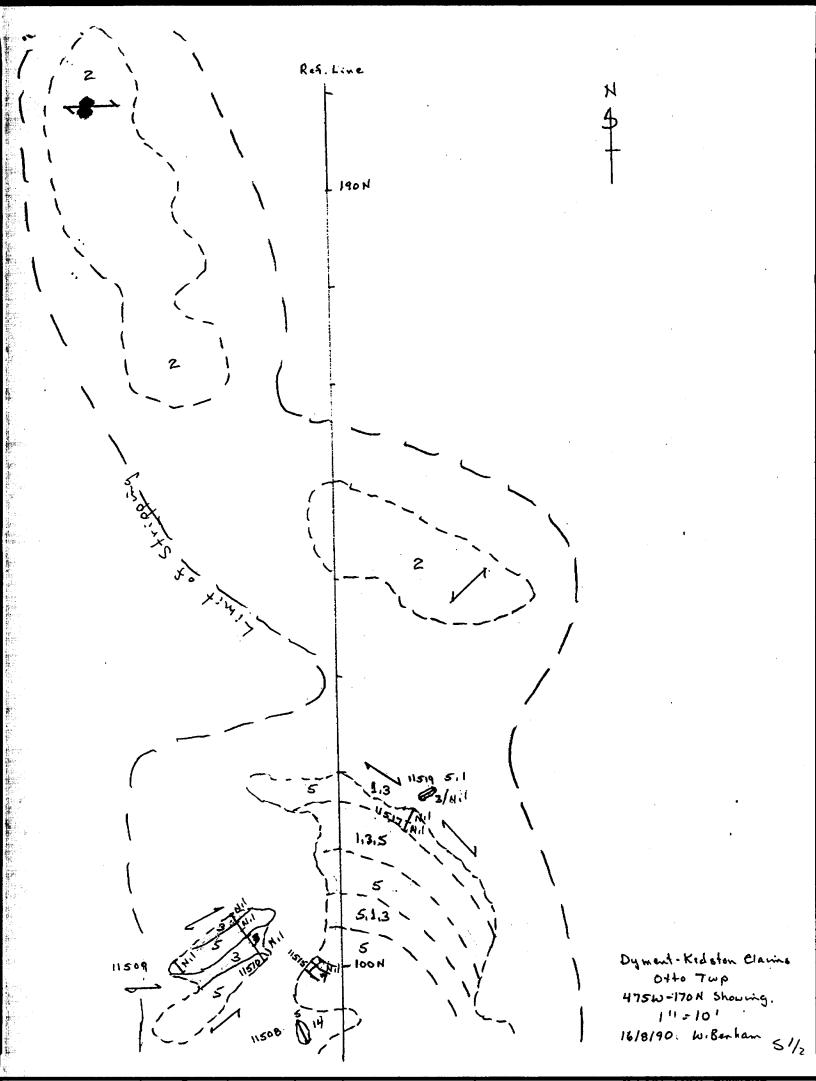
Project:

