## CAMECO CORPORATION

# POWELL PROJECT

"Report on the 1995 Field Exploration Program"

Powell, Bannockburn, Baden and Argyle Townships, Ontario N.T.S. 41P/15 and 42A/02

(Part 1 of X)

#### CAMECO CORPORATION

010

# REPORT ON THE 1995 FIELD EXPLORATION PROGRAM

#### POWELL PROJECT

# POWELL, BANNOCKBURN, BADEN AND ARGYLE TOWNSHIPS

ONTARIO, NTS 41P/15 and 42A/02 RECEIVED NOV 1 3 1996 **2.16490** MINING LANDS BRANCH

January, 1996

M. Koziol Project Geologist

A. Faber Geologist

P. Chubb Geologist

#### SUMMARY AND RECOMMENDATIONS

The Powell Project is located at the junction of the Powell, Bannockburn, Baden and Argyle Townships, northeastern Ontario, approximately 15 km west of the village of Matachewan and 75 km west of Kirkland Lake. The project consists of 125 claims (232 claim units). One hundred and seven of these are under option from Messrs. Leahy and Kiernicki, both from Kirkland Lake. The remaining 18 claims were staked by Cameco in December, 1994 and April, 1995.

The 1995 exploration program consisted of: (1) 90.6 km of line cutting and chaining; (2) 35.5 km of dipole-dipole IP and resistivity work and 13.8 km of magnetometer surveying; (3) geological mapping, prospecting, and lithogeochemical sampling; (4) bulk till sampling; (5) trenching and channel sampling; and (6) 1407m (7 holes) of diamond drilling. Results of these efforts are disappointing.

Interesting geology (mafic-ultramafic contacts) and favourable structures, including two segments of the Kirkland Lake Break, were identified. However, no strong hydrothermal alteration was found. Quartz and quartz-carbonate vein systems are poorly developed in the areas explored and significant sulphide mineralization is lacking. Anomalous gold (Au >100 ppb) values were rarely obtained. From a total of 531 outcrop and drill core samples analyzed, only nine returned values >100 ppb. The best assay obtained is 2851 ppb from an old trench just off the property.

Because of the interesting geology and the economic significance of the Kirkland Lake Break in other areas, additional grid establishment, mapping and prospecting is recommended along the break to the West. If results are encouraging, then IP surveying and trenching should be contemplated. No further work is recommended in the areas examined in 1995.



A02SE0034 2.16490 BADEN

### TABLE OF CONTENTS

Page

010C

| SUM | MARY AND RECOMMENDATIONS                                                                                                                                                                                                                                                                        | i                                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1.0 | INTRODUCTION<br>1.1 Property Location, Access and Infrastructure<br>1.2 Claim Ownership and Land Status<br>1.3 Previous Work<br>1.4 Topography and Vegetation<br>1.5 Purpose of Program<br>1.6 Work Completed by Cameco in 1995                                                                 | 1<br>1<br>4<br>5<br>5<br>5               |
| 2.0 | GEOLOGY<br>2.1 Regional Geology<br>2.2 Property Geology<br>2.2.1 Metasedimentary rocks<br>2.2.2 Ultramafic Sequence<br>2.2.3 Tholeiite Suite<br>2.2.4 Clastic and Calcareous Metasediments<br>2.2.5 Calc-Alkalic Suite<br>2.2.6 Silicious and Carbonate Rich Sediments<br>2.2.7 Intrusive Rocks | - 6<br>6<br>7<br>8<br>8<br>9<br>10<br>10 |
|     | 2.3 Structural Geology                                                                                                                                                                                                                                                                          | 11                                       |
| 3.0 | GEOCHEMISTRY<br>3.1 Rock (Outcrop) Geochemistry<br>3.2 Channel Sampling<br>3.3 Diamond Drill Cores<br>3.4 Whole Rock Geochemistry<br>3.5 Till Geochemistry                                                                                                                                      | 11<br>12<br>12<br>12<br>13<br>13         |
| 4.0 | GEOPHYSICS                                                                                                                                                                                                                                                                                      | 15                                       |
| 5.0 | TRENCHING                                                                                                                                                                                                                                                                                       | 15                                       |
| 6.0 | DIAMOND DRILLING<br>6.1 Diamond Drill Hole Descriptions                                                                                                                                                                                                                                         | 16<br>16                                 |
| 7.0 | CONCLUSIONS                                                                                                                                                                                                                                                                                     | 19                                       |
| 8.0 | RECOMMENDATIONS                                                                                                                                                                                                                                                                                 | 21                                       |
| 9.0 | REFERENCES                                                                                                                                                                                                                                                                                      | 21                                       |

#### LIST OF TABLES

| Table 1       | List of Claims         | on Which 1995 Exploration     | 4 |
|---------------|------------------------|-------------------------------|---|
| Report on the | 1995 Field Exploration | Program on the Powell Project |   |

•

.

|         | Was Completed                       |    |
|---------|-------------------------------------|----|
| Table 2 | Summary of Work Completed           | 5  |
| Table 3 | Summary of Diamond Drill Statistics | 16 |

#### LIST OF FIGURES

| Figure 1 Powell Project – Location Map         | 2  |
|------------------------------------------------|----|
| Figure 2 Property Location and Disposition Map | 3  |
| Figure 3 Jensen Plot for Whole Rock Data       | 14 |
| riguie 5 benden 1100 101 whole hour 200        |    |

#### LIST OF MAPS

| Мар<br>Мар<br>Мар | 2 | Geology and Diamond Drill Hole Locations<br>Rock Sample Locations<br>Geological Cross Section L26E<br>Diamond Drill Hole POW9501 | in pocket<br>in pocket<br>in pocket |
|-------------------|---|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Map               | 4 | Geological Cross Section L22E                                                                                                    | in pocket                           |
|                   |   | Diamond Drill Hole POW9502 and POW9503                                                                                           | in nocket                           |
| Map               | 5 | Geological Cross Section L25E                                                                                                    | in pocket                           |
|                   |   | Diamond Drill Hole POW9504                                                                                                       | in nortest                          |
| Map               | 6 | Geological Cross Section L4W                                                                                                     | in pocket                           |
|                   |   | Diamond Drill Hole POW9505                                                                                                       | · <b>- 1 -</b>                      |
| Map               | 7 | Geological Cross Section L4W                                                                                                     | in pocket                           |
|                   |   | Diamond Drill Hole POW9506                                                                                                       |                                     |
| Мар               | 8 | Geological Cross Section L16E<br>Diamond Drill Hole POW9507                                                                      | in pocket                           |
|                   |   |                                                                                                                                  |                                     |

#### APPENDICES

| Appendix | A | Au and ICP Assay Certificates for Outcrop Grab and<br>Channel Samples                                |
|----------|---|------------------------------------------------------------------------------------------------------|
| Appendix | В | Au and ICP Assay Certificates for Diamond Drill<br>Hole POW9501 to POW9507                           |
| Appendix | С | Whole Rock Assay Certificates                                                                        |
| Appendix | D | Diamond Drill Hole Logs                                                                              |
| Appendix | Е | Powell Project, Ontario; Geophysical Programs,<br>November, 1994, March, 1995 (previously submitted) |
| Appendix | F | Report on the 1994-1995 Bulk Till Sampling Program,<br>Powell Project (previously submitted)         |
| Appendix | G | Report on the 1995 Trenching in the Powell Project                                                   |

#### CAMECO CORPORATION

#### REPORT ON THE 1995 FIELD EXPLORATION PROGRAM

#### POWELL PROJECT

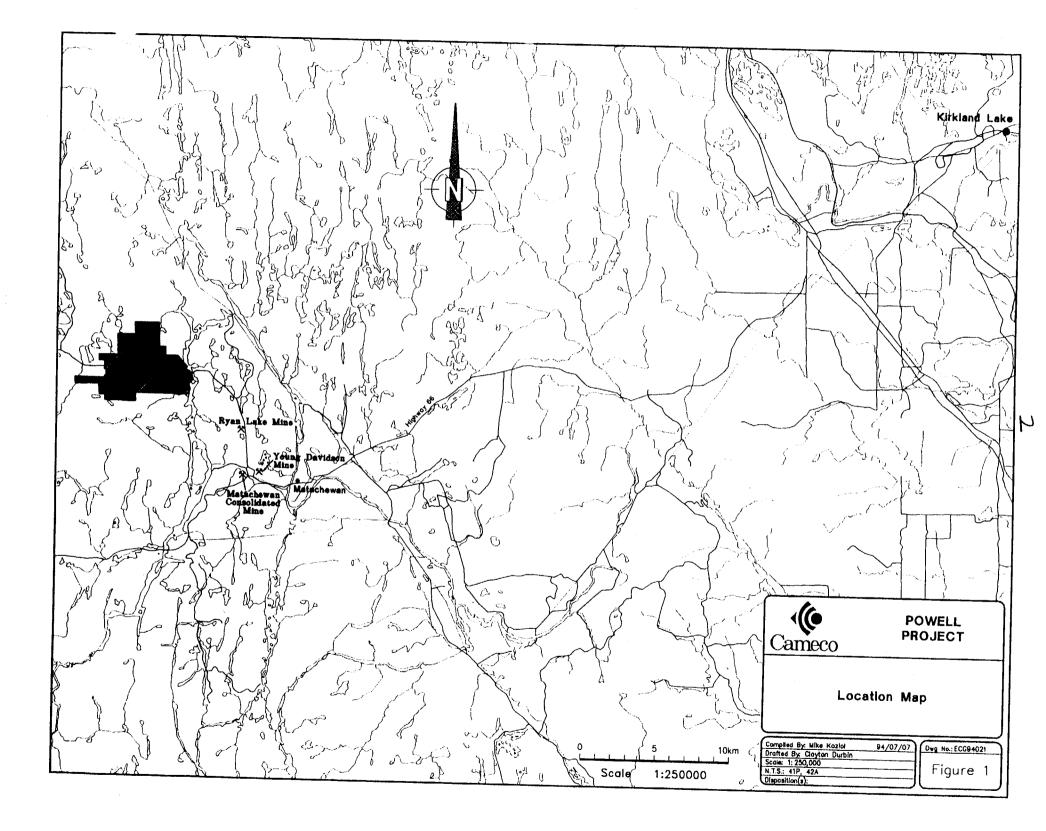
#### POWELL, BANNOCKBURN, BADEN AND ARGYLE TOWNSHIPS

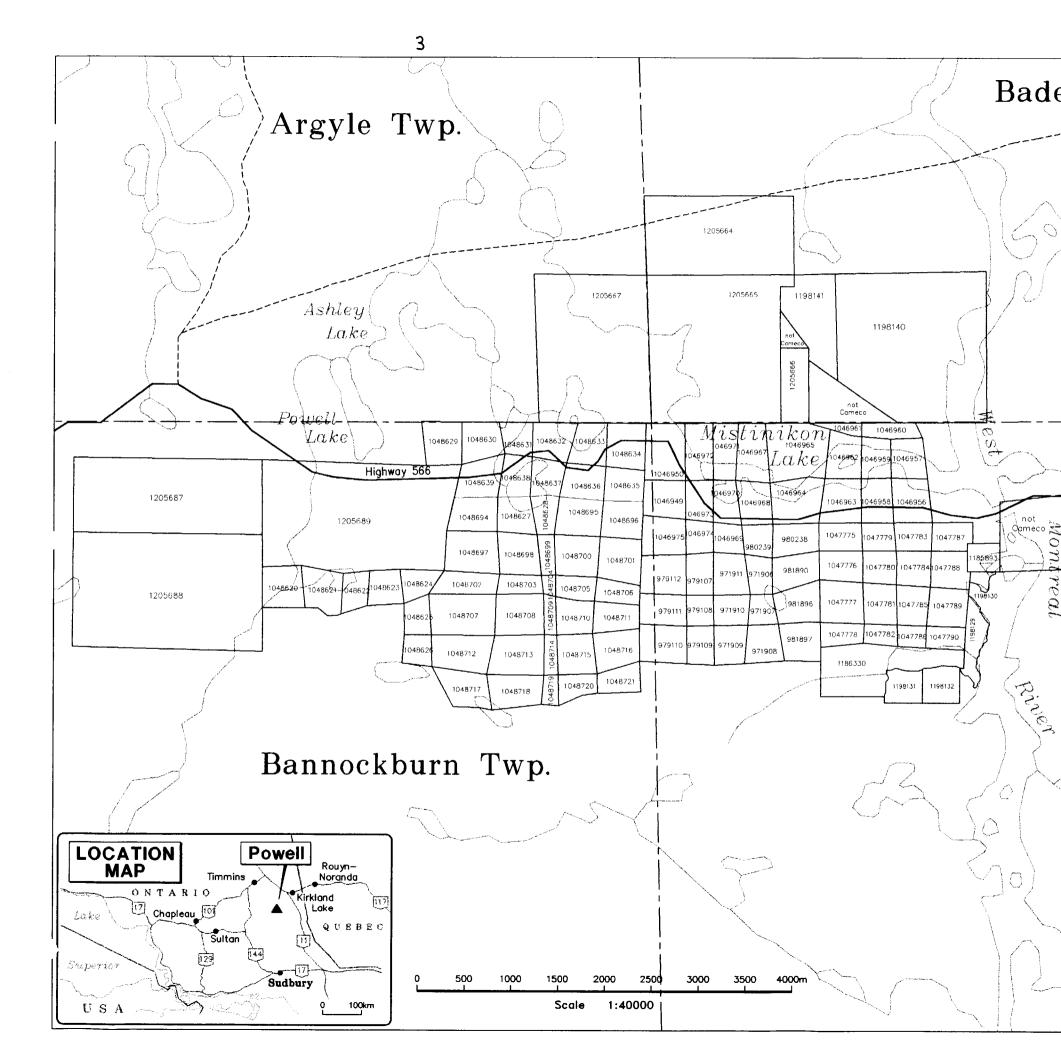
#### ONTARIO, NTS 41P/15 and 42A/02

#### 1.0 INTRODUCTION

The Powell property is a gold exploration project with a geological setting similar to that at the Kerr-Addison Mine in Larder Lake and the Lightning Zone near Matheson. The Kerr-Addison Mine produced 35.3 million tonnes at a grade of 9.1 g/t Au between 1938 and 1991 (Smith et al., 1993). The Lightning Zone hosts mineable reserves of 5.8 million tonnes at a grade of 6.7 g/t Au and is scheduled for full production in early 1996 (Wakeford et al., 1994).

This report describes the 1995 field exploration program which was carried out by Cameco Corporation between January 2 and December 23, 1995.


#### 1.1 Property Location, Access and Infrastructure


The project is located at the junction of the Powell, Bannockburn, Argyle and Baden Townships, Kirkland Lake Mining Division, Matachewan map sheet 41 P/15 and Radisson Lake map sheet NTS 42-A/2. The approximate coordinates for the centre of the property are Longitude 80° 47" west and Latitude 48° 01" north. The property is about 15 kilometres northwest of Matachewan, Ontario, and about 75 kilometres west of Kirkland Lake (see Fig. 1). Provincial highway 566 (an all weather gravel road) bisects the property. New logging roads service much of the southern portion of the project.

Electrical power can be obtained from high voltage transmission lines near the town of Matachewan. Skilled labour and mining equipment are easily obtainable from Kirkland Lake.

#### 1.2 Claim Ownership and Land Status

The Powell project consists of 125 unpatented mining claims (232 claim units). Messrs. Fred Kiernicki and Mike Leahy jointly own 107 claims that make up a portion of the Powell Project. Cameco has the option to earn 100% interest in these. The 18 remaining





claims were staked by Cameco in December, 1994 and April, 1995. The claims on which exploration work was completed are listed in Table 1.

| labie 1. | List of claims on | which Exploration wo | rk was completed. |
|----------|-------------------|----------------------|-------------------|
| 971906   | 981897            | 1046970              | 1048636           |
| 971907   | 1046949           | 1046971              | 1048695           |
| 971908   | 1046950           | 1046972              | 1048696           |
| 971909   | 1046956           | 1046973              | 1048700           |
| 971910   | 1046957           | 1046974              | 1048701           |
| 971911   | 1046958           | 1046975              | 1048705           |
| 979107   | 1046959           | 1047775              | 1048706           |
| 979108   | 1046960           | 1047776              | 1048711           |
| 979109   | 1046961           | 1047777              | 1048716           |
| 979110   | 1046962           | 1047778              | 1186330           |
| 979111   | 1046963           | 1047780              | 1205665           |
| 979112   | 1046964           | 1047783              | 1205666           |
| 980238   | 1046965           | 1047784              | 1205667           |
| 980239   | 1046967           | 1048633              |                   |
| 981890   | 1046968           | 1048634              |                   |
| 981896   | 1046969           | 1048635              |                   |
|          |                   |                      |                   |

#### Table 1. List of Claims on which Exploration Work was completed

#### 1.3 Previous Work

The area was last mapped by Lovell in 1964 for the Government of Ontario. He produced a map of the Powell, Baden, Cairo, and Alma Townships on a scale of 1:31,680. Powell (1991) published a report describing intensity, orientation and nature of structural fabrics within the Powell and Bannockburn Townships.

Previous exploration work on the property included prospecting, geological mapping, overburden stripping, and various ground geophysical surveys (VLF, magnetometer, HLEM, and IP). These programs were carried out by various companies between 1972 and 1992. In 1988, Newmont Exploration reported assay values up to 22.6 g/t in bedrock samples from the Main Showing (L6E on the current grid).

Diamond drilling was completed by Nautilus Explorations Limited in 1972 (4 holes, 322m); Carlton Explorations Limited in 1973 (5 holes, 349 metres); and Newmont Exploration of Canada Limited, in 1989 (7 holes, 1631 m). Anomalous gold values (up to 324 ppb over 7.5 metres) were obtained from Newmont's drill holes beneath the Main Showing.

Since 1990, the property has been explored with OPAP grants that

mainly focused on stripping in areas of known showings (Leahy, 1992) and little work has been done on the rest of the claims. However, in 1992 Fred Kiernicki, under OPAP grant 92-325, stripped, mapped and trenched the sheared ultramafic sequence in the southeast corner of the property (Kiernicki, 1992).

Cameco started work on the project in the fall of 1994. The work including geological mapping in the southeast corner of the property (Chubb et al., 1995) and 18.8 km IP and resistivity surveys (Matthews, 1995). Initial bulk till sampling consisted of 49 bulk samples and was carried out in the fall, 1994.

#### 1.4 Topography and Vegetation

The topography on the property consists of rolling hills, sand plains, muskeg covered wetland, and cliff-rock exposures. Vegetation includes poplar, birch, pine and spruce trees in the highlands and small cedar and alder in lowland areas. Hills are covered by a veneer of sand, gravel and till. Till is absent or deeply buried in the low lying areas. The property lies within the Hudson Bay watershed, and the Montreal River flows through the property.

#### 1.5 Purpose of Program

The purpose of this program was to evaluate the potential for economic gold mineralization on portions of the Powell property.

#### 1.6 Work Completed by Cameco in 1995

Work completed by Cameco in 1995 is summarized in Table 2. Approximately 60% of the project area was mapped in 1995.

| Number of<br>Claims<br>(unit) | Line<br>cutting | Map and<br>Prospect | Samples<br>collected<br>(unit)     |      | rospect collected (km) |                      | 38                         | Trenching             | Diamond I | amond Drilling |  |
|-------------------------------|-----------------|---------------------|------------------------------------|------|------------------------|----------------------|----------------------------|-----------------------|-----------|----------------|--|
|                               | ()cm)           | (km)                | Grab,<br>Whole<br>Rock,<br>channel | Till | MAG<br>Survey<br>(km)  | IP<br>Survey<br>(km) | (Number<br>of<br>Trenches) | Number<br>of<br>Holes | (m)       |                |  |
| 61                            | 90.58           | 90.58               | 297                                | 54   | 13.8                   | 36.5                 | 3                          | 7                     | 1407      |                |  |

Table 2. Summary of Work completed in 1995

#### 2.0 GEOLOGY

#### 2.1 Regional Geology

The Powell Project is located within the western part of the Abitibi Greenstone Belt, and is underlain by Archean aged intermediate, mafic and ultramafic volcanic rocks and metasediments. The property lies within a regional structural This structural corridor, which extends some 20 corridor. kilometres southwest towards the Shining Tree area and past Kirkland Lake to the east, is believed to be an extension of the Kirkland Lake Break (Powell, 1991). Rock units within the corridor have been subjected to variable degrees of carbonatization, sericitization, talc alteration, albitization, chloritization and This corridor is host to a number of gold silicification. occurrences as well as former and present gold producers (e.g., Kerr-Addison, Macassa).

#### Property Geology

The geology of the Powell property can be divided into seven main groups or units (see Map 1) and includes, from south to north, a basal sequence of meta-sediments at the southern boundary, overlain by a mafic/ultramafic volcanic sequence with interlayers of argillite to the north. The ultramafics are overlain by pillowed and massive tholeiitic basalt and andesite and associated fragmental rocks. The flows and fragmentals are capped by a sequence of clastic and calcareous sediments. These sediments are overlain by a thick section of intermediate fragmentals, flows and breccias belonging to the calc-alkalic suite. The calc-alkalic suite covers more than 60% of the area mapped.

To the west of line 15E, the metasediments and the rocks forming the ultramafic sequence are intruded by a syenite stock. The north contact of the syenite is rimmed by silicious and carbonate rich sediments.

#### 2.2.1 Metasedimentary Rocks

This lowermost unit (map unit 6), located at the very south edge of the property in the east corner of the grid is well exposed in trenches on lines 26E and 27E. The unit is made up of fine grained greywacke interfingered with medium grey and buff coloured siltstone and argillite. The clastic sediments occur in beds several centimetres thick and form sections that are several metres thick.

The argillite is a massive, very fine grained, very hard rock (possibly chert or ultramylonite ?), which forms layers that are usually less than 0.5 metres thick. The argillite displays sharp contacts and is heavily gossaned on the weathered surface. Pyrite forms 1% to 2% of this rock and occurs as crystals up to 0.5 cm in size. The massive nature of each argillite layer suggests a single period of chemical sediment deposition between periods of volcanism.

#### 2.2.2 Ultramafic Sequence

Rocks grouped into the ultramafic sequence include narrow komatiite and tholeiite flows, peridotite, and a variety of interflow sediments (map units 1, 4, and 6). These occur in the southeast corner of the grid and extend from L14E to L32E, between 10S and 12S. The sequence is approximately 200m thick. Trenching by Kiernicki (1992) and Cameco (Appendix G) exposed the ultramafic sequence across its entire width on both lines 26E and 27E.

The komatiite flows are narrow, rarely exceeding 1.0m, and display either polysutured textures or spinifex textures with individual blades up to 5cm in length or . The flows display variable talc, chlorite, sericite and iron-carbonate alteration.

The ultramafic flows are interfingered with tholeiite flows up to several metres thick. The tholeiite flows are green, massive and fine grained. There are a few narrow sections within the flows which exhibit variolitic textures. Locally, they are chlorite and carbonate altered.

Peridotite (dykes? or flows?) are dark metallic grey in colour and magnetic. They are strongly talcose and carbonate-epidote veined. The peridotite occurs parallel to the foliation as units one to three metres thick.

The interflow sediments include sections of conglomerate, fine greywacke and siltstone interbedded with chert, chert autobreccia and graphitic argillite. The conglomerate beds are composed of ultramafic pebbles and cobbles (occasionally quartz pebbles) in a mafic matrix which is chloritized, talcose and quartz-carbonated altered. Argillite and graphitic argillite beds are associated with some of the chert and autobreccia units but they rarely exceed 20cm. One exception noticed is in the trench on line 26E, where the argillite unit is 1.5m thick.

Locally, white and grey quartz and grey carbonate veining is abundant in the sedimentary sections, averaging 5% but forming up to 70% over narrow widths. Minor amounts of fuchsite are associated with the altered sediments, occurring mainly along the

boundaries of grey quartz and quartz-carbonate veins. Only minor amounts of pyrite are associated with the veins and sediments.

A major east-west shear structure (Kirkland Lake Break) passes through the ultramafic sequence.

#### 2.2.3 Tholeiite Suite

The rock grouped into the tholeiitic suite are predominantly pillowed and massive basalt flows (map unit 1) and narrow units of interflow sediments. The section is more than a kilometre thick at the east end of the grid and only 500m thick at the west.

The pillowed flows are up to 50m thick, pale green-grey to light green, and locally rusty due to weathering of carbonate. Individual pillows are well developed and deformation is weak to moderate: stronger near mapped shears. The size of the pillows within individual flows appears to increase towards the north. The distribution and shapes of vesicules and amygdules indicate stratigraphic tops of pillows are to the north. Amygdules are usually infilled with feldspar/clay material except in areas proximal to the carbonate shear zone where they are filled with calcite. Alteration of the flows is limited to chlorite and carbonate (calcite and iron carbonate).

The massive basalt is characterized by its lack of obvious structure. The individual flows are tens of metres thick, fine to medium grained, and greyish apple green in colour. Locally, hairline fractures are coated with specular hematite. Sulphide mineralization is limited to trace amounts of disseminated pyrite, which is heterogeneously distributed throughout the flows.

Individual flows are separated by fine grained calcareous and clastic sediments and argillite. The argillite is usually graphitic and contains up to 15% nodular and coarse crystalline pyrite. Weathering produces strong gossan zones due to carbonate and sulphides content. The interflow units vary in width from only a few metres to several tens of metres. Shearing is present in some of these sediments. The frequency of occurrence and thickness of individual sedimentary units increases to the north, moving towards the stratigraphic top of this suite of rocks.

#### 2.2.4 Clastic and Calcareous Meta Sediments

This unit consists of a variety of sedimentary rocks (map unit 6), including quartz greywacke, lithic and volcanic greywacke, quartz arenite, fine sandstone, and siltstone. Narrow beds of grit and conglomerate occur interbedded with the other sediments. These

rocks are bedded and occur in sections which become finer towards the north. Narrow argillite beds occurs near the top of each of these sections.

The argillite beds are generally <1m thick and contain variable amounts of graphite, from 2% to 5%, and locally up to 10%. The finer grained rocks are variably sheared and strong sericite, chlorite, biotite and carbonate alteration is associated with the shearing. However, sulphide mineralization is present in only minor amounts.

The greywacke beds are light grey colour and fine to medium grained. Individual beds range in thickness from a few centimetres to several metres. The quartz arenite, siltstone and sandstone vary in colour from yellowish cream colour to a light grey and also occur in beds which are several centimetres thick, but form units up to tens of metres in thickness. Graded bedding was observed in several outcrops indicating stratigraphic tops are to the north.

Some of the siltstone beds are white in colour probably because they are derived from a sericite altered source. Occasionally the coarser greywacke beds contain fine, fuchsite altered fragments possibly derived from the ultramafic rocks.

The grit beds are made up of well sorted, coarse, angular sand grains. These occur near the base of the finer grained units. Conglomerate is made up of mainly sedimentary clasts (siltstone, greywacke and argillite), quartz pebbles and a few intermediate volcanics. Conglomerate beds are not extensive on the property.

#### 2.2.5 Calc-Alkalic Suite

The Calc alkalic suite consists of fragmental textured rocks higher up in the section and massive and pillowed lavas towards the base (map unit 2). The fragmentals are feldspar pheric and feldspar grains make up from 10% to 30%. The size of the fragments varies from a medium grained tuff to breccia sized blocks set in a crystal tuff matrix. Several outcrops contain minor mounts of fine fuchsite clots in the tuff beds and in the matrix to the coarse fragmentals.

The massive flows are andesitic in composition and feldspar pheric. Feldspar crystals make up to 10% of the volume. Pillowed flows are also andesitic and feldspar pheric (with 10% feldspar). Pillows are round, approximately 1m (or greater) in diameter and contain 5% to 15% vesicules and quartz-filled amygdules.

Kresz (1993) reported carbonate alteration in the Argyle and Baden Townships. During this program, calcite veining was found in

A old trench, located off the northwest corner of the grid exposed a one to two metre wide syenite dyke. The dyke is cut by 1mm to 2mm wide quartz veinlets and these veinlets are mineralized with minor amounts of fine grained, crystalline pyrite.

#### 2.2.6 Silicious and Carbonate Rich Sediments

The rocks within this unit are light grey with a pink tinge and locally orange in colour (map units 1, 5 and 6). They are bedded and some are finely banded and very silicious (possibly chert). Section are strongly carbonatized, however these contain only minor sulphide mineralization. The sediments closer to the syenite have a glassy, baked appearance and may be a hornfels. Pyrite is scattered throughout the finely banded rocks and some of the hornfels, forming 1% to 5% in certain beds.

The carbonate and hornfels rocks are anomalous in gold and are host to the "Main Showing" (located near line 6E). Minor amounts of pyrite occur at this showing, and when associated with carbonate and sericite alteration, the gold content is elevated (usually >100 ppb). The best assay obtained to date is 22.6 g/t Au from a grab sample.

The zone of strong carbonate alteration has been trenched for over 1km along strike and also diamond drilled. Results from the trenching and drilling indicate the gold occurs in low concentrations and is erratically distributed.

#### 2.2.7 Intrusive Rocks

A pink to reddish coloured syenite (map unit 10g) stock occurs near the south-cental portion of the grid. Only the northern part of the syenite falls in the grid and in this area it is coarse to medium grained. Locally, its composition varies from a hornblende to biotite rich variety, and several outcrops are dioritic (unit 8a). Further away from the stock the syenite is present as narrow dykes within the volcanic and sedimentary rocks.

To the west of line 3W, the syenite occurs within a structurally complex area and it has a red colour, similar to the syenite at the Young Davidson Gold Mine near Matachewan. Most of the rock is hairline fractured and chlorite occurs along the fractures. The syenite also contains 1% to 2% specular hematite and magnetite associated with some fractures.

Several narrow gabbro (8b) dykes intrude the tholeiitic suite. Usually these are medium to fine grained and up to several metres thick. Some are strongly magnetic due to the presence of 1% to 3% magnetite crystals (up to 2mm in size).

A black pyroxenite (?) occurs in the northwest corner of the grid. It is massive and strongly magnetitic (possibly a skarn ?). A few fine grained, dark grey coloured diabase dykes (unit 13) intrude the tholeiitic rocks. These dykes rarely exceed two metres in width. These may be a finer equivalent of the gabbro described above.

#### 2.3 Structural Geology

The major lithologic units trend east-west; however foliation directions within the individual units vary greatly, suggesting that folding has taken place. The dominant structural features on the property are two major fault zones which trend approximately east-west (see Map 1). One of these faults passes near the contact of the ultramafic sequence and the metasediments, in the southeast corner of the grid. The other is located between 100N and 200N, within the norther metasedimentary unit and near the contact between the top of the tholeiite and base of the calc-alkalic These fault zones are characterized by shearing and suites. contain distinctive schistose sedimentary and ultramafic and mafic detritus. Alteration within these zones is pronounced and includes carbonate, sericite, chlorite, talc, and minor amounts of fuchsite. These shear zones are believed to be related to the Kirkland Lake Break (Jensen, L., 1995).

Other high strain zones have been mapped (see Map 1) within the tholeiite suite. One of these strikes in an east-northeast direction and at its western extremity, merges with the southern fault described above. This is the area of the "Main" gold showing.

Several narrow shear zones occur within the sediments in the tholeiite suite. These are often carbonate bearing and characterized by heavy gossan on the weathered surfaces and variable chlorite, quartz and iron carbonate content. Sulphides however, are limited to trace amounts, with local enrichment in disseminated pyrite (up to 2% volume).

#### 3.0 GEOCHEMISTRY

Geochemical programs, including outcrop (grab and channel), drill core, whole rock, and till sampling were completed simultaneously with the 1995 mapping and drilling programs. A total of 266 rock

samples (drill core and outcrop) were analyzed for gold and trace elements using ICP multi-element scan methods. Thirty one samples were analyzed for major oxide whole rock analysis and 54 bulk tills were collected.

The dominant sulphide mineralization consists of minor amounts of finely disseminated pyrite within the mafic and ultramafic rocks. Coarse pyrite (<2% volume), with individual crystals up to 0.5cm occurs within the argillite units. Pyrite also occurs as blebby to scaly plating on fracture surfaces and finely disseminated within some of the calcareous interflow sedimentary units. Overall, however, sulphide mineralization is scarce.

#### 3.1 Rock (Outcrop) Geochemistry

During the course of geological mapping and prospecting, 249 grab samples of sulphide mineralized or sheared rocks were collected (see Map 2). Of these, six returned gold values >100 ppb and two were greater than 1000 ppb (see Appendix A). Sample POW95X-220 (1186 ppb) is a selected sample of quartz carbonate veins from west of the grid, on the Galer Showing. The Galer Showing was found at the end of the 1920's or beginning of 1930's and prospected by Johns-Manville Canada Inc. between 1981 to 1984. The showing consists of several quartz carbonate veins, 1.0 to 2.0m wide, that contain traces of pyrite. The veins are within fractures in basalt flows.

Sample POW95X-1083 (2851 ppb) was collected from an old trench off the northwest corner of the grid, in claim 1205667. The trench is a syenite dyke, approximately 2m wide, which is cut by several pyrite bearing, 1mm to 2mm quartz veinlets.

The ICP multi-element scan results do not show any significant trace metal anomalies such as copper, zinc, nickel, cobalt, or silver in the high gold-bearing samples.

#### 3.2 Channel Sampling

Continuous channel sampling using a STIHL model TS350 diamond blade saw was completed over sections of Trench 3 (see Map 1 and Appendix G). Seventeen samples were cut and analyzed for gold at Swastika Laboratories in Kirkland Lake and for 30 other elements using ICAP Plasma Scan at TSL/Assayers Laboratories in Mississauga, Ontario. The results for gold and trace elements are disappointing. The best gold assay obtained is 12 ppb/1.0m.

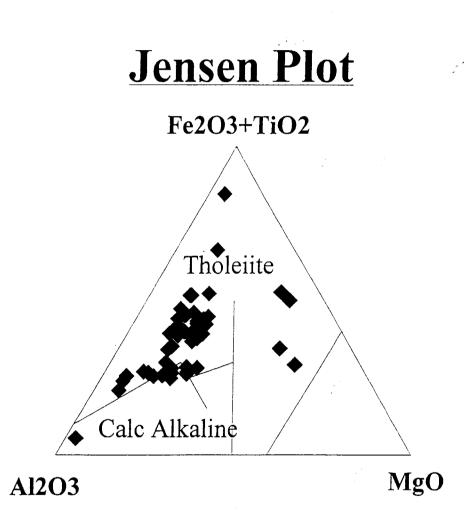
#### 3.3 Diamond Drill Cores

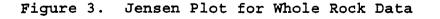
A total of 265 drill core samples was collected from the seven diamond drill holes. All samples were analyzed for gold by Fire Assay/AA and 229 samples were also analyzed for 34 other elements using ICP multi-element scan at Bondar Clegg Inchcape Testing Services Laboratory (Chimitec Ltee) in Val d'Or, Quebec. Elevated gold (>100 ppb) is present in only three samples. Two samples in hole POW9503 assay 1242 ppb and 456 ppb and one sample from hole POW9507 returned 174 ppb Au.

Arsenic values are elevated in conglomerate and graphitic argillite between 77.0m and 90.5m in hole POW9501. Spot highs attain values up to 2885 ppm arsenic. No obvious anomalies in other metals such as silver, copper, zinc, lead, nickel or cobalt were obtained. The analytical results obtained for each of the holes are included as Appendix B and further discussed in Section 6.1.

#### 3.5 Whole Rock Geochemistry

A total of 31 samples from the tholeiite suite were analyzed for total oxides by TSL/Assayers Laboratories for I.C.A.P. Total Oxide Analysis, using Lithium Meta-Borate Fusion (see Appendix C). A plot of the results on a Jensen Plot places most of these in the iron tholeiite field (see Figure 3). The analytical data is included as Appendix C.


#### 3.6 Till Geochemistry


Thin discontinuous till deposits cover portions of the outcrop ridges. A bulk till sampling program, consisting of 54 samples, was carried out in June and July, 1995. The purpose of till sampling and analyses was to gain some insight into the gold bearing potential of linear IP anomalies and to follow up interesting results obtained in 1994 (see Appendix F).

Several anomalous samples (>49 grains of gold) were collected and they form a series of spot highs within a disrupted, southsoutheast trending train. The source of the till train is believed to be off property.

Several of the gold anomalous till samples were studied in detail, including pebble counts and SEM analyses of gold grains. It was concluded that most of the gold is from a distal source except for one sample (POW9401). The gold in POW9401 is believed to be from a source at or near an ultramafic-clastic sediment contact, approximately 100m to 200m up ice from the sample.

Koziol et al., (1995) present a more detailed discussion of the till sampling program and results obrained.





#### 4.0 GEOPHYSICS

A geophysical program including 36.5 km of dipole-dipole array IPresistivity and 13.8 km of ground magnetometer surveying was completed in March, 1995, by SAGAX Geophysics of Val d'Or, Quebec. The current work was merged and compiled with work completed by Cameco in 1994 and by Newmont exploration in 1988 to produce a detailed interpretation report (Matthews, 1995).

A complex pattern of IP trends is shown on the compilation map (Map E-3). Both direct and flanking associations with linear magnetic trends are observed, as well as strong structural control on the IP trends. The IP results are dominated by the strong response along the southern edge of the property. Of more interest are the weaker trends flanking this region to the north and east, particularly where they are associated with cross-cutting structural breaks.

The stronger IP anomalies are related to bedrock sources and are recommended for further prospecting and subsequent diamond drilling. A detailed interpretation of the geophysics is presented by Matthews, (1995).

#### 5.0 TRENCHING

Three areas were trenched in the spring of 1995 (see Map 1 and Appendix G). The first trench was excavated to locate a possible source of gold (152 grains) in a till sample collected in 1994 (see Section 3.5 and Appendix F). The trenching uncovered sections of moderately sheared mafic flows and intermediate volcanic rocks. The best gold value for selective grab sampling was 5 ppb. The possible source of the gold was not found in the trench.

The second trench was excavated on line 27E to expose the Kirkland Lake Break. The trench uncovered a talc-chlorite schist, (segment of the Kirkland Lake Break) as well as the contact with the metasediments to the south. Detailed mapping was completed and selective samples were collected and sent for assay. The best assay is 10 ppb Au and is associated with ultramafic/mafic sediments close to the contact with the siltstone to the south of the trench (see Appendix G).

The third trench is on line 20E. A 10m wide carbonate zone occurring between pillowed flows was exposed. Mapping and sampling (grab and channel) programs were completed and the best gold values obtained include 17 ppb Au in a grab sample and 12 ppb Au/1m in a channel sample (see Appendix G).

#### 6.0 DIAMOND DRILLING

A diamond drilling program consisting of 1407m in seven holes was carried out between November 2 and December 5, 1995. The program was completed by Heath and Sherwood Drilling of Kirkland Lake, Ontario. The 1995 diamond drill hole specifications and targets are shown in Table 3.

| POW9501 | L26E, 8+05S, -50°,<br>180°<br>end 321.3m    | Test IP anomalies near contact of mafic and<br>ultramafic flows and between ultramafic flows and<br>ultramafic derived sediments.                                |
|---------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POW9502 | L22E, 8+25S, -50°,<br>180°<br>end at 160.3m | Test IP anomalies near mafic-ultramafic contact.                                                                                                                 |
| POW9503 | L22E, 9+50S, -50°,<br>180°<br>end at 193.3m | Test ultramafic-sediment contact.                                                                                                                                |
| POW9504 | L25E, 1+50S, -50°,<br>180°<br>end at 139.0m | Test IP anomaly associated with an east-northeast<br>trending deformation zone.                                                                                  |
| POW9505 | L4W, 0+50N, -50°<br>180°<br>end at 267.0m   | Test three IP anomalies near contact of tholeiitic<br>basalt and calcareous sediments.                                                                           |
| POW9506 | L4W, 7+50S, -50°,<br>180°<br>end at 148.1m  | Test strong IP anomaly within syenite; area is<br>structurally complex; syenite is red, similar to<br>the syenite at the Young Davidson Mine.                    |
| POW9507 | L16E, 2+75N, -50°,<br>180°<br>end at 178.6m | Test IP anomaly within sediments at the contact<br>between the Larder Lake and Blake River Groups.<br>Also test the north segment of the Kirkland Lake<br>Break. |

TABLE 3. 1995 Diamond Drill Hole Specifications and Targets

#### 6.1 Diamond Drill Hole Descriptions

Hole POW9501 was drilled to test IP anomalies near the contact of mafic and ultramafic flows and IP responses associated with sediments between individual ultramafic flows. The hole was continued to undercut a zone of strong quartz-carbonate-fuchsite alteration observed in the surface trench and to cross a southern splay of the Kirkland Lake Break. The southern contact between the ultramafic sequence rocks and the clastic sediments to the south

was also tested.

The upper 3.3m of the hole is in overburden. Pillowed and brecciated basalt was intersected from 3.3m to 62.1m. The basalt flows are underlain by sediments, including a highly foliated conglomerate and graphitic argillite. This sedimentary sequence is host to a brittle/ductile fault zone between 77.0m and 90.5m. Pyrite occurs in coarse crystals and as nodules within the argillite sections. These sediments are in fault contact with the rocks grouped into the ultramafic sequence.

Two sequences made up of ultramafic flows (komatiites), massive tholeiite flows and ultramafic-derived sediments occur between 90.5m to 155.9m and 206.0m to 269.9m. The Komatiites display variable talc, chlorite, sericite and iron-carbonate alteration.

The interflow sediments include sections of conglomerate made up of ultramafic pebbles and cobbles set in a mafic (ultramafic) matrix. The matrix is chloritized, talcose and quartz-carbonated altered. Minor amounts of fuchsite are associated with the altered sediments and occurs mainly along the boundaries of grey quartz and quartzcarbonate veins. Only minor amounts of pyrite are associated with the veins and sediments.

A package made up of fine greywacke, siltstone, chert, chert autobreccia and graphitic argillite separates the two ultramafic sequences. This package occurs from 155.9m and 206.0m and is expressed on surface only as a 0.3m graphitic argillite band. A polymictic conglomerate, approximately 10m thick, occurs at the base of this section. The conglomerate is pebble supported and the pebbles appear to coarsen towards the bottom, including one boulder that is approximately 15cm across.

The lower ultramafic sequence is similar to the ultramafic sequence above, however the sediment content makes up to 70% of the volume of this interval and the intensity of quartz and grey carbonate veining is greater. The quartz and grey carbonate veins make up 10% of the rock volume in this section. The strong quartzcarbonate-fuchsite altered rocks seen in the trench on surface are less altered in the hole. Only trace amounts of sulphides are present within these rocks.

The section from 269.9m to 310.1 is made up mainly of sediments, including graphitic argillite and sediments derived from an ultramafic source. A segment of the Kirkland Fault occurs within these sediments and is represented by a talc-chlorite schist from 272.4m to 295.9. However, no significant hydrothermal alteration, quartz veining or sulphide mineralization is associated with this section of the fault.

The above sediments are underlain (from 310.1m to 321.3m) by fine grained bedded greywacke and siltstone. These rocks contain minor amounts of fine, disseminated pyrite. There is no significant alteration or quartz and quartz-carbonate veining associated with these rocks. The hole ends at 321.3m.

Eighty nine samples were analyzed for gold by fire assay and for trace metals using ICP methods. The best gold assay returned 53 ppb/0.5m. The ICP detected several samples which contain greater than 100 ppm arsenic, including one sample which reported 2885 ppm arsenic. No significant anomalies are seen in the other elements.

Holes POW9502 and POW9503 were drilled to test the same stratigraphy and similar geophysical targets as hole POW9501. Both holes intersected similar lithologies, alteration and mineralization as the first hole, with some differences near the bottom of POW9503. A clastic sequence made up of fine greywacke with narrow sections of small pebble conglomerate occurs below the ultramafic rocks, from 137.1m to 174.4m, in POW9503. Within this clastic sequence, two intervals (from 164.0m to 165.5m, and 171.2m to 172.2m) each contain 1% pyrite. These also contain elevated gold, 1242 ppb/1.5m and for the interval from 164.0m to 165.5m. The lower interval (from 171.2m to 172.2m) contains 456 ppb Au/1.0m. A best gold assay of 73 ppb was obtained from the other 85 samples collected from POW9502 and POW9503. Samples POW9503-14 and 15 are elevated in silver, 5.3 ppm and 17.4 ppm respectively. These are from altered ultramafic flows.

POW9502 ends in the ultramafic sequence at 160.3m and POW9503 ends at 193.9m in syenite.

Hole POW9504 was drilled to test an IP anomaly believed to be along an east-northeast trending deformation zone (see Map 1). The drill hole intersected basalt flows displaying pillowed and amygduloidal textures. Locally the basalt are fractured, brecciated and display a high degree of strain. Alteration is weak and sulphide mineralization is limited to minor amounts of disseminated pyrite randomly distributed throughout the basalt. The IP anomaly was intersected from 53.6m to 65.7m and is related to graphite and nodular pyrite in an interflow sedimentary sequence made up of argillite, fine greywacke and conglomerate. No strong hydrothermal alteration and quartz and quartz-carbonate veining occur in this section. The hole ends in basalt flows at 139.0m.

Twenty five samples from this hole were analyzed for gold only. The best assay returned 26 ppb Au.

Hole POW9505 was drilled to test three IP anomalies interpreted to lie near the contact of tholeiitic flows and calcareous sediments. In the upper 140.4m, the drill hole intersected mainly sedimentary

rocks made up of sandstone, greywacke, calcareous and silicious siltstone and argillite (locally graphitic). The first two IP anomalies were intersected from 44.7m to 52.0m and from 132.5m to 136.9m. Both are due to graphite and nodular pyrite in the argillite beds. Massive and pillowed basalt flows occur between 140.3m and 267.0m. The third IP anomaly occurs between 178.0m and 197.5m and is due to fine disseminated magnetite crystals. Crystalline magnetite forms 3% to 5% of the volume of this interval. The hole ends in basalt at 267.0m.

Eleven samples were analyzed from this hole for gold only. The best assay returned 9 ppb Au.

Hole POW9506 was drilled to test a strong IP anomaly within syenite. This area is structurally complex and some of the syenite in nearby outcrops displays a red colour, similar to the syenite at the Young Davidson Gold Mine near Matachewan. The hole intersected a fractured, reddish-orange, chloritized syenite reminiscent of syenites within zones of brittle deformation. Several sections throughout the hole contain 1% to 2% specular hematite and magnetite. However, no one area can be isolated as the probable cause of the IP anomaly. It is possible that the IP is responding to the combined effect of these narrower zones. The hole ends in syenite at 148.1m.

Twenty two samples were analyzed for gold and trace metals. The best assay returned 11 ppb Au and no significant other metals.

Hole POW9507 was drilled to test an IP anomaly within sedimentary rocks, near the base of the calc alkalic suite. The hole also tested the main segment of the Kirkland Lake Break. To 27.7m, the drill hole intersected a package of sedimentary rocks which includes fine and medium grained greywacke, sericite and carbonate altered siltstone and graphitic argillite (similar to the sediments in the upper portion of hole POW9505). The argillite occurs from 26.7m to 27.7m and marks the contact between the underlying mafic flows and the sediments. The graphite and minor pyrite are the source of the IP anomaly. The remainder of the hole is in mafic flows. The hole ends in basalt at 178.6m.

Thirty one samples were analyzed for gold and other elements. The best gold assay of 174 ppb was obtained from highly sericitized and carbonatized sediments near the top of the hole. The other elements do not show significant enrichment.

#### 7.0 CONCLUSIONS

The 1995 exploration program included: (1) 90.58 km of line cutting and chaining; (2) 35.5 km of dipole-dipole IP and resistivity work

and 13.8 km of magnetometer surveying; (3) geological mapping, prospecting, and lithogeochemical sampling; (4) bulk till sampling; (5) trenching and channel sampling; and (6) diamond drilling.

The results of the 1995 geophysical work were merged and compiled with the data from Cameco's 1994 and Newmont Exploration 1988. A number of strong to moderate IP linear trends were identified. Several of these are related to bedrock sources.

Geological mapping and prospecting was carried out in June, July and August, 1995 on the grid which was cut during the January and February, 1995. The geology at the southern portion of the property includes a sequence containing ultramafic flows interfingered with mafic flows and detrital sediments. A segment of the Kirkland Lake Break passes at the base of this sequence near the contact with clastic sediments to the south. A second eastwest striking fault zone (another segment of the Kirkland Lake Break) passes near the centre of the property, within a unit of clastic metasedimentary rocks between the tholeiite and calcalkalic suites of rocks. Hydrothermal alteration including carbonate, sericite, chlorite and talc is evident within these fault zones. Sulphide mineralization, however, is rare and no areas of strong quartz veining were not found.

A total of 266 sample were collected from outcrops and analyzed for gold using Fire Assay/AA and multi-elements using ICP methods. The results were disappointing. Higher assays, up to 2851 ppb, are from known showings. No new showings were found.

A bulk till program was initiated in 1994 and continued in 1995. Fifty four sample were collected in 1995 (a total of 103 for the 1994-95 program). The results indicate a large gold till train originates in the northwest corner, off the property. One of the samples collected in 1994 points to possible gold mineralization at or near the sedimentary-ultramafic contact in the southeast portion of the grid.

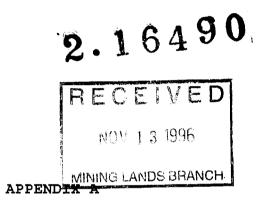
Three trenches were excavated in May using a John Deere 690 backhoe. These were mapped and Trench 3 was channel sampled using a portable diamond blade saw. The trenches exposed shear zones and strong carbonate, talc, chlorite alteration but no significant sulphide mineralization or quartz veining. Seventeen channel samples were collected from Trench 3. The best assay from these is 12 ppb Au/1.0m.

A diamond drilling program consisting of 1407m of drilling in seven holes was carried out in November and first part of December, 1995. Holes POW9501 to POW9505, and POW9507 tested a variety of geological targets. The targets included the western extension of the Kirkland Lake Break; tholeiitic basalt-ultramafic flow

contacts; contacts between tholeiitic flows and interflow sediments; and IP anomalies within sediments which separate the tholeiite suite and the calc alkalic volcanics. Each of the geological targets has an IP anomaly associated with it. An IP anomaly within symmite was tested with hole POW9506.

Favourable geology was intersected but alteration is limited to weak sericitization and carbonate enrichment. The IP anomalies are mainly graphite with some pyrite. Disseminated magnetite is interpreted to be the cause of one of the IP responses in hole POW9505. The cause of the IP anomaly in the syenite (POW9506) is believed to be specular hematite.

The assay results from all the holes are low, generally at or below detection limits, except for two sample from hole POW9503. These samples returned 1.2 g/t/1.5m Au and 450 ppb/1.0m Au respectively. The higher gold values are contained in coarse greywacke with 1% disseminated pyrite. The greywacke lies approximately 20m south of the Kirkland Lake Break.


#### 8.0 RECOMMENDATIONS

Exploration work to the west of the current grid is recommended. The work, including grid establishment, mapping and prospecting should focus on the Kirkland Lake Break and surrounding area.

#### 9.0 REFERENCES

- Chubb, P, Koziol, M., and Faber A., 1995, Cameco Corporation: Powell Project, 1994 Exploration Program, Assessment Report File.
- Jensen, L.S., 1995: Project Unit 95-12, Geology of Montrose, Bannockburn, and Powell Townships, District of Timiskaming: in Summary of Field Work and Other Activities; OGS misc. paper 164, pp 37-39
- Kiernicki, F., 1992: OPAP 1992 Exploration Program, 102 Group, Powell Township, Larder Lake Mining District, NTS 41 P/15, OPAP 92-325, OPG 92-173; Kirkland Lake assessment file
- Koziol, M., Faber, A., Chubb, P.: Cameco Corporation, Report on the 1994-95 Bulk Till Sampling Program, Powell Project, Powell, Bannockburn, Baden and Argyle Townships, NTS 41P/15 and 42A/02. Kirkland Lake assessment report

- Leahy, M., 1992: Report on Geological Mapping, Stripping, Sampling, Blasting and Prospecting Program; 102 Group, Powell and Bannockburn Townships, Larder Lake Mining Division, Ontario, Kirkland Lake assessment file report
- Lovell, H.L., 1967: Geology of the Matachewan Area, O.D.M. Geol. Report 51
- Matthews, R., 1995: Powell Project, Ontario, Geophysical Programs, November, 1994, March, 1995; assessment report.
- Powell, W.G., 1991: The Distribution, Structural History and Relationship to Regional Metamorphism of High-Strain Zones Forming the Larder Lake-Cadillac Deformation Zone, Matachewan Area, Abitibi Belt; O.G.S., Open File Report 5789, 150p
- Smith, J.P, Spooner, E.T.C., Broughton, D.W. and Ploeger, F.R., 1993: Archean Au-Ag(W) Quartz Vein/Disseminated Mineralization Within the Larder Lake-Cadillac Break, Kerr-Addison-Chesterville System, North East Ontario, Canada; Ont. Geoscience Research Grant Program, Grant No. 364; O.G.S. Open File Report 5831, 310p
- Wakeford, J., Jeffrey, B. and Pattison, J. (editors), 1994: Field Trip 4, Northeast Ontario, Kidd Creek, Placer Dome Super Pit, and Holloway Project; The Fourth Annual CIM Geological Field Conference, Sept. 19-21, 1994, Sudbury, Ontario.
- Wood, P.C., 1989: Newmont Exploration of Canada Ltd., Report on the 1989 Diamond Drilling Program on the Powell Project, Bannockburn and Powell Townships; Kirkland Lake assessment file report



Au and ICP Assay Certificates for Outcrop Grab and Channel Samples

| <b>A</b> . 11 | т 1    | •      |
|---------------|--------|--------|
| Swastika      | Labora | tories |
| Swastika      | Lauta  |        |
|               |        |        |

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

# Established 1928

# Geochemical Analysis Certificate

5W-2534-RG1

| Company: | CAMECO CORPORATION |
|----------|--------------------|
| Project: |                    |
| Attn:    | M. Koziol          |

Date: JUN-07-95

We hereby certify the following Geochemical Analysis of 14 Rock samples submitted JUN-06-95 by .

| Samp I e    | Au   | Au Check | Multi   |       |
|-------------|------|----------|---------|-------|
| Number      | PPB  | PPB      | Elment  | • •   |
| POW 95X1001 | 5    |          | Results | ····· |
| POW 95X1002 | 3    | 3        | to      |       |
| POW 95X1003 | Ni 1 | -        | follow  |       |
| POW 95X1004 | Ni l | 2        |         |       |
| POW 95X1005 | Ni l | -        |         |       |
| POW 95X1006 | Nil  |          |         |       |
| POW 95X1007 | 3    | -        |         |       |
| POW 95X1008 | 31   | 26       |         |       |
| POW 95X1009 | 2    | -        |         |       |
| POW 95X1010 | 10   | 14       |         |       |
| POW 95X1011 | 2    |          |         |       |
| POW 95X1012 | Ni 1 | -        |         |       |
| POW 95X1013 | Nil  | -        |         |       |
| POW 95X1014 | 2    | -        |         |       |
|             |      |          |         |       |

One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

| <b>A</b> 1      | т 1     | •      |
|-----------------|---------|--------|
| Swastika        | l abora | tories |
| <b>Swastina</b> | Labora  | 101100 |
|                 |         |        |

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 1 of 2

# Geochemical Analysis Certificate

5W-2605-RG1

| Company: | CAMECO CORPORATION |
|----------|--------------------|
| Project: |                    |

Date: JUN-16-95

M. Koziol Attn:

We hereby certify the following Geochemical Analysis of 38 Rock samples submitted JUN-12-95 by.

| Sample<br>Number            | Au<br>PPB | Au Check<br>PPB | Multi<br>Element |  |
|-----------------------------|-----------|-----------------|------------------|--|
| POW95X-051                  | Nil       |                 | Results          |  |
| POW95X-051<br>POW95X-052    | 7         | - 5             | to               |  |
| PCW95X-052                  | Ni İ      | -               | follow           |  |
| POW95X-054                  | Ni l      | -               | 101100           |  |
| POW95X-055                  | Ni l      | -               |                  |  |
| POW95X-056                  | <br>Ni 1  |                 |                  |  |
| POW95X-057                  | 2         | -               |                  |  |
| POW95X-058                  | NiĪ       | -               |                  |  |
| POW95X-059                  | Ni l      | -               |                  |  |
| POW95X-060                  | Ni l      | -               |                  |  |
| POW95X-061                  | Nil       | Nil             |                  |  |
| POW95X-062                  | Ni l      | -               |                  |  |
| POW95X-064                  | Ni l      | -               |                  |  |
| POW95X-066                  | Ni I      | -               |                  |  |
| POW95X-067                  | 2         | -               |                  |  |
| POW95X-068                  | Nil       |                 |                  |  |
| POW95X-069                  | Ni l      | -               |                  |  |
| POW95X-070                  | Ni I      | -               |                  |  |
| POW95X-071                  | Ni I      | Ni l            |                  |  |
| POW95X-072                  | Ni l      |                 |                  |  |
| POW95X-073                  | Ni I      | -               |                  |  |
| POW95X-1016                 | 3         | -               |                  |  |
| POW95X-1017                 | Ni l      | -               |                  |  |
| POW95X-1018                 | Ni l      | -               |                  |  |
| POW95X-1019                 | Ni l      | -               |                  |  |
| POW95X-1020                 | Nil       | -               |                  |  |
| POW95X-1021                 | Ni l      | -               |                  |  |
| POW95X-1022                 | Ni l      | -               |                  |  |
| POW95X-1023                 | Ni l      | Ni l            |                  |  |
| POW95X-1024                 | Ni l      | -               |                  |  |
| One assay ton portion used. |           |                 |                  |  |

lon Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705)642-3300

| Established 1928                                                                                           | Assa                  | ying - (       | Consulting        | . Representatio | n<br>Page 2 of 2 |
|------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------------------|-----------------|------------------|
| <u>Geochemical Anal</u>                                                                                    | <u>ysis Certifica</u> | <u>ute</u>     |                   |                 | 5W-2605-RG1      |
| Company: <b>CAMECO C</b><br>Project:<br>Attn: M. Koziol                                                    | ORPORATIO             | N              |                   |                 | Date: JUN-16-95  |
| We hereby certify the fo<br>submitted JUN-12-95 by                                                         |                       | mical Ana      | alysis of 38 R    | ock samples     |                  |
| ·                                                                                                          |                       | <b>_</b> .     |                   |                 |                  |
| Samp I e                                                                                                   |                       | u Check<br>PPB | Multi<br>≉Element |                 |                  |
| Sample<br>Number<br>POW95X-1025<br>POW95X-1026<br>POW95X-1027<br>POW95X-1028<br>POW95X-1028<br>POW95X-1029 | Au A                  |                |                   |                 |                  |

One assay ton portion used.

Un 4 Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300

|                                                | Swas                   |           | a Labo                                       | ratories        |
|------------------------------------------------|------------------------|-----------|----------------------------------------------|-----------------|
| Established 1928                               | Assa                   | ying -    | Consulting - Re                              | presentation    |
| Established 1926                               |                        |           |                                              | Page 1 of 2     |
| <u>Geochemical Ana</u>                         | <u>dysis Certifica</u> | <u>te</u> |                                              | 5W-2701-RG1     |
| Company: CAMECO<br>Project:<br>Attn: M. Koziol | CORPORATION            | I         |                                              | Date: JUN-22-95 |
| We hereby certify the submitted JUN-19-95      |                        | nical Ana | alysis of 43 Rock s                          | amples          |
| Sample                                         |                        | Check     | Multi                                        |                 |
| Number                                         | PPB                    | PPB       | Element                                      |                 |
| POW 95X-074<br>POW 95X-075                     | 5<br>2                 | -         | Results<br>to                                |                 |
| POW 95X-076                                    | 3                      | 5         | Follow                                       |                 |
| POW 95X-077                                    | 51                     | 21        |                                              |                 |
| POW 95X-078                                    |                        |           |                                              |                 |
| POW 95X-079                                    | 3                      | -         |                                              |                 |
| POW 95X-080                                    | Nil                    | -         |                                              |                 |
| POW 95X-081<br>POW 95X-082                     | Ni l<br>Ni l           | -         |                                              |                 |
| POW 95X-083                                    | 2                      | -         |                                              |                 |
| POW 95X-084                                    | Ni 1                   |           | · · · <b>· · · · · · ·</b> · · · · · · · · · |                 |
| POW 95X-1032                                   | Nil                    | -         |                                              |                 |
| POW 95X-1033                                   | 3                      | -         |                                              |                 |
| POW 95X-1034                                   | 5                      | -         |                                              |                 |
| POW 95X-1035                                   | 2                      |           |                                              |                 |
| POW 95X-1036                                   | Ni l                   | -         |                                              |                 |
| POW 95X-1037                                   | Ni l                   | -         |                                              |                 |
| POW 95X-1038<br>POW 95X-1039                   | 14<br>2                | 12        |                                              |                 |
| POW 95X-1059                                   | 3                      | -         |                                              |                 |
| POW 95X-1041                                   | 5                      |           |                                              |                 |
| POW 95X-1041                                   | 2                      | _         |                                              |                 |
| POW 95X-1043                                   | Ni 1                   | -         |                                              |                 |
| POW 95X-1044                                   | Ni l                   | -         |                                              |                 |
| POW 95X-1045                                   | Nil                    |           |                                              |                 |
| POW 95X-1046                                   | Ni 1                   | -         |                                              |                 |
| POW 95X-1047                                   | 175                    | 175       |                                              |                 |
| POW 95X-1048<br>POW 95X-1049                   | 45<br>93               | -<br>99   |                                              |                 |
| POW 95X-1052                                   | Ni l                   | •         |                                              |                 |
| **** Indicates this sam                        |                        | ved.      |                                              |                 |
| One assay ton portion u                        | ised.                  |           | 6                                            | $A \cdot O A I$ |

Feby Certified by\_\_\_\_  $\overline{\sqrt{\cdot}}$ 

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

# Swastika Laboratories

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 2 of 2

# Geochemical Analysis Certificate

5W-2701-RG1

#### Company: CAMECO CORPORATION Project:

Attn: M. Koziol

We hereby certify the following Geochemical Analysis of 43 Rock samples submitted JUN-19-95 by .

| Sample            | Au   | Au Check | Multi   |   |
|-------------------|------|----------|---------|---|
| Number            | PPB  | PPB      | Element | ´ |
| POW 95X-1053      | 2    | -        |         |   |
| POW 95X-1054      | Nil  | -        |         |   |
| POW 95X-1055      | Nil  | -        |         |   |
| POW 95X-1056      | Nil  | -        |         |   |
| POW 95X-1057      | Ni 1 | -        |         |   |
| POW 95X-1058      | Ni l |          |         |   |
| POW 95X-1059      | 3    | -        |         |   |
| POW 95X-1060      | 24   | 21       |         |   |
| POW 95X-1061      | 9    | -        |         |   |
| POW 95X-1062 **** | -    | -        |         |   |
| POW 95X-1063      | 2    | -        |         |   |
| POW 95X-1064      | 10   | -        |         |   |
| POW 95X-1065      | Ni 1 | -        |         |   |
| POW 95X-1066      | Ni l | -        |         |   |
|                   |      |          |         |   |

\*\*\*\* Indicates this sample was not received. One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300 Date: JUN-22-95

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 1 of 2

# Geochemical Analysis Certificate

5W-2800-RG1

| Сотралу: | CAMECO CORPORATION |  |
|----------|--------------------|--|
| Project: |                    |  |

Date: JUL-07-95

Attn: M. Koziol

We hereby certify the following Geochemical Analysis of 39 Core samples submitted JUN-28-95 by .

| Sample<br>Number            | Au<br>PPB | Au Check<br>PPB | Multi<br>Element |                                       |
|-----------------------------|-----------|-----------------|------------------|---------------------------------------|
|                             |           |                 |                  | •••••                                 |
| Pow95X-084                  | Ni l      | -               | Results          |                                       |
| Pow95X-085                  | Ni l      | -               | to               |                                       |
| Pow95X-086                  | Ni l      | -               | follow           |                                       |
| Pow95X-087                  | 14        | 14              |                  |                                       |
| Pow95X-088                  | Nil       | -               |                  |                                       |
| Pow95X-089                  | Ni l      | -               |                  |                                       |
| Pow95X-090                  | Ni 1      | -               |                  |                                       |
| Pow95X-091                  | Ni 1      | -               |                  |                                       |
| Pow95X-092                  | 3         | -               |                  |                                       |
| Pow95X-093                  | Ni l      | -               |                  |                                       |
| Pow95X-094                  | 5         |                 |                  |                                       |
| Pow95X-095                  | Ni 1      | -               |                  |                                       |
| Pow95X-1069                 | Ni 1      | -               |                  |                                       |
| Pow95X-1070                 | 19        | -               |                  |                                       |
| Pow95X-1071                 | Ni l      | -               |                  |                                       |
| Pow95X-1072                 | 7         |                 |                  |                                       |
| Pow95X-1073                 | 77        | -               |                  |                                       |
| Pow95X-1074                 | 21        | -               |                  |                                       |
| Pow95X-1075                 | 374       | 358             |                  |                                       |
| Pow95X-1076                 | 5         | -               |                  |                                       |
| Pow95X-1077                 | Nil       |                 |                  |                                       |
| Pow95X-1078                 | 3         | -               |                  |                                       |
| Pow95X-1080                 | Ni Î      | -               |                  |                                       |
| Pow95X-1081                 | 5         | _               |                  |                                       |
| Pow95X-1082                 | 375       | -               |                  |                                       |
| Pow95X-1083                 | 2808      | 2851            |                  | · · · · · · · · · · · · · · · · · · · |
| Pow95X-1084                 | 799       |                 |                  |                                       |
| Pow95X-1085                 | Ni l      | -               |                  |                                       |
| Pow95X-1086                 | Ni l      | -               |                  |                                       |
| Pow95X-1088                 | 7         | -               |                  |                                       |
| One assay ton portion used. |           |                 |                  | $\wedge$                              |
| one ussig ton perion used.  |           |                 |                  |                                       |
|                             |           |                 |                  |                                       |

eb // Certified by\_\_\_\_\_

 P.O. Box 10, Swastika, Ontario P0K 1T0

 Telephone (705) 642-3244
 FAX (705) 642-3300

| Established 1928                                |                | A Divi         | a Laboration of TSL/Assayers In<br>Consulting - Repr | 10.                                    |
|-------------------------------------------------|----------------|----------------|------------------------------------------------------|----------------------------------------|
| Geochemical Ana                                 | lysis Certific | <u>ate</u>     |                                                      | 5W-2800-RG1                            |
| Company: CAMECO (                               | CORPORATIO     | N              |                                                      | Date: JUL-07-95                        |
| Project:<br>Attn: M. Koziol                     |                |                |                                                      |                                        |
| We hereby certify the for submitted JUN-28-95 b |                | emical Ana     | lysis of 39 Core sam                                 | ples                                   |
| Sample<br>Number                                | Au A<br>PPB    | u Check<br>PPB | Multi<br>Element                                     |                                        |
| Pow95X-1089                                     | Ni l           |                |                                                      |                                        |
| Pow95X-1091                                     | 3              | -              |                                                      |                                        |
| Pow95X-1092                                     | Ni I           | -              |                                                      |                                        |
| Pow95X-1093                                     | 5              | -              |                                                      |                                        |
| Pow95X-1094                                     | Nil            | -<br>          |                                                      |                                        |
| Pow95X-1095                                     | Ni l           | -              |                                                      |                                        |
| Pow95X-1096                                     | 9              | -              |                                                      |                                        |
| Pow95X-1097                                     | 15             | -              | · ·                                                  | se at how late.                        |
| Pow95X-1098                                     |                | <u> </u>       | Boulder (1                                           | south of hos later.<br>1te. Cp beaung) |

One assay ton portion used.

Febr . Certified by\_

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300

| Swastika | Laboratories |
|----------|--------------|
|----------|--------------|

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 1 of 2

# Geochemical Analysis Certificate

5W-3012-RG1

| Company: | CAMECO CORPORATION |  |
|----------|--------------------|--|
| Project: |                    |  |
| Attn:    | M. Kozioł          |  |

Date: JUL-25-95

We hereby certify the following Geochemical Analysis of 55 Rock samples submitted JUL-20-95 by A. Faber.

| Samp l e                   | Au   | Au Check | Multi   |       |
|----------------------------|------|----------|---------|-------|
| Number                     | PPB  | PPB      | Element |       |
| POW95X-502                 | 12   | -        | Results |       |
| POW95X-504                 | Nil  | -        | to      |       |
| POW95X-505                 | Nil  | -        | follow  |       |
| POW95X-509                 | Ni 1 | -        |         |       |
| POW95X-510                 | Ni l | -        |         |       |
| POW95X-511                 | 2    |          |         |       |
| POW95X-512                 | Nil  | -        |         |       |
| POW95X-514                 | Nil  | Nil      |         |       |
| POW95X-515                 | Nil  | -        |         |       |
| POW95X-516                 | Nil  | -        |         |       |
| POW95X-517                 | Nil  |          |         |       |
| POW95X-518                 | Nil  | _        |         |       |
| POW95X-519                 | 2    | -        |         |       |
| POW95X-520                 | Ni l | -        |         |       |
| POW95X-521                 | 3    | -        |         |       |
| POW95X-522                 | Nil  |          |         | ····· |
| POW95X-523                 | Nil  | Ni l     |         |       |
| POW95X-524 Not Recd        | -    | -        |         |       |
| POW95X-525                 | 2    | -        |         |       |
| POW95X-526                 | Ni l | -        |         |       |
| POW95X-527                 | Ni l |          |         |       |
| POW95X-528                 | Ni l | -        |         |       |
| POW95X-1100                | 2    | -        |         |       |
| POW95X-1101                | Ni l | -        |         |       |
| POW95X-1102                | 2    | -        |         |       |
| POW95X-1103                | Nil  |          |         |       |
| POW95X-1104                | Ni l | -        |         |       |
| POW95X-1105                | Ni l | Ni l     |         |       |
| POW95X-1106                | 5    | -        |         |       |
| POW95X-1107                | Ni l | -        |         |       |
| One assay ton portion used |      |          |         |       |

One assay ton portion used.

lehr *'* . Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705)642-3300

|                   |                                                  |                               | a Lat          | Doratorie        | S                                  |
|-------------------|--------------------------------------------------|-------------------------------|----------------|------------------|------------------------------------|
|                   | ished 1928<br>emical Analysi                     |                               | Consulting     | . Representation | Page 2 of 2<br><b>5W-3012-RG</b> 1 |
| Company:          | CAMECO COF                                       |                               |                |                  | Date: JUL-25-95                    |
| Project:<br>Attn: | M. Koziol                                        |                               |                |                  |                                    |
|                   | by <i>certify</i> the follow<br>d JUL-20-95 by A | wing Geochemical Ar<br>Faber. | alysis of 55 R | ock samples      |                                    |
| Sample            |                                                  | Au Au Check                   | Multi          |                  |                                    |

| Sample      | Au   | Au Check | Multi   |  |
|-------------|------|----------|---------|--|
| Number      | PPB  | PPB      | Element |  |
| POW95X-1109 | Nil  | -        |         |  |
| POW95X-1110 | 2    | -        |         |  |
| POW95X-1112 | 34   | 43       |         |  |
| POW95X-1113 | Ni l | -        |         |  |
| POW95X-1114 | Nil  | -        |         |  |
| POW95X-1116 | Nil  | -        |         |  |
| POW95X-1117 | Ni l | -        |         |  |
| POW95X-1118 | 3    | -        |         |  |
| POW95X-1119 | Ni l | Ni l     |         |  |
| POW95X-1122 | 7    | -        |         |  |
| POW95X-1124 | Ni l | -        |         |  |
| POW95X-1126 | Ni l | -        |         |  |
| POW95X-1127 | Ni l | -        |         |  |
| POW95X-1128 | 7    | -        |         |  |
| POW95X-1129 | Ni l |          |         |  |
| POW95X-1130 | Ni 1 | Ni l     |         |  |
| POW95X-1132 | Ni l | -        |         |  |
| POW95X-1133 | Ni 1 | -        |         |  |
| POW95X-1134 | Ni l | -        |         |  |
| POW95X-1137 | 5    | -        |         |  |
| POW95X-1138 | Ni l |          |         |  |
| POW95X-1139 | Ni 1 | -        |         |  |
| POW95X-1140 | Ni 1 | -        |         |  |
| POW95X-1141 | 2    | -        |         |  |
| POW95X-1142 | 390  | 360      |         |  |
| POW95X-1143 | Nil  |          |         |  |
|             |      |          |         |  |

One assay ton portion used.

feb r Certified by\_ (

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705)642-3300



# Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

### Geochemical Analysis Certificate

### 5W-3229-RG1

| Company: | CAMECO CORPORATION |
|----------|--------------------|
| Project: |                    |
| Attn     | M Koziol           |

Date: AUG-14-95

We hereby certify the following Geochemical Analysis of 7 Rock samples submitted AUG-09-95 by .

| Sample<br>Number | Au<br>PPB | Au Check<br>PPB | Multi<br>Element |  |
|------------------|-----------|-----------------|------------------|--|
| POW95X-1144      | 21        | 26              | Results          |  |
| POW95X-1145      | Ni l      | -               | to               |  |
| POW95X-1146      | Ni l      | Ni 1            | follow           |  |
| POW95X-1147      | Ni l      | -               |                  |  |
| POW95X-1148      | Ni l      | -               |                  |  |
| POW95X-1149      | 2         |                 |                  |  |
| POW95X-1150      | 5         | 7               |                  |  |
|                  |           |                 |                  |  |

One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

| Survestilze | Ichanotonias |
|-------------|--------------|
| Swastika    | Laboratories |

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

### Geochemical Analysis Certificate

### 5W-3268-RG1

Date: AUG-17-95

Project: Attn: M. Koziol

We hereby certify the following Geochemical Analysis of 19 Rock samples submitted AUG-11-95 by .

| Sample<br>Number | Au<br>PPB | Au Check<br>PPB | Multi<br>Element |  |
|------------------|-----------|-----------------|------------------|--|
| POW 95X-201      | 5         |                 | Results          |  |
| POW 95X-202      | Ni Î      | -               | to               |  |
| POW 95X-203      | 12        | -               | follow           |  |
| POW 95X-205      | Ni I      | -               | 101100           |  |
| POW 95X-206      | Ni l      | Ni l            |                  |  |
| POW 95X-207      | Nil       |                 |                  |  |
| POW 95X-1151     | Ni l      | -               |                  |  |
| POW 95X-1152     | 2         | -               |                  |  |
| POW 95X-1153     | Ni l      | -               |                  |  |
| POW 95X-1154     | Ni l      | -               |                  |  |
| POW 95X-1156     | Ni I      |                 |                  |  |
| POW 95X-1157     | Ni 1      | -               |                  |  |
| POW 95X-1158     | Ni l      | -               |                  |  |
| POW 95X-1159     | 10        | Ni l            |                  |  |
| POW 95X-1160     | 10        | -               |                  |  |
| POW 95X-1161     | Nil       |                 |                  |  |
| POW 95X-1162     | Ni l      | -               |                  |  |
| POW 95X-1163     | Ni l      | -               |                  |  |
| POW 95X-1164     | Ni l      | -               |                  |  |
|                  |           |                 |                  |  |

One assay ton portion used.

Certified by In

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300

A Division of TSL/Assayers Inc.

Established 1928

Assaying - Consulting - Representation

Page 1 of 2

### Geochemical Analysis Certificate

5W-3316-RG1

Company: CAMECO CORPORATION

Date: AUG-23-95

Project: Attn: M. Koziol

----

We hereby certify the following Geochemical Analysis of 53 Rock samples submitted AUG-16-95 by .

| Sample<br>Number           | Au<br>PPB    | Au Check<br>PPB | Multi<br>Element | J                 |                                       |  |
|----------------------------|--------------|-----------------|------------------|-------------------|---------------------------------------|--|
| POW-95C-2013               | 3            |                 | Results          | ····· <u> </u>    | · · · · · · · · · · · · · · · · · · · |  |
| POW-95C-2014               | 5            | 7               | to               | Ľ,                |                                       |  |
| POW-95C-2015               | Nil          | -               | follow           | 2                 | 0                                     |  |
| POW-95C-2016               | Ni 1         | -               |                  | <i>.</i> 0        |                                       |  |
| POW-95C-2017               | Ni 1         | -               |                  | Sam               | MN                                    |  |
| POW-95C-2018               | 5            |                 |                  |                   | <u>s</u>                              |  |
| POW-95C-2019               | 12           | -               |                  | Þ                 | Sr 3                                  |  |
| POW-95C-2020               | Ni l         | -               |                  | J                 | 2 5                                   |  |
| POW-95C-2021               | Ni 1         | -               |                  | 7                 | nch                                   |  |
| POW-95C-2022               | Nil          | -               |                  | anne              | 00                                    |  |
| POW-95C-2023               | Nil          |                 |                  | ل کم              | 23                                    |  |
| POW-95C-2024               | Ni l         | -               |                  | 171               | × , Ø                                 |  |
| POW-95C-2025               | Ni l         | -               |                  | 7 L               | $> \vee$                              |  |
| POW-95C-2026               | Ni l         | -               |                  | $\mathcal{O}^{-}$ |                                       |  |
| POW-95C-2027               | Nil          | -               |                  |                   |                                       |  |
| POW-95C-2028               | Ni l         | _               |                  |                   |                                       |  |
| POW-95C-2029               | Ni l         | 2               |                  |                   |                                       |  |
| POW-95X-208                | 3            | -               |                  |                   |                                       |  |
| POW-95X-209                | Ni l         | -               |                  |                   |                                       |  |
| POW-95X-210                | Nil          |                 |                  |                   |                                       |  |
| POW-95X-211                | Ni l         | -               |                  |                   |                                       |  |
| POW-95X-212                | Ni l         | -               |                  |                   |                                       |  |
| POW-95X-213                | Ni l         | -               |                  |                   |                                       |  |
| POW-95X-214<br>POW-95X-215 | Ni l<br>Ni l | -               |                  |                   |                                       |  |
|                            |              |                 |                  |                   |                                       |  |
| POW-95X-216                | Ni I         | -               |                  |                   |                                       |  |
| POW-95X-217<br>POW-95X-218 | 5            | -               |                  |                   |                                       |  |
| POW-95X-218<br>POW-95X-219 | 10<br>9      | -               |                  |                   |                                       |  |
| POW-95X-220                | 1186         | 1090            |                  |                   |                                       |  |
|                            |              |                 |                  |                   |                                       |  |
| One assay ton portion use  | u.           | Certifi         | ed by            | J.                | flor                                  |  |
|                            |              |                 |                  |                   |                                       |  |
|                            |              |                 |                  |                   | /                                     |  |
|                            | <b>P.O</b> . | Box 10, Swa     | istika, Ontar    | io P0K 1T         | 0                                     |  |
|                            |              | e (705) 642-3   |                  | X (705)64         |                                       |  |
|                            |              |                 |                  |                   |                                       |  |

| Swastika | Laboratories |
|----------|--------------|
|          |              |

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 2 of 2

### Geochemical Analysis Certificate

Established 1928

5W-3316-RG1

Date: AUG-23-95

| Company: | CAMECO CORPORATION |  |
|----------|--------------------|--|
| Project: |                    |  |
| Attn:    | M. Koziol          |  |

We hereby certify the following Geochemical Analysis of 53 Rock samples submitted AUG-16-95 by .

| Sample<br>Number | Au<br>PPB | Au Check<br>PPB | Multi<br>Element |                                         |
|------------------|-----------|-----------------|------------------|-----------------------------------------|
| POW-95X-1165     | 46        |                 |                  |                                         |
| POW-95X-1166     | 9         | -               |                  |                                         |
| POW-95X-1167     | Ni l      | -               |                  |                                         |
| POW-95X-1168     | Ni l      | -               |                  |                                         |
| POW-95X-1169     | Nil       | -               |                  |                                         |
| POW-95X-1170     | 3         | 2               |                  |                                         |
| POW-95X-1171     | Ni l      | -               |                  |                                         |
| POW-95X-1172     | 2         | -               |                  |                                         |
| POW-95X-1174     | 2         | -               |                  |                                         |
| POW-95X-1175     | 3         | -               |                  |                                         |
| POW-95X-1176     | 7         |                 |                  | ••••••••••••••••••••••••••••••••••••••• |
| POW-95X-1177     | 7         | -               |                  |                                         |
| POW-95X-1178     | Ni l      | Ni l            |                  |                                         |
| POW-95X-1179     | Ni l      | -               |                  |                                         |
| PCW-95X-1180     | Ni l      | -               |                  |                                         |
| POW-95X-1181     | Nil       |                 |                  |                                         |
| POW-95X-1182     | 2         | -               |                  |                                         |
| POW-95X-1183     | 2         | -               |                  |                                         |
| POW-95X-1184     | 3         | -               |                  |                                         |
| POW-95X-1185     | 15        | 17              |                  |                                         |
| POW-95X-1186     | Nil       |                 |                  |                                         |
| POW-95X-1187     | 48        | -               |                  |                                         |
| POW-95X-1188     | 9         | 5               |                  |                                         |
|                  |           |                 |                  |                                         |

One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300 CAMECO CORP. ATTN: M. KOZIOL

8 . P.

|                          | ••         |            |                                         |                    |                | PHC              | NE #: (905      | 1602-8236      | FAX                                                                                                             | #: (905)20 | 6-0513  |                |                   |                |                 |           |               |
|--------------------------|------------|------------|-----------------------------------------|--------------------|----------------|------------------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------------|------------|---------|----------------|-------------------|----------------|-----------------|-----------|---------------|
| ATTN: M. KOZIOL          |            |            |                                         |                    |                |                  |                 | ,              |                                                                                                                 | (,         |         |                |                   | -              | 10. : 1 0       |           |               |
| 2                        |            |            |                                         |                    |                |                  | т               | קגי            | PLAS                                                                                                            | A SCAN     | J       |                |                   | File No        |                 |           |               |
|                          |            |            |                                         |                    |                |                  | ±.,             |                |                                                                                                                 |            | •       |                |                   | Date           | : JUN           | 1-12-1995 |               |
| 5w <sup>1</sup> 2534-RG1 |            |            |                                         |                    |                |                  |                 | Aqua-1         | Regia Diges                                                                                                     | ition      |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
| •                        |            |            | ana | a ditana serah     | hi milandhi    | ar 1. Statematic |                 |                | y 10                                                                                                            |            |         |                | •                 |                | and the form    |           |               |
| SAMPLE #                 | <b>A</b> g | <b>A</b> 1 | As                                      | B Ba               | Be Bi          | Ca Cd            | Co Cr           | Cu Fe          | Mg Mn                                                                                                           | Mo Na      | NÍ P    | Pb Sb          | Sc Sn             | Sr <b>Ti</b>   | VW              | Y Żn      | Zr            |
| 1<br>1                   | pp#        | *          | ppm                                     | ppm ppm            | ppm <b>ppm</b> | % ppm            | ppm <b>pp</b> m | ppm 🎗          | % ppm                                                                                                           | ppm 🎗      | ppm ppm | ppm <b>ppm</b> | ppm <b>ppm</b>    | ppm ppm        | pp <b>m ppm</b> | ppm ppm   | PPm           |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
| POW 95X1001              | < 1        | 3.3        | < 5                                     | < 10 < 1           | < 1 < 5        | 6.1 (1           | 32 55           | 940 7.3        | 1.9 1200                                                                                                        | < 2 0.03   | 77 510  | < 1 < 5        | 26 ( 10           | 90 1800        | 250 < 10        | 14 87     | 10            |
| POW 95x1002              | < 1        | 3.8        | 30                                      | < 10     19        | < 1 < 5        | 4.3 < 1          | 52 70           | 120 8.7        | 2.0 2600                                                                                                        | < 2 0.01   | 81 190  | < 1 < 5        | 16 <b>( 10</b>    | 34 89          | 140 < 10        | 5 140     | 5             |
| POW 95X1003              | < 1        | 2.8        | 30                                      | < 10 <u>35</u>     | < 1 < 5        | 7.6 (1           | 39 52           | 58 4.5         | 1.7 1800                                                                                                        | < 2<0.01   | 66 130  | < 1 < 5        | 10 <b>&lt; 10</b> | 79 <b>34</b>   | 82 < 10         | 3 70      | 3             |
| POW 95x1004              | <b> 1</b>  | 3.2        | < 5                                     | < 10 · 29          | < 1 < 5        | 8.5 2            | 29 47           | 44 8.5         | 2.1 3800                                                                                                        | < 2<0.01   | 53 20   | < 1 < 5        | 21 < 10           | 61 <b>62</b>   | 150 < 10        | 8 90      | 9             |
| POW 95X1005              | ۲ ،        | 3.1        | < 5                                     | < 10 <b>1</b> 3    | < 1 < 5        | 8.6 3            | 26 53           | 49 8.3         | 2.2 2800                                                                                                        | < 2<0.01   | 58 < 2  | < 1 < 5        | 17 <b>&lt; 10</b> | 60 51          | 110 < 10        | 4 84      | 7             |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
| POW 95X1006              | ۲ 1        | 2.2        | < 5                                     | < 10 < 1           | < 1 < 5        | 14 <b>&lt; 1</b> | 25 33           | 63 5.7         | 2.2 2200                                                                                                        | < 2<0.01   | 50 < 2  | < 1 < 5        | 12 < 10           | 80 26          | 77 < 10         | 7 66      | 4             |
| POW 95X1007              | < 1        | 2.0        | < 5                                     | < 10 5             | < 1 < 5        | 1.0 (1           | 33 170          | 110 16         | 1.2 850                                                                                                         | < 2 0.06   | 430 200 | 2 (5           | 12 30             | 10 <b>1200</b> | 95 < 10         | 4 530     | 16            |
| POW 95X1008              | ۲ 1        | 0.98       | 60                                      | < 10 8             | < 1 < 5        | 2.2 < 1          | 92 130          | 39 17          | 0.64 1100                                                                                                       | < 2 0.05   | 51 630  | 5 (5           | 12 40             | 23 81          | 26 < 10         | 4 130     | 14            |
| POW 95X1009              | < 1        | 1.5        | 15                                      | < 10 5             | < 1 < 5        | 3.3 < 1          | 63 110          | 91 16          | 1.0 1700                                                                                                        | < 2 0.02   | 49 510  | 2 < 5          | 15 20             | 32 44          | 39 < 1 <b>0</b> | 3 120     | 8             |
| POW 95X1010              | K 1        | 2.4        | 30                                      | < 10 <sup>13</sup> | < 1 < 5        | 2.0 < 1          | 63 150          | 74 16          | 0.88 1300                                                                                                       | < 2 0,04   | 39 800  | < 1 < 5        | 19 < 10           | 21 51          | 55 < 10         | 3 180     | 11            |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
| POW 95X1011              | < 1        | 2.7        | < 5                                     | < 10 <b>2</b> 2    | < 1 × 5        | 1.8 < 1          | 37 130          | 30 8,5         | 1.0 1200                                                                                                        | < 2 0,03   | 15 700  | < 1 < 5        | 15 <b>&lt; 10</b> | 13 69          | 48 < 10         | 4 170     | 6             |
| POW 95X1012              | < 1        | 2.5        | < 5                                     | < 10 < 1           | < 1 < 5        | 3.5 < 1          | 22 <b>2</b> 8   | 20 19          | 2.0 3500                                                                                                        | < 2<0.01   | 36 94   | < 1 < 5        | 9 <b>(</b> 10     | 31 42          | <b>4</b> 6 < 10 | 4 110     | 5             |
| POW 95X1013              | ۲ 1        | 0.77       | < 5                                     | < 10 6             | < 1 < 5        | 8.5 < 1          | 10 33           | 16 5.0         | 2.2 1800                                                                                                        | < 2 0.02   | 19 10   | < 1 < 5        | 2 < 10            | 49 9           | 6 < 10          | 5 51      | 2             |
| POW 95X1014              | ۲ 1        | 3.4        | < 5                                     | < 10 Z             | < 1 < 5        | 5.9 1            | 31 78           | 75 8 <b>.7</b> | 2.1 2400                                                                                                        | < 2 0.01   | 72 140  | < 1 < 5        | 23 <b>&lt;</b> 10 | 48 58          | 170 < 10        | 5 130     | 5             |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           | 2 Av-<br>1943 |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           | 2.00<br>      |
|                          |            | 2          |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            | 3          |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         |                    |                |                  |                 |                |                                                                                                                 |            |         |                |                   |                |                 |           |               |
|                          |            |            |                                         | -                  |                |                  |                 |                | an an ann an Anna an An |            |         | *              |                   |                |                 |           |               |

TSL/ASSAYE

Laboratories

1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA, ONTARIO L4W-1A4

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H20 This mathod is partial for many oxide materials

Arm SIGNED :

REPORT No. : M5264

### TSL/ASSAYE' Laboratories

| 1270 FEWSTER DRIVE, UN | IT 3 MISSISSAUGA, ONTARIO L4W-1A4 |  |
|------------------------|-----------------------------------|--|
| PHONE #: (905)602-8236 | FAX #: (905)206-0513              |  |

#### I.C.A.P. PLASMA SCAN Aqua-Regia Digestion

 REPORT No.
 :
 M5290

 Page No.
 :
 1 of 2

 File No.
 :
 JN16MA

 Date
 :
 JUN-17-1995

5W-2605-RG1

ATTN: M. KOZIOL

CAMECO CORPORATION

|             |                                  |      |                                                                  |            |       |                    |                 |                                       |        | ·   | •<br>97.200.000.000 |          |                |          |                | 97. 1 <i>.2</i> /2 |          |                 |                    |                 |            |                                          |
|-------------|----------------------------------|------|------------------------------------------------------------------|------------|-------|--------------------|-----------------|---------------------------------------|--------|-----|---------------------|----------|----------------|----------|----------------|--------------------|----------|-----------------|--------------------|-----------------|------------|------------------------------------------|
| SAMPLE #    | λg                               | Al   | λs                                                               | B          | Ba    | Be                 | Bi              | Ca Cd                                 | Co     | Cr  | Cu <b>Fe</b>        | Mg       | Mn             | Mo Na    | NÍ P           | Pb Sb              | Sc Sn    | Sr Ti           | V                  | Y Zn            | Zr         |                                          |
|             | PPa                              | 8    | ₽₽¤                                                              | ppm        | ppm   | ppm                | ppm             | % ррт                                 | ppm    | PPm | ppm 🕱               | <b>%</b> | ppm            | ppm %    | ppm ppm        | ppm <b>ppm</b>     | ppm ppm  | ppm ppm         | ppm ppm            | ppm pp          | a ppa      | an ista<br>A                             |
|             |                                  |      |                                                                  |            | đ     |                    |                 |                                       | 4      |     |                     |          |                |          |                |                    |          |                 |                    |                 |            |                                          |
| POW95X-051  | < 1                              | 0.45 | 5 ( <b>)</b> ( )                                                 | < 10       | 220   | < 1 🛬              | < 5             | 1.1 < 1                               | 12     | 220 | 13 2.5              | 0.57     | 380            | < 2 0.10 | 25 950         | 75 K 5             | < 1 < 10 | 150 <b>1800</b> | 52 ( 10            | 13 5            | L 14       |                                          |
| POW95X-052  | <u>20000 (. ).</u>               | 0.45 | i                                                                | < 10       | 140   | < 1 j              | < 5             | 1.0 < 1                               | 17     | 160 | 41 2.1              | 1.1      | 280            | < 2 0.04 | 19 2900        | 22 < 5             | 2 < 10   | 120 <b>890</b>  | 48 < 10            | 15 5            | 13         |                                          |
| POW95X-053  | < 1                              | 2.8  | ) < 5                                                            | < 10       | 14    | < 1 (              | < 5             | 1.4 < 1                               | 33     | 100 | 91 5.2              | z.o      | 890            | < 2 0.03 | 55 570         | < 1 < 5            | 7 < 10   | 33 2300         | 110 < 10           | 9 8             | 9 5        |                                          |
| POW95X-054  | < 1                              |      | - 1911 - M. Da                                                   | < 10       | 21    | < 1 <sub>0</sub> 0 |                 | 4.6 < 1                               | 38     | 60  | 14 7.2              |          | 1200           | < 2 0.04 | 63 250         | < 1 < 5            | 27 < 10  | 59 130          | 240 ( 10           | 5 7             | 8 8        |                                          |
| POW95X-055  | 1 >                              | 3.3  | <b>×</b> 5                                                       | < 10       | 17    | < 1 j              | < 5             | 1.6 < 1                               | 16     | 120 | 13 7.4              | 1.7      | 590            | < 2 0.03 | 15 1300        | < 1 < 5            | 15 < 10  | 22 <b>9</b> 6   | 46 < 10            | 6 11            | > 7        |                                          |
|             |                                  |      |                                                                  |            |       | 1                  |                 |                                       | 100 N. |     |                     |          |                |          |                |                    |          |                 |                    | 1.217           | <i>n</i> 1 | 1                                        |
| POW95X-056  | <ul> <li>Appendix set</li> </ul> | 0.68 |                                                                  | < 10       | 43    | < 1                |                 | 4.8 < 1                               | 27     | 100 | 90 5.7              |          | 1400           | < 2 0.02 | 40 970         | 1 < 5              | 17 < 10  | 120 40          | 28 < 10            | 7 5             |            |                                          |
| POW95X-057  | - COM- 11-                       | 3.1  |                                                                  | < 10       | 35    |                    | · · · ·         | 3.4 < 1                               | 32     | 170 | 21 7.1              |          | 1100           | < 2∶0.03 | 78 620         | < 1 < 5            | 17 < 10  | 39 51           | 74 < 10            | 4 9             | -          |                                          |
| POW95X-058  | ۲ 1                              |      |                                                                  | < 10       | 7     |                    |                 | 1.9 (1                                | 31     | 250 | 6 <b>6.8</b>        | 2.Z      |                | < 2 0.03 | 80 630         | < 1 < 5            | 22 < 10  | 19 280          | 110 < 10           | 6 11            |            |                                          |
| POW95X-059  | < 1                              |      |                                                                  | < 10       | ୍ର 40 | < 1                | 24 A 7 A        | 5 5 5 1 y y y y e 45                  | 25     | 120 | 6 8.8               | 2.0      |                | < 2 0.02 | 22 930         | < 1 < 5            | 15 < 10  | 6 79            | 86 < 10            | 4 11            |            |                                          |
| POW95X-060  | < 1                              | 2.9  | <b></b> 5                                                        | < 10       | 25    | < 1                | < 5             | 3.9 (1                                | 32     | 190 | 13 7.1              | 2.1      | 1200           | < 2 0.0Z | 80 460         | < 1 < 5            | 14 < 10  | 45 44           | 75 <b>&lt; 10</b>  | 3 7             | 5 6        |                                          |
| POW95X-061  | <i>(</i> 1                       | 4.4  | < 5                                                              | < 10       | 8     | < 1                | 6.5             | 3.0 < 1                               | 36     | 70  | 47 15               | 1.9      | 1400           | < 2 0.02 | 62 310         | < 1 < 5            | 29 < 10  | 34 350          | 230 < 10           | 4 20            |            |                                          |
| POW95X-062  |                                  | 3.9  | - Web Ne 7                                                       | < 10       | . 8   | े <b>ग</b> े       | 25              | 2.8 < 1                               | 43     | 85  | 130 7.6             |          |                | < 2<0.01 | 77 220         | < 1 < 5            | 9 < 10   | 42 2700         | 180 < 10           | 5 11            |            |                                          |
| POW95X-064  | < 1                              |      | William 1                                                        | < 10       | •C.1  | < 1                | - <u></u>       | 6.1 (1                                | 35     | 820 | 25 2.6              | 2.1      | 630            | < 2<0.01 | 540 (2         | < 1 < 5            | 2 < 10   | 180 200         | 46 < 10            | 3 1             |            |                                          |
| POW95X-066  |                                  | 2.7  |                                                                  |            | 22    | < 1 <sup>11</sup>  |                 | A State of the second second          | 41     | 350 | 37 4.3              | 2.4      | 490            | < 2 0.02 | 300 330        | < 1 < 5            | 3 < 10   | 23 1000         | 46 < 10            | 2 6             |            |                                          |
| POW95X-067  | د 1                              | 1.3  | < 5                                                              | < 10       | 25    | < 1                |                 | 1                                     | 20     | 330 | 14 3.0              | 2.2      | - 14, 1795 - C | < 2 0.03 | 160 140        | < 1 < 5            | 2 < 10   | 12 530          | 41 < 10            | 1 2             |            |                                          |
|             |                                  |      |                                                                  |            |       |                    |                 |                                       |        |     |                     |          |                |          |                |                    |          |                 |                    |                 |            |                                          |
| POW95X-068  | < 1                              | 1.0  | 5                                                                | < 10       | 33    | < 1                | < 5             | 2.0 < 1                               | 20     | 220 | 6 2.9               | 1.1      | 520            | < 2 0.06 | 70 420         | < 1 < 5            | 6 < 10   | 35 29           | 20 < 10            | 4 3             | 9 6        |                                          |
| POW95X-069  | د 1                              | 1.7  | < 5                                                              | < 10       | - 35  | < 1                | < 5             | 2.7 < 1                               | 22     | 250 | 71 3.6              | 1.9      | 600            | < 2 0.08 | 150 550        | < 1 < 5            | 6 < 10   | 61 20           | 22 ( 10            | 4 6             | D 11       | 2.11                                     |
| POW95X-070  | € 1                              | 1.0  | < 5                                                              | < 10       | 21    | < 17)              | < 5             | 3.3 (1                                | 19     | 210 | 250 2.7             | 1.8      | 600            | < 2 0.06 | 120 580        | < 1 < 5            | 6 < 10   | 63 14           | 20 < 10            | 4 3             | 2 9        |                                          |
| POW95X-071  | < 1                              | 2.3  | 15                                                               | < 10       | 71    | < 1                | < 5             | 4.4 (1                                | 33     | 220 | 10 5.5              | 2.1      | 1300           | < 2 0.05 | 49 2400        | < 1 < 5            | 22 < 10  | 150 <b>66</b>   | 150 < 10           | 8 16            | 9          |                                          |
| POW95X-072  | < 1                              | 2.1  | < 5                                                              | < 10       | 15    | < 1                | < 5             | 4.3 < 1                               | 22     | 400 | 34 4.8              | 2.1      | 940            | < 2 0.03 | 83 1100        | < 1 < 5            | 14 < 10  | 150 43          | 89 < 10            | 8 15            | 8 (        |                                          |
|             |                                  |      |                                                                  |            |       | 1979<br>           |                 |                                       | Ë,     |     |                     |          |                |          |                |                    |          |                 |                    |                 |            |                                          |
| POW95X-073  | <b>C</b> 1                       |      | 40521-1,85                                                       | < 10       | 16    | < 1                |                 | 2.5 1                                 | 38     | 20  | 68 11               |          | 800            | < 2 0.02 | 21 580         | < 1 < 5            | 28 < 10  | 53 <b>130</b>   | 260 < 10           | 4 16            | 0 11       |                                          |
| POW95X-1016 | 4 1                              |      |                                                                  | < 10       | 5     |                    | < 5             | 5.1 1                                 | 50     | 69  | 120 9.2             |          | 1000           | < 2 0.01 | 86 250         | < 1 < 5            | 29 < 10  | 54 64           | 220 < 10           | 4 9             |            |                                          |
| POW95X-1017 | <b>(</b> 1                       |      | 949 - 19 - 19 <del>-</del> 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 | < 10       | 18    | < 1                | < 5             | 6.8 < 1                               | 25     | 310 | 85 6.5              |          | 1500           | < 2 0.01 | 39 260         | < 1 < 5            | 11 < 10  | 71 20           | 44 < 10            | 7 6             | -          |                                          |
| POW95X-1018 | <b>* 1</b>                       |      |                                                                  | < 10       | 48    |                    | < 5             | 4.6 < 1                               | 26     | 170 | 40 7.2              |          | 1400           | < 2 0.02 | 60 640         | < 1 < 5            | 15 < 10  | 50 29           | 52 < 10            | 5 9             |            |                                          |
| POW95X-1019 | 4 1                              | 2.2  | 20                                                               | < 10       | 19    | < 1 ()             | < 5             | 1.7 < 1                               | 27     | 150 | 88 3.6              | 1.7      | 820            | < 2 0.14 | 39 190         | 7 < 5              | 8 < 10   | 14 1600         | 79 < 10            | 5 . ÷ <b></b> 7 | 3 3        |                                          |
|             |                                  |      |                                                                  |            |       |                    |                 |                                       |        |     |                     |          |                |          |                |                    |          |                 |                    |                 | -          |                                          |
| POW95X-1020 | 1                                |      | · · · · · · · · · · · · · · · · · · ·                            | < 10       | 21    | < 1                |                 | 1.4 < 1                               | 17     | 180 | 92 2.4              |          | 460            | < 2 0.10 | 30 230         | < 1 < 5            | 6 < 10   | 33 1400         | 70 < 10            | 63              |            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| POW95X-1021 | { 1                              |      |                                                                  | < 10       | 12    | < 1                | 6 - G.C.        | 1.8 < 1                               | 23     | 160 | 210 2.9             | 1.1      | 500            | < 2 0.13 | 38 190         | < 1 < 5            | 5 < 10   | 17 1900         | 59 ( 10            | 66              | -          |                                          |
| POW95X-1022 | (1                               |      | en Maria Sarah                                                   | < 10       | 12    |                    | < 5             | 1.5 < 1                               | 29     | 190 | 70 4.5              | 1.8      | 960            | < 2 0.15 | 51 200         | < 1 < 5            | 12 < 10  | 31 2900         | 120 ( 10           | 86              |            |                                          |
| POW95X-1023 | < 1<br>1                         |      |                                                                  | < 10       | 36    | < 1                | 100 A 100 A 100 | · · · · · · · · · · · · · · · · · · · | 44     | 220 | 390 4.7             |          | 340            | 26 0.11  | 240 690        | 1 < 5              | 8 < 10   | 20 2300         | 81 <b>&lt; 1</b> 0 | 8 10            |            |                                          |
| POW95X-1024 | < 1                              | 1.0  | 10                                                               | < 10       | 77    | < 1                | < > '           | 0.47 < 1                              | 50     | 780 | 80 3.0              | 0.87     | 320            | < 2 0.09 | 600 <b>420</b> | 180 < 5            | 3 < 10   | 49 1500         | 54 < 10            | 3 5             | 78         |                                          |
| POW95X-1025 | <b>(1</b>                        | 0.18 | < 5                                                              | < 10       | 45    | < 1                | < 5             | 0.18 < 1                              | 4.7    | 280 | 17 1.2              | 0.22     | 80             | < 2 0.07 | 17 <b>190</b>  | 12 < 5             | < 1 < 10 | 41 450          | 32 < 10            | 3 2             | 2 25       |                                          |
| POW95X-1026 |                                  | 1.3  |                                                                  | < 10       | 16    | -36                | < 5             |                                       | 16     | 140 | 36 2.1              |          |                | < 2 0.11 | 25 180         | <1<5               | 5 < 10   | 16 1500         | 49 < 10            | 4 3             |            |                                          |
| POW95X-1027 | Contraction of the second second | 0.85 | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                         | < 10       | 14    | ·                  |                 | 1.1 < 1                               | 13     | 110 |                     | 0.79     | 350            | < 2 0.08 | 23 180         | < 1 < 5            | 5 < 10   | 17 1400         | 49 ( 10            | 4 2             |            |                                          |
| POW95X-1028 | < 1                              | 1    | tay balan African                                                | < 10       | 15    | 1.000 Conglete     | < 5             |                                       | 39     | 230 | 50 11               | 2.3      | 980            | < 2 0.02 | 98 620         | < 1 < 5            | 22 < 10  | 12 230          | 160 ( 10           | 5 16            |            |                                          |
| POW95X-1029 |                                  | 3.6  |                                                                  |            | 31    | < 1                |                 | · · · · · · · · · · · · · · · · · · · | 34     | 170 | 33 6.6              |          |                | < 2 0.02 | 69 260         | < 1 < 5            | 21 < 10  | 17 110          | 150 < 10           | 8 8             | S. 7.8     |                                          |
|             |                                  |      |                                                                  | - <b>-</b> |       |                    |                 |                                       |        |     |                     | ÷.       |                |          |                |                    |          | - (             | 790 2 10           |                 | . 0        |                                          |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

Kanj Sand SIGNED :

|                                                 | CAMECO CORPORATION<br>ATTN: M. KOZIOL<br>5W-2605-RG1 |                |                                |                  |                                |                         | 6)602-8236     | T 3 MISSIS                     | REPORT No. : <b>M5290</b><br>Page No. : 2 of 2<br>File No. : JN16MA<br>Date : JUN-17-1995 |                             |                                             |                                |                          |                 |                         |              |
|-------------------------------------------------|------------------------------------------------------|----------------|--------------------------------|------------------|--------------------------------|-------------------------|----------------|--------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------|--------------------------------|--------------------------|-----------------|-------------------------|--------------|
| SAMPLE #                                        | Ag<br>ppm                                            | Al As<br>% ppm | B Ba<br>ppm ppm                | Be Bi<br>ppm ppm | Ca Cd<br>% ppm                 | Co Cr<br>PPm <b>PPm</b> | Cu Fe<br>ppz % | Mg Mn<br>X ppm                 | Mo Na<br>ppm X                                                                            | NI P<br>ppm ppm             | Pb <b>Sb</b><br>ppm <b>ppm</b>              | Sc <b>Sn</b><br>ppm <b>ppm</b> | Sr Ti<br>pp <b>m ppm</b> | V W<br>ppm ppm  | Y 2n<br>pp <b>n ppn</b> | Zr<br>ppm    |
| PO <b>W95X-1031<br/>YdV-sh-01</b><br>YdV-PIT-01 | < 1                                                  | 0.87 10        | < 10 500<br>< 10 30<br>< 10 36 | < 1 < 5          | 4.5 < 1<br>0.27 < 1<br>2.3 < 1 | 22 780                  | 17 2,0         | 1.9 850<br>1.2 480<br>0.14 260 | < 2 0.01                                                                                  | 72 1800<br>230 20<br>15 610 | <pre>&lt; 1 &lt; 5 10 &lt; 5 2 &lt; 5</pre> | 5 < 10<br>3 < 10<br>2 < 10     | 6 34                     | 35 < 1 <b>0</b> | 6 46<br>2 32<br>9 13    | 2<br>7<br>11 |
|                                                 |                                                      |                |                                |                  |                                |                         |                |                                |                                                                                           |                             |                                             |                                |                          |                 |                         |              |

TSL/ASSAYEF Laboratories

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

Ramy God SIGNED :

| CAMECO | CORPORATION |
|--------|-------------|
| CHILLO | CONFORMITON |

ATTN: M. KOZIOL

### TSL/ASSAYE Laboratories

| 1270 FEWSTER DRIVE, UNIT | 3 MISSISSAUGA, ONTARIO L4W-1A4 |
|--------------------------|--------------------------------|
| PHONE #: (905)602-8236   | FAX #: (905)206-0513           |

### I.C.A.P. PLASMA SCAN Aqua-Regia Digestion

 REPORT No. :
 M5305

 Page No. :
 2 of 2

 File No. :
 JN23MA

 Date :
 JUN-26-1995

5W-2701-RG1

| SAMPLE #                     | λα                                       | Al As    | B Be                                   | Be Bj            | Ca Cd   | Co. 6*         | Cu Pa                 | ,<br>Ma Ma                               | Mo Na                             | N4 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ph <b>ch</b>             | Sc Sn            | 6 <b>M</b> J                                                                                                                                                                                                                                                                                                                                            |                    |                                                                                                                | <b>T</b> == |
|------------------------------|------------------------------------------|----------|----------------------------------------|------------------|---------|----------------|-----------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|-------------|
|                              | ppm                                      | % ppm    | ppm ppm                                | ppm ppm          | % ppm   | ppm ppm        | ppm %                 | % ppm                                    | ppm %                             | ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PD SD<br>PPm PPm         | ppm ppm          | ppm ppm                                                                                                                                                                                                                                                                                                                                                 | ppm ppm            | Y Zn<br>ppm ppm                                                                                                | ррт         |
| POW 95X-1058                 |                                          | A A1 . E | . 10                                   |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
| POW 95X-1058<br>POW 95X-1059 |                                          |          |                                        | <1 < 5<br><1 < 5 |         |                | a second de la second | 0.59 580                                 | Little control of the last of the | in the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1 < 5< 1 < 5           | 3 < 10<br>5 < 10 | 22 14<br>47 9                                                                                                                                                                                                                                                                                                                                           | 25 < 10<br>22 < 10 | 2 35<br>3 42                                                                                                   | 3           |
| POW 95X-1060                 | ۲ ،                                      | 4.2 < 5  | < 10 57                                | < 1 < 5          | 2.3 < 1 | 69 170         |                       | 1.9 1300                                 |                                   | ALCONTRACT AND A A |                          | 16 < 10          |                                                                                                                                                                                                                                                                                                                                                         | 72 ( 10            | 3 470                                                                                                          | 13          |
| POW 95X-1061                 | < 1                                      | 1.6 10   | < 10 13                                | < 1 < 5          | 1.6 (1  |                |                       | 0.66 370                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                  | 4 < 10           | 22 36                                                                                                                                                                                                                                                                                                                                                   | 28 ( 10            | 3 140                                                                                                          | 3           |
| POW 95X-1063                 | ζ.Τ                                      | 2.0 < 5  | < 10 26                                | < 1 < 5          | 2.8 (1  | 29 170         | 31 3.8                | 1.7 720                                  | < 2 0.08                          | 110 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                  | 9 < 10           | 49 20                                                                                                                                                                                                                                                                                                                                                   | 40 < 10            | 2 77                                                                                                           | 7           |
| POW 95X-1064                 |                                          | 3.5 (5   |                                        | < 1 < 5          |         | 31 79          | 3 8.5                 | 1.5 1200                                 | 2 0.02                            | 6 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 1 < 5                  | 25 <b>(</b> 10   | 57 86                                                                                                                                                                                                                                                                                                                                                   | 68 ( 10            | 5 180                                                                                                          | 9           |
| POW 95X-1065                 | < 1                                      | 2.7 < 5  | < 10 <b>10</b>                         | < 1 < 5          | 1.9 (1  | 21 <b>24</b> 0 |                       | 1.1 1000                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                  | 15 < 10          | 29 59                                                                                                                                                                                                                                                                                                                                                   | 51 <b>( 1</b> 0    | 4 170                                                                                                          | 7           |
| POW 95X-1066                 | <b>( 1</b>                               | 1.0 ( 5  | < 10 19                                | <1 < 5           | 1.7 (1  | 11 530         | 13 3.3                | 0.35 960                                 | < 2 0.02                          | 14 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5                  | 6 < 10           | 35 <b>3</b> 7                                                                                                                                                                                                                                                                                                                                           | 28 < 10            | 3 60                                                                                                           | 2           |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              | en terret in<br>En souther<br>En souther |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  | al de la composition br>de la composition de l<br>de la composition de la |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          |                                        |                  |         |                |                       |                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                |             |
|                              |                                          |          | (0000-00000000000000000000000000000000 |                  |         |                |                       | 11 11 14 14 14 14 14 14 14 14 14 14 14 1 | 20000 000 00000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.10 <b>.11</b> .1270.20 |                  |                                                                                                                                                                                                                                                                                                                                                         |                    | an an the second se |             |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

Runif Second SIGNED :

#### TSL/ASSAYEl Laboratories

1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA,ONTARIO L4W-1A4 PHONE #: (905)602-8236 FAX #: (905)206-0513

#### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| REPORT No. | : | M5350       |
|------------|---|-------------|
| Page No.   | : | 1 of 2      |
| File No.   | : | JLO4MB      |
| Date       | : | JUL-06-1995 |
|            |   |             |

ATTN: M. KOZIOL

CAMECO CORPORATION

5W-2800-RG1

|                            |                                                                                                                 | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |                  |                                  | •                                     |                      |                                                                                                                 |                               |                   |                  | Anto Cara da La     |                                         |     |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|------------------|----------------------------------|---------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|------------------|---------------------|-----------------------------------------|-----|
| SAMPLE #                   | Ag                                                                                                              | Al As                                   | B Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Be Bi                          | Ca Cd                | Co Cr            | Cu Fe                            | Mg Mn                                 | Mo Na                | NÍ P                                                                                                            | Pb Sb                         | Sc Sn             | Sr Ti            | V W                 | Y Zn                                    | Zr  |
|                            | ppm                                                                                                             | % ppm                                   | ppm <b>pp</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ppm ppm                        | % ppm                | ppm ppm          | ppm 🐮                            | % ppm                                 | ppm 🕷                | ppm ppm                                                                                                         | ppm <b>pp</b> m               | ppm ppm           | ppm <b>ppm</b>   | ppm ppm             | ppm ppm                                 | PPm |
|                            |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |                  |                                  |                                       |                      |                                                                                                                 |                               |                   |                  |                     |                                         |     |
| POW95X-084                 | < 1                                                                                                             | 1.9 < 5                                 | < 10 <b>28</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | 1.5 <b>( 1</b>       | 31 420           | 38 <b>3.6</b>                    | 0.94 540                              | < 2 0.27             | 48 400                                                                                                          | < 1 < 5                       | 17 ( 10           | 25 3000          | 200 ( 10            | 12 <b>78</b>                            | 7   |
| POW95X-085                 | < 1                                                                                                             | 1.8 < 5                                 | < 10 <b>19</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | 8.7 < 1              | 19 120           | 120 5.9                          | 2.0 1700                              | < 2 0.02             | 52 16                                                                                                           | < 1 < 5                       | 13 < 10           | 46 63            | 100 < 10            | 4 73                                    | 5   |
| POW95X-086                 | < 1                                                                                                             | 1.1 10                                  | < 10 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                        | 1.3 <b>( 1</b>       | 26 <b>68</b> 0   | 140 4.4                          | 0.62 460                              | < 2 0.05             | 50 36                                                                                                           | 20 < 5                        | 6 < 10            | 12 <b>19</b>     | 67 <b>&lt; 10</b>   | 1 29                                    | 1   |
| POW95x-087                 | < 1                                                                                                             | 2.7 20                                  | < 10 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 1 < 5                        | 5.2 41               | 62 49            | 150 <b>18</b>                    | 2.0 2000                              | 4<0.01               | 46 300                                                                                                          | 1 < 5                         | 14 < 10           | 47 60            | 22 < 10             | 4 200                                   | 7   |
| POW95X-088                 | < 1                                                                                                             | 2.2 < 5                                 | < 10 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                        | 2.6 < 1              | 19 290           | 46 3.5                           | 1.8 620                               | < 2 0.06             | 100 340                                                                                                         | < 1 < 5                       | 5 < 1O            | 50 39            | 37 < 10             | 2 66                                    | 5   |
|                            |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |                  |                                  |                                       |                      |                                                                                                                 |                               |                   |                  |                     |                                         |     |
| POW95X-089                 | < 1                                                                                                             | 1.8 < 5                                 | < 10 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                        | 3.6 < 1              | 19 270           | 4 3.5                            | 2.1 800                               | < 2 0.06             | 150 <b>450</b>                                                                                                  | < 1 < 5                       | 7 (10             | 67 19            | 26 < 10             | 3 80                                    | 6   |
| POW95X-090                 | < 1                                                                                                             | 1.3 < 5                                 | < 10 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                        | 0.69 < 1             | 11 190           | 23 1.6                           | 0.70 170                              | < 2 0.07             | 47 410                                                                                                          | < 1 < 5                       | 3 < 10            | 22 <b>29</b>     | 19 < <b>10</b>      | 5 50                                    | 14  |
| POW95X-091                 | < 1                                                                                                             | 3.1 <b>.</b> 5                          | < 10 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                        | 2.1 < 1              | 28 500           | 31 4.2                           | 2.2 620                               | < 2 0.05             | 180 <b>500</b>                                                                                                  | < 1 < 5                       | 11 < 10           | 61 46            | 71 < 10             | 4 110                                   | 8   |
| POW95X-092                 | د 1                                                                                                             | 2.7 < 5                                 | < 10 <b>13</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | 4.9 < 1              | 33 68            | 52 19                            | 1.8 2200                              | 4<0.01               | 23 370                                                                                                          | < 1 < 5                       | 19 < 10           | 71 35            | 35 <b>&lt; 10</b>   | 5 430                                   | 9   |
| POW95X-093                 | < 1                                                                                                             | 2.1 < 5                                 | < 10 <b>25</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | 0.50 < 1             | 21 340           | 16 3.2                           | 1.9 290                               | < 2 0.03             | 120 <b>520</b>                                                                                                  | < 1 < 5                       | 3 < 10            | 13 <b>31</b>     | 29 < 10             | 3 200                                   | 6   |
|                            |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |                  |                                  |                                       |                      |                                                                                                                 |                               |                   |                  |                     |                                         |     |
| POW95x-094                 | < 1                                                                                                             | 1.3 < 5                                 | and a start and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 2.4 < 1              | 17 260           | 31 3.2                           | 1.4 590                               | < 2 0.09             | 36 420                                                                                                          | < 1 < 5                       | 5 < 10            | 54 16            | 26 < 10             | 5 64                                    | 10  |
| POW95X-095                 | <1 (                                                                                                            |                                         | < 10 <b>8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 1 < 5                        | 0.16 < 1             | 24 1400          |                                  | 0.64 180                              | < 2 0.02             | 200 18                                                                                                          | 2 < 5                         | 3 ( 10            | 7 34             | 48 ( 10             | < 1 880                                 | 2   |
| POW95X-1069                | 10.000 000000                                                                                                   | and the second second                   | < 10 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 1 < 5                        | 5.2 < 1              | 57 1800          | 46 6.8                           | 2.5 1000                              | < 2<0.01             | 850 <b>60</b>                                                                                                   | < 1 < 5                       | 20 < 10           | 86 57            | 110 <b>&lt; 1</b> 0 | 4 140                                   | 6   |
| POW95X-1070                | < 1                                                                                                             | 22 Contra 1996 - 1                      | And the second s | < 1 < 5                        | 2.7 < 1              | 24 130           | 14 8.0                           | 1.6 1200                              | < 2 0.06             | 12 <b>110</b> 0                                                                                                 | < 1 < 5                       | 16 < 10           | 34 55            | 40 < 1 <b>0</b>     | 7 150                                   | 8   |
| POW95X-1071                | 1 (                                                                                                             | ).22 < 5                                | < 10 <b>33</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | 4.6 < 1              | 29 120           | 110 5.3                          | 1.9 1000                              | < 2 0.03             | 46 290                                                                                                          | 20 <b>&lt; 5</b>              | 18 < 10           | 150 15           | 25 < 10             | 3 <b>63</b>                             | 9   |
|                            |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                      |                  |                                  |                                       |                      |                                                                                                                 |                               |                   |                  |                     |                                         |     |
| POW95x-1072                | < 1 (                                                                                                           | 1000 00 000 000 000 000 000 000 000 000 | < 10 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 1 < 5                        | 3.4 < 1              | 32 150           | 78 6.9                           | 1.9 1200                              | 10 0.05              | 61 400                                                                                                          | 2 < 5                         | 20 < 10           | 120 15           | 34 < 10             | 3 89                                    | 10  |
| POW95X-1073                | ۲ (                                                                                                             |                                         | < 10 <b>34</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | 4.8 < 1              | 28 110           | 140 4.6                          | 2.2 960                               | < 2 0.01             | 87 92                                                                                                           | < 1 < 5                       | 23 ( 10           | 190 <b>10</b>    | 30 < 10             | 4 78                                    | 8   |
| POW95X-1074                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                        | 4.7 (1               | 25 240           | 69 4.5                           | 2.3 870                               | < 2 0.02             | 87 96                                                                                                           | < 1 < 5                       | 23 ( 10           | 91 160           | 150 < 10            | 4 54                                    | 7   |
| POW95X-1075                | (1)                                                                                                             | litter and star                         | < 10 <b>23</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | 6.1 < 1              | 20 <b>250</b>    | 160 3.6                          | 2.1 960                               | < 2<0.01             | 39 72                                                                                                           | 3 ( 5                         | 14 < 10           | 130 5            | 28 < 10             | 4 39                                    | 4   |
| POW95X-1076                | () <b>(</b> 1                                                                                                   | 3.2 < 5                                 | < 10 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5                        | 4.3 < 1              | 32 120           | 78 <b>7.1</b>                    | 1.8 890                               | < 2 0.03             | 59 170                                                                                                          | < 1 < 5                       | 26 (10            | 39 630           | 240 ( 10            | 8 78                                    | 11  |
| POW95X-1077                |                                                                                                                 | 2.3 (5                                  | < 10 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                        |                      | 76 140           | 150 0 6                          | 0 03 1100                             | 4 7 A AE             | 46 430                                                                                                          | < 1 < 5                       | · 20 < 10         | 26 290           | 270 < 10            | 3 110                                   | 8   |
| POW95X-1077                | - 27 <b>7</b>                                                                                                   | 10. No. 11.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 2.9 (1               | 36 140           |                                  | 0.93 1100                             | < 2 0.05             | - 1990 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 |                               |                   |                  |                     | 6 36                                    | 9   |
| POW95X-1078                | < 1 (                                                                                                           | 201 N. 10000                            | < 10 37<br>< 10 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5<br>< 1 < 5             |                      | 10 340<br>10 250 | 180 <b>1</b> .9<br>6 <b>7</b> .4 | · · · · · · · · · · · · · · · · · · · | < 2 0.02             | 10 380<br>33 350                                                                                                | < 1 < 5<br>< 1 < 5            | 2 ( 10            | 8 18<br>5 600    | 14 < 10<br>55 < 10  | 8 <b>64</b>                             | 8   |
| POW95X-1080                | <pre></pre>                                                                                                     | 2009 Acres 100 2000                     | < 10 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5 < 1 < 5                |                      | 10 250           | 6 7.4<br>2 7.3                   | 0.92 320                              | < 2 0.04<br>< 2 0.04 | 33 350                                                                                                          | < 1 < 5                       | 3 < 10<br>3 < 10  | 5 610            | 54 < 10             | 8 60                                    | 6   |
| POW95X-1081<br>POW95X-1082 | <pre></pre>                                                                                                     | ).35 < 5                                | 1000 (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1<5                           |                      | 10 250           | 44 2.6                           | 1.7 730                               | < 2 0.03             | 58 200                                                                                                          | < 1 < 5                       | 6 ( 10            | 88 27            | 20 < 10             | 4 33                                    | 7   |
| F0W95X-1082                |                                                                                                                 |                                         | · 10 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · T                            | 3.2 4 1              | . 14 350         | 44 4.0                           | 1.///30                               | × 2 0.03             | 30 200                                                                                                          | · T                           | 0.110             | 00               | 20 10               |                                         |     |
| POW95X-1083                | (1)                                                                                                             | ).19 < 5                                | < 10 <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 1 < 5                        | 2.5 (1               | 21 240           | 16 2.1                           | 1.5 460                               | < 2 0.03             | 70 50                                                                                                           | < 1 < 5                       | 6 < 10            | 83 24            | 11 4 10             | 2 20                                    | 5   |
| POW95X-1083                | < 1 0                                                                                                           |                                         | < 10 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1<5                           | 2.5 (1)              | 29 190           | 130 3.7                          | 1.5 400                               | 54 0.05              | 110 370                                                                                                         | 2 4 5                         | 9 < 10            | 67 <b>21</b>     | 15 < 10             | 4 27                                    | 16  |
| POW95X-1085                |                                                                                                                 |                                         | < 10 10<br>< 10 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\langle 1 \langle 5 \rangle$  | 2.5 < 1              | 30 120           | 81 5.5                           | 1.4 850                               | < 2 0.05             | 51 380                                                                                                          | < 1 < 5                       | 17 < 10           | 22 29            | 220 < 10            | 4 92                                    | 6   |
| POW95X-1086                |                                                                                                                 |                                         | < 10 <u>30</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                        | Calif. d films       | 18 730           | 6 1.8                            |                                       | 2 0.04               | 19 200                                                                                                          | $\langle 1 \langle 5 \rangle$ | 1 < 10            | 23 9             | 24 < 10             | 3 32                                    | 7   |
| POW95X-1088                |                                                                                                                 | 1.7 < 5                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>&lt; 1 &lt; 5</pre>       | Course of the second | 16 310           | 50 2.7                           |                                       | < 2 0.04             | 30 520                                                                                                          | $\langle 1 \langle 5 \rangle$ | 2 ( 10            | 18 17            | 16 < 10             | 6 60                                    | 13  |
| PO#95X-1088                |                                                                                                                 | 4. ( )                                  | , 10, 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Transfer 2</li> </ul> | 0.40 × 1             | 10 310           | 50 2.1                           | 0.73 200                              | < 2 V,VJ             | 30 320                                                                                                          |                               | 5 - <b>1</b> - 10 | 10 T.            | 10 / 10             | 0                                       | 10  |
| POW95X-1089                | × 1                                                                                                             | 2.1 < 5                                 | < 10 <b>360</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                        | 2.0 (1               | 23 550           | 30 4.3                           | 2.0 650                               | < 2 0.05             | 84 1900                                                                                                         | < 1 < 5                       | 10 < 10           | 240 75           | 110 < 10            | 9 110                                   |     |
| POW95X-1089                | 1. 1                                                                                                            | . 17 o. 1960 ig                         | < 10 380<br>< 10 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1 < 5<br>< 1 < 5             | 14 (1                | 15 25            | 34 5.6                           | 1.3 2700                              | < 2 (0.05            | 60 170                                                                                                          | < 1 < 5                       | 10 ( 10           | 180 150          | 36 < 10             | 8 88                                    | 5   |
| POW95X-1091                | 10 C 10 C 10 C 10 C                                                                                             |                                         | < 10 <b>( 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                        | 6,2 < 1              | 13 87            | 3 · · · · j2 . jppp · · · ·      | 0.71 830                              | < 2 0.08             | 12 930                                                                                                          | $\langle 1 \langle 5 \rangle$ | 8 ( 10            | 120 250          | 69 < 10             | 14 36                                   | 2   |
| POW95X-1092                | 1000 C |                                         | < 10 < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 1 < 5<br>< 1 < 5             | 7.5 < 1              | 35 <b>57</b>     | 45 7.0                           | 1.7 1300                              | < 2 0.08             | 58 <b>290</b>                                                                                                   | < 1 < 5                       | 22 < 10           | 120 250          | 230 < 10            | 11 90                                   | 9   |
| POW95X-1095                |                                                                                                                 | 1.8 < 5                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 M 100 M 100 M              | 2.4 < 1              | 16 410           |                                  | 0.84 460                              | < 2 0.13             | 39 150                                                                                                          | <1<5                          | 8 ( 10            | 12 1400          | 89 ( 10             | 6 23                                    | 5   |
|                            |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | ~··~                 | 10 910           | 110 213                          | ~ <b>~</b>                            |                      | J ,                                                                                                             |                               |                   | ** <u>*</u> 777V |                     | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |     |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

Kang Soad SIGNED :

| CAMECO CORPORATION<br>ATTN: M. KOZIOL<br>5W-2800-RG1 |           |                |                        |                         | 1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA,ONTARIO 14W-1A4<br>PHONE #: (905)602-8236 FAX #: (905)206-0513<br>I.C.A.P. PLASMA SCAN<br>Aqua-Regia Digestion |                  |                |                 |                |                        |                  |                   | REPORT No. : <b>M5350</b><br>Page No. : 2 of 2<br>File No. : JLO4MB<br>Date : JUL-06-1995 |                        |                 |           |  |
|------------------------------------------------------|-----------|----------------|------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------|----------------|------------------------|------------------|-------------------|-------------------------------------------------------------------------------------------|------------------------|-----------------|-----------|--|
| Sample #                                             | Ag<br>ppm | Al As<br>% ppm | B Ba<br>ppm <b>ppm</b> | Be Bi<br>ppm <b>ppm</b> | Ca Cd<br>% ppm                                                                                                                                        | Co Cr<br>ppm ppm | Cu Fe<br>ppm X | Mg Mn<br>% ppm  | Mo Na<br>ppm % | Ni P<br>ppm <b>ppm</b> | Pb Sb<br>ppm ppm | Sc Sn<br>ppm ppm  | Sr Ti<br>pp <b>n ppn</b>                                                                  | V W<br>pp <b>n ppn</b> | Y Zn<br>ppm ppm | Zr<br>ppm |  |
| 795 <b>x-109</b> 5                                   | ۲ ک       | 1.5 < 5        | < 10 <b>71</b>         | < 1 < 5                 | 2.1 ( 1                                                                                                                                               | 48 710           | 73 4.0         | 1.3 1200        | < 2 0.09       | 450 120                | < 1 < 5          | 6 < 10            | 51 1300                                                                                   | 80 <b>( 10</b>         | 4 31            | 3         |  |
| 95X-1096                                             | C 1       | 2.0 < 5        | < 10 <b>13</b>         | < 1 < 5                 | 2.3 (1                                                                                                                                                | 41 1800          | 130 3.6        | 1.8 830         | 12<0.01        | 510 <b>1200</b>        | < 1 < 5          | 11 <b>&lt; 10</b> |                                                                                           |                        | 5 44            | 3         |  |
| 95x-1097                                             |           | 1.5 < 5        | < 10 <b>27</b>         | < 1 < 5                 | 0.29 < 1                                                                                                                                              | 21 170           | 310 3.5        | 1.3 300         | 66 0,02        | 81 <b>66</b> 0         | 10 🤆 5           | 3 < 10            | 10 <b>1500</b>                                                                            | 21 < 10                | 6 120           | 32        |  |
| 195 <b>X-1</b> 098                                   | 95        | 0.38 ( 5       | < 10 <b>8</b>          | < 1 < 5                 | 0.85 < 1                                                                                                                                              | 240 800          | 9999 25        | 0.64 <b>230</b> | 9999 0.05      | 800 560                | 25 🖌 5           | < 1    80         | 22 650                                                                                    | 120 < 10               | 16 42           | 12        |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         | 4                                                                                                                                                     |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           | <u>.</u>       |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       | •                |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   | -                                                                                         |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 | 1.00      |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |
|                                                      |           |                |                        |                         |                                                                                                                                                       |                  |                |                 |                |                        |                  |                   |                                                                                           |                        |                 |           |  |

TSL/ASSAYE

Laboratories

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

SIGNED : Any Soad

#### TSL/ASSAYE! Laboratories

CAMECO CURPORATION

1270 FEWSTER DRIVE, UNIA 3 MISSISSAUGA, ONTARIO 14W-1A4 PHONE #: (905)602-8236 FAX #: (905)206-0513

### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| REPORT No. | : | M54430      |
|------------|---|-------------|
| Page No.   | : | 1 of 2      |
| File No.   | : | M5443       |
| Date       | : | AUG-02-1995 |

5W-3012-RG1

| SAMPLE #                   | Ag                                        | Al As                                 | B Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Be Bi     | Ca Cd             | Co Cr         | Cu Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mg Mn                                                                                                           | Mo Na                                 | NI P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                    |                 |                    |                | 11.4¥            |
|----------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|-----------------|--------------------|----------------|------------------|
|                            | ppm                                       | % ppm                                 | ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ppm ppm   |                   | ppm ppm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . T. <i>Mara</i> lari                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pb Sb                    | Sc Sn              | Sr Ti           | V                  | Y Zn           | Zr               |
|                            |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   | PPm PPm       | P.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % ppm                                                                                                           | рЪт 👻                                 | ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm ppm                  | ppm ppm            | ppm ppm         | ppm ppm            | ppm ppm        | ppm              |
| POW95X~502                 | د 1                                       | 1.1 < 5                               | < 10 <b>4</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)(5     | 0.27 < 1          | 7 230         | 6 Z.3 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .58 200                                                                                                         | < 2 0.03                              | 12 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                    |                 |                    |                |                  |
| POW95X-504                 | < 1                                       | 1.7 < 5                               | < 10 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5   |                   | 12 290        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4 820                                                                                                         |                                       | 50 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5<br>1 < 5         | 1 < 10             | 6 18            | 18 < 10            | 4 40           | 9                |
| POW95X-505                 | < 1                                       | 2.7 10                                | < 10 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                   | 22 270        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1 820                                                                                                         | · · · · · · · · · · · · · · · · · · · | 180 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 5 < 10             | 12 7            | 34 < 10            | 2 110          | <b>4</b> (1. 200 |
| POW95X-509                 | < 1                                       | 1.27.27 1. 1. 1. 1. 1. 1.             | < 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                   | 31 290        | 10 State 10 | 2.1 760                                                                                                         |                                       | 190 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 4 < 10             | 36 21           | 37 < 10            | 3 83           | 7                |
| POW95X-510                 | < 1                                       | 3.9 ( 5                               | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1 < 5   |                   | 45 140        | 50 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | 6 < 10             | 74 26           | 33 < 10            | 4 120          | 10               |
|                            |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 이 가슴을     |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0 ,000                                                                                                        | . 2. 0.02                             | 110 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 16 <b>&lt; 1</b> 0 | 74 600          | 140 < 10           | 8 100          | 7                |
| POW95X-511                 | < 1                                       | 2.8 × 5                               | < 10 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 < 5    | 2.0 < 1           | 45 410        | 55 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2 700                                                                                                         | < 2 0.03                              | 180 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 7 (10              | 88 1600         | 87 < 10            |                |                  |
| POW95X-512                 | < 1                                       | 2.1 10                                | < 10 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 < 5    | 2.7 < 1           | 18 130        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7 520                                                                                                         |                                       | 85 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>&lt; 1 &lt; 5</pre> | 3 < 10             | 59 31           |                    | 5 75           | 6                |
| POW95X-514                 | · < 1                                     | 1.9 < 5                               | < 10 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5   | 3.6 (1            | 15 98         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3 620                                                                                                         |                                       | 69 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 3 < 10             | 59 51           | 31 < 10<br>24 < 10 | 3 50<br>5 55   | 3                |
| POW95X-515                 | < 1                                       | 1.5 5                                 | < 10 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1 (5     | 1.3 < 1           | 14 260        | 4 3.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                       | 42 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 1 < 10             | 22 17           | 15 < 10            | ວ ວວ<br>7 55   | 5                |
| POW95X-516                 | < 1                                       | 2.5 < 5                               | < 10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1 (5     | 1.2 (1            | 22 210        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9 660                                                                                                         |                                       | 79 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1 < 5                   | 7 < 10             | 43 2400         | 70 < 10            | 6 78           | 8                |
|                            |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | y h two           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | , , ,              | 43 2400         | 10 4 10            | 0 /8           | 6                |
| POW95X-517                 | < 1                                       | 2.4 < 5                               | < 10 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5   | 0.83 < 1          | 23 220        | 100 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8 570                                                                                                         | < 2 0.06                              | 82 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 6 ( 10             | 34 2300         | 61 < 10            | 4 60           | 5                |
| POW95X-518                 | < 1                                       | 2.7 10                                | < 10 <b>21</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5   | 0.88 < 1          | 42 120        | 110 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0 690                                                                                                         | < 2 0.09                              | 150 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 3 < 10             | 25 3000         | 120 < 10           | 10 78          | 5                |
| POW95X-519                 | < 1                                       | 1.5 < 5                               | < 10 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 < 5    | 2.7 (1            | 25 180        | 62 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6 880                                                                                                         | < 2 0.07                              | 62 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 4 < 10             | 33 58           | 33 < 10            | 4 66           |                  |
| POW95X~520                 | 1                                         | 2.9 < 5                               | < 10 <b>27</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 . < 5 | 1.6 < 1           | 22 150        | 3 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0 610                                                                                                         | < 2 0.06                              | 63 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 10 ( 10            | 19 100          | 76 < 10            | 3 75           | 6                |
| POW95X-521                 | < 1                                       | 1.8 < 5                               | < 10 <b>41</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5   | 2.3 < 1           | 16 140        | 48 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7 430                                                                                                         | < 2 0.04                              | 89 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 3 < 10             | 33 480          | 26 < 10            | 4 40           | 6                |
|                            |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                    |                 |                    |                | •                |
| POW95X-522                 | < 1                                       | - 141 A - T                           | < 10 <b>27</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5   | 5.0 < 1           | 19 300        | 48 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1 940                                                                                                         | < 2 0.04                              | 83 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 9 < 10             | 170 46          | 69 < 10            | 10 60          | 2                |
| POW95X-523                 | د 1                                       | 547 Taxa                              | < 10 <b>38</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1 < 5    | 2.0 < 1           | 25 260        | 14 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0 620                                                                                                         | < 2 0.03                              | 150 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 5 ( 10             | 33 26           | 25 < 10            | 4 62           | 9                |
| POW95X-525                 | < 1                                       |                                       | < 10 <b>4</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5   | 1.8 < 1           | 30 250        | 11 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0 480                                                                                                         | < 2 0.05                              | 180 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 6 < 10             | 36 17           | 33 < 10            | 4 88           | 10               |
| POW95X-526                 | < 1                                       |                                       | < 10 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 1.0 < 1           | 17 240        | 40 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6 530                                                                                                         | < 2 0,06                              | 55 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 3 < 10             | 16 28           | 23 < 10            | 6 40           | 10               |
| POW95X-527                 | < 1                                       | 3.3 < 5                               | < 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5   | 0.72 < 1          | 28 430        | 25 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4 710                                                                                                         | < 2 0.04                              | 170 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 9 ( 10             | 18 2300         | 72 ( 10            | 4 72           | 5                |
|                            |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a de la composición d |                                       | and the second sec |                          |                    |                 |                    |                |                  |
| POW95X-528                 | < 1                                       |                                       | < 10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1       |                   | 35 480        | 35 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4 900                                                                                                         | < 2 0.03                              | 240 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 10 < 10            | 30 1600         | 78 < 10            | 4 79           | 7                |
| POW95X-1100<br>POW95X-1101 |                                           |                                       | < 10 <b>16</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5   |                   | 23 420        | 10.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2 610                                                                                                         | < 2 0.03                              | 200 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 < 5                    | 9 < 10             | 42 2800         | 67 < 10            | 6 70           | 12               |
|                            | < 1                                       |                                       | < 10 <b>1</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1 < 5    | - 1 - See J - T - | 42 320        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4 570                                                                                                         | < 2 0.05                              | 320 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 4 < 10             | 38 <b>190</b> 0 | 72 < 10            | 5 62           | 2                |
| POW95X-1102                |                                           | 2.0 (5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2.4 < 1           | 17 150        | 100 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6 460                                                                                                         | < 2 0.03                              | 85 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1 < 5                  | 3 < 10             | 35 48           | 22 < 10            | 4 40           | 4                |
| POW95X-1103                | < 1                                       | 3.4 5                                 | < 10 <b>25</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5   | 1.9 < 1           | 25 330        | 27 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1 1300                                                                                                        | < 2 0.02                              | 170 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1 < 5                   | 4 < 10             | 29 34           | 39 ( 10            | 3 350          | 3                |
| POW95X-1104                | 12 10 10 10 10 10 10 10 10 10 10 10 10 10 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                    |                 |                    |                |                  |
| POW95X-1104<br>POW95X-1105 | (1                                        |                                       | 2000 C. 1999 C | < 1       |                   | 23 270        | Weiter and the second sec                                                                                                                                                                                                                                            | 2.0 580                                                                                                         | < 2 0.05                              | 100 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 5 < 10             | 17 26           | 48 < 10            | 2 170          | 5                |
| POW95X-1105                | <pre>&lt; 1 0 &lt; 1</pre>                |                                       | < 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5   |                   | 20 <b>710</b> | 6 0.59 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00 C                                                                                                          | < 2 0.02                              | 35 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 1 < 5                  | < 1 < 10           | 4 28            | 15 < 10            | < 1 8          | < 1              |
| POW95X-1100                |                                           | · · · · · · · · · · · · · · · · · · · | < 10 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5   | 100 M 100 M 100 M | 35 <b>310</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2 630                                                                                                         | < 2 0.03                              | 110 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 < 5                    | 9 < 10             | 15 69           | 61 < 10            | 2 170          | 7                |
| POW95X-1107                |                                           |                                       | < 10 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 < 5    | 10 A A A A        | 35 220        | 9997 C. 166 C. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0 830                                                                                                         | < 2 0.05                              | 110 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 < 5                  | 7 ( 10             | 36 13           | 49 < 10            | 2 110          | 5                |
| POW95X#1109                | ۲ ۲                                       | 2.0 < 5                               | < 10 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 < 5    | 1.6 < 1           | 23 330        | 50 3.2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0 580                                                                                                         | < 2 0.03                              | 130 <b>38</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 1 < 5                  | 3 < 10             | 36 21           | 28 < 10            | 2 72           | 3                |
| POW95X-1110                |                                           | 9E                                    | . 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                    |                 |                    |                |                  |
| POW95X-1110<br>POW95X-1112 | < 1 0                                     |                                       | < 10 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)(5     |                   | 5 270         | 45 2.3 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | < 2 0.04                              | 30 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 < 5                    | 1 < 10             | 55 13           | 9 < 10             | 9 20           | 16               |
| POW95X-1112<br>POW95X-1113 | <1<br>< 1                                 | 1.0000                                | < 10 <b>2</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5   | AA                | 40 240        | 32 5.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | < 2 0.04                              | 90 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 < 5                   | 5 < 10             | 52 13           | 26 < 10            | 4 160          | 18               |
| POW95X-1115<br>POW95X-1114 | 1 1 <u>2</u> 4 <u>0</u> T                 |                                       | < 10 <b>39</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5   |                   | 13 200        | 23 3.2 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | < 2 0.05                              | 61 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 < 5                    | 4 < 10             | 18 11           | 28 < 10            | 4 60           | 8                |
| POW95X-1114<br>POW95X-1116 | No. Charles I.                            | 1.5 < 5                               | Sector Terrar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1 < 5    |                   | 11 240        | 17 3.3 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                   | < 2 0.07                              | 50 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 < 5                    | 2 < 10             | 13 20           | 21 < 10            | 5 79           | 8                |
| FOMADY-1110                | < 1                                       | 2.3 < 5                               | < 10 <b>17</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5   | 2.9 < 1           | 30 380        | 13 3.6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3 610                                                                                                         | < 2 0.02                              | 220 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1<5                     | 6 < 10             | 87 16           | 29 < 10            | 2 60           | 4                |
|                            |                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 2000/00/00/00                         | 17033717687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tining too ().           |                    | 2               |                    | and the second |                  |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 st 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

Kanj Saac SIGNED :

### TSL/ASSAYE Laboratories

CAMECO CURPORATION

1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA,ONTARIO L4W-1A4 PHONE #: (905)602-8236 FAX #: (905)206-0513

#### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| REPORT No. | : | M54430      |
|------------|---|-------------|
| Page No.   | : | 2 of 2      |
| File No.   | : | M5443       |
| Date       | : | AUG-02-1995 |

5W-3012-RG1

| SAMPLE #                   | Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Al              | As                                                                                                                                       | B Ba                                | Be           | Bi                           | Ca Cd                | Co Cr                                                                             | Cu Fe  | Mq     | Mn                | Mo Na            | Ni P                                     | Pb Sb                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|------------------------------|----------------------|-----------------------------------------------------------------------------------|--------|--------|-------------------|------------------|------------------------------------------|-----------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|------------|
|                            | <b>ppm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *               | ppm                                                                                                                                      | ppm ppm                             | ppm          | ppm                          | % ppm                | ppm ppm                                                                           | ppm %  |        | ppm               |                  | ppm ppm                                  | Pb Sb<br>ppm ppm                        | SC Sn<br>ppm ppm | Sr Ti<br>ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                             | Y Zn                          | Zr         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  | FF- FF-                                  | P.F                                     | РЪЩ РЪЩ          | ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm ppm                                       | ppm ppm                       | ppm        |
| POW95X-1117                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | < 5                                                                                                                                      |                                     | < 1          | < 5                          | 3.3 < 1              | 21 210                                                                            | 70 3.  | 5 1.6  | 650               | < 2 0.03         | 57 380                                   | < 1 < 5                                 | 4 ( 10           | 40 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 ( 10                                       | 3 45                          | 5          |
| POW95X-1118                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | < 5                                                                                                                                      |                                     |              |                              | 3.4 < 1              | 15 160                                                                            | 55 3.  | 3 1.8  | 620               | < 2 0.07         | 47 470                                   | 100 C C C C C C C C C C C C C C C C C C | 4 < 10           | 56 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 < 10                                       | 5 45                          | л<br>8     |
| POW95X-1119                | A second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | < 5                                                                                                                                      |                                     | < 1          |                              | 6.6 < 1              | 13 370                                                                            | 16 2.  |        |                   | < 2 0.01         | 55 210                                   |                                         | 3 < 10           | 76 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22 < 10                                       | 3 98                          | 3          |
| POW95X-1122                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | < 5                                                                                                                                      |                                     |              |                              | 3.0 (1               | 23 210                                                                            | 30 З.  | 8 2.0  | 730               | < 2 0.06         | 120 490                                  | a second a second as                    | 7 (10            | 53 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46 ( 10                                       | 3 48                          | 3          |
| POW95X-1124                | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0             | < 5                                                                                                                                      | < 10 <b>5</b> 7                     | < 1          | < 5                          | 1.4 < 1              | 17 160                                                                            | 40 3.  | 8 1.6  | 430               | < 2 0.04         | 32 450                                   | 2 < 5                                   | 3 < 10           | 25 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 < 10                                       | 4 80                          | 9          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      | daar ar oo far die 1975<br>1975 - Deele daar die 1975<br>1976 - Die daar die 1975 |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L, , IV                                       | T OV                          | 9          |
| POW95X-1126                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | < · 5 ·                                                                                                                                  |                                     |              |                              | 1.6 < 1              | 4 190                                                                             | 18 2.  | 8 1.3  | 500               | < 2 0.04         | 30 370                                   | 4 < 5                                   | 1 < 10           | 27 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 ( 10                                        | 6 77                          | 11         |
| POW95X-1127                | ٢ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                                          |                                     |              |                              | 1.4 < 1              | 16 290                                                                            | 57 2.  | 5 1.5  | 420               | < 2 0.07         | 45 430                                   | 3 < 5                                   | 4 < 10           | 51 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 < 10                                       | 6 32                          | 11         |
| POW95X-1128                | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 5                                                                                                                                        |                                     |              | 5.14 Mar.                    | 0.43 (1              | 15 330                                                                            | 110 3. | 2 1.6  | 440               | < 2 0.10         | 50 620                                   | 3 (5                                    | 4 < 10           | 13 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68 < 10                                       | 5 59                          | 10         |
| POW95X-1129                | i in a start a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | < 5                                                                                                                                      |                                     |              |                              | 1.0 < 1              | 10 110                                                                            | 15 2.  | 6 1.3  | 340               | < 2 0.03         | Z1 <b>490</b>                            | 8 < 5                                   | 1 < 10           | 19 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 < 10                                       | 6 55                          | 9          |
| POW95X-1130                | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1             | < 5                                                                                                                                      | < 10 <b>51</b>                      | < 1          | < 5                          | 0.89 < 1             | 13 170                                                                            | 26 2.  | 7 0.79 | 320               | < 2 0.08         | 21 470                                   | 1 < 5                                   | 2 < 10           | 20 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 < 10                                       | 6 81                          | 10         |
| POW95X-1132                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        | ÷.     |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               | 10         |
| POW95X-1132<br>POW95X-1133 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | < 5                                                                                                                                      | and the second second second second |              | < 5                          |                      | 25 230                                                                            | 35 3.  | 5 2.2  | 650               | < 2 0.04         | 160 380                                  | < 1 < 5                                 | 5 < 10           | 58 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 < 10                                       | 4 72                          | 9          |
| POW95X-1135                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | < 5                                                                                                                                      |                                     |              |                              | 1.9 (1               | 15 180                                                                            | 21 2.  | 5.7    |                   | < 2 0.06         | 50 <b>360</b>                            | 2 < 5                                   | 3 < 10           | 22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 ( 10                                       | 5 69                          | 12         |
| POW95X-1134<br>POW95X-1137 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | < 5                                                                                                                                      |                                     | < 1          |                              |                      | 32 350                                                                            | 50 4.  |        |                   | < 2 0.03         | 200 <b>600</b>                           | < 1 < 5                                 | 11 < 10          | 22 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86 < 10                                       | 3 88                          | 6          |
| POW95X-1137                | 100 W 0 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.             | < 5                                                                                                                                      | Second Second Second                |              |                              | 0.58 < 1             | 12 380                                                                            |        |        |                   | < 2 <b>0.1</b> 0 | 75 520                                   | 1 ( 5                                   | 2 < 10           | 62 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27 < 10                                       | 6 25                          | 10         |
| 104934-1130                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.32            | 15 (                                                                                                                                     | 10 20                               | < 1          | < 5 I                        | 0.07 (1              | 5 330                                                                             | 15 3.  | 2 0.09 | 52                | < 2 0.05         | 25 460                                   | 20 < 5                                  | 2 < 10           | 13 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 < 10                                       | 3 15                          | 14         |
| POW95X-1139                | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 3             | 20 (                                                                                                                                     | 10                                  | ())          |                              | 0.70 (1              |                                                                                   |        |        |                   |                  |                                          | Walling at                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1997 - C. |                               |            |
| POW95X-1140                | <u>```</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 25 0                                                                                                                                     |                                     | < 1 °        |                              |                      | 29 340                                                                            |        |        |                   | < 2 0,16         | 18 460                                   | 12 < 5                                  | 8 < 10           | 10 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53 < 10                                       | 8 95                          | 20         |
| POW95x-1141                | ( I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 40 0                                                                                                                                     |                                     |              |                              | 0.10 < 1<br>0.25 < 1 | 6 310                                                                             |        |        |                   | < 2 0.05         | 20 440                                   | 86 < 5                                  | 3 < 10           | 8 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 ( 10                                       | 5 41                          | 13         |
| POW95X-1142                | < 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 340 0                                                                                                                                    | 10 4                                | 24           | ( ) )<br>/ E                 | 8.0 (1               | 11 280                                                                            |        |        |                   | < 2 0.07         | 25 480                                   | 20 <b>(</b> 5                           | 4 < 10           | 6 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37 < 10                                       | 7 120                         | 22         |
| POW95X-1143                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | < 5 <                                                                                                                                    | 10 17                               | 21           | 2.5                          | 1.5 < 1              | 59 180<br>35 250                                                                  |        |        |                   | < 2<0.01         |                                          | < 1 < 5                                 | 21 < 10          | 300 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 < 10                                       | 3 32                          | 6          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     | •            |                              | 1.7 . 1              | 33 230                                                                            | 21 2.0 | 5 1.0  | 470               | < 2 0.15         | 95 350                                   | < 1 < 5                                 | 10 < 10          | 20 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 < 10                                      | 9 130                         | 3          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     | 1            |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | i de servición<br>Se travella |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | · ·                                                                                                                                      |                                     |              |                              |                      |                                                                                   |        | 1      |                   |                  | an a |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1             |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                                                                                                                                          |                                     |              |                              |                      | •                                                                                 |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            | in the second of |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        | en lingue de      |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0             |                                                                                                                                          |                                     |              | (                            |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | yan sa                                        |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 44            |                                                                                                                                          |                                     |              | 4794                         |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 (A)<br>1999) |                                                                                                                                          |                                     | 3.4<br>1.7   |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  | and the second sec |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.<br>                                        |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     | 2017<br>1928 |                              |                      |                                                                                   |        |        | 1                 |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              | aldal<br>1.111<br>W. Lands N |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               | panala a p |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1997 - 1997 - 1997<br>1997 - 1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              | 4                            |                      |                                                                                   |        |        | n hil<br>Mana nir |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                          |                                     |              |                              |                      |                                                                                   |        |        |                   |                  |                                          |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                               |            |

A .5 gm sample is digested with 2 ml of 3:1~HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

1 amil 500 SIGNED :

|      | TSL/    | ASSA   | YE.  |   | Laboratories         |         |
|------|---------|--------|------|---|----------------------|---------|
| 1270 | FEWSTER | DRIVE, | UNIT | з | MISSISSAUGA, ONTARIO | L4W-1A4 |

PHONE #: (905)602-8236

ATTN: M. KOZIOL

### REPORT No. : **M5538** Page No. : 1 of 1 File No. : AG15MA Date : AUG-16-1995

I.C.A.P. PLASMA SCAN Aqua-Regia Digestion

FAX #: (905)206-0513

5W-3229-RG1

| SAMPLE #    | Ag      | Al As   | B Ba           | Be Bi                                                 | Ca Cđ                                     | Co Cr                                 | Cu Pe  | Mg Mn    | Mo Na              | Ni P                                                                                                           | Pb Sb                                 | Sc Sn              | Sr <b>Ti</b>                             | VW         | Y Zn    | Zr zala |
|-------------|---------|---------|----------------|-------------------------------------------------------|-------------------------------------------|---------------------------------------|--------|----------|--------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|------------------------------------------|------------|---------|---------|
|             | ppm     | * ppm   | ppm <b>ppm</b> | ppm ppm                                               | % ppm                                     | ppm ppm                               | ppm X  | % ppm    | ppm %              | ppm ppm                                                                                                        | ppm <b>ppm</b>                        | ppm ppm            | pp <b>m ppm</b>                          | ppm ppm    | ppm ppm | ppæ     |
| POW95X-1144 | ÷       |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
| POW95X-1144 |         |         | < 10 7         |                                                       |                                           |                                       |        |          | 2 0,04             |                                                                                                                | < 1 < 5                               | 25 < 10            | 39 50                                    | 280 < 10   | 4 200   | 15      |
| POW95X-1145 | · · · · | 3.0 5 3 | < 10 < 1       | < 1 < 5                                               | 5.2 (1                                    | 32 47                                 | 71 15  | 1.9 1700 | < 2<0.01           | 53 250                                                                                                         | < 1 < 5                               | 26 ( 10            | 41 49                                    | 230 < 10   | 3 160   | 15      |
| POW95X-1147 | × 1     | J.0 J   | < 10 < 1       | < 1 < 5                                               | 4.8 < 1                                   | 43 49                                 | 240 16 | 1.8 2500 | < 2<0.01           | The second s | < 1 < 5                               | 22 < 10            |                                          | 200 ( 10   | 2 180   | 17      |
| POW95x-1148 |         |         | < 10 33< 10 4  |                                                       |                                           |                                       |        |          |                    |                                                                                                                | < 1 < 5                               | 10 < 10            |                                          | 66 < 10    | 5 58    | 3       |
|             | . • •   |         |                | • 1 • • <b>5</b>                                      | 4.9 (1                                    | 28 120                                | 48 9.2 | 1.3 1700 | 4 0.05             | 56 170                                                                                                         | < 1 < 5                               | 16 <b>&lt; 1</b> 0 | 39 14                                    | 160 < 10   | 3 110   | 9       |
| POW95X-1149 | < 1     | 2.3 10  | < 10 <b>24</b> | 2020<br>4 1 2 2 5                                     | 4 4 4 1                                   | 51 01                                 | 120 11 | 1 3 1600 |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
| POW95X~1150 |         |         | < 10 < 1       |                                                       |                                           |                                       |        |          |                    | We / - 1                                                                                                       | < 1 < 5                               |                    | 76 M M M M M M M M M M M M M M M M M M M | 200 < 10   | 2 130   | 9       |
|             |         |         |                |                                                       |                                           |                                       |        | 1.0 1500 | ` <b>C O O O O</b> | 00 <b>T</b> 00                                                                                                 | · · · · · · · · · · · · · · · · · · · | 10 4 10            | 14 1800                                  | 180 < 10   | 6 90    | 3       |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                | An Angel<br>Angel Angel<br>Angel Angel<br>Angel Angel |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          | ·          |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             | an An   |         |                |                                                       |                                           | · · · · · · · · · · · · · · · · · · · |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       | fren dage<br>Standard                     |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          | 2.77.5<br> |         |         |
|             |         |         |                |                                                       |                                           |                                       |        |          |                    |                                                                                                                | <b>.</b>                              |                    |                                          |            |         |         |
|             |         |         |                | 1,000000.000000                                       | 100 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A |                                       |        |          |                    |                                                                                                                |                                       |                    |                                          |            |         |         |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

Kaij Soad SIGNED :

CAMECO CORPORATION

### TSL/ASSAYE Laboratories

| 1270 FEWSTER DRIVE, UNIT | 3 MISSISSAUGA, ONTARIO L4W-1A4 |
|--------------------------|--------------------------------|
| PHONE #: (905)602-8236   | FAX #: (905)206-0513           |

### I.C.A.P. PLASMA SCAN Aqua-Regia Digestion

| REPORT No. | : | M5583       |
|------------|---|-------------|
| Page No.   | : | 1 of 1      |
| File No.   | : | AG21MA      |
| Date       | : | AUG-23-1995 |

5W-3268-RG1

| SAMPLE #            | Ag    | A)   | 1     | λs    | B    | Ba    | Be         | Bi         | Ca          | Cđ           | Co  | Cr  | Cu  | Fe                   | Mg                   | Mn                  | Mo    | Na   | Ni   | P      | Pb Sb       | Sc    | Sn   | Sr  | Ti          | 17                            |      | v   | -   | -   |
|---------------------|-------|------|-------|-------|------|-------|------------|------------|-------------|--------------|-----|-----|-----|----------------------|----------------------|---------------------|-------|------|------|--------|-------------|-------|------|-----|-------------|-------------------------------|------|-----|-----|-----|
|                     | PPm   | *    |       | ppm   | ppr  | a ppm | ppa        | PP         | X 1         | ppm          | ppm | ppm | ppm | *                    | *                    | ppm                 | PPm   |      | ррв  | ppm    | ppm pp      |       |      |     |             | V                             | W    | Ŷ   | Zn  | Zr  |
|                     |       |      | 3     |       |      |       |            |            |             |              |     |     |     |                      |                      |                     | ••    |      | FF-  | F.F.m. | PP# PP      | ա իհա | ppm  | Pp# | i ppm       | ppm                           | ppm  | ppm | ppm | ppm |
| POW 95X-201         | < 1   | 1.   | 0     | 10    | < 10 | 19    | < 1        | ć.         | 5 3.4       | < 1          | 42  | 200 | 76  | 6.9                  | 1.8                  | 1000                | 6     | 0.06 | 47   | 350    |             |       |      |     |             |                               |      |     |     |     |
| POW 95X-202         | < 1   | 0.2  | 27    | < 5   | < 10 |       |            |            | 5 6.3       |              |     | 140 |     |                      |                      | 1300                |       | 0.03 |      |        | < 1 <       |       | < 10 | _   | 130         |                               | < 10 | 4   | 57  | 7   |
| POW 95X-203         | < 1   | 1.   | 8     | 10    | < 10 |       |            |            | 5 6.4       |              |     | 92  |     | - 1011<br>- 1111     |                      | 1500                |       |      |      |        | < 1 <       |       | < 10 |     |             | 37                            | < 10 | 5   | 48  | 5   |
| POW 95X-205         |       | 1.   | 7     | 15    | < 10 |       |            |            | 5 0.85      |              |     | 440 |     | 10                   |                      | 530                 |       | 0.03 |      |        | < 1 <       |       | < 10 |     | 93          | 98                            | < 10 | 4   | 96  | 7   |
| POW 95x-206         | × 1   | 1.   | 2     | 15    | < 10 |       |            |            | 0.52        |              |     | 96  |     | 1.00                 |                      | 430                 |       |      |      |        | < 1 <       | -     | < 10 |     | 1600        | 50                            | < 10 | 10  | 78  | 1   |
|                     |       |      |       |       |      |       |            |            |             | • •          | - / |     | 5   |                      | 1.1                  | 430                 | < 2   | 0.08 | 36   | 320    | < 1 <       | 55    | < 10 | 20  | 2100        | 130                           | < 10 | 7   | 70  | 2   |
| POW 95x-207         | < 1   | 1.   | 0     | 20    | < 10 | 25    | < 1        | ~ .        | 7.1         | <i>c</i> 1   | 37  | 120 | 100 |                      |                      |                     |       |      |      |        |             |       |      |     |             |                               |      |     |     |     |
| POW 95X-1151        | < 1   | 2.   | 2     |       |      |       |            |            | 1.1         |              |     |     |     |                      |                      |                     |       | 0.03 | 44   |        | < 1 <       |       | < 10 | 110 | 230         | 57                            | < 10 | 10  | 39  | 7   |
| POW 95X-1152        | . 1   |      |       |       |      |       |            |            | 2.3         |              |     |     |     | 11                   |                      |                     |       |      |      |        | < 1 <       |       | < 10 |     | 1700        |                               |      | 6   | 79  | < 1 |
| POW 95X-1153        | < 1   |      |       |       |      |       |            |            | 2.8         |              |     |     |     | 1100<br>1110<br>1110 |                      | 1400                |       | 0.04 |      |        | < 1 <       |       | < 10 | 26  | 150         | 290                           | < 10 | 3   | 110 | 13  |
| POW 95X-1154        | ۲ ا   |      |       |       |      |       |            |            |             |              |     |     | 100 |                      | 2.1                  |                     |       | 0.02 | 83   | 240    | < 1 <       | 5 32  | < 10 | 33  | 96          | 270                           | < 10 | 4   | 110 | 15  |
|                     |       |      |       |       |      | •     | • -        |            | 3.3         | : <b>`</b> † | 74  | 140 | 92  | 0,3                  | 2.2                  | 920                 | < 2   | 0.03 | 74   | 140    | < 1         | 5 25  | < 10 | 75  | 1100        | 130                           | < 10 | 6   | 67  | 10  |
| W 95X-1156          | < 1   | 4.   | 4 :   | < 5   | < 10 | 6     | <i>c</i> 1 | 1 5        | 1.8         |              | 21  | 220 | 20  |                      |                      | er wel.<br>Training | _     |      |      |        |             |       |      |     |             |                               |      |     |     |     |
| OW 95x-1157         | < 1   |      | - 44  |       |      | -     |            |            | 6.0         |              |     |     | 39  | 222                  |                      | 1100                |       |      |      |        | < 1 ( ) < 1 |       | < 10 | 22  | 1800        | 120                           | < 10 | 11  | 120 | 7   |
| OW 95x-1158         | د 1   |      | 1     |       |      |       |            |            | 5.0         |              |     | 120 |     | W                    | 2.0                  |                     |       | 0.01 |      |        | < 1 <       |       | < 10 | 170 | 45          | 33                            | < 10 | 3   | 40  | 8   |
| OW 95X-1159         | < 1   |      |       |       |      |       |            |            |             |              |     | 92  |     |                      | 1.5                  |                     |       | 0.01 |      |        | < 1 < 9     | 5 13  | < 10 | 140 | 30          | 24                            | < 10 | 4   | 39  | 5   |
| OW 95X-1160         |       |      |       |       |      |       |            |            | 4.8         |              |     |     |     |                      |                      | 1200                |       |      |      | 2300   | 1 < 9       |       | < 10 | 170 | 73          | 26                            | < 10 | 11  | 52  | 2   |
|                     |       |      |       |       |      |       | ••         | • 5        | 4.0         | • 1          | 49  | /4  | 23  | / . 4                | 1.9                  | 1100                | 4     | 0.01 | 47   | 1800   | < 1 < 1     | 5 12  | < 10 | 170 | 51          | 28                            | < 10 | 11  | 77  | з   |
| W 95X-1161          | < 1 ( | 0.79 | , · · | < 5 ( | ( 10 | 170   | <i>i</i> 1 | / E        | 4.8         |              | ~~  |     |     |                      |                      |                     |       |      |      |        |             | •     |      |     | л<br>4      |                               |      |     |     |     |
| OW 95X-1162         | < 1   |      |       |       |      |       |            |            | •.o<br>5.5  |              |     |     |     |                      |                      |                     |       |      | 100  | 700    | < 1 < 9     | 5 10  | < 10 | 170 | 25          | 32                            | < 10 | 6   | 64  | 9   |
| ₩ 95 <b>X-</b> 1163 | < 1   |      |       |       | : 10 |       |            |            | 3.5         |              |     | 71  |     |                      |                      | 1300                |       |      |      |        | < 1 < 5     |       | < 10 | 150 | 20          | 41                            | < 10 | 3   | 59  | 6   |
| OW 95X-1164         | < 1   |      |       |       |      |       |            |            |             |              |     | 170 |     | (20) - C             |                      | 860                 |       |      | . 93 | 320    | < 1., < 5   | 9     | < 10 | 78  | 17          | 29                            | ¢ 10 | 2   | 67  | 8   |
|                     |       |      |       | ••••  | 10   | 20    | • 1        | < <b>5</b> | 0.68        | < 1          | -12 | 220 | 5   | 3.1                  | 0.61                 | 170                 | < 2 ( | 0.07 | 20   | 400    | < 1 < 5     | 2     | < 10 | 21  | 16          | 12                            | <_10 | 4   | 97  | 7   |
|                     |       |      |       |       |      |       |            |            |             |              |     |     |     |                      |                      |                     |       |      |      |        |             |       |      |     |             | 1997)<br>1997<br>1997<br>1997 |      |     |     |     |
|                     |       |      |       |       |      |       |            |            |             |              |     |     |     |                      |                      |                     |       |      |      |        |             |       |      |     |             | ()<br>                        |      |     |     |     |
|                     |       |      |       |       |      |       |            |            |             | New Y        |     |     |     |                      |                      |                     |       |      |      |        |             |       |      |     |             |                               |      |     |     |     |
|                     |       |      |       |       |      |       |            |            |             | .*           |     |     |     |                      |                      |                     |       |      |      |        |             |       |      |     | 11 TO 11    |                               |      |     |     |     |
|                     |       |      |       |       |      |       |            |            |             |              |     |     |     |                      |                      |                     |       |      |      |        |             |       |      |     |             |                               |      |     |     |     |
|                     |       |      |       |       |      |       |            |            | 311.<br>314 |              |     |     |     |                      |                      |                     |       |      |      |        |             |       |      |     |             |                               |      |     |     |     |
|                     |       |      |       |       |      |       |            |            |             |              |     |     |     |                      |                      |                     |       |      |      |        |             |       |      |     | , . <i></i> |                               |      |     |     |     |
|                     |       |      |       |       |      |       |            |            |             | 5 N 2        |     |     |     |                      | - 1.<br>- 1.<br>- 1. |                     |       |      |      |        |             |       |      |     |             | N.                            |      |     |     |     |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C 101 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

Ram SIGNED :

CAMECO CORPORATION

### TSL/ASSAYEI Laboratories

1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA, ONTARIO L4W-1A4 PHONE #: (905)602-8236 FAX #: (905)206-0513

> I.C.A.P. PLASMA SCAN Aqua-Regia Digestion

REPORT No. : M5590 Page No. : 1 of 2 File No. : AG24MA Date : AUG-25-1995

5W-3316-RG1

ATTN: M. KOZIOL

| SAMPLE #     | Ag<br>ppm      | A1<br>% | As<br>ppm | B<br>ppm | Ba<br>ppm | Be<br>ppm   | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Pe<br>X | Mg<br>% | Mn<br>ppm | Mo<br>ppm  | Na<br>% | Ni<br>ppm | P<br>ppm   | Pb<br>ppm   | Sb<br>ppm  | Sc<br>ppm | Sn<br>ppm    | Sr<br>ppm | Ti<br>ppm    | V<br>ppm   | W<br>ppm | Y<br>PPM | Zn<br>ppm  | Zr      |
|--------------|----------------|---------|-----------|----------|-----------|-------------|-----------|---------|-----------|-----------|-----------|-----------|---------|---------|-----------|------------|---------|-----------|------------|-------------|------------|-----------|--------------|-----------|--------------|------------|----------|----------|------------|---------|
| POW-95C-2013 | < 1            | 4.0     | 10        | < 10     | 16        | < 1         | 4 E       | 67      |           | 35        | 85        |           |         |         |           |            |         |           |            |             |            |           |              |           |              |            |          |          | • -        |         |
| POW-95C-2014 |                | 3.8     |           | < 10     | 22        | < 1         | < 5       | 5.6     |           | 34        | 85        |           | 7.6     |         | 2100      |            |         |           | 200        | -           | < 5        |           | < 10         | 85        |              | 140        |          | 5        | 120        | 15      |
| POW-95C-2015 | . –            |         | < 5       |          |           | -           |           | 6.4     | < 1       | 30        | 69        |           | 9.5     |         | 1400      | _          | 0.01    |           | 220        |             | < 5        |           | < 10         | 87        | 65           | 130        |          | 3        | 110        | 8       |
| POW-95C-2016 | -              |         | < 5       |          |           | $\langle 1$ |           | 6.5     | < 1       | 30        | 70        |           |         |         | 2100      | < 2        | 0.01    |           | 190        |             | < 5        |           | < 10         | 74        |              | 140        |          | 4        | 110        | 14      |
| POW-95C-2017 | < 1            |         | < 5       |          |           | < 1         |           |         |           | 32        | 70        | 83        |         |         | 1500      | < 2        |         | •         | 180<br>200 | <1<1        | < 5<br>< 5 |           | < 10<br>< 10 | 63<br>73  | 43<br>65     | 120<br>130 |          | 5<br>5   | 94<br>110  | 8<br>8  |
| POW-95c-2018 | < 1            | 1.0     | 10        | < 10     | 5         | < 1         | < 5       | 7.7     | ٢ 1       | 15        | 29        | 30        | 6.9     | 2.0     | 2100      | 62         | 0.01    | 37        | 52         | < 1         | 2.5        | А         | < 10         | 65        | 18           | 41         | < 10     | 7        | 64         | 5       |
| POW-95C-2019 | < 1 (          | 0.68    | 15        | < 10     |           | < 1         | < 5       | 7.5     | < 1       | 12        | 26        |           |         |         | 2000      | < 2        |         |           | 40         |             | < 5        |           | < 10         | 79        | 8            |            | < 10     | 8        | 50         | 9       |
| POW-95C-2020 | < 1            | 1.3     | < 5       | < 10     | 9         | < 1         | < 5       | 7.7     | < 1       | 17        | 37        | 39        | 6.7     |         | 2000      |            | 0.01    |           | 98         | $\langle 1$ | < 5        |           | < 10         | 79        | 22           |            | < 10     | 7        | 72         | 5       |
| POW-95C-2021 | < 1            | 1.9     | 10        | < 10     | 17        | < 1         |           | 7.9     | < 1       | 24        | 51        | 53        |         |         | 1600      |            |         |           | 140        |             | < 5        |           | < 10         | 78        | 23           |            | < 10     | 6        | 75         | 5       |
| POW-95C-2022 | < 1            | 1.3     | 5         | < 10     | 7         | < 1         | < 5       | 7.7     | < 1       | 18        | 34        | 40        | 5.4     |         | 1600      | -          |         | . –       | 110        | < 1         |            |           | < 10         | 85        | 15           |            | < 10     | 6        | 55         | 5       |
| POW-95C-2023 | < 1            | 1.6     | 10        | < 10     | 12        | < 1         | < 5       | 7.8     | < 1       | 19        | 37        | 43        | 5.6     | 1.9     | 1700      | < 2        | 0.02    | 42        | 100        | < 1         | < 5        | 9         | < 10         | 80        | 27           | 54         | < 10     | 6        | 63         | 7       |
| POW-95C-2024 | < 1            |         | < 5       |          | 12        | < 1         | < 5       | 7.8     | < 1       | 25        | 49        | 55        | 6.7     | 1.9     | 1600      | < 2        | 0.02    | 56        | 130        | < 1         | < 5        | 11        | < 10         | 84        | 23           | 68         | < 10     | 6        | 74         | 6       |
| POW-95C-2025 | <b>_&lt; 1</b> | 1.6     |           | < 10     | 10        | < 1         | < 5       | 7.6     | < 1       | 21        | 37        | 47        | 6.7     | 1.9     | 1700      | < 2        | 0.01    | 48        | 120        | < 1         | < 5        | 10        | < 10         | 98        | 16           | 55         | < 10     | 7        | 69         | 3       |
| POW-95C-2026 | × 1            |         |           | < 10     | 3         | < 1         | < 5       | 7.6     | < 1       | 18        | 39        | 44        | 6.8     | 2.0     | 2000      | < 24       | 0.01    | 37        | 90         | < 1         | < 5        | 11        | < 10         | 87        | 22           | 65         | < 10     | 6        | 65         | 4       |
| POW-95C-2027 | < 1            | 3.0     | < 5       | < 10     | 7         | < 1         | < 5       | 8.0     | < 1       | 29        | 56        | 64        | 7.2     | 1.9     | 1600      | < 2        | 0.01    | 51        | 140        | < 1         | < 5        | 16        | < 10         | 72        | 35           | 110        | < 10     | 5        | 80         | 7       |
| POW-95C-2028 | < 1            | 4.3     | < 5       | < 10     | 2         | < 1         | < 5       | 7.0     | < 1       | 31        | 73        | 70        | 8.9     | 1.9     | 1500      | < 2        | 0.01    | 58        | 180        | < 1         | < 5        | 28        | < 10         | 77        | 58           | 180        | . 10     | 4        | 99         | 12      |
| POW-95C-2029 | < 1            | 4.1     | < 5       | < 10     | 36        | < 1         | < 5       | 3.1     | < 1       | . –       | 110       |           | 7.7     |         | 1100      |            | 0.02    |           | 240        |             | < 5        |           | < 10         | 35        | 66           | 170        |          | 3        | 120        | 8       |
| POW-95X-208  | < 1            | 3.1     | < 5       | < 10     | 21        | < 1         | < 5       | 2.4     | < 1       | 28        | 200       |           |         |         | 990       |            | 0.13    | 65        | 260        |             | < 5        |           | < 10         |           | 2800         | 220        |          | 9        | 130        | 16      |
| POW-95X-209  | < 1            | 4.7     | < 5       | < 10     | 16        | <1          | < 5       | 2.1     | < 1       |           | 110       |           | 7.7     |         | 1200      |            | 0.03    | 66        | 210        | < 1         | < 5        |           | < 10         | 16        | 580          | 210        | -        | 10       | 96         | 15      |
| POW-95X-210  | < 1            | 2.3     | < 5       | < 10     | 5         | < 1         | < 5       | 1.7     | < 1       | 16        | 210       |           |         | - · ·   | 670       | < 2        |         | 19        | 840        | < 1         | < 5        |           | < 10         |           | 2400         |            | < 10     | 32       | 73         | 11      |
| POW-95X-211  | < 1            | 4.1     | < 5       | < 10     | 14        | < 1         | < 5       | 2.7     | < 1       | 36        | 58        | 55        | 11      | 1.8     | 1500      | < 2        | 0.03    | 53        | 410        | < 1         | < 5        | - 34      | < 10         | 54        | 260          | 320        | < 10     | -4       | 190        | 20      |
| POW-95x-212  | < 1            | 1.7     | < 5       | < 10     | 70        | < 1         | < 5       | 8.0     | < 1       | 29        | 75        | 99        | 7.0     | 1.1     | 2200      | < 2        | 0.02    | 35        | 240        | < 1         | < 5        | 9         | < 10         | 130       | 42           | 120        | < 10     | 8        | 76         | 3       |
| POW-95X-213  | ·< 1           | 1.2     | 10        | < 10     | 30        | < 1         | < 5       | 2.6     | < 1       | 15        | 130       | 51        | 5.1     | 0.64    | 760       | 2          | 0.05    | 10        | 770        | < 1         | < 5        | 6         | < 10         | 43        | 19           | 24         | < 10     | 7        | 64         | 4       |
| POW-95X-214  | < 1 0          | ).82    | 40        | < 10     | 10        | < 1         | < 5       | 1.8     | < 1       | 47        | 110       | 60        | 19      | 0.84    | 1900      | <b>〈</b> 2 | 0.06    | 58        | 340        | 4           | < 5        | 20        | < 10         | 26        | 15           | 110        | < 10     | 4        | 200        | 23      |
| POW-95X-215  | < 1 0          | .85     | 40        | < 10     | 15        | < 1         | < 5       | 1.6     | < 1       | 66        | 150       | 120       | 12      | 0.65    | 1400      | < 2        | 0.08    | - 88      | 490        | < 1         | < 5        | 19        | < 10         | 29        | 16           | 120        | < 10     | 5        | 170        | 12      |
| POW-95X-216  | < 1 O          | .95     | 40        | < 10     | 9         | < 1         | < 5       | 2.0     | < 1       | 40        | 91        | 76        | 19      | 0.83    | 1900      | < 2        | 0.05    | 52        | 390        | 3           | < 5        | 20        | < 10         | 26        | 13           | 130        | < 10     | 4        | 200        | 16      |
| POW-95X-217  | < 1            | 1.7     | 15        | < 10     | 2         | < 1         | < 5       | 7.7     | < 1       | 16        | 33        | 41        | 5.3     | 2.0     | 2000      | < 2        | 0.02    | 31        | 96         |             | < 5        |           | < 10         | 71        | 22           |            | < 10     | 5        | 60         | 7       |
| POW-95X-218  | < 1            | 2.5     | < 5       | < 10     | 18        | < 1         | < 5       | 4.5     | < 1       | 37        | 97        | 73        | 8.8     | 1.4     | 1300      | < 2        | 0.07    | 63        | 480        | < 1         | < 5        |           | < 10         | 33        | 24           | 210        |          | 3        | 120        | 8       |
| POW-95X-219  | < 1 0          | .71     | < 5       | < 10     | 320       | < 1         | < 5       | 5.2     | < 1       | 15        | 130       | 120       | 4.5     | 1.5     | 1200      | < 2        | 0.02    | -51       | 1700       | 2           | < 5        |           | < 10         | 170       | 17           |            | < 10     | 11       | 57         | 3       |
| POW-95X-220  | < 1            | 1.3     | 10        | < 10     | 22        | < 1         | < 5       | 3.3     | < 1       | 18        | 270       | 15        | 3.8     | 1.7     | 620       | < 2        | 0.06    | 36        | 820        | < 1         |            |           | < 10         | 93        | 34           |            | < 10     | 6        | 48         | 9       |
| POW-95X-1165 | < 1            | 1.1     | 65        | ( 10     | 36        | < 1         | < 5       | 1.5     | < 1       | 130       | 1900      | 230       | 9.2     | 0 93    | 1500      | 26         | 0 12    | 4300      | 86         | / 1         |            | 4         | . 10         | 27        | 000          | 100        |          | -        |            |         |
| POW-95X-1166 | < 1            |         |           | ( 10     |           | < 1         | < 5       | 1.3     | < 1       |           | 250       | 100       | 4.9     |         |           | < 2        |         | • 300     | 140        | < 1<br>< 1  | < 5        |           | < 10         | 37        | 990          | 100        |          | 3        | 100        | < 1     |
| POW-95X-1167 | < 1            |         |           |          | -         | < 1         |           | 1.8     | < 1       |           | 190       |           | 3.7     |         |           | < 2        |         | 49        | 150        | < 1         | < 5<br>< 5 |           | < 10<br>< 10 |           | 1900<br>1800 | 150        |          | 5        | 160        | 8       |
| POW-95X-1168 | < 1            |         | < 5       |          |           | < 1         |           | 1.0     | < 1       | 28        | 60        | 79        |         | 1.1     |           | < 2        |         | 24        | 400        | < 1         | < 5<br>< 5 |           | < 10         |           | 4800         |            | < 10     | 6        | 140        | 2       |
| POW-95X-1169 | < 1            |         |           |          |           | < 1         |           | 2.7     | -         | 32        | 69        | 71        |         |         | 1600      | < 2        |         |           |            | < 1         |            | -         | < 10<br>< 10 |           | 190          | 230<br>300 |          | 12<br>3  | 130<br>210 | 9<br>15 |