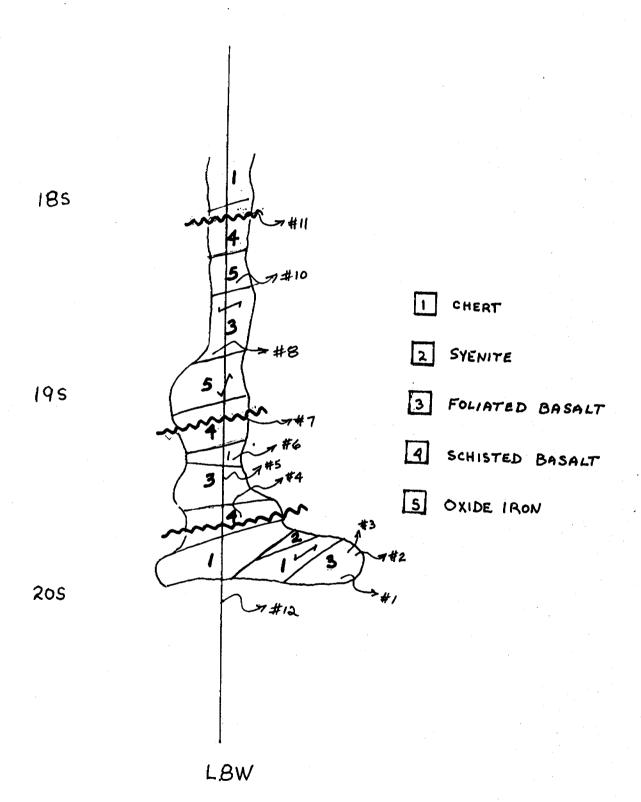
75-JV-28

Copy 1. PHONE 567-4840

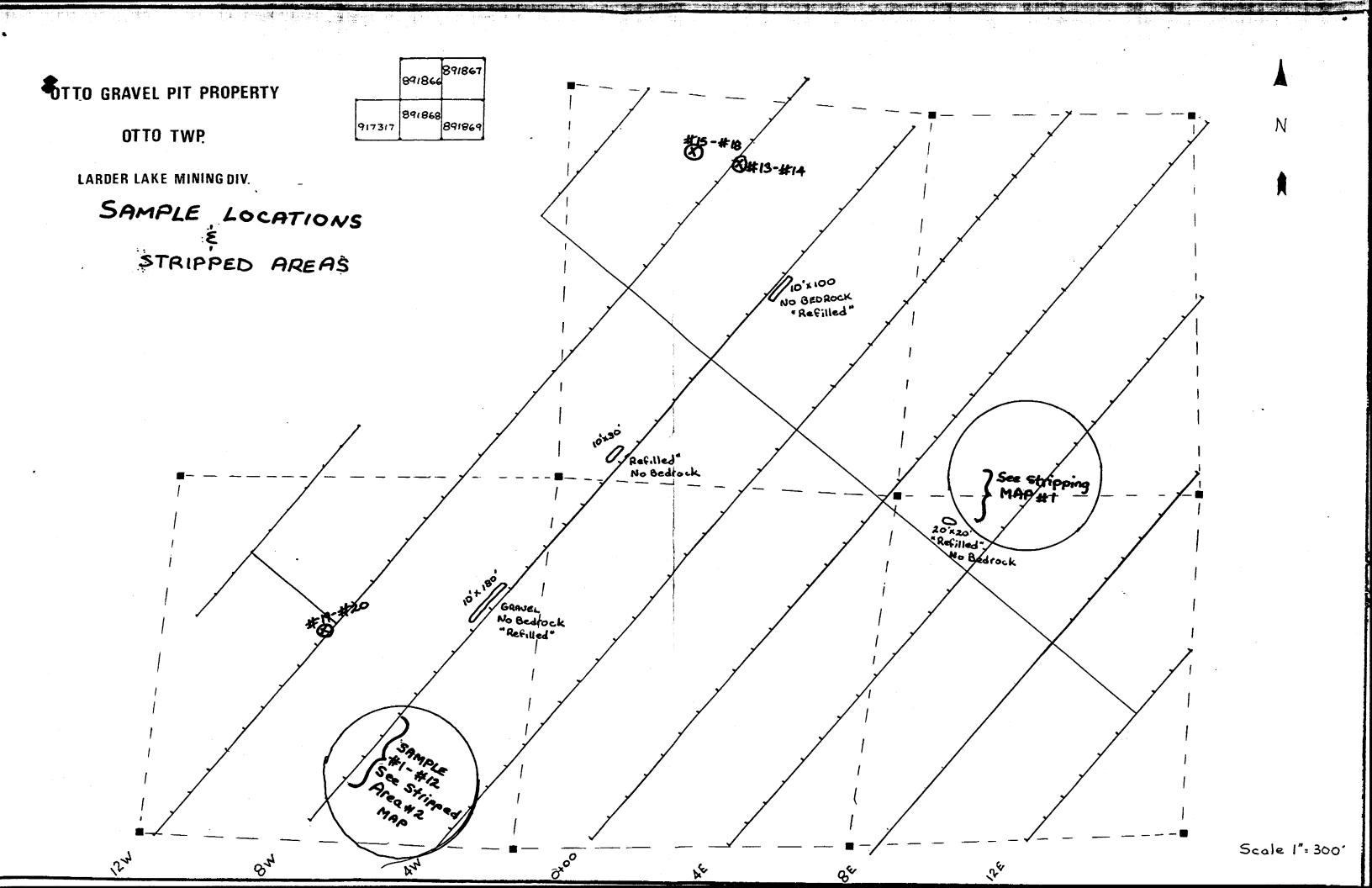
Attn:

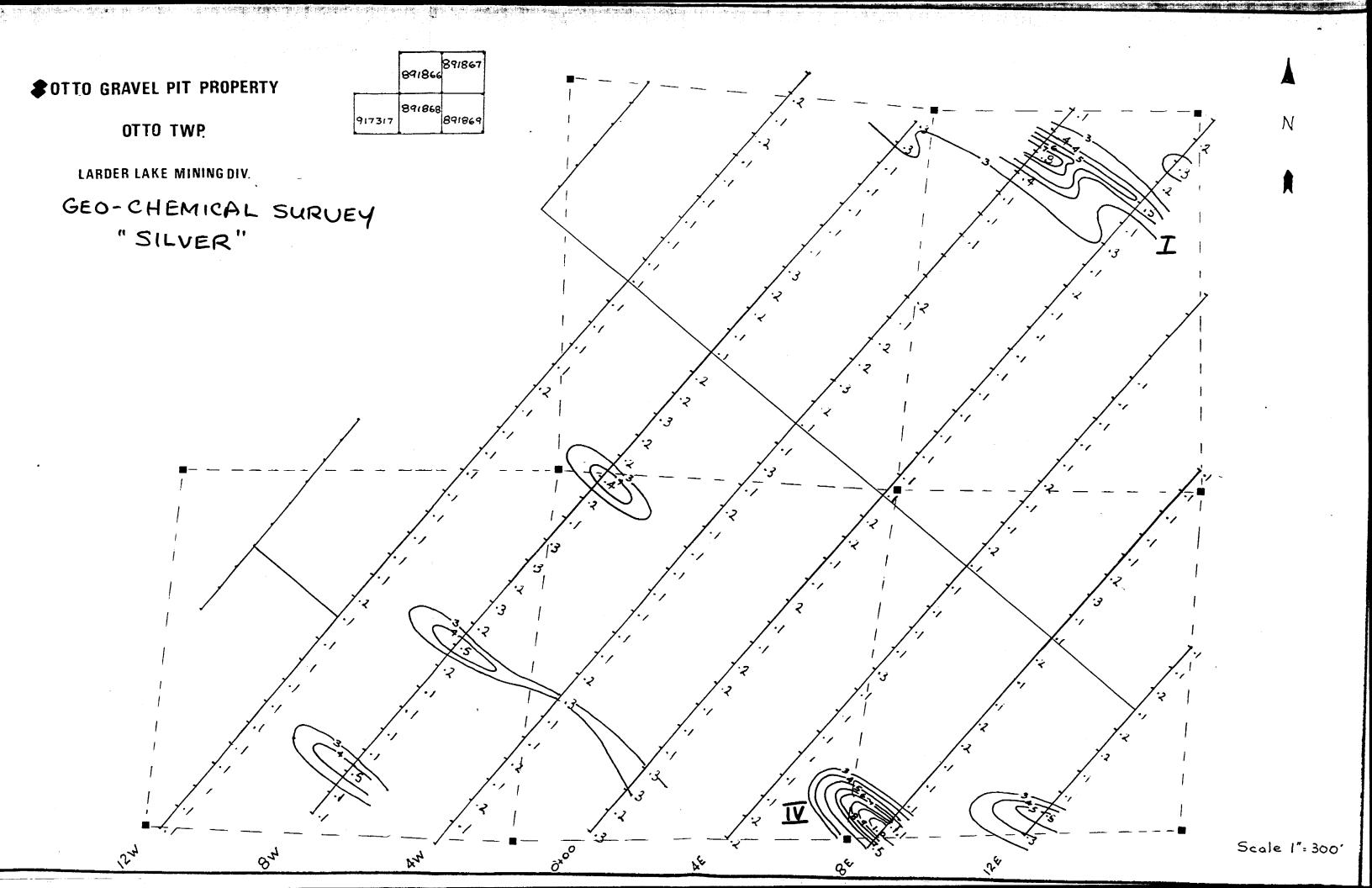

W. BENHAM

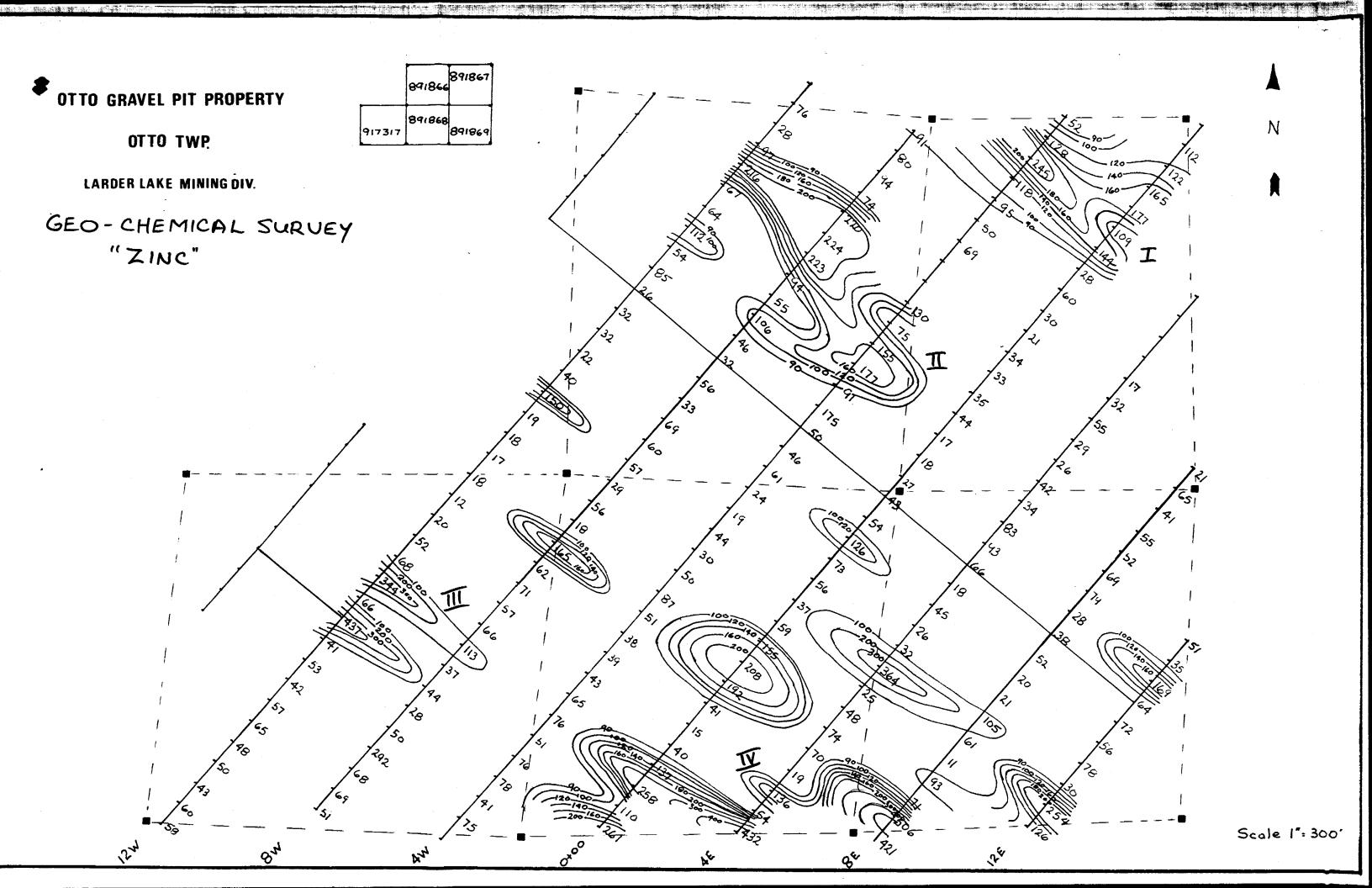

We hereby certify the following Geochemical Analysis of 26 ROCK samples submitted AUG-17-90 by R. PEEVER.