A .5 gm mample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

Kany Sad SIGNED :

TSL/95

#### TSL/ASSAYE Laboratories

CAMECO CURPORATION

ATTN: M. KOZIOL

#### 

#### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| : | M5590       |
|---|-------------|
| : | 2 of 2      |
| : | AG24MA      |
| : | AUG-25-1995 |
|   | :           |

5W-3316-RG1

| SAMPLE #     | λg  | A1   | λs   | B    | Ba  | Be         | Bi  | Ca   | Cd  | Co  | Cr  | Cu   | Fe  | Mg   | Mn   | Mo  | Na   | Ni   | P     | ₽Ь  | Sb  | Sc  | Sn   | sr  | TÍ   | v   | W    | Y   | Zn  | Zr  |
|--------------|-----|------|------|------|-----|------------|-----|------|-----|-----|-----|------|-----|------|------|-----|------|------|-------|-----|-----|-----|------|-----|------|-----|------|-----|-----|-----|
|              | ppm | *    | ppm  | ppm  | ppm | ppm        | ppm | *    | ppm | ppm | ppm | ppm  | *   | *    | Ppm  | ppm | *    | ppm  | ppm   | ppm | ppm | ppm | ppm  | ppm | ppm  | ppm | ppm  | ppm | ppm | ppm |
| POW-95X-1170 |     | • •  | 20   |      | -   |            |     |      |     |     |     |      |     |      |      | _   |      |      |       |     | _   |     |      |     |      |     |      |     |     |     |
|              |     | 1.9  |      | < 10 |     |            | < 5 |      |     | 33  | 38  | 37   |     |      | 1200 | _   | 0.07 | 34   | 560   | < 1 | < 5 |     | < 10 | 51  | 210  | 290 | < 10 | 4   | 120 | 16  |
| POW-95X-1171 | -   | 3.4  |      | < 10 | 39  | < 1        | < 5 | 2.7  | < 1 | 29  | 64  | 25   | 9.4 |      | 1200 | < 2 | 0.03 | 53   | 420   | < 1 | < 5 | 19  | < 10 | 49  | 120  | 240 | < 10 | 3   | 130 | 8   |
| POW-95X-1172 | -   | 0.43 | -    | < 10 | 12  | < 1        | < 5 | 3.8  | < 1 | 22  | 310 | 29   | 3.1 | 1.1  | 590  | < 2 | 0.07 | 51   | 270   | < 1 | < 5 | 7   | < 10 | 63  | 9    | 20  | < 10 | 2   | 38  | 8   |
| POW-95X-1174 | < 1 | 1.9  | < 5  | < 10 | 38  | < 1        | < 5 | 3.0  | < 1 | 24  | 330 | 21   | 4.6 | 1.8  | 990  | < 2 | 0.07 | 210  | 290   | < 1 | < 5 | 5   | < 10 | 55  | 22   | 27  | < 10 | 3   | 100 | 13  |
| POW-95X-1175 | < 1 | 2.3  | < 5  | < 10 | 12  | < 1        | < 5 | 0.82 | < 1 | 21  | 340 | 6    | 4.1 | 1.8  | 550  | < 2 | 0.07 | 79   | 490   | < 1 | < 5 | 8   | < 10 | 71  | 2300 | 69  | < 10 | 5   | 90  | 13  |
| POW-95X-1176 | < 1 | 3.1  | < 5  | < 10 | 8   | <u>د ۱</u> | < 5 | 4 3  | e 1 | 37  | 150 | 80   | 6.8 | 17   | 1100 |     | 0.03 | 76   | 330   | ٢ 1 | < 5 | 26  | < 10 | 33  | 120  | 240 |      | 7   | 120 |     |
| POW-95X-1177 |     | 4.2  |      | < 10 |     |            | < 5 |      |     | 30  | 88  | 87   | 9.4 |      | 1700 | -   | 0.02 | 65   |       | . – |     |     |      |     |      |     |      |     | 120 | 11  |
| POW-95X-1178 |     |      | < 5- |      | 18  |            | < 5 |      | _   | 27  | 140 | 86   |     |      |      | -   |      |      | 210   | < 1 | < 5 |     | < 10 | 54  | 78   | 200 |      | 3   | 96  | 13  |
| POW-95X-1179 |     |      | < 5  |      |     |            |     |      |     |     |     |      |     |      | 1100 |     | 0.02 | 41.: | - · · | < 1 | < 5 |     | < 10 | 32  | 56   | 110 |      | 4   | 95  | 6   |
|              |     |      |      | -    | 13  |            | < 5 |      | . – | 28  | 180 | 42   |     |      | 1400 | -   | 0.02 | 73   | 530   | < 1 | < 5 | _   | < 10 | 29  | 110  | 190 |      | 3   | 170 | 18  |
| POW-95X-1180 | < 1 | 4.8  | < 5  | < 10 | 30  | < 1        | < 5 | 2.1  | < 1 | 40  | 100 | 76   | 10  | 1.9  | 1700 | < 2 | 0.02 | 87   | 230   | < 1 | < 5 | 20  | < 10 | 17  | 86   | 180 | < 10 | 3   | 120 | 6   |
| POW-95X-1181 | < 1 | 4.5  | < 5  | < 10 | 15  | < 1        | < 5 | 3.3  | < 1 | 36  | 87  | 88   | 8.0 | 2.0  | 1400 | < 2 | 0.04 | 72   | 190   | < 1 | < 5 | 33  | < 10 | 21  | 120  | 210 | < 10 | 4   | 89  | 14  |
| POW-95X-1182 | < 1 | 3.8  | < 5  | < 10 | 17  | < 1        | < 5 | 4.8  | < 1 | 31  | 87  | 73   | 6.7 | 1.9  | 1400 | < 2 | 0.04 | 68   | 190   | < 1 | < 5 | 28  | < 10 | 16  | 180  | 210 | < 10 | 9   | 83  | 13  |
| POW-95X-1183 | < 1 | 2.9  | < 5  | < 10 | 4   | < 1        | < 5 | 4.7  | < 1 | 24  | 120 | 83   | 5.6 | 1.8  | 1200 | < 2 | 0.05 | 72   |       | < 1 | < 5 |     | < 10 |     | 3800 | 210 |      | 12  | 96  | 13  |
| POW-95X-1184 | < 1 | 1.4  | < 5  | < 10 | 21  | < 1        | < 5 | 1.2  | < 1 | 18  | 190 | 34   | 6.9 |      | 570  |     | 0.19 | 19   | 990   | < 1 | < 5 |     | < 10 |     | 1700 |     | < 10 | 23  | 79  | 13  |
| POW-95X-1185 | < 1 | 1.4  | 20   | < 10 | 10  | < 1        | < 5 | 3.0  | < 1 | 24  | 300 | 41   | 7.9 | 1.2  |      |     | 0.03 | 16   | 620   | 28  | < 5 |     | < 10 |     | 3100 |     | < 10 | 14  | 120 | 8   |
|              |     |      | _    |      |     | . –        |     |      | • - |     |     | ••   |     |      |      |     | 0.05 | 10,  | 010   | 20  | • • | 1.1 | · 10 | .,  | 3100 | 00  | ( 10 | 14  | 120 | 0   |
| POW-95X~1186 | < 1 | 0.27 | < 5  | < 10 | 4   | < 1        | < 5 | 0.19 | < 1 | 25  | 780 | 10   | 3.2 | 0.33 | 200  | 16  | 0.03 | 23   | 220   | 50  | < 5 | 6   | < 10 | 12  | 1200 | 42  | < 10 | 15  | 27  | 5   |
| POW-95X-1187 | < 1 | 0.92 | 50   | < 10 | < 1 | < 1        | < 5 | 5.1  | < 1 | 23  | 380 | 40   | 6.9 |      |      |     | 0.04 | 16   | 530   | 26  | < 5 | -   | < 10 |     | 3600 |     | < 10 | 15  | 64  | 8   |
| POW-95X-1188 | 13  | 1.3  | 10   | < 10 | 11  | < 1        | < 5 | 2.3  | < 1 | 24  | 380 | 2300 | 5.7 | 1.7  |      |     | 0.05 | 55   | 510   | 640 | < 5 |     | < 10 |     | 3000 | 120 |      | 16  | 79  | 17  |
|              |     |      |      |      |     |            |     |      |     |     |     |      |     |      |      |     |      |      |       |     |     |     |      |     |      |     |      |     |     |     |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

any 2000 SIGNED :

### APPENDIX B

Au and ICP Assay Certificates for Diamond Drill Hole POW9501 to POW9507

.

Report on the 1995 Field Exploration Program on the Powell Project



Geochemical Lab Report

| CAMECO CORPORATION<br>MIKE KOZIOL<br>#6-1349 KELLY LAKE ROAD<br>SUDBURY,ONTARIO<br>P3E 5P5 | (POW 9501-<br>01-45,46-89                                                                                                      |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| • •                                                                                        | . Autice                                                                                                                       |  |
|                                                                                            |                                                                                                                                |  |
|                                                                                            |                                                                                                                                |  |
|                                                                                            |                                                                                                                                |  |
|                                                                                            |                                                                                                                                |  |
|                                                                                            |                                                                                                                                |  |
|                                                                                            |                                                                                                                                |  |
|                                                                                            | Bondar-Clegg & Company Ltd.<br>5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada<br>Tel: (613) 749-2220, Fax: (613) 749-7170 |  |



METHOD

30g Fire Assay - AA

REPORT: T95-57284.0 ( COMPLETE ) **REFERENCE:** -CLIENT: CAMECO CORPORATION SUBMITTED BY: MK PROJECT: NONE DATE PRINTED: 5-DEC-95 NUMBER OF LOWER ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION 45 1 Au30 Gold 5 PPB Fire Assay of 30g 45 2 Aq Silver 0.5 PPM HF-HN03-HCL04-HCL

|      | •  |        |            |       |          | The house of bug  | Jug Inchoody An     |  |
|------|----|--------|------------|-------|----------|-------------------|---------------------|--|
|      | 2  | Ag     | Silver     | 45    | 0.5 PPM  | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      |    | •••••• |            | ••••• |          |                   |                     |  |
|      | 3  | Cu     | Copper     | 45    | 1 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 4  | Pb     | Lead       | 45    | 2 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 5  | Zn     | Zinc       | 45    | 2 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 6  | Мо     | Molybdenum | 45    | 1 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 7  | Ni     | Nickel     | 45    | 1 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 8  | Со     | Cobalt     | 45    | 1 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 9  | Cd     | Cadmium    | 45    | 1 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 10 | Bi     | Bismuth    | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 11 | As     | Arsenic    | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 12 | Sb     | Antimony   | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 13 | Fe Tot | Total Iron | 45    | 0.01 PCT | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 14 | Mn     | Manganese  | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 15 | Te     | Tellurium  | 45    | 25 PPM   | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 16 | Ba     | Barium     | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 17 | Cr     | Chrome     | 45    | 2 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 18 | v      | Vanadium   | 45    | 2 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 19 | Sn     | Tin        | 45    | 20 PPM   | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 20 | W      | Tungsten   | 45    | 20 PPM   | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 21 | La     | Lanthanum  | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
| •••• | 22 | AL     | Aluminum   | 45    | 0.01 PCT | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 23 | Mg     | Magnesium  | 45    | 0.01 PCT | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 24 | Ca     | Calcium    | 45    | 0.01 PCT | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 25 | Na     | Sodium     | 45    | 0.01 PCT | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 26 | κ      | Potassium  | 45    | 0.01 PCT | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 27 | Sr     | Strontium  | 45    | 1 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 28 | Y      | Yttrium    | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 29 | Ga     | Gallium    | 45    | 10 PPM   | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 30 |        | Lithium    | 45    | 2 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 31 |        | Niobium    | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 32 | Sc     | Scandium   | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      | 33 | Ta     | Tantalum   | 45    | 5 PPM    | HF-HNO3-HCLO4-HCL | INDUC. COUP. PLASMA |  |
|      |    |        |            |       |          |                   |                     |  |
|      | 34 | Ti     | Titanium   | 45    | 0.01 PCT | HF-HNO3-HCLO4-HCL | INDUC, COUP, PLASMA |  |

### Geochemical Lab Report

| REPORT: T95        | -57284.0 ( COM   | IPLETE )    |                |           |           |           |           |           | TE PRINTED<br>DJECT: NON |           | ••        | PAGE 1A   |            |
|--------------------|------------------|-------------|----------------|-----------|-----------|-----------|-----------|-----------|--------------------------|-----------|-----------|-----------|------------|
| SAMPLE<br>NUMBER   | ELEMENT<br>UNITS | Au30<br>PPB | Ag<br>PPM      | Cu<br>PPM | Pb<br>PPM | Zn<br>PPM | Мо<br>РРМ | NÍ<br>PPM | Co<br>PPM                | Cd<br>PPM | Bi<br>PPM | As<br>PPM | SI         |
| POW95D01.          | -001             | <5          | <0.5           | 118       | <2        | 87        |           | 60        | 33                       | <1        | <5        | <5        | </td       |
| POW95D01-          | -002             | <5          | 1.3            | 134       | <2        | 78        | 4         | 60        | 38                       | <1        | <5        | <5        | <          |
| POW95D01-          | -003             | <5          | <0.5           | 106       | <2        | 100       | 5         | 51        | 31                       | <1        | 6         | <5        |            |
| PO#95D01-          | -004             | <5          | <0.5           | 150       | <2        | 75        | 6         | 64        | 34                       | <1        | <5        | <5        | <          |
| POW95D01-          | -005             | <5          | <0.5           | 112       | <2        | 105       | 6         | 63        | 34                       | <1        | 8         | <5        |            |
| POW95D01-          | -006             | <5          | <0.5           | 118       | <2        | 104       | 5         | 62        | 33                       | <1        | ,<5       | <5        | <          |
| POW95D01-          | -007             | <5          | <0.5           | 104       | <2        | 94        | 3         | 377       | 44                       | <1        | 6         | <5        | <          |
| POW95D01-          | -008             | <5          | <0.5           | 49        | 39        | 300       | 9         | 956       | 70                       | <1        | 11        | 123       | <          |
| POW95D01-          | -009             | <5          | <0.5           | 19        | 47        | 64        | 3         | 44        | 10                       | <1        | <5        | <5        | <          |
| POW95D01-          | -010             | <5          | <0.5           | 15        | 38        | 56        | 2         | 25        | 8                        | <1        | <5        | <5        | </td       |
| POW95D01-          | -011             | <5          | 0.7            | 17        | 62        | 53        | 2         | 21 .      | 7                        | <1        | <5        | <5        | <          |
| POW95D01-          | -012             | <5          | <0.5           | 14        | 45        | 50        | 9         | 25        | 8                        | <1        | <5        | <5        | <          |
| POW95D01-          | -013             | 41          | <0.5           | 50        | 29        | 120       | 3         | 150       | 27                       | <1        | <5        | <5        | <          |
| POW95D01-          | -014             | <5          | <0.5           | 47        | <2        | 95        | 3         | 1097      | 68                       | <1        | 9         | 210       | i          |
| POW95D01-          | •015             | <5          | <0.5           | 89        | <2        | 137       | 8         | 2093      | 95                       | <1        | 12        | 2885      | 1.         |
| POW95D01-          | 016              | <5          | <0.5           | 48        | <2        | 246       | 3         | 800       | 57                       | <1        | 13        | 273       |            |
| POW95D01-          | ·017             | <5          | <0.5           | 64        | 10        | 229       | 5         | 74        | 20                       | <1        | <5        | <5        | <          |
| POW95D01-          | 018              | 9           | <0.5           | 46        | 6         | 151       | 8         | 58        | 14                       | <1        | 11        | <5        | </td       |
| POW95D01-          | ·019             | <5          | <0.5           | 44        | 9         | 133       | 6         | 85        | 17                       | <1        | 17        | 36        | <'         |
| POW95D01-          | 020              | 12          | <0.5           | 130       | 17        | 586       | 8         | 158       | 31                       | <1        | 7         | 90        | </td       |
| POW95D01-          | 021              | 18          | 0.8            | 152       | 28        | 832       | 6         | 220       | 36                       | <1        | <5        | 104       | </td       |
| POW95D01-          | 022              | 10          | <0.5           | 121       | 13        | 646       | 6         | 608       | 59                       | <1        | 13        | 127       | <          |
| POW95D01-          | 023              | <5          | <0.5           | 79        | <2        | 108       | 5         | 1196      | . 81                     | <1        | 8         | 62        | <          |
| P <b>OW9</b> 5D01- | 024              | <5          | <0.5           | 67        | <2        | 92        | 6         | 1218      | 92                       | <1        | 8         | 5         | ī          |
| POW95D01-          | 025              | <5          | <0.5           | 74        | <2        | 92        | 8         | 1210      | 99                       | <1        | 10        | <5        | 1(         |
| POW95D01-          | 026              | <5          | <0.5           | 68        | <2        | 96        | 4         | 1089      | 89                       | <1        | <5        | <5        | < <u>'</u> |
| POW95001-          | 027              | <5          | <0.5           | 56        | <2        | 71        | 3         | 1469      | 100                      | <1        | 8         | 337       | 12         |
| POW95D01-          |                  | <5          | <0.5           | 61        | <2        | 80        | 4         | 1032      | 81                       | <1        | 7         | 109       | <5         |
| POW95D01-          |                  | <5          | <0.5           | 66        | <2        | 81        | 3         | 1104      | 81                       | <1        | <5        | 16        | <5         |
| POW95D01-          | 030              | <5          | <0.5           | 76        | <2        | 89        | 5         | 997       | 94                       | <1        | <5        | 32        | 8          |
| PO#95D01-          |                  | <5          | <0.5           | 36        | <2        | 65        | 2         | 1183      | 68                       | <1        | 11        | <5        | 8          |
| POW95D01-          |                  | <5          | <0.5           | 56        | <2        | 71        | 3         | 942       | 63                       | <1        | 10        | <5        | <5         |
| POW95D01-          |                  | <5          | <0.5           | 43        | <2        | 65        | <1        | 945       | 62                       | <1        | <5        | <5        | <5         |
| POW95D01-          |                  | <5          | <0.5           | 45        | <2        | 81        | 2         | 962       | 70                       | <1        | <5        | <5        | <5         |
| POW95D01-          | 035              | <5          | <0.5           | 91        | 4         | 106       | 8         | 1084      | 76                       | <1        | <5        | 16        | <5         |
| POW95D01-          |                  | <5          | <0.5           | 97        | 6         | 80        | 6         | 1151      | 117                      | <1        | 13        | 57        | <5         |
| POW95D01-          | 037              | <5          | <b>&lt;0.5</b> | 89        | <2        | 102       | 5         | 1030      | 90                       | <1        | 7         | 104       | 6          |
| POW95D01-0         |                  | <5          | <0.5           | 195       | <2        | 176       | 7         | 1784      | 117                      | <1        | <5        | 302       | <5         |
| POW95D01-0         |                  | <5          | <0.5           | 287       | <2        | 210       | 4         | 311       | 47                       | <1        | <5        | 107       | <5         |
| POW95D01-0         | 040              | <5          | <0.5           | 26        | <2        | 91        | 3         | 39        | 3                        | <1        | 15        | <5        | <5         |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada

Tel: (613) 749-2220, Fax: (613) 749-7170

## Geochemical Lab Report

| REPORT: T95-572              | 84.0 ( CO        | MPLETE )      |              |            |            |              |            |           | TE PRINTED<br>OJECT: NON |                   | . 7]      | PAGE 18   |           |
|------------------------------|------------------|---------------|--------------|------------|------------|--------------|------------|-----------|--------------------------|-------------------|-----------|-----------|-----------|
| SAMPLE<br>NUMBER             | ELEMENT<br>UNITS | Fe Tot<br>PCT | Mn<br>PPM    | Te<br>PPM  | Ba<br>PPM  | Cr<br>PPM    | V<br>PPM   | Sn<br>PPM | W<br>PPM                 | La<br>PP <b>M</b> | AL<br>PCT | Mg<br>PCT | Ca<br>PC1 |
| POW95D01-001                 |                  | 7.40          | 2028         | <25        | 135        | 68           | 199        | <20       | <20                      | 6                 | 6.65      | 3.43      | 8.49      |
| POW95D01-002                 |                  | 4.85          | 1221         | <25        | 221        | 88           | 250        | <20       | <20                      | 6                 | 8.24      | 3.34      | 5.07      |
| POW95D01-003                 |                  | 9.58          | 2464         | <25        | 65         | 53           | 172        | <20       | <20                      | 8                 | 5.49      | 4.34      | 9.9       |
| POW95D01-004                 |                  | 7.19          | 1827         | <25        | 228        | 90           | 220        | <20       | <20                      | 5                 | 7.50      | 2.40      | 7.55      |
| POW95D01-005                 |                  | >10.00        | 2477         | <25        | 159        | 55           | 199        | <20       | <20                      | 5                 | 6.65      | 3.63      | 7.60      |
| POW95D01-006                 | ••••••••         | 8.85          | 2008         | <25        | 116        | 63           | 211        | <20       | <20                      | 6                 | 7.10      | 3.95      | 6.41      |
| POW95D01-007                 |                  | 6.63          | 2088         | <25        | 66         | 559          | 162        | <20       | <20                      | 5                 | 5.88      | 4.51      | 8.85      |
| PO¥95D01-008                 |                  | 6.49          | 1743         | <25        | 15         | 1269         | 118        | <20       | <20                      | 6                 | 4.58      | 8.22      | 6.76      |
| POW95D01-009                 |                  | 1.90          | 415          | <25        | 1923       | 126          | 40         | <20       | <20                      | 37                | 8.36      | 1.18      | 2.27      |
| POW95D01-010                 |                  | 1.83          | 422          | <25        | 1975       | 89           | 40         | <20       | <20                      | 40                | 8.21      | 1.05      | 2.19      |
| POW95D01-011                 |                  | 1.77          | 427          | <25        | 1785       | 87           | 39         | <20       | <20                      | 39                | 8.61      | 0.84      | 2.43      |
| POW95D01-012                 |                  | 1.68          | 398          | <25        | 1807       | 98           | 38         | <20       | <20                      | 38                | 8.08      | 0.79      | 2.31      |
| POW95D01-013                 |                  | 4.65          | 838          | <25        | 475        | 347          | 103        | <20       | <20                      | 28                | 7.11      | 4.89      | 3.94      |
| POW95D01-014                 |                  | 6.35          | 1903         | <25        | 15         | 1341         | 95         | <20       | <20                      | <5                | 3.20      | 8.15      | 7.05      |
| POW95D01-015                 |                  | >10.00        | 1803         | <25        | 55         | 1735         | 159        | <20       | <20                      | <5                | 5.15      | 6.43      | 2.85      |
| POW95D01-016                 |                  | 7.14          | 2030         | <25        | 29         | 1124         | 106        | <20       | <20                      | 6                 | 4.49      | 7.40      | 5.33      |
| POW95D01-017                 |                  | 6.92          | 1182         | <25        | 401        | 108          | 81         | 20        | <20                      | 15                | 7.46      | 1.87      | 2.80      |
| POW95D01-018                 |                  | >10.00        | 1929         | <25        | 211        | 110          | 44         | 21        | <20                      | 11                | 6.90      | 1.72      | 3.54      |
| P0W95D01-019                 |                  | 9.03          | 2058         | <25        | 195        | 119          | 63         | 21        | <20                      | 13                | 6.73      | 1.95      | 4.78      |
| POW95D01-020                 |                  | 4.52          | 888          | <25        | 393        | 199          | 85         | 22        | <20                      | 17                | 7.27      | 1.78      | 2.94      |
| POW95D01-021                 |                  | 4.96          | 1067         | <25        | 402        | 262          | 73         | <20       | <20                      | 18                | 7.20      | 1.67      | 2.78      |
| P0W95D01-022                 |                  | 6.96          | 1577         | <25        | 299        | 971          | 116        | <20       | <20                      | 10                | 5.99      | 3.35      | 2.96      |
| POW95D01-023                 |                  | 9.25          | 3633         | <25        | 87         | 2325         | 126        | <20       | <20                      | <5                | 4.07      | 2.83      | 3.74      |
| POW95D01-024                 |                  | 7.49          | 2354         | <25        | 123        | 2637         | 151        | <20       | <20                      | <5                | 4.82      | 2.83      | 3.13      |
| POW95D01-025                 |                  | 6.90          | 2202         | <25        | 159        | 2820         | 159        | <20       | <20                      | <5                | 5.09      | 3.23      | 2.61      |
| POW95D01-026                 |                  | 7.74          | 3661         | <25        | 151        | 2379         | 147        | <20       | <20                      | <5                | 4.44      | 2.71      | 3.68      |
| POW95D01-027                 |                  | 5.95          | 2731         | <25        | 141        | 2201         | 128        | <20       | <20                      | <5                | 4.08      | 3.26      | 6.08      |
| P0W95D01-028                 |                  | 6.16          | 2613         | <25        | 147        | 2219         | 132        | <20       | <20                      | <5                | 4.19      | 3.57      | 5.68      |
| POW95D01-029<br>POW95D01-030 |                  | 7.03<br>7.53  | 2986<br>2255 | <25<br><25 | 193<br>136 | 2265<br>2346 | 161<br>158 | <20       | <20                      | <5<br>            | 4.85      | 2.93      | 5.83      |
|                              |                  |               |              | ~25        | 001        | 2340         | 001        | <20       | <20                      | <5                | 5.17      | 3.12      | 4.44      |
| POW95D01-031                 |                  | 5.99          | 1261         | <25        | 12         | 1408         | 86         | <20       | <20                      | <5                | 2.91      | 9.29      | 6.78      |
| POW95D01-032                 |                  | 6.24          | 1509         | <25        | 11         | 1339         | 94         | <20       | <20                      | <5                | 3.04      | 8.79      | 8.27      |
| POW95D01-033                 |                  | 5.92          | 1780         | <25        | 16         | 1210         | 90         | <20       | <20                      | <5                | 2.95      | 8.22      | 9.25      |
| POW95D01-034                 |                  | 6.25          | 1816<br>7/79 | <25        | 14         | 1446         | 104        | <20       | <20                      | <5                | 3.42      | 8.59      | 7.33      |
| POW95D01-035                 |                  | >10.00        | 3438         | <25        | 527        | 1987         | 210        | 22        | <20                      | <5                | 6.71      | 2.97      | 2.75      |
| POW95D01-036                 |                  | 7.07          | 2822         | <25        | 387        | 1472         | 259        | <20       | <20                      | <5                | 8.93      | 1.41      | 1.85      |
| POW95D01-037                 |                  | >10.00        | 4217         | <25        | 601        | 1455         | 216        | 21        | <20                      | 9                 | 7.25      | 2.41      | 2.81      |
| POW95D01-038                 | :                | >10.00        | 2880         | <25        | 258        | 2011         | 215        | 25        | <20                      | 9                 | 7.11      | 2.09      | 1.17      |
| POW95D01-039                 |                  | 7.03          | 218          | <25        | 153        | 250          | 47         | <20       | <20                      | 13                | 4.25      | 0.21      | 0.14      |
| POW95D01-040                 |                  | 8.64          | 1933         | <25        | 15         | 188          | 8          | <20       | <20                      | 7                 | 0.39      | 0.65      | 0.84      |



## Geochemical Lab Report

| REPORT: T95-5    | 7284.0 ( COM     | (PLETE )  |          |           |                  |           |           |           | TE PRINTED |           | :-95      | PAGE 1C   |
|------------------|------------------|-----------|----------|-----------|------------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
| SAMPLE<br>IUMBER | ELEMENT<br>UNITS | Na<br>PCT | K<br>PCT | Sr<br>PPM | ү<br>РР <b>м</b> | Ga<br>PPM | Li<br>PPM | Nb<br>PPM | Sc<br>PPM  | Ta<br>PPM | Ti<br>PCT | Zr<br>PPM |
| POW95D01-00      | 01               | 1.44      | 0.36     | 59        | 13               | <10       | 9         | 8         | 35         | <5        | 0.38      | 28        |
| POW95D01-00      | 02               | 2.26      | 1.29     | 58        | 13               | <10       | 12        | <5        | 39         | <5        | 0.46      | 25        |
| POW95D01-00      | 03               | 0.06      | 0.08     | 112       | <5               | <10       | 42        | <5        | 28         | <5        | 0.19      | 10        |
| POW95D01-00      | 04               | 0.17      | 1.42     | 154       | <5               | <10       | 33        | <5        | 34         | <5        | 0.29      | 13        |
| POW95D01-00      | 05               | 0.09      | 0.55     | 134       | <5               | <10       | 43        | <5        | 32         | <5        | 0.25      | 12        |
| POW95D01-00      | 06               | 1.42      | 0.12     | 168       | <5               | <10       | 33        | <5        | 34         | <5        | 0,30      | 15        |
| POW95D01-00      | 07               | 1.07      | 0.05     | 264       | <5               | <10       | 28        | <5        | 27         | <5        | 0.20      | 10        |
| POW95D01-00      | 80               | 0.02      | <0.01    | 461       | 5                | <10       | 25        | <5        | 18         | <5        | 0.10      | 22        |
| POW95D01-00      |                  | 4.05      | 1.89     | 1341      | 9                | 16        | 9         | 7         | 5          | <5        | 0.16      | 116       |
| POW95D01-01      | 10               | 3.65      | 2.16     | 1112      | 9                | 13        | 8         | 6         | <5         | <5        | 0.17      | 115       |
| POW95D01-01      |                  | 4.13      | 1.88     | 1300      | 9                | 16        | 7         | 7         | <5         | <5        | 0.16      | 125       |
| POW95D01-01      |                  | 4.00      | 1.80     | 1307      | 9                | 16        | 8         | 7         | <5         | <5        | 0.16      | 117       |
| POW95D01-01      |                  | 2.41      | 0.42     | 657       | 9                | 13        | 30        | 5         | 14         | <5        | 0.27      | 96        |
| POW95D01-01      |                  | 0.02      | <0.01    | 333       | <5               | <10       | 12        | <5        | 15         | <5        | 0.06      | 6         |
| POW95D01-01      | 15               | 0.02      | 0.04     | 110       | <5               | <10       | 15        | <5        | 28         | <5        | 0.21      | 5         |
| POW95D01-01      | 6                | 0.06      | 0.02     | 228       | 5                | <10       | 26        | <5        | 17         | <5        | 0.11      | 26        |
| POW95D01-01      |                  | 0.93      | 1.62     | 104       | 12               | 11        | 22        | 5         | 15         | <5        | 0.32      | 97        |
| POW95D01-01      |                  | 0.41      | 1.15     | 125       | 8                | <10       | 23        | <5        | 11         | <5        | 0.16      | 60        |
| POW95001-01      |                  | 1.53      | 0.77     | 224       | 10               | <10       | 23        | <5        | 10         | <5        | 0.19      | 78        |
| POW95D01-02      | 20               | 1.80      | 1.44     | 170       | 10               | 16        | 22        | <5        | 12         | <5        | 0.23      | 97        |
| POW95D01-02      |                  | 1.24      | 1.83     | 157       | 9                | 11        | 20        | <5        | 11         | <5        | 0.16      | 89        |
| POW95D01-02      |                  | 0.62      | 1.24     | 121       | 7                | <10       | 41        | <5        | 18         | <5        | 0.12      | 50        |
| POW95D01-02      |                  | 0.11      | 0.19     | 128       | <5               | <10       | 24        | <5        | 22         | <5        | 0.13      | 9         |
| POW95D01-02      | _                | 0.64      | 0.28     | 129       | <5               | <10       | 29        | <5        | 24         | <5        | 0.17      | 9         |
| POW95D01-02      | 5                | 0.85      | 0.32     | 129       | <5               | <10       | 34        | <5        | 26         | <5        | 0.15      | 9         |
| POW95D01-02      | 6                | 0.63      | 0.32     | 173       | <5               | <10       | 25        | <5        | 25         | <5        | 0.16      | 10        |
| POW95D01-02      |                  | 0.54      | 0.66     | 133       | <5               | <10       | 39        | <5        | 21         | <5        | 0.08      | 6         |
| POW95D01-02      |                  | 0.46      | 0.86     | 125       | <5               | <10       | 40        | <5        | 23         | <5        | 0.07      | 7         |
| POW95D01-02      |                  | 0.12      | 1.23     | 105       | <5               | <10       | 53        | <5        | 25         | <5        | 0.13      | 8         |
| POW95D01-03      | 0                | 0.55      | 0.76     | 97        | <5               | <10       | 56        | <5        | 24         | <5        | 0.16      | 5         |
| POW95001-03      |                  | 0.06      | 0.01     | 211       | <5               | <10       | 25        | <5        | 14         | <5        | 0.04      | 6         |
| POW95D01-03      |                  | 0.02      | 0.01     | 225       | <5               | <10       | 24        | <5        | 15         | <5        | 0.06      | <5        |
| POW95D01-033     |                  | 0.02      | 0.02     | 216       | <5               | <10       | 24        | <5        | 14         | <5        | 0.07      | <5        |
| POW95D01-034     |                  | 0.05      | 0.02     | 200       | <5               | <10       | 29        | <5        | 16         | <5        | 0.05      | <5        |
| POW95D01-035     | <b>&gt;</b>      | 1.05      | 0.81     | 97        | <5               | <10       | 51        | <5        | 34         | <5        | 0.35      | 14        |
| POW95D01-036     |                  | 3.12      | 1.40     | 75        | <5               | <10       | 51        | <5        | 37         | <5        | 0.48      | 19        |
| POW95D01-037     |                  | 1.73      | 1.17     | 61        | 5                | <10       | 61        | <5        | 32         | <5        | 0.37      | 36        |
| POW95D01-038     |                  | 0.42      | 1.38     | 26        | <5               | <10       | 59        | <5        | 34         | <5        | 0.34      | 18        |
| POW95D01-039     |                  | 0.93      | 1.29     | 36        | 5                | 11        | 23        | <5        | 8          | <5        | 0.11      | 51        |
| POW95D01-040     | 0                | 0.02      | 0.04     | 14        | <5               | <10       | 2         | <5        | <5         | <5        | 0.01      | 6         |

## Geochemical Lab Report

| REPORT: 195-572 | 84.0 ( COM       | PLETE )     |           |           |           |           |           |           | E PRINTED | : 5-DEC-<br>E |           | AGE 2A    |           |
|-----------------|------------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|
| AMPLE<br>Umber  | ELEMENT<br>UNITS | Au30<br>PPB | Ag<br>PPM | Cu<br>PPM | Pb<br>PPM | Zn<br>PPM | Mo<br>PPM | Ni<br>PPM | Co<br>PPM | Cd<br>PPM     | Bi<br>PPM | As<br>PPM | SH<br>PPM |
| POW95D01-041    |                  | <5          | <0.5      | 40        | <2        | 97        | 3         | 44        | 7         | <1            | 8         | 23        | <5        |
| POW95D01-042    |                  | 8           | <0.5      | 107       | <2        | 258       | 3         | 50        | 17        | <1            | <5        | 8         | <5        |
| POW95D01-043    |                  | <5          | <0.5      | 81        | <2        | 277       | 6         | 41        | 12        | <1            | 8         | <5        | e         |
| POW95D01-044    |                  | 22          | 0.7       | 210       | 32        | 1503      | 5         | 133       | 38        | 3             | 12        | 227       | <5        |
| POW95D01-045    |                  | 8           | 1.0       | 131       | 33        | 377       | 6         | 120       | 30        | <1            | 8         | 201       | <5        |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
| ,               |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  | •••••       |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
| ·····           |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           | ••••••    |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           | ·         |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           |           |           |           |           |           |               |           |           |           |
|                 |                  |             |           |           | Bondar-Cl | egg & Com | any Ltd.  |           |           |               |           |           |           |

Tel: (613) 749-2220, Fax: (613) 749-7170

## Geochemical Lab Report

| REPORT: 195-572  |                  |               |           |           |           |                           |                  | PRO       | E PRINTED<br>JECT: NON | Ε         |           | PAGE 2B   |           |
|------------------|------------------|---------------|-----------|-----------|-----------|---------------------------|------------------|-----------|------------------------|-----------|-----------|-----------|-----------|
| SAMPLE<br>IUMBER | ELEMENT<br>UNITS | Fe Tot<br>PCT | Mn<br>PPM | Te<br>PPM | Ba<br>PPM | Cr<br>PPM                 | V<br>PP <b>N</b> | Sn<br>PPM | W<br>PPM               | La<br>PPM | AL<br>PCT | Mg<br>PCT | Ca<br>PCT |
| POW95D01-041     | •••••            |               |           |           |           |                           |                  | <20       | <20                    |           | 0.74      | 0.43      | 0.91      |
| POW95D01-042     |                  | 6.21          | 746       | <25       | 32        | 232                       | 12               | <20       | <20                    | 6         | 1.05      | 0.31      | 0.40      |
| POW95D01-043     |                  | 7.31          | 1273      | <25       | 42        | 244                       | 17               | <20       | <20                    | 8         | 1.49      | 0.43      | 0.71      |
| P0W95D01-044     |                  | 5.58          | 202       | <25       | 156       | 209                       | 43               | <20       | <20                    | 13        | 3.98      | 0.15      | 0.93      |
| POW95D01-045     |                  | 8.56          | 360       | <25       | 132       | 196                       | 41               | 20        | <20                    | 12        | 3.88      | 0.18      | 0.39      |
|                  |                  |               |           |           |           |                           |                  |           |                        |           | •         | ••••••    |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               |           |           |           |                           |                  |           |                        |           |           |           |           |
|                  |                  |               | 5         |           |           | egg & Comp<br>awa, Ontari |                  | , Canada  |                        |           |           |           |           |



## Geochemical Lab Report

|                                                              | Na<br>PCT<br>0.17<br>0.28<br>0.53<br>0.98<br>0.95 | K<br>PCT<br>0.15<br>0.11<br>0.23<br>1.16<br>1.08 | Sr<br>PPM<br>21<br>19<br>28<br>48<br>51 | Y<br>PPM<br><5<br><5<br><5<br><5<br><5<br><5<br><5 | Ga<br>PPM<br><10<br><10<br><10<br><10<br><10<br><10 | Li<br>PPM<br>4<br>5<br>4<br>16<br>16 | Nb<br>PPM<br><5<br><5<br><5<br><5<br><5<br><5 | Sc<br>PPM<br><5<br><5<br><5<br>5 | <5<br><5<br><5<br><5 | Ti<br>PCT<br>0.02<br>0.02<br>0.03<br>0.07 | Zr<br>PPM<br>10<br>14<br>21<br>49 |
|--------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------|----------------------|-------------------------------------------|-----------------------------------|
| P0W95D01-041<br>P0W95D01-042<br>P0W95D01-043<br>P0W95D01-044 | <br>0.28<br>0.53<br>0.98<br>0.95                  | 0.11<br>0.23<br>1.16                             | 19<br>28<br>48                          | <5<br><5<br><5                                     | <10<br><10<br><10                                   | 5<br>4<br>16                         | <5<br><5<br><5                                | <5<br><5<br>5                    | <5<br><5<br><5<br><5 | 0.02<br>0.02<br>0.03                      | 10<br>14<br>21                    |
| POW95D01-043<br>POW95D01-044                                 | <br>0.53<br>0.98<br>0.95                          | 0.23<br>1.16                                     | 28<br>48                                | <5<br><5                                           | <10<br><10                                          | 4<br>16                              | <5<br><5                                      | <5<br><5<br>5                    | <5<br><5<br><5       | 0.02<br>0.03                              | 14<br>21                          |
| P0W95D01-044                                                 | <br>0.53<br>0.98<br>0.95                          | 0.23<br>1.16                                     | 28<br>48                                | <5<br><5                                           | <10                                                 | 4<br>16                              | <5<br><5                                      | <5<br>5                          | <5<br><5             | 0.03                                      | 21                                |
|                                                              | <br>0.95                                          | 1.16                                             |                                         | <5                                                 |                                                     |                                      | <5                                            | 5                                | <5                   |                                           |                                   |
| POW95D01-045                                                 | <br>0.95                                          |                                                  | 51                                      |                                                    | <10                                                 |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              |                                                   |                                                  |                                         |                                                    |                                                     |                                      |                                               | <5                               | <5                   | 0.08                                      | 48                                |
|                                                              | <br>                                              |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              |                                                   |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              |                                                   |                                                  |                                         |                                                    |                                                     |                                      |                                               | ·                                |                      |                                           |                                   |
|                                                              | <br>                                              |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              | <br>                                              |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              |                                                   |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      | •••••                                     |                                   |
|                                                              | <br>                                              |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              |                                                   |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              | <br>                                              |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              |                                                   |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              | <br>                                              |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              |                                                   |                                                  |                                         |                                                    |                                                     |                                      |                                               |                                  |                      |                                           |                                   |
|                                                              | <br>                                              |                                                  |                                         | Bondar-Cle                                         |                                                     |                                      |                                               |                                  |                      |                                           |                                   |

## Geochemical Lab Report

| REPORT: T95-5              | 7285.0 ( COM     | (PLETE )    |              |            |           |           |           |            | TE PRINTED<br>DJECT: NON |           |           | PAGE 1A    |           |
|----------------------------|------------------|-------------|--------------|------------|-----------|-----------|-----------|------------|--------------------------|-----------|-----------|------------|-----------|
| SAMPLE<br>IUMBER           | ELEMENT<br>Units | Au30<br>PPB | Ag<br>PPM    | Cu<br>PPM  | Pb<br>PPM | Zn<br>PPM | Mo<br>PPM | Ni<br>PPM  | Co<br>PPM                | Cd<br>PPM | Bi<br>PPM | AS<br>PPM  | SI<br>PPI |
| POW95D01-0                 | 46               | <5          | <0.5         | 109        | 44        | 422       | 2         | 92         | 22                       | <1        | 6         | 91         | </td      |
| POW95D01-0                 | 47               | <5          | <0.5         | 36         | <2        | 84        | 1         | 33         | 4                        | <1        | 7         | <5         | <         |
| POW95D01-0                 | 48               | 7           | 0.6          | 80         | <2        | 319       | 3         | 46         | 13                       | <1        | ,<br>7    | 19         | </td      |
| POW95D01-0                 | 49               | <5          | <0.5         | 119        | 9         | 426       | 1         | 122        | 24                       | <1        | <5        | 149        | <         |
| POW95D01-0                 | 50               | 7           | <0.5         | 71         | <2        | 446       | 1         | 287        | 25                       | <1        | <5        | 335        | <         |
| POW95D01-0                 | 51               | <5          | 0.8          | 78         | <2        | 384       | 6         | 124        | 15                       | 1         | 14        | 115        |           |
| POW95D01-0                 | 52               | 10          | 0.6          | 49         | <2        | 100       | 5         | 151        | 7                        | <1        | 9         | 6          | <         |
| POW95D01-0                 | 53               | <5          | <0.5         | 20         | <2        | 64        | 3         | 204        | 6                        | <1        | 6         | 217        | </td      |
| POW95D01-0                 | 54               | <5          | <0.5         | 79         | <2        | 359       | 3         | 166        | 24                       | <1        | <5        | 271        | <         |
| POW95D01-0                 | 55               | <5          | <0.5         | 65         | <2        | 184       | 2         | 76         | 8                        | <1        | <5        | <5         | <         |
| POW95D01-0                 | 56               | <5          | <0.5         | 71         | <2        | 60        | <1        | 488        | 34                       | <1        | 6         | 181        | </td      |
| POW95D01-0                 | 57               | 9           | <0.5         | 137        | <2        | 258       | <1        | 106        | 31                       | <1        | 6         | 48         | </td      |
| POW95D01-0                 | 58               | 17          | 0.9          | 276        | 21        | 1698      | 4         | 110        | 52                       | 5         | <5        | 119        | 1         |
| POW95D01-0                 | 59               | 18          | 0.9          | 196        | 36        | 841       | 5         | 185        | 47                       | 2         | <5        | 202        | 1         |
| POW95D01-00                | 50               | <5          | <0.5         | 34         | <2        | 199       | 2         | 59         | 5                        | 1         | 5         | <5         | </td      |
| POW95D01-06                | 51               | <5          | <0.5         | 37         | <2        | 46        | 2         | 270        | 18                       | <1        | 6         | 234        | <5        |
| POW95D01-06                | 52               | <5          | 1.3          | 57         | 38        | 28        | 8         | 277        | 24                       | <1        | <5        | 344        | 10        |
| POW95D01-06                | 5 <b>3</b>       | <5          | <0.5         | 17         | <2        | 28        | <1        | 132        | 3                        | <1        | <5        | 69         | <         |
| POW95D01-06                | 54               | <5          | 0.6          | 85         | <2        | 214       | <1        | 156        | 22                       | <1        | <5        | 116        | <5        |
| POW95D01-06                | 5                | <5          | <0.5         | 11         | <2        | 19        | <1        | 76         | 4                        | <1        | <5        | <5         | <5        |
| P0W95D01-06                | -                | <5          | <0.5         | 19         | <2        | 28        | 2         | 113        | 4                        | <1        | <5        | 12         | <5        |
| POW95D01-06                |                  | <5          | <0.5         | 64         | <2        | 74        | 4         | 711        | 77                       | <1        | 6         | 1052       | 8         |
| POW95D01-06                | -                | <5          | 0.6          | 43         | <2        | 97        | 12        | 544        | 34                       | <1        | 26        | 427        | 7         |
| POW95D01-06                |                  | <5          | <0.5         | 30         | <2        | 93        | 10        | 453        | 6                        | <1        | 24        | 308        | <5        |
| POW95D01-07                | 0                | <5          | 0.8          | 24         | <2        | 126       | 14        | 589        | 5                        | <1        | 27        | 482        | 5         |
| P0W95D01-07                |                  | <5          | 0.8          | 27         | <2        | 112       | 11        | 392        | 10                       | <1        | 17        | 203        | 5         |
| POW95D01-07                |                  | 53          | 1_4          | 195        | <2        | 4910      | 16        | 878        | 107                      | 17        | 9         | 363        | 6         |
| POW95D01-07                |                  | <5          | <0.5         | 71         | <2        | 102       | 4         | 936        | 85                       | <1        | <5        | 111        | 6         |
| POW95D01-07<br>POW95D01-07 |                  | <5<br><5    | <0.5<br><0.5 | 45<br>61   | <2<br><2  | 56<br>75  | <1<br>· 4 | 729<br>791 | 55<br>67                 | <1<br><1  | <5<br>8   | <5<br>110  | <5<br><5  |
|                            |                  |             | -0 F         | ~~         | 40        |           | ••••••    |            |                          |           |           |            |           |
| POW95D01-07<br>POW95D01-07 |                  | <5<br><5    | <0.5         | 97<br>82   | 12        | 73<br>5 8 | 4         | 777        | 78<br>74                 | <1        | <5        | 371        | <5        |
| POW95D01-07                |                  | <5          | <0.5<br>0.5  | 82<br>116  | 4         | 58        | 2         | 789        | 76                       | <1        | <5        | 193        | <5        |
| POW95001-07                |                  | <5          | <0.5<br><0.5 | 116<br>104 | 8<br><2   | 67<br>58  | 9<br>7    | 562<br>576 | 60<br>47                 | <1<br>-1  | <5        | 148        | <5<br>    |
| POW95D01-08                |                  | <5<br><5    | <0.5         | 82         | 3         | 58<br>63  | 5         | 576<br>896 | 63<br>108                | <1<br><1  | 13<br>6   | 161<br>333 | <5<br>6   |
| POW95D01-08                | 1                | <5          | <0.5         | 67         | <2        | 61        | 3         | 786        | Q 1                      | ~1        | <br>جر    | 713        |           |
| POW95D01-082               |                  | <5          | <0.5         | 97         | 34        | 101       | 6         | 700<br>599 | 81<br>60                 | <1<br><1  | <5<br><5  | 312<br>146 | <5<br><5  |
| POW95D01-08                |                  | <5          | <0.5         | 73         | 7         | 82        | 5         | 632        | 63                       | <1        | <5<br><5  | 137        | <5<br><5  |
| POW95D01-084               |                  | <5          | <0.5         | 68         | <2        | 69        | 5         | 696        | 62                       | <1<br><1  | <5<br>8   | 81         |           |
| POW95D01-08                |                  | <5          | <0.5         | 75         | <2        | 87        | 2         | 070        | 02                       |           | 0         | 01         | 6         |

Bondar-Clegg & Company Ltd.

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

## Geochemical Lab Report

| REPORT: T95-572              | 285.0 ( C         | OMPLETE )        |              |            |           |            |          |           | TE PRINTED<br>DJECT: NOM |           | <b></b> .    | PAGE 1B      |              |
|------------------------------|-------------------|------------------|--------------|------------|-----------|------------|----------|-----------|--------------------------|-----------|--------------|--------------|--------------|
| SAMPLE<br>NUMBER             | ELEMENT<br>UNITS  | Fe Tot<br>PCT    | Mn<br>PPM    | Te<br>PPM  | Ba<br>PPM | Cr<br>PPM  | V<br>PPM | Sn<br>PPM | W<br>PPM                 | La<br>PPM | Al<br>PCT    | Mg<br>PCT    | Ca           |
| POW95D01-046                 | 5                 | 5.57             | 719          | <25        | 152       | 231        | 27       | <20       | <20                      | 10        | 2.73         | 0.21         | 0.50         |
| POW95D01-047                 | 7                 | 5.09             | 1001         | <25        | 21        | 249        | 8        | <20       | <20                      | 5         | 0.46         | 0.30         | 0.50         |
| POW95D01-048                 | 3                 | 8.33             | 1149         | <25        | 56        | 198        | 18       | <20       | <20                      | 8         | 1.52         | 0.43         | 0.7          |
| POW95D01-049                 | ,                 | 2.84             | 426          | <25        | 211       | 220        | 49       | <20       | <20                      | 13        | 4.23         | 0.21         | 0.69         |
| PO <b>W95D01-05</b> 0        | )                 | 3.22             | 453          | <25        | 84        | 466        | 27       | <20       | <20                      | <5        | 1.38         | 0.13         | 0.6          |
| POW95D01-051                 | <br>              | >10.00           | 2030         | <25        | 42        | 249        | 6        | <20       | <20                      | 7         | 0,56         | 0.39         | 0.39         |
| POW95D01-052                 | 2                 | >10.00           | 1925         | <25        | 29        | 311        | 7        | <20       | <20                      | 6         | 0.46         | 0.47         | 0.3          |
| POW95D01-053                 |                   | 4.89             | 1061         | <25        | 13        | 281        | 4        | <20       | <20                      | <5        | 0.21         | 0.20         | 0.1          |
| POW95D01-054                 |                   | 5.89             | 978          | <25        | 59        | 293        | 8        | <20       | <20                      | 6         | 0,45         | 0.22         | 0.23         |
| POW95D01-055                 | i<br>             | 3.98             | 544          | <25        | 16        | 292        | 9        | <20       | <20                      | <5        | 0.58         | 0.18         | 0.38         |
| POW95D01-056                 |                   | 1.41             | 84           | <25        | 131       | 626        | 49       | <20       | <20                      | <5        | 1.91         | 0.06         | 0.13         |
| POW95D01-057                 |                   | 3.01             | 114          | <25        | 42        | 320        | 10       | <20       | <20                      | <5        | 0.94         | 0.04         | 0.07         |
| POW95D01-058                 |                   | 3.49             | 54           | <25        | 68        | 306        | 17       | <20       | <20                      | 7         | 1.62         | 0.02         | 0.06         |
| POW95D01-059                 |                   | 7.67             | 135          | <25        | 76        | 290        | 14       | <20       | <20                      | 8         | 1.34         | 0.04         | 0.07         |
| POW95D01-060                 | 1<br>             | 6.17             | 1615         | <25        | 17        | 296        | 8        | <20       | <20                      | <5        | 0.23         | 0.33         | 0.11         |
| P0W95D01-061                 |                   | 6.12             | 1525         | <25        | 61        | 460        | 24       | <20       | <20                      | 7         | 0.90         | 0.36         | 0.2          |
| POW95D01-062                 |                   | >10.00           | 284          | <25        | 44        | 301        | 4        | <20       | <20                      | 6         | 0.35         | 0.06         | 0.09         |
| POW95D01-063                 |                   | 0.86             | 184          | <25        | 30        | 328        | 2        | <20       | <20                      | <5        | 0.09         | 0.01         | 0.08         |
| POW95D01-064                 |                   | 2.38             | 437          | <25        | 60<br>75  | 354        | 11       | <20       | <20                      | <5        | 0.91         | 0.07         | 0.21         |
| POW95D01-065                 |                   | 1.79             | 474          | <25        | 35        | 340        | 3        | <20       | <20                      | <5        | 0.13         | 0.05         | 0.11         |
| POW95D01-066                 |                   | 7.01             | 2480         | <25        | 23        | 301        | 7        | <20       | <20                      | <5        | 0.19         | 0.55         | 0.67         |
| POW95D01-067                 |                   | >10.00           | 2034         | <25        | 249       | 1786       | 94       | <20       | <20                      | 6         | 3.47         | 0.92         | 0.57         |
| POW95D01-068                 |                   | >10.00           | 3794         | <25        | 113       | 976        | 53       | 29        | <20                      | 8         | 2.04         | 1.50         | 0.42         |
| POW95D01-069<br>POW95D01-070 |                   | >10.00<br>>10.00 | 3774<br>5487 | <25<br><25 | 26<br>21  | 264<br>179 | 8<br>9   | <20<br>26 | <20<br><20               | 6<br><5   | 0.40<br>0.26 | 1.51<br>2.29 | 0.46<br>0.55 |
| POW95D01-071                 |                   | >10.00           | 4043         | <25        | / 7       | 200        | 47       |           |                          |           |              | 4 70         | ~ · · -      |
| POW95D01-072                 |                   | >10.00           | 6244         | <25        | 42<br>75  | 288<br>454 | 14<br>44 | 26<br>27  | <20<br><20               | 6<br>10   | 0.78         | 1.70<br>1.35 | 0.45         |
| POW95D01-073                 |                   | 8.76             | 2810         | <25        | 189       | 2526       | 161      | <20       | <20                      | 6         | 1.26<br>4.99 | 4.03         | 2.11<br>3.48 |
| P0W95D01-074                 |                   | 6.21             | 1855         | <25        | 16        | 1451       | 101      | <20       | <20                      | 5         | 3.32         | 6.67         | 6.16         |
| POW95D01-075                 |                   | 7.79             | 2083         | <25        | 305       | 1598       | 132      | 20        | <20                      | 7         | 4.48         | 6.57         | 6.33         |
| P0W95D01-076                 |                   | 6.72             | 1493         | <25        | 478       | 1302       | 238      | <20       | <20                      | 7         | 8.85         | 2.18         | 3.11         |
| POW95D01-077                 |                   | 6.03             | 1697         | <25        | 379       | 1540       | 243      | <20       | <20                      | 5         | 7.58         | 2.07         | 1.82         |
| P0W95D01-078                 |                   | >10.00           | 1125         | <25        | 356       | 764        | 300      | 22        | <20                      | 8         | 9.77         | 1.98         | 0.62         |
| P0W95D01-079                 |                   | 9.18             | 1300         | <25        | 333       | 950        | 304      | <20       | 21                       | 7         | 9.36         | 2.06         | 1.04         |
| P0W95D01-080                 | ••••••••••••••••• | 8.80             | 2212         | <25        | 237       | 1375       | 232      | <20       | <20                      | 7         | 7.98         | 2.18         | 1.71         |
| POW95D01-081                 |                   | 6.30             | 1544         | <25        | 286       | 1773       | 223      | <20       | <20                      | 5         | 7.24         | 2.09         | 1.54         |
| P0W95D01-082                 |                   | 7.33             | 1540         | <25        | 233       | 873        | 276      | <20       | <20                      | 6         | 8.25         | 2.07         | 1.36         |
| P0W95D01-083                 |                   | 7.96             | 2350         | <25        | 156       | 1042       | 206      | <20       | <20                      | 7         | 6.74         | 2.99         | 2.82         |
| POW95D01-084                 |                   | 7.85             | 2820         | <25        | 81        | 1169       | 170      | <20       | <20                      | 7         | 5.84         | 3.33         | 3.41         |
| POW95D01-085                 |                   | 7.65             | 2736         | <25        | 115       | 1734       | 187      | <20       | <20                      | 7         | 6.15         | 2.84         | 3.37         |

### Geochemical Lab Report

| REPORT: 195-5728 | 35.0 ( COM       | IPLETE )  |          |           |          |           |           |                 | E PRINTED |           |           | PAGE 1C   |
|------------------|------------------|-----------|----------|-----------|----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Na<br>PCT | K<br>PCT | Sr<br>PPM | Y<br>PPM | Ga<br>PPM | Li<br>PPM | NĎ<br>PPM       | Sc<br>PPM | Ta<br>PPM | Ti<br>PCT | Zr<br>PPM |
| POW95D01-046     |                  | 1.16      | 0.47     | 53        | <5       | <10       | 7         | <5              | <5        | <5        | 0.08      | 44        |
| POW95D01-047     |                  | 0.02      | 0.05     | 16        | <5       | <10       | 3         | <5              | <5        | <5        | 0.01      | 10        |
| P0W95D01-048     |                  | 0.28      | 0.33     | 35        | <5       | <10       | 7         | <5              | <5        | <5        | 0.03      | 25        |
| POW95D01-049     |                  | 0.81      | 1.27     | 65        | <5       | <10       | 13        | <5              | <5        | <5        | 0.09      | 70        |
| POW95D01-050     |                  | 0.20      | 0.43     | 31        | <5       | <10       | 7         | <5              | <5        | <5        | 0.03      | 16        |
| POW95D01-051     |                  | 0.06      | 0.10     | 16        | <5       | <10       | 4         | <5              | <5        | <5        | 0.01      | 14        |
| POW95D01-052     |                  | 0.02      | 0.05     | 13        | <5       | <10       | 4         | <5              | <5        | <5        | <0.01     | 7         |
| POW95D01-053     |                  | 0.01      | 0.01     | 5         | <5       | <10       | 2         | <5              | <5        | <5        | <0.01     | 7         |
| POW95D01-054     |                  | 0.02      | 0.09     | 12        | <5       | <10       | 3         | <5              | <5        | <5        | 0.01      | 12        |
| POW95D01-055     |                  | 0.04      | 0.01     | 16        | <5       | <10       | 7         | <5              | <5        | <5        | 0.01      | 11        |
| POW95D01-056     |                  | 0.12      | 0.77     | 22        | <5       | <10       | 7         | <5              | <5        | <5        | 0.05      | 28        |
| POW95D01-057     |                  | 0.38      | 0.13     | 21        | <5       | <10       | 3         | <5              | <5        | <5        | 0.02      | 22        |
| POW95D01-058     |                  | 0.80      | 0.22     | 39        | <5       | <10       | 4         | <5              | <5        | <5        | 0.03      | 31        |
| POW95D01-059     |                  | 0.50      | 0.28     | 32        | <5       | <10       | 5         | <5              | <5        | <5        | 0.02      | 32        |
| P0W95D01-060     |                  | 0.02      | 0.02     | 6         | <5       | <10       | <2        | <5              | <5        | <5        | <0.01     | 8         |
| POW95D01-061     | ••••••           | 0.04      | 0.24     | 15        | <5       | <10       | 6         | <5              | <5        | <5        | 0.03      | 12        |
| POW95D01-062     |                  | 0.04      | 0.09     | 8         | <5       | <10       | 3         | <5              | <5        | <5        | <0.01     | 11        |
| P0W95D01-063     |                  | 0.03      | 0.02     | 6         | <5       | <10       | <2        | <5              | <5        | <5        | <0.01     | <6        |
| POW95D01-064     |                  | 0.25      | 0.23     | 26        | <5       | <10       | 4         | <5              | <5        | <5        | 0.02      | 17        |
| POW95D01-065     |                  | 0.03      | 0.02     | 6         | <5       | <10       | <2        | <5              | <5        | <5        | <0.01     | 7         |
| POW95D01-066     |                  | 0.02      | 0.01     | 17        | <5       | <10       | <2        | <5              | <5        | <5        | <0.01     | 8         |
| P0W95D01-067     |                  | 0.08      | 1.09     | 37        | <5       | <10       | 22        | <5              | 8         | <5        | 0.15      | 17        |
| P0W95D01-068     |                  | 0.04      | 0.48     | 18        | <5       | <10       | 13        | <5              | 8         | <5        | 0.10      | 17        |
| POW95D01-069     |                  | 0.02      | 0.01     | 15        | <5       | <10       | 3         | <5              | <5        | <5        | 0.01      | 8         |
| POW95D01-070     |                  | 0.02      | 0.02     | 12        | <5       | <10       | 3         | <5              | <5        | <5        | <0.01     | 6         |
| POW95D01-071     |                  | 0.04      | 0.16     | 9         | <5       | <10       | 6         | <5              | <5        | <5        | 0.02      | 10        |
| P0W95D01-072     |                  | 0.06      | 0.21     | 47        | 5        | <10       | 9         | <5              | 17        | 7         | 0.03      | 18        |
| POW95D01-073     |                  | 0.35      | 0.61     | 144       | <5       | <10       | 64        | <5              | 23        | <5        | 0.06      | <6        |
| P0W95D01-074     |                  | 0.03      | <0.01    | 251       | <5       | <10       | 35        | <5              | 16        | <5        | 0.03      | 13        |
| POW95D01-075     | ••••••           | 0.37      | 0.22     | 193       | <5       | <10       | 60        | <5              | 20        | <5        | 0.04      | 29        |
| P0W95D01-076     |                  | 0.93      | 1.71     | 96        | <5       | <10       | 84        | <5              | 34        | <5        | 0.15      | 23        |
| POW95D01-077     |                  | 0.78      | 1.56     | 68        | <5       | <10       | 74        | <5              | 35        | <5        | 0.15      | 13        |
| POW95D01-078     |                  | 2.52      | 1.15     | 72        | <5       | 11        | 83        | <5              | 45        | <5        | 0.17      | 20        |
| POW95D01-079     |                  | 2.66      | 1.09     | 74        | <5       | <10       | 80        | <5 <sup>`</sup> | 46        | <5        | 0.17      | 19        |
| P0W95D01-080     |                  | 1.95      | 0.94     | 72        | <5       | <10       | 73        | <5              | 34        | <5        | 0.16      | 12        |
| P0W95D01-081     |                  | 0.58      | 1.61     | 61        | <5       | <10       | 79        | <5              | 33        | <5        | 0.12      | 10        |
| POW95D01-082     |                  | 1.53      | 1.68     | 67        | <5       | <10       | 86        | <5              | 37        | <5        | 0.18      | 13        |
| POW95D01-083     |                  | 0.70      | 1.05     | 53        | <5       | <10       | 97        | <5              | 31        | <5        | 0.14      | 7         |
| POW95D01-084     |                  | 1.09      | 0.51     | 51        | <5       | <10       | 90        | <5              | 26        | <5        | 0.13      | 8         |
| P0W95D01-085     |                  | 0.90      | 0.79     | 57        | <5       | <10       | 90        | <5              | 29        | <5        | 0.13      | 7         |

## Geochemical Lab Report

| EPORT: 195-572               |                  |                                         |              |           |            |           |           | PRO        | E PRINTED | E         |           | AGE 2A    |           |
|------------------------------|------------------|-----------------------------------------|--------------|-----------|------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|
| AMPLE<br>UMBER               | ELEMENT<br>UNITS | Au30<br>PPB                             | Ag<br>PPM    | Cu<br>PPM | Pb<br>PPM  | Zn<br>PPM | Mo<br>PPM | N Î<br>PPM | Co<br>PPM | Cd<br>PPM | Bī<br>PPM | As<br>PPM | Sb<br>PPM |
| POW95D01-086                 |                  | 16                                      | 1.1          | 138       | 11         | 918       | 15        | 1301       | 61        | 3         | 10        | 165       | <5        |
| POW95D01-087<br>POW95D01-088 |                  | <5<br><5                                | <0.5         | 43        | 5          | 148       | 3         | 392        | 34        | <1        | <5        | 68        | <5        |
| POW95D01-080                 |                  | <5<br><5                                | <0.5<br><0.5 | 16<br>64  | <2<br><2   | 76<br>75  | 6<br>3    | 1000       | 67        | <1        | 5         | 60        | 7         |
| FOW75001-007                 |                  |                                         |              |           |            |           |           | 1093       | 75        | <1        | 6         | 42        | <5        |
|                              |                  |                                         |              |           |            |           |           |            |           |           | ,         |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  | ••••••••••••••••••••••••••••••••••••••• |              |           |            |           |           |            |           | ••••••    |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           | •••••     |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         |              |           |            |           |           |            |           |           |           |           |           |
|                              |                  |                                         | ••••••       |           | Bondar-Cle | gg & Comp | any Ltd.  |            |           |           |           |           |           |

Tel: (613) 749-2220, Fax: (613) 749-7170



## Geochemical Lab Report

| EPORT: 195-572 | ••••••           | ••••••••••••••••••••••••••••••••••••••• |           |           |           |                   |          | PRC       | E PRINTED | E                 |                                         | PAGE 2B   |           |
|----------------|------------------|-----------------------------------------|-----------|-----------|-----------|-------------------|----------|-----------|-----------|-------------------|-----------------------------------------|-----------|-----------|
| MPLE<br>JMBER  | ELEMENT<br>UNITS | PCT                                     | Mn<br>PPM | Te<br>PPM | Ba<br>PPM | Cr<br>PP <b>M</b> | V<br>PPM | Sn<br>PPM | ₩<br>PPM  | La<br>PP <b>M</b> | Al<br>PCT                               | Mg<br>PCT | Ca<br>PCT |
| POW95D01-086   | ••••••           | >10.00                                  | 1285      | <25       |           |                   | 87       | 34        | <20       | 11                | 3.87                                    | 2.27      | 0.12      |
| POW95D01-087   |                  | 5.90                                    | 1345      | <25       | 59        | 571               | 89       | <20       | <20       | 23                | 6.01                                    | 5.61      | 2.75      |
| POW95D01-088   |                  | 6.42                                    | 1986      | <25       | 15        | 1567              | 89       | <20       | <20       | 6                 | 2.83                                    | 9.09      | 8.32      |
| POW95D01-089   |                  | 6.86                                    | 1166      | <25       | 7         | 1562              | 106      | <20       | <20       | <5                | 3.27                                    | >10.00    | 4.74      |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           | ••••••    |
|                |                  |                                         |           |           |           |                   |          |           |           |                   | ••••••                                  |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          | ,         |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           | •••       |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          | •         |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         | •••••     |           |           |                   |          |           |           |                   |                                         |           |           |
|                |                  |                                         |           |           | •         | gg & Compa        |          |           |           |                   | ••••••••••••••••••••••••••••••••••••••• |           | ••••••    |

5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



## Geochemical Lab Report

| EPORT: 195-5               | 7285.0 ( CON     | (PLETE )     |                |                   |          |                           |           | PRC      | E PRINTED | ε        |            | AGE 2C    |      |
|----------------------------|------------------|--------------|----------------|-------------------|----------|---------------------------|-----------|----------|-----------|----------|------------|-----------|------|
| AMPLE<br>UMBER             | ELEMENT<br>UNITS | Na<br>PCT    | K<br>PCT       | Sr<br>PP <b>M</b> | Y<br>PPM | Ga<br>PPM                 | Li<br>PPM |          | Sc<br>PPM |          | T i<br>PCT | Zr<br>PPM |      |
| POW95D01-0                 |                  | 0.44         | 0.06           | 23                | 7        | <10                       | 33        | <5       | 15        | <5       | 0.10       | 47        |      |
| POW95D01-08<br>POW95D01-08 |                  | 2.26         | 0.04           | 101               | 10       | <10                       | 36        | <5       | 12        | <5       | 0.17       | 89        |      |
| POW95D01-0                 |                  | 0.03<br>0.03 | <0.01<br><0.01 | 123<br>66         | <5<br><5 | <10<br><10                | 22<br>27  | <5<br><5 | 14<br>17  | <5<br>-5 | 0.06       | 7         |      |
|                            |                  |              |                |                   |          |                           |           |          |           | <5       | 0.03       | 6         |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           | •••• |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              | •••••          |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          | ••••••     |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                | ••••••            |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              |                |                   |          |                           |           |          |           |          |            |           |      |
|                            |                  |              | 54             |                   |          | gg & Compa<br>wa, Ontario |           | Canada   |           |          |            |           |      |



. .

Geochemical Lab Report

| CAMECO CO<br>MIKE KOZIO<br>#6-1349 KE<br>SUDBURY,ON<br>P3E 5P5 | DL<br>ELLY LAKE ROAD<br>ITARIO |   | Poc |      | 33       | <b>_</b> |
|----------------------------------------------------------------|--------------------------------|---|-----|------|----------|----------|
|                                                                |                                |   |     | (Tot | al of 34 | )        |
| +                                                              | +                              | • |     | Ay+1 | сP       |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |
|                                                                |                                |   |     |      |          |          |



## Geochemical Lab Report

| REPORT: T95- | 57286.0 ( CON | IPLETE ) |      |     |     |     |     |      | TE PRINTED<br>OJECT: NOM |         |     | PAGE 1A |      |
|--------------|---------------|----------|------|-----|-----|-----|-----|------|--------------------------|---------|-----|---------|------|
| SAMPLE       | ELEMENT       | Au30     | Ag   | Cu  | Pb  | Zn  | Mo  | Ni   | Co                       | Cd      | Bi  | As      | S    |
| NUMBER       | UNITS         | PPB      | PPM  | PPM | PPM | PPM | PPM | PPM  | PPM                      | PPM     | PPM | PPM     | PP   |
| POW95D02-0   | 01            | <5       | 1.0  | 105 | 7   | 102 | 5   | 59   | 50                       | <1      | <5  | 41      | <    |
| POW95D02-0   | 02            | <5       | 0.7  | 107 | 8   | 103 | 7   | 56   | 49                       | <1      | 8   | 51      | <    |
| POW95D02-0   | 03            | <5       | <0.5 | 124 | 3   | 91  | 5   | 52   | 46                       | <1      | <5  | 48      | <    |
| POW95D02-0   | 04            | <5       | <0.5 | 60  | 6   | 119 | 4   | 770  | 78                       | 、<br><1 | <5  | 28      | <    |
| POW95D02-0   | 05            | <5       | <0.5 | 44  | 2   | 124 | 4   | 620  | 79                       | <1      | <5  | 62      | <    |
| POW95D02-0   | 06            | <5       | <0.5 | 81  | <2  | 138 | 4   | 676  | 107                      | <1      | 7   | 14      |      |
| POW95D02~0   | 07            | <5       | <0.5 | 77  | 5   | 92  | 5   | 970  | 121                      | <1      | 11  | 50      | ~    |
| POW95D02-0   | 08            | <5       | <0.5 | 74  | 6   | 91  | 2   | 1256 | 129                      | <1      | <5  | 37      | <    |
| POW95D02-0   | 09            | <5       | 0.5  | 78  | 2   | 118 | 5   | 954  | 101                      | <1      | 7   | 22      | <    |
| POW95D02-0   | 10            | 6        | <0.5 | 71  | 7   | 112 | 3   | 1025 | 112                      | <1      | <5  | 15      | <    |
| POW95D02-0   | 11            | <5       | <0.5 | 57  | <2  | 74  | 2   | 652  | 104                      | <1      | 10  | 21      | <    |
| POW95D02-0   | 12            | <5       | <0.5 | 67  | <2  | 82  | 2   | 697  | 105                      | <1      | 5   | 36      | <    |
| P0W95D02-0   | 13            | <5       | <0.5 | 44  | <2  | 76  | 2   | 757  | 89                       | <1      | <5  | <5      | <    |
| POW95D02-0   | 14            | <5       | <0.5 | 47  | <2  | 83  | 2   | 908  | 111                      | <1      | <5  | <5      | <    |
| POW95D02-0   | 15            | <5       | <0.5 | 47  | <2  | 80  | 3   | 747  | 101                      | <1      | <5  | 22      | <    |
| POW95D02-0   | 16            | <5       | <0.5 | 62  | <2  | 73  | 4   | 943  | 99                       | <1      | 10  | 11      |      |
| POW95D02-0   | 17            | <5       | <0.5 | 50  | <2  | 73  | 3   | 915  | 103                      | <1      | 8   | 31      | <    |
| POW95D02-0   | 8             | <5       | <0.5 | 56  | <2  | 85  | 5   | 867  | 112                      | <1      | 13  | 72      | </td |
| POW95D02-01  | 9             | <5       | <0.5 | 104 | <2  | 112 | 9   | 1333 | 153                      | <1      | 5   | 107     | <    |
| POW95D02-02  | 20            | <5       | <0.5 | 44  | <2  | 67  | 5   | 826  | 85                       | <1      | 7   | 18      | ç    |
| POW95D02-02  | :1            | <5       | <0.5 | 54  | <2  | 72  | 3   | 876  | 96                       | <1      | <5  | 16      | <5   |
| POW95D02-02  | 2             | <5       | <0.5 | 44  | <2  | 66  | 3   | 935  | 90                       | <1      | 15  | 13      | ç    |
| POW95D02-02  | 3             | 7        | <0.5 | 61  | <2  | 73  | 4   | 833  | 98                       | <1      | <5  | 68      | 7    |
| POW95D02-02  | 4             | <5       | <0.5 | 31  | <2  | 69  | 3   | 951  | · 92                     | <1      | 11  | 50      | <5   |
| POW95D02-02  | 5             | <5       | <0.5 | 67  | 2   | 87  | 7   | 1022 | 133                      | <1      | <5  | 79      | <5   |
| POW95D02-02  |               | <5       | <0.5 | 68  | 4   | 82  | 4   | 823  | 118                      | <1      | <5  | 55      | <5   |
| POW95D02-02  |               | <5       | <0.5 | 69  | <2  | 85  | 6   | 922  | 136                      | <1      | <5  | 65      | <5   |
| POW95D02-02  |               | <5       | <0.5 | 74  | 4   | 89  | 7   | 1027 | 147                      | <1      | 14  | 57      | <5   |
| POW95D02-02  |               | <5       | <0.5 | 58  | <2  | 74  | 5   | 660  | 91                       | <1      | 15  | 21      | 8    |
| POW95D02-03  | 0             | <5       | <0.5 | 35  | <2  | 79  | • 3 | 721  | 95                       | <1      | 16  | 9       | <5   |
| POW95D02-03  |               | <5       | <0.5 | 55  | 3   | 90  | 5   | 772  | 115                      | <1      | <5  | 65      | <5   |
| POW95D02-03  |               | <5       | <0.5 | 75  | <2  | 81  | 4   | 626  | 92                       | <1      | 5   | 36      | <5   |
| POW95D02-03  | 5             | <5       | <0.5 | 73  | <2  | 103 | 7   | 1305 | 159                      | <1      | -<5 | 148     | <5   |



| REPORT: 195-5728 | 86.0 ( CO | MPLETE ) |      |     |     |      |     |     | TE PRINTED<br>Dject: Noni |     | - 95 | PAGE 1B              |            |
|------------------|-----------|----------|------|-----|-----|------|-----|-----|---------------------------|-----|------|----------------------|------------|
| SAMPLE           | ELEMENT   | Fe Tot   | Mn   | Te  | Ba  | Cr   | ۷   | Sn  | W                         | La  | Al   | Mg                   | Ċ          |
| NUMBER           | UNITS     | PCT      | PPM  | PPM | PPM | PPM  | PPM | PPM | PPM                       | PPM | PCT  | PCT                  | PC         |
| POW95D02-001     |           | 7.86     | 2157 | <25 | 113 | 78   | 274 | <20 | <20                       | 8   | 8.49 | 4.76                 | 1.4        |
| POW95D02-002     |           | 8.10     | 2463 | <25 | 124 | 88   | 299 | 23  | <20                       | 8   | 8.80 | 4.85                 | 1.2        |
| POW95D02-003     |           | 6.77     | 2122 | <25 | 57  | 66   | 255 | <20 | <20                       | 9   | 7.40 | 4.01                 | 7.7        |
| POW95D02-004     |           | 4.60     | 2629 | <25 | 123 | 1385 | 134 | <20 | <20                       | 13  | 4.88 | 5.49                 | >10.0      |
| POW95D02-005     |           | 6.02     | 2430 | <25 | 89  | 1099 | 142 | <20 | <20                       | 14  | 6.24 | 6.05                 | 7.4        |
| POW95D02-006     |           | 6.94     | 3797 | <25 | 30  | 2022 | 164 | <20 | <20                       | 7   | 4.64 | 3.72                 | 5.4        |
| POW95D02-007     |           | 6.82     | 3045 | <25 | 31  | 2351 | 183 | <20 | <20                       | 7   | 5.12 | 3.87                 | 4.8        |
| POW95D02-008     |           | 5.25     | 2034 | <25 | 47  | 2244 | 188 | <20 | <20                       | 6   | 5.41 | 4.39                 | 4.0        |
| POW95D02-009     |           | 8.00     | 4242 | <25 | 222 | 1903 | 156 | <20 | <20                       | 8   | 4.38 | 4. <i>39</i><br>3.96 | 4.4<br>6.5 |
| POW95D02-010     |           | 5.81     | 3307 | <25 | 45  | 2200 | 167 | <20 | <20                       | 7   | 4.75 | 3.57                 | 8.3        |
| POW95D02-011     |           | 4.94     | 2482 | <25 | 26  | 1774 | 146 | <20 | <20                       | 6   | 4.13 | 4.19                 | 7.6        |
| POW95D02-012     |           | 5.24     | 2086 | <25 | 39  | 2157 | 167 | <20 | <20                       | 6   | 4.61 | 4.71                 | 5.4        |
| POW95D02-013     |           | 6.34     | 3128 | <25 | 40  | 1525 | 118 | <20 | <20                       | 7   | 3.35 | 5.63                 | 9.8        |
| P0W95D02-014     |           | 5.95     | 2172 | <25 | 51  | 1713 | 127 | <20 | <20                       | 7   | 3.84 | 6.00                 | 7.6        |
| POW95D02-015     |           | 5.43     | 2237 | <25 | 26  | 1863 | 143 | <20 | <20                       | 7   | 4.07 | 5.57                 | 8.9        |
| POW95D02-016     | ••••••    | 5.82     | 1442 | <25 | 16  | 1609 | 129 | <20 | <20                       | 6   | 3.84 | >10.00               | 6.2        |
| POW95D02-017     |           | 6.10     | 2166 | <25 | 14  | 1497 | 124 | <20 | <20                       | 6   | 3.62 | 9.61                 | 6.4        |
| POW95D02-018     |           | 6.90     | 2002 | <25 | 17  | 1807 | 153 | <20 | <20                       | 6   | 4.54 | 7.86                 | 4.8        |
| POW95D02-019     |           | >10.00   | 4587 | <25 | 132 | 2272 | 167 | 28  | <20                       | 8   | 4.50 | 4.87                 | 3.7        |
| POW95002-020     |           | 5.40     | 1538 | <25 | 23  | 1315 | 109 | <20 | <20                       | 5   | 3.34 | >10.00               | 6.39       |
| POW95D02-021     |           | 5.94     | 1341 | <25 | 8   | 1561 | 130 | <20 | <20                       | 5   | 3.82 | >10.00               | 4.87       |
| POW95D02-022     |           | 5.23     | 1576 | <25 | 9   | 1368 | 102 | <20 | <20                       | <5  | 2.97 | >10.00               | 6.47       |
| POW95D02-023     |           | 6.38     | 2766 | <25 | 54  | 1580 | 123 | <20 | <20                       | 6   | 3.65 | 6.96                 | 7.19       |
| POW95D02-024     |           | 5.69     | 2194 | <25 | 9   | 1501 | 109 | <20 | <20                       | 6   | 3.16 | 9,94                 | 7.47       |
| POW95D02-025     |           | 9.11     | 3348 | <25 | 74  | 2285 | 173 | 24  | <20                       | 7   | 4.77 | 4.36                 | 3.45       |
| POW95D02-026     |           | 6.89     | 2423 | <25 | 64  | 2133 | 167 | <20 | <20                       | 6   | 5.27 | 5.12                 | 5.30       |
| POW95D02-027     |           | 7.91     | 3392 | <25 | 160 | 2467 | 192 | <20 | <20                       | 6   | 5.22 | 3.24                 | 2.57       |
| POW95D02-028-A   |           | 8.62     | 3586 | <25 | 93  | 2714 | 195 | 25  | <20                       | 7   | 5.67 | 2.55                 | 2.49       |
| POW95D02-028-B   | ł         | 6.23     | 1331 | <25 | 16  | 1600 | 146 | <20 | <20                       | 6   | 4,20 | 9.83                 | 5.32       |
| POW95D02-030     |           | 6.52     | 1505 | <25 | 24  | 1576 | 145 | 23  | <20                       | 6   | 4.24 | >10.00               | 5.43       |
| POW95D02-031     |           | 6.88     | 1770 | <25 | 28  | 2052 | 171 | <20 | <20                       | 6   | 5.17 | 7.16                 | 5.08       |
| POW95D02-032     |           | 6.74     | 2020 | <25 | 21  | 1475 | 145 | <20 | <20                       | 6   | 4.23 | 7.39                 | 7.41       |
| P0W95D02-033     | ,         | 10.00    | 4435 | <25 | 273 | 2994 | 240 | 21  | <20                       | 7   | 6.09 | 3.50                 | 2.18       |



| REPORT: T95-!            | 57286.0 ( CO | MPLETE ) |        |          |          |            | ·           |          | E PRINTED |            |              | PAGE 1C          |
|--------------------------|--------------|----------|--------|----------|----------|------------|-------------|----------|-----------|------------|--------------|------------------|
| SAMPLE                   | ELEMENT      | Na       | ĸ      | Sr       | Ŷ        | Ga         | Li          | NÞ       | Sc        | Ta         | тіт          | ZΓ               |
| NUMBER                   | UNITS        | PCT      | PCT    | PPM      | PPM      | PPM        | PP <b>M</b> | PPM      | PPM       | PPM        | PCT          | PPM              |
| POW95D02-0               | 001          | 1.58     | 0.37   | 61       | 15       | <10        | 19          | 12       | 38        | <5         | 0.48         | 38               |
| POW95D02-0               | 002          | 1.49     | 0.37   | 59       | 16       | <10        | 19          | 6        | 38        | <5         | 0.48         | 33               |
| POW95D02-0               | 03           | 1.14     | 0.19   | 92       | 14       | <10        | 17          | <5       | 35        | <5         | 0.30         | 29               |
| POW95D02-0               | 04           | 0.26     | 0.15   | 606      | 6        | <10        | 30          | <5       | 17        | 6          | 0.19         | 36               |
| POW95D02-0               | 05           | 0.14     | 0.31   | 354      | 8        | <10        | 48          | <5       | 18        | <5         | 0.15         | 50<br>60         |
| POW95D02-0               |              | 0 50     | 0.0/   |          | •        |            |             |          |           | •••••••••• |              | •••••••••••••••• |
| POW95D02-0<br>POW95D02-0 |              | 0.59     | 0.04   | 210      | 6        | <10        | 26          | <5       | 22        | <5         | 0.16         | 8                |
| POW95002-0               |              | 0.74     | 0.06   | 137      | 5        | <10        | 25          | <5       | 25        | <5         | 0.20         | 12               |
| POW95002-0<br>POW95002-0 |              | 1.10     | 0.10   | 87       | <5<br>7  | <10        | 35          | <5       | 25        | <5         | 0.18         | 13               |
| POW95002-0               |              | 0.45     | 0.16   | 113      | 7        | <10        | 23          | <5       | 22        | <5         | 0.19         | 11               |
| PUW90DU2-0               | 10           | 0.85     | 0.11   | 103      | 6        | <10        | 25          | <5       | 22        | <5         | 0.19         | 13               |
| POW95D02-0               |              | 0.53     | 0.09   | 108      | 5        | <10        | 28          | <5       | 20        | <5         | 0.17         | 11               |
| POW95D02-0               |              | 0.63     | 0.10   | 66       | <5       | <10        | 37          | <5       | 22        | 6          | 0.18         | 10               |
| POW95D02-0               |              | 0.24     | 0.16   | 94       | 6        | <10        | 20          | <5       | 17        | <5         | 0.14         | 8                |
| POW95D02-0               | 14           | 0.44     | 0.34   | 71       | <5       | <10        | 22          | <5       | 18        | <5         | 0.17         | 7                |
| POW95D02-0               | 15           | 0.40     | 0.15   | 71       | <5       | <10        | 25          | <5       | 20        | 9          | 0.17         | 7                |
| POW95D02-0               | 16           | 0.32     | 0.06   | 112      | <5       | <10        | 33          | <5       | 17        | <5         | 0.06         | 8                |
| POW95D02-0               | 17           | 0.14     | 0.04   | 78       | <5       | <10        | 32          | <5       | 17        | <5         | 0.00         | <5               |
| POW95D02-01              | 18           | 0.39     | 0.05   | 68       | <5       | <10        | 32          | <5       | 20        | <5         | 0.14         | 7                |
| POW95D02-01              | 19           | 0.65     | 0.67   | 61       | <5       | <10        | 17          | <5       | 25        | <5         | 0.20         | 8                |
| POW95D02-02              | 20           | 0.37     | 0.09   | 114      | <5       | <10        | 31          | <5       | 14        | <5         | 0.03         | 11               |
| POW95D02-02              | 21           | 0.25     | 0.02   | 61       | <5       | <10        | 31          | <5       | 17        | <5         | 0.05         |                  |
| POW95D02-02              | 2            | 0.11     | <0.01  | 74       | <5       | <10        | 26          | <5       | 17        | <5         | 0.05<br>0.02 | <5<br><5         |
| POW95D02-02              | 23           | 0.60     | 0.17   | 86       | <5       | <10        | 22          | <5       | 14        | <5         | 0.02         |                  |
| POW95D02-02              | :4           | 0.03     | <0.01  | 96       | <5       | <10        | 27          | <5       | 15        | <5<br><5   | 0.12         | <5<br><5         |
| POW95D02-02              | 5            | 0.74     | 0.18   | 46       | <5       | <10        | 26          | <5       | 25        | <5<br><5   | 0.08         | <><br>8          |
| POW95D02-02              | 6            | 0.85     | 0.35   | 46       | <5       | ~10        | 40          |          |           |            | • •=         | _                |
| POW95D02-02              | -            | 0.93     | 0.33   | 40<br>32 | دی<br>دی | <10        | 62<br>5 8   | <5       | 22        | <5         | 0.09         | <5               |
| POW95D02-02              |              | 1.44     | 0.78   | 32       | <5       | <10<br><10 | 58          | <5<br>-5 | 28        | <5         | 0.23         | 9                |
| POW95D02-02              |              | 0.37     | 0.04   | 52<br>95 |          |            | 50          | <5<br>-5 | 27        | <5         | 0.25         | 7                |
| POW95D02-03              |              | 0.37     | 0.04   | 95<br>98 | <5<br><5 | <10        | 31<br>75    | <5       | 19        | <5         | 0.08         | <5               |
| , 0#75002-0J             | <b>~</b>     |          | V. I I | 70       | <5       | <10        | 35          | <5       | 19        | <5         | 0.07         | 9                |
| POW95D02-03              |              | 0.71     | 0.06   | 83       | <5       | <10        | 38          | <5       | 22        | <5         | 0.18         | 7                |
| POW95D02-03              |              | 0.42     | 0.05   | 119      | <5       | <10        | 31          | <5       | 19        | <5         | 0.14         | <5               |
| POW95D02-03              | 3            | 0.55     | 0.94   | 37       | <5       | <10        | 72          | <5       | 30        | <5         | 0.27         | 12               |



Geochemical Lab Report

| CAMECO CORPORATION<br>MIKE KOZIOL<br>#6-1349 KELLY LAKE ROAD<br>SUDBURY,ONTARIO<br>P3E 5P5 | < |    |                   | 3     |  |
|--------------------------------------------------------------------------------------------|---|----|-------------------|-------|--|
| <br>+                                                                                      | • | A. | <br>- 19<br>2-P · | ,20-: |  |
| <br>                                                                                       |   |    |                   |       |  |
| <br>                                                                                       |   |    |                   |       |  |
| <br>                                                                                       |   |    | <br>              |       |  |
| <br>                                                                                       |   |    | <br>              |       |  |



| REPORT: T95-5    | 7287.0 ( COM | PLETE )                                 |           |                   |           | · · · · · · · · · · · · · · · · · · · |           |      | TE PRINTED |          |           | PAGE 1A   |          |
|------------------|--------------|-----------------------------------------|-----------|-------------------|-----------|---------------------------------------|-----------|------|------------|----------|-----------|-----------|----------|
| SAMPLE<br>IUMBER | ELEMENT      | Au30<br>PPB                             | Ag<br>PPM | Cu<br>PP <b>M</b> | Pb<br>PPM | Zn<br>PPM                             | Mo<br>PPM | Ni   | Co         | Cd       | Bi        | As        | s        |
|                  |              |                                         |           |                   | FT.M      |                                       | rrm       | PPM  | PPM        | PPM      | PPM       | PPM       | PP       |
| POW95D03-00      |              | <5                                      | 0.7       | 72                | <2        | 90                                    | 3         | 1346 | 154        | <1       | <5        | 81        | <        |
| POW95D03-00      | -            | <5                                      | 0.7       | 91                | 2         | 69                                    | 3         | 970  | 115        | <1       | <5        | <5        | <        |
| POW95D03-00      | -            | <5                                      | <0.5      | 41                | <2        | 64                                    | 1         | 1371 | 91         | <1       | 7         | <5        | <        |
| POW95D03-00      |              | <5                                      | <0.5      | 49                | <2        | 58                                    | 3         | 1232 | 87         | <1       | 6         | <5        |          |
| POW95D03-00      | 15           | <5                                      | 1.1       | 39                | <2        | 147                                   | 8         | 1014 | 105        | <1       | 6         | 304       | </td     |
| POW95D03-00      | 6            | <5                                      | 1.1       | 58                | <2        | 95                                    |           | 127  | 10         | 1        | <b>13</b> | <5        | </td     |
| POW95D03-00      | 7            | <5                                      | 1.2       | 107               | <2        | 96                                    | 6         | 176  | 19         | <1       | د، ر<br>8 | <5        | <        |
| POW95D03-00      | 8            | <5                                      | 1.1       | 32                | <2        | 93                                    | 8         | 275  | 14         | <1       | 16        | <5        | </td     |
| POW95D03-00      | 9            | <5                                      | 0.9       | 54                | <2        | 70                                    | 7         | 103  | 8          | 2        | 13        | <5        | ·        |
| POW95D03-01      | 0            | <5                                      | 1.2       | 125               | <2        | 189                                   | 7         | 1079 | 122        | <1       | 7         | 254       | ·<br><5  |
| POW95D03-01      | 1            | <5                                      | <0.5      | 84                | <2        | 92                                    | 6         | 1577 | 148        | - 4      |           | 470       |          |
| POW95D03-01      | 2            | <5                                      | 0.8       | 77                | <2        | 106                                   | 9         | 1738 | 148        | <1<br><1 | 7         | 172       | <5       |
| POW95D03-01      | 3            | <5                                      | <0.5      | 44                | <2        | 55                                    | <1        | 904  | 80         | <1       | 10<br><5  | 107<br><5 | <5       |
| POW95D03-014     | 4            | <5                                      | 5.3       | 49                | <2        | 69                                    | 2         | 1101 | 90         | <1       | <5<br><5  | <5<br><5  | <5       |
| POW95D03-01      | 5            | <5                                      | 17.4      | 155               | <2        | 243                                   | 6         | 1228 | 99         | <1       | 9         | 7         | <5<br><5 |
| POW95D03-016     | 5            | <5                                      | <0.5      | 42                | <2        | 69                                    | 2         | 930  | 88         |          | ·····     | - 5       |          |
| POW95D03-017     | 7            | <5                                      | 0.5       | 50                | <2        | 78                                    | 1         | 841  | 80<br>90   | <1<br>-1 | <5        | <5        | <5       |
| POW95D03-018     | 3            | <5                                      | <0.5      | 57                | <2        | 67                                    | 1         | 1050 | 90<br>90   | <1<br><1 | 10<br><5  | 56        | <5       |
| POW95D03-019     | )            | <5                                      | <0.5      | 40                | <2        | 67                                    | 2         | 1054 | 90<br>86   | <1       | <5<br><5  | <5<br><5  | 7<br><5  |
|                  |              |                                         |           |                   |           |                                       |           |      |            | ••••••   |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              | ••••••••••••••••••••••••••••••••••••••• | ••••••    |                   |           |                                       |           |      |            | ····.    |           |           |          |
| ·                |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              | ••••••                                  |           | ••••••            |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |
|                  |              |                                         |           |                   |           |                                       |           |      |            |          |           |           |          |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



| REPORT: T95-572 | 87.0 ( CC | MPLETE ) |      |     |     |      |     |           | TE PRINTED:<br>DJECT: NONE             | 5-DEC     | ;-95      | PAGE 1B   |         |
|-----------------|-----------|----------|------|-----|-----|------|-----|-----------|----------------------------------------|-----------|-----------|-----------|---------|
| SAMPLE          | ELEMENT   | Fe Tot   | Mn   | Te  | Ba  | Cr   |     | •         | ···· · · · · · · · · · · · · · · · · · |           |           |           |         |
| NUMBER          | UNITS     | PCT      | PPM  | PPN | PPM | PPM  | PPM | Sn<br>PPM | W<br>PPM                               | La<br>PPM | AL<br>PCT | Mg<br>PCT | C<br>PC |
| POW95D03-001    | •••••••   | 7.96     | 2807 | <25 | 209 | 2707 | 195 | 20        | <20                                    | <5        | 5.39      | 2.88      | 2.1     |
| POW95D03-002    |           | 6.71     | 1763 | <25 | 188 | 2354 | 182 | <20       | <20                                    | <5        | 5.79      | 4.52      | 3.9     |
| POW95D03-003    |           | 6.31     | 1332 | <25 | 7   | 1360 | 92  | <20       | <20                                    | <5        | 2.83      | 9.88      | 3.5     |
| POW95D03-004    |           | 7.07     | 2051 | <25 | 29  | 1259 | 88  | <20       | <20                                    | <5        | 2.79      | 7.68      | 5.7     |
| POW95D03-005    |           | >10.00   | 3569 | <25 | 36  | 1677 | 106 | 25        | <20                                    | <5        | 3.49      | 1.56      | 0.5     |
| POW95D03-006    |           | >10.00   | 2845 | <25 | 23  | 291  | 15  | <20       | <20                                    | <5        | 0.64      | 0.78      | 0.3     |
| POW95D03-007    |           | >10.00   | 3132 | <25 | 20  | 250  | 11  | <20       | <20                                    | <5        | 0.04      | 0.83      | 0.2     |
| POW95D03-008    |           | >10.00   | 4626 | <25 | 24  | 250  | 24  | <20       | <20                                    | <5        | 0.52      | 1.36      | 0.6     |
| POW95D03-009    |           | 9.88     | 2481 | <25 | 25  | 254  | 10  | <20       | <20                                    | <5        | 0.49      | 0.63      | 0.0     |
| POW95D03-010    |           | >10.00   | 3818 | <25 | 68  | 1388 | 138 | 21        | <20                                    | <5        | 4.55      | 1.42      | 1.0     |
| POW95D03-011    |           | >10.00   | 6289 | <25 | 116 | 2427 | 175 | <20       | <20                                    | 6         | 5.74      | 2.07      | 2.6     |
| POW95D03-012    |           | >10.00   | 6249 | <25 | 66  | 2402 | 175 | <20       | <20                                    | <5        | 5.09      | 2.19      | 2.1     |
| POW95D03-013    |           | 6.63     | 3058 | <25 | 29  | 1443 | 73  | <20       | <20                                    | 7         | 2.61      | 5.01      | 7.1     |
| POW95D03-014    |           | 7.40     | 2744 | <25 | 30  | 1547 | 94  | <20       | <20                                    | 6         | 2.73      | 4.74      | 6.0     |
| POW95D03-015    |           | 9.47     | 2493 | <25 | 52  | 1953 | 116 | 24        | 77                                     | 6         | 3.49      | 5.68      | 3.4     |
| POW95D03-016    |           | 6.47     | 2255 | <25 | 16  | 1929 | 118 | <20       | <20                                    | 6         | 3.89      | 6.44      | 6.12    |
| POW95D03-017    |           | 7.59     | 2494 | <25 | 60  | 1907 | 141 | <20       | <20                                    | 6         | 4.77      | 4.72      | 5.9     |
| P0W95D03-018    |           | 6.51     | 1744 | <25 | 12  | 1810 | 116 | <20       | <20                                    | 6         | 3.77      | 8.11      | 5.74    |
| P0W95D03-019    |           | 5.86     | 1484 | <25 | 13  | 1735 | 106 | <20       | <20                                    | 7         | 3.36      | 8.31      | 8.22    |
|                 |           |          |      |     |     |      |     |           |                                        |           |           |           |         |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K11 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170



| EPORT: 195-57                | 287.0 ( CO       | MPLETE )  |          |                   |          |           |            |           | TE PRINTED:<br>DJECT: NONE |           | 75         | PAGE 1C   |
|------------------------------|------------------|-----------|----------|-------------------|----------|-----------|------------|-----------|----------------------------|-----------|------------|-----------|
| SAMPLE<br>IUMBER             | ELEMENT<br>UNITS | Na<br>PCT | K<br>PCT | Sr<br>PP <b>m</b> | Y<br>PPM | Ga<br>PPM | Li<br>PPM  | ND<br>PPM | Sc<br>PPM                  | Ta<br>PPM | T Í<br>PCT | Zr<br>PPM |
| POW95D03-00                  | 1                | 1.07      | 0.41     | 53                | <5       | <10       | 55         | <5        | 27                         | ~E        | 0.24       | •••       |
| POW95D03-00                  | 2                | 1.47      | 0.30     | 98                | <5       | <10       | 47         | <5        |                            | <5        | 0.26       | 14        |
| POW95D03-00                  |                  | 0.04      | 0.02     | 102               | <5       | <10       |            |           | 25                         | <5        | 0.25       | 9         |
| POW95D03-00                  | -                | 0.04      | 0.22     | 152               | <5       |           | 23         | <5        | 15                         | <5        | 0.03       | <5        |
| POW95D03-00                  |                  | 0.35      | 0.10     |                   |          | <10       | 21         | <5        | 15                         | <5        | 0.10       | <5        |
|                              | •<br>••••••      | 0.35      | 0.10     | 20                | 5        | <10       | 24         | <5        | 19                         | <5        | 0.16       | 24        |
| POW95D03-00                  |                  | 0.09      | 0.03     | 7                 | <5       | <10       | 6          | <5        | <5                         | <5        | 0.02       | 17        |
| POW95D03-00                  |                  | 0.03      | 0.02     | 6                 | 6        | <10       | 4          | <5        | 5                          | <5        | 0.02       | 13        |
| POW95D03-008                 | 3                | 0.05      | 0.05     | 10                | 6        | <10       | 5          | <5        | 10                         | 6         | 0.03       | 10        |
| POW95D03-009                 | 2                | 0.05      | 0.03     | 6                 | <5       | <10       | 4          | <5        | <5                         | <5        | 0.02       | 14        |
| POW95D03-010                 | )                | 0.76      | 0.15     | 36                | 5        | <10       | 35         | <5        | 23                         | <5        | 0.24       | 23        |
| POW95D03-011                 |                  | 1.24      | 0.40     | 63                | <5       | <10       | <b>E</b> O |           |                            | ······    |            | ·····     |
| POW95D03-012                 |                  | 1.11      | 0.26     | 51                | <5       | <10       | 59<br>45   | <5<br><5  | 25                         | <5<br>.c  | 0.29       | 16        |
| POW95D03-013                 |                  | 0.51      | 0.06     |                   |          |           |            | <5        | 33                         | <5        | 0.25       | 12        |
| POW95D03-014                 |                  |           |          | 120               | <5<br>.5 | <10       | 28         | <5        | 14                         | <5        | 0.05       | <5        |
| POW95D03-014<br>POW95D03-015 |                  | 0.28      | 0.12     | 87                | <5       | <10       | 34         | <5        | 17                         | <5        | 0.06       | <5        |
| 2003-015                     |                  | 0.13      | 0.10     | 49                | <5       | <10       | 27         | <5        | 20                         | <5        | 0.15       | 14        |
| POW95D03-016                 |                  | 0.40      | 0.03     | 70                | <5       | <10       | 29         | <5        | 18                         | <5        | 0.15       | 11        |
| POW95D03-017                 |                  | 0.82      | 0.14     | 71                | <5       | <10       | 30         | <5        | 20                         | <5        | 0.20       | 16        |
| POW95D03-018                 |                  | 0.12      | <0.01    | 74                | <5       | <10       | 28         | <5        | 18                         | <5        | 0.14       | 14        |
| POW95D03-019                 |                  | 0.03      | <0.01    | 107               | <5       | <10       | 21         | <5        | 17                         | <5        | 0.14       | 10        |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            | ····      |            |           |
| ·                            |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |
|                              |                  |           |          |                   |          |           |            |           |                            |           |            |           |



|                  | 266.0 ( COM                             |             | PROJECT: CAMG-5184 PAGE 1             |
|------------------|-----------------------------------------|-------------|---------------------------------------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS                        | Au30<br>PPB |                                       |
|                  |                                         |             |                                       |
| POW95D-03020     |                                         | <5          |                                       |
| POW95D-03021     |                                         | <5          |                                       |
| POW950-03022     |                                         | 8           |                                       |
| POW95D-03023     |                                         | <5          |                                       |
| POW95D-03024     |                                         | <5          |                                       |
| POW95D-03025     |                                         | <5          |                                       |
| POW95D-03026     |                                         | 6           | · · · · · · · · · · · · · · · · · · · |
| POW95D-03027     |                                         | <5          |                                       |
| POW95D-03028     |                                         | <5          |                                       |
| POW95D-03029     |                                         | <5          |                                       |
|                  | ••••••••••••••••••••••••••••••••••••••• |             |                                       |
| POW95D-03030     |                                         | <5          |                                       |
| POW95D-03031     |                                         | <5          |                                       |
| POW95D~03032     |                                         | <5          |                                       |
| POW950-03033     |                                         | <5          |                                       |
| POW95D-03034     |                                         | <5          |                                       |
|                  |                                         |             |                                       |
| POW95D-03035     |                                         | 15          |                                       |
| POW95D-03036     |                                         | 22          |                                       |
| POW95D-03037     |                                         | 21          |                                       |
| POW95D-03038     |                                         | 10          |                                       |
| POW95D-03039     |                                         | 8           |                                       |
|                  | •••••                                   |             |                                       |
| POW95D-03040     |                                         | 11          |                                       |
| POW95D-03041     |                                         | 9           |                                       |
| POW95D-03042     |                                         | 7           |                                       |
| POW95D-03043     |                                         | <5          | ·                                     |
| POW95D-03044     |                                         | <5          |                                       |
| POW95D-03045     |                                         | 1242        |                                       |
| POW950-03046     |                                         | 456         |                                       |
| POW950-03047     |                                         | 40          |                                       |
| POW95D-03048     |                                         | 9           |                                       |
| POW95D-03049     |                                         | 8           |                                       |
|                  |                                         | -           |                                       |
| POW95D-03050     |                                         | 6           |                                       |
| POW95D-03051     |                                         | 15          |                                       |
| POW95D-03052     |                                         | 73          |                                       |
| POW95D-03053     |                                         | 18          |                                       |
| POW950-03054     |                                         | <5          |                                       |
|                  |                                         |             |                                       |
|                  |                                         |             |                                       |
|                  |                                         |             |                                       |
|                  |                                         |             |                                       |
|                  |                                         |             |                                       |
|                  |                                         |             |                                       |
|                  |                                         |             |                                       |

Tel: (613) 749-2220, Fax: (613) 749-7170

## Certificate of Analysis

| REPORT: T95-57   | 7266.1 ( CON     | APLETE )  |           |           |           |           |           |                   | TE PRINTED<br>OJECT: CAM |           |           | AGE 1A    |         |
|------------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|--------------------------|-----------|-----------|-----------|---------|
|                  |                  |           |           | D.L.      |           |           |           |                   |                          | _ •       |           |           |         |
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | Ag<br>PPM | CU<br>PPM | Pb<br>PPM | Zn<br>PPM | Mo<br>PPM | NÎ<br>PPM | Со<br>РР <b>М</b> | Cd<br>PPM                | Bi<br>PPM | As<br>PPM | Sb<br>PPM | F<br>PC |
| POW95D-0302      | 20               | 0.3       | 49        | 11        | 82        | 3         | 279       | 39                | <0.2                     | <5        | <5        | <5        | 4.07    |
| POW95D-0302      |                  | <0.2      | 56        | 10        | 97        | 4         | 169       | 31                | <0.2                     | <5        | <5        | <5        | 4.05    |
| POW95D-0302      |                  | <0.2      | 35        | 8         | 38        | <1        | 596       | 63                | 0.4                      | <5        | 7         | <5        | 3.8     |
| POW95D-0302      | 23               | <0.2      | 41        | 8         | 28        | 2         | 332       | 36                | 0.8                      | <5        | <5        | <5        | 2.95    |
| POW95D-0302      | 24               | <0.2      | 43        | 9         | 49        | 2         | 441       | 44                | <0.2                     | <5        | <5        | <5        | 3.40    |
| POW95D-0302      |                  | <0.2      | 61        | 16        | 48        | 4         | 907       | 94                | 0.5                      | <5        | <5        | <5        | 6.12    |
| POW95D-0302      | -                | <0.2      | 49        | 8         | 78        | 2         | 591       | 55                | 1.0                      | <5        | ري<br>ح   | <5        | 4.29    |
| POW95D-0302      | -                | 0.2       | 24        | 6         | 16        | 5         | 365       | 39                | <0.2                     | <5<br><5  | ><br><5   | <5<br><5  | 2.88    |
| POW95D-0302      |                  | 0.4       | 26        | 13        | 23        | 7         | 898       | 75                | 0.6                      | <5<br><5  | <5<br><5  | <5        | 5.49    |
| POW95D-0302      |                  | 0.2       | 125       | 11        | 26        | 10        | 726       | 62                | 0.3                      | <5        | <5        | <5        | 4.63    |
| POW95D-0303      | 0                | 0.4       | 438       | 12        | 33        |           | 679       | 75                | 0.4                      | <5        | <5        | <5        | 4.53    |
| POW95D-0303      |                  | 0.3       | 62        | 11        | 30        | 13        | 732       | 58                | 0.5                      | <5        | <5        | 6         | 4.21    |
| POW95D-0303      |                  | 0.3       | 161       | 19        | 22        | 7         | 17        | 11                | <0.2                     | <5        | <5        | -5        | 1.18    |
| POW95D-0303      |                  | <0.2      | 58        | 6         | 10        | ,<br>16   | 14        | 9                 | <0.2                     | <5        | <5        | <5        | 1.00    |
| POW950-0303      | 4                | 0.6       | 48        | 12        | 43        | 5         | 80        | 16                | 0.3                      | <5        | <5        | <5        | 2.55    |
| POW95D-0303      | 5                | 0.2       | 106       | 11        | 31        |           | 772       |                   | <0.2                     | <5        | 41        | <5        | 6.33    |
| POW95D-0303      | 6                | <0.2      | 123       | 12        | 33        | 28        | 684       | 86                | 0.7                      | <5        | 107       | <5        | 4.99    |
| POW95D-0303      | 7                | 0.4       | 223       | 15        | 42        | 45        | 769       | 65                | 0.9                      | <5        | 42        | <5        | 5.09    |
| POW95D-0303      | 8                | <0.2      | 58        | 8         | 19        | 13        | 574       | 52                | 0.6                      | <5        | <5        | <5        | 3.43    |
| POW95D-03039     | 9                | 0.3       | 74        | 10        | 24        | 13        | 645       | 54                | 0.6                      | <5        | <5        | <5        | 2.49    |
| POW95D-03040     | <br>D            | 0.3       | 61        | 10        | 46        | 4         | 953       | 68                | 0.8                      | <5        | <5        | <5        | 4.01    |
| POW95D-03041     | 1                | 0.4       | 70        | 21        | 39        | 5         | 1069      | 66                | 1.3                      | <5        | 6         | <5        | 3.86    |
| POW95D-03042     | 2                | 0.5       | 24        | 7         | 26        | 5         | 1328      | 74                | 1.1                      | <5        | 6         | <5        | 4.24    |
| POW95D-03043     | 5                | 0.6       | 114       | 19        | 87        | 36        | 624       | 62                | 1.4                      | <5        | 30        | 6         | 4.77    |
| POW95D-03044     | •                | 0.7       | 108       | 12        | 58        | 6         | 107       | 23                | 0.2                      | <5        | <5        | <5        | 3.36    |
| POW95D-03045     |                  | 1.0       | 67        | 268       | 172       | 59        | 57        | 20                | 1.2                      | <5        | <5        | <5        | 3.24    |
| POW95D-03046     | 5                | 0.9       | 117       | 20        | 111       | 6         | 86        | 31                | <0.2                     | <5        | <5        | <5        | 4.53    |
| POW95D-03047     |                  | 0.5       | 36        | 20        | 36        | 2         | 16        | 12                | <0.2                     | <5        | <5        | <5        | 2.05    |
| POW95D-03048     | 3                | 0.4       | 25        | 13        | 51        | 2         | 21        | 9                 | <0.2                     | <5        | <5        | <5        | 2.09    |
| POW95D-03049     | )                | 0.4       | 83        | 14        | 37        | 4         | 13        | 7                 | <0.2                     | <5        | <5        | <5        | 1.69    |
| PO#95D-03050     | )                | 0.5       | 136       | 18        | 38        | 3         | 13        | 6                 | 0.2                      | <5        | <5        | <5        | 1.86    |
| POW95D-03051     |                  | 0.4       | 45        | 17        | 33        | 4         | 14        | 7                 | <0.2                     | <5        | <5        | <5        | 1.86    |
| POW95D-03052     | !                | 0.5       | 89        | 13        | 87        | 5         | 61        | 22                | <0.2                     | <5        | <5        | <5        | 3.90    |
| POW95D-03053     |                  | 0.5       | 69        | 14        | 77        | 6         | 125       | 26 ·              | <0.2                     | <5        | <5        | <5        | 3.53    |
| POW95D-03054     |                  | 0.4       | 48        | 13        | 49        | 2         | 31        | 10                | <0.2                     | <5        | <5        | <5        | 2.25    |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

## Certificate of Analysis

| REPORT: 195-572  | 66.1 ( COM | IPLETE )  |            |            |             |           |              |            | E PRINTE<br>JECT: CA | PAGE 1B      |              |              |                                         |
|------------------|------------|-----------|------------|------------|-------------|-----------|--------------|------------|----------------------|--------------|--------------|--------------|-----------------------------------------|
|                  |            |           |            |            |             |           |              |            |                      |              |              |              |                                         |
| SAMPLE<br>NUMBER | ELEMENT    | Mn<br>PPM | Те<br>РРМ  | 8a<br>PPM  | Cr<br>PPM   | V<br>PPM  | Sn<br>PPM    | W PPM      | La<br>PPM            | Al<br>PCT    | Mg<br>PCT    | Ca<br>PCT    | Na<br>PC1                               |
| POW95D-03020     |            | 798       | <10        |            | 500         |           |              |            |                      |              |              |              | • • • • • • • • • • • • • • • • • • • • |
| POW950-03021     |            | 838       | <10<br><10 | 11<br>34   | 590<br>211  | 98<br>110 | <20          | <20        | 6                    | 2.50         | 2.78         | 2.27         | 0.0                                     |
| POW95D-03022     |            | 2193      | <10        | 23         | 1146        |           | <20          | <20        | 7                    | 2.27         | 2.32         | 1.94         | 0.0                                     |
| POW950-03023     |            | 1324      | <10        | 60         | 1073        | 77<br>67  | <20          | <20        | 3                    | 2.04         | 2.43         | >10.00       | 0.0                                     |
| POW950-03024     |            | 1439      | <10        | 38         | 997         | 59        | <20          | <20        | 1                    | 1.77         | 2.60         | 6.49         | <0.01                                   |
| 100750 05024     |            | 1437      | <b>NIU</b> |            | 771         |           | <20          | <20        | . 2                  | 1.91         | 2.69         | 7.03         | <0.01                                   |
| POW95D-03025     |            | 2125      | 13         | 32         | 1508        | 124       | <20          | <20        | 3                    | 2.83         | 2.76         | 5.00         | 0.02                                    |
| P0W95D-03026     |            | 2074      | <10        | 24         | 1008        | 69        | <20          | <20        | 2                    | 1.98         | 2.51         | 6.79         | 0.01                                    |
| POW95D-03027     |            | 616       | <10        | 25         | 561         | 28        | <20          | <20        | <1                   | 0.83         | 2.57         | 3.95         | 0.02                                    |
| POW95D-03028     |            | 387       | 12         | 13         | 798         | 59        | <20          | <20        | <1                   | 2.34         | 4.31         | 0.45         | 0.02                                    |
| POW95D-03029     |            | 531       | <10        | 39         | 1014        | 53        | <20          | <20        | <1                   | 2.40         | 3.60         | 0.89         | 0.06                                    |
| POW95D-03030     |            | 654       | <10        | 701        | 1121        | 102       | -20          | -20        |                      |              |              |              |                                         |
| POW950-03031     |            | 612       | <10        | 321<br>157 | 1121<br>854 | 102<br>54 | <20          | <20        | <1                   | 2.09         | 2.96         | 1.24         | 0.11                                    |
| POW95D-03032     |            | 161       | <10<br><10 | 37         | 65          | 54<br>19  | <20          | <20        | <1<br>70             | 2.17         | 3.23         | 2.29         | 0.06                                    |
| POW95D-03033     |            | 128       | <10        | 45         |             | 19        | <20          | <20        | 38                   | 0.33         | 0.46         | 0.92         | 0.17                                    |
| POW95D-03034     |            | 625       | <10        |            | 62          |           | <20          | <20        | 40                   | 0.25         | 0.21         | 0.70         | 0.15                                    |
| F0#950 05054     |            | 625       | ×10        | 202        | 180         | 39        | <20          | <20        | 36                   | 1.48         | 2.47         | 0.97         | 0.12                                    |
| POW950-03035     |            | 739       | 11         | 86         | 693         | 67        | <20          | <20        | <1                   | 1.95         | 2.98         | 1.07         | 0.10                                    |
| POW95D-03036     |            | 681       | <10        | 52         | 685         | 75        | <20          | <20        | <1                   | 1.73         | 2.25         | 1.08         | 0.10                                    |
| POW95D-03037     |            | 522       | 12         | 33         | 599         | 47        | <20          | <20        | 3                    | 1.78         | 2.77         | 2.03         | 0.16                                    |
| POW95D-03038     |            | 679       | <10        | 57         | 481         | 53        | <20          | <20        | 6                    | 1.20         | 1.54         | 2.24         | 0.15                                    |
| POW95D-03039     |            | 489       | <10        | 69         | 492         | 42        | <20          | <20        | 12                   | 1.27         | 2.20         | 1.73         | 0.13                                    |
| POW95D-03040     |            | 579       | <10        | 38         | 917         | 48        | <20          | <20        | 3                    | 2 07         | 7 20         | - 44         |                                         |
| POW95D-03041     |            | 742       | <10        | 4          | 614         | 39        | <20          | <20<br><20 | 2                    | 2.03<br>1.33 | 3.20         | 2.11         | 0.08                                    |
| POW95D-03042     |            | 669       | <10        | 2          | 393         | 31        | <20          | <20        | <1                   | 1.01         | 3.16<br>4.72 | 8.04<br>1.51 | 0.02                                    |
| POW95D-03043     |            | 626       | <10        | 39         | 794         | 59        | <20          | <20<br><20 | 1                    | 2.82         | 4.72<br>3.38 | 2.31         | 0.01                                    |
| POW95D-03044     |            | 664       | <10        | 160        | 177         | 78        | <20          | <20        | 28                   | 1.34         | 2.18         | 2.31         | 0.06                                    |
|                  | ••••••     | ••••••    |            |            |             |           |              |            |                      |              |              |              |                                         |
| P0¥95D-03045     |            | 593       | <10        | 34         | 102         | 63        | <20          | <20        | 16                   | 1.46         | 1.63         | 2.56         | 0.07                                    |
| POW95D-03046     |            | 793       | <10        | 31         | 168         | 106       | <20          | <20        | 15                   | 2.14         | 2.22         | 1.97         | 0.06                                    |
| POW95D-03047     |            | 297       | <10        | 126        | 80          | 48        | <20          | <20        | 26                   | 0.69         | 0.87         | 1.32         | 0.09                                    |
| POW95D-03048     |            | 414       | <10        | 82         | 74          | 54        | <20          | <20        | 42                   | 0.97         | 1.21         | 1.69         | 0.10                                    |
| POW95D-03049     |            | 342       | <10        | 82         | 76          | 44        | <20          | <20        | 40                   | 0.68         | 0.77         | 2.15         | 0.10                                    |
| POW95D-03050     | ••••••     | 373       | <10        | 111        | 75          | 51        | <20          | <20        |                      | 0 49         | 0.95         | 1 70         | A 4A                                    |
| POW95D-03051     |            | 315       | <10<br><10 | 63         | 90          | 31        | <20          | <20<br><20 | 48<br>36             | 0.69         | 0.85         | 1.79         | 0.10                                    |
| POW95D-03052     |            | 725       | <10        | 82         | 109         | 83        | <20          | <20<br><20 | 26<br>24             | 0.61         | 0.80         | 1.95         | 0.10                                    |
| POW95D-03053     |            | 556       | <10        | 82         | 195         | 105       | <20          | <20<br><20 | 24<br>19             | 1.65         | 1.93         | 2.81         | 0.09                                    |
| POW95D-03054     |            | 392       | -10        |            | 1.2.2       | 105       | ~ <b>Z</b> U | 120        | 17                   | 1.65         | 1.66         | 1.05         | 0.10                                    |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

| REPORT: 195-572  | 266.1 ( COM      | IPLETE ) |     |     |     |     |     |     | TE PRINTE<br>DJECT: CA | ED: 3-JAN<br>MG-5184 |         | AGE 1C |
|------------------|------------------|----------|-----|-----|-----|-----|-----|-----|------------------------|----------------------|---------|--------|
| SAMPLE<br>NUMBER | ELEMENT<br>UNITS | K        | Sr  | Y   | Ga  | Li  | Nb  | Sc  | Ta                     | Ti                   | Zr      |        |
| NUMBER           | UN115            | PCT      | PPM                    | PCT                  | PPM     |        |
| POW95D-03020     | )                | 0.01     | 20  | 4   | 13  | 37  | 3   | 12  | <10                    | 0.07                 |         |        |
| POW95D-03021     |                  | 0.03     | 16  | 6   | 12  | 45  | 5   | 12  | <10                    | 0.08                 | 13      |        |
| POW95D-03022     |                  | 0.11     | 89  | 3   | 5   | 21  | 3   | 14  | <10                    | 0.03                 | <1      |        |
| POW95D-03023     |                  | 0.49     | 60  | 2   | 6   | 22  | 2   | 12  | <10                    | 0.05                 | <1      |        |
| POW95D-03024     |                  | 0.25     | 71  | 3   | 7   | 20  | 3   | 12  | <10                    | 0.04                 | <1      |        |
| POW95D-03025     |                  | 0.23     | 49  | 3   | 13  | 27  |     | 19  | <10                    | 0.07                 | . 1     |        |
| POW95D-03026     |                  | 0.20     | 67  | 3   | 6   | 22  | 3   | 12  | <10                    | 0.03                 | <1      |        |
| POW95D-03027     |                  | 0.15     | 89  | 1   | 3   | 9   | 2   | <5  | <10                    | 0.02                 | 1       |        |
| POW95D-03028     |                  | 0.19     | 11  | 1   | 10  | 25  | 2   | <5  | <10                    | 0.10                 | 1       |        |
| POW95D-03029     |                  | 0.87     | 15  | 1   | 10  | 36  | 1   | <5  | <10                    | 0.11                 | 2       |        |
| POW95D-03030     |                  | 2.38     | 20  | 3   |     | 95  | 3   | 7   | <10                    | 0.20                 | 3       |        |
| POW95D-03031     |                  | 1.12     | 57  | 1   | 10  | 32  | 2   | <5  | <10                    | 0.10                 | 2       |        |
| POW95D-03032     |                  | 0.20     | 93  | 11  | 6   | 9   | 10  | <5  | <10                    | 0.13                 | 23      |        |
| POW95D-03033     |                  | 0.10     | 110 | 10  | 5   | 6   | 9   | <5  | <10                    | 0.15                 | 17      |        |
| POW95D-03034     |                  | 1.36     | 76  | 10  | 9   | 63  | 10  | <5  | <10                    | 0.15                 | 25      |        |
| POW95D-03035     |                  | 0.62     | 26  |     |     | 46  | 4   | 5   | <10                    | 0.10                 | 3       |        |
| POW950-03036     |                  | 0.52     | 12  | 4   | 11  | 45  | 4   | 8   | <10                    | 0.14                 | 4       |        |
| POW95D-03037     |                  | 0.50     | 33  | 4   | 8   | 39  | 4   | 5   | <10                    | 0.08                 | 7       |        |
| POW95D-03038     |                  | 0.39     | 105 | 6   | 9   | 31  | 5   | 6   | <10                    | 0.14                 | ,<br>10 |        |
| POW95D-03039     |                  | 0.40     | 56  | 5   | 9   | 37  | 4   | <5  | <10                    | 0.13                 | 20      |        |
| POW95D-03040     |                  | 0.26     | 41  | 2   | 9   | 32  | 2   | <5  | <10                    | 0.10                 | 5       |        |
| POW95D-03041     |                  | 0.02     | 102 | 1   | 7   | 8   | 2   | <5  | <10                    | 0.05                 | 2       |        |
| POW95D-03042     |                  | 0.01     | 27  | 1   | 5   | 7   | 2   | 6   | <10                    | 0.03                 | 2       |        |
| POW95D-03043     |                  | 0.51     | 34  | 2   | 12  | 72  | 3   | <5  | <10                    | 0.11                 | 2       |        |
| POW95D-03044     |                  | 0.60     | 66  | 11  | 14  | 45  | 10  | <5  | <10                    | 0.23                 | 14      |        |
| POW95D-03045     |                  | 0.19     | 56  |     | 12  | 30  | 8   | 6   | <10                    | 0.18                 | 28      |        |
| POW95D-03046     |                  | 0.16     | 82  | 10  | 18  | 57  | 9   | 10  | <10                    | 0.29                 | 34      |        |
| POW95D-03047     |                  | 0.09     | 130 | 9   | 6   | 11  | 8   | <5  | <10                    | 0.08                 | 27      |        |
| P0W95D-03048     |                  | 0.10     | 115 | 11  | 7   | 17  | 10  | <5  | <10                    | 0.08                 | 19      |        |
| POW95D-03049     | •••••            | 0.10     | 88  | 11  | 7   | 11  | 10  | <5  | <10                    | 0.09                 | 32      |        |
| POW95D-03050     |                  | 0.11     | 106 | 11  | 7   | 11  | 11  | <5  | <10                    | 0.10                 | 37      |        |
| POW95D-03051     |                  | 0.06     | 93  | 9   | 5   | 12  | 8   | <5  | <10                    | 0.06                 | 36      |        |
| POW95D-03052     |                  | 0.39     | 108 | 10  | 15  | 38  | 9   | 6   | <10                    | 0.24                 | 26      |        |
| POW95D-03053     |                  | 0.44     | 65  | 8   | 14  | 40  | 7   | 8   | <10                    | 0.23                 | 37      |        |
| POW95D-03054     |                  | 0.12     | 80  | 12  | 11  | 19  | 11  | <5  | <10                    | 0.14                 | 27      |        |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

-----



| CAMECO CORPORATION<br>MIKE KOZIOL<br>#6-1349 KELLY LAKE ROAD<br>SUDBURY,ONTARIO<br>P3E 5P5 | POW95D0Y                                                                                                                                    |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                            | 01-025                                                                                                                                      |
| +                                                                                          | · · An only                                                                                                                                 |
|                                                                                            | POW 95305                                                                                                                                   |
|                                                                                            | 01 - 011                                                                                                                                    |
|                                                                                            | Ayonly                                                                                                                                      |
|                                                                                            |                                                                                                                                             |
|                                                                                            |                                                                                                                                             |
|                                                                                            |                                                                                                                                             |
|                                                                                            |                                                                                                                                             |
|                                                                                            |                                                                                                                                             |
|                                                                                            |                                                                                                                                             |
|                                                                                            | Bondar-Clegg & Company Ltd.                                                                                                                 |
| 54                                                                                         | Bondar-Clegg & Company Ltd.           420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada           Tel: (613) 749-2220, Fax: (613) 749-7170 |




| REPORT: T95-57 | 267.0 ( COM | (PLETE ) | PROJECT: CAMG-5184 PAGE 1             |
|----------------|-------------|----------|---------------------------------------|
| SAMPLE         | ELEMENT     | Au30     | · · · · · · · · · · · · · · · · · · · |
| NUMBER         | UNITS       | PPB      |                                       |
| POW95D-0400    | 1           | <5       |                                       |
| POW95D-0400    |             | 7        |                                       |
|                |             |          |                                       |
| POW95D-0400    | 5           | <5       |                                       |
| POW95D-0400    | 7           | <5       | ,                                     |
| POW95D-0400    | 3           | <5       |                                       |
| POW95D-0400    | 2           | <5       |                                       |
| POW95D-0401    | )           | 6        |                                       |
|                | ••••••      | ••••••   |                                       |
| POW95D-0401    |             | 7        |                                       |
| POW95D-0401    |             | <5       |                                       |
| POW95D-0401    |             | <5       |                                       |
| POW95D-04014   |             | <5       |                                       |
| POW95D-04015   | ;           | <5       |                                       |
|                |             |          |                                       |
| POW95D-04016   |             | <5       |                                       |
| POW95D-04017   |             | <5       |                                       |
| POW95D-04018   |             | 6        |                                       |
| POW95D-04019   |             | <5       |                                       |
| POW95D-04020   |             | <5       |                                       |
| POW95D-04021   |             | 26       |                                       |
| POW95D-04022   |             | 6        |                                       |
| POW95D-04023   |             | <5       |                                       |
| POW95D-04024   |             | <5       |                                       |
| POW95D-04025   |             | 11       |                                       |
|                |             | ••       |                                       |
| POW95D-05001   |             | 8        |                                       |
| P0W95D-05002   |             | <5       |                                       |
| POW95D-05003   |             | 9        |                                       |
| POW95D-05004   |             | <5       |                                       |
| POW95D-05005   |             | <5       |                                       |
|                | ••••••      | •••••••  |                                       |
| POW95D-05006   |             | <5       |                                       |
| POW95D-05007   |             | 6        |                                       |
| POW95D-05008   |             | 6        |                                       |
| POW95D-05009   |             | <5       |                                       |
| POW95D-05010   |             | 6        |                                       |
|                |             |          |                                       |
| POW95D-05011   |             | <5       |                                       |
|                |             |          |                                       |
|                |             |          |                                       |
|                |             |          |                                       |
|                |             |          |                                       |
|                |             |          |                                       |

Tel: (613) 749-2220, Fax: (613) 749-7170

| Bondar Clegg<br>Inchcape Testing Se                                                        | rvices                   | Certificat<br>of<br>Analysis |
|--------------------------------------------------------------------------------------------|--------------------------|------------------------------|
|                                                                                            |                          |                              |
| CAMECO CORPORATION<br>MIKE KOZIOL<br>#6-1349 KELLY LAKE ROAD<br>SUDBURY,ONTARIO<br>P3E 5P5 |                          |                              |
| + +                                                                                        | PBW95D-06-011            | 5 JZ                         |
|                                                                                            |                          |                              |
|                                                                                            |                          |                              |
|                                                                                            |                          |                              |
|                                                                                            |                          |                              |
|                                                                                            |                          |                              |
|                                                                                            |                          |                              |
|                                                                                            |                          |                              |
| / ,                                                                                        |                          |                              |
|                                                                                            | lar-Clegg & Company Ltd. |                              |





| REPORT: 195-57               | '298.0 ( COM | IPLETE )    |           |             |            |           |           |        | E PRINTED | -95<br>PAGE 1A |                 |          |          |
|------------------------------|--------------|-------------|-----------|-------------|------------|-----------|-----------|--------|-----------|----------------|-----------------|----------|----------|
| SAMPLE<br>NUMBER             | ELEMENT      | Au30<br>PPB | Ag<br>PPM | Cu<br>PPM   | Pb<br>PPM  | Zn<br>PPM | Mo<br>PPM | Ni     | Со        | Cd             | Bi              | As       | St       |
|                              | UNITS        | PPB         | <b>FF</b> | PPM         | PPM        | PPM       | PPM       | PPM    | PPM       | PPM            | PPM             | PPM      | PP       |
| POW95D-06-0                  | 1            | 9           | <0.5      | 18          | 10         | 45        | 6         | 20     | 9         | <1             | <5              | 36       | <5       |
| POW95D-06-0                  | 2            | 8           | <0.5      | 30          | 8          | 35        | 3         | 19     | 8         | <1             | <5              | 36       | <5       |
| PO <b>W95D-06</b> -0         | 3            | <5          | 0.6       | 21          | 30         | 34        | 4         | 19     | 8         | <1             | <5              | 30       | <5       |
| POW95D-06-0                  | 4            | <5          | <0.5      | 30          | 47         | 64        | 7         | 20     | 10        | <1             | <5              | 23       | <5       |
| POW95D-06-0                  | 5            | <5          | <0.5      | 31          | 54         | 56        | 7         | 22     | 10        | <1             | <5              | <5       | <5       |
| POW95D-06-0                  | 6            | <5          | 0.8       | 25          | 12         | 31        | 4         | 16     | 7         | <1             | <5              | <5       | <5       |
| POW95D-06-0                  | 7            | <5          | <0.5      | 27          | 16         | 31        | 3         | 15     | 8         | <1             | <sup>^</sup> <5 | <5       | <5       |
| POW95D-06-0                  | 8            | <5          | <0.5      | 19          | 18         | 34        | 5         | 19     | 8         | <1             | 6               | 36       | <5       |
| POW95D-06-0                  | 9            | <5          | <0.5      | 15          | 16         | 33        | 6         | 15     | 7         | <1             | <5              | 24       | <5       |
| POW95D-06-1                  | 0            | 8           | 0.5       | 8           | 10         | 44        | 6         | 20     | 10        | <1             | <5              | 9        | <5       |
| POW95D-06-1                  |              | <5          | <0.5      | 15          | 8          | 36        | 4         | 22     | 8         | <1             | <5              | <5       | <5       |
| POW95D-06-1                  |              | <5          | <0.5      | 20          | 13         | 39        | 4         | 22     | 10        | <1             | <5<br><5        | 8        | <5       |
| POW95D-06-1                  |              | 6           | <0.5      | 20          | 11         | 45        | 4<br>6    | 22     | 8         | <1             | <5<br><5        | °<br>13  | <5<br><5 |
| POW95D-06-14                 |              | <5          | <0.5      | 22          | 16         | 43        | 6         | 21     | 15        | <1             | <5              | 22       | <5       |
| POW95D-06-1                  |              | <5          | <0.5      | 24          | 20         | 45<br>38  | 5         | 18     | 8         | <1<br><1       | <5<br><5        | 22<br>27 | <5<br><5 |
|                              | •            |             | -0 F      |             |            |           |           |        | -         |                |                 |          |          |
| POW95D-06-10<br>POW95D-06-17 | -            | <5          | <0.5      | 36          | 13         | 12        | 3         | 10     | 8         | <1             | <5              | <5       | <5       |
| POW950-06-17<br>POW950-06-18 |              | <5<br>-5    | 0.5       | 22          | 7          | 18        | 3         | 8      | 5         | <1             | <5              | <5       | <5       |
|                              |              | <5          | <0.5      | 27          | 16         | 22        | 6         | 12     | 5         | <1             | <5              | 40       | <5       |
| POW95D-06-19                 |              | <5          | <0.5      | 11          | 12         | 23        | 5         | 17     | 5         | <1             | <5              | 14       | <5       |
| POW95D-06-20                 |              | <5          | 0.6       | 10          | 4          | 24        | 7         | 13     | 10        | <1             | <5              | <5       | <5       |
| POW95D-06-21                 |              | <5          | <0.5      | 9           | 5          | 22        | 4         | 14     | 3         | <1             | <5              | 18       | <5       |
| POW95D-06-22                 | 2            | 11          | 0.7       | 12          | 26         | 31        | 15        | 18     | 8         | <1             | <5              | 8        | <5       |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          | ······   |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             |            |           |           |        |           |                |                 |          |          |
|                              |              |             |           |             | Bondar-Cle | egg & Com | oany Ltd. |        |           |                |                 |          |          |
|                              |              |             |           | 5420 Canote |            |           |           | Canada |           |                |                 |          |          |

## Certificate of Analysis

| REPORT: 195-5    | 7298.0 ( CC      | MPLETE )      |           |            |               |             |            |           | TE PRINTED | PAGE 1B   | AGE 1B    |           |           |
|------------------|------------------|---------------|-----------|------------|---------------|-------------|------------|-----------|------------|-----------|-----------|-----------|-----------|
| SAMPLE<br>IUMBER | ELEMENT<br>UNITS | Fe Tot<br>PCT | Mn<br>PPM | Te<br>PPM  | Ba<br>PPM     | Cr<br>PPM   | V<br>PPM   | Sn<br>PPM | W<br>PPM   | La<br>PPM | Al<br>PCT | Mg<br>PCT | Ca<br>PC1 |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
| POW95D-06-0      |                  | 2.26          | 663       | <25        | >2000         | 80          | 57         | <20       | <20        | 66        | 7.72      | 0.78      | 2.56      |
| POW95D-06-0      |                  | 2.20          | 541       | <25        | 1341          | 68          | 59         | <20       | <20        | 59        | 8.06      | 0.71      | 2.12      |
| POW95D-06-0      | -                | 2.15          | 426       | <25        | 1275          | 75          | 65         | <20       | <20        | 59        | 7.43      | 0.50      | 2.39      |
| POW95D-06-0      |                  | 2.39          | 646       | <25        | 1816          | 55          | 66         | <20       | <20        | 74        | 8.42      | 0.84      | 2.80      |
| POW95D-06-0      | c                | 2.39          | 615       | <25        | 1731          | 52          | 68         | <20       | <20        | 72        | 8.70      | 0.72      | 2.86      |
| POW95D-06-0      | )6               | 2.14          | 537       | <25        | 782           | 64          | 72         | <20       | <20        | 58        | 7,91      | 0.37      | 2.75      |
| POW95D-06-0      | )7               | 2.03          | 466       | <25        | 486           | 79          | 66         | <20       | <20        | 43        | 7.50      | 0.40      | 2.38      |
| POW95D-06-0      | 8                | 2.26          | 510       | <25        | 893           | 64          | 71         | <20       | <20        | 53        | 7.81      | 0.45      | 2.61      |
| POW95D-06-0      | )9               | 2.03          | 524       | <25        | 1305          | 59          | 65         | <20       | <20        | 70        | 8.05      | 0.39      | 2.77      |
| POW95D-06-1      | 0                | 2.04          | 508       | <25        | 835           | 84          | 49         | <20       | <20        | 82        | 9.63      | 0.84      | 2.72      |
| POW95D-06-1      |                  | 1.97          | 545       | <25        | 855           | 93          | 54         | <20       | <20        | 56        | 6.92      | 0.43      | 2.94      |
| POW95D-06-1      |                  | 2.19          | 568       | <25        | 1285          | 59          | 62         | <20       | <20        | 66        | 7.73      | 0.44      | 3.25      |
| POW95D-06-1      |                  | 1.99          | 542       | <25        | 856           | 58          | 68         | <20       | <20        | 64        | 7.56      | 0.44      | 2.57      |
| POW95D-06-1      |                  | 2.33          | 479       | <25        | 730           | 55          | 81         | <20       | <20        | 55        | 7.98      | 0.59      | 2.37      |
| POW95D-06-1      |                  | 2.23          | 489       | <25        | 1105          | 51          | 74         | <20       | <20<br><20 | 61        | 8.05      | 0.39      | 2.30      |
|                  |                  | ~ ~~          | 400       |            |               |             |            |           |            |           |           |           |           |
| POW95D-06-1      |                  | 0.88          | 192       | <25        | 508           | 32          | 38         | <20       | <20        | 26        | 6.71      | 0.09      | 1.42      |
| POW950-06-1      |                  | 0.97          | 181       | <25        | 313           | 58          | 39         | <20       | <20        | 33        | 7.19      | 0.19      | 1.05      |
| POW95D-06-1      |                  | 1.06          | 288       | <25        | 860           | 52          | 37         | <20       | <20        | 45        | 8.93      | 0.20      | 1.78      |
| POW95D-06-1      |                  | 1.32          | 448       | <25        | 418           | 61          | 34         | <20       | <20        | 53        | 7.80      | 0.23      | 3.08      |
| POW95D-06-2      | U                | 1.26          | 409       | <25        | 702           | 59          | 30         | <20       | <20        | 51        | 8.08      | 0.20      | 2.65      |
| POW95D-06-2      |                  | 1.26          | 424       | <25        | 784           | 44          | 38         | <20       | <20        | 48        | 7.97      | 0.20      | 2.82      |
| POW95D-06-2      | 2                | 1.93          | 462       | <25        | 1356          | 39          | 51         | <20       | <20        | 63        | 8.08      | 0.27      | 2.47      |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
|                  |                  |               |           |            |               |             |            |           |            |           |           |           |           |
|                  |                  |               |           |            |               | egg & Comp  | -          |           |            |           |           |           |           |
|                  |                  |               |           | 5420 Canot | iek Road, Ott | awa, Ontari | o, K1J 9G2 | . Canada  |            |           |           |           |           |

## Certificate of Analysis

| EPORT: T95-5        | 57298.0 ( CO     | APLETE )  |          |             |            |              |             |           | E PRINTED |           | - 70      | PAGE 1C   |
|---------------------|------------------|-----------|----------|-------------|------------|--------------|-------------|-----------|-----------|-----------|-----------|-----------|
| AMPLE<br>UMBER      | ELEMENT<br>UNITS | Na<br>PCT | K<br>PCT | Sr<br>PPM   | Y<br>PPM   | Ga<br>PPM    | Li<br>PPM   | Nb<br>PPM | Sc<br>PPM | Ta<br>PPM | Ti<br>PCT | Zr<br>PPM |
| POW95D-06-          | .01              | 4.18      | 3.01     | 922         | 13         | 12           |             | ~5        |           | -F        | 0.00      |           |
| POW95D-06-          |                  | 4.18      | 2.90     | 765         | 12         | 12           | 7           | <5        | <5        | <5        | 0.20      | 137       |
| POW950-06-          |                  |           |          |             |            |              | 8           | 5         | <5        | <5        | 0.19      | 150       |
|                     |                  | 4.00      | 3.01     | 917         | 12         | 12           | 13          | 5         | <5        | <5        | 0.20      | 137       |
| POW95D-06-          |                  | 4.35      | 3.65     | 1539        | 16         | 14           | 29          | 8         | <5        | <5        | 0.23      | 166       |
| POW95D-06-          | CU               | 4.67      | 3.62     | 1393        | 16         | 14           | 27          | 7         | <5        | <5        | 0.23      | 174       |
| POW95D-06-          | 06               | 5.21      | 1.87     | 725         | 13         | 15           | 12          | 7         | <5        | <5        | 0,21      | 129       |
| P <b>OW95</b> D-06- | 07               | 5.30      | 1.35     | 615         | 10         | 14           | 11          | 6         | <5        | <5        | 0.20      | 149       |
| POW95D-06-          | 08               | 4.71      | 2.35     | 763         | 13         | 12           | 17          | 6         | <5        | 12        | 0.20      | 125       |
| POW95D-06-          | 09               | 4.59      | 2.95     | 828         | 14         | <10          | 14          | 6         | <5        | <5        | 0.22      | 143       |
| POW95D-06-          | 10               | 5.42      | 3.36     | 549         | 14         | 14           | 18          | 7         | 5         | <5        | 0.23      | 180       |
| POW95D-06-          |                  | 3.76      | 2.28     | 485         | 12         | 11           | 10          | <5        | <5        | <5        | 0.18      | 82        |
| POW95D-06-          |                  | 4.39      | 2.63     | 810         | 14         | 13           | 13          | 7         | <5        | <5        | 0.18      | 111       |
| POW95D-06-          |                  | 3.85      | 2.95     | 486         | 14         | 15           | 12          | 6         | <5        | <5<br><5  | 0.21      | 115       |
| POW95D-06-          |                  | 4.30      | 3.04     | 388         | 13         | 15           | 13          | 7         | <5        | <5        | 0.21      | 168       |
| POW95D-06-          |                  | 4.80      | 2.64     | 617         | 15         | 13           | 13          | 7         | 5         | <5        | 0.21      | 148       |
|                     |                  |           |          |             |            |              | ••••••      | ••••••    |           | ••••••    |           |           |
| POW95D-06-          |                  | 6.32      | 1.71     | 305         | 9          | 18           | 12          | 6         | <5        | <5        | 0.18      | 129       |
| POW95D-06-          |                  | 6.57      | 1.27     | 246         | 23         | 19           | 9           | 7         | <5        | <5        | 0.19      | 141       |
| POW95D-06-          | 18               | 4.55      | 3.88     | 480         | 8          | 18           | 5           | <5        | <5        | <5        | 0.11      | 87        |
| POW95D-06-          |                  | 4.13      | 3.10     | 325         | 13         | 13           | 7           | 6         | <5        | <5        | 0.17      | 109       |
| POW95D-06-          | 20               | 3.98      | 3.84     | 389         | 11         | 13           | 6           | 5         | <5        | <5        | 0.14      | 102       |
| POW95D-06-2         | 21               | 4.18      | 3.72     | 446         | 10         | 13           | 6           | 7         | <5        | <5        | 0.18      | 105       |
| POW95D-06-2         | 22               | 4.21      | 3.37     | 892         | 12         | 13           | 10          | 7         | <5        | <5        | 0.17      | 120       |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           | ·····     |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  | ••••••    |          |             |            |              |             |           |           | ••••••    |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            |              |             |           |           |           |           |           |
|                     |                  |           |          |             |            | egg & Com    |             |           |           |           |           |           |
|                     |                  |           |          | 5420 Canote | k Road, Ot | lawa, Ontari | io, KIJ 9G2 | , Canada  |           |           |           |           |

| CAMECO CORPORATION<br>MIKE KOZIOL<br>#6-1349 KELLY LAKE ROAD<br>SUDBURY,ONTARIO<br>P3E 5P5 | PON95D-09-001 to 03                                                      | 5/ |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----|
| +                                                                                          | + + +                                                                    |    |
|                                                                                            |                                                                          |    |
|                                                                                            |                                                                          |    |
|                                                                                            |                                                                          |    |
|                                                                                            |                                                                          |    |
|                                                                                            |                                                                          |    |
|                                                                                            |                                                                          |    |
|                                                                                            |                                                                          |    |
|                                                                                            | Bondar-Clegg & Company Ltd.<br>ek Road, Ottawa, Ontario, K1J 9G2, Canada |    |

| AMPLE<br>UMBER<br>POW-95D-07-00<br>POW-95D-07-00 | ELEMENT | Au30<br>PPB | Ag<br>PPM | Cu  | РЬ  | Zn  | Mo  | Ni  | Co  | Cd   | Bi  | As  | s    |
|--------------------------------------------------|---------|-------------|-----------|-----|-----|-----|-----|-----|-----|------|-----|-----|------|
| POW-95D-07-0(<br>POW-95D-07-0(                   | UNITS   | PPB         | PPM       |     | DOM | DDM | DDW |     |     |      |     |     |      |
| POW-95D-07-00                                    |         |             |           | PPM  | PPM | PPM | PPI  |
|                                                  | 01      | <5          | 0.6       | 40  | 7   | 114 | 4   | 51  | 18  | <0.2 | <5  | 31  | </td |
| DOUL OF D 07 00                                  | 02      | <5          | 0.3       | 20  | 5   | 123 | 5   | 165 | 24  | <0.2 | <5  | 49  | </td |
| POW-95D-07-00                                    | )3      | <5          | 0.5       | 44  | 7   | 99  | 5   | 90  | 19  | <0.2 | <5  | 38  | <    |
| POW-95D-07-00                                    | 04      | <5          | 0.3       | 15  | 6   | 68  | 3   | 27  | 14  | <0.2 | <5  | 21  | <    |
| POW-95D-07-00                                    | )5      | <5          | 0.2       | 15  | 6   | 58  | 4   | 29  | 12  | <0.2 | <5  | 16  | <    |
| P0W-95D-07-00                                    |         | <5          | <0.2      | 17  | 5   | 47  | 3   | 27  | 10  | <0.2 | ,<5 | 13  | <    |
| POW-95D-07-00                                    | )7      | <5          | 0.3       | 18  | 4   | 71  | 3   | 21  | 10  | <0.2 | <5  | 12  | <    |
| P0₩-95D-07-00                                    | 8       | <5          | <0.2      | 18  | 5   | 57  | 4   | 25  | 12  | <0.2 | <5  | 20  | <    |
| POW-95D-07-00                                    | )9      | 174         | 0.5       | 43  | 5   | 171 | 5   | 88  | 20  | <0.2 | <5  | 45  | <    |
| PW0-95D-07-10                                    | )       | 59          | 0.3       | 44  | 7   | 77  | 3   | 72  | 19  | <0.2 | <5  | 31  | <    |
| PW0-95D-07-11                                    |         | 6           | 0.4       | 51  | 5   | 78  | 4   | 61  | 16  | <0.2 | <5  | 20  | <    |
| PW0-95D-07-12                                    | !       | <5          | 0.2       | 50  | 7   | 82  | 4   | 84  | 19  | <0.2 | <5  | 29  | <    |
| PW0-95D-07-13                                    | ;       | <5          | 0.4       | 121 | 7   | 85  | 5   | 101 | 20  | <0.2 | <5  | 39  | <    |
| PW0-95D-07-14                                    | ,       | <5          | 0.4       | 85  | 7   | 158 | 6   | 125 | 21  | <0.2 | <5  | 48  | <    |
| PW0-95D-07-15                                    |         | 10          | 0.7       | 374 | 15  | 95  | 8   | 80  | 35  | <0.2 | 6   | 83  | <    |
| PW0-95D-07-16                                    | •       | <5          | 0.6       | 24  | 8   | 226 | 11  | 17  | 26  | <0.2 | 7   | 35  | <    |
| PW0-95D-07-17                                    | ,       | <5          | 0.5       | 29  | 4   | 188 | 9   | 15  | 27  | <0.2 | <5  | 23  | <    |
| PW0-95D-07-18                                    |         | <5          | 0.4       | 24  | 4   | 189 | 9   | 15  | 28  | <0.2 | 8   | 23  | </td |
| PW0-95D-07-19                                    |         | <5          | <0.2      | 24  | 3   | 61  | 4   | 26  | 13  | <0.2 | <5  | 14  | <    |
| PW0-95D-07-20                                    |         | <5          | 0.5       | 77  | 9   | 123 | 9   | 33  | 44  | <0.2 | 8   | 30  | </td |
| PW0-95D-07-21                                    |         | <5          | 0.4       | 43  | 8   | 120 | 10  | 25  | 41  | <0.2 | 5   | 24  | </td |
| PW0-95D-07-22                                    |         | <5          | 0.4       | 76  | 8   | 130 | 9   | 16  | 37  | <0.2 | 8   | 28  | <    |
| PW0-95D-07-23                                    |         | <5          | 0.5       | 94  | 9   | 146 | 10  | 43  | 41  | <0.2 | 8   | 26  | <    |
| PW0-95D-07-24                                    |         | <5          | 0.5       | 83  | 9   | 104 | 10  | 45  | 35  | <0.2 | <5  | 34  | <    |
| PW0-95D-07-25                                    |         | <5          | 0.4       | 91  | 8   | 86  | 7   | 41  | 34  | <0.2 | <5  | 19  | <    |
| PW0-95D-07-26                                    |         | <5          | 0.4       | 82  | 7   | 121 | 8   | 47  | 33  | <0.2 | <5  | 27  | <5   |
| PW0-95D-07-27                                    |         | <5          | 0.6       | 131 | 9   | 172 | 8   | 41  | 34  | <0.2 | 7   | 36  | <5   |
| PW0-95D-07-28                                    |         | 16          | 0.8       | 325 | 6   | 318 | 13  | 73  | 43  | 3.3  | 7   | 36  | <5   |
| PW0-95D-07-29                                    |         | <5          | 0.6       | 136 | 11  | 128 | 10  | 75  | 33  | <0.2 | <5  | 38  | <5   |
| PW0-95D-07-30                                    |         | <5          | 0.4       | 99  | 8   | 112 | 9   | 74  | 32  | <0.2 | 5   | 41  | <5   |
| PW0-95D-07-31                                    |         | 9           | 0.4       | 109 | 10  | 107 | 8   | 66  | 32  | <0.2 | <5  | 24  | <5   |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

## Certificate of Analysis

| REPORT: T95-57 | 299.0 ( C | OMPLETE ) |           |            |           |                   |            |            | TE PRINTED<br>DJECT: NON |        | 75           | PAGE 1B      |              |
|----------------|-----------|-----------|-----------|------------|-----------|-------------------|------------|------------|--------------------------|--------|--------------|--------------|--------------|
| SAMPLE         | ELEMENT   | Fe<br>PCT | Mn<br>PPM | Te<br>PPM  | Ba<br>PPM | Cr<br>PP <b>M</b> | V<br>PPM   | Sn         | ₩<br>DDM                 | La     | AL           | Mg           | C            |
|                | UNITS     | FG1       | FFM       | ггл<br>    | Frm       |                   | ггя        | PPM        | PPM                      | PPM    | PCT          | PCT          | PC.          |
| POW-95D-07-    | 001       | 4.15      | 830       | <10        | 18        | 64                | 24         | <20        | <20                      | 9      | 1.68         | 2.12         | 4.0          |
| POW-95D-07-    | 002       | 4.45      | 972       | <10        | 15        | 285               | 27         | <20        | <20                      | 10     | 2.12         | 2.90         | 4.9          |
| POW-95D-07-    | 003       | 3.95      | 812       | <10        | 18        | 55                | 18         | <20        | <20                      | 7      | 1.46         | 1.82         | 3.5          |
| POW-95D-07-    | 004       | 3.04      | 752       | <10        | 22        | 46                | 9          | <20        | <20                      | 11     | 1.11         | 1.54         | 4.2          |
| POW-95D-07-    | 005       | 2.80      | 607       | <10        | 22        | 38                | 9          | <20        | <20                      | 15     | 1.17         | 1.36         | 2.70         |
| POW-95D-07-    | 006       | 2.55      | 784       | <10        | 17        | 90                |            | <20        | <20                      |        | 0,81         | 1.40         | 5.18         |
| POW-95D-07-    | 007       | 2.68      | 625       | <10        | 24        | 55                | 9          | <20        | <20                      | 15     | 0.96         | 1.38         | 3.49         |
| POW-95D-07-    | 008       | 2.95      | 634       | <10        | 29        | 40                | 12         | <20        | <20                      | 16     | 1.15         | 1.43         | 3.34         |
| POW-95D-07-    | 009       | 4.18      | 826       | <10        | 21        | 54                | 15         | <20        | <20                      | 6      | 1.46         | 1.44         | 4.16         |
| PW0-95D-07-    | 10        | 2.71      | 658       | <10        | 28        | 69                | 13         | <20        | <20                      | 7      | 1.09         | 1.34         | 4.66         |
| PW0-95D-07-    |           | 3.35      | 533       | <10        | 26        | 60                | 25         | <20        | <20                      | 9      | 1.90         | 1.33         | 3.63         |
| PW0-95D-07-    | 12        | 3.44      | 846       | <10        | 22        | 76                | 42         | <20        | <20                      | 8      | 2.08         | 2.26         | 2.43         |
| PW0-95D-07-    | 13        | 3.42      | 788       | <10        | 31        | 90                | 23         | <20        | <20                      | 8      | 1.93         | 2.04         | 2.56         |
| PW0-95D-07-    | 14        | 3.96      | 539       | <10        | 33        | 105               | 26         | <20        | <20                      | 7      | 2.30         | 1.72         | 2.39         |
| PW0-95D-07-    | 15        | 5.99      | 1278      | <10        | 20        | 75                | 13         | <20        | <20                      | 5      | 1.61         | 1.69         | 5.13         |
| PW0-95D-07-1   |           | >10.00    | 1562      | <10        | 4         | 6                 | 57         | <20        | <20                      | 10     | 3.69         | 1.65         | 4.04         |
| PW0-95D-07-1   |           | 9.76      | 1779      | <10        | 17        | 14                | 45         | <20        | <20<br><20               | 10     | 2.62         | 1.83         | 3.93         |
| PW0-95D-07-1   |           | 8.82      | 1719      | <10        | 15        | 22                | 61         | <20<br><20 | <20<br><20               | 9      | 2.82         | 1.77         |              |
| PW0-95D-07-1   |           | 3.41      | 837       | <10        | 32        | 37                | 11         | <20<br><20 | <20<br><20               | 12     | 0.94         | 1.52         | 4.12         |
| PW0-95D-07-2   |           | 8.68      | 1511      | <10        | 6         | 10                | 227        | <20        | <20<br><20               | 9      | 3.34         | 1.84         | 3.38<br>6.52 |
| PW0-95D-07-2   |           | 9.21      | 1212      | <10        | 5         | 10                | 242        | <20        | <20                      | 9      |              |              | F 00         |
| PW0-95D-07-2   |           | 8.44      | 1763      | <10        | 4         | 10                | 244        | <20<br><20 | <20<br><20               | 8      | 3.36         | 1.64         | 5.00         |
| PW0-95D-07-2   |           | 9.13      | 1671      | <10        | 18        | 33                | 194        | <20<br><20 | <20<br><20               | °<br>9 | 3.07         | 1.90         | 5.21         |
| PW0-95D-07-2   | -         | 8.90      | 1154      | <10        | 3         | 41                | 256        | <20        | <20<br><20               | 13     | 3.24<br>3.56 | 1.90         | 4.66         |
| PW0-95D-07-2   |           | 7.05      | 1137      | <10        | 439       | 38                | 179        | <20        | <20                      | 7      | 2.87         | 2.47<br>2.44 | 4.54<br>3.21 |
| PW0-95D-07-2   |           | 8.16      | 1255      | <10        | 5         | 45                | 214        | -20        | -20                      |        |              |              |              |
| PW0-950-07-2   |           | 8.89      | 1653      | <10        | 14        | 43<br>31          | 216<br>244 | <20        | <20                      | 9      | 3.22         | 2.50         | 3.37         |
| PW0-950-07-2   |           | 6.40      | 1148      | <10        | 20        | 80                | 83         | <20        | <20                      | 11     | 3.53         | 1.90         | 5.05         |
| PW0-950-07-2   |           | >10.00    | 2345      | <10        | 4         | 115               | 161        | <20<br>21  | <20                      | 7      | 2.63         | 1.77         | 4.13         |
| PW0-950-07-3   |           | 8.53      | 1692      | <10<br><10 | 6         | 124               | 158        | <20        | <20                      | 20     | 4.59         | 2.61         | 6.07         |
|                |           |           | 1092      | ×10        | 0         | 124               | 001        | ~20        | <20                      | 13     | 4.23         | 2.48         | 6.03         |
| PW0-95D-07-3   | 1         | 7.87      | 1737      | <10        | 8         | 120               | 143        | <20        | <20                      | 11     | 3.96         | 2.45         | 6.85         |
|                |           |           | 1/3/      | <10        | 8         | 120               |            | <20        | <20                      | 11     | 3.96         | 2.45         | 6.1          |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

## Certificate of Analysis

| EPORT: 195-5 | 7299.0 ( COM | (PLETE ) |       |           |          |     |     |           | E PRINTED                             |             | - 42  | PAGE 1C |
|--------------|--------------|----------|-------|-----------|----------|-----|-----|-----------|---------------------------------------|-------------|-------|---------|
| AMPLE        | ELEMENT      | Na       | K     | Sr        | Ŷ        | Ga  | Li  | Nb        | Sc                                    | Ta          | Ti    | Zr      |
| JMBER        | UNITS        | PCT      | РСТ   | PPM       | PPM      | PPM | PPM | PPM       | PPM                                   | PP <b>M</b> | PCT   | PPM     |
| P0W-95D-07   | -001         | 0.07     | 0.09  | 50        | 3        | <2  | 12  | <1        | <5                                    | <10         | <0.01 | 14      |
| POW-95D-07   | -002         | 0.05     | 0.08  | 72        | 3        | <2  | 17  | <1        | 7                                     | <10         | <0.01 | 11      |
| POW-95D-07   | -003         | 0.06     | 0.09  | 43        | 3        | <2  | 9   | <1        | 5                                     | <10         | <0.01 | 15      |
| POW-95D-07   | -004         | 0.07     | 0.11  | 42        | 5        | <2  | 7   | <1        | <5                                    | <10         | <0.01 | 22      |
| P0W-95D-07   | -005         | 0.06     | 0.11  | 37        | 5        | <2  | 7   | <1        | <5                                    | <10         | <0.01 | 20      |
| P0W-95D-07   | -006         | 0.05     | 0.10  | 56        |          | <2  | 5   | <1        | <5                                    | <10         | <0,01 | 19      |
| POW-95D-07   |              | 0.06     | 0.12  | 50        | 5        | <2  | 6   | <1        | <5                                    | <10         | <0.01 | 19      |
| POW-95D-07   |              | 0.07     | 0.13  | 46        | 4        | <2  | 7   | <1        | <5                                    | <10         | <0.01 | 19      |
| POW-95D-07   |              | 0.06     | 0.09  | 55        | 2        | <2  | 8   | <1        | 5                                     | <10         | <0.01 | 13      |
| PW0-95D-07   |              | 0.07     | 0.12  | 60        | 2        | <2  | 7   | <1        | <5                                    | <10         | <0.01 | 10      |
| PW0-95D-07-  | -11          | 0.05     | 0.12  | 57        | 3        | <2  | 12  | <1        | <5                                    | <10         | <0.01 | 11      |
| PW0-95D-07-  |              | 0.03     | 0.09  | 15        | 3        | <2  | 16  | <1        | 6                                     | <10         | <0.01 | 8       |
| PW0-95D-07-  |              | 0.04     | 0.13  | 25        | 3        | <2  | 14  | <1        | <5                                    | <10         | <0.01 | 11      |
| PW0-95D-07   |              | 0.04     | 0.15  | 35        | 2        | 4   | 17  | <1        | <5                                    | <10         | <0.01 | 15      |
| PW0-95D-07-  |              | 0.02     | 0.13  | 49        | 4        | <2  | 12  | <1        | <5                                    | <10         | <0.01 | 11      |
| PW0-95D-07-  | - 16         | 0.02     | <0.01 | 90        | 3        | 2   | 17  | <1        | 21                                    | <10         | <0.01 | 2       |
| PW0-95D-07-  |              | 0.02     | 0.07  | 53        | 3        | <2  | 13  | <1        | 15                                    | <10         | <0.01 | 2       |
| PW0-95D-07-  |              | 0.02     | 0.07  | 53        | 2        | <2  | 13  | <1        | 13                                    | <10         | <0.01 | 2       |
| PW0-95D-07-  |              | 0.03     | 0.19  | 43        | 4        | <2  | 5   | <1        | <5                                    | <10         | <0.01 | 15      |
| PW0-95D-07-  |              | 0.02     | <0.01 | 110       | 4        | <2  | 16  | <1        | 23                                    | <10         | <0.01 | 2       |
|              |              |          | -0.04 | 70        | 5        | 5   | 15  | <1        | 24                                    | <10         | <0.01 | 2       |
| PW0-95D-07-  |              | 0.02     | <0.01 | 79<br>102 | 3        | <2  | 13  | <1        | 25                                    | <10         | <0.01 | 2       |
| PW0-95D-07-  |              | 0.02     | <0.01 |           | 2        | <2  | 14  | <1        | 15                                    | <10<br><10  | <0.01 | 2       |
| PW0-95D-07-  |              | 0.02     | 0.07  | 50        |          | 7   | 14  | <1        | 21                                    | <10         | 0.35  | 3       |
| PW0-95D-07-  | _            | 0.02     | <0.01 | 20<br>55  | 12<br>11 | 3   | 8   | <1        | 7                                     | <10         | 0.51  | 7       |
| P₩0-95D-07-  | -23          | 0.03     | <0.01 |           | • •      |     |     | <b>NI</b> | · · · · · · · · · · · · · · · · · · · |             |       | ······  |
| PW0-95D-07-  | -26          | 0.02     | <0.01 | 34        | 11       | <2  | 8   | <1        | 16                                    | <10         | 0.46  | 6       |
| PW0-95D-07-  |              | 0.02     | 0.06  | 48        | 2        | <2  | 15  | <1        | 19                                    | <10         | <0.01 | 1       |
| PW0-95D-07-  |              | <0.01    | 0.11  | 31        | 6        | <2  | 18  | <1        | 7                                     | <10         | <0.01 | 7       |
| PW0-95D-07-  |              | <0.01    | <0.01 | 49        | 8        | <2  | 13  | <1        | 20                                    | <10         | 0.20  | 1       |
| PW0-95D-07-  | -30          | <0.01    | 0.03  | 45        | 3        | <2  | 19  | <1        | 18                                    | <10         | <0.01 | <1      |
| PW0-95D-07-  | -31          | <0.01    | 0.04  | 45        | 3        | <2  | 18  | <1        | 17                                    | <10         | <0.01 | <1      |
|              |              |          |       |           |          |     |     |           |                                       |             |       |         |

Bondar-Clegg & Company Ltd. 5420 Canotek Road, Ottawa, Ontario, K1J 9G2, Canada Tel: (613) 749-2220, Fax: (613) 749-7170

#### APPENDIX C

#### Whole Rock Assay Certificates

.