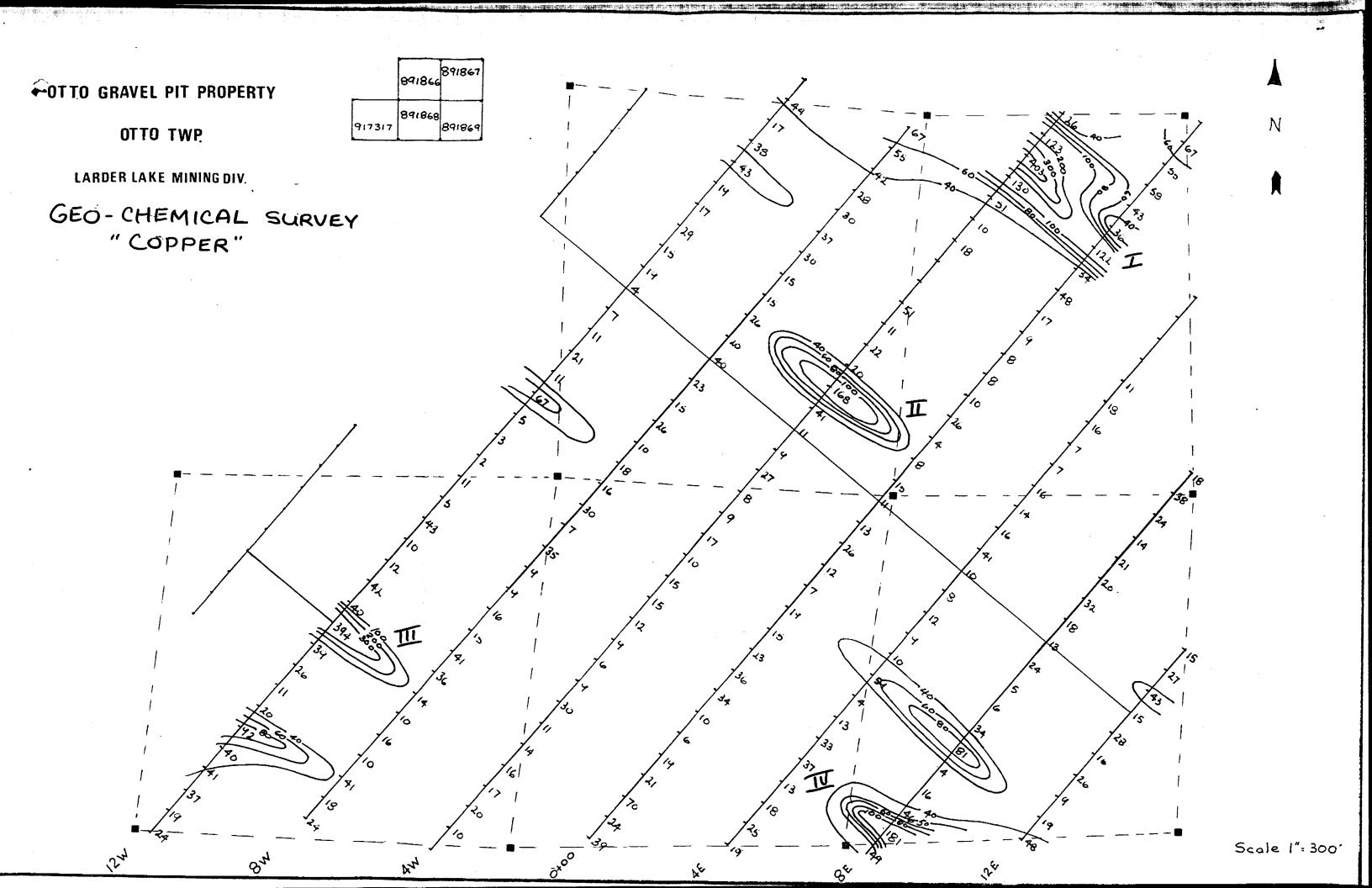

| Sample | Au        |                                 |
|--------|-----------|---------------------------------|
| Number | ppb       |                                 |
| 11498  | 3         |                                 |
| 11499  | Ni 1/Ni 1 |                                 |
| 11500  | Ni l      |                                 |
| 11501  | Ni l      |                                 |
| 11502  | 7         |                                 |
| 11503  | Ni I      |                                 |
| 11504  | Ni l      |                                 |
| 11505  | Nil       |                                 |
| 11506  | 3         |                                 |
| 11507  | Ni l      |                                 |
| 11508  | 14        |                                 |
| 11509  | Nil       |                                 |
| 11510  | Nil       |                                 |
| 11511  | 3         |                                 |
| 11512  | Ni l      |                                 |
| 11513  | Nil       |                                 |
| 11514  | Nil/Nil   |                                 |
| 11515  | 7         |                                 |
| 11516  | Nil       |                                 |
| 11517  | Nil       |                                 |
| 11518  | Nil       |                                 |
| 11519  | 3/Ni1     |                                 |
| 11520  | 14        | groundfreezin with 25 20. 740 d |
| 11521  | 7         | arenger vein it is get          |
| 11522  | Ni l      | 7 Fm 1-290 pg                   |
| 11523  | Ni I      | syende. 21% py 84,19505         |

Certified by\_


G. Lebel / Manager




DYMENT KIDSTON CLAIMS OTTO TWP L 8W 198 Showing