Report on the 1995 Field Exploration Program on the Powell Project

#### TSL/ASSAYE Laboratories

| 1270 FEWSTER DRIVE, UNIT 3 M | 11SSISSAUGA, ONTARIO L4W-1A4 | REPORT No. | : | M5304       |
|------------------------------|------------------------------|------------|---|-------------|
| PHONE #: (905)602-8236       | FAX #: (905)206-0513         | Page No.   | : | 1 of 1      |
|                              |                              | File No.   | : | JN23RA      |
| I.C.A.P. TOTAL               | OXIDE ANALYSIS               | Date       | : | JUN-26-1995 |

ATTN: M. KOZIOL

CAMECO CORPORATION

#### I.C.A.P. TOTAL OXIDE ANALYSIS Lithium MetaBorate Fusion

5W-2703-RG1

|                          |                                        |                                                                                                                                                                                                                                      | •                                     |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                | -                  |
|--------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|---------------------------------------|--------------------|----------------|--------------------|------------------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------|--------------------|
| SAMPLE #                 | <b>Si02</b>                            | A1203 Fe203                                                                                                                                                                                                                          | CaO MgO                               | Na2O K2O          | TiO2 MnO                              | P205 Ba            | Zr Y           | Sc Nb              | Be Ní            | Cr Cu           | V Co            | Zn Rb                                                                                                          | LOI TOTAL          |
|                          | . 3                                    | 8 8                                                                                                                                                                                                                                  | * *                                   | % <b>%</b>        | * *                                   | % ppm              | ppm ppm        | pp <b>m ppm</b>    | bb <b>w bbw</b>  | bbw <b>bb</b> w | bb <b>u bbu</b> | ppm X                                                                                                          | * *                |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
| POW95X-053               |                                        |                                                                                                                                                                                                                                      | 8.38 6.49                             |                   | 1.28 0.20                             | 0.18 60            | 80 <b>36</b>   | 41 < 30            | < 1 <b>110</b>   | 495 100         | 315 40          |                                                                                                                | 4.13100,40         |
| POW95X-056               |                                        |                                                                                                                                                                                                                                      | 8.07 4.76                             |                   | 0.80 0.21                             | 0.14 220           | 40 20          | 31 < 30            | 3 55             | 375 105         | 280 30          |                                                                                                                | 14.11100.04        |
| POW95X-058               |                                        |                                                                                                                                                                                                                                      | 6.61 5.97                             |                   | 1.23 0.18                             | 0.16 150           | 130 <b>28</b>  | 32 ( 30            | < 1 85           | 400 15          | 225 35          | Mar San Anna anna a' A | 11.48100.17        |
| POW95X-060               |                                        |                                                                                                                                                                                                                                      | 5.19 6.66                             |                   | 1.09 0.16                             | 0.24 90            | 110 46         | 27 < 30            | 2 75             | 440 5           | 150 30          |                                                                                                                | 7.05100.49         |
| POW95X-061               | 54.98                                  | 14.07 11.78                                                                                                                                                                                                                          | 7.24 5.98                             | 2.57 0.92         | 0.84 0.25                             | 0.10 160           | 40 22          | 49 ( 30            | < 1 80           | 625 105         | 320 45          | 105 (0.05                                                                                                      | 2.051 <b>00.78</b> |
|                          | - 10 10                                | 10.07                                                                                                                                                                                                                                | 0 02 E (1                             |                   | 1                                     | A 17 EA            | E0             | 47 60              | < 1 85           | 170 110         | 410 45          | 100 <b>&lt;0.05</b>                                                                                            | 6.17100.70         |
| POW95X-062               |                                        |                                                                                                                                                                                                                                      | 8.83 5.61                             |                   | 1.21 0.23                             | 0.12 50<br>0.18 30 | 50 20<br>90 36 | 47 60<br>44 (30    | < 1 85<br>< 1 90 | 120 85          | 410 43          | and a second | 8.46_98.85         |
| POW95X-065<br>POW95X-074 |                                        |                                                                                                                                                                                                                                      | 7.59 <b>4.99</b><br>5.26 <b>3.7</b> 1 |                   | 1.72 <b>0.17</b><br>1.66 <b>0.2</b> 0 | 0.16 130           | 80 36          | 44 ( 30<br>42 ( 30 | < 1 80           | 155 85          | 475 55          |                                                                                                                | 8.91101.00         |
| POW95X-074               |                                        |                                                                                                                                                                                                                                      | 4.25 4.85                             |                   | 0.58 0.10                             | 0.14 250           | 90 12          | 17 K 30            | < 1 <b>100</b>   | 530 <b>25</b>   | 140 20          |                                                                                                                | 4.24 98.62         |
| POW95X-1015              | ······································ |                                                                                                                                                                                                                                      | 4.34 3.57                             |                   |                                       |                    | 100 12         | 15 < 30            | < 1 75           | 725 < 5         | 115 25          |                                                                                                                | 1.73 98.73         |
| 100937-1013              |                                        |                                                                                                                                                                                                                                      | 1.51 010/                             | 0.00 0.72         |                                       | ••••               |                |                    |                  |                 |                 |                                                                                                                |                    |
| POW95X-1016              | 41.05                                  | 14.59 15.01                                                                                                                                                                                                                          | 8.23 7,14                             | 1.86 0,64         | 1.32 0.18                             | 0.10 90            | 50 20          | 48 <b>(</b> 30     | < 1 <b>115</b>   | 140 125         | 435 50          | 105 <b>&lt;0.05</b>                                                                                            | 10.87100,99        |
| POW95X-1019              |                                        |                                                                                                                                                                                                                                      | 9.09 7.30                             | 2.86 0.48         | 0.88 0.43                             | 0.08 130           | 40 20          | 55 <b>&lt; 30</b>  | < 1 75           | 440 50          | 360 40          | 100 <b>(0.05</b>                                                                                               | 1.25100.40         |
| POW95X-1021              | 49.76                                  | 14.63 12.39                                                                                                                                                                                                                          | 10.63 7.28                            | 2.30 0.46         | 0.84 0.29                             | 0.08 130           | 40 18          | 50 30              | < 1 <b>75</b>    | 490 80          | 365 50          | 95 <0.05                                                                                                       | 2.29100.96         |
| POW95X-1027              | 52.39                                  | 13.98 10.93                                                                                                                                                                                                                          | 7.43 6.33                             | 3.78 0.76         | 0.86 0.28                             | 0.10 140           | 50 20          | 49 ( 30            | < 1      75      | 310 40          | 315 40          | 100 <b>&lt;0.0</b> 5                                                                                           | 1.24 98.08         |
| POW95X-1030              | 44.79                                  | 7.88 12.26                                                                                                                                                                                                                           | 1.74 22.88                            | 0.49 <b>0.1</b> 0 | 0.43 0.08                             | 0.04 30            | 20 12          | 29 😪 30            | < 1 1480         | 2575 <b>65</b>  | 180 95          | 55 <0.05                                                                                                       | 7.59 98.27         |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  | •               |                 |                                                                                                                |                    |
|                          |                                        | angal har yenddi<br>Segellar y Maria<br>Segellar y Maria                                                                                                                                                                             |                                       |                   |                                       |                    |                |                    |                  | •               |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   | •                                     |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        | in ann an Airth Anna Airth<br>Airthean Airthean Airthean Airthean<br>Airthean Airthean Airthean Airthean Airthean<br>Airthean Airthean Air |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                | A                  |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       | -                 |                                       |                    |                |                    |                  | •               |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  |                 |                 |                                                                                                                |                    |
| •                        |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       | ·····              |                |                    |                  |                 |                 |                                                                                                                | 2                  |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  | $\wedge$        |                 |                                                                                                                |                    |
|                          |                                        |                                                                                                                                                                                                                                      |                                       |                   |                                       |                    |                |                    |                  | d               | . (             |                                                                                                                |                    |

SIGNED : NOW STOCK

TSL/95

### TSL/ASSAYE Laboratories

CAMECO CURPORATION

| 1270 FEWSTER DRIVE, UNIT | 3 MISSISSAUGA, ONTARIO | L4W-1A4 |
|--------------------------|------------------------|---------|
| PHONE #. (005)600 0000   |                        |         |

PHONE #: (905)602-8236 FAX #: (905)206-0513

### I.C.A.P. TOTAL OXIDE ANALYSIS

Lithium MetaBorate Fusion

5W-3013-RG1

| SAMPLE #    | SiO2  | A1203       | 3 Fe203   | CaO             | MgO  | Na2O | <b>K2</b> O | TÍO2 | MnO  | P205   | Ba  | <b>7</b> _ |          | - 3     |             |         |     |     |          |          |     |      |                 |            |
|-------------|-------|-------------|-----------|-----------------|------|------|-------------|------|------|--------|-----|------------|----------|---------|-------------|---------|-----|-----|----------|----------|-----|------|-----------------|------------|
|             | *     | *           | *         | *               | 8    | *    | *           | *    | *    | 8      |     | Zr         | <b>Y</b> | Sc      | Nb          | Be      | NÍ  | Cr  | Cu       | V        | Co  | Zn   | Rb              | LOI TOTAL  |
|             |       |             |           |                 |      |      |             |      |      | -10    | Ppm | ppm        | ppæ      | ppa     | ррт         | ppm     | ppm | ppm | ppm      | ppm      | ppm | ppm  | *               | * *        |
| POW95X-088  | 58.77 | 13.19       | 6.76      | 4.76            | 3.84 | 2.87 | 0.90        | 0.52 | 0.10 | 0.14   | 210 | 100        |          |         |             | · · · · |     |     |          | 10)<br>M |     |      | -<br>12         |            |
| POW95X-503  |       |             |           | 2.51            |      |      |             |      |      | 0.10   | 90  | 100        | 12       |         | < 30        | < 1     | 115 | 470 | 15       | 120      | 30  | 55   | <0.05           | 6.82 98.66 |
| POW95X-513  |       |             |           | 0.48            |      |      |             |      |      | 0.18   | 400 | 110        | 8        |         | < 30        | < 1     | 190 | 620 | < 5      | 110      | 30  | 70   | <0.05           | 4.50 99.37 |
| POW95X-1078 | 61.67 | 14.35       | 5.67      | 3.87            | 2.52 | 3.04 | 1.68        | 0.56 | 0.08 | 0.14   | 430 | 170<br>120 | 16       |         | < 30        | < 1     | 135 | 475 | < 5      | 130      | 20  | 60   | <0.05           | 3.87100.26 |
| POW95X-1079 |       |             |           | 2.52            |      |      |             |      |      | 0.14   | 260 | 120        | 16       |         | < 30        | < 1     | 70  | 335 | 15       | 105      | 20  | 65   | <0.05           | 7.11100.69 |
|             |       |             |           |                 |      |      |             |      |      | 0.14   | 200 | 100        | 12       | 17      | < 30        | < 1     | 95  | 435 | < 5      | 110      | 25  | 65   | <0.05           | 4.44100.62 |
| POW95X-1090 | 52.93 | 20.60       | 6.18      | 3.97            | 1.96 | 7.23 | 1.98        | 0.91 | 0.09 | 0.26   | 320 | 190        |          |         |             |         |     |     |          |          |     |      |                 |            |
| POW95X-1095 | 50.08 | 14.93       | 12.36     | 9.40            | 5.41 | 3.77 | 0.46        | 1.15 | 0.25 | 0.12   | 150 | 80         | 22<br>22 |         | < 30        | 1       | 45  | 230 | < 5      | 150      | 15  |      |                 | 4.62100.73 |
| POW95X-1096 | 57.03 | 13.93       | 5.67      | 5.33            | 4.95 | 2.19 | 1.44        | 0.54 | 0.17 | 0.14   | 300 | 100        | 14       |         | < 30        | < 1     | 120 | 475 | 85       | 335      | 45  |      |                 | 2.12100.07 |
| POW95X-1099 | 63.22 | 12.76       | 7.26      | 1.86            | 7.03 | 3.16 | 0.32        | 0.48 | 0,13 | 0.10   | 90  | 100        | 10       | 17      |             | < 1     | 115 | 455 | < 5      | 130      | 25  | 50   | <0.05           | 9.49100.88 |
| POW95X-1103 | 59.17 | 14.30       | 6,46      | 4.59            | 5.05 | 1.61 | 1.50        | 0.47 | 0.20 | 0.12   | 270 | 90         | 10       | 17      |             | < 1     | 190 | 490 | ۲ 5      | 100      | 30  |      |                 | 4.32100.63 |
|             |       |             |           |                 |      |      |             |      |      |        | 2/0 | ,,,        |          | 17      | <           | < 1     | 150 | 360 | 25       | 105      | 25  | 360  | <b>&lt;0.05</b> | 6.94100.39 |
| POW95X-1110 | 61.28 | 14.46       | 5.98      | 4.30            | 4.28 | 3.39 | 1.38        | 0.51 | 0,09 | 0.14   | 330 | 140        | 12       | 1 6     |             |         |     |     |          |          |     |      | •               |            |
| POW95X-1114 | 68.65 | 14.94       | 5.14      | 1.70            | 1.52 | 4.22 | 1.32        | 0.49 | 0.05 | 0.16   | 320 | 160        | 18       | 15      |             | < 1     | 160 | 485 | < 5      | 105      | 25  | 90   | (0.05           | 4.96100.77 |
| POW95X-1116 | 56.53 | 13.07       | 6.45      | 4.62            | 6.13 | 2.06 | 1.48        | 0.37 | 0.10 | 0.10   | 330 | 70         | 6        | 9<br>17 | < 30        | < 1     | 40  | 430 | 20       | 65       | 10  | 95   | (0.05           | 2.67100.85 |
| POW95X-1125 | 68.67 | 14.11       | 3.74      | 2.93            | 1.37 | 3.34 | 2.30        | 0.35 | 0.05 | 0.12   | 670 | 150        | 12       |         | < 30        | < 1     | 245 | 675 | 10       | 95       | 30  |      |                 | 9.74100.66 |
| POW95X-1131 | 59.95 | 15.37       | 6.10      | 4 - 25          | 3.16 | 5.32 | 0.54        | 0.61 | 0.09 | 0.18   | 160 | 130        | 16       | 16      |             | < 1     | 50  | 325 | 10       | 50       | 10  | 35 ( | 0.05            | 3.74100.71 |
| ^           |       |             |           |                 |      |      |             |      |      |        |     |            |          | 10      | <b>`</b> 30 | < 1     | 90  | 175 | < 5<br>5 | 120      | 20  | 85 ( | 0.05            | 4.94100.50 |
| POW95X-1136 | 67.73 | 13.41       | 4.63      | 2.32            | 1.33 | 4.47 | 1.08        | 0.44 | 0.06 | 0.16   | 390 | 160        | 18       | 8       | < 30        | . 1     | 70  |     |          |          |     |      |                 |            |
|             |       |             |           |                 |      |      |             |      |      |        |     |            |          | •       |             | < 1     | 20  | 340 | 20       | 65       | 10  | 30 ( | 0.05            | 3.22 98.84 |
|             |       |             |           |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       |             |           |                 |      |      |             | •    |      |        |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       |             |           | 4).<br>17<br>17 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          | <u>.</u> |     |      |                 |            |
|             |       |             |           |                 |      |      | •           |      |      | 3.     |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       |             |           |                 |      |      | e<br>Ale    |      |      | 2<br>2 |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       |             |           |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       | 1. 1<br>    |           |                 |      |      |             |      |      |        |     | 2          |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       | 3 (A<br>• ) |           |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       |             |           |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       |             |           |                 |      |      | /           |      |      |        |     |            |          |         |             |         |     | •   |          |          | 2   |      | 4               |            |
|             |       |             | alle part |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          |          |     |      |                 |            |
|             |       |             |           |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     | ~        |          |     |      |                 |            |
|             |       |             |           |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          |          | -   |      | >               |            |
|             |       |             |           |                 |      |      |             |      |      |        |     |            |          |         |             |         |     |     |          | • .      |     | /    | 1               |            |

SIGNED : Ram Soco

REPORT No. : M5444

Page No. : 1 of 1

File No. : JL25RA Date : JUL-25-1995

TSL/95

| CAMECO       |               | ION      |          |          |           |          |           | 127<br>PHC | O FEV     | STER          | DRIV | <b>RY7</b><br>2. UN<br>-8236                             |    | 13315     | Ora<br>BSAUGI<br>#: (9 | , ONT     | RIO       | L4W-1     | .84       |          |           |           |         | EPORT No.<br>Age No. |        | M5592                |
|--------------|---------------|----------|----------|----------|-----------|----------|-----------|------------|-----------|---------------|------|----------------------------------------------------------|----|-----------|------------------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|---------|----------------------|--------|----------------------|
| 5W-3315-RG1  |               |          |          |          |           |          |           | :          | c.c       | . <b>A</b> .1 |      | TO?                                                      |    |           |                        |           | ALY:      | SIS       |           |          |           |           | F:      | ile No.<br>ate       | :      | AG26RA<br>AUG-28-199 |
| SAMPLE #     | \$102A]<br>\$ | 203Fe203 | Ca0<br>% | MgO<br>% | Na20<br>% | K20<br>X | T102<br>% | MnO<br>%   | P2O5<br>% |               |      | Zr<br>ppm                                                |    | Sc<br>ppm | Be<br>ppm              | Со<br>ррв | Cr<br>ppm | Cu<br>Ppm | Ni<br>PPM | V<br>ppm | Zn<br>ppm | Nb<br>ppm | Rb<br>% | LOITO1               |        |                      |
| POW-95x-1173 | 58.7815       | .50 8.41 | 1.41     | 7.07     | 3.54      | 0.26     | 0.54      | 0.08       | 0.14      | 110           | 110  | 80                                                       | 12 | 21        | < 1                    | 30        | 355       | < 5       | 140       | 125      | 75        | < 30<     | 0.05    | 4.75%10              | 0.45   |                      |
|              |               |          |          |          |           |          |           |            |           |               |      | a di den entre des estes de Boldborde, les este          |    |           |                        |           |           |           |           |          |           |           |         |                      |        |                      |
|              |               |          |          |          |           |          |           |            |           |               |      |                                                          |    |           |                        |           |           |           |           |          |           |           |         |                      |        |                      |
|              |               |          |          |          |           |          |           |            |           |               |      | desiration and some and so                               |    |           |                        |           |           |           |           |          |           |           |         |                      |        |                      |
|              |               |          |          |          |           |          |           |            |           |               |      | <ul> <li>A Point Recorded and A Point A Point</li> </ul> |    |           |                        |           |           |           |           |          |           |           |         |                      |        |                      |
|              |               |          |          |          |           |          |           |            |           |               |      | , the second second second                               |    |           |                        |           |           |           |           |          |           | -         |         |                      |        |                      |
| L/95         |               |          |          |          |           |          |           |            |           |               |      |                                                          |    |           |                        |           |           | SIG       | NED :     |          | k         | Di        | , (     |                      | )<br>1 | Å                    |

## RECEIVED NOV 1 3 1996 MINING LANDS BRANCH

2 c 1 6 4 9 6

APPENDIX D

Diamond Drill Hole Logs

Report on the 1995 Field Exploration Program on the Powell Project

DIAMOND DRILL LOG

PROPERTY: POWELL Logged by: M. KOZIOL HOLE No.: POW9501 Collar Inclination: -50.00 Date: NOV 7-NOV 16, 1995 2600.00 Collar Eastings: Grid Bearing: 180.00 Down-hole Survey: ACID -805.00 Final Depth: 321.30 metres Collar Northings: Claim #: 1047782 and 1186330 (half-half) Test IP at Basalt/Ultramafic Contact Collar Elevation: 330.00 Core: NQ, Stored at Fred Kiernicki, Matachewan Grid: POWELL Test South Contact of Kirkland Lake Break -----Drilled by: Heath and Sherwood (1986) Inc. ASSAYS ----WIDTH Au (ppb) As (ppm) ТÒ

SAMPLE NO.

FROM

- LITHOLOGICAL DESCRIPTION FROM то
- OVERBURDEN 3.3 0
- BASALT 5.5 3.3
- OVERBURDEN 9.5 5.5
- BASALT 62.1 9.5

The rock is grey green in colour, fine grained, pillowed and amygduloidal. The flow is fractured (cooling fractures) and fractures are filled with calcite and quartz. Amygdules are calcite filled. Selvage areas are dark to black in colour due to chlorite and contain carbonate, quartz and up to 1% crystalline pyrite. The flow is cut by later quartzcarbonate veinlets up to 2mm in width. These make up 3% of the rock.

11.0-14.0 includes a broken and blocky section, of which approximately 1.5m of core is lost.

17.0-20.0 includes several narrow section of blocky

5 1.50 5 30.80 29.30 1 5 5 1.50 32.30 30.80 2 5 5 55.70 1.40 54.30 3 5 0.80 5 57.30 58.10 4 5 5 60.20 2.00 58.20 5 5 5 1.90 60.20 62.10 6

HOLE No: POW9501

DIAMOND DRILL LOG

PROPERTY: POWELL Page 2 HOLE No.: POW9501 \_ \_ \_ \_ \_ \_ \_ \_\_\_\_\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ ASSAYS FROM SAMPLE NO. ТÒ WIDTH Au (ppb) As (ppm) то LITHOLOGICAL DESCRIPTION FROM core. 32.3-62.1 Brecciated Basalt: The basalt in this section is finer grained, lighter grey-green colour than above (bleached ?), locally amygduloidal and pillowed. It is auto-brecciated (or phreatic breccia ?). Locally quartz-carbonate veins cut the core at various angles, but form 3% of the rock. The selvage areas are chloritic and also contain quartz-carbonate veining. Minor amounts to 1% of crystalline pyrite are associated with the selvage areas. The lower contact is at 40° to core axis. 54.3-54.7 interflow or flow top breccia: section contains 30% quartz-carbonate veins surrounding angular pieces of bleached basalt. Pyrite occurs in minor amounts and is finely disseminated. 57.3-58.0 this section is foliated and sericite occurs as wisps parallel to the foliation, at 50° to core axis. Quartz-carbonate veins make up 10%. These seldom exceed 2cm in width. Minor amounts of very fine pyrite occur disseminated along the foliation. 62.1 63.1 CONGLOMERATE 7 62 10 63 10 1 00 5 5 This is a highly foliated, light grey green coloured rock. The upper 30cm includes broken pieces of above described flow and the rest consists of quartz pebbles HOLE NO: POW9501

DIAMOND DRILL LOG

|    |      |                                                                                                                                                                                                                                                                                                                                       |            |       |       | ASSAYS |            |         |   |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|--------|------------|---------|---|
| OM | TO   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                              | SAMPLE NO. | FROM  | то    |        | u (ppb) As | (mqq) E |   |
|    |      | and narrow veins in a sericite matrix. Pebbles are<br>stretched parallel to foliation and the veins are<br>broken and folded. Some of the veins contain up to 10%<br>black mineral (tourmaline ?). Veins make up 15% of the<br>interval. Minor amounts of fine to very fine pyrite<br>occur disseminated, mainly along the foliation. |            |       |       |        |            |         | · |
| 1  | 77.0 | MAFIC SYENITE DYKE                                                                                                                                                                                                                                                                                                                    | 8          | 68.60 | 69.50 | 0.90   | 5          | 123     |   |
|    |      |                                                                                                                                                                                                                                                                                                                                       | 9          | 69.50 | 71.00 | 1.50   | 5          | 5       |   |
|    |      | Upper contact is at 30° to core axis and lower at 45°.                                                                                                                                                                                                                                                                                | 10         | 71.00 | 72.50 | 1.50   | 5          | 5       |   |
|    |      | The dyke is fine grained and massive. It is grey in                                                                                                                                                                                                                                                                                   | 11         | 72.50 | 74.00 | 1.50   | 5          | 5       |   |
|    |      | colour near the top and at 69.5m becomes lighter grey                                                                                                                                                                                                                                                                                 | 12         | 74.00 | 75.50 | 1.50   | 5          | 5       |   |
|    |      | to pinkish grey. The lower portion (from approximately<br>69.5m) is hairline fractured with calcite along the<br>fractures. The fractures are randomly oriented but a<br>preferred orientation at 45° to core axis is evident.<br>Minor to 1% fine pyrite occurs disseminated in the dyke<br>from approximately 69.5m.                | 13         | 75.50 | 77.00 | 1.50   | 41         | 5       |   |
|    |      | 63.4-63.6 inclusion of above described conglomerate. $\cdot$                                                                                                                                                                                                                                                                          |            |       |       |        |            |         |   |
|    |      | 68.6-69.5 inclusion of conglomerate consisting of fine<br>quartz pebbles in a black argillaceous matrix. Also<br>contains minor pyrite. Upper contact is at 45° and<br>lower at 90° to core axis.                                                                                                                                     |            |       |       |        |            |         |   |
|    |      | 76.0-76.2 inclusion of conglomerate similar to above.                                                                                                                                                                                                                                                                                 |            |       |       |        |            |         |   |
| 0  | 90.5 | CONGLOMERATE AND GRAPHITIC ARGILLITE (FAULT ZONE)                                                                                                                                                                                                                                                                                     | 14         | 77.00 | 78.80 | 1.80   | 5          | 210     |   |
|    |      |                                                                                                                                                                                                                                                                                                                                       | 15         | 78.80 | 80.30 | 1.50   | 5          | 2885    |   |

HOLE No: POW9501

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9501

|       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       | 1     | ASSAYS   |         |         |   |
|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|----------|---------|---------|---|
| ROM   | то   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE No. | FROM  | TO    | WIDTH Au | (ppb) A | s (ppm) |   |
|       |      | 77.0-78.8 the conglomerate is similar to that from 62.1                                                                                                                                                                                                                                                                                                                                                                         | 16         | 80.30 | 81.80 | 1.50     | 5       | 273     |   |
|       |      | to 63.1m. It consists of 30% to 40% quartz pebbles                                                                                                                                                                                                                                                                                                                                                                              | 17         | 81.80 | 83.30 | 1.50     | 5       | 5       |   |
|       |      | along with some mafic volcanic set in a strongly                                                                                                                                                                                                                                                                                                                                                                                | 18         | 83.30 | 84.80 | 1.50     | 9       | 5       |   |
|       |      | sericite altered matrix. It is highly foliated from 5%                                                                                                                                                                                                                                                                                                                                                                          | 19         | 84.80 | 86.30 | 1.50     | 5       | 36      |   |
|       |      | to 40% to core axis. Narrow (1mm to 2mm) argillite beds                                                                                                                                                                                                                                                                                                                                                                         | 20         | 86.30 | 87.80 | 1.50     | 12      | 90      |   |
|       |      | also occur interbedded with the conglomerate. Minor                                                                                                                                                                                                                                                                                                                                                                             | 21         | 87.80 | 89.30 | 1.50     | 18      | 104     | • |
|       |      | amounts of very fine pyrite are disseminated along the foliation.                                                                                                                                                                                                                                                                                                                                                               | 22         | 89.30 | 90.50 | 1.20     | 10      | 127     |   |
|       |      | 78.8-89.0 the matrix of the conglomerate is dark grey<br>to black and graphitic. From 82.5 the conglomerate is<br>clast supported and includes several intervals up to<br>30cm thick of brecciated volcanic (or ultramafic ?) The<br>brecciated rock is also dark grey due to graphite<br>coating on fracture surfaces. Pyrite forms 1% of the<br>interval, occurring as disseminated crystals, up to<br>1.5mm, and as nodules. |            |       |       |          |         |         |   |
|       |      | 89.0-90.5 the section is predominantly a graphitic<br>argillite with local intervals of almost massive<br>graphite. This section also includes several beds of<br>siltstone that are dismembered. Foliation angles are<br>consistently at 45° to 50° to core axis. The lower<br>contact is sharp at 45° to core axis.                                                                                                           |            |       |       |          |         |         |   |
| .5 15 | 55.9 | ULTRAMAFIC SEQUENCE                                                                                                                                                                                                                                                                                                                                                                                                             | 23         | 90.50 | 92.00 | 1.50     | 5       | 62      |   |
|       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24         | 92.00 | 93.50 | 1.50     | 5       | 5       |   |
|       |      | This section includes ultramafic flows and locally                                                                                                                                                                                                                                                                                                                                                                              | 25         | 93.50 | 95.00 | 1.50     | 5       | 5       |   |
|       |      | derived interflow sediments. The rock varies in colour                                                                                                                                                                                                                                                                                                                                                                          | 26         | 95.00 | 96.50 | 1.50     | 5       | 5       |   |

HOLE No: POW9501

•

.

Page 4

DIAMOND DRILL LOG

#### PROPERTY: POWELL HOLE No.: POW9501

|       |                                                                                                                                                                                                                                                                                     |            |        |        | ASSAYS   |         |         |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|---------|---------|--|
| ом то | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                            | SAMPLE No. | FROM   | TO     | WIDTH Au | (ppb) A | s (ppm) |  |
|       | from a light grey-green to dark green (in the more                                                                                                                                                                                                                                  | 27         | 124.00 | 125.50 | 1.50     | 5       | 337     |  |
|       | talcose sections). The entire section is cut by grey                                                                                                                                                                                                                                | 28         | 125.50 | 127.00 | 1.50     | 5       | 109     |  |
|       | carbonate-quartz veins which display several                                                                                                                                                                                                                                        | 29         | 127.00 | 128.50 | 1.50     | 5       | 16      |  |
|       | generations of folding. In the interflow sediment                                                                                                                                                                                                                                   | 30         | 128.50 | 130.00 | 1.50     | 5       | 32      |  |
|       | intervals, the veins are broken and act as detritus.                                                                                                                                                                                                                                | 31         | 144.90 | 146.40 | 1.50     | 5       | 5       |  |
|       | Veins on average form 10% of the volume, but there are                                                                                                                                                                                                                              | 32         | 146.40 | 147.40 | 1.00     | 5       | 5       |  |
|       | sections containing more. Several sections also contain                                                                                                                                                                                                                             | 33         | 147.40 | 148.40 | 1.00     | 5       | 5       |  |
|       | smoky quartz veins with minor pyrite. The veins form                                                                                                                                                                                                                                | 34         | 148.40 | 150.20 | 1.80     | 5       | 5       |  |
|       | <1% of the interval volume.                                                                                                                                                                                                                                                         | 35         | 150.20 | 151.70 | 1.50     | 5       | 16      |  |
|       |                                                                                                                                                                                                                                                                                     | 36         | 151.70 | 153.20 | 1.50     | 5       | 57      |  |
|       | The flows are thin (generally <0.5m) and locally                                                                                                                                                                                                                                    | 37         | 153.20 | 154.70 | 1.50     | 5       | 104     |  |
|       | display poly-suture textures and in other places<br>spinifex. Certain flows are strongly talcose and some<br>display a green speckled texture. Some of the green<br>specks are relict feldspar crystals. In general, the<br>flows contain fewer veins than the interflow sediments. | 38         | 154.70 | 155.90 | 1.20     | 5       | 302     |  |
|       | Minor amounts of fine disseminated pyrite occur<br>sprinkled within the veins and in some of the narrow<br>breccia/sediment interflow bands.                                                                                                                                        |            |        |        |          |         |         |  |
|       | 94.6-94.8 section includes 60% dark smoky quartz vein, minor pyrite.                                                                                                                                                                                                                |            |        |        |          |         |         |  |
|       | 98.3-100.6 fine grained, grey and massive dyke<br>(syenite ?) Upper contact is at 25° and lower at 50° to<br>core axis.                                                                                                                                                             |            |        |        |          |         |         |  |
|       | 106-106.5 interflow sediment contains 25% broken<br>quartz-carbonate veins in a chlorite-talc matrix.                                                                                                                                                                               |            |        |        |          |         |         |  |

·

.

Page 5

|    | .: PC | W9501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |      |    |                                   | Page     | 6 |
|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-----------------------------------|----------|---|
| ом | то    | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE No. | FROM | то | ASSAYS<br>WIDTH Au (ppb) As (ppm) |          |   |
|    |       | 113.1-124 a series of coarse spinifex (blades up to 6cm<br>long) are interlayered with talcose peridotitic flows.                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |    |                                   |          |   |
|    | ·     | 124.0-127.0 fuchsite altered sediments and broken<br>komatiite flows. The section contains 20% quartz-<br>carbonate veins and minor amounts of fuchsite occurs<br>along the vein margins, associated with sericite. Minor<br>amounts of pyrite are associated with the veins. The<br>section from 126.5m to 127.0 contains 5% fuchsite and<br>50% quartz-carbonate veins. The fuchsite is associated<br>along vein margins with sericite and chlorite and<br>around ultramafic clasts. The host rock is an interflow<br>sediment (conglomerate). |            |      |    |                                   |          |   |
|    |       | 127.0-144.9 this section is dominantly dark grey,<br>talcose material (peridotitic flows with narrow<br>interflow breccia zones. Quartz-carbonate veins make up<br>15 to 20% and represent several generations of veining.<br>Some display complex folding and others are straight<br>fracture fill. Only trace amounts of pyrite are present<br>locally.                                                                                                                                                                                        |            |      |    |                                   |          |   |
|    |       | 144.9-148.4 this section contains 40% quartz-carbonate veining. Still only traces of pyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |      |    |                                   |          |   |
|    |       | 148.4-150.2 section of strongly sericitic inter-flow<br>conglomerates containing both talcose peridotite<br>fragments and spinifex komatiite. Quartz-carbonate<br>fills in void spaces and forms 25% of the volume.                                                                                                                                                                                                                                                                                                                              |            |      |    |                                   |          |   |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |      |    | HOLE NO                           | D: POW95 | 0 |

DIAMOND DRILL LOG

| E No | ).: PO | MA20T                                                                                                    |            |        |         |            |            |       | Page |
|------|--------|----------------------------------------------------------------------------------------------------------|------------|--------|---------|------------|------------|-------|------|
|      |        |                                                                                                          |            |        | <b></b> | <br>Assays |            |       |      |
| DM   | то     | LITHOLOGICAL DESCRIPTION                                                                                 | SAMPLE NO. | FROM   | TO      | WIDTH A    | u (ppb) As | (ppm) |      |
|      |        | 154.2-155.9 the ultramafic is brecciated and towards                                                     |            |        |         |            |            |       |      |
|      |        | bottom of the interval the fractures contain pyrite and graphite.                                        |            |        |         |            |            |       |      |
| .9 : | 196.7  | CHERT BRECCIA, GRAPHITIC ARGILLITE AND                                                                   | 39         | 155.90 | 157.00  | 1.10       | 5          | 107   | •    |
|      |        | SILTSTONE                                                                                                | 40         | 157.00 | 158.50  | 1.50       | 5          | 5     |      |
|      |        |                                                                                                          | 41         | 158.50 | 160.00  | 1.50       | 5          | 23    |      |
|      |        | The upper contact with the ultramafic is sharp at 50°                                                    | 42         | 160.00 | 161.50  | 1.50       | 8          | 8     |      |
|      |        | to core axis. This interval includes sections of chert                                                   | 43         | 161.50 | 163.00  | 1.50       | 5          | 5     |      |
|      |        | breccia and graphitic argillite which in some segments                                                   | 44         | 163.00 | 164.50  | 1.50       | 22         | 227   |      |
|      |        | is interbedded with siltstone. Pyrite and pyrrhotite                                                     | 45         | 164.50 | 166.00  | 1.50       | 8          | 201   |      |
|      |        | occur throughout the entire interval and form 8% and 2%                                                  | 46         | 166.00 | 167.50  | 1.50       | 5          | 91    |      |
|      |        | of the rock respectively.                                                                                | 47         | 167.50 | 169.00  | 1.50       | 5          | 5     |      |
|      |        |                                                                                                          | 48         | 169.00 | 170.50  | 1.50       | 7          | 19    |      |
|      |        | 155.9-157.0 black graphitic argillite. Rock contains 5%                                                  | 49         | 170.50 | 172.00  | 1.50       | 5          | 149   |      |
|      |        | to 10% pyrite as wisps and disseminated crystals.                                                        | 50         | 172.00 | 173.50  | 1.50       | 7          | 335   |      |
|      |        |                                                                                                          | 51         | 173.50 | 175.00  | 1.50       | 5          | 115   |      |
|      |        | 157.0-160.6 chert breccia and sections of brecciated                                                     | 52         | 175.00 | 176.50  | 1.50       | 10         | 6     |      |
|      |        | and soft sediment deformed siltstone. Pyrite forms 3%                                                    | 53         | 176.50 | 178.00  | 1.50       | 5          | 217   |      |
|      |        | of the interval occurring mainly as wisps and                                                            | 54         | 178.00 | 179.50  | 1.50       | 5          | 271   |      |
|      |        | disseminated around breccia fragments. Breccia                                                           | 55         | 179.50 | 181.00  | 1.50       | 5          | 5     |      |
|      |        | fragments are up to 3cm2.                                                                                | 56         | 181.00 | 182.50  | 1.50       | 5          | 181   |      |
|      |        | 160 6 169 0 This interval contains points graphitic                                                      | 57         | 182.50 | 184.00  | 1.50       | 9          | 48    |      |
|      |        | 160.6-168.0 This interval contains mainly graphitic                                                      | 58         | 184.00 | 185.50  | 1.50       | 17         | 119   |      |
|      |        | argillite interbedded with siltstone and several<br>section up to 0.5m wide of chert breccia. Individual | 59         | 185.50 | 187.00  | 1.50       | 18         | 202   |      |
|      |        |                                                                                                          | 60         | 187.00 | 188.50  | 1.50       | 5          | 5     |      |
|      |        | beds of argillite are up to 1cm wide and contain fine                                                    | 61         | 188.50 | 190.00  | 1.50       | 5          | 234   |      |
|      |        | graphite. Siltstone beds are up to 3cm wide and some                                                     | 62         | 190.00 | 191.50  | 1.50       | 5          | 344   |      |

.

HOLE No: POW9501

•

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9501

|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |        |        | ASSAYS   |         |          |  |
|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|---------|----------|--|
| ROM | то | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE No. | FROM   | TO     | WIDTH Au | (ppb) A | s (ppm). |  |
|     |    | also contain fine graphite and locally very fine pyrite                                                                                                                                                                                                                                                                                                                                                                                                  | 63         | 191.50 | 193.00 | 1.50     | 5       | 69       |  |
|     |    | with minor pyrrhotite. Bedding is from 55° to 65° to                                                                                                                                                                                                                                                                                                                                                                                                     | 64         | 193.00 | 194.50 | 1.50     | 5       | 116      |  |
|     |    | core axis. Pyrite forms up to 10% of this interval and<br>occurs as beds from <1mm to 0.5cm, including one<br>section from 165.5m to 165.7 which is made up of 80%<br>pyrite. Pyrite also occurs as nodules up to 1cm. The<br>breccia intervals contain 1% to 3% pyrite mainly fine<br>crystals in matrix. Marcasite formed along some of the<br>fracture surfaces. From 163.0m to 163.2m quartz-<br>carbonate veins form 8% and pyrite 5%. Graphite and | 65         | 194.50 | 196.00 | 1.50     | 5       |          |  |
|     |    | black chlorite form the rest.<br>168.0-180.1 This interval is dominated by chert and                                                                                                                                                                                                                                                                                                                                                                     |            |        |        |          |         |          |  |
|     |    | siltstone beds, chert breccia, and sections, up to 1m<br>wide, of graphitic argillite interbedded with fine<br>silty beds. The breccia sections include chert,                                                                                                                                                                                                                                                                                           |            |        |        |          |         |          |  |
|     |    | siltstone, argillite and pyrite fragments. Pyrite forms<br>3% of this section and occurs finely disseminated in<br>the breccia matrix, as veinlets along later fractures<br>in the breccia and as beds (up to 10cm thick) of semi                                                                                                                                                                                                                        |            |        |        |          |         |          |  |
|     |    | massive material. Pyrrhotite occurs in minor amounts<br>associated with some of the siltstone beds and as a bed<br>of massive mineralization from 176.3m to 176.4m. There                                                                                                                                                                                                                                                                                |            |        |        |          |         |          |  |
|     |    | is some fuchsite alteration along fractures in the 10cm<br>section preceding the massive pyrrhotite. Bedding at<br>167m is 65* to core axis.                                                                                                                                                                                                                                                                                                             |            |        |        |          |         |          |  |
|     |    | At 178.6 there is approximately 0.5m of missing core.<br>Sample 55 has only 1.0m of rock.                                                                                                                                                                                                                                                                                                                                                                |            |        |        |          |         |          |  |

HOLE No: POW9501

Page 8

DIAMOND DRILL LOG

| HOLE N |    |                                                                                                                                                                                                                                                                                                                |            |      |    | Page                              |
|--------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-----------------------------------|
| FROM   | то | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                       | SAMPLE No. | FROM | то | ASSAYS<br>WIDTH Au (ppb) As (ppm) |
|        |    | 180.1-180.7 debris flow. Includes subangular clasts (up<br>to 1cm in size) of chert, argillite and siltstone set<br>in a fine black matrix. Fragments form 40% of the<br>volume. Contains 1% pyrite in cubes up to 1.5mm and as<br>veinlets around the fragments. The upper contact is at<br>65° to core axis. |            |      |    |                                   |

180.7-182.6 fragments are coarser than above, up to several cm, including one boulder of ultramafic at 181.2m that is 30cms in core length. Only minor pyrite present.

DRODERTY - DOWELL

182.6-186.9 silicified argillite and heterolithic breccia. The argillite is black, weakly graphitic, and contains 2% pyrite. Silicification occurs as white veinlets of very fine quartz along fractures in the black argillite and surrounding fragments in the breccia. Minor fine grained pyrite is associated with the silicification. Breccia beds are up to 0.7m thick and include fragments of mainly chert and argillite. Pyrite forms 5% and occurs as veins up to 2cm of massive material and as crystals and nodules, each up to 3mm in size.

186.9-193.1 chert breccia consists of 70% fragments, mainly of milky white (on cut surface) chert set in a black siliceous matrix. Some of the fragments were previously fractured and the fractures are coated with black material (graphite ?). Pyrite occurs mainly as 1cm to 2cm crystals, and forms 3% of the volume.

HOLE No: POW9501

9

DIAMOND DRILL LOG

|     | 0.: PO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                  |                  |              |            |                                       | Page |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------|--------------|------------|---------------------------------------|------|
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                  |                  | ASSAYS       |            | · · · · · · · · · · · · · · · · · · · |      |
| ОМ  | TO     | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLE NO. | FROM             | TO               | WIDTH AL     | ı (ppb) As | (ppm)                                 |      |
|     |        | 193.1-196.7 this section includes chert breccia, a 0.6m<br>wide argillite and a chert pebble dominated polymictic<br>conglomerate. The lower contact of the argillite is at<br>70° to core axis and the upper displays erosional<br>features (scour marks).                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                  |                  |              |            |                                       |      |
| . 7 | 206.0  | POLYMICTIC CONGLOMERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66         | 196.00           | 197.50           | 1.50         | 5          | 12                                    |      |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67         | 197.50           | 199.00           | 1.50         | 5          | 1052                                  |      |
|     |        | In the upper 1.5m, the clast composition is dominated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68         | 199.00           | 200.50           | 1.50         | 5          | 427                                   |      |
|     |        | by chert with fewer argillite and siltstone pebbles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69         | 200.50           | 202.00           | 1.50         | 5          | 308                                   |      |
|     |        | The matrix is still the black fine grained material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70         | 202.00           | 203.50           | 1.50         | 5          | 482                                   |      |
|     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71         | 203.50           | 205.10           | 1.60         | 5          | 203                                   |      |
|     |        | 198.2- 206.0 This conglomerate includes a variety of<br>sedimentary clasts, including jasper fragments. It is<br>fragment supported and most of the fragments are<br>fractured, subrounded to rounded and <2 cm in size. The<br>matrix is a sericitized and chloritized siltstone.<br>Towards the bottom the fragments coarsen, including one<br>small boulder (15cm across) at 205.7m. Pyrite occurs in<br>minor amounts except from 205.3m to 205.6m where it<br>forms 15% and occurs as blebs and veinlets surrounding<br>the fragments. Bedding angles are at 65° to core axis,<br>but foliation defined by alignment of chlorite and<br>sericite is at 15° to 25° to core axis. | 72         | 205.10           | 205.60           | 0.50         | 53         | 363                                   |      |
| . 0 | 269.9  | ULTRAMAFIC SEQUENCE (SEDIMENTS ?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73<br>74   | 226.70<br>232.60 | 227.70<br>234.10 | 1.00<br>1.50 | 5<br>5     | 111<br>5                              |      |
|     |        | This section includes ultramafic flows and interflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75         | 234.10           | 235.60           | 1.50         | 5          | 110                                   |      |
|     |        | sediments. The colour of the core is light green to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76         | 239.40           | 240.90           | 1.50         | 5          | 371                                   |      |

HOLE No: POW9501

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9501

|      |                                                                                                                                                                                                                                                                                                                                                                                                          |            |        |        | ASSAYS   |          |         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|----------|---------|
| M TO | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE No. | FROM   | TO     | WIDTH AU | (ppb) As | s (ppm) |
|      | yellowish green and locally, in areas of quartz-                                                                                                                                                                                                                                                                                                                                                         | 77         | 240.90 | 242.40 | 1.50     | 5        | 193     |
|      | carbonate veining, grey. The flows show poly-suture and                                                                                                                                                                                                                                                                                                                                                  | 78         | 242.40 | 243.90 | 1.50     | 5        | 148     |
|      | spinifex textures. Some of the flows also contain                                                                                                                                                                                                                                                                                                                                                        | 79         | 243.90 | 245.40 | 1.50     | 5        | 161     |
|      | greenish white spots, clustered together, similar to                                                                                                                                                                                                                                                                                                                                                     | 80         | 245.40 | 246.90 | 1.50     | 5        | 333     |
|      | the ones exposed in the surface trench. The interflow                                                                                                                                                                                                                                                                                                                                                    | 81         | 246.90 | 248.40 | 1.50     | 5        | 312     |
|      | sediments are mostly conglomerate beds. Some are made                                                                                                                                                                                                                                                                                                                                                    | 82         | 248.40 | 249.90 | 1.50     | 5        | 146     |
|      | up of ultramafic flow fragments set in an iron                                                                                                                                                                                                                                                                                                                                                           | 83         | 249.90 | 251.40 | 1.50     | 5        | 137     |
|      | carbonate matrix. Others include quartz-carbonate                                                                                                                                                                                                                                                                                                                                                        | 84         | 251.40 | 252.90 | 1.50     | 5        | 81      |
|      | fragments and pebbles in a talc-chlorite or chlorite-<br>sericite matrix. The sedimentary sections are up to<br>several metres thick and the sediments make up 70% of<br>the interval.                                                                                                                                                                                                                   | 85         | 252.90 | 254.40 | 1.50     | 5        | 145     |
|      | Quartz and grey carbonate veining is present throughout<br>the core, strongest in the sediments. The veins and<br>carbonate-silica flooding make up 10% of the volume,<br>locally up to 60% over narrow intervals. Mineralization<br>is limited to minor amounts of pyrite associated with<br>the veins Minor amounts of fuchsite occur associated<br>with the sericite matrix in the conglomerate beds. |            |        |        |          |          |         |

Foliation angles are variable ranging from 55° at 229m to 0° to core axis at 239m.

206.7-207.8 ultramafic flow, coarse spinifex

207.8-211.0 conglomerate, cherty pebbles in a chloritetalc matrix and ultramafic pebbles in a quartzcarbonate matrix. At 208.8 find a graphitic band. At 210.5m find a 10cm band of graphitic argillite with

HOLE No: POW9501

Page 11

DIAMOND DRILL LOG

| DLE No |         | DWELL<br>DW9501                                                                                                                                                                                                                                                                    |            |      |    |                                   | Page      |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-----------------------------------|-----------|
|        | то<br>Т | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                           | SAMPLE No. | FROM | то | ASSAYS<br>WIDTH Au (ppb) As (ppm) |           |
|        |         | contacts at 40° to core axis.                                                                                                                                                                                                                                                      |            |      |    |                                   |           |
|        |         | 211.0-218.3 massive, darker green<br>mafic(?)/ultramafic(?) flow. Minor quartz veining.                                                                                                                                                                                            |            |      |    |                                   |           |
|        |         | 218.3-223.0 ultramafic flows, topped with spinifex and locally poly-sutured. Some of the polyhedrons are altered to a greenish yellow (sericite-fuchsite).                                                                                                                         |            |      |    |                                   |           |
|        |         | 223.0-229.5 quartz-carbonate pebbles and fragments in a sericite-chlorite matrix.                                                                                                                                                                                                  |            |      |    |                                   |           |
|        |         | 229.5-232.6 mainly ultramafic flows with only narrow<br>interflow sections. Locally poly-suture textures. The<br>section from 226.7m to 227.7m contains 20% quartz-<br>carbonate veins and up to 1% fine pyrite associated<br>with the veins.                                      |            |      |    |                                   |           |
|        |         | 232.6-235.5 interflow sediment consisting of ultramafic<br>fragments in a quartz-carbonate matrix. Quartz-carbonate<br>make up 40% of interval and occur as veins and matrix<br>material.                                                                                          |            |      |    |                                   |           |
|        |         | 235.5-239.4 brecciated flow (?)                                                                                                                                                                                                                                                    |            |      |    |                                   |           |
|        |         | 239.4-260.5 BRECCIATED VARIOLITIC FLOW. Altered<br>brecciated flows and interflow sediments make up this<br>interval. The core is of various shades of yellowish<br>green colour due to sericite, fuchsite, epidote and<br>dolomite (albite ?) alteration. Texture is a monolithic |            |      |    |                                   |           |
|        |         |                                                                                                                                                                                                                                                                                    |            |      |    | HOLE 1                            | No: POW95 |
|        |         |                                                                                                                                                                                                                                                                                    |            |      |    |                                   |           |

-

.

.

DIAMOND DRILL LOG

PROPERTY: POWELL

.

| IOLE N | Io.: PC | W9501                                                                                                                                                                                                                                                                                                                           |            |        |        |          |          |       | Page ( |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|----------|-------|--------|
|        |         |                                                                                                                                                                                                                                                                                                                                 |            |        |        |          |          |       |        |
| FROM   | то      | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                        | SAMPLE No. | FROM   | TO     | WIDTH Au | (ppb) As | (ppm) |        |
|        |         | breccia (hyaloclastite ?) with some of the blocks<br>containing variolites. Locally, some of the sections<br>contain spinifex textured blocks. Minor amounts of<br>pyrite are scattered within quartz-carbonate veins and<br>dissseminated in the reccia matrix.                                                                |            |        |        |          |          |       |        |
|        |         | Locally, carbonate-quartz veining is strong and some of<br>the veins contain 1% pyrite. Veins form an average 5%<br>of the interval. Sericite and epidote alteration is<br>strong but limited to clast boundaries and more<br>pervasive in the smaller clasts. Fuchsite is associated<br>with the sericite but is not abundant. |            |        |        |          |          |       |        |
|        |         | 245.4-248.7 badly broken and blocky. Approximately 0.6m of core lost.                                                                                                                                                                                                                                                           |            |        |        |          |          |       |        |
|        |         | 260.5-269.9 ultramafic flows and breccia. Flows show<br>polyhedral jointing and spinifex textures. From 267.0m<br>to 269.9 the flows are more massive, possible tholeitic<br>basalt. Flows are cut by weakly pyrite mineralized,<br>grey carbonate-quartz veins. The veins form 5% of the<br>interval.                          |            |        |        |          |          |       |        |
| 9.9    | 271.6   | GRAPHITIC ARGILLITE                                                                                                                                                                                                                                                                                                             | 86         | 269.90 | 271.60 | 1.70     | 16       | 165   |        |
|        |         | Upper contact is at 50° to core axis. This unit<br>includes a 20cm massive pyrrhotite section near the top<br>and pyrite bearing mafic dyke from 270.9m to 271.1m.<br>The arillite is black, graphite bearing and contains 5%                                                                                                   |            |        |        |          |          |       |        |

HOLE No: POW9501

DIAMOND DRILL LOG

|         |                                                                                                                                                                                                                                                                                                                                                     |            |                  |                  | ASSAYS       |            |          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------|--------------|------------|----------|
| м то    | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                            | SAMPLE No. | FROM             | то               |              | ı (ppb) As | (mqq)    |
|         | to 10% pyrite as wisps and blobs. The dyke is grey-<br>green color and contains 5% fine disseminated pyrite.<br>The massive pyrrhotite section contains 80% pyrrhotite<br>and 5% pyrite.                                                                                                                                                            |            |                  |                  |              |            |          |
| 6 272.4 | MAFIC DYKE                                                                                                                                                                                                                                                                                                                                          |            |                  |                  |              |            |          |
|         | Upper contact is at 80° and lower at 70° to core axis.<br>The dyke is fine grained, dark grey, chloritized and<br>contains 5% fine disseminated pyrite.                                                                                                                                                                                             |            |                  |                  |              |            |          |
| 4 295.9 | TALC-CHLORITE SCHIST (KIRKLAND LAKE FAULT)                                                                                                                                                                                                                                                                                                          | 87         | 271.60           | 272.60           | 1.00         | 5          | 68       |
|         | The host rock was an ultramafic with interflow<br>sediments. In the upper part there are remnants of                                                                                                                                                                                                                                                | 88<br>89   | 272.60<br>274.10 | 274.10<br>275.60 | 1.50<br>1.50 | 5<br>5     | 60<br>42 |
|         | spinifex texture flow. The section is veined with<br>calcite, and calcite makes up 40% of the rock. Section<br>is intensely talcose and chloritic, could be scratched<br>with a finger nail. Quartz veins are rarely seen. Only<br>trace amounts of pyrite were observed associated with<br>some of the calcite veins. Foliation is from 70° to 90° |            |                  |                  |              |            |          |

294.4-295.1 diabase dyke. The rock is fine grained, dark grey massive. The upper contact is at 90° and the lower at 70° to core axis.

HOLE No: POW9501

DIAMOND DRILL LOG

. .

| HOLE ] | No.: PC | W9501                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |    |                         | Page 15 |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-------------------------|---------|
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |      |    | ASSAYS                  |         |
| FROM   | TO      | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE NO. | FROM | TO | WIDTH Au (ppb) As (ppm) |         |
| 295.9  | 303.3   | FINE SEDIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |      |    |                         |         |
|        |         | This section includes light green bands alternating<br>with brown (biotite rich) and light grey siliceous<br>(chert) bands. There are a few calcite veinlets<br>concentrated locally within the green (calc-silicate)<br>segments. Minor amounts of pyrrhotite are scattered<br>throughout the various units, concentrating more within<br>the calc-silicate. Minor graphite occurs plated onto<br>foliation surfaces.<br>Foliation/bedding is at 55° to core axis. |            |      |    |                         | ·       |
| 303.3  | 306.0   | PERIDOTITE                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |      |    |                         |         |
|        |         | Steel grey colour, fine grained, massive, talcose,<br>strongly magnetic. Upper and lower contacts are<br>conformable at 60° to core axis.                                                                                                                                                                                                                                                                                                                           |            |      |    |                         |         |
| 306.0  | 310.1   | CHLORITE-TALC ALTERED SEDIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |      |    |                         |         |
|        |         | These are grey to green coloured, foliated and made up of<br>mainly chlorite, talc and calcite. There is<br>compositional banding with more calcite-chlorite rich<br>bands alternating with talc dominant bands. Individual<br>bands vary from 0.5cm to 5cm. Foliation is at 65° to<br>core axis. Lower contact is sharp and conformable at<br>65° to core axis.                                                                                                    |            |      |    |                         |         |

DIAMOND DRILL LOG

| HOLE 1 | No.: PO | W9501                                                                       |                                                                                                 |                                                                                                   |            |           |    |                         | Page 16 |
|--------|---------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------|-----------|----|-------------------------|---------|
|        |         |                                                                             |                                                                                                 |                                                                                                   | <br>       | · <b></b> |    | ASSAYS                  |         |
| FROM   | TO      | LITHO                                                                       | DLOGICAL DESCRIPT                                                                               | TION                                                                                              | SAMPLE No. | FROM      | то | WIDTH Au (ppb) As (ppm) |         |
| 310.1  | 321.3   | GREYWACKE AND SI                                                            | LTSTONE                                                                                         |                                                                                                   |            |           |    |                         |         |
|        |         | bedded. Composit<br>Individual beds<br>and some section<br>determined becau | ion is a feldspa<br>range in thickne<br>display graded<br>use of the repeta<br>mts of pyrite ar | ess from 0.5cm to 5cm<br>bedding; tops were not<br>ative nature of the<br>re sprinkled throughout |            |           |    |                         |         |
|        |         | DOW                                                                         | N-HOLE SURVEY DA                                                                                | ТА                                                                                                |            |           |    |                         |         |
|        |         | DEPTH                                                                       | INCLINATION                                                                                     | BEARING                                                                                           |            |           |    |                         |         |
|        |         | 50.00                                                                       | -49.00                                                                                          |                                                                                                   |            |           |    |                         |         |
|        |         | 102.00                                                                      | -48.00                                                                                          |                                                                                                   |            |           |    |                         |         |
|        |         | 151.00                                                                      | -47.00                                                                                          |                                                                                                   |            |           |    |                         |         |
|        |         | 200.00                                                                      | -45.00                                                                                          |                                                                                                   |            |           |    |                         |         |
|        |         | 282.00                                                                      | -43.00                                                                                          |                                                                                                   |            |           |    |                         |         |

321.30 -42.00

PROPERTY: POWELL

.

HOLE No: POW9501

ŗ

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9502 Collar Eastings: 2200.00 Collar Northings: -825.00 Collar Elevation: 330.00 Grid: POWELL Drill through Ultramafic Sequence

Drilled by: Heath and Sherwood (1986) Inc. 

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 160.30 metres Claim #: 1047778 Core: NQ, Stored at Fred Kiernicki, Matachewan

by: A. Faber Logged Date: November 16-19, 1995

Down-hole Survey: ACID Test IP at Basalt/Ultramafic Contact

LITHOLOGICAL DESCRIPTION то FROM

ASSAYS SAMPLE No. FROM TO WIDTH Au (ppb) As (ppm)

1

2

15.50

18.90

18.90

22.20

3.40

3.30

OVERBURDEN 0.0 11.0

----------

11 0 15 5 PILLOWED BASALT

> Medium light green, fine grained pillowed basalt. The size of the pillows varies from 50-70cm. The basalt is weakly carbonatized. The rock shows brecciation or cooling fractures which are filled with chlorite and calcite. The pillow selvages are chlorite-rich and up to 1.5cm wide. Minor pyrrhotite is associated with them. Locally, the basalt contains 2mm calcite filled vesicles. The interval contains 1% carbonate (calcite and ankerite) in fractures. No mineralization is associated with the carbonate.

FAULT ZONE 15.5 22.2

> The fault zone is a very blocky interval with a minimum of 3.2m of lost core. The size of the rock fragments varies between 1cm and 10cm. The blocks are oxidized from water movement in the fault zone. The rock appears to be pillowed basalt with remanent of salvages and vesicles. The rock shows brecciation similar to

> > HOLE No: POW9502

41

51

5

5

DIAMOND DRILL LOG

PROPERTY: POWELL

.

| HOLE 1 | No.: PC | DW9502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |         |       |          |       |          | Page 2     |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-------|----------|-------|----------|------------|
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | <b></b> |       | ASSAYS   |       |          |            |
| FROM   | то      | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLE No. | FROM    | TO    | WIDTH Au | (ppb) | As (ppm) |            |
|        |         | the previous interval. The contacts are sharp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |       |          |       |          |            |
| 22.0   | 38.7    | PILLOWED BASALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3          | 24.60   | 25.70 | 1.10     | 5     | 48       |            |
|        |         | Medium light green, pillowed basalt. The basalt is<br>fine grained with chlorite-rich selvages. The pillows<br>are from 10cm up to 1m in size. The rock is weakly<br>carbonatized. The pillows shows brecciation or cooling<br>fractures filled with chlorite. The interval contains<br>3-5% carbonate (calcite and Fe-carbonate) filled<br>fractures which are up to 5mm. The pillow selvages<br>contain minor calcite and trace pyrrhotite.<br>24.6-25.7m The interval contains several 15cm pillows.<br>The interval contains 5% chlorite-rich selvages with<br>minor pyrrhotite. It also contains 2% calcite filling.<br>A 1cm barren quartz vein shows fine banding. |            |         |       |          |       |          |            |
| 38.7   | 47.0    | BASALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |         |       |          |       |          |            |
|        |         | Medium green, fine to medium grained basalt flows. The<br>flows are massive and are locally brecciated. The<br>rocks show minor amounts of disseminated, very fine<br>grained feldspar crystals. Carbonate filled fractures<br>(Fe-carbonate and calcite) are up to 5mm wide and make<br>up to 3-5% of the interval. Carbonate occurs in<br>fractures and hairline fractures related to<br>brecciation. The fractures are at various angles with                                                                                                                                                                                                                          |            |         |       |          |       |          |            |
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |         |       |          |       | HOLE N   | D: POW9502 |
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |         |       |          |       |          |            |
|        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |         |       |          |       |          |            |

.

Page 3

DIAMOND DRILL LOG

.

PROPERTY: POWELL HOLE No.: POW9502

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |      |    | ASSAYS                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-------------------------|
| FROM T  | CO LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE No. | FROM | то | WIDTH Au (ppb) As (ppm) |
|         | respect to core axis. Minor epidote and dark chlorite occur with few carbonate veins.                                                                                                                                                                                                                                                                                                                                                             |            |      |    |                         |
|         | The lower contact is sharp at 52° tca.                                                                                                                                                                                                                                                                                                                                                                                                            |            |      |    |                         |
| 7.0 60. | 0 PILLOWED BASALT                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |    |                         |
|         | The rock is similar to pillows described from 22.0-<br>38.7m. The rock is medium light green. The pillows<br>are fine-grained with chlorite-rich selvages. Some of<br>the selvages contain minor pyrrhotite. The rock is<br>brecciated with chlorite and calcite in the hairline<br>fractures. The interval contains 3-5% carbonate veins<br>up to 3mm. Locally, the pillows contain calcite filled<br>vesicles. The rock is weakly carbonatized. |            |      |    |                         |
| 0.0 62. | 5 MAFIC VOLCANIC SEDIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                        |            |      |    |                         |
|         | The rock is medium green and fine to medium grained.<br>There is little alteration. It is a mix of mafic<br>fragments and/or lapilli tuffs. There are few<br>intervals showing very fine grained carbonate/feldspar<br>crystals as described in the previous basalt flow.                                                                                                                                                                         |            |      |    |                         |
|         | 60.9-61.3m, 62.0-62.3m These intervals are made of<br>fragments up to 1cm in size. The matrix is moderately<br>sericitic with minor epidote. They contain 10%<br>calcite-quartz veining with diffuse boundaries.                                                                                                                                                                                                                                  |            |      |    |                         |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |      |    | HOLE N                  |

DIAMOND DRILL LOG

|      | RTY: PC<br>No.: PC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                |                |                    |          |          | Page | 4 |
|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|--------------------|----------|----------|------|---|
| FROM | то                 | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE No.    | FROM           | то             | ASSAYS<br>WIDTH Au | (ppb) As | (ppm)    |      |   |
|      |                    | 61.9m, a 3mm quartz vein with minor fuchsite at the contact with the host rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                |                |                    |          |          |      |   |
| 62.5 | 68.3               | MAFIC DIKE (CRYSTAL TUFF??)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                |                    |          |          |      |   |
|      |                    | Massive, medium greyish green dyke. The matrix is very<br>fine and contains up to 50% feldspar crystals. The<br>size of the feldspar crystals are 1mm on average with<br>few up to 4mm. The crystals are blade-like, either<br>euhedral or subhedral, and randomly oriented. From<br>63.1-63.9m, mafic (amphibole) crystals co-exist with<br>the feldspar crystals. The dike is non-magnetic.<br>Carbonate-calcite filled fractures are present with a<br>ratio of fractures as one every 10cm. They are up to<br>2mm thick. The rock is massive and doesn't show<br>sedimentary texture or foliation. A weak foliation of<br>60° tca is present at 65.4m. |               |                |                |                    |          |          |      |   |
|      |                    | 65.0-65.4m The interval shows local sericite<br>alteration. Quartz, sericite, minor chlorite and minor<br>fuchsite are present in a 2cm vein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                |                |                    |          |          |      |   |
|      |                    | The upper and lower contacts are 18° tca and 40° tca, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                |                |                    |          |          |      |   |
| 68.3 | 70.3               | DEFORMATION ZONE WITH GRAPHITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>4</b><br>5 | 68.30<br>69.30 | 69.30<br>70.30 |                    | 5<br>5   | 28<br>62 |      |   |
|      |                    | The interval is highly sheared. It is made of 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                |                |                    |          |          |      |   |

HOLE No: POW9502

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9502

то

FROM

ASSAYS SAMPLE NO. FROM TO WIDTH Au (ppb) As (ppm)

1.50

1.50

76.00

77.50

6

7

77.50

79.00

The lower contact is uneven at 38° tca.

LITHOLOGICAL DESCRIPTION

carbonate-calcite-quartz fragments (from veining) in a fine grained chlorite-sericite altered matrix. The matrix is medium dark greyish green. The interval also contains sericite-rich fragments. Fragments of host rock and veins are up to 2cm in size. From 70.1-70.2m, the matrix is highly graphitic. No sulphide noticed in the rock. The foliation varies from 0° tca to 47° tca.

69.4-69.8m, massive interval made of the previously

#### 70.3 82.3 MAFIC MONOMICTIC CONGLOMERATE.

described mafic dyke.

The rock is medium green and made of fragments up to 7cm in size. The interval contains up to 20% carbonate-calcite veins with minor quartz. The veins are up to 5cm thick and are folded. The carbonate veins are medium grey and do not contain any sulphides. The volcanic fragments are fine grained and weakly chloritized. The carbonate veins are from different generation and at random angle to core axis. One generation of veins is at 49-53° tca.

76.0-79.0m, In this interval, half the veining shows albite alteration. These veins have lost most of their calcite content. These veins contain minor quartz which is medium grey and has a cherty look.

HOLE No: POW9502

.....

Page 5

14

50

5

5

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9502

\_\_\_\_\_ -----ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM TO WIDTH Au (ppb) As (ppm) The lower contact is 41° tca. 82.3 104.4 ULTRAMAFIC FLOWS AND DERIVED SEDIMENTS 82.30 83.80 1.50 37 8 5 9 83.80 85.30 1.50 5 22 82.3-84.12m, The rock is medium green with a yellowish 10 87.60 89.10 1.50 6 15 tint. It is fine grained. The rock is massive and 10% 89.10 90.60 1.50 5 21 11 carbonate-quartz and quartz veins follow fractures and 92.10 36 12 90.60 1.50 5 are mostly straight. Only few are folded. The rock is 13 98.40 99.90 1.50 5 5 brecciated. 14 99.90 101.40 1.50 5 5 15 101.40 102.90 1.50 5 22 85.1m, and 85.1-85.3m Quartz-calcite veins are present with 1% disseminated pyrite. 85.9-87.6m, The interval is brownish green. It shows variolitic textures similar to the ones seen on the north end of L26E trench. Minor biotite and albite alteration are present. At 86.4m, the veining is at 58° tca. 87.6-91.6m, The interval shows a monomictic conglomerate with fragments of ultramafic rocks. The

HOLE No: POW9502

Page 6

91.0-91.2m, The interval contains several carbonate-

interval contains 25-30% carbonate-quartz veins which are highly folded. They contain minor pyrite. The rock is weakly sericitic, with trace albite and fuchsite alteration. The fuchsite is usually located at the contact between the veins and the host rock.

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9502

ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE NO. FROM TO WIDTH Au (ppb) As (ppm) quartz veins showing oxidation of trace pyrite and ankerite. 91.6-93.7m The interval shows variolitic textures similar to the ones seen on the north end of L26E trench. 93.7-104.4m, The interval is ultramafic in composition. It shows two intervals with spinifex texture from 93.9-94.0m and 96.5-96.6m. The interval is weakly chloritized an contains up to 25% calciteankerite-quartz veins. The veins are up to 5cm thick. Minor sulphides are found in the veins. From 99.7-101.8m, the interval is a flow with only 5% of veins and shows some brecciation. The flow is fine grained and of similar composition. From 98.3-104.4m, most of the veins are ankerite and quartz. They contain trace fuchsite at the contact between the host rock and the veins and in the center of the vein. Minor pyrite is associated with the veins containing the fuchsite. From 93.7-94.4m, an ankerite vein follows the core axis and makes 70% of the interval. 104.4 114.2 TALC SCHIST 16 111.60 113.10 1.50 5 11 17 113.10 114.20 1.10 5 31 The rock is talcose and blueish grey. The rock is made of talcose host rock with 25% talc-calcite veins up to 2cm. The veins are often broken up or stretched. The

rock is fragmented or is a fragmental. No sulphide in

HOLE No: POW9502

Page 7

Page 8

DIAMOND DRILL LOG

PROPERTY: POWELL

HOLE No.: POW9502

ASSAYS LITHOLOGICAL DESCRIPTION SAMPLE No. FROM то WIDTH Au (ppb) As (ppm) FROM то the interval. 107.5-109.7m, 110.8-111.6m, These interval are not talcose. They are brownish grey. They contains 15% ankerite-calcite-quartz veins. They locally show variolitic textures. These intervals do not have talc in the veins, and show fragmented textures. 111.6-114.2m, The interval shows local sericite and epidote alteration, especially from 112.4-112.9m. The rock is highly fragmented and contains 25% ankeritecalcite veins with minor quartz. The bottom 30cm is a tectonic breccia with broken pieces of veins in a dark talc-chlorite rich matrix. No sulphide. 112.9m A 2cm white, barren guartz vein. The upper contact is at 43° tca and is defined by an ankerite-quartz vein. 18 114.20 115.70 1.50 5 72 114.2 129.4 ULTRAMAFIC CONGLOMERATE 1.50 107 19 117.90 119.40 5 18 The unit is an ultramafic conglomerate with fragments 20 119.40 120.60 1.20 5 up to 10cm in size. The rock is greenish grey with a 120.60 16 21 122.00 1 40 5 22 122.00 123.50 1.50 5 13 blue tint. The vein content is 10% with intervals with 68 up to 70% veins over 50cm. The veins are of ankerite-23 126.20 127.80 1.60 7 50 24 127.80 129.40 1.60 5 calcite with minor quartz. The rock is weakly chloritic, weakly talcose, and locally contains trace fuchsite. The foliation/vein angles are 48° tca at HOLE No: POW9502

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9502

Page 9

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |        | ASSAYS   |          |       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|----------|-------|
| M TO | D LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE No. | FROM   | TO     | WIDTH Au | (ppb) As | (ppm) |
|      | l19.0m, 49° tca at 149.6m, 38° tca 126.0m, 43° tca at<br>137.0m. 30% of the veins occur at random angles. No<br>sulphide was noticed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |        |          |          |       |
|      | 114.2-115.8m, The interval is dark green and very<br>hard. In places, minor silica alteration is present.<br>Where traces of silica alteration are present, minor<br>light green chlorite is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |        |          |          |       |
|      | <pre>119.4-123.5m, 128.8-129.4m, These intervals are made<br/>of a fine to medium grained rock. They are yellowish<br/>green in colour due to a mix of epidote and possibly<br/>sericite alteration. In these intervals, the<br/>alteration is closely related to the veining. The<br/>intervals are likely different in composition, as the<br/>surrounding rocks are not altered the same way. From<br/>123.0-123.5m, a 3cm ankerite-calcite vein cuts the<br/>geology at 15° tca. From 119.4-120.6m, The interval<br/>contains 50% ankerite-calcite veins up to 1cm with<br/>minor quartz in the vein.<br/>126.2-128.8m, This interval contains 30-35% ankerite-</pre> |            |        |        |          |          |       |
|      | calcite veins up to 2cm. The veins either follow the fabric or are at random angles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |        |          |          |       |
| 160. | 3 ULTRAMAFIC SEQUENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25         | 129.40 | 130.60 | 1.20     | 5        | 79    |
|      | militation of the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26         | 130.60 | 131.80 | 1.20     | 5        | 55    |
|      | The intervals is made of ultramafic flows with interflow addimenta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27         | 133.70 | 135.60 | 1.90     | 5        | 65    |
|      | interflow sediments. The rock is dark green. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28         | 143.10 | 145.10 | 2.00     | 5        | 57    |

HOLE No: POW9502

#### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9502

Page 10

|      |    |                                                         | ASSAYS     |        |        |          |         |         |  |  |
|------|----|---------------------------------------------------------|------------|--------|--------|----------|---------|---------|--|--|
| FROM | TO | LITHOLOGICAL DESCRIPTION                                | SAMPLE NO. | FROM   | TO     | WIDTH Au | (ppb) A | s (ppm) |  |  |
|      |    | ultramafic flows, which show spinifex texture, are      | 29         | 150.80 | 152.00 | 1.20     | 5       | 21      |  |  |
|      |    | separated from each other by conglomerates and          | 30         | 152.00 | 153.20 | 1.20     | 5       | 9       |  |  |
|      |    | variolitic flows. The conglomerate is made of           | 31         | 153.20 | 154.70 | 1.50     | 5       | 65      |  |  |
|      |    | ultramafic material and the fragments are up to 10cm in | 32         | 154.70 | 156.20 | 1.50     | 5       | 36      |  |  |
|      |    | size. The fragments are mostly in a carbonate matrix    | 33         | 158.80 | 160.30 | 1.50     | 5       | 148     |  |  |
|      |    | and vein The carbonate-rich material is mostly Fe-      |            |        |        |          |         |         |  |  |
|      |    | carbonate with minor calcite and quartz. The            |            |        |        |          |         |         |  |  |

\_\_\_\_\_

129.4-131.8m The interval is dark brownish green and shows polysutured patterns. The rock is moderately biotitic or albite altered along the boundaries of the polygons. From 129.4-130.3m, the interval has less biotite/albite alteration but is chlorite rich with a forest green colour.

variolitic flows show light green patches which are often around a more massive area of the same rock. This is similar to what is seen at the north end of the trench on line 26E. The vein content is 10-15%.

131.8-135.6m Variolitic flows. The rock is yellowish green and shows light green patches in a darker matrix. It is similar to what is seen in trench (L26E). From 133.7-135.2m, the interval shows an increase in carbonate veins up to 10% with veins up to 3mm.

135.6-136.3m, The interval shows spinifex textures. It contains few lcm carbonate veins with minor pyrite.

136.3-137.6m, massive flow between two spinifex textured intervals. The carbonate vein content is 30%

HOLE No: POW9502

DIAMOND DRILL LOG

.

| PROPER'<br>HOLE No |        |                                                                                                                                                                                                                                                                                                                                                                                                       |            |      |    |                                   | Page 11     |
|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-----------------------------------|-------------|
| FROM               | <br>то | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE NO. | FROM | то | ASSAYS<br>WIDTH Au (ppb) As (ppm) |             |
|                    |        | and the veins are light to medium grey. Trace<br>disseminated pyrite occurs in the veins. The veins are<br>folded.                                                                                                                                                                                                                                                                                    |            |      |    |                                   |             |
|                    |        | 137.6-138.2m, The interval shows spinifex texture with<br>10% grey carbonate veins up to 7mm.                                                                                                                                                                                                                                                                                                         |            |      |    |                                   |             |
|                    |        | 138.2-145.1m, The interval is a mix of massive flows<br>with interflow sediments. The lower two meter shows<br>local brecciation of veins. The interval contains up<br>to 30% carbonate veins. Locally, the carbonate veins<br>are broken and dark grey quartz filled the fractures.<br>Minor tourmaline is associated with them. No sulphides<br>noticed. Minor polysutured texture is also present. |            |      |    |                                   |             |
|                    |        | 145.1-149.8m, The interval shows variolitic rocks<br>which are polysutured flows. The rock is weakly<br>sericitized and epidotized in places. Polysutured<br>textures are locally present.                                                                                                                                                                                                            |            |      |    |                                   |             |
|                    |        | 149.8-150.8m, The interval shows spinifex textures.                                                                                                                                                                                                                                                                                                                                                   |            |      |    |                                   |             |
|                    |        | 150.8-154.7m The interval is a mix of variolitic flows<br>showing polysutured textures and ultramafic<br>conglomerate. Up to 5% carbonate veins are present.<br>From 150.8-153.2m, the interval is moderately talcose.<br>The carbonate veins reaches 20% and are up to 1cm wide.<br>In the talcose interval, the veins are broken up. No<br>mineralization.                                          |            |      |    |                                   |             |
|                    |        |                                                                                                                                                                                                                                                                                                                                                                                                       |            |      |    | HOLE 1                            | No: POW9502 |

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9502

FROM

#### TO LITHOLOGICAL DESCRIPTION

----

154.0-156.2m, several (5% of the whole veins) veins up to 1cm contain minor disseminated pyrite. The pyrite is found at the center of the vein.

154.7-155.0m, The interval shows spinifex textures.

155.0-160.3m, The interval is variolitic flows and interflow sediments. The carbonate vein content is up to 10%. The veins are weakly foliated and mostly follow the foliation of 42° tca. The last 1.5m contains three quartz veins up to 5cm thick. Minor chlorite and feldspar are associated with the quartz. Trace pyrite is found on slickenslide surfaces. One speck of pyrite is present in one quartz vein. No mineralization in the carbonate veins.

END OF HOLE

DOWN-HOLE SURVEY DATA

| DEPTH  | INCLINATION | BEARING |
|--------|-------------|---------|
| 50.60  | -47.00      |         |
| 100.00 | -47.00      |         |
| 150.00 | -47.00      |         |
| 160.30 | -47.00      |         |

SAMPLE No. FROM

ASSAYS TO WIDTH Au (ppb) As (ppm) Page 12

\_\_\_\_\_

Stored at Fred Kiernicki, Matachewan

Logged by:

A. Date: November 19-22, 1995

Test Sediment-Ultramafic Contact

Down-hole Survey: ACID

DIAMOND DRILL LOG

Grid Bearing: 180.00 Final Depth: 193.90 metres

Claim #: 1186330

Collar Inclination: -50.00

PROPERTY: POWELL HOLE No.: POW9503 Collar Eastings: 2200.00 Collar Northings: -950.00 Collar Elevation: 335.00 Grid: POWELL Core Size: NQ Drilled by: Heath and Sherwood (1986) Inc.

| FROM | то   | LITHOLOGICAL DESCRIPTION                                                                                                                                            | SAMPLE No. | FROM           | то             | ASSAYS<br>WIDTH Au | (ppb) A     | s (ppm)     |  |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|--------------------|-------------|-------------|--|
| 0.0  | 6.1  | OVERBURDEN                                                                                                                                                          |            |                |                |                    |             |             |  |
| 6.1  | 27.3 | VARIOLITIC FLOWS AND INTERFLOW SEDIMENTS                                                                                                                            | 1          | 11.50<br>13.10 | 13.10<br>14.10 | 1.60               | 5           | 81          |  |
|      |      | The rock is medium to dark green. About 5% of the<br>interval is yellowish green due to light green patches<br>of the variolitic flow (Similar to trench L26E). The | 3          | 15.20<br>17.40 | 15.50<br>18.90 | 0.30               | 5<br>5<br>5 | 5<br>5<br>5 |  |

interval contains 5-7% carbonate veins (Fe-carbonatecalcite) which follow the foliation or are folded. The foliation is 35° tca at 8.5m, 40° tca at 12.5m. From 10.6-13.1m, the interval is made of interflow sediments. The conglomerate is ultramafic in composition and shows a weak biotitic or an albite alteration. The alteration is dull brass in colour, similar to fine grained pyrrhotite.

13.5m a 1cm folded carbonate vein contains 1% disseminated pyrite.

14.1-18.9m The interval shows polysutured textures. The interval is moderately talcose. From 15.2-15.5m, a fault gouge contains fragments up to 5cm in a muddy matrix. The carbonate vein content is 5-7%. The veins are along foliation or folded. Locally, minor sericite

HOLE No: POW9503

DIAMOND DRILL LOG

|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |       | <br>Assays |          |       |   |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|------------|----------|-------|---|
| М | то  | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE No. | FROM  | то    |            | (ppb) As | (ppm) |   |
|   |     | and epidote occur over two 30cm intervals at 14.9-15.2m<br>and 18.2-18.9m. From 17.4-18.9m, The interval contains<br>three 1cm carbonate veins with 1% disseminated pyrite.                                                                                                                                                                                                                                                                      |            |       |       |            |          |       |   |
|   |     | 18.9-27.3m, The interval is characterized by<br>ultramafic interflow sediments with few intervals of<br>variolitic flows. The variolitic flows are less than<br>1m thick and make 20% of the interval. The carbonate<br>veins are up to 1cm thick and are either folded or<br>follow the foliation. There is 5-7% veining. The<br>foliation is 50° tca at 26.6m, and 35° tca at 20.2m.<br>At 25.3m, 3cm of spinifex texture could be a fragment. |            |       |       |            |          |       | · |
|   |     | 26.7-27.3m The interval is brecciated. The fragmented<br>rock has pieces up to 5cm and they are surrounded by<br>black chlorite alteration. There is no mineralization.                                                                                                                                                                                                                                                                          |            |       |       |            |          |       |   |
| 3 | 7.2 | CHERT, SILTSTONE, ARGILLITE AND BRECCIA                                                                                                                                                                                                                                                                                                                                                                                                          | 5          | 27.30 | 28.10 | 0.80       | 5        | 304   |   |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | б          | 28.10 | 28.90 | 0.80       | 5        | 5     |   |
|   |     | 27.3-28.1m, Heterolithic breccia. The fragments are                                                                                                                                                                                                                                                                                                                                                                                              | 7          | 28.90 | 29.80 | 0.90       | 5        | 5     |   |
|   |     | up to 2cm and they are of chert, volcanic rocks,                                                                                                                                                                                                                                                                                                                                                                                                 | 8          | 29.80 | 31.30 | 1.50       | 5        | 5     |   |
|   |     | carbonate vein and quartz. The interval is fragment                                                                                                                                                                                                                                                                                                                                                                                              | 9          | 31.30 | 32.80 | 1.50       | 5        | 5     |   |
|   |     | supported with a graphitic matrix. The interval is                                                                                                                                                                                                                                                                                                                                                                                               | 10         | 32.80 | 34.30 | 1.50       | 5        | 254   |   |
|   |     | blocky and locally oxidized. From 28.0-28.1m, a 10cm                                                                                                                                                                                                                                                                                                                                                                                             | 11         | 34.30 | 35.80 | 1.50       | 5        | 172   |   |
|   |     | quartz vein with minor feldspar contain trace of fuchsite.                                                                                                                                                                                                                                                                                                                                                                                       | 12         | 35.80 | 37.20 | 1.40       | 5        | 107   |   |

HOLE No: POW9503

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9503

\_\_\_\_\_

#### FROM TO LITHOLOGICAL DESCRIPTION

is medium to dark grey. The beds are locally brecciated, but can be fit back together. Few argillite beds are up to 2cm, and are sulphide free. The siltstone beds are up to 1cm, and can form intervals up to 5cm. The chert beds are of various thickness up to 5cm. The ratio argillite-siltstonechert is 5:55:40. There is no carbonate vein. The pyrite content is 2%. The pyrite follows fractures and planes of brecciation. In places, stockwork of pyrite is present, where it is moderately brecciated. The section is competent or solid. The foliation is 53° tca at 29.0m.

29.8-32.8m, Chert breccia containing 15% siltstone fragments. The fragments can not be put back together. The interval contains 10% fine grained, ground up material which forms a matrix. The fragments are up to 5cm in size. Pyrite is the only sulphide and is in minor amounts along fractures and between fragments. Chlorite alteration is present between fragments and often related to the fine matrix.

32.8-33.0m Graphitic argillite bed. The upper and lower contacts are 40° and 45° tca, respectively. The interval contains 2% pyrite associated to fractures and veinlets. The argillite contains 1% carbonate filled veinlets with minor pyrite. The veinlets follow fracturing during brecciation. Few carbonate veins up to 1cm are at the contact with the underlying stratigraphic unit. SAMPLE No. FROM

TO WIDTH Au (ppb) As (ppm)

ASSAYS

Page 3

------

DIAMOND DRILL LOG

|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                |                | ASSAYS       |          |       |  |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|--------------|----------|-------|--|
| ROM | TO   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLE No. | FROM           | TO             | WIDTH Au     | (ppb) As | (ppm) |  |
|     |      | 33.0-37.2m, Conglomerate. The interval is both<br>fragment and matrix supported. It is medium green in<br>colour. The fragments are up to 2cm and are of chert,<br>siltstone, quartz pebbles, and carbonate fragments.<br>The interval is weakly to moderately chloritized. Some<br>of the fragments are volcanic in composition. Minor<br>specks of pyrite are found throughout the interval.<br>Oxidation of sulphides created patches of rust at 33.3<br>and 36.8m. The conglomerate is coarser in the upper<br>60cm. From 36.3-36.3m, the section comprises 10%, 2mm<br>fragments in an argillaceous matrix, at 20° tca.              |            |                |                |              |          |       |  |
| 8   | 51.7 | ULTRAMAFIC FLOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13<br>14   | 41.50<br>43.00 | 43.00<br>44.50 | 1.50<br>1.50 | 5        | 5     |  |
|     |      | 37.8-46.2m Ultramafic flows showing spinifex textures.<br>Where the spinifex textures are not present, the flows<br>are fine to medium grained and show a polysutured<br>textures. The rock is light to medium green. The<br>flows are weakly sericitized and epidotized. Carbonate<br>is present in the polysutured "cracks" and form up to<br>5%. From 41.5-44.5m, the carbonate content reaches<br>20%. The carbonate is pyrite free. It contains an<br>oxidized mineral which could be hematite, though the<br>oxidation is rusty colour suggesting pyrite. The<br>foliation and alignment of some carbonate veins are at<br>20° tca. |            |                |                |              | _        |       |  |
|     |      | 37.8-38.8m Spinifex textures with blades up to 2cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                |                |              |          |       |  |

DIAMOND DRILL LOG

| DLE No | 5.: PO | W9503                                                                                                                                                                                                                                                                                                                                                                           |            |                |                |          |            | F    | Page |
|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|----------|------------|------|------|
|        |        |                                                                                                                                                                                                                                                                                                                                                                                 |            |                |                | ASSAYS   |            |      |      |
| ROM    | TO     | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                        | SAMPLE NO. | FROM           | TO             | WIDTH Au | (ppb) As ( | ppm) |      |
|        |        | Several 5cm intervals also have spinifex, namely at<br>39.6m, 40.0m, 40.2m, and 40.7m.                                                                                                                                                                                                                                                                                          |            |                |                |          |            |      |      |
|        |        | 46.2-51.7 The rock is still ultramafic, but has a fragmental/fragmented texture of a monomictic conglomerate. The interval contains up to 10% carbonate veins which are along a weak foliation or folded. No mineralization was noticed. The rock is weakly chloritized with few intervals with minor sericite and epidote alteration giving the rock a yellowish green colour. |            |                |                |          |            |      |      |
| .7     | 56.7   | FAULT ZONE                                                                                                                                                                                                                                                                                                                                                                      | 15         | 51.70          | 55.20          | 3.50     | 5          | 7    |      |
|        |        | The fault zone is characterized by blocky ground and fault gouges.                                                                                                                                                                                                                                                                                                              | 16         | 55.20          | 56.70          | 1.50     | 5          | 5    |      |
|        |        | 51.7-55.2m, The widest fault gouge. Out of 3.5m, only<br>50cm of mud and 1cm fragments were recovered. The mud<br>is dark grey and possibly graphitic.                                                                                                                                                                                                                          |            |                |                |          |            |      |      |
|        |        | 55.2-56.7m, This interval is made of blocks up to 7cm<br>and three 5-10cm fault gouges. The rock is talcose and<br>contains remains of carbonate veins. No sulphide is<br>noticed. One of the fragments has spinifex texture.                                                                                                                                                   |            |                |                |          |            |      |      |
| .7     | 62.0   | ULTRAMAFIC ROCK                                                                                                                                                                                                                                                                                                                                                                 | 17<br>18   | 56.70<br>58.40 | 58.40<br>60.60 | 1.70     | 5          | 56   |      |
|        |        |                                                                                                                                                                                                                                                                                                                                                                                 | 18         | 20.40          | 00.00          | 2.20     | þ          | 5    |      |

DIAMOND DRILL LOG

PROPERTY: POWELL

HOLE No.: POW9503 Page 6 ASSAYS LITHOLOGICAL DESCRIPTION SAMPLE No. FROM WIDTH Au (ppb) As (ppm) FROM TO TO The upper 20cm has spinifex and is fairly hard. The 19 60.60 62.00 1.40 5 5 rest of the interval is talcose with 15-20% carbonate veins. It is very close to a talc chlorite schist. The veins are up to 3mm and are barren of sulphide. Some intervals show foliation from flattened fragments at 40° tca at 58.0m. The carbonate veins in the talcose rock cut the core axis at 65° tca. 57.6-57.8m, a carbonate vein system contains a 1.5cm grey quartz vein. Fuchsite occurs in the halos of alteration for 3mm. Few specks of pyrite are present. 56.7-59.7m, 1m of lost core. In sample 17 (56.7-58.4m) 40cm of lost core. In sample 18 (58.4-60.6m) 60cm of lost core. 62 D 64.7 GRAPHITIC ARGILLITE AND GREYWACKE 20 62.00 63.30 1.30 5 5 21 63.30 64.70 1.40 5 5 The upper 40cm is similar to the previous talcose interval with its carbonate veins , but with 20% graphite. The following 40cm is made of graphitic argillite and siltstone beds. The beds are up to 2cm, and do not contain talc. The remainder of the interval is 40% graphitic argillite and siltstone beds, interbedded with greywacke beds up to 20cm thick. The greywacke is medium grained with grains up to 2mm. The greywacke also contains fragments of argillite and sandstone up to 5mm. All fragments are flattened. No top could be determined. The bedding is 55° at 62.9m

HOLE No: POW9503

DIAMOND DRILL LOG

|     |      |                                                                                                                                                                                                                                                                                                               |            |       |         | ASSAYS   |          |       |   |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------|----------|----------|-------|---|
| ROM | TO   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                      | SAMPLE NO. | FROM  | TO      | WIDTH Au | (ppb) As | (ppm) |   |
|     |      | and 60° at 64.3m. The sediments contain up to 1%<br>carbonate filled fractures up to 1mm wide. Minor<br>pyrite is present along the bedding. The last 40cm<br>contains 1% pyrite associated with carbonate filled<br>fractures and along pyrite rich intervals. The pyrite<br>is disseminated along the beds. |            |       |         |          |          |       | · |
| 7   | 91.9 | ULTRAMAFIC SEQUENCE                                                                                                                                                                                                                                                                                           | 22         | 68.40 | 69.90   | 1.50     | 8        | 7     |   |
|     |      |                                                                                                                                                                                                                                                                                                               | 23         | 69.90 | . 71.40 | 1.50     | 5        | 5     |   |
|     |      | The interval is made of ultramafic fragments with up to                                                                                                                                                                                                                                                       | 24         | 71.40 | 72.70   | 1.30     | 5        | 5     |   |
|     |      | 20% carbonate veins. The veins are up to 3mm thick and                                                                                                                                                                                                                                                        | 25         | 72.70 | 75.40   | 2.70     | 5        | 5     |   |
|     |      | are composed of Fe-carbonate and calcite. Talc and<br>chlorite alteration are present with talcose and/or<br>chlorite intervals. Minor 5-10cm fault gouges are<br>present.                                                                                                                                    | 26         | 75.40 | 77.30   | 1.90     | 6        | 5     |   |

with 15-20% carbonate veins. The interval is weakly to moderately chloritic and talcose. An apparent foliation enhanced by the carbonate veins varies from 60-65° tca.

PROPERTY: POWELL

68.4-72.7m The interval is a talc chlorite schist with 30% carbonate veins. The veins are up to 2mm thick. From 69.0-70.7m, 72.4-72.7m, and few 10cm sections, the intervals are brownish in colour, harder and biotitic. Trace fuchsite is associated in the biotitic interval from 72.4-72.7m, where it is at the interface between carbonate veins and host rock. The foliation is 49°

HOLE No: POW9503

\_\_\_\_\_

DIAMOND DRILL LOG

#### PROPERTY: POWELL HOLE No.: POW9503

TO

FROM

LITHOLOGICAL DESCRIPTION

tca at 68.9m and 44° tca at 72.4m. At 70.4m, the foliation is 0° tca over 30cm. The rock contains trace pyrite associated with the carbonate veins.

72.7-75.4m, The interval is chloritic and weakly talcose. Some spinifex textures are present in the last 20cm. The interval contains 10% carbonate. The interval is broken up over 10cm at 74.3m and a fault gouge is present from 74.7-74.9m.

75.4-83.6m, The interval is moderately talcose. It is medium dark greyish green due to the talc alteration. Up to 20% of the interval is lighter green, where minor chlorite alteration and trace fuchsite are present at the interface between host rock and carbonate veins (The upper 1.5m). The interval contains up to 25-20% carbonate veins. The veins are up to 5mm thick and contain few specks of pyrite. Few 5mm talc veins are also present. The foliations are 61° tca at 78.0m and 80.7m. Fault gouges are from 79.5-79.9m, 78.6m (5cm), 76.9-77.3m (with blocky intervals from 76.6-76.9m). From 76.0-76.2m, the interval is 70% carbonate veins with trace fuchsite at the interface between carbonate veins and host rock.

83.6-84.5m, The interval is chlorite rich with minor talc alteration. The interval is more competent and 15% carbonate veins are at random distribution and folded. No mineralization. SAMPLE No. FROM

ASSAYS TO WIDTH Au (ppb) As (ppm)

HOLE No: POW9503

Page 8

DIAMOND DRILL LOG

|      | RTY: PC<br>No.: PC |                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                |                |              |          |       | Page | 9 |
|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|--------------|----------|-------|------|---|
|      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                |                | ASSAYS       |          |       |      |   |
| FROM | TO                 | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLE NO. | FROM           | TO             | WIDTH Au     | (ppb) As | (ppm) |      |   |
|      |                    | 84.5-86.2m, The interval is talcose as described from 75.4-83.6m.                                                                                                                                                                                                                                                                                                                                                         |            |                |                |              |          |       |      |   |
|      |                    | 86.2-88.0m, The interval is a massive flow. It is<br>medium dark blueish grey and fine grained. It contains<br>up to 5% carbonate veinlets and few veins up to 5mm.<br>The interval is weakly talcose and magnetic. The<br>interval contains minor "varioles" which are up to 7mm.<br>They are concentrated in the upper half of the<br>interval. The "varioles" do not have cores and appear<br>to be radiating outward. |            |                |                |              |          |       | ·    |   |
|      |                    | 88.0-91.9m, The interval is fragmental in nature. It<br>contains up to 15% carbonate veins. The upper 2m is<br>chloritic and changes to talcose at the bottom of the<br>interval. The carbonate veins contain Fe-carbonate and<br>calcite and a later event contains pink calcite.<br>Specks of pyrite are associated with carbonate veining.                                                                             |            |                |                |              |          |       |      |   |
| 91.9 | 108.1              | PERIDOTITE (SILL??) AND SEDIMENTARY INTERVALS                                                                                                                                                                                                                                                                                                                                                                             | 27<br>28   | 91.90<br>98.30 | 92.60<br>99.60 | 0.70<br>1.30 | 5        | 5     |      |   |
|      |                    | The interval is a fine to medium grained peridotite and                                                                                                                                                                                                                                                                                                                                                                   | 29         | 99.60          | 100.30         | 0.70         | 5        | 5     |      |   |
|      |                    | sedimentary sections. The peridotite is magnetic, dark                                                                                                                                                                                                                                                                                                                                                                    | 30         | 100.30         | 100.70         | 0.40         | 5        | 5     |      |   |
|      |                    | greenish grey and gets greener where chlorite<br>alteration is moderate. The peridotite is massive with<br>3-5% carbonate filled fractures and trace talc.<br>Interflow sediments, with individual beds less than<br>30cm thick form 15% of the volume. Up to 25% carbonate<br>veins follow an apparent foliation. The veins are up                                                                                       | 31         | 100.70         | 102.20         | 1.50         | 5        | 5     |      |   |

,

DIAMOND DRILL LOG

\_\_\_\_\_

PROPERTY: POWELL HOLE No.: POW9503

FROM

TO LITHOLOGICAL DESCRIPTION

SAMPLE NO.

FROM

то

ASSAYS WIDTH Au (ppb) As (ppm)

to 3mm and follow an apparent foliation. Trace pyrite is present within hairline fractures throughout the entire interval.

91.9-92.6m, The interval contains flattened fragments up to 5cm. The interval is fragment supported and contains 5% carbonate veins along fractures and within the matrix (It could be a breccia). There is minor pyrite disseminated in the matrix.

92.6-108.1m, The interval contains several sequence of flows (see below) overlain by flow breccias and interflow sediments. The flow breccias are up to 2m thick and are above the massive flow. Between the flow breccia and the next flow, an interval of fragmental rock is present (interflow sediments) and up to 40cm thick. The interflow sediments are made up of fragments up to 3cm in a carbonate-rich matrix. Minor sulphides are present in the carbonate matrix. The ratio of the flow-flow breccia-sediments are 15:65:20.

94.7-95.0m, 95.6-96.0m, 98.1-98.3m, 99.3-99.5m, 103.6-104.0m, 104.6-105.2m, Massive flows and the rock is fine to medium grained. The rocks are dark green.

98.3-99.3m, The interval is a breccia where the fragments are up to 5cm and subrounded. There is less than 5% matrix and it is fragment-supported. The interval contains 1% of pyrite between fragments. The pyrite is fine grained.

HOLE No: POW9503

Page 10

\_ \_ \_ \_ \_ \_ \_ \_ \_

DIAMOND DRILL LOG

PROPERTY: POWELL

|         | W9503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |        | * - · = = =        |         |          | Page |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|--------------------|---------|----------|------|
| M TO    | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE NO. | FROM   | то     | ASSAYS<br>WIDTH Au | (ppb) A | us (ppm) |      |
|         | 100.0-100.4m The intervals is mostly the sediments and<br>contains 30% carbonate veins. The veins are up to 5mm<br>and are light blue. At both ends of the blue vein<br>section, light green chlorite veins are present for<br>2cm. The chlorite veins contains 20% garnet and minor<br>disseminated sulphides.                                                                                                                                                                                                                               |            |        |        |                    |         |          |      |
|         | 100.4-101.9m, The interval contains few green chlorite veins with minor sulphides.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |        |        |                    |         |          |      |
|         | 98.9-99.4m, 50cm lost core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |        |                    |         |          |      |
|         | Foliations of interflow sediments, enhanced by<br>carbonate veining, are at 49° tca 101.6m, 62° tca at<br>100.4m, and 49° tca at 97.1m.                                                                                                                                                                                                                                                                                                                                                                                                       |            |        |        |                    |         |          |      |
| 1 110.6 | SYENITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32         | 107.00 | 108.20 | 1.20               | 5       | 5        |      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33         | 108.20 | 109.40 | 1.20               | 5       | 5        |      |
|         | The syenite is dark pinkish grey and has a glassy look.<br>The rock is fine to medium grained with 1mm crystals;<br>few up to 2mm. The last meter contains 3% amphibole<br>crystals up to 2mm. The syenite contains 2%<br>disseminated pyrite. The syenite is brecciated in<br>1-4cm pieces. Up to 2-3% chlorite filled hairline<br>fractures. Up to 1% pyrite and trace chalcopyrite are<br>associated with the chlorite. Few fractures have 1-2mm<br>halo of feldspar alteration. Associated with the<br>chlorite are few specks of garnet. | 34         | 109.40 | 110.60 | 1.20               | 5       | 5        |      |

HOLE No: POW9503

.

DIAMOND DRILL LOG

|     | No.: PO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                            |                            |                      |               |              | Page : |
|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|----------------------------|----------------------|---------------|--------------|--------|
| ROM | TO      | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE No.     | FROM                       | то                         | ASSAYS<br>WIDTH Au   | (ppb) As      | (ppm)        |        |
|     |         | 109.8-109.9m, Inclusion of the above peridotite flow.<br>It is brecciated and weakly magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                            |                            |                      |               |              |        |
|     |         | The upper contact is sharp at 47° tca and the lower<br>contact is uneven at 15° tca. At both contacts, a dark<br>mineral and silica are present. The dark mineral could<br>be fine grained biotite with minor disseminated pyrite.                                                                                                                                                                                                                                                                                                                                         |                |                            |                            |                      |               |              |        |
| 0.6 | 117.4   | GREYWACKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                            |                            |                      |               |              |        |
|     |         | The interval is medium dark grey. The rock is fine<br>grained. No individual beds can be distinguish<br>even though the interval is made of fragments up to<br>10cm. The fragments are touching each other and are<br>distinguished by a darker contact line. The<br>foliation/bedding is 55° tca at 114.4m and 57° tca at<br>117.0m. The rock contains 5% carbonate veins up to 2mm<br>thick. They follow the foliation. No mineralization<br>was noticed. Trace serpentine and green quartz<br>(quartz/fuchsite) and few chlorite-garnet veins up to<br>2cm are present. |                |                            |                            |                      |               |              |        |
| 7.4 | 127.4   | GREYWACKE (IP ANOMALY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35<br>36       | 117.40<br>118.90           | 118.90<br>120.40           | 1.50<br>1.50         | 15<br>22      | 41<br>107    |        |
|     |         | The greywacke is similar to the previous interval. The<br>rock is dark grey with greenish sections. The<br>greywacke forms beds up to 2cm which are uniformed                                                                                                                                                                                                                                                                                                                                                                                                              | 37<br>38<br>39 | 120.40<br>121.90<br>123.40 | 121.90<br>123.40<br>124.90 | 1.50<br>1.50<br>1.50 | 21<br>10<br>8 | 42<br>5<br>5 |        |

.

HOLE No: POW9503

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9503

Page 13

•

|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |        |        | ASSAYS   |          |               |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|----------|---------------|
| ROM | TÒ | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE No. | FROM   | TO     | WIDTH Au | (ppb) As | (ppm)         |
|     |    | grained. Up to 5% of the section is characterized by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40         | 124.90 | 126.40 | 1.50     | 11       | 5             |
|     |    | light chlorite veins up to 1cm thick. In places, it<br>forms clusters up to 3cm. The areas of chlorite<br>alteration have sharp contacts with the host rock.<br>From their distribution, the chlorite veins appear to<br>be chloritization of carbonate veins. Fractures within<br>the chlorite veins contain 1% pyrite. The sulphide<br>content of the interval is 2%, concentrated in 20cm<br>intervals. Between the interval of higher pyrite<br>content, trace pyrite is present. The rock is fairly<br>hard or harder than a knife.<br>118.7-118.9m, 120.5-120.7m, and 119.6-119.8m, 10-30% | 41         |        | 127.40 | 1.00     | 9        | 6             |
|     |    | fine pyrite is disseminated along the bedding and can<br>form beds of 2-3mm thick semi-massive sulphides. Minor<br>chlorite is present along the bedding. The foliation<br>is 55° tca at 120.0m. The rock is locally weakly<br>magnetic.                                                                                                                                                                                                                                                                                                                                                         |            |        |        |          |          |               |
|     |    | 121.9-122.0m, and 123.2-123.4m, The interval contains<br>3-5% disseminated pyrite along the bedding. No<br>alteration is associated with the pyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |        |        |          |          |               |
|     |    | 123.4-123.8m, 126.0m(5cm) Dark grey syenite dike.<br>Similar to interval from 108.1-110.6m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |        |          |          |               |
|     |    | 126.0-127.4m, The interval is a breccia. The<br>sediments are similar except that there is no chlorite<br>alteration in the upper 60cm. The lower 50cm is a<br>fault breccia with fragments up to 8cm in size. Trace                                                                                                                                                                                                                                                                                                                                                                             |            |        |        |          |          |               |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |        |        |          |          | HOLE No: POWS |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |        |        |          |          |               |

DIAMOND DRILL LOG

| OM  | то    | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE NO. | FROM             | то               | ASSAYS<br>WIDTH A | u (ppb) As | (ppm)  |  |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------|-------------------|------------|--------|--|
|     |       | pyrite occurs in the interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                  |                  |                   |            |        |  |
| . 4 | 135.1 | PERIDOTITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42         | 133.60           | 135.10           | 1.50              | 7          | 6      |  |
|     |       | The rock is a very brecciated peridotite. It is very<br>dark grey to black in colour. The hairline fractures<br>create fragments varying from 1mm up to 5mm. The<br>hairline fractures are filled with magnetite. Some of<br>those fractures show laminations of zoning. The<br>magnetite filled fractures are up to 3mm thick making<br>up to 25% of the rock. Few veins up to 5mm contain<br>serpentine which is emerald green and softer than the<br>knife. Other veins contains both serpentine and<br>magnetite. One 2mm carbonate-calcite veins has<br>serpentine at the contact with the host rock. The<br>thicker magnetite veins cut the core at 15-25I tca. |            |                  |                  |                   |            |        |  |
| . 1 | 137.1 | ULTRAMAFIC FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43         | 135.10           | 137.10           | 2.00              | 5          | 30     |  |
|     |       | The rock is dark green. The upper 50cm is remnant of<br>spinifex texture. The rest of the flow is injected by<br>10-15% carbonate veins which are partially chloritized.<br>The lower 30cm contains 3% pyrite associated with the<br>veining.                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                  |                  |                   |            |        |  |
| .1  | 174.4 | GREYWACKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                  |                  |                   |            |        |  |
| • 7 | 1/4.4 | GREIWACKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44<br>45   | 143.40<br>164.00 | 144.60<br>165.50 | 1.20<br>1.50      | 5<br>1242  | 5<br>5 |  |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                  |                  |                   |            |        |  |

HOLE No: POW9503

DIAMOND DRILL LOG

| HOLE N | 0.: P( | DW9503                                                                                                                                                                                                                                                                                          |            |      |    |                                   | Page 15     |
|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-----------------------------------|-------------|
| FROM   | то     | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                        | SAMPLE No. | FROM | то | ASSAYS<br>WIDTH Au (ppb) As (ppm) |             |
|        |        | weakly to moderately magnetic from 137.1-153.4m.                                                                                                                                                                                                                                                |            |      |    |                                   |             |
|        |        | 137.1-139.4m, The interval is dark grey. The<br>greywacke is brecciated and 1-15% carbonate was<br>injected. The fragments are up to 5cm and the rock is<br>fragment supported. No mineralization occurs in the<br>interval.                                                                    |            |      |    |                                   | ·           |
|        |        | 139.4-143.4m, Similar greywacke containing 3%<br>carbonate vein. From 142.2-143.4m, the interval is<br>very blocky with pieces up to 15cm. Some of the pieces<br>of the broken interval are brecciated and carbonate<br>injections form the matrix. One 1cm chlorite-garnet<br>vein is present. |            |      |    |                                   |             |
|        |        | 143.4-144.6m, The greywacke is greenish grey. It is<br>weakly chloritized. The interval is locally brecciated<br>and are filled with carbonate. The last 40cm contains<br>1% disseminated pyrite and minor pyrite along<br>fractures.                                                           |            |      |    |                                   |             |
|        |        | 144.6-145.1m, The greywacke is medium grey and<br>brecciated. The fragments are up to 10cm. Carbonate<br>acts as a matrix and makes 5% of the interval. No<br>sulphide.                                                                                                                         |            |      |    |                                   |             |
|        |        | 145.1-154.2m, The interval is medium greenish grey.<br>It is a brecciated greywacke with 15% carbonate<br>veining. The veins are locally folded and up to 1cm<br>thick. The veins are partially chloritized. No                                                                                 |            |      |    |                                   |             |
|        |        |                                                                                                                                                                                                                                                                                                 |            |      |    | HOLE 1                            | No: POW9503 |

· .

.

. . .

DIAMOND DRILL LOG

| LE NO | .: 20 | W9503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |        |        |         |           |         | Page 1 |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|---------|-----------|---------|--------|
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |        | ASSAYS  |           | <br>,   |        |
| OM    | то    | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLE No. | FROM   | то     | WIDTH A | u (ppb) A | s (ppm) |        |
|       |       | sulphides. At 150.3m, a 2cm, pink carbonate vein (2nd<br>generation) cut the rocks and the carbonate veining.<br>Trace pyrite is associated with it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |        |        |         |           |         |        |
|       |       | 154.2-174.4m, The interval is a medium grey, fine-<br>grained greywacke. The greywacke is bedded with beds<br>up to 5cm. No top could be determined from the core.<br>From 163.5-166.5m, the greywacke is coarser with<br>fragments up to 1cm (possibly a conglomeratic<br>interval). The interval contains two sections with 1%<br>disseminated pyrite (164.0-165.5m and 171.2-172.2m).<br>The section is fairly solid and minor brecciation is<br>noticed. The interval contains 2-3% carbonate veins.<br>The veins are up to 3mm, are folded, and are locally<br>partially chloritized. The bedding is at 65° tca at<br>152.3m, 58° tca at 160.3, 50° tca at 166.2m, and 53°<br>tca at 172.6m. |            |        |        |         |           |         |        |
|       |       | The lower contact is 51° tca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |        |         |           |         |        |
| .4 1  | .93.9 | SYENITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47         | 177.80 | 179.30 | 1.50    | 40        | 5       |        |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48         | 179.30 | 180.80 | 1.50    | 9         | 5       |        |
|       |       | The syenite is light orange. It is medium grained with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49         | 180.80 | 182.30 | 1.50    | 8         | 5       |        |
|       |       | an average crystal size of 1-1.5mm. The syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50         | 182.30 | 183.80 | 1.50    | 6         | 5       |        |
|       |       | contains 5% feldspar phenocryst up to 4mm in size. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51         | 183.80 | 185.30 | 1.50    | 15        | 5       |        |
|       |       | interval contains 1% fragments of the host rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 185.30 | 186.80 | 1.50    | 73        | 5       |        |
|       |       | (greywacke). The fragments are from 2mm up to 10cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53         | 186.80 | 188.30 | 1.50    | 18        | 5       |        |
|       |       | The fragments less than 1cm show assimilation but the larger ones (up to 20cm) show very little assimilation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54         | 192.30 | 193.80 | 1.50    | 5         | 5       |        |

HOLE No: POW9503

.

DIAMOND DRILL LOG

| PROPER<br>HOLE N |    | DWELL<br>DW9503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |      |    |                                   | Page 1 |
|------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|-----------------------------------|--------|
| FROM             | то | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE No. | FROM | то | ASSAYS<br>WIDTH Au (ppb) As (ppm) |        |
|                  |    | The syenite show minor chlorite alteration along<br>hairline fractures. Weak feldspar alteration occurs in<br>2-3cm sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |      |    |                                   |        |
|                  |    | <ul> <li>177.9-179.4m, 188.7-185.3m, These intervals of syenite contain up to 2-3% pyrite. The pyrite is associated with the mafic component of the rock which consists of chloritized mafic minerals. The pyrite is rarely related to the chlorite-rich hairline fractures. From 184.9-185.3m, the interval is light pink and finer grained. It could be part of a chilled margin or a felsic dike. The sections from 181.3-181.6m and 182.0-182.2m contain 1% finely disseminated pyrite.</li> <li>185.3-188.3m, Interval of greywacke similar to that described from 154.2-174.4m. The greywacke is brecciated and 1-2% carbonate-calcite veinlets occur between fragments. The interval contains up to 1%</li> </ul> |            |      |    |                                   |        |
|                  |    | pyrite along fractures and is associated with carbonate-calcite veinlets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |    |                                   |        |
|                  |    | END OF HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |      |    |                                   |        |
|                  |    | DOWN-HOLE SURVEY DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |      |    |                                   |        |
|                  |    | DEPTH INCLINATION BEARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |    |                                   |        |
|                  |    | 50.00 -48.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |      |    |                                   |        |
|                  |    | 100.00 ~48.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |      |    |                                   |        |

HOLE No: POW9503

.

DIAMOND DRILL LOG

| PROPERTY<br>HOLE No. | : POWELL<br>: POW9503 |        |                  |         |     |          |      |    |                    |              | Page 18 |
|----------------------|-----------------------|--------|------------------|---------|-----|----------|------|----|--------------------|--------------|---------|
| FROM                 |                       | LITHO  | LOGICAL DESCRIPT | ION     | SAN | IPLE No. | FROM | то | ASSAYS<br>WIDTH Au | (ppb) As (pp | π)      |
|                      |                       | DEPTH  | INCLINATION      | BEARING |     |          |      |    |                    |              |         |
|                      |                       | 150.00 | -47.00           |         |     |          |      |    |                    |              |         |
|                      |                       | 193.90 | -46.00           |         |     |          |      |    |                    |              | •       |

HOLE No: POW9503

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9504 2500.00 Collar Eastings: Collar Northings: -150.00 Collar Elevation: 330.00 Grid: POWELL Claim #: 1047781 Drilled by: Heath and Sherwood (1986) Inc. 

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 139.00 metres Test IP Anomaly Core: NO, Stored at Fred Kiernicki, Matachewan

Logged by: P. CHUBB

Date: November 23-25, 1995 Down-hole Survey: ACID Test Splay between Breaks

|      |      |                                                                                                                                                                   |            |       | ASSAY | 5        |       |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|----------|-------|
| FROM | TO   | LITHOLOGICAL DESCRIPTION                                                                                                                                          | SAMPLE NO. | FROM  | то    | WIDTH Au | (ppb) |
| 0    | 27.1 | OVERBURDEN                                                                                                                                                        |            |       |       |          |       |
| 27.1 | 50.6 | BASALT FLOW                                                                                                                                                       | 1          | 28.50 | 29.40 | 0.90     | 5     |
|      |      |                                                                                                                                                                   | 2          | 35.60 | 36.60 | 1.00     | 5     |
|      |      | The rock is greenish grey in colour, massive, very fine                                                                                                           | 3          | 37.90 | 38.90 | 1.00     | 5     |
|      |      | to fine grained and competent. Deformation is<br>pervasive with folding, brittle failure and a distinct<br>foliation at 64° tca present. The Basalt flows display | 4          | 48.00 | 49.70 | 1.70     | 5     |
|      |      | signs of having been brecciated (indistinct). The                                                                                                                 |            |       |       |          |       |

flows are well fractured (stress related) and infilled by quartz, calcite and dolomite (80% carbonate) with minor hematite also present. The veins (5-10% rock volume) range from hairline up to 2cm in width and all appear to have been affected by later deformation. There are at least two stages of vein emplacement displaying crosscutting features. Most of the later emplaced veins are aligned parallel to the foliation.

disseminations of crystalline pyrite (<1% rock volume) hosted by the guartz-carbonate veins. Alteration is dominated by chlorite, calcite and quartz. Variable sized carbonate dots are present throughout this unit and make up approximately 3-4% of the rock volume.

Sulphide mineralization is developed as fine

HOLE No: POW9504

DIAMOND DRILL LOG

PROPERTY: POWELL

Page 2 HOLE No.: POW9504 ASSAYS то WIDTH Au (ppb) SAMPLE NO. FROM LITHOLOGICAL DESCRIPTION FROM то 29.1-29.3m consists of fault gouge with sharp contacts developed with the enclosing basalt. 35.8-36.9m bleached (silicified?) basalt zone displaying fewer quartz-carbonate veins. This zone is hard relative to the chlorite rich basalt and contains no sulphide mineralization. 37.9-39.0m increase in the abundance of quartzcarbonate veins and pyrite mineralization (1% volume). 39.7-43.9m hairline fractures dominated by feldspar mineralogy and/or dolomite (very pale pink). This zone reacts poorly to HCl acid. 48.0-48.3m appears to be a fragmental, monomictic with irregular shaped and variably sized (.5mm up to 1.5mm) fragments of plagioclase. This zone may represent a tuff or a crystalline flow in which the plagioclase crystals survived the deformation better than the mafic mineralogy. PILLOWED BASALT 5 51.60 52.70 1.10 7 50.6 53.6 The rock is medium grey, fine grained and competent. The basalt is pillowed (indistinct) and displays varioles (indistinct) and a breccia component. The varioles decrease in size and abundance away from the

HOLE No: POW9504

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9504

#### FROM то LITHOLOGICAL DESCRIPTION

centre of the pillows. The selvages are thin (1-2cm thick) and consist of fine grained chlorite. Fragments within the pillowed basalt are basaltic in composition and may represent trapped interpillowed flow top breccia. This lithology is well fractured, with fractures infilled by carbonate (calcite and dolomite) and quartz. The quartz veins are similar to those in the preceding basalt unit. This lithology is deformed with folding, brittle failure and a pervasive foliation present. The foliation is oriented at 47° tca. Pyrite is developed as blebs (<3mm) associated with very fine grained chlorite rich selvages. Alteration is dominated by chlorite and carbonate (calcite and dolomite). Carbonate dots are present and make up 3% of the rock volume.

53.6

65.7 GRAPHITIC ARGILLACEOUS CONGLOMERATE BRECCIA

> This lithology is black, very fine grained and hard. This unit like the preceding lithologies has a strong penetrative foliation oriented at 48° tca. The argillite horizon consists of an argillite component that hosts brecciated conglomerate and is intruded by numerous carbonate-quartz veins. Graphite and argillite are the principal components of the matrix. Alteration haloes about the carbonate quartz veins are present and range up to 2cm away from the vein/rock contact. Epidote is present within a few of the fractures. The alteration halo appears to have

SAMPLE NO. FROM TO WIDTH Au (ppb)

ASSAYS

52.70 53.70 1.00 5 6 53.70 54.70 1.00 7 5 8 54.70 55.60 0.90 5 9 55.60 56.70 1.10 5 10 56.70 57.10 0.40 6 11 57.10 58.30 1.20 7 58.30 60.50 12 2.20 5 13 60.50 62.00 1.50 5 62.00 63.40 14 1.40 5 63.40 65.60 2.20 5 15

Page 3

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9504

то

FROM

LITHOLOGICAL DESCRIPTION

bleached (silicified) the affected areas. Sulphides are developed along the cleavage planes, within fractures and as thin bands (<3mm thick). The sulphides consist of blebby to finely disseminated pyrite (up to 5% rock volume). The bottom contact is sharp, weakly mineralized and sericite rich.

53.6-55.5m graphitic argillite makes up 60% of rock volume enclosing fragments of basalt. Carbonate-quartz veins are prevalent but are thin (<1.5cm) and strongly deformed. Sulphide mineralization makes up less than 1% rock volume.

55.5-58.1m TRANSITION ZONE from the graphitic argillite dominated matrix to the fragment dominated matrix. Fragments consist of basalt, chert and a lapilli tuff?. There is a gradational contact with the overlying section. The fragments are less than 5cm in length. Sulphides make up less than 2% of the rock volume.

58.1-59.1m similar to transition zone except a marked increase in sulphide content (2-3% rock volume) and carbonate-quartz vein abundance (10% of the volume). Pyrite is developed as 1cm wide massive sulphides in veins.

59.1-65.7m fragment dominated conglomerate breccia with less than 1% pyrite mineralization. Large carbonate-quartz vein (<40cm in width) present at SAMPLE NO. FROM

ASSAYS TO WIDTH Au (ppb)

\_\_\_\_\_

HOLE No: POW9504

Page 4

\_\_\_\_\_

### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9504

.

Page 5

|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |       | ASSAY | 5        |        |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|----------|--------|
| FROM | TO   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE No. | FROM  | TO    | WIDTH Au | (ppb)  |
|      |      | 60.8m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·          |       |       |          |        |
| 65.7 | 83.1 | BASALT FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16         | 65.60 | 66.60 | 1.00     | 5      |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17         | 69.90 | 71.00 | 1.10     | 5      |
|      |      | This lithology is characterized by metre wide carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18         | 73.40 | 74.00 | 0.60     | 6<br>5 |
|      |      | alteration zones set within massive basalt flows. The<br>flows are fine grained and grey with carbonate dots.<br>The flows are similar in their texture, colour and<br>carbonate content to the previous basalt flows<br>described, and appear to have undergone minor in situ<br>brecciation. The bleached, carbonate rich alteration<br>zones appear massive and fine grained. The entire zone<br>is intruded by thin (<.5cm thick) carbonate (calcite<br>and dolomite) quartz veins. The quartz veins have been<br>dislocated and are oriented parallel and subparallel to<br>the foliation. Deformation is characterized by a<br>strong penetrative foliation. Sulphides are best<br>developed within the carbonate bleached alteration<br>zones where pyrite (1% rock volume) is blebby and<br>mainly associated with the quartz veins. | 19         | 75.50 | 75.90 | 0.40     |        |
|      |      | 65.7-67.8m bleached carbonate alteration zone.<br>Foliation is at 39° tca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |       |          |        |

69.1-71.6m bleached carbonate alteration zone. Foliation is at 43° tca. This section has a dark argillite fragment enclosed (calcite rich).

DIAMOND DRILL LOG

| PROPER<br>HOLE N |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |       |              |               | Page 6           | 5 |
|------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-------|--------------|---------------|------------------|---|
| FROM             | то   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>s | AMPLE No. | FROM  | ASSAY:<br>TO | WIDTH Au (ppb |                  | • |
|                  |      | 73.4-73.6m graphite rich zone with semi-massive (10-20% rock volume) pyrite mineralization. Fine grained and black with thin (2cm) sulphide bands parallel to the foliation (44° tca.).<br>75.5-75.9m minor shear zone, in situ brecciation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |           |       |              |               |                  |   |
|                  |      | quartz vein material and host rock material. Pyrite is<br>developed within fractures and as blebs (<10% rock<br>volume). Foliation at 58° tca, lots of chlorite and<br>calcite alteration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           |       |              |               |                  |   |
| 83.1             | 85.9 | AMYGDALOIDAL BASALT<br>Dark greenish grey, fine grained and massive basalt.<br>Amygdule-looking features may also be glass shards now<br>altered to chlorite and calcite. A few of the<br>amygdules appear zoned (calcite core) and make up less<br>than 5% of the rock volume. The amygdules are<br>stretched and are <3mm in length. Alteration is<br>characterized by chlorite and epidote (possibly<br>Calcite is restricted to the carbonate-quartz veins<br>with epidote forming as a zonation within some of<br>carbonate-quartz veins. Deformation is characterized<br>by a pervasive foliation and brittle failure (as<br>displayed by quartz veins). Stretched amygdules<br>suggest that movement is dextral with foliation<br>oriented at 45° tca. Sulphide mineralization is<br>limited (1% rock volume) and consists of blebby (<.5cm)<br>pyrite. |       | 20        | 83.60 | 85.10        | 1.50          | 5                |   |
|                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |       |              |               | HOLE No: POW9504 |   |

#### DIAMOND DRILL LOG

FROM TO LITHOLOGICAL DESCRIPTION SAMPLE No. 85.6-85.9 breccia zone, possibly a flow top breccia characterized by amygdule rich fragments set within a similar matrix. Sulphides are blebby and make up less than 1% of the rock volume.

#### 85.9 100.3 BASALT FLOW

PROPERTY: POWELL HOLE No.: POW9504

> The basalt flow is dark green, fine to medium grained, massive and competent. The basalt flow contains the carbonate dots that increase in size as the grain size of the unit increases. Chlorite lathes or discontinuous veins are also present. This unit is cut by a number of carbonate quartz veins usually less than 2cm wide and barren of sulphides. The carbonate-quartz veins are zoned and contain bands of chlorite as well as chloritic fragments. Thin (<4mm wide) veins of epidote and carbonate minerals are also present (2% rock volume). The unit displays a weak but pervasive foliation. Alteration is dominated by chlorite and epidote, with carbonate restricted to the carbonatequartz veins. Sulphides are represented by blebby pyrite that is developed dominantly within the basalt but also in proximity to the veins.

97.0-98.6 2-3cm thick carbonate-quartz veins (subparallel to core axis) with blebby pyrite mineralization. Foliation is at 50° tca.

| 21 | 85.70 | 86.00  | 0.30 | 26 |
|----|-------|--------|------|----|
| 22 | 86.00 | 87.20  | 1.20 | 6  |
| 23 | 97.00 | 98.60  | 1.60 | 5  |
| 24 | 99.40 | 100.30 | 0.90 | 5  |

ASSAYS

WIDTH Au (ppb)

то

FROM

Page 7

DIAMOND DRILL LOG

.

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |        | ASSAY  | S        |         |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|---------|--|
| ом то    | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE No. | FROM   | TO     | WIDTH Au | ı (ppb) |  |
|          | 99.4-100.3 Quartz veins with 3cm wide alteration halo of epidote and carbonate minerals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |        |          |         |  |
| .3 118.4 | PILLOWED BASALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25         | 103.20 | 104.70 | 1.50     | 11      |  |
|          | The pillowed basalt is medium green grey, very fine<br>grained and strongly altered. The contact with the<br>overlying basalt is sharp and defined by a breccia<br>(1-2m thick), and the underlying contact with the mafic<br>dike. This zone is characterized by pillows<br>(indistinct) and interpillowed breccias that have<br>undergone weak deformation. Foliation at 107m is<br>oriented at 46° tca. Breccia zones are generally thin<br>(<30cm thick) and may represent interpillowed breccia<br>zones. The angular breccia fragments are set within a<br>shard and chlorite rich matrix. The pillowed basalt is<br>crosscut by numerous thin carbonate-quartz veins and<br>epidote-feldspar?-carbonate-quartz veins oriented at<br>various angles subparallel to the core axis. There are<br>at least two stages of vein development as defined by<br>their crosscutting relationships. Alteration is<br>characterized by pervasive chloritization along the<br>selvages and saussuritization and bleaching<br>(carbonatization) within the pillows. Sulphide<br>development is usually restricted to the selvages and<br>some of the carbonate-quartz veins. Pyrite is the only<br>sulphide identified and forms as fine crystalline<br>disseminations within the pillows (<1% rock volume) and |            |        |        |          |         |  |

### DIAMOND DRILL LOG

•

.

|       | RTY: PC       |                                                                                                                                                                                                                                                                                                                                                                                                                     |            |      |      |                |        |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|----------------|--------|
|       | No.: PC       |                                                                                                                                                                                                                                                                                                                                                                                                                     |            |      |      |                | Page 9 |
|       |               |                                                                                                                                                                                                                                                                                                                                                                                                                     |            |      | ASSA |                |        |
| FROM  | TO            | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE No. | FROM | TO   | WIDTH Au (ppb) |        |
|       |               | carbonate-quartz veins (trace abundance). Coarse<br>pyrite blebs and fine grained disseminations are<br>developed within the selvages (1-2% rock volume) of the<br>pillows. (Core box#23 dropped by drillers).                                                                                                                                                                                                      |            |      |      |                | ,      |
|       |               | 100.3-102.6 flow top/front pillow breccia unit,<br>characterized by brecciated pillow material. Fragments<br>are less than 10cm in length.                                                                                                                                                                                                                                                                          |            |      |      |                |        |
| 118.4 | 120.7         | MAFIC DIKE                                                                                                                                                                                                                                                                                                                                                                                                          |            |      |      |                |        |
|       |               | The mafic dike is dark grey, fine grained and massive.<br>This unit zone appears to be relatively undeformed and<br>altered and is quite hard relative to the overlying and<br>underlying rock types. The dike is crosscut by thin<br>(<1cm thick) unmineralized carbonate-quartz veins (5%<br>rock volume). The veins display brittle failure but<br>are otherwise undeformed. The mafic dike is non-<br>magnetic. |            |      |      |                |        |
| 120.7 | <u>1</u> 39.0 | PILLOWED BASALT                                                                                                                                                                                                                                                                                                                                                                                                     |            |      |      |                |        |
|       |               | Identical to section 100.3-118.4m. Foliation at 134.5m is oriented at 56° tca.                                                                                                                                                                                                                                                                                                                                      |            |      |      |                |        |
|       |               | END OF HOLE                                                                                                                                                                                                                                                                                                                                                                                                         |            |      |      |                |        |

### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9504 Page 10 ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM то WIDTH Au (ppb) DOWN-HOLE SURVEY DATA DEPTH INCLINATION BEARING 50.00 -49.00 100.00 -48.00 139.00 -47.00

.

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9505 -400.00 Collar Eastings: 50.00 Collar Northings: Collar Elevation: 340.00 Grid: POWELL Claim #: 1048716 Drilled by: Heath and Sherwood (1986) Inc.

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 267.00 metres Test Three IP Anomalies Core: NQ, Stored at Fred Kiernicki

Logged by: M. KOZIOL

Date: NOVEMBER 25-30, 1995 Down-hole Survey: ACID TEST Test Sediments-Volcanic Contact

#### FROM то LITHOLOGICAL DESCRIPTION

#### 0 1.5 OVERBURDEN

LAPILLI TUFF (CALC-ALKALIC SUITE) 1.5 44.7

> The core is a light grey-green color, foliated and has a fragmental texture. Fine lapilli sized fragments of dacite (andesite ?) make up 30% of the rock and broken feldspar crystals 10%. Some of the lapilli are chloritized. These are set in a chloritized dacitic to andesitic tuff. A few narrow quartz-carbonate veinlets cut this unit and from 26.2m to 43.0m make up 3% of the volume.

> 34.9-36.0 the section is cut by several quartzcarbonate veins. These are fracture fill veins oriented at various angles to core axis. The veins make up 30% of this section.

Foliation at 8.0m is 40°. The contact with the underlying sediments is an unconformity, where the 45° to core axis lapilli tuff overlies 70° to core axis limy sediments. The contact area is clean, not weathered, and defined by a 5cm zone of detrital calcareous siltstone.

FROM SAMPLE No.

\_\_\_\_\_

ASSAYS то

WIDTH Au (ppb)

DIAMOND DRILL LOG

|      | •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                  | ASSAY            | 3        |        |  |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------|----------|--------|--|
| MC   | то   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLE NO. | FROM             | то               | WIDTH Au | (ppb)  |  |
| 7 5: | 2.0  | IP ANOMALY (GRAPHITIC ARGILLITE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          | 47.90            | 49.40            | 1.50     | 8      |  |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2          | 49.40            | 50.90            | 1.50     | 5      |  |
|      |      | This section consists of finely bedded and laminated<br>light grey calcareous and siliceous muds and graphitic<br>argillite. Individual beds range from <1mm to 10cm.<br>There are several discontinuos quartz veinlets and pods<br>associated with sections of the argillite and pyrite<br>forms <1%. The pyrite occurs as cubes, up to 0.6cm,<br>preferentially associated with the argillite sections.<br>Graphite forms from 3% to 5% and occurs mainly along<br>slip surfaces in the argillite. Bedding is locally<br>disrupted (soft sediment deformation) but relatively<br>consistent at 65° to 70° to core axis. | 3          | 50.90            | 52.00            | 1.10     | 9      |  |
| 0 14 | 40.4 | SEDIMENTARY SEQUENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 4        | 88.30            | 89.60            | 1.30     | 5      |  |
|      |      | This section includes sandstone, greywacke, calcareous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5          | 104.40<br>105.90 | 105.90<br>107.40 | 1.50     | 5<br>5 |  |
|      |      | and silicious silstone and occassional narrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7          | 103.90           | 107.40           | 1.50     | 6      |  |
|      |      | argillite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8          | 108.90           | 110.40           | 1.50     | 6      |  |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9          | 110.40           | 111.90           | 1.50     | 5      |  |
|      |      | 52.0-56.7 this interval is dominated by a yellowish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10         | 119.00           | 120.00           | 1.00     | 6      |  |
|      |      | cream coloured, fine grained sandstone. The sanstone is<br>interbedded with silstone beds and displays graded<br>bedding, with tops towards the top of the hole (north).<br>individual sanstone beds range from several centimetres<br>to 0.6m in width. Bedding is at 70° to core axis.                                                                                                                                                                                                                                                                                                                                  | 11         | 123.30           | 124.30           | 1.00     | 5      |  |

56.7-58.6 This section is made up of 40% sericitized

HOLE No: POW9505

.

.

### DIAMOND DRILL LOG

| PROPER<br>HOLE No |    |                                                                                                                                                                                                                                                                                                                                                      |            |      |       |                | Page 3           |
|-------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------|----------------|------------------|
|                   |    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                | N          |      | ASSAY |                |                  |
| FROM              | TO | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                             | SAMPLE NO. | FROM | TO    | WIDTH Au (ppb) |                  |
|                   |    | clasts (pebbles ?) set in a grey, fine grained, muddy                                                                                                                                                                                                                                                                                                |            |      |       |                |                  |
|                   |    | matrix (similar to that seen on line 23E (near the creek). At 57.4m, a 5cm carbonate-quartz vein has                                                                                                                                                                                                                                                 |            |      |       |                |                  |
|                   |    | sericite and fuchsite associated with it.                                                                                                                                                                                                                                                                                                            |            |      |       |                |                  |
|                   |    | 58.8-60.4 this section consists of light grey, finely<br>bedded siltstone and mudstone. Bedding is at 70° to<br>core axis.                                                                                                                                                                                                                           |            |      |       |                |                  |
|                   |    | 60.4-61.3 greywacke. Fine grained, grey color, massive,<br>and contains fine interstitial calcite. Contains minor<br>amounts of fine disseminated crystalline pyrite.                                                                                                                                                                                |            |      |       |                |                  |
|                   |    | 61.3-62.8 finely bedded siltstone and mudstone.                                                                                                                                                                                                                                                                                                      |            |      |       |                |                  |
| ·                 |    | 62.8-65.5 greywacke, similar to above. Contains minor pyrite.                                                                                                                                                                                                                                                                                        |            |      |       |                |                  |
|                   | r. | 65.5-67.3 this section represents a complete section<br>from a coarse sandstone and conglomerate at the base<br>(near the bottom) to finely laminated mudstones at the<br>top. The conglomerate is only 20cm thick and contains<br>10% quartzo-feldspathic pebbles. Gritty sandstone forms<br>the bulk of this interval and the upper most 20cm is a |            |      |       |                |                  |
|                   |    | lighter grey, soft sediment deformed mudstone.                                                                                                                                                                                                                                                                                                       |            |      |       |                |                  |
|                   |    | 67.3-69.2 sequence of interbedded gritty sandstone with<br>mudstone and graphitic argillite. The argillite is<br>interbedded with mudstone and occurs from 68.5m to                                                                                                                                                                                  |            |      |       |                |                  |
|                   |    |                                                                                                                                                                                                                                                                                                                                                      |            |      |       |                | HOLE No: POW9505 |

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9505

.

|      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      | ASSAY | s        |                  |
|------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------|----------|------------------|
| FROM | TO | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE No. | FROM | TO    | WIDTH AN | ı (dqq)          |
|      |    | 68.9. This section contains 1% pyrite and is injected with discontinuous quartz veinlets and pods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |      |       |          |                  |
|      |    | 69.2-72.8 greywacke, this unit is lighter grey than the<br>one described above. It contains no obvious calcite and<br>conatins 20% chloritized rock fragments which are<br>approximately 1mm in size.                                                                                                                                                                                                                                                                                                                                                                                                           |            |      |       |          |                  |
|      |    | 72.8-78.4 sequence of interbedded sanstone, siltstone and greywacke. Individual beds are up to 0.8m thick.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |      |       |          |                  |
|      |    | 78.4-84.6 greywacke; fine grained, grey color, contains<br>interstitial calcite. Similar to that from 60.4m to<br>61.3m. From 81.0m to 81.5m, a section of finely<br>laminated mudstone and chert.                                                                                                                                                                                                                                                                                                                                                                                                              |            |      |       |          |                  |
|      |    | 84.6-98.3 this section consists of bedded light to<br>yellowish coloured mudstones. Individual beds range<br>from a few millimetres to 20cms. The interval also<br>includes a few narrow (<20cms) greywacke beds. Bedding<br>is at 70° to core axis. Some of the beds are brecciated<br>insitu and others are fractured (dewatering ?) and the<br>fractures are filled with yellowish sericite. The<br>section from 88.3m to 89.0 is brecciated and the<br>breccia is filled with quartz carbonate veins. The<br>veins make up 15% of the interval. Traces of cubic<br>pyrite are also present in this section. |            |      |       |          |                  |
|      |    | 98.3-99.9 greywacke, fine grained, gray color massive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |      |       |          |                  |
|      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |       |          | HOLE No: POW9505 |
|      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |       |          |                  |
|      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |       |          |                  |

Page 4

DIAMOND DRILL LOG

PROPERTY: POWELL Page 5 HOLE No.: POW9505 \_\_\_\_\_ ASSAYS WIDTH Au (ppb) LITHOLOGICAL DESCRIPTION SAMPLE NO. FROM то FROM TO 99.9-112.2 section of bedded mudstones similar to that from 84.6m to 98.3m. From 104.4m to 112.2 the beds are brecciated and sericitized. Quartz-carbonate veins, locally form 25% over 10 to 20cm widths. Minor cubic pyrite is found near some of the sericitized fractures. 112.2-114.7 fine grained greywacke. 114.7-120.0 bedded siltstones. These are light grey color with brownish mudd seams between the beds. From 119.0m to 120.0m the section is brecciated and injected with quartz-carbonate veins. Veins make up 10% of this section. 120.0-123.3 greywacke, fine grained. 123.3-124.2 a section of siltstone beds that are fractured, sericitized and contain 30% quartz-carbonate veining. 124.2-130.6 bedded siltstone and mudstone with minor greywacke interbeds. Minor pyrite is associated with some of the greywacke beds. 130.6-132.5 coarse grained greywacke with 15% chloritized mafic volcanic ? fragments. The fragments are up to 3mm. 132.5-136.9 bedded siltstone, mudstone and graphitic HOLE No: POW9505

DIAMOND DRILL LOG

| PROPERT<br>HOLE No |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |      |      |                      | Page | 6 |
|--------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|----------------------|------|---|
| FROM               | то    | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE No. | FROM | ASSA | YS<br>WIDTH Au (ppb) |      |   |
|                    |       | argillite (IP anomaly ?). There are three graphitic<br>argillite units in this section, from 134.1m to 134.4m,<br>135.6m to 135.8m and from 136.4m to137.9m. Each of<br>these contains approximately 5% coarse graphite smeared<br>onto bedding surfaces. Bedding in this section is at<br>75° to core axis.                                                                                                                                     |            |      |      |                      |      |   |
|                    |       | 136.9-140.3 greywacke. The upper section is a mudstone<br>and the lower section is a fine grained grey coloured,<br>massive greywacke.                                                                                                                                                                                                                                                                                                           |            |      |      |                      |      |   |
| 140.3 2            | 267.0 | BASALT                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |      |      |                      |      |   |
|                    |       | The upper 20cm is brecciated and quartz-carbonate<br>veinlets form 15% of the rock. This section also<br>contains 2% coarse pyrite The basalt is fine grained,<br>grey green color, and amygduloidal. Carbonate amygdules<br>are up to 0.7cm in size and form 3% of the volume.<br>Trace amounts of pyrite are disseminated throughout the<br>basalt to 177.0m. The pyrite occurs as fine crystals<br>and clusters, up to 2mm, of fine crystals. |            |      |      |                      |      |   |
|                    |       | 150.0 197.5 the basalt is fine grained, darker green<br>than the amygduloidal flows, and is weakly chloritized.<br>Amygdules occur infrequently.                                                                                                                                                                                                                                                                                                 |            |      |      |                      |      |   |
|                    |       | 177.0-179.0 the basalt is cut by wispy quartz-epidote<br>veinlets. These are randomly oriented and form 5% of<br>the volume.                                                                                                                                                                                                                                                                                                                     |            |      |      |                      |      |   |

DIAMOND DRILL LOG

•

PROPERTY: POWELL

.

| HOLE N | lo.: PC | DW9505                                                                                                                                                                                         |            |      |      |                | Page 7 |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|----------------|--------|
|        |         |                                                                                                                                                                                                |            |      | ASSA |                |        |
| FROM   | TO      | LITHOLOGICAL DESCRIPTION                                                                                                                                                                       | SAMPLE NO. | FROM | TO   | WIDTH Au (ppb) |        |
|        |         | 178.0-197.5 the basalt is strongly magnetic and<br>sections contain from 3% to 5% fine disseminated<br>anhedral to subhedral magnetite crystals.                                               |            |      |      |                |        |
|        |         | 197.5-233.2 this section consists of several<br>amygduloidal flows, each topped with flow top breccia<br>zones, up to 1m wide. Amygdules are up to 0.7cm and<br>locally form 5% of the volume. |            |      |      |                |        |
|        |         | At 210m, a weak foliation is developed at 70° to core<br>axis. Foliation is due to flattening and alignment of<br>calcite and quartz filled amygdules.                                         |            |      |      |                |        |
|        |         | 233.2-243.0 massive flows. These rarely contain amygdules.                                                                                                                                     |            |      |      |                |        |
|        |         | 243.0-267.0 amygduloidal flows.                                                                                                                                                                |            |      |      |                |        |
|        |         | 267.0 END OF HOLE                                                                                                                                                                              |            |      |      |                |        |
|        |         | DOWN-HOLE SURVEY DATA                                                                                                                                                                          |            |      |      |                |        |
|        |         | DEPTH INCLINATION BEARING                                                                                                                                                                      |            |      |      |                |        |
|        |         | 50.00 -48.00                                                                                                                                                                                   |            |      |      |                |        |
|        |         | 62.50 -47.00                                                                                                                                                                                   |            |      |      |                |        |
|        |         | 75.00 -46.00                                                                                                                                                                                   |            |      |      |                |        |

### DIAMOND DRILL LOG

PROPERTY: POWELL

Page 8 HOLE No.: POW9505 \_\_\_\_\_ \_\_\_\_ ASSAYS SAMPLE No. FROM то WIDTH Au (ppb) FROM то LITHOLOGICAL DESCRIPTION INCLINATION BEARING DEPTH 87.50 -45.00 100.00 -44.00 183.00 -40.00 239.00 -38.00 267.00 -37.00

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9506 Collar Eastings: -400.00 Collar Northings: -745.00 Collar Elevation: 350.00 Grid: POWELL Core Size: NO Drilled by: Heath and Sherwood (1986) Inc.

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 148.10 metres Test IP Anomaly in Syenite Stored at Fred Kiernicki, Matachewan

Logged by: A. FABER Date: DECEMBER 1-3, 1995 Down-hole Survey: ACID Claim #: 1048701

|      | -   |                          |            |      |              |                     |
|------|-----|--------------------------|------------|------|--------------|---------------------|
| FROM | то  | LITHOLOGICAL DESCRIPTION | SAMPLE No. | FROM | ASSAY:<br>TO | S<br>WIDTH Au (ppb) |
| 0.0  | 4.2 | OVERBURDEN               |            |      |              |                     |

#### 4.2 23.5 SYENITE

The syenite is reddish orange. The rock contains 15-20% amphibole crystals up to 4mm. The mafic crystals are mostly euhedral with some being interstitial to the feldspars. The amphibole crystals are moderately to strongly chloritized and saussuritization is locally present. The feldspar crystals are up to 4mm and euhedral. There is 70% K-feldspar and 10% plagioclase in the syenite. The feldspar component of the rock has a moderate to strong potassic alteration. From the alteration, the crystal boundaries are often invisible, producing a reddish uniform mass. About 5% of the interval has only a weak feldspar alteration. The interval contains minor clay alteration affecting a specific mineral. The clay is light beige and is sericitic. The rock contains few inclusions, up to 2cm, of recrystallized country rock. They are mafic, fine grained and chloritized.

The rock is moderately fractured with pieces up to 5cm. The fractures are 1mm thick and filled with black

1 8.10 9.60 1.50 9

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9506

\_\_\_\_\_ ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM то WIDTH Au (ppb) chlorite. The chlorite fills the hairline fractures and makes 1-2% of the volume. Few 10cm intervals have more pervasive chlorite alteration. The rock contains minor quartz-calcite veins up to 2mm thick. Few veins are pure smoky quartz. The rock contains 1% specular hematite associated with the mafic component of the rocks. 8.1-9.6m The interval is brecciated and black chlorite occurs along fractures. The chlorite makes 2-3% of the interval. The interval also contains up to 1% milky and smoky quartz filled fractures. They are up to 3mm thick. They often follow the core axis. In this interval, a lot of the chlorite filled fractures are at 68-78° tca. Due to fracturing, the rock is locally blocky over 10cm sections. 16.4-17.1m The intervals is blocky. 11.7m, a fragment covers half the core and appears to be a highly chloritized syenite, where all feldspar was altered. The mafic minerals are similar to the host syenite. It is dark grey. One speck of pyrite. 23.5 148.1 SYENITE 1.50 27.20 28.70 8 2 3 39.50 41.00 1.50 5 The rock has a very weak potassic alteration. The 4 73.10 74.60 1.50 5

HOLE No: POW9506

Page 2

### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9506

Page 3

|      |    |                                                         | ASSAYS     |        |        |          |       |  |  |
|------|----|---------------------------------------------------------|------------|--------|--------|----------|-------|--|--|
| FROM | то | LITHOLOGICAL DESCRIPTION                                | SAMPLE No. | FROM   | TO     | WIDTH Au | (ppb) |  |  |
|      |    | mineralogy is distinctive. The syenite contains 15%     | 5          | 74.60  | 76.10  | 1.50     | 5     |  |  |
|      |    | amphibole (up to 4mm), 2% specular hematite pockets     | 6          | 81.10  | 82.60  | 1.50     | 5     |  |  |
|      |    | (2mm), 1-2% quartz, 10% plagioclase crystals (3mm), and | 7          | 82.60  | 84.10  | 1.50     | 5     |  |  |
|      |    | 70% K-feldspar crystals (3mm). The rock is medium       | 8          | 84.10  | 85.60  | 1.50     | 5     |  |  |
|      |    | pink. The rock is locally altered with potassic or      | 9          | 85.60  | 87.10  | 1.50     | 5     |  |  |
|      |    | weak chlorite alteration. The rock is brecciated;       | 10         | 87.10  | 88.60  | 1.50     | 8     |  |  |
|      |    | breccia forms pieces up to 4cm. Black chlorite fills    | 11         | 102.20 | 103.70 | 1.50     | 5     |  |  |
|      |    | the hairline fractures and the chlorite forms up to 2%  | 12         | 103.70 | 105.20 | 1.50     | 5     |  |  |
|      |    | of the interval. The black chlorite filled fractures    | 13         | 107.50 | 109.00 | 1.50     | 6     |  |  |
|      |    | can be up to 1mm wide. The rock contains trace          | 14         | 109.00 | 110.50 | 1.50     | 5     |  |  |
|      |    | saussuritization and trace clay altered crystals. In    | 15         | 110.50 | 112.00 | 1.50     | 5     |  |  |
|      |    | places, minor quartz fills voids which are randomly     | 16         | 124.70 | 126.20 | 1.50     | 5     |  |  |
|      |    | distributed. Hairline fractures and veins follow a      | 17         | 126.20 | 127.70 | 1.50     | 5     |  |  |
|      |    | general orientation of 57° tca at 40.0m, and 45° tca at | 18         | 130.20 | 131.70 | 1.50     | 5     |  |  |
|      |    | 43.1m.                                                  | 19         | 132.90 | 134.40 | 1.50     | 5     |  |  |
|      |    |                                                         | 20         | 134.40 | 135.90 | 1.50     | 5     |  |  |
|      |    | The syenite contains intervals up to 1m in size with    | 21         | 135.90 | 137.40 | 1.50     | 5     |  |  |
|      |    | moderate potassic alteration. When altered, the         | 22         | 147.10 | 148.10 | 1.00     | 11    |  |  |

feldspar crystals still have distinct boundaries. 23.5-28.7m The rock is similar to the previous interval with less potassic alteration. It is a transition zone with fresh syenite that follows. The interval is brecciated with 2-3% chlorite filled hairline fractures. The increase in fracture content created a weak pervasive chlorite alteration (5% of the interval). No sulphide. It contains 1% pockets of specular hematite. From 27.2-28.7m, the interval contains up to 1% quartz-calcite veinlets, 1mm in width. Black chlorite is at the contact with the host

DIAMOND DRILL LOG

PROPERTY: POWELL

HOLE No.: POW9506 Page 4 ASSAYS FROM LITHOLOGICAL DESCRIPTION TO SAMPLE No. FROM то WIDTH Au (ppb) rock and the veinlets. The breccia produced pieces up to 4cm and the rock is competent. 34.7-35.0m, 36.9-37.5m, 48.0-48.3m, 54.3-54.5m, and 56.5-57.5m (fractures along the core axis), Blocky intervals with fragments varying from 0.5cm up to 10cm in size. 39.5-41.0m, The interval contains four 1cm quartzhematite veins. No sulphides associated with them. 50.6-148.1m, The interval is weakly magnetic. The mafic portion of the rock contains the magnetite. At one place, an amphibole crystal was chloritized which in turn was surrounded by a 0.5mm rim of magnetite. 56.7-57.2m, The interval is a fine grained matrix with 10-15% feldspar phenocrysts of 1mm in size. It could be a chilled margin. A possible contact is present at 57.0m, at 56° tca. 57.5-57.6m, A fault breccia with fragments up to 1cm in a ground up syenite. No sulphide. 57.2-80.7m The syenite is similar to the previous interval, but contains up to 5%,  $7 \mathrm{mm}$  plagioclase phenocrysts as big as 7mm. It is medium pinkish orange and shows a weak potassic alteration. The interval is brecciated with fragments up to 4cm. Black chlorite fills the hairline fractures between the fragments. HOLE No: POW9506

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9506

то

FROM

#### LITHOLOGICAL DESCRIPTION

The interval contains 10-15% fault breccia. The fault breccias are up to 10cm thick and contain fragments (<1cm) within a ground up syenite matrix. No sulphide is present. The fracturing and fault breccias have more or less the same angle to core axis; 40° tca at 64.5m, 38° at 68.9m, 25° tca at 72.3m, 45° tca at 74.5m, and 45° tca at 78.5m. Fracturing along the core axis is frequent. From 66.2-66.4m, the interval is blocky and broken along chlorite filled fractures. From about 76.5m to 80.0m, minor specular hematite is present as part of the mafic component of the rock.

73.1-76.1m, The interval is brecciated and contains an increase in potassic alteration. At 74.6m, moderately high potassic alteration is present over 10cm, along a 1mm wide quartz vein. At 72.7m, trace pyrite is smeared along black chlorite filled microfractures. Few 1cm fault gouges are present. Locally, minor quartz is associated with the black chlorite.

80.7-88.0m, The symite is similar to the previous interval (textures and breccia), except for the alteration. Up to 60% of the interval has a moderate potassic alteration. It is medium orange. The remaining 40% is dark grey with some orange patches in it. The grey intervals are up to 10cm thick and have diffuse boundaries. The grey intervals appear to be related to bleaching of the K-feldspar. The grey domains are either along few fault breccia, on random fragments or as halos of alteration. Minor quartz is

### SAMPLE NO. FROM

ASSAYS TO WIDTH Au (ppb)

HOLE No: POW9506

Page 5

DIAMOND DRILL LOG

PROPERTY: POWELL

HOLE No.: POW9506 Page 6 \_\_\_\_\_ ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE NO. FROM то WIDTH Au (ppb) present in fractures. The interval is blocky from 82.6-82.8m and in other 5cm intervals. Few specks of pyrite. 86.8m, 40cm lost core. 88.0-88.6m FAULT GOUGE in the syenite with 30cm lost core. 88.6-92.7m Interval similar to 80.7-88.0m, except that the rock is fairly competent. The rock is still brecciated. The grey alteration covers 40% of the interval and is due to bleaching only. At 92.6m, a fracture at 37° tca shows a 10cm halo of alteration. 92.7-98.8m The interval is a medium orange syenite. A weak to moderate potassic alteration is present. The syenite contains 15% chloritized amphibole. The rock is uniform grained with 1.5mm crystals and few 3-4mm phenocrysts. As previously described, the rock is brecciated and has black chlorite filled fractures. The interval is blocky over 20cm at 97.4m and 98.2m. The interval contains minor 5cm bleached grey syenite. 98.8-101.3m, The interval is similar to 88.6-92.7m. 101.3-122.7m, The interval is similar to 92.7-98.8m. The syenite is brecciated with fragments up to 5cm in size. The fractures are filled with black chlorite and minor quartz. From 102.4-103.0m, 107.5-108.0m, and HOLE No: POW9506

\_\_\_\_

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9506

TO

FROM

Page 7

#### LITHOLOGICAL DESCRIPTION

108.7-109.9m, the syenite hosts a 2-5mm quartz hematite veins along the core axis. A fracture-system is present with fractures at 40° tca at 103.9m, 41° tca at 109.4m, and 35° tca at 114.0m. From 103.6-105.5m, minor pyrite is associated with few fractures. The pyrite is associated with fractures showing a 1cm grey halo of alteration and trace chlorite or with few black chlorite filled fractures. There is no sulphide associated with the quartz. From 111.0-111.8m, the interval contains few specks of pyrite along a fracture, minor quartz in a 2cm fault breccia, and minor quartz-calcite veinlets with chlorite.

122.7-128.7m, The interval is similar to 80.7-88.0m where 15% of the rock is medium grey. The grey intervals are bleached syenite. The bleached intervals don't have distinct petrography and all crystals boundaries are diffuse. The grey intervals are from 123.1-123.3m, 123.6-124.0m, and 124.2-124.7m. Few partially bleached intervals (greyish) are locm thick. The surrounding syenite has a weak feldspar alteration and is similar to previously described syenite. No sulphides.

128.7-137.4m, The interval is a moderately to strongly hematitic syenite. The rock is medium dark orange in colour. The syenite contains 10-15% chloritized mafic component in a highly hematitic rock. The felsic component of the rock was altered with hematite and almost all crystal boundaries are diffuse. At 132.3m, SAMPLE No.

FROM

ASSAYS TO WIDTH Au (ppb)

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9506

то

FROM

#### LITHOLOGICAL DESCRIPTION

a 1mm specular hematite vein is present at 20° tca. The syenite was brecciated and minor black chlorite is present. On the other hand, 1% quartz is present along the fractures of the breccia, especially from 130.2-131.7m. A strong hematite alteration follows the core axis at 50° tca at 130.0m. Several quartz-calcite veinlets are late and cut at 65° tca. From 134.4-137.4m, the syenite contains 1% pyrite in the rock as 1mm cubes and clusters. The pyrite is also locally associated to late quartz-calcite veinlets. The rock is blocky from 134.3-134.6m.

137.4-145.3m, The interval is similar to previously described syenites with weak feldspar alteration. The rock is medium light pinkish orange. Few 20-30cm intervals contain a moderate feldspar alteration. The interval is solid except from 137.4-141.0m, where it is blocky and broken up along black chlorite fill fractures.

145.3-148.1m, The interval is medium orange with moderate potassic alteration and weak to moderate hematite alteration. The syenite is brecciated and the fractures are filled with minor chlorite and minor quartz. In the last meter, the syenite contains trace pyrite associated with the mafic component of the rock.

END OF HOLE

SAMPLE No. FROM

ASSAYS TO WIDTH Au (ppb)

HOLE NO: POW9506

Page 8

DIAMOND DRILL LOG

PROPERTY: POWELL

HOLE No.: POW9506 Page 9 ----------------ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM TO WIDTH Au (ppb) DOWN-HOLE SURVEY DATA DEPTH INCLINATION BEARING 50.00 -48.00 100.00 -48.00 148.10 -47.00

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507 Collar Eastings: 1600.00 Collar Northings: 275.00 Collar Elevation: 330.00 Grid: POWELL Claim #: 980238 Drilled by: Heath and Sherwood (1989) Inc.

Driffed by: Heath and Sherwood (1969) inc.

Collar Inclination: -50.00 Grid Bearing: 180.00 Final Depth: 178.60 metres Test IP anomaly in Sediments Core: NQ, Stored at Fred Kiernicki

Logged by: A. FABER Date: DECEMBER 3-5, 1995 Down-hole Survey: ACID Test North Arm of the Larder Lake Break

|      |     |                                                                                                                                                                      |             |              | ASSAYS       | 3            |        |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|--------------|--------|
| FROM | то  | LITHOLOGICAL DESCRIPTION                                                                                                                                             | SAMPLE No.  | FROM         | TO           | WIDTH Au     | (ppb)  |
| 0.0  | 2.5 | OVERBURDEN                                                                                                                                                           | l           | 1.50         | 2.20         | 0.70         | 5      |
| 2.5  | 7.9 | SEDIMENTS                                                                                                                                                            | 2           | 2.20<br>3.30 | 3.30<br>5.00 | 1.10<br>1.70 | 5      |
|      |     | 1.5-2.2m, Fine grained greywacke. The sediments form                                                                                                                 | د<br>4<br>5 | 5.00<br>5.80 | 5.80<br>6.90 | 0.80         | 5<br>5 |
|      |     | beds up to 5cm. They do not show distinct boundaries<br>and the are weakly sericitized and carbonatized. At<br>2.1m, few microfractures are filled with sericite and | 6           | 6.90         | 7.90         | 1.00         | 5      |

trace fuchsite at 55° tca.

2.2-3.3m, The interval is made of a coarser greywacke. It is medium grey with minor sericite alteration.

3.3-5.0m, The interval is a medium grained greywacke with quartz pebbles up to 2-3mm. The greywacke is highly sericitized and locally moderately carbonatized. Few 5cm sections are fine grained. No sulphide is present.

5.0-5.4m, Similar to 2.2-3.3m.

5.4-5.8m, The interval is made of 90% quartz fragments and quartz veins. The quartz fragments are fractured and sealed and contain fine grained dark chlorite. The quartz is light grey. Few specks of pyrite are

DIAMOND DRILL LOG

PROPERTY: POWELL

Page 2 HOLE No.: POW9507 \_\_\_\_\_ \_\_\_\_\_ ASSAYS FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM то WIDTH Au (ppb) present. The remaining 10% are pieces of host rock. 5.8-6.9m, The interval is a medium grained greywacke with fragments up to 1.5mm in size. Apparent beds are up to 20cm thick and are uniform grained. The rock is weakly sericitic. Few fractures show oxidation. Minor disseminated pyrite is present. 6.9-7.3m, The interval is similar to 5.4-5.8m. 7.3-7.9m, The interval is made of 90% white quartz veins and 10% host rock. The veins are from 1cm to 20cm wide. Up to 1% pyrite is associated with host rock but no sulphide was noticed in the quartz veins. The host rock material is weakly carbonatized and sericitized. The bedding is 62° tca at 5.0m and 45° tca at 6.1m. 7.9 FELDSPAR PORPHYRY DYKE 7.90 9.10 1.20 5 10.4 7 5 g 9.10 10.40 1.30 The interval is massive and light grey. Few fractures with 1cm wide oxidized halo of alteration are present. The rock contains minor specks of yellowish clay mineral and minor disseminated pyrite. The rock is weakly sericitic and could be weakly carbonatized. The crystals are up to 2mm in size and are stretched. The crystals have diffuse boundaries. HOLE No: POW9507

-----

### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

Page 3

|      |      |                                                                                                                                                                                                                                                                                                                                   | ASSAYS     |       |       |          |       |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|----------|-------|
| FROM | то   | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                          | SAMPLE No. | FROM  | TO    | WIDTH Au | (ppb) |
|      |      |                                                                                                                                                                                                                                                                                                                                   |            |       |       |          |       |
| 10.4 | 15.8 | SEDIMENTS                                                                                                                                                                                                                                                                                                                         | 9          | 10.40 | 12.20 | 1.80     | 174   |
| 10.4 | 10.0 | OBDIMENTS                                                                                                                                                                                                                                                                                                                         | 10         | 12.20 | 13.90 | 1.70     | 59    |
|      |      | The interval is made up of fine grained sediments with<br>beds up to 1cm thick. The sediments are highly<br>sericitized and carbonatized. Oxidization of the<br>carbonate-rich beds gives banding of yellow and orange<br>colours. No distinct graded bedding was noticed. No<br>sulphide and very little quartz veining present. | 11         | 13.90 | 15.60 | 1.70     | 6     |
|      |      | 11.3-14.1m, The interval is moderately oxidized by underground water.                                                                                                                                                                                                                                                             |            |       |       |          |       |
|      |      | 12.0-12.2m, The interval contains black chlorite along<br>few 1cm veins. Minor pyrite is present in proximity to<br>quartz veins.                                                                                                                                                                                                 |            |       |       |          |       |
|      |      | 15.6-15.8m, The interval is weakly chloritized. It<br>could be volcanic derived sediments. Minor bedding can<br>be seen. Up to 1% pyrite is present as 2-3mm clusters<br>along the bedding and associated with minor quartz<br>veins.                                                                                             |            |       |       |          |       |
|      |      | The bedding is 55° tca at 10.8m, and 55° tca at 14.0m.                                                                                                                                                                                                                                                                            |            |       |       |          |       |
| 15.8 | 17.7 | DIABASE DIKE                                                                                                                                                                                                                                                                                                                      |            |       |       |          |       |
|      |      |                                                                                                                                                                                                                                                                                                                                   |            |       |       |          |       |

The rock is medium dark grey and is fine grained.

#### DIAMOND DRILL LOG

PROPERTY: POWELL

Page 4 HOLE No.: POW9507 \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ ASSAYS WIDTH Au (ppb) то SAMPLE No. FROM FROM то LITHOLOGICAL DESCRIPTION Locally, mafic crystals up to 2mm are present. The rock is massive. Few fractures are filled with quartz. No sulphide. The upper and lower contacts are 30° tca and 65° tca, respectively. There is a weak foliation at 52° tca in the last 70cm. 12 17.70 19.10 1.40 5 SEDIMENTS 17 7 22.1 19 10 20.80 1.70 5 13 The interval consists of fine grained sediments similar 14 20.80 22.10 1.30 5 to previous section. The beds are distinct and are up to 3cm thick. Several graded bedded intervals support the theory of the hole going down stratigraphy. The rock is weakly sericitized and carbonatized. 18.9-19.1m, The interval contains 60% black chert or argillaceous beds up to 4mm. Up to 5% quartz veins are also present. From 17.7 to 19.1m, the black argillaceous beds are up to 3mm and form 1% of the interval. The bedding is 51° tca at 20.0m. 19.2-19.4m, The interval is moderately sericitic with minor chlorite. 19.4-19.9m, Few coarse pyrite crystals are randomly distributed. 19.6-19.8m,, The interval is moderately sericitic and contains four quartz veins up to 7mm wide. There is no sulphide associated with the veins. HOLE No: POW9507

DIAMOND DRILL LOG

PROPERTY: POWELL Page 5 HOLE No.: POW9507 \_\_\_\_\_ ASSAYS WIDTH Au (ppb) SAMPLE NO. FROM то LITHOLOGICAL DESCRIPTION FROM ΤÓ 20.7m, A 3cm interval contains 20% crystalline pyrite associated with quartz and sericite. 20.7-20.8m, Small diabase dike. 20.8-22.1m, Minor coarse pyrite crystals randomly distributed. MAFIC FLOWS 26.7 22.1 22.1-24.4m, The interval is a medium grey, massive mafic flow with 25% pyroxene phenocrysts. The phenocrysts are chloritized or saussuritized and they are in a fine grained matrix. The phenocrysts are up to 3mm and are flattened along a weak foliation of 60° tca. 24.4-24.5m, Interflow sediments. The interval contains 50% quartz from a quartz vein. The rest of the rock is fine to medium grained sediments which are sericitized and weakly oxidized. The interval is bedded at 60° tca. 24.5-26.7m, Fine grained, massive mafic flow. The flow contains up to 3% feldspar phenocryst which could be flattened amygdules. They are up to 2mm and are whitish. Minor calcite-quartz filled fractures cut the foliation at 30° tca. HOLE No: POW9507

DIAMOND DRILL LOG

PROPERTY: POWELL

Page 6 HOLE No.: POW9507 \_\_\_\_\_ ASSAYS то WIDTH Au (ppb) FROM то LITHOLOGICAL DESCRIPTION SAMPLE No. FROM 26.70 27.70 1.00 10 SEDIMENTS AND GRAPHITE (IP ANOMALY) 15 26.7 27.7 The upper 20cm is a mix of finely laminated graphitic argillite and siltstone. Locally, the siltstone contains minor graphite. The lower 80cm contains 30% quartz veins with calcite (white and pink), minor tourmaline, sericite and chlorite. The host rock appears to be a sericitic siltstone. The interval is highly brecciated. Trace pyrite and chalcopyrite are associated with the calcite (similar to trench on L28E). The lower 10cm of the interval contains up to 20% pyrite. . 27.7 PILLOWED BASALT 30.4 The interval shows pillows up to 30cm in size. The rock is weakly brecciated. The pillows are light green with dark chlorite-rich selvages. The selvages shows a lot of brecciation. Trace pyrite is present in the selvages. The basalt is weakly carbonatized. 30.4 32.1 MAFIC TO INTERMEDIATE FLOW The interval is a fine grained mafic to intermediate flow. It is medium dark grey and massive. It contains 1% feldspar phenocrysts up to 1mm in size. The rock

### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

.

|      |      |                                                         |           |     |       | ASSAY | S       |         |                 |
|------|------|---------------------------------------------------------|-----------|-----|-------|-------|---------|---------|-----------------|
| FROM | то   | LITHOLOGICAL DESCRIPTION                                | SAMPLE NO | ο.  | FROM  | то    | WIDTH A | u (ppb) |                 |
|      |      | also shows minor yellowish specks which could be        |           |     |       |       |         |         |                 |
|      |      | carbonate alteration. Trace crystalline pyrite is       |           |     |       |       |         |         |                 |
|      |      | disseminated as cubes up to 1mm.                        |           |     |       |       |         |         |                 |
| 2.1  | 47.4 | MAFIC VOLCANIC ROCKS (PILLOWS)                          | 16        | 5 3 | 32.30 | 33.80 | 1.50    | 5       |                 |
|      |      |                                                         | 1.        | 7 4 | 41.40 | 43.20 | 1.80    | 5       |                 |
|      |      | The rock of this interval appears to be pillowed        | 18        | 3 4 | 43.20 | 43.80 | 0.60    | 5       |                 |
|      |      | basalt. The rock is fine grained and light green.       | 19        | ə 4 | 43.80 | 45.70 | 1.90    | 5       |                 |
|      |      | Every 30 to 40cm, a chlorite-rich interval of up to 3cm |           |     |       |       |         |         |                 |
|      |      | is present. Often there is brecciation associated with  |           |     |       |       |         |         |                 |
|      |      | those chlorite-rich interval (see below). On the other  |           |     |       |       |         |         |                 |
|      |      | hand, the light green rock shows variation in colour    |           |     |       |       |         |         |                 |
|      |      | within the pillows. This means that the rock could be   |           |     |       |       |         |         |                 |
|      |      | a fragmental rock or a fragmented pillowed basalt with  |           |     |       |       |         |         |                 |
| •    |      | different degree of alteration. The rock contains what  |           |     |       |       |         |         |                 |
|      |      | appears to be filled vesicles. From 42.8-43.8m, the     |           |     |       |       |         |         |                 |
|      |      | interval may be a mafic tuff.                           |           |     |       |       |         |         |                 |
|      |      | 33.1-33.3m, 34.6m, 38.6-38.8m, 39.5m, 39.8m, 40.4m,     |           |     |       |       |         |         |                 |
|      |      | 41.4-41.6m, 43.1-43.2m, and 43.7-43.8m, are intervals   |           |     |       |       |         |         |                 |
|      |      | of brecciation. These intervals contain fragments of    |           |     |       |       |         |         |                 |
|      |      | the country rock and are located in chlorite-rich       |           |     |       |       |         |         |                 |
|      |      | sections. Up to 1% pyrite is associated with these      |           |     |       |       |         |         |                 |
|      |      | intervals. From 33.1-33.3m, the interval contains 1-2%  |           |     |       |       |         |         |                 |
|      |      | pyrite.                                                 |           |     |       |       |         |         |                 |
|      |      | 36.3-36.8m, and 39.1-39.3m, The intervals are light     |           |     |       |       |         |         |                 |
|      |      | yellowish green porphyry rock. They are similar to      |           |     |       |       |         |         |                 |
|      |      | a sericitized andesite porphyry found to the north      |           |     |       |       |         |         |                 |
|      |      |                                                         |           |     |       |       |         |         | HOLE No: POW950 |
|      |      |                                                         |           |     |       |       |         |         | HOTE NO: FOMARC |

Page 7

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

\_\_\_\_\_ ASSAYS FROM SAMPLE No. FROM то WIDTH Au (ppb) TÓ LITHOLOGICAL DESCRIPTION (calc-alkalic andesite). The rock contains up to 30% chlorite-rich euhedral phenocrysts of 3mm in size. No mineralization is associated with them. At 36.7m, the interval contains two 1cm quartz veins, altering the chlorite-rich phenocrysts to fuchsite. 36.8-37.8m, interval similar to 22.1-24.4m 43.8-45.7m, Intermediate lapilli tuff. The interval is moderately foliated with sericite on the plane of schistosity. The rocks on either side of this interval are not as foliated. The rock is made of fragments up to 3mm which are flattened. The rock is light yellowish green. It does not contain sulphide. The foliation is 54° tca. 46.6-47.4m, The interval is an intermediate flow. It is fine grained and light medium grey. It contains 1-2% fine mafic phenocrysts up to 0.5mm. It is weakly sericitic. It is massive and contains few specks of pyrite. At 46.7m, a 5cm quartz vein contains pieces of host rock and fragments of an earlier quartz vein. MAFIC VOLCANIC ROCKS 47.4 88.7 20 54.50 55.50 1.00 5 55.50 56.50 21 1.00 5 47.4-50.0m, The interval is a basaltic flow. It is 22 63.90 64.60 0.70 5 fine grained and dark green. The rock contains 2-3% 23 78.70 79.70 1.00 5 quartz-carbonate filled amygdules up to 1cm in size. 24 87.20 88.70 1.50 5

The quartz is both milky and translucent and locally

HOLE No: POW9507

Page 8

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

Page 9

-----

### FROM TO LITHOLOGICAL DESCRIPTION

\_\_\_\_\_

creates concentric patterns. The basalt appears unaffected by carbonate or sericite alteration. Minor fractures are filled with quartz and are up to 2mm thick. Minor pyrite is associated with the quartz in the amygdules and fractures. A weak foliation is at 50° tca at 49.0m.

50.0-54.5m The interval is a basalt flow(s) similar to the previous interval. The interval contains only trace amounts of quartz filled amygdules up to 1mm. Weak foliation of  $58^{\circ}$  tca at 53.6m.

54.5-56.5m, The interval is a basalt flow(s) similar to 50.0-54.5m. The interval contains 3-5% quartztourmaline veins. Up to 50% of the volume of the veins is tourmaline and dark green chlorite. Trace amounts of pyrite are associated with the veins and within few pyrite filled hairline fractures. The quartz veins are 1cm wide with an average of 2-3mm.

56.5-56.9m, Similar to 50.0-54.5m.

56.9-58.0m, The interval is a dark green basalt flow with 1% quartz filled amygdules up to 1mm. The rock also contains 2% disseminated yellowish specks which are related to either carbonate alteration or leucoxene.

58.0-66.4m, Fine grained, dark green basalt flows. The rock contains few intervals with

SAMPLE No. FROM

ASSAYS TO WIDTH Au (ppb)

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

то

FROM

#### LITHOLOGICAL DESCRIPTION

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

leucoxene/carbonate specks. Minor amounts of amygdules up to 1mm also characterized the interval. From 61.1-62.8m, the interval contains 1-2% quartz carbonate filled amygdules. The interval contains minor quartzcarbonate filled fractures. From 63.9-64.6m, the interval contains 1% pyrite associated to amygdules and quartz-carbonate fractures. A weak foliation is measure as 57° tca at 59.6m and 56° tca at 62.8m.

66.4-71.1m, Mafic tuffs. The interval is fine grained and dark green. The rocks shows bedding and is weakly to moderately foliated. The beds are fine grained with 5-10% of the interval containing 3% quartz-carbonate grains up to 1mm. No noticeable alteration is present. Trace amounts of pyrite is present associated with few 1mm wide quartz veins. The bedding is 61° tca at 68.9m.

71.1-73.3m, Basalt flow. It contains minor specks leucoxene. The rock is fine grained and dark green. It is weakly magnetic.

73.3-74.7m, Diabase. The interval is fine grained and dark green. The diabase has 20cm chilled margins. The rock is cut by 5% quartz-calcite-green chlorite veins up to 1cm in thickness. No sulphide was noticed. The upper contact is uneven and the lower one is at 62° tca, parallel to the foliation. The dike is non-magnetic.

SAMPLE No.

FROM

ASSAYS TO WIDTH Au (ppb)

HOLE No: POW9507

Page 10

DIAMOND DRILL LOG

-----

PROPERTY: POWELL HOLE No.: POW9507

FROM

Page 11

#### TO LITHOLOGICAL DESCRIPTION

74.7-76.6m, Basalt Flow. Similar to 71.1-73.3m. It is weakly magnetic.

76.6-78.7m, Mafic tuffs. The interval is fine grained and dark green. The section includes two intervals of bedded siltstone, 10cm and 20cm thick. The tuffs contain 1% quartz-calcite veins up to 7mm. Minor tourmaline is associated with one vein. Trace amounts of pyrite associated with minor quartz-carbonate grains up to 1mm. The mafic tuffs are locally weakly magnetic. A weak foliation is at 56° tca at 77.0m.

78.4-83.8m, Basalt flow(s). The interval is medium dark green and fine grained. It contains 3-5% quartzcarbonate filled amygdules up to 1cm in size. The rock is non magnetic. It contains 1% quartz-carbonate veins up to 3cm thick and they contain minor chlorite. The upper 40cm contains 1% pyrite along hairline fractures and associated with three dark coloured quartz-carbonate-rich sections. A weak foliation of 60° tca is measured at 79.8m.

83.8-86.4m, Mafic tuff. The rock is fine grained and medium dark green. It contains up to 5% quartzcarbonate grains up to 2mm in size. Minor quartzcarbonate filled fractures are present. The rock is weakly to moderately foliated at 60° tca at 84.1m.

86.4-87.2m, Diabase. Similar to 73.3-74.7m

SAMPLE No. FROM

TO WIDTH Au (ppb)

ASSAYS

### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

\_\_\_\_\_ \_\_\_\_\_ ASSAYS WIDTH Au (ppb) LITHOLOGICAL DESCRIPTION SAMPLE No. FROM то FROM то 87.2-88.7m, Mafic volcanic rock. The interval is fine grained and dark green. It contains 5% quartzcarbonate filled fractures. The interval contains up to 1% pyrite through out. Minor epidote is present in some of the veins. 95.90 97.40 1.50 5 MAGNETIC BASALT 25 88.7 115.0 5 26 113.40 115.00 1.60 The interval is a weakly to moderately magnetic basalt. The basalt is fine grained, massive, and medium green. The rock is weakly to moderately epidotized. The mafic rock contains 1% epidote in 5mm veins and minor quartz is associated with them. In places, patches of more pervasive epidote alteration are present. Minor pyrite crystals up to 2mm are present in the rock. There is some hematite staining along few fractures. The upper contact is diffuse over 10cm, but a weak foliation of 65° tca defines it. 95.9-97.4m, The interval contains up to 1% epidote veins and minor pyrite is associated with them. Minor pyrite is also present in the basalt. 101.5-109.2m, The interval is coarser grained. It is of similar composition, but contains phenocrysts (1-2% pyroxene and 1% of epidotized feldspar crystals) in a fine grained matrix. The phenocrysts are up to 1mm. Minor pyrite is present.

HOLE No: POW9507

Page 12

### DIAMOND DRILL LOG

.

PROPERTY: POWELL

.

|           |                                                                                                                                                                                                                                                                                                                                                                                                         | ASSAYS     |        |        |          |       |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--------|----------|-------|--|--|--|
| FROM TO   | D LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE No. | FROM   | TO     | WIDTH Au | (ppb) |  |  |  |
|           | 113.5-115.0m, The interval contains 5% epidote veins up<br>to 5mm thick. Minor pyrite is associated with them.<br>A 1cm quartz vein contains minor chlorite and<br>tourmaline.                                                                                                                                                                                                                          |            |        |        |          |       |  |  |  |
| 15.0 118. | 7 MAFIC FLOW                                                                                                                                                                                                                                                                                                                                                                                            |            |        |        |          |       |  |  |  |
|           | The interval is a fine grained basalt flow. It is dark<br>green, non-magnetic, and contains 1% of carbonate<br>specks or leucoxene. It is non-magnetic.                                                                                                                                                                                                                                                 |            |        |        |          |       |  |  |  |
|           | 117.6-118.1m, The interval is an altered andesite<br>porphyry. It is similar to the ones found with<br>fuchsite alteration in the calc-alkalic andesite to the<br>north. It is sericitized and contains 10% mafic<br>phenocrysts of 2-3mm. The rock if foliated at 63° tca.                                                                                                                             |            |        |        |          |       |  |  |  |
| 18.7 124. | 5 MAFIC VOLCANIC ROCKS                                                                                                                                                                                                                                                                                                                                                                                  | 27         | 118.70 | 120.50 | 1.80     | 5     |  |  |  |
|           | The interval is of fine grained and dark green mafic<br>volcanic rocks. The rocks are more than 80% mafic<br>tuffs with 20% basalt flows. The flows are fairly<br>massive and contain 1-3% quartz-carbonate filled<br>amygdules up to 1cm. The tuffs are fine grained and<br>contain 1% quartz-carbonate grains up to 1mm. There is<br>a weak foliation at 59° tca at 120.5m, and 60° tca at<br>123.9m. |            |        |        |          |       |  |  |  |

.

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

Page 14

#### FROM то LITHOLOGICAL DESCRIPTION

118.7-120.5m, The interval contains 1% pyrite associated with 1cm wide quartz-calcite veins. In these veins, the pyrite makes 20% of the volume. At 118.7m, a 2cm vein contains chlorite.

#### 124.5 138.8 AMYGDALOIDAL FLOW

The interval is a massive basalt flow with up to 5% quartz-carbonate filled amygdules. The amygdules are up to 3mm in size. The rock is dark greenish grey. A very weak carbonate alteration affected the rock. Minor pyrite is associated with the amygdules. Sections contain variable amounts of amygdules. The lower 4m contains less than 1% amygdules and they are up to 1mm in size. Few quartz-calcite veinlets are present. A weak foliation is 60° tca at 128.3m, 56° tca at 132.9m, and 57° tca at 136.0m.

#### 138.8 144.3 MAGNETIC BASALT

The interval is similar to 88.7-115.0m. The basalt has a very weak epidote alteration and it is weakly magnetic. It contains few 10cm patches of moderate epidote alteration. Trace disseminated pyrite occurs in the unaltered rock and associated with the epidote alteration. Minor quartz-calcite filled fractures are present.

SAMPLE No. FROM ASSAYS WIDTH Au (ppb)

то

DIAMOND DRILL LOG

.

|       | RTY: PC<br>No.: PC |                                                                                                                                                                                                                                                                                    |            |                  |                  |               |        | Page 15 |
|-------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------|---------------|--------|---------|
| FROM  | то                 | LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                           | SAMPLE No. | FROM             | ASSAY:<br>TO     | S<br>WIDTH Au |        |         |
|       |                    |                                                                                                                                                                                                                                                                                    |            |                  |                  |               |        |         |
| 144.3 | 146.6              | BASALT FLOW                                                                                                                                                                                                                                                                        |            |                  |                  |               |        |         |
|       |                    | The rock is massive, fine grained, and dark greenish<br>grey. The rock contains 2-3% yellowish specks which<br>could be leucoxene or carbonate alteration. Minor<br>disseminated pyrite is present as 1-2mm crystals.                                                              |            |                  |                  |               |        |         |
| 146.6 | 148.8              | PILLOWED BASALT                                                                                                                                                                                                                                                                    | 28         | 146.60           | 146.90           | 0.30          | 16     |         |
|       |                    | The rock is light yellowish green. It is fine grained<br>and moderately to highly sericitized. The selvages are<br>chlorite-rich and contain minor quartz and pyrite. The<br>upper 30cm contains 30% quartz with 1% pyrite and minor<br>chlorite. The upper contact is at 60° tca. |            |                  |                  |               |        |         |
| 148.8 | 150.6              | INTERMEDIATE TO MAFIC FLOW                                                                                                                                                                                                                                                         |            |                  |                  |               |        |         |
|       |                    | The interval is very fine grained and light to medium<br>greenish grey. The rock is weakly sericitized and<br>carbonatized. No sulphide is present. The upper and<br>lower contacts are sharp at 66° tca and 57° tca,<br>respectively.                                             |            |                  |                  |               |        |         |
| 150.6 | 159.2              | SLUMP BRECCIA                                                                                                                                                                                                                                                                      | 29         | 150.60           | 151.70           | 1.10          | 5      |         |
|       |                    | The rock is a slump breccia with 50-70% folded                                                                                                                                                                                                                                     | 30<br>31   | 154.10<br>155.70 | 155.70<br>157.30 | 1.60<br>1.60  | 5<br>9 |         |

.

\_\_\_\_\_

#### DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

FROM

Page 16

#### TO LITHOLOGICAL DESCRIPTION

fragments of fine siltstone. The fragments are up to 5cm. The breccia is made of 1-3mm siltstone fragments in a very fine grained, dark matrix. The breccia contains up to 2% quartz and calcite veining. The interval from 150.6-151.7m is faulted, where the 30% fragments are up to 2cm and rounded. From 157.3-159.2m, the interval contains 90% siltstone and 10% matrix and shows little slumping textures. Minor pyrite is present in the matrix and associated with the quartz and calcite, especially from 154.1-157.3m. The foliation is 60° tca at 151.3m and 50° tca at 156.6m.

The lower contact is at 52° tca.

151.7-154.1m, Intermediate to mafic dike. It is weakly carbonatized. The rock is fine grained and medium grey. The rock contains up to 3-5% mafic phenocrysts. No sulphide is present. The upper contact is 76° tca and the lower contact is uneven.

#### 159.2 178.6 MAFIC FLOWS

159.2-161.1m, The interval includes fine grained and medium grey flows. The rock is crystalline with crystals up to 0.1mm. It is weakly carbonatized and it contains minor feldspar phenocrysts (0.5mm in size) with diffuse boundaries. Minor calcite fills few fractures. SAMPLE No. FROM

ASSAYS TO WIDTH Au (ppb)

DIAMOND DRILL LOG

HOLE NO.: POW9507 ------FROM TO LITHOLOGICAL DESCRIPTION

PROPERTY: POWELL

SAMPLE No.

FROM

ASSAYS TO WIDTH Au (ppb)

161.1-163.2m, Similar to 159.2-161.1m, but the interval is weakly chloritized giving the rock a greenish grey colour.

163.2-170.4m, The interval is very fine grained and light to medium greyish green. The rock is massive. The interval has no sulphide. It contains minor quartz-calcite filling 1-3mm fractures.

170.4-173.3m, Andesite porphyry dike. The rock is medium greyish green. It contains 10% feldspar phenocrysts up to 2mm in size. It also contains minor mafic phenocrysts of similar size. The phenocrysts are euhedral. The matrix is fine grained. The rock is brecciated and contains 1% quartz and calcite veining. In places, the veins are of a mix of carbonate and epidote. No sulphide is present. The upper contact is 62° tca.

173.3-178.6m, Similar to 163.2-170.4m.

END OF HOLE

Page 17

DIAMOND DRILL LOG

PROPERTY: POWELL HOLE No.: POW9507

.

\_\_\_\_\_

Page 18

| FROM | то | LITHO  | LOGICAL DESCRIPT | ION     |  | SAMPLE No. | FROM | ASSAYS<br>TO | WIDTH Au (ppb) |  |
|------|----|--------|------------------|---------|--|------------|------|--------------|----------------|--|
|      |    | WOO    | N-HOLE SURVEY DA | .TTA    |  |            |      |              |                |  |
|      |    |        |                  |         |  |            |      |              |                |  |
|      |    | DEPTH  | INCLINATION      | BEARING |  |            |      |              |                |  |
|      |    | 50.00  | -46.00           |         |  |            |      |              |                |  |
|      |    | 100.00 | -41.00           |         |  |            |      |              |                |  |
|      |    | 150.00 | -39.00           |         |  |            |      |              |                |  |
|      |    | 178.60 | -37.00           |         |  |            |      |              |                |  |
|      |    |        |                  |         |  |            |      |              |                |  |



APPENDIX E (previously submitted)

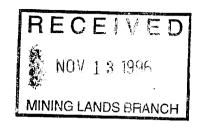
Powell Project, Ontario; Geophysical Programs, November, 1994, March, 1995

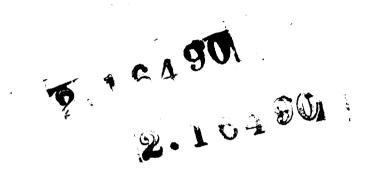
by R. Matthews

2.16290

Report on the 1995 Field Exploration Program on the Powell Project

# RECEIVED NOV 1 3 1996


# 2.16490


APPENDIX F (previously submitted)

Report on the 1994-1995 Bulk Till Sampling Program, Powell Project Powell, Bannockburn, Baden, and Argyle Townships NTS 41P/15 and 42A/02

by: M. Koziol, A. Faber, and P. Chubb

Report on the 1995 Field Exploration Program on the Powell Project







Report on the 1995 Trenching in the Powell Project

Report on the 1995 Field Exploration Program on the Powell Project

# REPORT ON 1995 TRENCHING ON THE POWELL PROJECT

# POWELL TOWNSHIP, ONTARIO, 41P/15 AND 42A/02

Alain Faber Geologist

January 15, 1996

# TABLE OF CONTENTS

| PAGE                                                                         |                        |
|------------------------------------------------------------------------------|------------------------|
| SUMMARY AND RECOMMENDATIONS                                                  | i                      |
| 1.0 INTRODUCTION                                                             | 1                      |
| 1.1 Property Location and Access<br>1.2 Trenching Program                    | 1<br>1                 |
| 2.0 GEOLOGY                                                                  | - 5                    |
| 2.1 Trench 1<br>2.2 Trench 2<br>2.3 Trench 3                                 | 5<br>7<br>8            |
| 3.0 GEOCHEMISTRY                                                             | 9 .                    |
| <ul> <li>3.1 Trench 1</li> <li>3.2 Trench 2</li> <li>3.3 Trench 3</li> </ul> | 10<br>10<br>11         |
| 4.0 CONCLUSIONS                                                              | 11                     |
| 5.0 RECOMMENDATIONS                                                          | 12                     |
| 6.0 REFERENCES                                                               | 13                     |
| LIST OF TABLE                                                                |                        |
| Table 1 Summary of the Work Completed by Cameco                              | 5                      |
| LIST OF FIGURES                                                              |                        |
| Figure 1 Location Map<br>Figure 2 Claim Map<br>Figure 3 Trench Location Map  | 2<br>3<br>4            |
| LIST OF MAPS                                                                 |                        |
| Map G-1 Detailed Geology - Trench 1<br>Map G-2 Detailed Geology - Trench 2   | in pocket<br>in pocket |

in pocket

.

.

# SUMMARY AND RECOMMENDATIONS

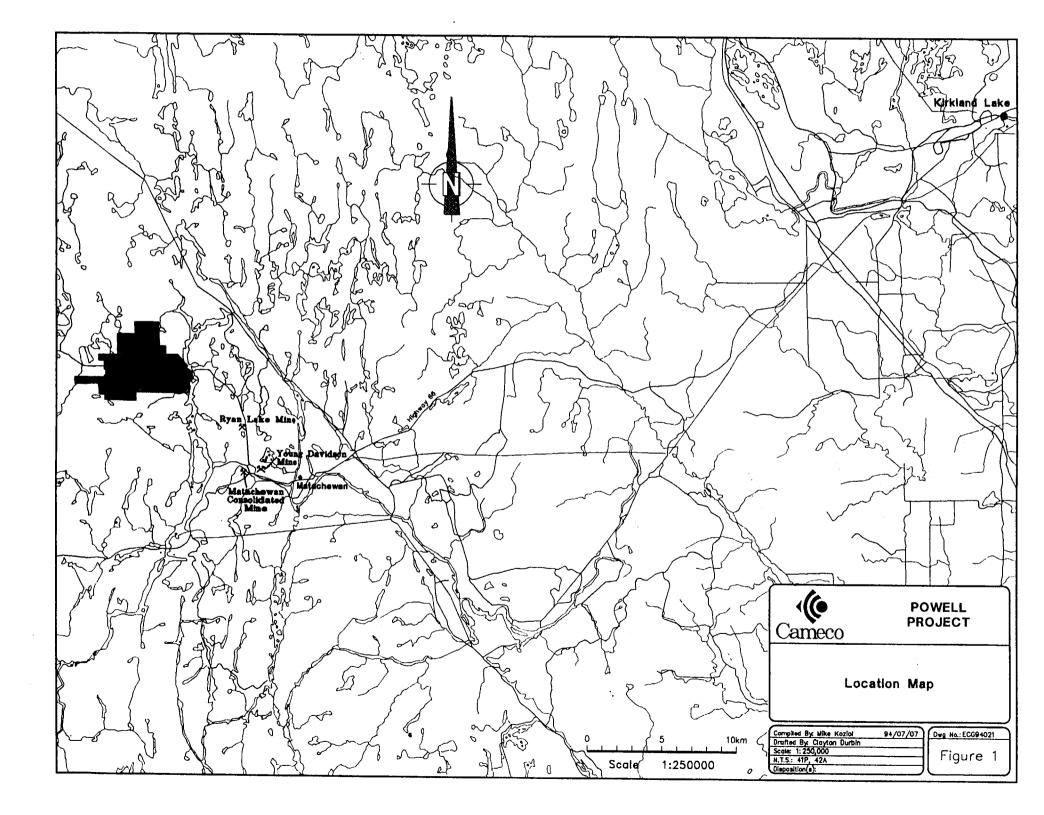
Three areas of interest were trenched in spring 1995. The first trench was to locate a possible source of gold in till anomaly. The trenching uncovered sections of moderately sheared mafic flows and intermediate volcanic rocks. Detailed mapping and selective grab sampling was done. The best gold value obtained is 5ppb Au associated with pockets of chalcopyrite, up to 1cm in size, in calcite veins. The possible source of gold has not been found in the trench, and the trench can not be extended to the north due to low land.

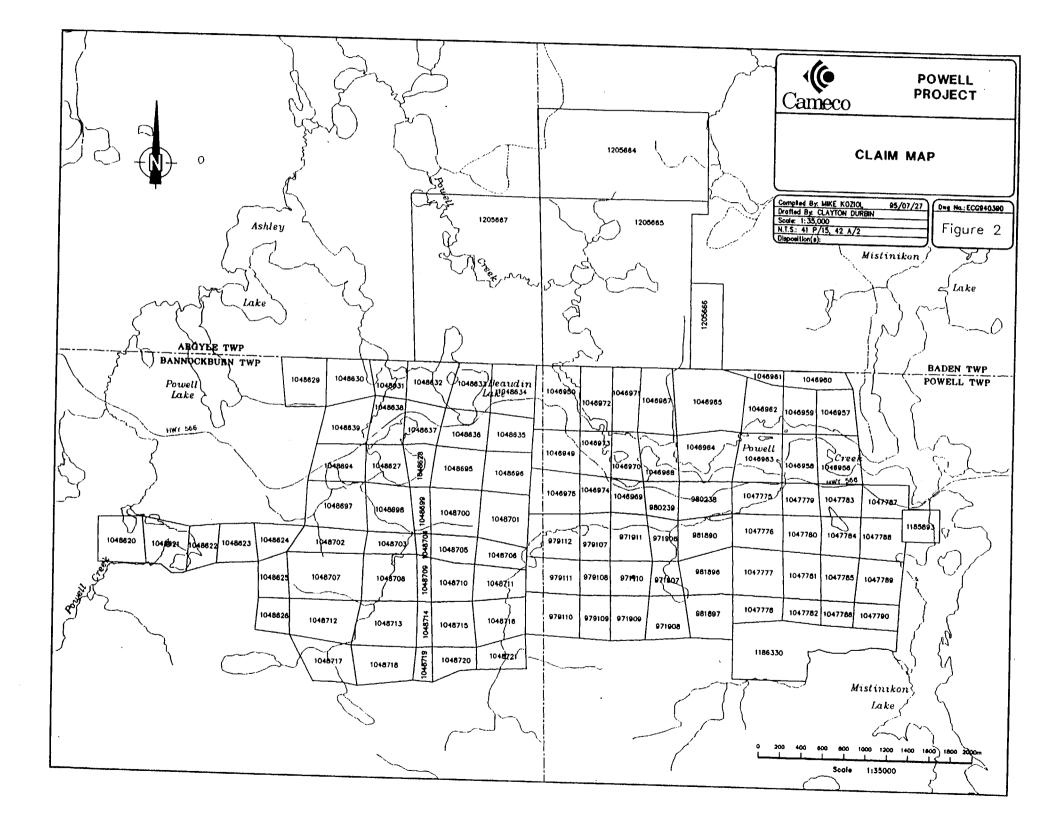
The second trench uncovered a talc-chlorite schist believed to be the Kirkland Lake Break. Detailed mapping was done and selective samples were collected and sent for assay. The best gold value is 10ppb Au and is associated with ultramafic/mafic sediments close to the contact with the siltstone to the south of trench.

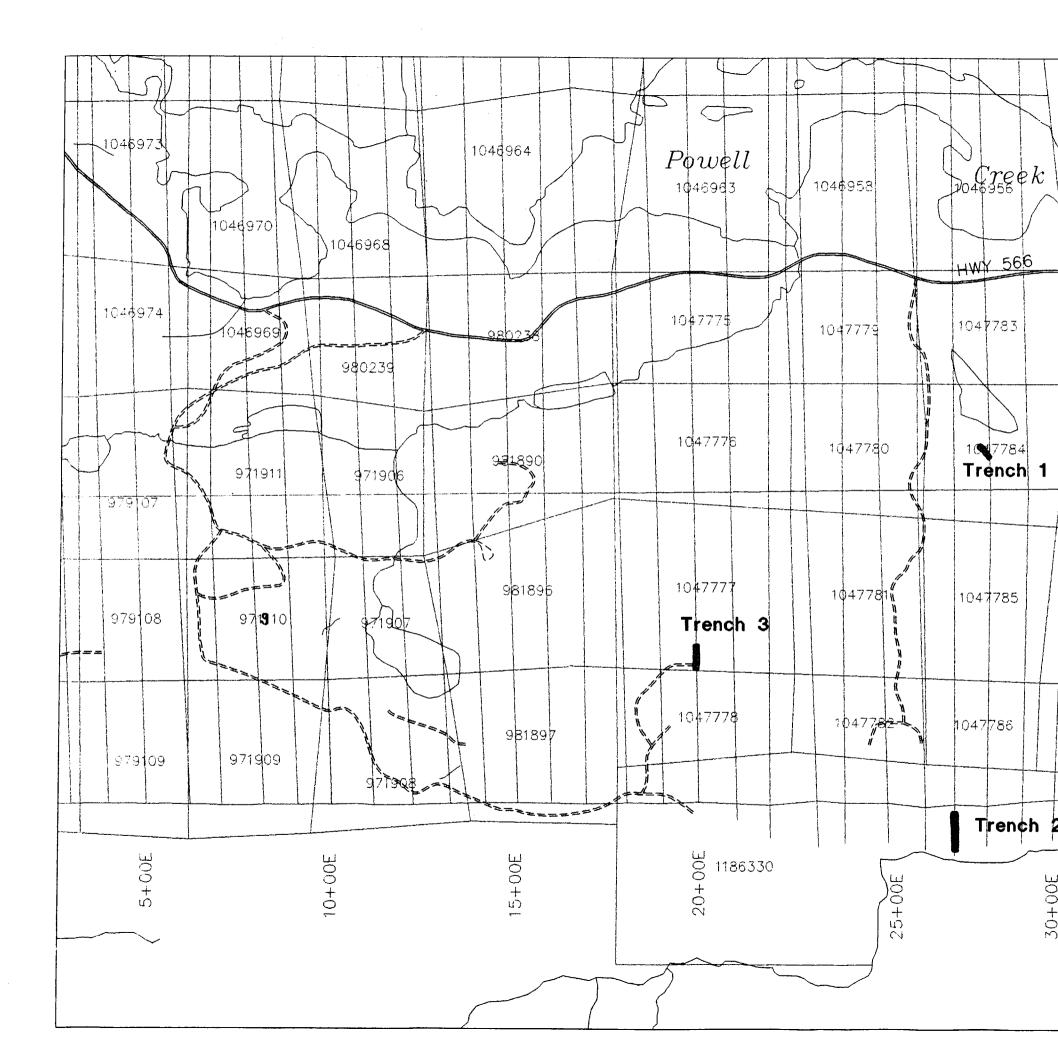
The third trench exposed a 10m wide carbonate zone, which is located between pillowed basalt. Mapping and sampling (grab and channel) programs were completed. The best gold values are in the carbonate zone and include 17ppb Au in a grab sample and 12ppb Au/1m in a channel sample. Prospecting traced the carbonate zone for 400m along strike. Additional sampling along strike did not generate better values.

From the information gathered from trenching, no further work is recommended on any of the trenches or their immediate areas.

### **1.0 INTRODUCTION**


Three trenches were excavated with a 690 John-Deere Backhoe between May 26 to June 1, 1995. The work was contracted to Fred Kiernicki Prospector Services. The trenches were recommended to better understand the property geology.


#### **1.1 Property Location and Access**


The Powell project is located approximately 15km west of Matachewan, Ontario (Figure 1). The access is provided by an all-weather gravel road (highway 566) which passes through the centre of the property (Figure 2). The trenching was completed on claims 1047778, 1047785, and 1186330 (Figure 3).

#### **1.2 Trenching Program**

This report summarizes the trenching program done on the Powell property in 1995. Three trenches were excavated on the property. The work was contracted to Fred Kiernicki Prospector Services and supervised by Cameco geologists Alain Faber and Mike Koziol. The program included trenching, mapping, channel and grab sampling. The detailed mapping was done by Alain Faber. A total of 14 grab samples were collected from the trenches and sent for analysis. The channel sampling, on only one trench, resulted in 17 samples. The sampling was done by Alain Faber and Mike Koziol.







| Trench # | Claim # | Dimension    | Volume of<br>earth moved | Activity             | Work done                                             |                                             |
|----------|---------|--------------|--------------------------|----------------------|-------------------------------------------------------|---------------------------------------------|
| 1        | 1047785 | 48mx6mx0.5m  | 144m <sup>3</sup>        | Trenching<br>Mapping | 13.25 hours<br>(Excavator)<br>4 man-days<br>1 man-day | Fred Kiernicki<br>and helper<br>Alain Faber |
| 2        | 1186338 | 110mx4mx0.5m | 220m <sup>3</sup>        | Trenching<br>Mapping | 16.25 hours<br>(Excavator)<br>6 man-days<br>1 man-day | Fred Kiernicki<br>and helper<br>Alain Faber |
| 3        | 1047778 | 65mx7mx0.5m  | 227m <sup>3</sup>        | Trenching<br>Mapping | 16.25 hours<br>(Excavator)<br>4 man-days<br>1 man-day | Fred Kiernicki<br>and helper<br>Alain Faber |
|          |         |              |                          | Channel<br>Sampling  | 4 man-days                                            | Mike Koziol and<br>Alain Faber              |

 Table 1. Summary of work completed by Cameco for the trenching program

# 2.0 GEOLOGY

Detailed mapping and grab sampling of three trenches were completed on June 24 and June 25, following their excavation four weeks earlier.

# 2.1 Trench 1

The south-east end of trench 1 is at 115S on L28E. It has a bearing of 315° and is 48m long (see Map G-1). The trench was excavated to find a possible source of an anomalous till sample (POW95T-46). Sample POW95T-46 contains 152 gold grains in a

normalized sample of 10kg, 90% of which are in pristine condition. This suggests a close proximity of the source (Koziol et al., 1996).

The northern half of the trench is moderately sheared basalt that locally shows folding of the foliation. On average, the moderate to strong foliation strikes at 100° and dips steeply to the north. The basalt is locally brittle and contains approximately 5% calcite-filled extension fractures. The mafic volcanic rock is weakly carbonatized and weakly to moderately chloritized. Minor chalcopyrite is associated with the calcite veins and forms pockets up to 1cm in size. Minor pyrite is disseminated in the basalt.

Andesite flows occur in the southern half of the trench. They are porphyritic and contain up to 15% feldspar phenocryst. The phenocrysts are up to 2mm in size and are euhedral to subhedral. The matrix is fine grained and medium dark green, which contrasts with the lighter colour of the phenocrysts. The weathered surface is light green with whitish feldspar phenocrysts. The rock is weakly chloritized and sericitized. The rock is competent, has a uniform texture and has an apparent homogeneous composition. No sulphide mineralization occurs in the andesitic rocks. The intermediate flows contains few inclusions of feldspar porphyry and tuffaceous textured rock (up to 20cm). Both inclusion types are of the same composition. The phenocryst-rich rock also contains xenoliths of highly chloritized rocks up to 1m in size. The xenoliths are dark green and partially 'rotten'. They contain up to 1% disseminated pyrite and are stretched in the same direction as the mineral alignment of the host rock. The andesite has an uniform mineral alignment except in the south-eastern end of the trench where the grain alignment varies from 100° to 178° with a constant vertical dip. From the apparent andesitic composition of the rock, the phenocryst content, the feldspar prophyry inclusions, and the alterations, the rock shows similarities to those found in areas of the calc-alkalic suites at the north end of the property.

Report on 1995 Trenching on the Powell Project

The mafic rocks are cut by three mafic, fine to medium grained dikes. Two of them are less than 50cm and a larger one is up to 4m wide. A 50-70cm mafic dike cuts the basalt at the north end. It is a dark syenite or a diabase dike with feldspar alteration.

#### 2.2 Trench 2

Trench 2 is located on L27E from 1045S to 1155S and is the southern extension of a trench initially excavated by Fred Kiernicki in 1993 (See Map G-2 and Leahy, 1992). The initial trench exposed a sequence of ultramafic flows. The rest of the stripping was proposed in order to uncover the rest of the ultramafic flows, a talc-chlorite schist, which is the expression of the Kirkland Lake Break, and the south contact between the ultramafic rocks and the sediments. Four samples were collected on the trench.

The northern part of the trench from 1050S to 1085S exposes a wide talc-chlorite schist. The schist may be wider as overburden covers the trench from 1085S to 1100S. The talcchlorite schist is highly deformed but contains blocks, up to 3m, of relatively undeformed ultramafic flows. The undeformed blocks are characterized by primary textures such as spinifex and polyhedral jointed lavas (polysuturing). The schist contains up to 5% quartz-carbonate veins, which vary from 1mm to 2cm in width. The schist is mostly barren of sulphide, except trace pyrite associated to minor quartz veinlets. The rock is moderately to strongly chloritized and talcose with a weak carbonate alteration in places. Trace amounts of disseminated pyrite occur in the schist. The talc-chlorite schist includes two intervals of argillite. These intervals form stretched lenses contain up to 3% pyrite.

The section from 1100S to 1115S contains moderately foliated volcanic sediments derived from ultramafic and mafic rocks. The sediments contain up to 15% fragments (up to

3cm along their long axis) in a medium grained matrix. The sediments are weakly carbonatized and contain 1% quartz-carbonate veins up to 2cm wide. The sediments contain broken carbonate veins bringing the quartz-carbonate content of the rock up to 3% of the volume. The rock is also chloritized and locally serpentinized. Minor disseminated pyrite is associated with narrow quartz veins. The sediments are cut by a 2m peridotite dike, which is chloritized and serpentinized.

The southern end of the trench, from 1115S to 1155S, is a siltstone with few thin intervals of greywacke. The contact with the ultramafic rocks is sharp and clean. The siltstone is very siliceous and locally it has a cherty texture. It contains trace amounts of pyrite which mostly follows fractures. Several sets of joints are present in the siltstone. No tops were defined from the siltstone and greywacke.

The schistosity of the talc-chlorite schist vary from 120° to 130° and is subvertical. At the south of the trench, the bedding of the siltstone and greywacke strikes approximate east west and dips steeply to the north.

#### 2.3 Trench 3

Trench 3 is located on line 20E from 600S to 660S. The trenching work was proposed in order to uncover a carbonate zone discovered during the 1994 summer mapping. Following the detailed mapping, 5 grab samples and 17 channel samples were collected and sent for geochemical analysis.

The trench is characterized by a 15m wide highly carbonatized zone located between two sequences of pillowed basalt. Where the carbonate alteration is the strongest, the rock is highly sheared and strongly sericitic. The carbonate zone can be divided in two parts,

one being a moderately carbonatized and sericitized sheared pillowed basalt and the second one being a highly sericitized and carbonatized rock having lost its primary texture. The rock sequence suggests it could be a sedimentary unit between two intervals of pillowed basalt. The highly altered area is more competent and contains up to 2% disseminated pyrite. The zone also contains up to 15% Fe-carbonate veins cutting the interval. On either side of the carbonate zone, pillowed basalt occurs. The pillows are highly foliated near the carbonate zone and become weakly deformed within 20m away from the altered zone. The pillows are flattened and up to 70cm in diameter. The pillowed basalt is moderately carbonatized, chloritized and sericitized. The selvages of the pillows are chlorite-rich and up to 2cm wide. A felsic to intermediate dike cuts the pillowed basalt.

A lens of sheared volcanic sediments is present at 618N and is a 1m wide. The lens is silicified and contains 2% pyrite and up to 10% black chlorite.

The schistosity of the carbonate zone and the foliation of the pillowed basalt are fairly constant and ranging from 275° and 293°. The carbonate zone can be followed for up to 200m on either side of the trench before it disappears under the overburden.

#### **3.0 GEOCHEMISTRY**

A total of 33 samples (16 grab and 17 channel samples) from the trenches were analysed for gold and multi-elements except for two samples which were analysed for whole rock (See Appendixes G-1 and G-2). Gold assays from the grab samples collected during the 1994 mapping program are also included on the trench maps (Chubb & al., 1995).

#### <u>3.1 trench 1</u>

Five rock samples were collected for geochemical analyses. Of the rock samples taken from trench 1, four were sent for gold assay and multi element analyses and one sample of porphyritic andesite flow was analysed for whole rock.

Samples from the mafic flows and chlorite inclusions of the intermediate flows returned a best gold assay of 5ppb Au. In another sample, taken on L28E/090S, the gold content is below detection. Sample POW95X-1001 is a sample of calcite vein with few pockets of chalcopyrite. This sample also came back with 5ppb Au.

The whole rock results for the feldspar porphyritic andesite, when plotted on a Jensen <sup>-</sup> plot, fall within the Tholeiitic andesite field.

# 3.2 Trench 2

Five samples were sent for gold assay and multi element analysis and one for whole rock analysis.

Two samples from silicified sulphide bearing intervals in the talc-chlorite schist were sampled and came back nil. A samples in the siltstone and greywacke section of the trench also came back nil. Two samples were collected in 1994 in the ultramafic/mafic sediment, at 1105S and came back less than 10ppb Au.

A whole rock sample taken in the talc chlorite schist, when plotted on a Jensen plot, fall in the high iron tholeiitic basalt field. The silica content is 39.4%, which suggest a more komatiitic rock.

### 3.3 Trench 3

Nine grab samples were collected in 1994 (Chubb, P. at al., 1995) and 1995 and were analyzed for gold and multi-elements. The highest assay is 17ppb Au (see Appendix G-1). In August 1995, 17 channel samples were cut using a Stihl TS 350 rock saw. They were from 1m to 1.3m long, 2-3cm wide and 6-7cm deep. The samples were cut in the highly carbonatized and sericitized zone containing up to 3% disseminated pyrite. From those samples, the best gold assay came back 12ppb Au/1m.

#### 4.0 CONCLUSIONS

In May 1995, three trenches were excavated by Fred Kiernicki in order to get information about; (1) a possible source for a 152 grain till sample, (2) a talc-chlorite schist which is the expression of the Kirkland Lake Break, and (3) a highly carbonatized and sericitized zone.

The trench 1 uncovered mafic and intermediate flows with minor sulphides. The samples assayed carried up to 5ppb Au, failing to explain the source of the highly anomalous till sample.

The second trench uncovered more than 60m of talc-chlorite schist and a contact between the schist and the adjacent sediment to the south. The assayed samples contained a maximum of 10ppb Au.

The third trench on line 20E uncovered a carbonate-sericite zone between two packages of pillowed basalt. The carbonate zone is highly altered over a 5m width and moderately

carbonatized over another 10m. The best value from grab and channel samples is 17ppb Au (in a grab sample).

# **5.0 RECOMMENDATIONS**

No further work is recommended in the area of the three trenches, based on the sample results obtained to date.

### **6.0 REFERENCES**

Chubb, P., Koziol, M., and Faber A., 1995, Powell Project, 1994 Exploration Program, Cameco Corporation, Assessment Report File.

Koziol, M., Faber, A., Chubb, P., 1995, Report on the 1994-95 Bulk Till Sampling Program, Powell Project - Powell, Bannockburn, Baden and Argile Townships, Ontario, NTS 41P/15 and 42A/02, Cameco Corporation, Assessment Report File.

Leahy, m., 1992, Geological Mapping, Stripping, Sampling, Blasting, and Prospecting Program: 102 Group, Powell and Bannockburn Townships, Larder Lake Mining Division, Ontario; KL-3177-3.

# APPENDIX G-1

# AU AND ICP ASSAY CERTIFICATES FOR OUTCROP GRAB AND CHANNEL SAMPLES



Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

# Geochemical Analysis Certificate

5W-2534-RG1

Date: JUN-07-95

| Сотралу: | CAMECO CORPORATION |
|----------|--------------------|
| Project: |                    |
| Attn:    | M. Koziol          |

We hereby certify the following Geochemical Analysis of 14 Rock samples submitted JUN-06-95 by .

| Sample<br>Number | Au<br>PPB | Au Check<br>PPB | Multi<br>Elment |        |
|------------------|-----------|-----------------|-----------------|--------|
| POW 95X1001      | 5         |                 | Results         | •••••• |
| POW 95X1002      | 3         | 3               | to              |        |
| POW 95X1003      | Ni l      | -               | follow          |        |
| POW 95X1004      | Ni l      | 2               |                 |        |
| PCW 95X1005      | Ni l      | -               |                 |        |
| POW 95X1006      | Nil       |                 | ]               |        |
| POW 95X1007      | 3         | -               |                 |        |
| POW 95X1008      | 31        | 26              |                 |        |
| POW 95X1009      | 2         | -               |                 |        |
| POW 95X1010      | 10        | 14              |                 |        |
| POW 95X1011      | 2         |                 |                 |        |
| POW 95X1012      | Ni l      | -               |                 |        |
| POW 95X1013      | Ni l      | -               |                 |        |
| POW 95X1014      | 2         | -               |                 |        |
|                  |           |                 |                 |        |

One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

#### CAMECO CORP.

ATTN: M. KOZIOL

5W-2534-RG1

## TSL/ASSAYEF Laboratories

1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA, ONTARIO 144-144 PHONE M: (905)602-8236 FAX M: (905)206-0513

### I.C.A.P. PLASMA SCAN

#### , Aqua-Regia Digestion

| SAMPLE #    | Ag                  | A1 A8     | B                   | Be Bi                    | Ca Cd        | Co Cr   | Cu Size                          | Mar Hin                                 | Mo        | NI SPA         | Pb Saba                      | SC Sn St                                |
|-------------|---------------------|-----------|---------------------|--------------------------|--------------|---------|----------------------------------|-----------------------------------------|-----------|----------------|------------------------------|-----------------------------------------|
|             | pp                  | X PPR     | рра рра             | рра рра                  | * ppn        | ppm ppm | DDE X                            | X ppp                                   | ppa 🤹     | ppm ppp        | ppa ppp                      |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
| POW 95X1001 | . 1                 | 3.3 < 5   | < 10 < 1            | < 1 < 5                  | 6.1 < L      | 3255    | 940 7.3                          | 1.9 1200                                | < 2 0.03  | 77 510         | < 1 < 5                      | 26 < 10                                 |
| PON 95X1002 | · · 1               | 3.8 30    | < 10 <u>1</u> 9     | < 1 -< 5                 | 4.3 ( 1      | 52 70   | 120 8.7                          | 2.0 2600                                | < 2 0.01  | 81 190         | < 1 < 5                      | 16 ¢ 10                                 |
| POW 95X1003 | κ ۲                 | 2.8 30    | < 10. 35            | ¢ 1 ि 5                  | 7.6 1        | 39 52   | 58 4.5                           | 1.7 1800                                | < 2 (D.01 | <b>66 1</b> 30 | < 1 < 5                      | 10 6 10                                 |
| POW 95X1004 | <b>C 1</b>          | 3.2 ¢5    | < 10 · 29           | <pre>&lt; 1 &lt; 5</pre> | 8.5 2        | 29 47   | 44 8.5                           | 2.1 3800                                | < 2<0.01  | 53 20          | < 1° C 5                     | <b>71</b> ( 10                          |
| POW 9581005 | < <b>1</b>          | 3.1 ¢ 5   | < 10 13             | < 1 < 5                  | 8.6 3        | 26 53   | 49 8.3                           | 2.2 2800                                | < 2<0,01  | 58 (2          | < 1 C 5                      | 17 4 10                                 |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
| POW 95X1006 | ( )<br>( )          | 2.2 (5    | < 10 < 1            | <u> </u>                 | 14 < 1       | 25 33   | 63 5.7                           | 2.2 2200                                | < 2<0.01  | 50 5 2         | (1)5                         | 12 < 10                                 |
| POW 95X1007 | ، ۱                 | 2.0 5     | < 10 5              | < 1 ( 5                  | 1.0 < 1      | 33 170  | 110. 16                          | 1.2 850                                 | < 2 0.06  | 430 200        | 2 < 5                        | 12 30                                   |
| POW 95X1008 | ۲ ۱                 | 0.98 . 60 | < 10 B              | < 1 < 5                  | 2.2 ( 1      | 92 130  | 39 17                            | 0.64*1100                               | < 2 0.05  | 51 630         | 5 C 5                        | 12 40                                   |
| POW 95X1009 | د 1                 | 1.5 15    | < 10 S              | < 1 3 5                  | 3.3 (1       | 63 110  | 91 16                            | 1.0 1700                                | < 2 0.02  | 49 510         | 25                           | 15 20                                   |
| POW 95X1010 | · • 1               | 2.4 30    | < 10 1 <del>3</del> | < 1 (.5                  | 2.0 ( 1      | 63 150  | 74                               | 0.88 1300                               | < 2 0.04  | 39 800         | < 1 < 5                      | 19 < 10                                 |
|             |                     |           |                     |                          |              |         | in in de la compañía<br>Compañía |                                         |           |                |                              |                                         |
| POW 95X1011 | < <b>)</b>          | 2.71.65   | < 10 _ 22           | < <u>1</u> د. 5          | 1.8. ()      | 37 130  | 30 8.5                           | 1.0 1200                                | < 2 0.03  | 15 700         | <1 C.5                       | 15 6 10                                 |
| POW 95X1012 | د 1                 | 2.5 1 5   | < 10 · (· 1         | < 1 ( 5                  | 3.5 ¢1       | 22 . 28 | 20 19                            | 2.0 3500                                | < 2<0.01  | 36 94          | ( <u>1</u> <u>c</u> <u>5</u> | 9 ( 10                                  |
| POW 95X1013 | < 1 (               | 0.77 3.5  | < 10 6              | 、1、(5                    | 8.5 < 1      | 10 33   | 16 5.0                           | 2.2 1800                                | < 2.0.02  | 19 - 10        | < 1 < 5                      | 2 < 10                                  |
| POW 95X1014 | ંદ્ર                | 3.4, 4 5  | < 10 2              | (1) C.S                  | 5.9 1        | 31 78   | 75 8.7                           | 2.1 2600                                | < 2 0.01  | 72 140         | <1 < 5                       | 23 < 10                                 |
| •           |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  | <u></u>                                 |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              | 1992 (S. 1997)<br>1993 - 1993 (S. 1997) |
|             | 8. E                |           | 207                 |                          |              |         |                                  | S.S.                                    |           |                |                              |                                         |
|             | 2899.23<br>4.5 - 18 |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          | 2008<br>2008 |         |                                  |                                         |           |                |                              |                                         |
| •           |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                | 300 A                        |                                         |
| · .         |                     | 36        |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         |           |                |                              |                                         |
|             |                     |           |                     |                          |              |         |                                  |                                         | SIN       |                |                              |                                         |

.

.

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI M20 This method is partial for many oxide materials

TSL/95

SIGNED :

Ţ



Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

**CAMECO CORPORATION** Company: Project:

Attn: M. Koziol

We hereby certify the following Geochemical Analysis of 43 Rock samples submitted JUN-19-95 by .

| Sample<br>Number           | Au<br>PPB     | Au Check<br>PPB | Multi<br>Element |   |
|----------------------------|---------------|-----------------|------------------|---|
| POW 95X-074                |               |                 |                  |   |
| POW 95X-075                | 5<br>2        | -               | Results          |   |
| POW 95X-076                | 23            | 5               | to               |   |
| POW 95X-077                | 51            | 21              | Follow           |   |
| POW 95X-078                | · 7           | 21              |                  |   |
|                            |               |                 |                  |   |
| POW 95X-079                | 3             | -               |                  |   |
| POW 95X-080<br>POW 95X-081 | Nil           | -               |                  |   |
| POW 95X-081<br>POW 95X-082 | Ni l          | -               |                  |   |
| POW 95X-082<br>POW 95X-083 | Ni l          | -               |                  |   |
|                            | 2             |                 |                  |   |
| POW 95X-084                | Ni 1          | -               |                  |   |
| POW 95X-1032               | Ni l          | -               |                  |   |
| POW 95X-1033               | 3             | -               |                  |   |
| POW 95X-1034               | 5             | -               |                  |   |
| POW 95X-1035               | 2             | -               |                  |   |
| POW 95X-1036               | Nil           |                 |                  |   |
| POW 95X-1037               | Ni l          | -               |                  |   |
| POW 95X-1038               | 14            | 12              |                  |   |
| POW 95X-1039               | 2             | -               |                  |   |
| POW 95X-1040               | 3             | -               |                  |   |
| POW 95X-1041               | 5             |                 |                  |   |
| POW 95X-1042               | 2             | _               |                  |   |
| POW 95X-1043               | NI            |                 |                  |   |
| POW 95X-1044               | Ni l          | -               |                  |   |
| POW 95X-1045               | Nil           |                 | <b></b>          |   |
| POW 95X-1046               | Ni 1          |                 |                  |   |
| POW 95X-1047               | 175           | 175             |                  |   |
| POW 95X-1048               | 45            | -               |                  |   |
| POW 95X-1049               | 93            | 99              |                  |   |
| POW 95X-1052               | Ni l          | -               |                  |   |
| **** Indicates this sample | e was not rec | eived           |                  |   |
| One assay ton portion use  | d             | uru.            |                  | 1 |

One assay ton portion used.

Certified by  $\sim$ 

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705)642-3300 Page 1 of 2

5W-2701-RG1

Date: JUN-22-95

#### TSL/ASSAYE Laboratories

CAMECO CORPORATION

ATTN: M. KOZIOL

5W-2701-RG1

#### 1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA, ONTARIO L4W-1A4 PHONE #: (905)602-8236 FAX #: (905)206-0513

## I.C.A.P. PLASMA SCAN

.

Aqua-Regia Digestion

| SAMPLE #                               | λg                                    | A1 A#    | B Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Be Bi                                        | Ca Cd                                                                                                          | Co Cr          | Cu Fe                    | Mg Mn     | Mo Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NI P               | Pb Sb                           | Sc Sn              |
|----------------------------------------|---------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|--------------------|
|                                        | PPm                                   | % ppr    | m ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppm ppm                                      | % ppm                                                                                                          | ndd wad        | ppm %                    | % ppm     | ppm 🕱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppm ppm            | pbw bbw                         | ppm ppm            |
| POW 95X-074                            | < 1                                   | 3.0 4    | 5 < 10 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 2.8 < 1                                                                                                        | 52 100         | 41 7.9                   | 1.6 1600  | ( 2 0 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SE FIA             |                                 |                    |
| POW 95X-075                            | < 1                                   |          | 5 < 10 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 2.9 < 1                                                                                                        | 17 160         | 1.00                     |           | < 2 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55 510             | 7 < 5                           | 20 ( 10            |
| POW 95X-076                            | < 1                                   |          | 5 < 10 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1<5                                         | - 100 C AND W                                                                                                  | 32 130         | No. 2 Contraction of the |           | < 2 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 670             | 2 < 5                           | 6 < 10             |
| POW 95X-077                            | < 1                                   |          | 5 < 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 6.3 (1                                                                                                         | 32 130         | 34 5.6                   |           | < 2 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42 470             | < 1 < 5                         | 4 < 10             |
| POW 95x-078                            | < 1                                   |          | 5 < 10 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | Area and a second s | 00 1992NO 21 1 | 180 9.9                  |           | < 2<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45 200             | < 1 < 5                         | 12 < 10            |
|                                        | · •                                   |          | - • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , <b>,</b> , , , , , , , , , , , , , , , , , | J.U. C. I.                                                                                                     | 38 20          | 54 12                    | 1.6 2000  | 6<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23 340             | < 1 < 5                         | 31 < 10            |
| POW 95x-079                            | < 1                                   | 4.7 (5   | 5 < 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1 (5                                        | 2.7 4 1                                                                                                        | · · ·          |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                 |                    |
| POW 95X-080                            | < 1                                   |          | 5 < 10 10<br>5 < 10 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5<br>< 1 < 5                           |                                                                                                                | 34 30          | 16 14                    |           | < 2 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 750             | < 1 < 5                         | 19 ( 10            |
| POW 95X-081                            |                                       |          | 5 < 10 29<br>5 < 10 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ing sector The                               | 4.1 < 1                                                                                                        | 35 48          | 38 8.8                   |           | < 2 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 530             | < 1 < 5                         | 16 <b>&lt; 1</b> 0 |
| POW 95X-082                            | < 1                                   |          | 5 < 10 <u>18</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                                                                | 17 160         | 5 2.8                    |           | < 2 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61 490             | < 1 < 5                         | 4 < 10             |
| POW 95X-082                            | <pre>&lt; 1</pre>                     |          | 5 < 10 18<br>5 < 10 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arrest of the                                | The second s | 23 310         | 12 3.5                   |           | < 2 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99 430             | < 1 < 5                         | 4 < 10             |
|                                        | 、 <b>1</b>                            | •••      | × 10 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                                      | 3.3 (1                                                                                                         | 24 390         | 5 4.0                    | 1.9 880   | < 2 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150 430            | < 1 < 5                         | 9 < 10             |
| POW 95X-084                            | < 1                                   | 1.0 < 5  | 5 < 10 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , <b>,</b>                                   |                                                                                                                |                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                 |                    |
| POW 95X-1032                           |                                       | A 11     | attend to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 1 < 5                                      | 1.1 4 1                                                                                                        | 14 140         |                          | 0.30 300  | < 2 0,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29 460             | < 1 < 5                         | 1 < 10             |
| POW 95X-1032<br>POW 95X-1033           |                                       |          | 5 < 10 11<br>5 < 10 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5                                      | 4.2 (1                                                                                                         | 34 58          | 55 7.0                   |           | < 2 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36 440             | < 1 < 5                         | 19 <b>( 10</b>     |
| POW 95X-1033<br>POW 95X-1034           | · · · 1                               |          | 2440 - 1147 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 1 5                                        | 3.2 (1                                                                                                         | 29 150         | 55 4.2                   |           | < 2 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59 190             | < 1. < 5                        | 18 < 10            |
| POW 95X-1034<br>POW 95X-1035           | · · · · · · · · · · · · · · · · · · · |          | 5 < 10 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 2.8 (1                                                                                                         | 26 49          | 90 5.6                   |           | < 2 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32 380             | < 1 < 5                         | 19 ( 10            |
| · ···································· | < 1                                   | 4.4 < 5  | 5 < 10 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 1.5 < 1                                                                                                        | 30 190         | 150 4.4                  | 1.8 490   | < 2 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170 <b>370</b>     | < 1 < 5                         | 15 <b>(</b> 10     |
| POW 95X-1036                           |                                       | 1 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                |                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                 |                    |
|                                        |                                       |          | 5 < 10 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 2.7 < 1                                                                                                        | 21 150         | 17 2.7                   | 1.6 510   | < 2 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71 350             | < 1 < 5                         | 6 < 10             |
| POW 95X-1037                           |                                       |          | 5 < 10 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 1 < 5                                      | 4.0 (1                                                                                                         | 45 45          | 95 8.9                   | 1.5 2000  | 4 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41 280             | < 1 < 5                         | 25 ( 10            |
| POW 95X-1038                           | < 1                                   |          | 5 < 10 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | 1.8 < 1                                                                                                        | 38 36          | 56 8.5                   | 1.6 1100  | < 2 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 480             | <1 < 5                          | 14 < 10            |
| POW 95X-1039                           | < 1                                   | 3.1 < 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                                      | 4.0 < 1                                                                                                        | 28 40          | 49 7.0                   |           | < 2 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32 390             | < 1 < 5                         | 21 ( 10            |
| POW 95X-1040                           | < 1                                   | 2.1 < 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                                      | 1.0 < 1                                                                                                        | 19 120         | 24 3.2                   | 1.6 530   | < 2 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 510             | <1<5                            | 5 < 10             |
| DOI: 07                                |                                       | de A     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                |                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Quan Ta                         |                    |
| POW 95X-1041                           | < 1                                   |          | s < 10 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 3.3 < 1                                                                                                        | 29 75          | 30 6.5                   | 1.1 850   | < 2 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40 350             | < 1 < 5                         | 16 < 10            |
| POW 95X-1042                           |                                       | 2.7 < 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 3.3 (1                                                                                                         | 63 1100        | 52 6,4                   |           | < 2<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 520 24             | <1<5                            | 20 < 10            |
| POW 95X-1043                           | . < 1 0                               | 191.227/ | i < 10 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 1 < 5                                      | 6.9 ( 1                                                                                                        | 17 420         | 34 2.6                   |           | < 2<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140 ( 2            | <1 < 5                          | 6 < 10             |
| POW 95X-1044                           |                                       | 2.5 < 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                                      | 2.8 < 1                                                                                                        | 64 870         |                          |           | < 2 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 620 26             | <1<5                            | 20 < 10            |
| POW 95X-1045                           | < 1                                   | 2.7 20   | × 10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1 < 5                                      | 2.9 < 1                                                                                                        | 68 1700        | 36 4.4                   | 1.8 1100  | < 2 0,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 710 36             | $\frac{1}{1}$                   | 18 < 10            |
|                                        |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                |                |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                 |                    |
| POW 95X-1046                           | < 1                                   | 2.7 ( 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5                                      | 0.39 (1                                                                                                        | 28 260         | 46 3.7                   | 1.7 520   | 76 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110 450            | < 1 < 5                         |                    |
| POW 95X-1047                           | < 1                                   |          | ( 10 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                                      | 3.9 ( 1                                                                                                        | 17 240         | 12 2.4                   | 1.1 660   | < 2 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 1400            |                                 | 6 ( 10             |
| POW 95X-1048                           |                                       | 1.3 < 5  | a second a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 < 5                                      | 2.8 < 1                                                                                                        | 22 270         | 47 3.2                   | 1.5 500   | < 2 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 1400<br>26 2100 | 9 < 5                           | 7 ( 10             |
| POW 95X-1049                           |                                       | 1.2 < 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | // · · · · · · · · · · · · · · · · · ·       | 3.2 < 1                                                                                                        | 21 220         | 29 2.7                   | 1.5 500   | < 2 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | < 1 < 5                         | 8 < 10             |
| POW 95X-1052                           |                                       | .83 < 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 1 < 5 (                                    |                                                                                                                | 16 170         | A CHARTER C              | 0.24 430  | Contraction of the Contraction o | 20 1800            | < 1 < 5                         | B < 10             |
|                                        | 1 a 2                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | · · · · · · · · · · · · · · · · · · ·                                                                          | T.N.           | 1                        | v.21 4JU  | < 2 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26 690             | ( 1 ( 5                         | 2 < 10             |
| POW 95X-1053                           | < 1                                   | 1.6 < 5  | < 10 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5 (                                    | 0.76 (1                                                                                                        | 10 000         | 10 ^ ~                   | 0.05      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                 |                    |
| POW 95X-1054                           |                                       |          | < 10 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 < 5 < < < < < < < < < < < < < < < < <     |                                                                                                                | 19 220         |                          | 0.95 450  | < 2 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85 370             | < 1 < 5                         | 5 < 10             |
| POW 95X-1054                           |                                       | 2.3 < 5  | <ul> <li>All thread T as T</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                                                                                                | 20 170         | 200 - Cont 200 - C       | 1.0 470   | < 2 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74 440             | < 1 < 5                         | 5 < 10             |
| POW 95X-1055                           | < 1 O                                 |          | Santa anta a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T 942 T 97                                   | 2.3 (1                                                                                                         | 30 68          | Analy have a             | 0.68 1100 | < 2 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 460             | < 1 < 5                         | 16 ( <b>10</b>     |
|                                        |                                       | 100000   | A REAL PROPERTY OF A REAL PROPER | < 1 < 5                                      | 2.7 < 1                                                                                                        | 10 350         | 160 2.1                  | 0.67 710  | < 2<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33 74              | < 1 < 5                         | 2 ( 10             |
| POW 95X-1057                           |                                       | 1.2 < 5  | < 10 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 1 < 5                                      | 4.3 < 1                                                                                                        | 19 170         | 4 3.3                    | 1.1 1300  | < 2 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66 350             | <ul> <li>▲30.0012-30</li> </ul> | <b>∼</b> %/∵tv     |

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3  $\,$ at 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

SIGNED :

TSL/95



# Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 2 of 2

# Geochemical Analysis Certificate

5W-2800-RG1

Date: JUL-07-95

Company: CAMECO CORPORATION Project:

Attn: M. Koziol

We hereby certify the following Geochemical Analysis of 39 Core samples submitted JUN-28-95 by .

| Sample<br>Number | Au<br>PPB | Au Check<br>PPB | Multi<br>Element |            | ·                                     |
|------------------|-----------|-----------------|------------------|------------|---------------------------------------|
| Pow95X-1089      | Ni l      | -               |                  |            |                                       |
| Pow95X-1091      | 3         | -               |                  |            |                                       |
| Pow95X-1092      | Ni l      | -               |                  |            |                                       |
| Pow95X-1093      | 5         |                 |                  |            |                                       |
| Pow95X-1094      | Ni l      | -               |                  |            |                                       |
| Pow95X-1095      | Nil       | -               |                  |            |                                       |
| Pow95X-1096      | 9         | -               |                  |            | ·                                     |
| Pow95X-1097      | 15        | -               |                  |            | to the late.                          |
| Pow95X-1098      | _2287_    | 2232            | -Bo              | reder      | south of my and                       |
|                  |           |                 |                  | <u>( M</u> | south of hos later.<br>te c p beaung) |
|                  |           |                 |                  |            | 9                                     |

One assay ton portion used.

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705)642-3244 FAX (705)642-3300

#### TSL/ASSAYEF Laboratories

1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA, ONTARIO 14W-1A4 PHONE #: (905)602-8236 FAX #: (905)206-0513

#### I.C.A.P. PLASMA SCAN

#### Aqua-Regia Digestion

SAMPLE # Ag Al As B Ba Be Bi Co Cr Mn Mo Ni Ca Cd Cu Fe Mg Na P РЬ Sc Sn. Sh Sr x ppm \*pp= ppa ppa ppm PPR \* рр**в ...рр**щ ppm 🗶 🔹 PPm \* ppm PPm \$ PPM PPM ppm ppm ppm ppm pp POW95X-084 <1 1.9 (5 < 10 28 < 1 C 5 1.5 < 1 31 420 38 3.6 0.94 540 ( 2 0 27 48 400 < 1 · 6 5 17 4 10 2 POW95X-085 (,1 1.8 ( 5 < 10 19 < 1 < 5 8.7 (1 19 120 120 5.9 2.0 1700 < 2 0.02 52 16 < 1 < 5 13 4 10 POW95X-086 1.1 10 < 10 20 (1 < 1 < 5 1.3 (1 26 680 140 4.4 0.62 460 < 2 0,05 50 -36 20 4 5 6 < 10 1 POV95X-087 2.7 . 20 < 10 ( 1 < 1 < 1 < 5 5.2 4.1 62 49 150 18 2.0 2000 4 (0.01 46 300 1 - ( 5 14 ( 10 2.2+ < 5 < 10 29 POW95X-088 *č* 1 2.6 (1 19 290 < 1 ... 5 46 3.5 1.8 620 < 2 0.06 100 340 < 1 4-5 5 ( 10 5 1.8 < 5 < 10 - 34 POW95X-089 < 1 < 5 3.6 < 1 **(**1 19 270 4.3,5 2.1.800 < 2 0.06 150 450 ( 1 ( 5 7 c 10 1.3 < 5 < 10 73 3.1 < 5 < 10 28 POW95X-090 **(-1** < 1 < 5 0.69 < 1 11-190 23 1.6 0.70 170 < 2 0.07 47 410 < 1 ₹#5 3 4 10 2 POM95x-091 **(** -1 < 1 < 5 2.1 < 1 28 500 31 4.2 2.2 620 < 1 <del>6</del>5 < 2 0.05 180 500 11-C-10 2.7 < 5 < 10 13 POW95X-092 < 1 < 5 4.9 < 1 (1 33 68 52 19 1.8 2200 4 (0.01 23 370 < 1 4 5 19 ( 10 7 POW95X-093 2.1 6 5 < 10 25 4.1 < 1 < 5 0.50 < 1 21 340 16 3.2 1.9 290 < 2 0.03 120 520 < 1 3 < 10 < 5 <1 1.3 < 5 < 10 51 POW95X-094 < 1 < 5 2.4 < 1 17 260 31 3.2 1.4 590 < 2 0,09 36 420 5 010 <1 0.63 10 < 10 - 8 POW95X-095 < 1 <- 5 0.16 < 1 200 18 24 1400 27 2.8 0.64 180 < 2/0.02 2 5 3 (10 <1 3.8 10 < 10 < 1 POW95X-1069 < 1 (5 5.2 4-1 57 1800 46 6.8 850 60 2.5 1000 < 2(0.01 < 1 < 5 20 6 10 < 1 2.7 < 5 < 10 36 POW95X-1070 2.7 41 < 1 < 5 24 130 14 8.0 1.6 1200 < 2 0.06 12 1100 16, ( 10 3 POW95X-1071 -1 0.22 •• 5 < 10 33 < 1 < 5 29 120 4.6 ( 1 110.5.3 1.9 1000 < 2 0.03 46 290 15 < 1 0.29 < 5 < 10 110 POW95X-1072 < 1 < 5 3.4 41 32 150 78 6.9 1.9 1200 10 0.05 61 400 2 < 5 20 ( 10 12 <1 1.9 < 5 < 10 34 POW95X-1073 < 1 < 5 4.8 4 1 28 110 140 4.6 2.2 960 < 2 0.01 87 92 < 5 (1 23 ( 10 19 POW95X-1074 < 1 2.9 < 5 < 10 25 < 1 < 5 4.7 (1 25 240 69 4.5 2.3 870 < 2 0.02 87 96 23 4-10 9 < 1 0.42 < 5 < 10 23 POW95X-1075 20 250 < 1 < 5 6.1 ¢1 160 3.6 2.1-960 < 2<0.01 з 🦉 **ć • 5** 14.4.10 13 POW95X-1076 <13.2 < 5 < 10 / 2 <12.3 < 5 < 10 / 2 <13.4 < 5 < 10 / 18 < 1 < 5 4.3 (1 32 120 78 7.1 1.8.890 59 170 < 2 0.03 < 1.5 26 410 3 an straight 430 YANG A ...... 1 2 14 11.67 : 40° i POW95X-1077 (1 (5 2.9 (1 36 140 150 9.6 0.93 1100 < 2 0.05 2 46 < 1 C-5 20 (210 POW95x-1078 < 1 0.28 < 5 < 10 37 < 1 < 5 0.57 < 1 10 340 180 1.9 0.09 460 < 2 0.02 10 380 < 1 < 5 2 (10 <1 1.4 < 5 < 10 42 <1 1.4 < 5 < 10 41 POW95X-1080 < 1 < 5 0.17 < 1 10-250 6 7.4 0.92 320 < 2 0.04 . 33 350 < 1 6.5 3 4 10 POW95X-1081 < 1 < 5 0.17 < 1 10 250 2 7.3 0.92 300 < 2.0.04 34 350 ( 1 65 3. (4,10 < 1 0.35 < 5 < 10 60 POV95X-1082 < 1 < 5 3.2 < 1 14 350 44 2.6 1.7 730 < 2-0.03 58 200 6 ( 10 24. 47.22 POW95X-1083 < 1 0.19 < 5 < 10 7 < 1 < 5 2.5 (1 < 1 21 240 16 2.1 1.5 460 < 2 0.03 70 50 65 6 ( 10 8 < 1 0.39 < 5 < 10 16 POW95X-1084 < 1 < 5 2.6 - C 1 29 190 130 3.7 1.5 1100 54 0.05 110 .370 2 < 5 9 < 10 <1 2.5, < 5 < 10, 30 POW95X-1085 81 5.5 1.4 850 <1 <5 2.5 <1 30 120 < 2 0.05 51 380 ( 1 ( 5 17. 4.10 0.83 < 5 < 10 28 1.7 \* < 5 < 10 55 POU95X-1086 <1 0.83 < 5 < 10 < 1 < 5 0.79 < 1 18 730 6 1.8 0.38 310 1 4 10 2 0.04 19 200 < 1 < 5 POW95X-1088 < 1 < 1 < 5 0.45 < 1 16 **310** 50 2.7 0.73 260 < 2 0.05 30 520 < 1 < 5 2 < 10 POW95X-1089 < 1 2.1. ( 5 < 10 360 < 5 23 550 < 1 2.0 ( 1 30 4.3 2.0 650 < 2 0.05 84 1900 < 5 10 4.10 24 POW95X-1091 2.9 4 5 < 10 < 1 < 1 < 5 < 1 14 < 1 15 -25 34 5.6 1.3 2700 < 2(0.01 60 170 < 1 C 5 11 ( 10 18 POW95X-1092 1.3 < 5 < 10 6 3.5 < 5 < 10 < 1 13 87 < 1 < 1 <- 5 6.2 C1 760 2.4 0.71 830 < 2 0.08 12, 930 ( 1 ( 5 8 ( 10 12 POW95X-1093 < 1 < 5 < 1 35 57 45 7.0 1.7 1300 7.5 (1 < 1 < 5 < 2.0.01 58 290 22 (-10 12 POV95X-1094 1.8 < 5 < 10 6 110 2.3 0.84 460 <, 1 < 1 < 5 2.4 (1 16 410 < 2 0.13 39 150 < 1 < 5 8 < 10

A .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

SIGNED :

4

4

6

1

5

8

8

6

2

1

TSL/95

5W-2800-R01

CAMECO CORPORATION ATTN: M. KOZIOL



.

Established 1928

# Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Pa

# Geochemical Analysis Certificate

Company: CAMECO CORPORATION Project: Attn: M. Koziol Date: AUG-23-95

We hereby certify the following Geochemical Analysis of 53 Rock samples submitted AUG-16-95 by .

|   | Sample<br>Number            | Au<br>PPB | Au Check<br>PPB | Multi<br>Element | لى                                    |
|---|-----------------------------|-----------|-----------------|------------------|---------------------------------------|
|   | POW-95C-2013                | 3         | -               | Results          |                                       |
|   | POW-95C-2014                | 5         | 7               | to               |                                       |
|   | POW-95C-2015                | Nil       | -               | follow           | S M N                                 |
|   | POW-95C-2016                | Ni l      | -               |                  | 10° m no                              |
|   | POW-95C-2017                | Ni l      | -               |                  | 0                                     |
|   | POW-95C-2018                | 5         | -               |                  | 11cl<br>ncl<br>anal                   |
|   | POW-95C-2019                | 12        | -               |                  |                                       |
|   | POW-95C-2020                | Ni 1      | -               |                  |                                       |
|   | POW-95C-2021                | Ni 1      | -               |                  | 776                                   |
| 1 | POW-95C-2022                | Nil       | -               |                  | 5 0 0                                 |
|   | POW-95C-2023                | Nil       |                 |                  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|   | POW-95C-2024                | Ni I      | ~               |                  |                                       |
|   | POW-95C-2025                | Ni 1      | -               |                  | $ \gamma  > 0$                        |
|   | POW-95C-2026                | Ni 1      | -               |                  | ()                                    |
|   | POW-95C-2027                | Ni I      | -               |                  | Č                                     |
|   | POW-95C-2028                | Nil       |                 |                  |                                       |
|   | POW-95C-2029                | Ni l      | 2               |                  |                                       |
|   | POW-95X-208                 | 3         | -               |                  |                                       |
|   | POW-95X-209                 | Nil       | -               |                  |                                       |
|   | POW-95X-210                 | Ni l      | -               |                  |                                       |
|   | POW-95X-211                 | Nil       |                 |                  |                                       |
|   | POW-95X-212                 | Ni l      | -               |                  |                                       |
|   | POW-95X-213                 | Ni l      | -               |                  |                                       |
|   | POW-95X-214                 | Ni l      | -               |                  |                                       |
|   | POW-95X-215                 | Ni l      | -               |                  | ·                                     |
|   | POW-95X-216                 | Ni I      |                 |                  |                                       |
|   | POW-95X-217                 | 5         | -               |                  |                                       |
|   | POW-95X-218                 | 10        | -               |                  |                                       |
|   | POW-95X-219                 | 9         |                 |                  |                                       |
|   | POW-95X-220                 | 1186      | 1090            |                  |                                       |
|   | One assay ton portion used. |           |                 |                  |                                       |
|   | end using ten pertien used. |           |                 |                  | 1 11                                  |
|   |                             |           |                 |                  |                                       |

· flbf Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300 Page 1 of 2

5W-3316-RG1

CAMECO CORPORATION ATTN: M. KOZIOL

# TSL/ASSAY. ; Laboratories

Aqua-Regia Digestion

.

| 1270 PEWSTER DRIVE. UNIT | 3 HISSISSAUGA, ONTARIO LAW-184 |
|--------------------------|--------------------------------|
| PHONE #: (905)602-8236   | PAX #: (905)206-0513           |
| I.C.A.P.                 | PLASMA SCAN                    |

| REPORT No. | : | M5590       |
|------------|---|-------------|
| Page No.   | : | 1 of 2      |
| File No.   | : | ACZAMA      |
| Date       | : | AUG-25-1995 |

59-3316-RC1

⊶ ù

| pp         1         pp         1         pp         pp<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE #                 | λg    |     | AL  | Am                                                                                                             |      |            | 8a  | 80         | `<br> |          | <b>~</b> ~  | <b>a</b> 1 | ~                                                                                                              | ~        |     |     |        |     |       |        |       |      |       |     |              |                  |      |     |      |       |      |     |             |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|-----|-----|----------------------------------------------------------------------------------------------------------------|------|------------|-----|------------|-------|----------|-------------|------------|----------------------------------------------------------------------------------------------------------------|----------|-----|-----|--------|-----|-------|--------|-------|------|-------|-----|--------------|------------------|------|-----|------|-------|------|-----|-------------|-------|
| $ \begin{array}{c} 1 & 1 & 0 & 10 & 10 & 10 & 10 & 10 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | PP    |     |     |                                                                                                                | ı p  | pa.        |     |            |       | -        | Car.<br>X   | -          |                                                                                                                |          | -   |     |        | 1   |       |        |       | -    |       |     |              |                  | 9n   | 3r  | ìТ   | v     | ¥    | Y   | <b>I</b> n  | Ir    |
| $ \begin{array}{c} port-spc-rold \\ port-s$                                                                                                                                                                                                                   | POW-95C-2013             |       | -   | 4.0 |                                                                                                                |      |            |     |            |       | <u>.</u> |             |            |                                                                                                                |          |     |     |        |     | երա   |        |       | ₽₽¤  | i ppe | ppm | ₽ <b>₽</b> ₩ | እ<br>ይ<br>ይ<br>መ | PPA  | ppm | ppm  | ppm   | ppm  | թթա | <b>P</b> Pm | ppm   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POW-95C-2014             |       |     |     |                                                                                                                |      |            |     |            |       | -        |             |            |                                                                                                                |          | 99  | 9,  | 3 1.   | 7 2 | 100   | < 24   | 0.01  | 70   | 200   | < 1 | (5           | 21               | ( 10 | 85  | E E  | 140   |      |     |             |       |
| $ \begin{array}{c} p_{00-952-2016} \\ p_{00-952-2016} \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ (1 ) \\ $                                                  |                          |       |     |     |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          | 65  | 7.  | 6 1.   | 4 1 | 400   | e 20   | 0.01  | 63   |       |     | -            |                  |      |     |      |       |      |     |             |       |
| $\begin{array}{c} p_{04}=p_{02}=2017 \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2$ | POW-95C-2016             |       |     |     |                                                                                                                |      |            | - ÷ |            |       | -        |             |            |                                                                                                                |          | 74  | 9.  | 5 1.   | 7 2 | 100   | < 24   | 0.01  | 54   | 190   | _   |              |                  |      |     |      |       |      |     |             |       |
| Prov-spc-2010       C1       C1       C2       C1       C1       C2       C1       C1       C2       C1       C2       C1       C1       C2       C1       C2       C1       C2       C1       C3       C4       C1       C1 <thc1< th="">       C1       C1<td>POW-95C-2017</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>69</td><td>7.</td><td>71.</td><td>7 2</td><td>000</td><td>&lt; 2 (</td><td>0.01</td><td>57</td><td>180</td><td>41</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POW-95C-2017             |       |     |     |                                                                                                                |      | _          |     |            |       |          |             | _          |                                                                                                                |          | 69  | 7.  | 71.    | 7 2 | 000   | < 2 (  | 0.01  | 57   | 180   | 41  | -            |                  |      |     |      |       |      |     |             |       |
| $ \begin{array}{c} e_{1} e_{2} e_{2} e_{2} e_{1} e_{1} e_{1} e_{1} e_{1} e_{2} e_{1} e_{2} e_{1} e_{2} e_{2} e_{2} e_{2} e_{1} e_{2} e_{2$                                                                                                                                                                                                                                                                                                                                                  |                          |       | •   | 3.0 | ( )                                                                                                            | •    | 10         | 12  | <          | l (   | 5        | 7.1         | < 1        | 32                                                                                                             | 70       | 83  | 7.  | 91.    | 8 1 | 500   | < 2 I  | 0.01  | 66   |       |     | -            |                  |      |     |      |       |      |     |             |       |
| $\begin{array}{c} pou-spc-2a19 \\ pou-spc-2a20 \\ pou-spc-2a20 \\ pou-spc-2a20 \\ pou-spc-2a20 \\ pou-spc-2a20 \\ (1 \ 1.3 \ (5 \ (10 \ 5) \ 10 \ (1 \ (5 \ 7) \ (1 \ (5 \ 7) \ (1 \ 11 \ 22 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 12 \ 21 \ 5) \ (1 \ 12 \ 21 \ 12 \ 21 \ 21 \ 21 \ 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POW-95C-2018             | . < 1 | . 1 | 1.0 | 10                                                                                                             |      | 10         | 5   |            |       | -        |             |            |                                                                                                                |          |     |     |        |     |       |        |       |      |       |     | -            |                  | •••  |     | 0.5  | 130   | ¢ 10 | 5   | 110         | 8     |
| $\begin{array}{c} p_{04}, g_{02}, g_{02}, g_{02}, g_{02}, g_{01}, g_{01}, g_{01}, g_{01}, g_{01}, g_{02}, g_{01}, g_{01}, g_{02}, g_{01},                                                                                                                                                                                                                                                                                                                                                   | PON-95C-2019             |       |     |     | -                                                                                                              |      |            |     |            |       |          |             |            |                                                                                                                |          |     | ••• |        |     |       | < 2 (  | 0.01  | 137  | 52    | < 1 | < 5          | 8 (              | ( 10 | 65  | 18   | 41    | < 10 | 7   |             | I     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PON-95C-2020             |       |     | -   |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       | (2)    | 10.0  | 27   | 40    | < 1 | < 5          | 6 (              | 10   |     |      |       |      |     |             | · •   |
| $\begin{array}{c} p_{04-952-2022 \\ (1 1.3 5 (10 7 (-1) (-5 7.7 (-1) (-5 1.4 - 5) (-7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 7.7 (-1) (-5 $                                                                                                                                                                                                                                                                                                                                                 | POW-95C-2021             |       |     |     |                                                                                                                |      |            |     |            |       |          | -           |            |                                                                                                                |          |     |     |        | 92  | 000   | < 2 (  | 0.01  | 42   | 98    |     |              |                  |      |     |      |       |      | •   |             |       |
| $\begin{array}{c} p_{00-95c-2023} \\ p_{00-95c-2024} \\ (1 \ 1.6 \ 10 \ 10 \ 11 \ (1 \ 5 \ 7.6 \ (1 \ 119 \ 37 \ 43 \ 5.6 \ 1.9 \ 1700 \ (2 \ 0.01 \ 39 \ 110 \ (1 \ 4.5 \ 9 \ (10 \ 65 \ 15 \ 47 \ (10 \ 65 \ 55 \ 57 \ 57 \ 57 \ 57 \ 57 \ 57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POW-95C-2022             |       |     |     |                                                                                                                |      |            | -   | •          |       |          |             |            |                                                                                                                |          |     |     |        | 91  | 600   | < 2 (  | 0.01  | 51   | 140   | < 1 | ۲ 5          |                  |      |     |      |       |      |     |             |       |
| $\begin{array}{c} pou-spic-2023 \\ pou-spic-2024 \\ pou-spic-2025 \\ pou-spic-2026 \\ pou-spic-2026 \\ pou-spic-2027 \\ pou-spic-2028 \\ pou-spi$                                                                                                                                                                                                                   | 1                        |       |     |     |                                                                                                                | •    | 10         |     | - <b>1</b> | L C   | 2        | 7.7         | < 1        | 18                                                                                                             | 34       | 40  | 5.  | 4 1.   | 91  | 600   | < 2 (  | 0.01  | 39   | 110   |     |              |                  |      |     |      |       |      | -   | -           |       |
| $\begin{array}{c} pou-spsc-2024 \\ pou-spsc-2025 \\ (1 1.8 10 + 10 10 + 1 + 65 + 7.6 + (1 21 37 47 6.7 1.9 1500 + 2 0.02 56 130 + (1 + 5 11 + (10 84 133 64 + 10 5 74 6 10 90 + 10 + 10 + 10 + 10 + 10 + 10 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POW-95C-2023             | (1    | 1   | 1.6 | 10                                                                                                             |      | 10         | 12  |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       |      |       |     |              |                  |      |     |      |       | · 10 | D   | 22          | 2     |
| $\begin{array}{c} p_{04}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_{02}=g_$                                                                                                                                                                                                                                                                                                                                                  | POW-95C-2024             |       |     |     |                                                                                                                |      |            |     |            |       |          |             | _          |                                                                                                                |          |     |     | ,      |     |       |        |       | 42   | 100   | < 1 | < 5          | 9 (              | 10   | 80  | 27   | 54    |      |     |             |       |
| $\begin{array}{c} pou-spsc-2026 \\ pou-spsc-2027 \\ (1) 1.0 \\ (1) 1.0 \\ (1) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0 \\ (2) 1.0$                                                                                                                                        | PON-95C-2025             |       |     |     |                                                                                                                |      |            |     |            |       |          |             | -          |                                                                                                                |          |     |     |        |     |       |        |       | 56   | 130   | < 1 | < 5          |                  |      |     |      |       |      | •   |             |       |
| $\begin{array}{c} p_{00-95C-2027} \\ p_{00-95C-2029} \\ (1 \ 4.3 \ (5 \ (10 \ 7 \ (1 \ (5 \ 7.0 \ (1 \ 29 \ 56 \ 47.2 \ 1.9 \ 1600 \ (2 \ 0.01 \ 51 \ 140 \ (1 \ (5 \ 16 \ (10 \ 72 \ 35 \ 110 \ (10 \ 5 \ 80 \ 7.7 \ 1.9 \ 1600 \ (2 \ 0.01 \ 51 \ 140 \ (1 \ (5 \ 16 \ (10 \ 72 \ 35 \ 110 \ (10 \ 5 \ 80 \ 7.7 \ 1.9 \ 1600 \ (2 \ 0.01 \ 51 \ 140 \ (1 \ (5 \ 16 \ (10 \ 72 \ 35 \ 110 \ (10 \ 5 \ 80 \ 7.7 \ 1.9 \ 1600 \ (2 \ 0.01 \ 50 \ 160 \ (1 \ (5 \ 26 \ (10 \ 77 \ 56 \ 160 \ (1 \ 49 \ 91 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120$                                                                                                                                                                                                                                                                                                                                                | POW-95C-2026             |       |     |     |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          |     |     |        | 91  | 700   | < 2 (  | 0.01  | 48   | 120   | < 1 | < 5          |                  |      |     |      |       |      | -   |             | _     |
| pow-95C-2028       (1       4.3       (5       (1       (2       (1       (1       (5       (1       (1       (5       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10       (10)       (10)       (10       (10       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PON-95C-2027             |       |     |     |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       | 37   | 90    | < 1 | < 5          |                  |      |     |      |       |      |     |             |       |
| $\begin{array}{c} pou-spsc-2028 \\ pou-spsc-2029 \\ (1 4.1 (5 < 10) 3(1 (5 ) 3.1 (1 31 .73 70 8.9 1.9 1500 (2 0.01 58 180 (1 (5 ) 28 (10) 77 58 180 (10 4 99 12 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 38 (1 (5 ) 3.1 (1 (5 ) 3.1 (1 (5 ) 3.1 (1 (1 (5 ) 3.1 (1 (1 (5 ) 3.1 (1 (1 (5 ) 3.1 (1 (1 (1 (1 (5 ) 3.1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | :     |     |     | • •                                                                                                            |      | ••         | •   | • •        |       |          | <b>b.</b> 0 | < 1        | 29                                                                                                             | 56       | 64  | 7.  | 2 1.   | 9 1 | 600   | < 2 0  | 0.01  | 51   | 140   | < 1 | < 5          |                  |      | -   | -    |       |      |     |             |       |
| $\frac{100-952-2029}{100-95X-208}  (1 \ 4.1 \ (5 \ (10 \ 3) \ (1 \ (5 \ 3.1 \ (1 \ 5 \ 3.1 \ (1 \ 3) \ 10 \ 6.1 \ 10 \ (1 \ 9.1 \ 9.100 \ (2 \ 0.01 \ 50 \ 100 \ (1 \ (5 \ 20 \ (1 \ 5 \ 21 \ (10 \ 35 \ 61 \ 10 \ (1 \ 3 \ 120 \ 61 \ 7) \ 100 \ (2 \ 0.02 \ 67 \ 240 \ (1 \ (5 \ 21 \ (10 \ 35 \ 61 \ 7) \ (10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PON-95C-2028             | 1 1   | 4   | .3  | c S                                                                                                            | •    | 10         | 2   | <i>с</i> 1 |       |          | 7 .         |            |                                                                                                                | -        | •   |     |        |     |       |        |       |      |       |     |              |                  |      |     | •••  |       | . 14 |     | au          | · ' ] |
| $\begin{array}{c} pol-95x-208 \\ pol-95x-209 \\ (1 4.7) (5 (10 21 (1 (5 2.4 (1 2 20 200 98 5.1 1.2 990 34 0.13 65 260 (1 (5 21 (1 0 35 66 170 (1 0 1 3 120 6 1 0 0 98 5.1 1.2 990 34 0.13 65 260 (1 (5 3 25 (1 0 4 0 2800 220 (1 0 94 13 16 0 96 15 1 2.3 (5 (1 0 5 (1 (5 2.1 (1 1 6 10 96 7.7 2.0 1200 (2 0.03 66 210 (1 (5 3 26 (1 0 5 12 (1 0 32 73 11 90) 95x-211 (1 1 (5 (1 0 1 (5 2.7 (1 1 6 58 55 11 1.6 150 (2 0.03 53 410 (1 (5 3 4 (1 0 19 2400 82 (1 0 32 73 11 90) 95x-212 (1 1.7 (5 (1 0 70 (1 (5 8.0 (1 29 75 99 7.5 0) 1.1 220 (2 0.03 53 410 (1 (5 3 4 (1 0 54 260 320 (1 0 4 190 20 00) 95x-213 (1 1.2 10 (1 0 30 (1 (5 2.6 (1 1 5 1.0 (1 (5 1.0 (1 (5 2.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (5 1.0 (1 (1 (5 1.0 (1 (5 1.0 (1 (1 (5 1.0 (1 (1 (5 1.0 (1 (5 1.0 (1 (1 (5 1.0 (1 (1 (1 (5 1.0 (1 (1 (1 (1 (5 (1 (1 (1 (5 1.0 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PON-95C-2029             |       |     |     |                                                                                                                |      | -          |     |            |       |          |             | -          |                                                                                                                |          |     |     |        |     |       |        | _     | 58   | 180   | < 1 | ( 5          | 26 <             | 10   | 77  | 58   | 180   | < 10 |     | 99          |       |
| $\begin{array}{c} pou-95x-209 \\ prou-95x-210 \\ (1 2.3 \ c \ 5 \ c \ 10 \ c \ 5 \ 2.1 \ c \ 5 \ 2.1 \ c \ 1 \ 35 \ 110 \ 96 \ 7.7 \ 2.0 \ 1200 \ c \ 2 \ 0.03 \ 62 \ 2.0 \ c \ 1 \ c \ 5 \ 2.5 \ c \ 10 \ 40 \ 2800 \ 220 \ c \ 10 \ 9 \ 130 \ 16 \ 96 \ 7.7 \ 110 \ 100 \ 96 \ 7.7 \ 110 \ 100 \ 20 \ 100 \ 20 \ 10 \ 100 \ 96 \ 100 \ 20 \ 10 \ 100 \ 96 \ 100 \ 20 \ 10 \ 100 \ 96 \ 100 \ 20 \ 100 \ 100 \ 96 \ 100 \ 20 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 1000 \ 100 \ 100 \ 100 \ 100 \ 100 $                                                                                                                                                                                                                                                                                                                                                | PON-95X-208              |       |     | _   | the second s | _    | _          |     |            |       |          |             | _          | the second s | _        |     |     |        |     | _     |        |       |      | _     | < 1 | < 5          | 21 (             | 10   | 35  | 66   |       |      | -   |             | _     |
| $ \begin{array}{c} 1 & 2.3 & c \ 5 & c \ 10 & 5 & c \ 1 & c \ 5 & 1.7 & c \ 1 & 16 & 20 & 36 & 5.8 & 1.1 & 670 & c \ 2 & 0.11 & 19 & 400 & c \ 1 & c \ 5 & 14 & c \ 10 & 19 & 2400 & 32 & c \ 10 & 32 & 73 & 11 \\ \hline pou-95x-212 & c \ 1 & 1.7 & c \ 5 & c \ 10 & 70 & c \ 1 & c \ 5 & 2.7 & c \ 1 & 36 & 58 & 55 & 11 & 1.8 & 1500 & c \ 2 & 0.02 & 35 & 240 & c \ 1 & c \ 5 & 34 & c \ 10 & 10 & 42 & 120 & c \ 10 & 32 & 73 & 11 \\ \hline pou-95x-213 & c \ 1 & 1.2 & 10 & c \ 10 & 30 & c \ 1 & c \ 5 & 2.6 & c \ 1 & 15 & 130 & 51 & 5.1 & 0.64 & 760 & 2 & 0.02 & 35 & 240 & c \ 1 & c \ 5 & 34 & c \ 10 & 130 & 42 & 120 & c \ 10 & 36 & 76 & 3 \\ \hline pou-95x-214 & c \ 1 & 0.82 & 40 & c \ 10 & 10 & c \ 1 & c \ 5 & 1.8 & c \ 1 & 47 & 10 & 60 & 19 & 0.48 & 100 & c \ 2 & 0.05 & 10 & 770 & c \ 1 & c \ 5 & 16 & c \ 10 & 43 & 19 & 24 & c \ 10 & 7 & 64 & 4 \\ \hline pou-95x-215 & c \ 1 & 0.85 & 40 & c \ 10 & 10 & c \ 1 & c \ 5 & 1.8 & c \ 1 & 47 & 110 & 60 & 19 & 0.48 & 100 & c \ 2 & 0.05 & 52 & 390 & 3 & c \ 5 & 20 & c \ 10 & 26 & 15 & 110 & c \ 10 & 4 & 200 & 23 \\ \hline pou-95x-216 & c \ 10 & 9.5 & 40 & c \ 10 & 9 & c \ 1 & c \ 5 & 7.7 & c \ 1 & 16 & 33 & 41 & 5.3 & 2.0 & 2005 & 52 & 390 & 3 & c \ 5 & 20 & c \ 10 & 26 & 13 & 130 & c \ 10 & 4 & 200 & 18 \\ \hline pou-95x-217 & c \ 1 & 1.7 & 15 & c \ 10 & 2 & c \ 1 & c \ 5 & 5.2 & c \ 1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & c \ 2 & 0.05 & 52 & 390 & 3 & c \ 5 & 20 & c \ 10 & 26 & 13 & 130 & c \ 10 & 4 & 200 & 18 \\ \hline pou-95x-216 & c \ 1 & 0.71 & c \ 5 & 18 & c \ 1 & c \ 5 & 5.2 & c \ 1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & c \ 2 & 0.05 & 52 & 390 & 3 & c \ 5 & 20 & c \ 10 & 26 & 13 & 30 & c \ 10 & 31 & 20 & 4 & 200 \\ \hline pou-95x-216 & c \ 1 & 1.7 & 15 & c \ 10 & 22 & c \ 1 & c \ 5 & 5.2 & c \ 1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & c \ 2 & 0.05 & 52 & 390 & 3 & c \ 5 & 12 & c \ 10 & 71 & 22 & 63 & c \ 10 & 3 & 120 & 4 \\ \hline pou-95x-116 & c \ 1 & 0.71 & c \ 1 & c \ 5 & 3.4 & c \ 1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & c \ 2 & 0.02 & 51 & 1700 & 2 & c \ 5 & 12 & c \ 10 & 71 & 22 & 63 & c \ 10 & 3 & 210 & 5 & 120 & 10 & 3 & 120 & 4 $                                                                                                                                                                                                                                                                                            | POW-95X-209              | × 1   | 4   | . 7 | < 5                                                                                                            | < 1  | 0          |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       |      | 260   | < 1 | < 5          | 25 <             | 10   | 40  | 2800 |       |      | _   |             |       |
| POW-95X-211 $(1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \ 4.1 \$                                                                                                                                                                                                                                                                                                                                                                                      | PCW-95X-210              | · ¢ 1 | 2   | . 3 | < 5                                                                                                            | < 1  | 0          |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       |      | 210   | ∢ 1 | < 5          | 30 <             | 10   | 16  | 580  |       |      |     |             |       |
| $\begin{array}{c} pol-95x-211 \\ pol-95x-212 \\ pol-95x-212 \\ pol-95x-212 \\ pol-95x-212 \\ (1 \ 1.7 \ (5 \ (10 \ 70 \ (1 \ (5 \ 2.7 \ (1 \ 36 \ 58 \ 55 \ 11 \ 1.8 \ 1500 \ (2 \ 0.03 \ 53 \ 410 \ (1 \ (5 \ 34 \ (10 \ 54 \ 260 \ 320 \ (10 \ 4 \ 190 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 2     |     |     |                                                                                                                |      |            |     |            | • •   |          |             | `+         | 10                                                                                                             | 410      | 96  | 5.8 | \$ 1.3 | 1 ( | 570   | < 2 0  | .11   | 19   | 840   | < 1 | < 5          | 14 <             | 10   | 19  | 2400 |       |      |     |             |       |
| $\begin{array}{c} pou-95x-212 \\ (1 1.7 \ (5 \ (1 0 \ 70 \ (1 \ (5 \ (0 \ 70 \ (1 \ (5 \ 0.0 \ (1 \ 29 \ 75 \ 99 \ 70 \ 1.1 \ 200 \ (2 \ 0.03 \ 53 \ 410 \ (1 \ (5 \ 34 \ (10 \ 54 \ 260 \ 320 \ (10 \ 4 \ 190 \ 20 \ 50) \ 50 \ 50 \ 50 \ 50 \ 50 \ 50 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POW-95X-211              | < 1   | 4   | .1  | < 5                                                                                                            | < 1  | 0          | 14  | < 1        |       | 5 3      | 1.7         | <i>c</i> 1 | 16                                                                                                             | 50       |     |     |        |     |       |        |       |      |       |     |              |                  |      |     |      |       |      |     |             | ••    |
| $\begin{array}{c} 00-95x-213 \\ 00-95x-214 \\ (1 0.82 \ 40 \ (10 \ 10 \ (1 \ (5 \ 2.6 \ (1 \ 15 \ 10.5 \ 1.5 \ 1.6 \ (1 \ 670 \ 2.0.05 \ 10 \ 770 \ (1 \ (5 \ 9 \ (10 \ 130 \ 42 \ 120 \ (10 \ 8 \ 764 \ 40 \ 760 \ 2.0.05 \ 10 \ 770 \ (1 \ (5 \ 6 \ (10 \ 43 \ 19 \ 24 \ (10 \ 7 \ 64 \ 40 \ 764 \ 40 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764 \ 764$                                                                                                                                                                                                                                                                                                                                                |                          | . < 1 | 1   | .7  | < 5                                                                                                            | < 1  | 0          |     |            |       |          |             | -          | -                                                                                                              |          |     | _   |        |     | -     |        |       |      | 410   | < 1 | < 5          | 34 <             | 10   | 54  | 260  | 320   | ( 10 |     | 190         | 20    |
| 00-95x-214       (10.82)       40 (10)       10       (1)       (5)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | . < 1 | t   | . 2 | 10                                                                                                             | < 1  | 0          |     |            |       |          |             | _          |                                                                                                                |          |     |     |        |     |       |        |       |      | 240   | < 1 | < 5 ·        | 9 <              | 10   | 130 | 42   |       |      | a   |             |       |
| $\begin{array}{c} 00-95x-215 \\ 00-95x-216 \\ 00-95x-216 \\ 00-95x-216 \\ 00-95x-217 \\ (1 \ 1.7 \ 15 \ (10 \ 2 \ 1 \ (5 \ 2.0 \ (1 \ 6 \ 1 \ 6 \ 1 \ 5 \ 1.6 \ (1 \ 6 \ 1 \ 5 \ 1.6 \ (1 \ 6 \ 1 \ 5 \ 1.6 \ (1 \ 6 \ 1 \ 5 \ 1.0 \ (1 \ 6 \ 1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ (1 \ 5 \ 1.0 \ 5 \ 1.0 \ (1 \ $                                                                                                                                                                                                                                                                                                                                             | 1. 09-95X-214            | ic 1  | 0.1 | 82  | 40                                                                                                             | < 1  | 0          |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       | 10   | 770   | < 1 | < 5          | б (              | 10   | 43  | 19   |       |      | -   | -           |       |
| $ \begin{array}{c} 1 & 0.95 & 1.0 & 0.1 & 0.5 & 1.0 & 0.1 & 0.5 & 1.0 & 1.2 & 0.55 & 1400 & 0.2 & 0.06 & 86 & 490 & 0.1 & 0.5 & 1.9 & 0.2 & 9 & 16 & 1.20 & 0.0 & 5 & 1.70 & 1.2 \\ \hline 00-95x-217 & 0.1 & 1.7 & 15 & 0 & 2 & 0.1 & 0.5 & 7.7 & 0.1 & 16 & 33 & 41 & 5.3 & 2.0 & 2000 & 0.2 & 0.02 & 31 & 96 & 0.1 & 0.5 & 1.2 & 0.71 & 22 & 63 & 0.0 & 4 & 200 & 16 \\ \hline 00-95x-218 & 0.1 & 2.5 & 0.5 & 0.1 & 18 & 0.1 & 0.5 & 0.5 & 0.1 & 16 & 33 & 41 & 5.3 & 2.0 & 2000 & 0.2 & 0.02 & 31 & 96 & 0.1 & 0.5 & 1.2 & 0.71 & 22 & 63 & 0.0 & 5 & 60 & 7 \\ \hline 00-95x-219 & 0.07 & 0.5 & 0.0 & 320 & 0.1 & 0.5 & 5.2 & 0.1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & 0.2 & 0.07 & 63 & 480 & 0.1 & 0.5 & 1.2 & 0.0 & 12 & 0.3 & 24 & 210 & 0.1 & 5 & 100 & 3 & 120 & 4.5 & 1.5 & 1200 & 0.02 & 51 & 1700 & 2 & 0.5 & 52 & 9 & 0.3 & 24 & 210 & 0.1 & 5 & 120 & 8 \\ \hline 00-95x-219 & 0.07 & 0.5 & 0.0 & 320 & 0.1 & 0.5 & 5.2 & 0.1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & 0.2 & 0.02 & 51 & 1700 & 2 & 0.5 & 12 & 0.0 & 13 & 24 & 210 & 0.1 & 5 & 100 & 3 & 120 & 4.5 & 1.5 & 1200 & 0.2 & 0.02 & 51 & 1700 & 2 & 0.5 & 12 & 0.0 & 13 & 24 & 210 & 0.1 & 5 & 3.0 & 0.9 & 0.9 & 0.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 &$                                                                                                                                                                                                                                                                                                                          |                          | < 1   | 0,8 | 85  | 40                                                                                                             | < i  | 0          |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       | 58   | 340   | 4   | <b>C</b> 5   | 20 K             | 10   | 26  | 15   |       |      |     |             |       |
| $ \begin{array}{c} 0^{0}-95x-216 \\ 0^{0}-95x-217 \\ (1 \ 1.7 \ 15 \ (10 \ 2 \ (1 \ (5 \ 2.0 \ (1 \ 40 \ 91 \ 76 \ 19 \ 0.83 \ 1900 \ (2 \ 0.05 \ 52 \ 390 \ 3 \ (5 \ 20 \ (10 \ 26 \ 13 \ 130 \ (10 \ 4 \ 200 \ 16 \ 100 \ 95x-217 \\ (1 \ 1.7 \ 15 \ (10 \ 2 \ (1 \ (5 \ 7.7 \ (1 \ 16 \ 33 \ 41 \ 5.3 \ 2.0 \ 2000 \ (2 \ 0.02 \ 31 \ 96 \ (1 \ (5 \ 12 \ (10 \ 71 \ 22 \ 63 \ (10 \ 5 \ 60 \ 7 \ 73 \ 8.8 \ 1.4 \ 1300 \ (2 \ 0.07 \ 63 \ 480 \ (1 \ (5 \ 12 \ (10 \ 71 \ 22 \ 63 \ (10 \ 5 \ 60 \ 7 \ 73 \ 8.8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 12 \ (10 \ 71 \ 22 \ 63 \ (10 \ 5 \ 60 \ 7 \ 73 \ 8.8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 12 \ (10 \ 71 \ 22 \ 63 \ (10 \ 5 \ 60 \ 7 \ 73 \ 8.8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 19 \ (10 \ 33 \ 24 \ 210 \ (10 \ 3 \ 120 \ 8 \ 60 \ 7 \ 73 \ 8.8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 12 \ (10 \ 71 \ 22 \ 63 \ (10 \ 3 \ 120 \ 8 \ 60 \ 7 \ 73 \ 8.8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 12 \ (10 \ 71 \ 22 \ 63 \ (10 \ 3 \ 120 \ 8 \ 60 \ 7 \ 73 \ 8.8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 12 \ (10 \ 71 \ 12 \ 63 \ 4 \ 10 \ 11 \ 57 \ 3 \ 8 \ 8 \ 8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 12 \ (10 \ 71 \ 12 \ 10 \ 13 \ 120 \ 8 \ 8 \ 8 \ 8 \ 8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 5 \ 12 \ (10 \ 71 \ 12 \ 130 \ 11 \ 130 \ 120 \ 8 \ 8 \ 8 \ 1.4 \ 1300 \ (2 \ 0.02 \ 51 \ 1700 \ 2 \ (5 \ 5 \ 12 \ (10 \ 71 \ 12 \ 130 \ 11 \ 130 \ 120 \ 8 \ 8 \ 8 \ 1.4 \ 1300 \ 12 \ 120 \ 12 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 120 \ 1200 \ 120 \ 120 \ 1$                                                                                                                                                                                                                                                                                                                                               | T<br>Ô                   |       |     |     |                                                                                                                |      |            | •   | _          |       |          | - •         | • •        | uo                                                                                                             | 190      | 140 | 14  | 0.65   | 14  | 00    | < 2 0  | .08   | 66   | 490   | < 1 | < 5          | 19 <             | 10   | 29  |      |       |      | -   |             |       |
| $\begin{array}{c} 04-95x-217 \\ 1 & 1.7 & 15 & (10 & 2 & (1 & (5 & 7.7 & (1 & 16 & 33 & 41 & 5.3 & 2.0 & 2000 & (2 & 0.05 & 52 & 390 & 3 & (5 & 20 & (10 & 26 & 1.3 & 130 & (10 & 4 & 200 & 16 \\ 104-95x-218 \\ 04-95x-219 \\ 04-95x-219 \\ 04-95x-219 \\ 04-95x-219 \\ 04-95x-219 \\ 04-95x-210 \\ 04-95x-20 \\ 04-95x-20 \\ 04-95x-20 \\ 04-95x-20 \\ 04-95x-20 \\ 04-95x-20 $                                                                                                                                                                                                 | jj <b>ov-95x-216</b>     | · ( 1 | 0.9 | 95  | 40                                                                                                             | < 14 | 0          | 9   | < 1        | ۲.    | . ,      | •           |            | 40                                                                                                             | <u>.</u> | ~ / |     |        |     | _     |        |       |      |       |     |              |                  |      |     |      |       |      | •   | 1.0         | 44    |
| $ \begin{array}{c} 1 & 2.5 & \langle 5 & \langle 10 & 18 & \langle 1 & \langle 5 & 4.5 & \langle 1 & 37 & 97 & 73 & 8.8 & 1.4 & 1300 & \langle 2 & 0.07 & 63 & 480 & \langle 1 & \langle 5 & 12 & \langle 10 & 71 & 22 & 63 & \langle 10 & 5 & 60 & 7 \\ 04-95x-219 & \langle 1 & 0.71 & \langle 5 & \langle 10 & 320 & \langle 1 & \langle 5 & 5.2 & \langle 1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & \langle 2 & 0.07 & 63 & 480 & \langle 1 & \langle 5 & 19 & \langle 10 & 33 & 24 & 210 & \langle 10 & 3 & 120 & 8 \\ 04-95x-220 & & \langle 1 & 1.3 & 10 & \langle 10 & 22 & \langle 1 & \langle 5 & 5.2 & \langle 1 & 15 & 130 & 120 & 4.5 & 1.5 & 1200 & \langle 2 & 0.02 & 51 & 1700 & 2 & \langle 5 & 12 & \langle 10 & 170 & 17 & 44 & \langle 10 & 11 & 57 & 3 \\ 04-95x-1165 & & \langle 1 & 1.1 & 65 & \langle 10 & 36 & \langle 1 & \langle 5 & 1.5 & \langle 1 & 130 & 1900 & 230 & 9.2 & 0.93 & 1500 & 26 & 0.12 & 4300 & 86 & \langle 1 & \langle 5 & 9 & \langle 10 & 37 & 990 & 100 & \langle 10 & 3 & 100 & \langle 1 & \langle 10 & 900 & 900 & 900 & 900 & 900 & 900 & 000 & \langle 10 & 3 & 100 & \langle 1 & \langle 10 & 900 & 900 & 900 & 900 & 900 & 000 & \langle 2 & 0.19 & 77 & 140 & \langle 1 & \langle 5 & 14 & \langle 10 & 15 & 1900 & 150 & \langle 10 & 5 & 160 & 8 \\ 04-95x-1166 & & \langle 1 & 2.3 & \langle 5 & \langle 10 & 18 & \langle 1 & \langle 5 & 1.8 & \langle 1 & 18 & 190 & 92 & 3.7 & 1.3 & 700 & \langle 2 & 0.19 & 77 & 140 & \langle 1 & \langle 5 & 8 & \langle 10 & 29 & 1800 & 91 & \langle 10 & 6 & 140 & 2 \\ 04-95x-1168 & & \langle 1 & 1.9 & \langle 5 & \langle 10 & 12 & \langle 1 & \langle 5 & 1.0 & \langle 1 & 28 & 60 & 79 & 7.8 & 1.1 & 780 & \langle 2 & 0.07 & 24 & 400 & \langle 1 & \langle 5 & 8 & \langle 10 & 29 & 1800 & 91 & \langle 10 & 6 & 140 & 2 \\ 04-95x-1169 & & \langle 1 & 3.0 & \langle 5 & \langle 10 & 20 & \langle 1 & \langle 5 & 2.7 & \langle 1 & 32 & 69 & 71 & 11 & 1.4 & 1600 & \langle 2 & 0.04 & 52 & 440 & \langle 1 & \langle 5 & 26 & \langle 10 & 28 & 190 & 300 & \langle 10 & 3 & 210 & 15 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                  | ±04-95x-217              | < 1   | ۱.  | .7  |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       | 52   | 390   | 3   | < 5          | 20 K             | 10   | 26  | 13   | 130   | 10   |     | 200         | 16    |
| $\begin{array}{c} 04-95x-219\\ 04-95x-220\\ (1 1.3 10 + 10 22 + 1 + 5 5.2 + 1 15 130 120 4.5 1.5 1200 + 2 0.07 63 480 + 1 + 5 19 + 10 33 24 210 + 10 3 120 8\\ 04-95x-220\\ (1 1.3 10 + 10 22 + 1 + 5 5.2 + 1 15 130 120 4.5 1.5 1200 + 2 0.02 51 1700 2 + 5 12 + 10 170 17 44 + 10 11 57 3\\ 04-95x-1165\\ (1 2.3 + 5 + 10 6 + 1 + 5 1.3 + 1 18 270 15 3.8 1.7 620 + 2 0.06 36 820 + 1 + 5 9 + 10 93 34 76 + 10 6 48 9\\ 04-95x-1165\\ (1 2.3 + 5 + 10 6 + 1 + 5 1.3 + 1 30 1900 230 9.2 0.93 1500 26 0.12 4300 86 + 1 + 5 9 + 10 37 990 100 + 10 3 100 + 48 9\\ 04-95x-1166\\ (1 2.3 + 5 + 10 6 + 1 + 5 1.3 + 1 30 1900 230 9.2 0.93 1500 26 0.12 4300 86 + 1 + 5 5 6 + 10 37 990 100 + 10 3 100 + 1 \\ 04-95x-1166\\ (1 2.3 + 5 + 10 6 + 1 + 5 1.3 + 1 30 250 100 4.9 1.5 800 + 2 0.19 77 140 + 1 + 5 14 + 10 15 1900 150 + 10 5 160 8\\ 04-95x-1167\\ (1 1.8 + 5 + 10 18 + 1 + 5 1.8 + 1 18 190 92 3.7 1.3 700 + 2 0.19 77 140 + 1 + 5 14 + 10 15 1900 150 + 10 5 160 8\\ 04-95x-1168\\ (1 1.9 + 5 + 10 12 + 1 + 5 1.0 + 1 28 60 79 7.8 1.1 780 + 2 0.07 24 400 + 1 + 5 8 + 10 29 1800 91 + 10 6 140 2\\ 04-95x-1169\\ (1 3.0 + 5 + 10 20 + 1 + 5 2.7 + 1 32 69 71 11 1.4 1600 + 2 0.07 24 400 + 1 + 5 26 + 10 28 190 300 + 10 3 210 15\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _OW-95X-218              | e 1   | 2.  | . 5 |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          |     |     |        |     |       |        |       | 31   | 96    | < 1 | < 5          | 12 <             | 10   | 71  | 22   |       |      | -   |             |       |
| 0u-95x-220       (1)       1.3)       10       10       22       (1)       (1)       13       130       120       4.5       1.5       1200       (2)       0.02       51       1700       2       (5)       12       (1)       170       17       14       (10)       11       57       3 $0u-95x-1165$ (1)       1.1       65       (1)       36       (1)       (5)       1.5       (1)       130       1900       230       9.2       0.93       1500       26       0.12       4300       86       (1)       (5)       9       (10)       170       17       44       (10)       11       57       3 $0u-95x-1165$ (1)       1.1       65       (1)       36       (1)       (5)       1.3       (1)       30       250       100       4.9       1.5       600       2       0.12       4300       86       (1)       (5)       100       (10)       3       100       (1)       30       250       100       4.9       1.5       600       (2)       0.19       77       140       (1)       (5)       14       (10)       15       100       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 <b>4-95X-</b> 219     |       |     |     |                                                                                                                |      |            |     | -          |       |          |             |            |                                                                                                                |          |     |     |        |     |       | < 2 0  | .07   | 63   | 480   | < 1 | < 5          | 19 (             | 10   | 33  | 24   |       |      | -   |             |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ <b>0₩-95X-220</b>      |       |     |     |                                                                                                                |      |            |     |            |       | -        |             |            |                                                                                                                |          |     |     |        |     |       | < 2 O  | .02   | 51,  | 1700  | 2   | < 5          | 12 <             | 10   | 170 |      |       |      |     |             | -     |
| ow-95x-1165       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                        |       |     |     |                                                                                                                |      | •          |     | ` •        |       |          |             | < T        | 19                                                                                                             | 270      | 15  | 3.8 | 1.7    | 6   | 20    | < 2 O  | .06   | 36   | 820   | < 1 | < 5          | 9 (              | 10   | 93  | -    |       |      |     |             | -     |
| $\begin{array}{c} 00-95x-1166 \\ 0x-95x-1166 \\ 0x-95x-1167 \\ 0x-95x-1168 \\ 0x-95x-1169 \\ (1 \ 3.0 \ c \ 5 \ c \ 10 \ 6 \ c \ 1 \ c \ 5 \ 1.3 \ c \ 1 \ 30 \ 100 \ 230 \ 9.2 \ 0.93 \ 1500 \ 26 \ 0.12 \ 4300 \ 86 \ c \ 1 \ c \ 5 \ 6 \ c \ 10 \ 37 \ 990 \ 100 \ c \ 10 \ 3 \ 100 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ 1 \ c \ c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ow-95x-1165              | < 1   | 1.  | 1   | 65                                                                                                             | e 10 | <b>.</b> . | 34  |            |       |          |             |            |                                                                                                                |          |     | 2   |        |     |       |        |       |      |       |     |              |                  | •    |     |      |       |      | •   | 40          | y     |
| ow-95x-1167       (1)       1.8       (5)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>©</sup> 0¥-95X-1166 |       |     |     |                                                                                                                |      |            |     | -          |       | -        |             |            |                                                                                                                |          |     |     |        |     |       | 26 0   | .12 4 | 4300 | 86    | < 1 | < 5          | 6 (              | 10   | 37  | 990  | 100 4 | 10   | 1   | 100         |       |
| OW=95x-1168       i 1 .9 < 5 < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OW-95X-1167              | 21    | 1.  | .8  | c 5 .                                                                                                          | . 10 | ,<br>n     |     |            |       |          | -           |            | -                                                                                                              |          |     |     |        | -   |       | < 2 0  | . 19  | 77   | 140   | < 1 | < 5          |                  |      |     |      |       |      |     |             |       |
| 0w-95x-1169       (1)       3.0       (5)       (1)       (2)       (1)       (2)       (1)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)       (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 3 1   | 1.  | 9   | . 5                                                                                                            | · 1/ |            |     |            |       |          | -           |            |                                                                                                                |          |     |     |        |     | · . · | < 2 Q. | .14   | 49   | 150   |     |              |                  | -    |     |      |       |      | -   |             |       |
| 20 C 1 C 5 2.7 C 1 32 69 71 11 1.4 1600 C 2 0.04 52 440 C 1 C 5 26 C 10 28 190 300 C 10 3 210 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 <b>V-95X-1169</b>      |       |     |     |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          | -   | 7.8 | 1.1    | 7   | 80    | < 2 O. | .07   | 24   | 400   |     |              |                  |      |     |      | -     |      |     |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                        |       | Ψ.  |     |                                                                                                                | . 1( | · ·        | 20  | C T        |       | 2        | .7          | < 1        | 32                                                                                                             | 69       | 71  | 11  | 1.4    | 16  | 00    | < 2 O. | .04   | 52   | 440   |     |              |                  |      |     |      |       |      |     |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0                   |       |     |     |                                                                                                                |      |            |     |            |       |          |             |            |                                                                                                                |          |     | •   |        |     |       |        |       |      |       |     |              |                  | 4.4  | 40  | 130  | 300 4 | 10   | j   | Z1Q         | 15    |

3 .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 4 t 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

Kan SIGNED :

TSL/95

# APPENDIX G-2

.

# WHOLE ROCK ASSAY CERTIFICATES

. .

### ATTH: N. ROSIOL

•

# 5W-2703-R01

ы 1.

# TSL/ASSAYERS Laboratories

۰.

| 1270 PEWSTER DRIVE, UNIT 3 | MISSISSAUGA, ONTARIO LAW-LA4 |
|----------------------------|------------------------------|
| PHONE #: (905)602-8236     | FRX #: (905)206-0513         |

# I.C.A.P. TOTAL OXIDE ANALYSIS

Lithium MetaBorate Fusion

| REPORT No. | 1 | M5304       |
|------------|---|-------------|
| Page No.   | 4 | l of 1      |
| File No.   | : | JN23RA      |
| Date       | : | JUN-26-1995 |
|            |   |             |

| ALCU #       ALCU #300       Colo (300)       No. 100       FOUR #100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample #     | 5102 A1203  | Fe203 Ca0 Ho                                                                                                     |              | %                 | ್ರಿಕ್ಷೇಶ್ವ- ನಿರ್ದೇಶ್ವ<br>- ಸ್ವಾಮಿಕ್ ನಿರ್ವಾರಿಗಳು | 200000.854     | anneas                                  | 2555555         | 10902 N.S.S.                     | 576 0200 <del>4</del> 55 | 34-31-5-F |                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------------------------------------------------|----------------|-----------------------------------------|-----------------|----------------------------------|--------------------------|-----------|--------------------------------------------------------|
| People.ed3<br>97.58 14.06/37.97<br>97.58 14.06/37.97<br>97.58 14.07/17.0<br>9.07 47.6 2.40 7.02<br>0.00 7.27 17.0<br>9.07 47.6 2.40 7.0<br>10.00 7.27 17.0<br>9.07 47.6 2.40 7.0<br>10.00 7.20 7.7<br>9.07 40 7.0<br>10.00 7.20 7.7<br>9.07 40 7.0<br>10.00 7.0<br>1 |              |             |                                                                                                                  | 0 H820 A K20 | TIOZ              | P205 Ba                                         | Zr 🛛 🗐         | Sc ND                                   | Be Sani         | Cr 🔂 Cu                          | V                        | Zn 🤤 Rb   | LOT TOTAL                                              |
| Pross.056         (J.3)         (J.0)         (J.1)         (J.2)         (J.1)         (J.1)         (J.2)         (J.2) <th(j.2)< th="">         (J.2)         (J.2)</th(j.2)<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •            |             |                                                                                                                  |              |                   | <b>*</b> Ppa                                    | bbæ þþæ        | PPm <b>22m</b>                          | ppa ppa         | bbæ bhæ                          | pba bha                  | ppn .X    |                                                        |
| Pross.056         (J.3)         (J.0)         (J.1)         (J.2)         (J.1)         (J.1)         (J.2)         (J.2) <th(j.2)< th="">         (J.2)         (J.2)</th(j.2)<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POW95X-053   | 49.58 14.01 | 13-91 0.32 64                                                                                                    | 9 7 00 0 36  |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
| Prospin-068       44-67       21.7871(068       6.61       3.07       1.62       3.18       0.16       1.00       1.00       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       1.02       0.10       1.02       1.02       1.02       0.10       1.02       1.02       1.02       0.10       1.02       1.02       1.02       0.10       1.02       1.02       0.10       1.02       0.10       1.02       1.02       0.10       1.02       1.02       0.10       1.02       1.02       0.10       1.02       1.02       1.02       0.10       1.02       1.02       1.02       1.02       0.02       1.02       0.02       1.02       0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POW95X-056   |             |                                                                                                                  |              |                   |                                                 |                |                                         | < 1 110         |                                  | 315 40                   |           |                                                        |
| ProdBX-660         Sf (1)         1.10         3.17         6.66         0.75         1.00         0.15         0.10         1.66         0         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         2         1.6         3.0         1.6         1.6         1.6         2         1.6         3.0         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6 <th1.6< th="">         1.6         <th1.6< th=""> <th1.6< <="" th=""><th>P0495X-058</th><th></th><th></th><th></th><th></th><th></th><th>Sec. 2.</th><th>Sec. 75</th><th>8 8 8 8 V</th><th>2</th><th>12.18</th><th>S</th><th>1 - 2 - 2 - 2</th></th1.6<></th1.6<></th1.6<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P0495X-058   |             |                                                                                                                  |              |                   |                                                 | Sec. 2.        | Sec. 75                                 | 8 8 8 8 V       | 2                                | 12.18                    | S         | 1 - 2 - 2 - 2                                          |
| POUPSX-061         Serve 14.07/11.77         7.24         S.9         2.57         0.92         0.82         0.10         160         00         22         47         63         41         81         62.7         103         63.05         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 </th <th>000-X000</th> <th>49,91 14.50</th> <th>11.87 5.19 6.6</th> <th>5 3.09 0 74</th> <th>1 09 0 16</th> <th>0.16 150</th> <th><u> </u></th> <th>17 A A A A</th> <th><math>\sim 10^{-10}</math></th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000-X000     | 49,91 14.50 | 11.87 5.19 6.6                                                                                                   | 5 3.09 0 74  | 1 09 0 16         | 0.16 150                                        | <u> </u>       | 17 A A A A                              | $\sim 10^{-10}$ |                                  |                          |           | · · · · · · · · · · · · · · · · · · ·                  |
| PO095X-062         /0.10         13.97         13.93         8.83         5.85         0.48         0.12         5         50         50         70         60         4.1         65         170         110         410         46         100//10.05         6         170//10         110         410         46         100//10.05         6         170//10         110         410         46         100//10.05         6         170//10         110         410         46         100//10.05         6         170//10         110         410         46         100//10.05         6         170//10         110         410         45         100//10.05         6         170//10         110         410         45         100//10.05         6         170//10         110//10         410         415         100//10         410//10         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410         410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POW95X-061   |             |                                                                                                                  |              |                   |                                                 | 2.             |                                         |                 |                                  |                          |           |                                                        |
| Pod95x-063         30         17.15         14.25         7.65         7.62         7.02         47         60         6.17         10         410         60.05         6.17100.76           Pod95x-024         445.77         13.90         14.25         7.65         (7.02)         110         3.00         0.41         1.66         0.20         61.72         0.110         3.00         50         3.01         50         3.01         61.70         91.20         2.05         61.70         91.20         50         50         3.00         64.41         0.01         150         64.47         55         110.6         60.05         6.11         100         500         50         70.0         110         410.2         70         50.41         50.41         50.41         50.41         50.41         50.41         50.41         50.41         50.41         50.41         50.41         110         150         45         110.5         110.41         100         50.42         110.5         110.41         100         50.42         100         150         110         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |                                                                                                                  |              |                   |                                                 | 10.24          | 49 49 30                                | < 1 BD          | 625 105                          | 320 45                   | 105 (0.05 | 2.05100.78                                             |
| Podyšar.665         391 34         17.15         14.25         7.99         4.92         0.02         1.72         C22         0.18         30         90         36         44         C20         C1         20         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | POW95X-062   | 48.10 13.97 | 15.51 8.83 5.6                                                                                                   | 1 0.89 0.06  | 1.21 0.23         | 0 12 - 50                                       | 50 20          | 47                                      |                 |                                  |                          |           |                                                        |
| Mor95x-074       14, 49, 77       13, 50 * (4)16       5, 26 * (3, 7)       3, 03 * 0, 24       1, 66 * (2, 20)       61       50       36       42       c20       1       80       155       63       130       100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 17       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 16       5, 100, 10, 17       5, 100, 10, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16       5, 100, 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO495X-065   |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 | 00001414                         |                          |           |                                                        |
| P00958-002       99:76       13.86       6.72       4.25       6.85       3.133       6.95       0.14       250       90       12       17       730       (11)       100       555       140       70       70       70       71       100       555       140       70       70       70       71       100       55       140       70       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       71       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POW95X-074   |             |                                                                                                                  |              | 22222             |                                                 |                |                                         |                 | 20002000                         |                          |           |                                                        |
| POMPSX-1015       60.42       14.69       5.71       4.34       3.77       6.58       0.72       0.53       0.11       0.14       310       100       12       15       6.30       6.12       725       4.31       72       4.34       98.72         POMPSX-1016       41.05       14.59       14.69       2.77.4       1.88       0.64       1.32       0.18       0.10       50       50       20       412       15       14       100       105       14.75       98.72         POMPSX-1016       41.05       14.45       9.07       73       2.46       0.46       0.38       0.73       0.06       130       40       20       410       135       40       135       50       105       0.05       1.73       98.73         POMPSX-1021       49.76       14.65       17.97       2.46       0.46       0.29       0.06       130       40       20       55       30       (11       75       440       25       300       100       98.70       12.100.00       140       100       100       12.100.00       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | POW95X-082   |             |                                                                                                                  |              | 1.1               |                                                 | 500 C          |                                         |                 | 2.5.53                           | 5. A. 8 - 5              |           |                                                        |
| P0695X-1016       41.05       14.55       15.00       8.23       7.16       1.86       0.66       1.32       6.18       0.10       50       50       20       48       6.30       4.15       140       125       435       30       105       0.05       1.115       140       125       435       30       105       0.05       1.115       140       125       435       30       105       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       1.15       0.05       0.05       1.05       0.05       1.05       0.05       0.05       0.05       1.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POW95X-1015  |             |                                                                                                                  |              | 0.53 0.11         | 5 Y 2 Y 2                                       | 2000 C         | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                 |                                  |                          |           |                                                        |
| P0W95X-1019       46.35       14.86.3(4),79       9.07       730       2.86       0.48       0.743       0.06       139       40       70       55       630       <11       115       140       115       143       35       30       105       (0.05       10.37)       100       0.05       100       0.05       100       0.05       100       0.05       100       0.05       120       440       80       360       40       100       0.05       1.25100       100       0.05       1.25100       100       100       100       0.05       1.25100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       115       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  | 115 8 23                 | 45:(0.05  | 1.73.98.73                                             |
| POM95X-1019       fersing 14.86/(14/22)       9.09       7 jid       2.86       0.46       0.88       0743       0.06       130       40       20       55       4.00       4.0       50       40       50       30       40       50       50       40       50       30       40       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       50       10       4.0       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 </th <th>POW95X-1016</th> <th>41.05 14.59</th> <th>15.01 8.23 7.1</th> <th>1.86 0.64</th> <th>1.32 0.18</th> <th>0.10 90</th> <th>50 20</th> <th>48 630</th> <th>&lt; 12<br/>115</th> <th>140 175</th> <th>435 80</th> <th>106 30 06</th> <th>10.000.000</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POW95X-1016  | 41.05 14.59 | 15.01 8.23 7.1                                                                                                   | 1.86 0.64    | 1.32 0.18         | 0.10 90                                         | 50 20          | 48 630                                  | < 12<br>115     | 140 175                          | 435 80                   | 106 30 06 | 10.000.000                                             |
| P0095X-1021       19:76       14.63       13.39       10.63       7.78       2.30       0.26       0.30       130       40°       18       50°       30       < 1.75       490       80       365       50       95'       0.03       2.29100       36         P0095X-1027       52,39       13.96,10;39       7.41       63.33       3.78       0.76       0.46       0.28       0.10       140       50°       20       43°       40°       18       50°       10°       140       315       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       40°       115       115       10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             |                                                                                                                  |              | 0.88 0.43         | 0.08 130                                        | 886-981 J.     | SC                                      |                 | 2000-00-00-00<br>2000-00-00-00-0 |                          |           |                                                        |
| P0095X-1027       52,39       13.98_102,93       7.43       6.33       3.78       9.76       0.86       0.28       0.10       140       50       20       49       40       315       40       315       40       315       40       315       40       100       (0.05       1.24       94.08         P0095X-1030       #4279       7.885/12/26       1.74       310       0.45       0.96       30       20       12       29       43       40       315       40       315       40       100       (0.05       1.24       94.08         90       95       7.885/12/26       1.74       310       0.45       0.96       30       20       12       29       43       <1       3450       2575       65       180       95       55       0.05       7.59       96.17         11       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14 <th></th> <th>49.76 14.63</th> <th>12.39 10.63 7.20</th> <th>2.30 0.46</th> <th>0.84 0.29</th> <th>0.08 130</th> <th></th> <th></th> <th></th> <th>2883 B</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 49.76 14.63 | 12.39 10.63 7.20                                                                                                 | 2.30 0.46    | 0.84 0.29         | 0.08 130                                        |                |                                         |                 | 2883 B                           |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             | and the second |              | 0.86 0.78         | 0.10 140                                        | 50 20          |                                         |                 | 2.2 pc - 9. c+                   | 3.3.2                    |           |                                                        |
| 25 J5 C6:52 T5-P12H1EP5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P0W95X-1030  | 44.79 7.88  | 12,26 1.74 22.88                                                                                                 | 0.49 0.10    | 0.43 0.08         | 0.04 30                                         | 20 12          | 29 e 30                                 |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ц)<br>,      |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL<br>LL     |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i.           |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | î<br>J       |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | й<br>Н       |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | т.<br>С. ј   |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 90<br>- 13 |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ц<br>Ш       |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           | ಸಂಭಾನದಲ್ಲಿ ಕಲ್ಲಿ<br>ಜ್ಯಾಂಗರ್ ನಿರ್ದೇಶ<br>ಗ್ರಾಜ್ಯಕರ್ ಬೇಕ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •            |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()<br>() जे  |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 |                                  |                          |           |                                                        |
| $\Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            |             |                                                                                                                  |              | an saintean teadh | 9 M M A A A A A A A A A A A A A A A A A         | 201494995<br>1 |                                         |                 |                                  | 14 1935 CA               |           |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ן.<br>רי     |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 | $\wedge$                         | _                        | <i></i> ) |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |                                                                                                                  |              |                   |                                                 |                |                                         |                 | 1.                               | $\langle$                | 1         |                                                        |

SIGNED : Noil Secol

T36/95

. . .

CAMECO CORPORATION

#### TSL/ASSA. RS Laboratories

 1270 FEWSTER DRIVE, UNIT 3 MISSISSAUGA.ONTARIO
 L4W-134

 PHONE #:
 (905)602-8236
 FAX #:
 (905)206-0513

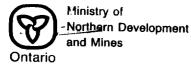
#### I.C.A.P. TOTAL OXIDE ANALYSIS Lithium MetaBorate Fusion

 REPORT No.:
 M5444

 Page No.:
 1 of 1

 File No.
 :
 JL25RA

 Date:
 :
 JUL-25-1995


ł

.

| 5W-3013-R01 |
|-------------|
|             |

| <del>~ 4</del>   |                   |                      |                   |            | CHOVIELE IUS.       | 1.041     |                  |              |         |              |                                           |
|------------------|-------------------|----------------------|-------------------|------------|---------------------|-----------|------------------|--------------|---------|--------------|-------------------------------------------|
| ດ້               |                   |                      |                   |            |                     |           |                  |              |         |              |                                           |
| Sample #         | SIG2 A1203 Pe203  | CaQ MgO Na20 I       |                   |            |                     | 2000-00   | an same          | 1000-00 72 f | 500 A.  |              |                                           |
|                  | ¥ ¥ ¥             | 1 2 4 1              |                   |            | Zr Y                | Sc Mb     | Be Ni            | Cr Cu        | V Co    | Zn Rb        | LOL TOTAL                                 |
|                  |                   |                      |                   | ppm        | bba bbe             | ppm ppm   | ppm ppm          | ppm ppm      | ppa ppe | ppa X        |                                           |
| PON95X-088       | 58.77 13.19 6.76  | 4.76 3.84 2.87 0.    | 90 0.52 0.10 0.14 |            |                     |           |                  |              |         |              |                                           |
| PON95X-503       | 61.02 13,54 -6.82 |                      | 이 전망 관람이 있는       | ÷.         | 100 12              | 17_ ¢ 30  | < 1 115          | 470 15       | 120 30  | 55 (0-05     | 6.82 98.66                                |
| PON95X-513       | 65.14 14.45 6,20  |                      |                   | S .        | 110 8               | 16 ( 30   | < 1 190          | 620 ( 5      | 110 30  | 70 40.05     | 4.50 99.37                                |
| PON951-1078      | 61.67 14.35 5.67  |                      | 68 0.56 0.08 0.14 |            | 170 16              | 17 ( 30   | < 1 135          | 475 4 5      | 130 20  | 60 (0.05     | 3.87100.26                                |
| POU95X-1079      | 62.28 14.39 7.03  |                      | 06 0.50 0.09 0.14 | 1          | 120 16              | - 14 c 30 | < 1 70           | 335 15       | 105 20  | 65 (0.05     | 7.11100.69                                |
|                  |                   |                      |                   | - 40V      | 100 12              | 17 c.30   | < 1 95           | 435 4 5      | 110 25  | 65 (0.05     | 4.44100.62                                |
| POU95X-1090      | 52.93 20.60 6.18  | 3.97 1.96 7.23 1.    | 98 0.91 0.09 0.20 | 5 320      | 100                 |           |                  | 1997 A.      |         | <u>ि छ</u> ् |                                           |
| POW95X-1095      | 50.08 14.93 12.36 |                      |                   | _          | 190 22<br>80 22     | 15 < 30   | 1 45             | 230 6.5      | 150 15  | 65 (0.05     | 4.62100.73                                |
| POW95X-1096      | 57.03 13.93 5.67  |                      | 4 0.54 0.17 0.14  |            | 1 883               | 43 < 30   | < 1 120          | 475 85       | 3352 45 | 100 (0.05    | 2.12100.07                                |
| POW95X-1099      | 63.22 12.76 7.26  |                      | 0.48 0.13 0.10    |            |                     | 17 ( 30   | < 1 115          | 455 🔍 S      | 130 25  | 50 (0.05     | 9.49100.88                                |
| PCM95X-1103      |                   | 4.59 5 05 1.61 1.    |                   |            | 100 - 10<br>90 - 10 | 17 30     | < 1 190          | 490 C 5      | 100 30  | 70 (0.05     | 4.32100.63                                |
|                  |                   |                      |                   |            |                     | 17 ( 30   | < 1 150          | 360 25       | 1053 25 | 360 (0.05    | 6.94100.39                                |
| POW95X-1110      | 61.28 14.46 5.98  | 4.30 4.28 3.39 1.    | 8 0.51 0.09 0.14  | 330        | 140 12              | 15 ( 30   |                  |              |         |              |                                           |
| POW95X-1114      | 68.65 14.94 5.14  | 1.70 1.52 4.22 1.    | 2 0.49 0.05 0.16  |            | 160 18              | 9 ( 30    | < 1 160          | 485 ¢ 5      | 105 25  | 90 (0.05     | 1. S. |
| POV95X-1116      | 56.53 13.07 6:45  | 4.62 6,13 2.06 1.4   | 8 0.37 0.10 0.10  |            | 70 6                | 17 C 30   | < 1 40           | 430 20       | 65 10   |              | 2.67100.85                                |
| POV95K-1125      | 68.67 14.11 3.74  | 2.93 1.37 3.34 2.3   | 0 0.35 0.05 0.12  | <i>.</i> . | 150 12              | 7 4 30    | < 1 245          | 675 10       | 95 30   |              | 9.74100/66                                |
| POW95X-1131      |                   | 4.25 3.16 5.32 0.1   |                   |            | 130 16              | 16 < 30   | < 1 50<br>< 1 90 | 325 10       | 50 \$10 | 35 (0.05     | 3.74100.71                                |
|                  |                   |                      |                   |            |                     |           |                  | 175 < 5      | 120 20  | 85 (0.05     | 4.94100.50                                |
| POW95X-1136      | 67.73 13.41 4.63  | 2.32 1.33 4.47 1.0   | 8 0.44 0.06 0.16  | 390        | 160 18              | 8 ¢ 30    | < 1 20           | 340 20       |         |              |                                           |
| ASSAYERS         |                   |                      |                   |            |                     |           |                  |              | 65 10   | 30 (0.05     | 3.22 98.84                                |
| ц.               |                   |                      |                   | 2<br>7     |                     |           |                  |              |         |              |                                           |
| с<br>С           |                   |                      |                   |            |                     |           |                  |              |         |              |                                           |
| ά<br>Γ           |                   |                      |                   |            |                     |           |                  |              |         |              |                                           |
| Д                |                   |                      |                   |            |                     |           | S                |              |         |              |                                           |
| F                |                   |                      |                   |            |                     |           |                  |              |         |              |                                           |
| ₩ ·              |                   |                      |                   |            |                     |           |                  |              |         |              |                                           |
| ü                |                   |                      |                   |            |                     |           |                  |              |         |              |                                           |
| <b>H</b>         |                   |                      |                   |            |                     |           |                  |              | 88      |              |                                           |
| 35,              |                   |                      |                   |            |                     |           |                  |              |         |              |                                           |
| ΰ                |                   | - <b>X</b> XX - 1914 |                   |            |                     |           |                  |              |         |              |                                           |
| Ň                |                   | <b></b>              |                   | 8          |                     |           |                  |              |         |              |                                           |
| З                |                   |                      |                   |            |                     |           | r                |              |         |              |                                           |
| ч <mark>Б</mark> |                   |                      |                   |            |                     |           |                  |              |         | ~.           |                                           |

any



### **Report of Work Conducted After Recording Claim**

Transaction Number W9680.0011

**Mining Act** 

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Street, Sudbury, Ontario, P3E 6A5, telephone (705) 670-7264.

Instructions: - Please type or print and submit in duplicate. - Refer to the Mining Act and Regulations for re Recorder.



900

- A separate copy of this form must be complet.
- Technical reports and maps must accompany this form in duplicate.

- A sketch, showing the claims the work is assigned to, must accompany this form.

| Hecorded Holder(s) FRech Kiernick | Mike heating     |                    |                                                                                              |
|-----------------------------------|------------------|--------------------|----------------------------------------------------------------------------------------------|
|                                   |                  | Carnero Corp       | Client No. Fred - 152022                                                                     |
| Address POBax 1143                | 139 Carter Hu    | #6-1349 Kelly LK R | Muke - 155198                                                                                |
| Mooress Kinkland Lakion.          | Kinkland Laki On |                    |                                                                                              |
|                                   |                  | Sudbury On         | Telephone No. 1703 - 705 - 567 - 4858<br>1414 - 705 - 567 - 4696<br>61116 - 705 - 523 - 4555 |
| Mining Division                   | Townshin/Area    |                    | CANCCO 705-523-4555                                                                          |
| 1 avriles                         |                  | well, Baden        | M or G Plan No.                                                                              |
| Dates                             | Argije -         | Bannockpurn.       |                                                                                              |
| Work From:                        | $M_{-}$ $\gamma$ |                    |                                                                                              |
| Performed                         | 1042/75          | To: / M            | 1/9-                                                                                         |
|                                   |                  |                    |                                                                                              |
| Work Performed (Check One Work    | Group Only)      | $\mathcal{U}$      |                                                                                              |

Work Performed (Check One Work Group Only)

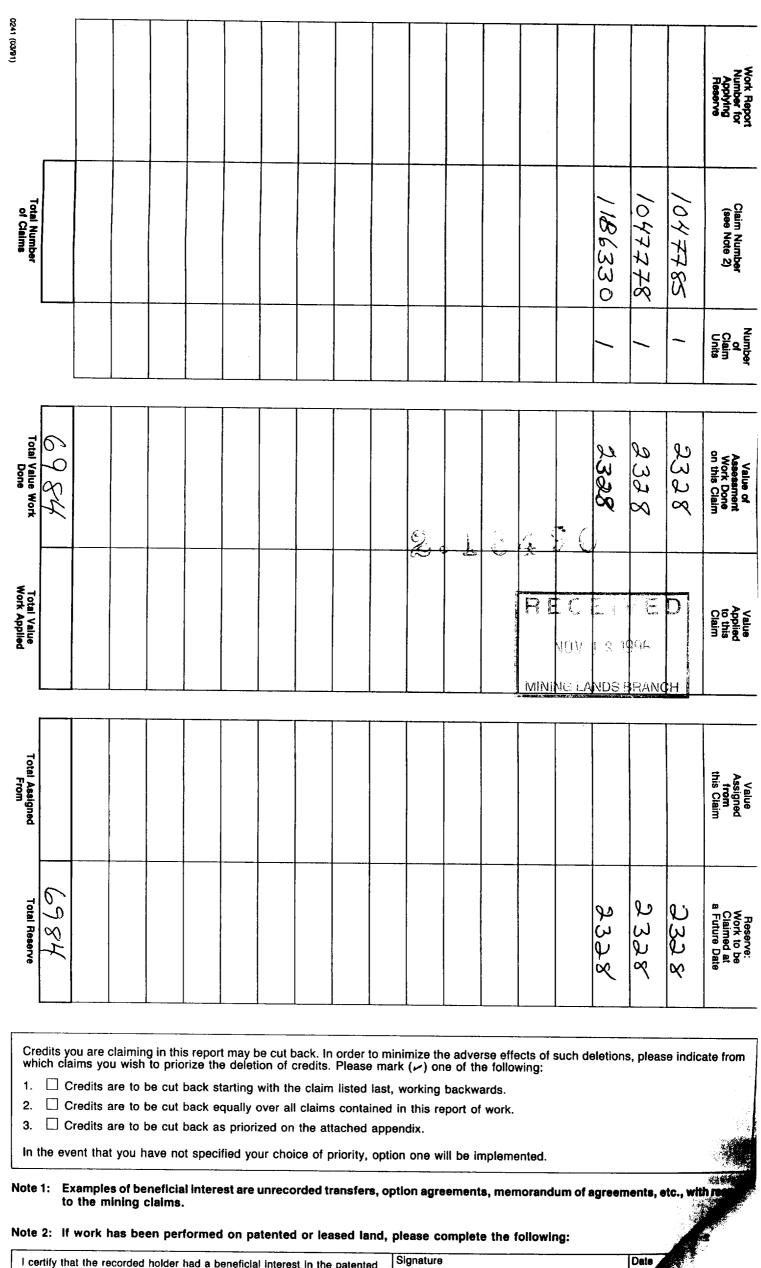
| Work Group                           | Ту              | pe                   |
|--------------------------------------|-----------------|----------------------|
| Geotechnical Surve                   | Marp            | 2.16490              |
| Physical Work,<br>Including Drilling | POWER STRIPPING | 6985                 |
| Rehabilitation                       |                 |                      |
| Other Authorized<br>Work             | SECTION 18 ONLY |                      |
| Assays                               |                 | NOV 1 3 1995         |
| Assignment from<br>Reserve           |                 | MINING LANDS OR ANCH |

Note: The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

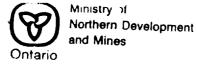
## Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

|           | Address                                |
|-----------|----------------------------------------|
| M. Kozioł | 137 Cranbrok (v. Sudbury On PJE JNY    |
| A.Faber   | 321 haung Ave, Sudbury On P3E 2NY      |
| P. Chubb  | #60 2-220 Regent St. S. Sudbury P3ESS2 |
|           |                                        |

(attach a schedule if necessary)


### Certification of Beneficial Interest \* See Note No. 1 on reverse side

| I certify that at the time the work was performed, the claims covered in this work                                       | Date      | Recorded Holder of | gen ()Signature) |
|--------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|------------------|
| report were recorded in the current holder's name or held under a beneficial interest<br>by the current recorded holder. | Feb 22/96 | J                  | T                |


#### **Certification of Work Report**

|                              |                      | n this Work report, having performed the | work or witnessed same during and/or after |
|------------------------------|----------------------|------------------------------------------|--------------------------------------------|
| Name and Address of Person C | ertifying            |                                          |                                            |
| M. Kozió-P                   | 137 Cranbro          | & Gr. Sudbury                            | On P3EZNY                                  |
| Telepone No.                 | Date                 | Certified By (Signature)                 | <u> </u>                                   |
| office 705.523-45            | 55 Feb 22/9          |                                          | H                                          |
| For Office Use Only          |                      |                                          |                                            |
| Total Value Cr. Recorded     | Date Recorded        | Mining Recorder                          | Received Stamp DECEIVED                    |
| Reserve                      |                      | mind in Hacolder                         | Received Stamp                             |
|                              | Feb. 26/96.          | Los sooner                               | MINING DIVISION                            |
| \$1984 t                     | Deemed Approval Date | Date Approved                            | TALLALLA CARDINA CARDINA                   |
|                              | May 26/96            | Mar. 5/96                                | FEB 26 1996                                |
|                              |                      |                                          |                                            |

0241 (03/91)



I certify that the recorded holder had a beneficial interest in the patented or leased land at the time the work was performed.



### **Report of Work Conducted** After Recording Claim **Mining Act**

Transaction Number 9680. 0011

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Street

Instructions: - Please type or print and submit in duplicate.

- 2.  $\mathbf{04}$

5577

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining - A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.

- A sketch, showing the claims the work is assigned to, must accompany this form.

| Hecorded Ho       | older(B) FRec( Kie | muclei 1M     | ike heating   |           |             |                              |                               |
|-------------------|--------------------|---------------|---------------|-----------|-------------|------------------------------|-------------------------------|
| L f               | 20 Box /143        | 3 //3         |               | Carne     |             | Client No. Fred -            | 152022                        |
| Address ;         | <pre>/</pre>       |               |               | 1#6-1349  | Kelly Lk Rd | Mike -                       |                               |
|                   | Pan 3MT            | - Kiont / Kju | Kland Laky On | ./Sudbun  | C d         |                              |                               |
| Mining Divisio    | on                 |               | N dAI         |           | 74 4 1      | Mile 705 SL                  | 105 - 567 - 4858<br>7 - 469 L |
| [                 | Lavela             |               | Township/Area |           | den         | CANCO TOS<br>M or G Plan No. | -523-4555                     |
| Dates             | 1101101011         |               |               | Bannoch   |             | or or riall NO.              | _                             |
| Work<br>Performed | From:              |               | 00-           | - Maniela | aurn. 1     |                              |                               |
| - ononnou         |                    | Ja            | Mus S/        | To:       |             | _                            |                               |

Work Performed (Check One Work Group Only)

| hine Cutting Photos I' Card #                                                 |
|-------------------------------------------------------------------------------|
| Mine Cutting, Prospeching, Gel Manning 59905<br>(90,58km) (90,58km) (90,58km) |
|                                                                               |
| SECTION 18 ONLY                                                               |
| 272 50006 (1) [ 1 1 5                                                         |
| 272 Samples (nocks) for Ay ICP \$ 5672                                        |
|                                                                               |

Total Assessment Work Claimed on the Attached Statement of Costs \$

The Minister may reject for assessment work credit all or part of the assessment work submitted if the recorded Note: holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

| M. Kozul                        | Address                                                                             |
|---------------------------------|-------------------------------------------------------------------------------------|
| A CAL RECEIVED                  | Address<br>137 Cranbnok (r. Sudbury Oy P3E DNY<br>321 Laura Ave, Sudbury Oy P3E DNY |
| P. Chulle APR 2 3 1996          | 321 having Ave, Sudbury On P36 2114                                                 |
| 1 Null APR 2 3 1996             | #602-220 Rogent St. S. Sudbury P3ESS2                                               |
|                                 |                                                                                     |
| attach a schedule if necessary) |                                                                                     |

- .

| retrincation of Beneficial Interest * See Note No. 1 on rever                                                                                                                                            | se side  | 1                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------|
| I certify that at the time the work was performed, the claims covered in this work report were recorded in the current holder's name or held under a beneficial interest by the current recorded holder. | 10.1     | Recorded Holder of Acent (Signature) |
|                                                                                                                                                                                                          | reb dory |                                      |

### ertification of Work Report

`ortification of D

I certify that I have a personal knowledge of the facts set forth in this Work report, having performed the work or witnessed same during and/or after lame and Address of Person Certifyin

| e contraining                                         |                       |
|-------------------------------------------------------|-----------------------|
| M. Kozig 137 Cranbrok G. Sudbury                      | ON PBEDNY             |
| the 705.523-4555 T- Q 22 (OT Certified By (Signature) | 1362109               |
|                                                       | 1 I                   |
| or Office Use Only                                    | -{}                   |
| Total Value Cr. Recorded Date Recorded                |                       |
| 96 - A D A                                            | Received StamRECEIVED |
| Rese 15520 Date Notice for Amendments Sent            |                       |
| Soust Deemed Approval Date Date Approved              | MINING DIVISION       |
| 5003 96 7                                             | MINING DIVISION       |
| Rese 15520 70 11 deg 26                               |                       |
| Date Notice for Amendments Sent                       | FEB 26 1996           |
| appel                                                 |                       |
| (03/91)                                               |                       |

| 0241 (03/91)                |           |         |        |                    |                |                 |           |         |        |        |        |         |         |         |          |                                        |         | 6                                                    |
|-----------------------------|-----------|---------|--------|--------------------|----------------|-----------------|-----------|---------|--------|--------|--------|---------|---------|---------|----------|----------------------------------------|---------|------------------------------------------------------|
| ſ                           | <br>      |         |        |                    |                |                 |           | ~       |        | e e    |        |         | 40      |         |          |                                        | 9       | Work Report<br>Applying<br>Reserve                   |
| Total Number<br>of Claims   | 423126    | 7818961 | 781890 | 7802394            | 980238         | 1211 btb        | 1116tb    | 6291101 | 601666 | 801626 | 401020 | ×1161tb | ~0161tL | 97/909- | , 806/tb | + + 0 + 1 + 1 + 1                      | 90PHP . | Claim Number<br>(see Note 2)                         |
| <u>[]</u>                   | -         | -       |        |                    | -              |                 |           |         | -      |        |        |         | -       | -       |          |                                        | -       | Number<br>of<br>Units                                |
| Total Value Work<br>Done    | <br>920 / | 1 H t b | 10792  | 146                | 11911          | 16741           | 1379/     | 20621   | 2542   | 292t   | 757    | /tee/   | 11551   | 112     | 1512     | 5141                                   | 6611    | Value of<br>Assessment<br>Work Done<br>on this Claim |
| Total Value<br>Work Appiled | 4 co 1    |         | 4000   | 400                | 400/           | 400/            | 400 -     | 4001    |        |        |        | 4001    |         |         | 400/     | 1800 /                                 | 415-    | Value<br>Applied<br>to this<br>Claim                 |
| Total Assigned<br>From      |           | 208     | R E    | <b>C E</b><br>PR 2 | E I V<br>3 199 |                 | 27        | 1600    | 20.8   |        | 8.0    | 200     | S S     | 8.8     | Siv      |                                        |         | Value<br>Assigned<br>from<br>this Claim              |
| Total Reserve               | 1025      |         | _      | S LAN              |                | ANCH<br>++<br>+ | ~ 6 t / - | 62 <    | SH     | 766    | 1571   | チン      | 355 1   | 312     | 312 (    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 246     | Reserve:<br>Work to be<br>Claimed at<br>Future Date  |

1. Credits are to be cut back starting with the claim listed last, working backwards.

2. Credits are to be cut back equally over all claims contained in this report of work.

3. Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

| I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work was performed. | Signature | Date |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|                                                                                                                                    |           |      |

| 400 V                                |
|--------------------------------------|
| 8101                                 |
| 679                                  |
| 8001                                 |
| HCUV                                 |
| Siro V                               |
| 800                                  |
| 800                                  |
| 800                                  |
| 800                                  |
| 500                                  |
| S (V ,                               |
| 133                                  |
| 800                                  |
| ~ w 8                                |
| 4 8 1                                |
| 8000                                 |
| Value<br>Applied<br>to this<br>Claim |

1. Credits are to be cut back starting with the claim listed last, working backwards.

2. Credits are to be cut back equally over all claims contained in this report of work.

3. Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect

| I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work was performed. | Signature | Date |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|                                                                                                                                    |           |      |

| 0241 (03/81)                |   |         |         |         |         |         |         |         |         |           |                  | 1        | <u> </u> |         |          | - <u></u> |         |            | در،<br>                                              |
|-----------------------------|---|---------|---------|---------|---------|---------|---------|---------|---------|-----------|------------------|----------|----------|---------|----------|-----------|---------|------------|------------------------------------------------------|
| 91)                         | [ |         |         |         |         |         |         |         |         |           |                  |          |          | Z.      |          |           |         | 3 (        | Work Report<br>Number for<br>Applying<br>Reserve     |
| of Claims                   |   | 8538701 | 1048627 | 1048626 | 5698401 | 1048624 | 1048623 | 229840/ | 1048621 | 1048620   | M822491          | 1047778. | イチキチナシック | 1047775 | 1046975. | 10469741  | 1046973 | · 10 46972 | Claim Number<br>(see Note 2)                         |
| X                           |   |         |         | -       | -       | -       | -       |         |         | -         | <<br>/           |          | -        |         |          | -         |         | -          | Number<br>of<br>Unite                                |
| Total Value Work<br>Done    |   |         |         |         |         |         |         |         |         |           | 105              | 16       | 483      | 1651    | 16231    | 1139/     | 1076°   | 1295       | Value of<br>Assessment<br>Work Done<br>on this Claim |
| Total Value<br>Work Applied |   | Gec 1   | Y ac V  | 400 /   | 400 /   | 400 1   | 400     | 400     | 400     | 4001      |                  |          |          |         | 400 1    | 800 -     | ~ ~ ~ ~ | 800 -      | Value<br>Applied<br>to this<br>Claim                 |
| Total Assigned<br>From      |   |         |         |         |         |         |         |         |         | R E<br>AP | CE<br>R2<br>LAND | 199      |          |         | 1200     |           |         |            | Value<br>Assigned<br>from<br>this Claim              |

| Total Assigned<br>From |  |  |  |  | R E<br>AP | R 2  | 8 199 | 6     |       | 12m |       |     |      | Value<br>Assigned<br>from<br>this Claim             |
|------------------------|--|--|--|--|-----------|------|-------|-------|-------|-----|-------|-----|------|-----------------------------------------------------|
| Total Reserve          |  |  |  |  |           | 105~ | ~ 1¢  | ~ E8H | 105 - | 23  | 339 ~ | うちゃ | 495- | Reserve:<br>Work to be<br>Claimed at<br>Future Date |

1. Credits are to be cut back starting with the claim listed last, working backwards.

2. Credits are to be cut back equally over all claims contained in this report of work.

3. Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial Interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect

|    | I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work was performed. | Signature | Date |
|----|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| r. |                                                                                                                                    | 1         |      |

| Total Reserve                                       | Total Assigned<br>From                  | Total Value<br>Work Applied          | Total Value Work<br>Done                             | <i>c</i> /   | Total Number<br>of Claims    | <b>19</b> 1)                      | 0241 (039) |
|-----------------------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------------------|--------------|------------------------------|-----------------------------------|------------|
|                                                     |                                         |                                      |                                                      | -            |                              | <b>[</b>                          |            |
|                                                     |                                         | 400                                  |                                                      |              | 1048699                      |                                   |            |
|                                                     |                                         | 1 00 /                               |                                                      |              | 1048678                      |                                   |            |
|                                                     |                                         | 4 cr v                               |                                                      |              | 1048677                      |                                   |            |
| 2581                                                |                                         | 8000                                 | 10581                                                | <b>\</b>     | 16486961                     |                                   |            |
|                                                     |                                         | 5261                                 | 1261                                                 |              | 1048695                      |                                   |            |
|                                                     |                                         | 4 00 1                               |                                                      | <b>\</b>     | 1048694                      |                                   |            |
|                                                     |                                         | 4 00 %                               |                                                      |              | 1048639                      | -                                 |            |
| MIN                                                 | R                                       | 400 /                                |                                                      | <u> </u>     | 1048638                      |                                   |            |
| ING L                                               | <b>E C</b><br>APR                       | 400                                  |                                                      | <u> </u>     | 1048637                      |                                   |            |
|                                                     |                                         | 400                                  |                                                      | -            | 1048636                      |                                   |            |
|                                                     | <b>V E</b><br>1996                      | 400                                  |                                                      | -            | 1048635                      |                                   |            |
| ~9 P H H                                            | С<br>С<br>С                             | 4001                                 | 12991                                                |              | 1048634                      | Ż.                                |            |
|                                                     |                                         | 4180                                 | 4181                                                 |              | 1048633                      | • 1                               |            |
|                                                     |                                         | 480/                                 |                                                      |              | 1048632                      | Ô.                                |            |
|                                                     |                                         | 400 ~                                |                                                      | _            | 1048631                      |                                   |            |
|                                                     |                                         | 400 -                                |                                                      | -            | 1048630                      | 90                                |            |
|                                                     |                                         | 480 ~                                |                                                      |              | 1048629                      | D                                 |            |
| Reserve:<br>Work to be<br>Claimed at<br>Future Date | Value<br>Assigned<br>from<br>this Claim | Value<br>Applied<br>to this<br>Claim | Value of<br>Assessment<br>Work Done<br>on this Claim | Units Number | Claim Number<br>(see Note 2) | Number for<br>Applying<br>Reserve | Ø          |
|                                                     |                                         |                                      |                                                      |              |                              |                                   | _          |

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark () one of the following:
1. □ Credits are to be cut back starting with the claim listed last, working backwards.
2. □ Credits are to be cut back equally over all claims contained in this report of work.
3. □ Credits are to be cut back as priorized on the attached appendix.
In the event that you have not specified your choice of priority, option one will be implemented.

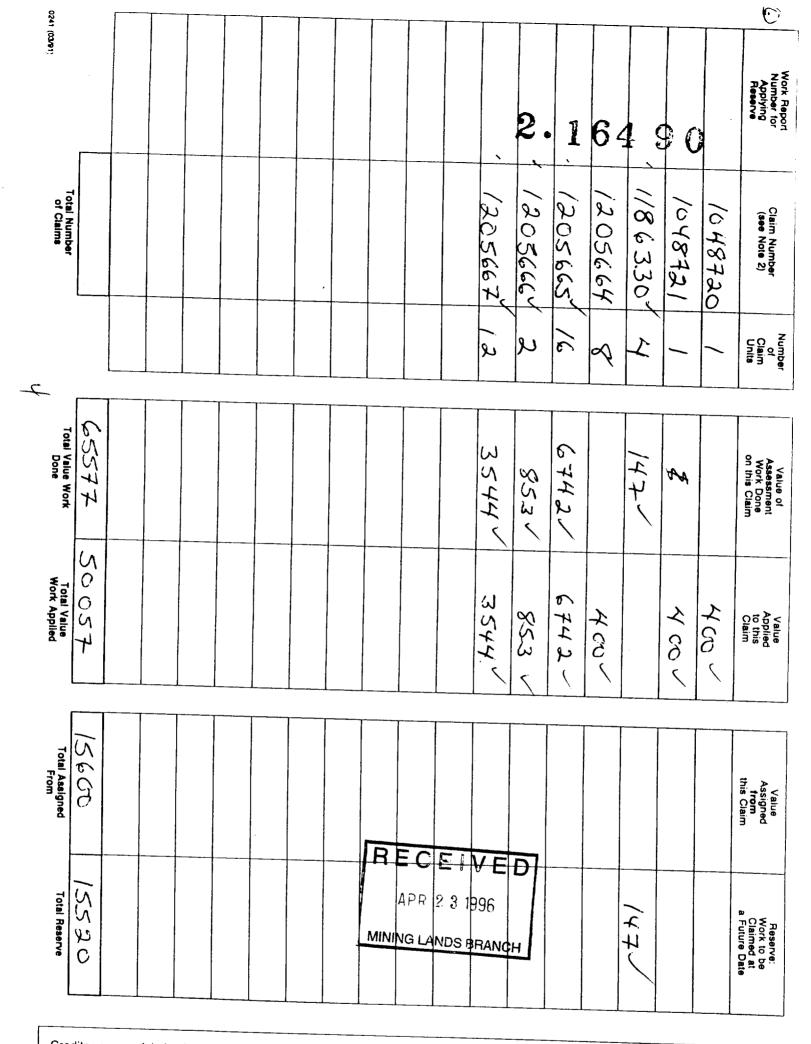
Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

|    | I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work was performed. | Signature | Date |
|----|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| ۰. |                                                                                                                                    |           |      |

| Total Reserve                                         | Total Assigned<br>From         | Total Value<br>Work Applied | Total Value Work<br>Done                 |                | Total Number<br>of Claims | 7241 (03391) |
|-------------------------------------------------------|--------------------------------|-----------------------------|------------------------------------------|----------------|---------------------------|--------------|
|                                                       |                                | 100                         |                                          |                |                           |              |
|                                                       |                                | 11101/                      |                                          | <b>`</b>       | 1100210                   |              |
|                                                       |                                | 4 00 /                      |                                          | ~              | 1048718                   |              |
| 602                                                   |                                | 5008                        | 860 1                                    |                | 10487165                  |              |
|                                                       |                                | 400/                        |                                          | <b> </b> ~     | 5128201                   |              |
|                                                       |                                | 4001                        |                                          | -              | 1048714                   |              |
| SM /                                                  | [F                             | 4001                        | 1412                                     | -              | 10487112                  |              |
| AP<br>NING I                                          | RE(                            | 4001                        |                                          | ~              | 10487 10                  |              |
|                                                       | DE                             | 400 -                       |                                          | ~              | 6028201                   |              |
| 1996                                                  |                                | 1001                        |                                          | -              | 1048708                   |              |
| NCH                                                   | ΞD                             | 400 /                       |                                          | -              | 1048701                   |              |
| 261~                                                  |                                | 400 -                       | 6611                                     | -              | 10457061                  |              |
|                                                       |                                | 400 -                       |                                          | <b>\</b>       | 1048705                   | 6            |
|                                                       |                                | 4 00 1                      |                                          |                | 1048704                   | 0            |
|                                                       |                                | 400 1                       |                                          | -              | 1048703                   |              |
|                                                       |                                | 400 -                       |                                          | -              | C02 340/                  |              |
| 23 S L                                                | 90S                            | 400 -                       | 1539                                     |                | 1048701                   |              |
|                                                       |                                | 400 -                       |                                          | -              | 0028401                   |              |
| Heserve:<br>Work to be<br>Claimed at<br>A Future Date | Assigned<br>from<br>this Claim | Applied<br>to this<br>Claim | Assessment<br>Work Done<br>on this Claim | Unite<br>Unite | (see Note 2)              | Applying     |

1

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark () one of the following:


1. Credits are to be cut back starting with the claim listed last, working backwards.

2. Credits are to be cut back equally over all claims contained in this report of work. 3. Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect

| I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work was performed. | Signature | Date |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|                                                                                                                                    |           |      |



 $\Box$  Credits are to be cut back starting with the claim listed last, working backwards. 1.

Credits are to be cut back equally over all claims contained in this report of work. 2.

Credits are to be cut back as priorized on the attached appendix. З.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect

| l |                                                                                                                                    | -         | •    |
|---|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|   | I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work was performed. | Signature | Date |
| Ľ |                                                                                                                                    |           |      |

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des mines

#### **Statement of Costs** for Assessment Credit

Mining Act/Loi sur les mines

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used to maintain a record and ongoing status of the mining claim(s). Questions about this collection should be directed to the Provincial Manager, Minings Lands, Ministry of Northern Development and Mines, 4th Floor, 159 Cedar Street, Sudbury, Ontario P3E 6A5, telephone (705) 670-7264.

#### 1. Direct Costs/Coûts directs

| Туре                                           | Description                                                             | Amount<br>Montant       | Totals<br>Total global                |
|------------------------------------------------|-------------------------------------------------------------------------|-------------------------|---------------------------------------|
| Wages<br>Salaires                              | Labour<br>Main-d'oeuvre                                                 | 30204                   |                                       |
|                                                | Field Supervision<br>Supervision sur le terrain                         |                         | 30204                                 |
| Contractor's<br>and Consultant's<br>Fees       | type<br>Asay.                                                           | 5672                    | ,                                     |
| Droits de<br>l'entrepreneur<br>et de l'expert- | Line Cutting                                                            | 18995                   | · · · · · · · · · · · · · · · · · · · |
| conseil                                        |                                                                         |                         | 24667                                 |
| Supplies Used<br>Fournitures                   | Sample bags,                                                            | 537                     |                                       |
| utilisées                                      | Samplebags,<br>draftin Sugrius<br>Shyrping parls<br>since a hand<br>tot |                         |                                       |
|                                                | smallhand<br>torly                                                      |                         |                                       |
|                                                |                                                                         |                         | 537-                                  |
| Equipment<br>Rental                            | Туре                                                                    |                         |                                       |
| Location de<br>matériel                        |                                                                         |                         |                                       |
|                                                |                                                                         |                         |                                       |
|                                                | Total Dir<br>Total des coû                                              | ect Costs<br>ts directs | 55408                                 |

Note: The recorded holder will be required to verify expenditures claimed in this statement of costs within 30 days of a request for verification. If verification is not made, the Minister may reject for assessment work all or part of the assessment work submitted.

#### **Filing Discounts**

- 1. Work filed within two years of completion is claimed at 100% of the above Total Value of Assessment Credit.
- 2. Work filed three, four or five years after completion is claimed at 50% of the above Total Value of Assessment Credit. See calculations below:

| Total Value of Assessment Credit | Total Assessment Claimed |
|----------------------------------|--------------------------|
| × 0.50 =                         |                          |

#### **Certification Verifying Statement of Costs**

I hereby certify:

that the amounts shown are as accurate as possible and these costs were incurred while conducting assessment work on the lands shown on the accompanying Report of Work form.

Project Geologist that as \_ I am authorized (Recorded Holder Agent Position in Compary)

to make this certification

Les renseignements personnels contenus dans la présente formule sont recueillis en vertu de la Loi sur les mines et serviront à tenir à jour un registre des concessions minières. Adresser toute quesiton sur la collece de ces renseignements au chef provincial des terrains miniers, ministère du Développement du Nord et des Mines, 159, rue Cedar, 4<sup>e</sup> étage, Sudbury (Ontario) P3E 6A5, téléphone (705) 670-7264.

#### 2. Indirect Costs/Coûts indirects

coûts indirects ne sont pas admissibles en tant que travaux d'évaluation.

| Туре                                                                    | Description                                                    | Amount<br>Montant              | Totals<br>Total global |
|-------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|------------------------|
| Transportation<br>Transport                                             | Type<br>TRuck Reutral<br>(To Matachuan<br>(and to Propure      | 5194                           |                        |
| , <u> </u>                                                              |                                                                |                                | 5194                   |
| Food and<br>Lodging<br>Nourriture et<br>hébergement                     | CAMP MATACHEWIN<br>GNOCONY in K.L.                             | 4975                           | 4975                   |
| Mobilization and<br>Demobilization<br>Mobilisation et<br>démobilisation |                                                                |                                |                        |
|                                                                         | Sub Total of Ind<br>Total partiel des coût                     |                                | 10/69                  |
| Amount Allowable (<br>Montant admissible                                | not greater than 20% of D<br>(n'excédant pas 20 % des          | irect Costs)<br>coûts directs) | 10169                  |
| Total Value of Asse<br>(Total of Direct and A<br>Indirect costs)        | ssment Credit Valeur to<br>Ilowable d'évaluati<br>(Total des d | ale du crédit                  | 65577                  |

Note : Le titulaire enregistré sera tenu de vérifier les dépenses demandées dans esi paselleciuen iemiysi Epelly le présent état des coût une demande à cel effet. Si la vérification r eleter tout ou une partie des traveux d'évaluation présentés.

| Remises pour dépôt        | APR 2 3 1996        |  |
|---------------------------|---------------------|--|
| 1 Los travoux déposés des | MINING LANDS BRANCE |  |

- Les travaux déposés dans les deux ane eu van ten aus venent sont remboursés à 100 % de la valeur totale susmentionnée du crédit d'évaluation.
- 2. Les travaux déposés trois, quatre ou cinq ans après leur achèvement sont remboursés à 50 % de la valeur totale du crédit d'évaluation susmentionné. Voir les calculs ci-dessous.

| Valeur totale du crédit d'évaluation | Évaluation totale demandée |
|--------------------------------------|----------------------------|
| × 0,50 =                             |                            |

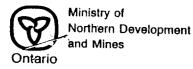
#### Attestation de l'état des coûts

J'atteste par la présente :

que les montants indiqués sont le plus exact possible et que ces dépenses ont été engagées pour effectuer les travaux d'évaluation sur les terrains indiqués dans la formule de rapport de travail ci-joint.

Et qu'à titre de (titulaire enregistré, représentant, poste occupé dans la compagnie)

à faire cette attestation


Signalure

Teb 22/96

Nota : Dans cette formule, lorsqu'il désigne des personnes, le masculin est utilisé au sens neutre

.

<sup>\*\*</sup> Note: When claiming Rehabilitation work Indirect costs are not allowable as assessment work. Pour le remboursement des travaux de réhabilitation, les



### **Report of Work Conducted** After Recording Claim

**Mining Act** 

Transaction Number N9680,00118

Personal information collected on this form is obtained under the authority of the Mining Act. This information will be used for correspondence. Questions about this collection should be directed to the Provincial Manager, Mining Lands, Ministry of Northern Development and Mines, Fourth Floor, 159 Cedar Street, Sudbury, Ontario, P3E 6A5, telephone (705) 670-7264.

Instructions: - Please type or print and submit in duplicate.

- Refer to the Mining Act and Regulations for requirements of filing assessment work or consult the Mining Recorder.
- A separate copy of this form must be completed for each Work Group.
- Technical reports and maps must accompany this form in duplicate.
- A sketch, showing the claims the work is assigned to, must accompany this form.

|                                                                   | Make heating<br>139 Carter Hur<br>Kirkland Lak, On | Kelly LK (& | Client No. 1400 - 152022<br>Muke - 158/98<br>CAMECO - 14820<br>Telephone No. 105 - 567 - 4858<br>Mula - 705 - 567 - 4858<br>Mula - 705 - 523 - 4555 |
|-------------------------------------------------------------------|----------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Mining Division<br>Larden<br>Dates<br>Work From: Non<br>Performed | Township/Area Por<br>Arcycle 7<br>1/95             | To: Dec 2   | CALCO 705-523-4555<br>M or G Plan No.                                                                                                               |

Work Performed (Check One Work Group Only)

| Work Group                           | Туре                  |              |          |
|--------------------------------------|-----------------------|--------------|----------|
| Geotechnical Survey                  |                       | 16490        |          |
| Physical Work,<br>Including Drilling | Dramond Dueling 1408  |              |          |
| Rehabilitation                       |                       | RECEIVED     | <u> </u> |
| Other Authorized<br>Work             | SECTION 18 ONLY       | N.C., 5 1916 |          |
| Assays                               | 265 cor samples-Autic |              |          |
| Assignment from<br>Reserve           |                       |              | * 1-     |
|                                      |                       |              |          |

Total Assessment Work Claimed on the Attached Statement of Costs

# 119495 \$

Note: The Minister may reject for assessment work credit all or part of the assessment work submitted If the recorded holder cannot verify expenditures claimed in the statement of costs within 30 days of a request for verification.

# Persons and Survey Company Who Performed the Work (Give Name and Address of Author of Report)

| Name      | Address                               |
|-----------|---------------------------------------|
| M. Kozioł | 137 Cranbrok (r. Sudbury Oy P3E 21NY  |
| A.Faber   | 321 haung Avr. Sudbury On P3E 2NY     |
| P. Chubb  | #602-220 Rogent St. S. Sudbury P3ESS2 |
|           |                                       |

(attach a schedule if necessary)

| <b>Certification of Beneficial Interest</b> | * See Note No. 1 on reverse side |
|---------------------------------------------|----------------------------------|
|---------------------------------------------|----------------------------------|

| Certification of Beneficial Interest " See Note No. 1 on reve                                                                                                                                                  | rse side          | î                       |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|----------------|
| I certify that at the time the work was performed, the claims covered in this work<br>report were recorded in the current holder's name or held under a beneficial interest<br>by the current recorded holder. | Date<br>Feb 22/96 | Recorded Holder of Aler | it (Signature) |
|                                                                                                                                                                                                                |                   |                         |                |

#### **Certification of Work Report**

| I certify that I have a personal knowledge of the facts set forth in this Work report, having perform<br>its completion and annexed report is true. | ned the work or witnessed same during and/or after |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Name and Address of Person Certifying                                                                                                               |                                                    |
| M. Kozić 137 Cranbrok Gr. Sudburg                                                                                                                   |                                                    |
| office 705.523-4555 Tele 22/96 Certified By (Signa                                                                                                  | norfo)                                             |
| For Office Use Only                                                                                                                                 | BECOMED                                            |
| Total Value Cr. Recorded Date Recorded Mining Recorder                                                                                              | Received SARDER LAKE                               |
| Reserve Bala Notice to Construct out of the State                                                                                                   | FEB 26 1996                                        |
| * 58,29.5                                                                                                                                           |                                                    |

| Total Reserve                        | Total Assigned            | Total Value<br>Work Applied | Total Value Work<br>Done                 | an Ber                                  | Total Number<br>of Claims                                                       | 0241 (03/91) |
|--------------------------------------|---------------------------|-----------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|--------------|
|                                      |                           |                             |                                          |                                         |                                                                                 |              |
|                                      |                           | 4 00                        |                                          | 1 22320                                 | 104                                                                             |              |
|                                      |                           | 400                         |                                          | 1 7898 401                              | 704                                                                             |              |
|                                      |                           | 400                         |                                          | 1 5698 401                              | 104                                                                             |              |
|                                      |                           | 4 00                        |                                          | 1048624 1                               | 104                                                                             |              |
|                                      |                           | ५०७                         |                                          | 1 569840                                | 104                                                                             |              |
|                                      |                           | 400                         |                                          | 1 2698401                               | 100                                                                             |              |
|                                      |                           | 400                         |                                          | 1048621 1                               | 104                                                                             |              |
|                                      |                           | 400                         |                                          | 1048620 1                               | 10 4                                                                            |              |
|                                      |                           | 400                         |                                          | 1 2842401                               | 10 4                                                                            |              |
|                                      |                           | 4 00                        |                                          | 1 3822,401                              | /64                                                                             |              |
|                                      |                           |                             |                                          | 1 284491                                | /64                                                                             |              |
| ς  -                                 |                           |                             | H1111                                    | 1 2877 401                              |                                                                                 |              |
| 01111<br>0                           |                           | E I<br>L 3<br>ANDS          | 11779                                    | 1 08+240                                | × 0/ 404                                                                        |              |
| 7077                                 |                           | 2<br>9<br>BRAN              |                                          | 1 P T T T T T T T T T T T T T T T T T T |                                                                                 |              |
|                                      | 4000                      | СН                          | 6 203                                    | 1 877701                                | 40/ 04                                                                          |              |
| 7113                                 |                           | 400                         |                                          | 1 3ttth01                               | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |              |
|                                      |                           |                             | 15/13                                    | 980238 1                                |                                                                                 |              |
| Reserve:<br>Work to be<br>Claimed at | Value<br>Assigned<br>from | Applied<br>to this<br>Claim | Assessment<br>Work Done<br>on this Claim | (see Note 2) Claim<br>Units             |                                                                                 | 6            |

or leased land at the time the work was performed.

|                           |         |         |           |           |           |           |           |           |           |           |         |           |           |           |           |         |                             |         | Applying<br>Reserve                                     |
|---------------------------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------------------------|---------|---------------------------------------------------------|
| Total Number<br>of Claims | 1048700 | 1048400 | 1048699 1 | 1 8638401 | 1048697 1 | 1048695 1 | 1048694 1 | 1048639 1 | 1048638 1 | 1048637 1 | 1048636 | 1048635 1 | 1048633 1 | 1048632 1 | 1048631 1 | 1048630 | 1048629 1                   | 8898401 | (see Note 2) Claim<br>Units                             |
| Total Value Work          |         |         |           |           |           |           |           |           |           |           | 2       | . 1       | 6         | 4         | 9 (       | 3       |                             |         | Or Assessment<br>Claim Work Done<br>Units on this Claim |
| Total Value               |         | 50 H    | 400       | 400       | 400       | f 00      | 400       | 4 00      | 600       | 400       | 400     | 400       | 4 00      | 5         | 480       | 400     | 400                         | 400     | Applied<br>to this<br>Claim                             |
| Total Assimad             |         |         |           |           |           |           |           |           |           |           |         |           |           |           | NG LA     | 103     | / <u>15</u><br>194<br>:Banc | Э       | Assigned<br>from<br>this Claim                          |
|                           |         |         |           |           |           |           |           |           |           |           |         |           |           |           |           |         |                             |         | a Future Date                                           |

2. Credits are to be cut back equally over all claims contained in this report of work.

3. Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respect to the mining claims.

Note 2: If work has been performed on patented or leased land, please complete the following:

I certify that the recorded holder had a beneficial interest in the patented Signature or leased land at the time the work was performed.

| 0241 (03/91)                |   |         |         |         |         |         |         |         |         |         |         |         |         |         |            |         |                      |         | E                                                     |
|-----------------------------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------|---------|----------------------|---------|-------------------------------------------------------|
|                             | · |         |         |         |         |         |         |         |         |         |         |         |         |         |            |         |                      |         | Applying<br>Reserve                                   |
| Total Number<br>of Claims   |   | 1048718 | 1048717 | 9128201 | 5128201 | 1048714 | 1048713 | 2128401 | 1128401 | 1048710 | 1048709 | 8028491 | 1048707 | 1048705 | 1048701    | 1048703 | 1048702              | 1048701 | Claim Number<br>(see Note 2)                          |
|                             |   |         |         | -       | -       | -       | -       | -       | -       | -       | -       |         | -       | -       | -          |         |                      |         | Vumper<br>Of<br>Units                                 |
| Total Value Work<br>Done    |   |         |         | 11256   |         |         |         |         | 1231    |         |         |         |         |         |            |         |                      | t1158   | Value of<br>Assessment<br>Work Done<br>on this Claim  |
| Total Value<br>Work Applied |   | 400     | 400     |         | 4 60    | Yoo     | 400     | 4 00    |         | f er    | 400     | 400     | 400     | 400     | 400        | 400     | 4 50                 |         | Value<br>Applied<br>Ctaim                             |
|                             |   |         |         | ۸_ I    |         |         | 1       |         |         |         | 5       |         | Ē       | 3-4     | 3          | 0       |                      |         |                                                       |
| Total Assigned              |   |         |         | 5200    |         |         |         |         |         |         |         |         |         | F       | E C<br>NO/ |         | 4 <b>(</b><br>75)с,а | ŏ       | Value<br>Assigned<br>from<br>this Claim               |
| Total Reserve               |   |         |         | 6856    |         |         |         |         | 1231    |         |         |         |         |         |            |         |                      | 4/10/14 | Reserve:<br>Work to be<br>Claimed at<br>a Future Date |

.

Credits you are claiming in this report may be cut back. In order to minimize the adverse effects of such deletions, please indicate from which claims you wish to priorize the deletion of credits. Please mark ( $\sim$ ) one of the following: 1. [] Credits are to be cut back starting with the claim listed last, working backwards.

2. Credits are to be cut back equally over all claims contained in this report of work. 3. Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial Interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with respe

|   | I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work | Signature |      |
|---|---------------------------------------------------------------------------------------------------------------------|-----------|------|
| R | or leased land at the time the work was performed.                                                                  |           | Date |
| 0 |                                                                                                                     |           |      |

| 0241 (03/91)                |                  |         |         |         |         |         |         |         |         |         |   |         | _       |               |              |                            |         |         | $(\underline{I})$                                     |
|-----------------------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|---------|---------|---------------|--------------|----------------------------|---------|---------|-------------------------------------------------------|
|                             |                  |         |         |         |         |         |         |         |         |         |   |         |         |               |              |                            |         |         | work report<br>Number for<br>Applying<br>Reserve      |
| Total Number<br>of Cialms   | 679              | 1205689 | 1205688 | 1205687 | 1198141 | 04/8/11 | 1198132 | 1198131 | 1198130 | 1198/29 | A | 1205667 | 1205665 | 12 05664      | 1186330      | 1048721                    | 1048720 | 6128401 | Claim Number<br>(see Note 2)                          |
|                             | ر م <sub>ر</sub> | 2       | Ś       | 0       | 20      | 5       | -       |         | -       | -       |   | 5       | 6       | R             | 2            | -                          | -       | -       | Number<br>Claim<br>Units                              |
| Total Value Work<br>Done    | 119495           |         |         |         |         |         |         |         |         |         |   |         |         |               | 38806        |                            |         |         | Value of<br>Assessment<br>Work Done<br>on this Claim  |
| Total Value<br>Work Applied | 6/200            | 0000    | 6000    | × 000   | 800     | 6000    | ( CD    | 400     | (co     | 400     |   | 5600    | 6400    | 6000          |              | 400                        | 400     | 400     | Value<br>Applied<br>to this<br>Claim                  |
| tal Ass<br>From             | 61200            |         |         |         |         |         |         |         |         |         |   | 2       | . 1     | 6<br>R E<br>N | 432 200      | <b>9 (</b><br>  V<br>  199 |         |         | Value<br>Assigned<br>from<br>this Claim               |
| otal Reserve                | 59295            | 2       |         |         |         |         |         |         |         |         |   |         |         | <u>Almini</u> | 208 9<br>208 | DS BR                      | ANCH    |         | Reserve:<br>Work to be<br>Claimed at<br>a Future Date |

1. Credits are to be cut back starting with the claim listed last, working backwards.

2. Credits are to be cut back equally over all claims contained in this report of work.

3. Credits are to be cut back as priorized on the attached appendix.

In the event that you have not specified your choice of priority, option one will be implemented.

Note 1: Examples of beneficial interest are unrecorded transfers, option agreements, memorandum of agreements, etc., with resr

|    | I certify that the recorded holder had a beneficial interest in the patented<br>or leased land at the time the work was performed. | Signature | Date |
|----|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| 81 | 00.08.940                                                                                                                          |           | · .  |



Geoscience Assessment Office Ministère du Ministry of Développement du Nord Northern Development 933 Ramsey Lake Road et des Mines and Mines 6th Floor Sudbury, Ontario P3E 6B5 Telephone: (705) 670-5853 (705) 670-5863 Fax: May 24, 1996 Our File: 2.16490 Transaction #: W9680.00116

Mining Recorder Ministry of Northern Development & Mines 4 Government Road East Kirkland Lake, Ontario P2N 1A2

Dear Mr. Spooner:

SUBJECT: APPROVAL OF ASSESSMENT WORK CREDIT ON MINING LAND, CLAIMS L.971906 ET AL IN POWELL, BADEN, ARGYLE AND BANNOCKBURN TOWNSHIPS

Assessment work credit has been approved as outlined on the Declaration of Assessment Work Form accompanying this submission. The credit has been approved under Section 12, Geology and Section 17, Assays, of the Assessment Work Regulation.

#### The approval date is May 21, 1996.

If you have any questions regarding this correspondence, please contact Lucille Jerome at (705) 670-5858.

Yours sincerely, ORIGINAL SIGNED BY:

Rontbak

Ron C. Gashinski Senior Manager, Mining Lands Section Mines and Minerals Division

LBJ/jl Enclosure:

✓Assessment Files Library Sudbury, Ontario

cc: Resident Geologist Kirkland Lake, Ontario

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines



Recording Office 4 Government Road East KIRKLAND LAKE, Ontario P2N 1A2

Our File: W9680.00117 W9680.00118

November 5, 1996

Cameco Corporation #6 - 1349 Kelly Lake Road Sudbury, Ontario P3E 5P5

2.16490

Dear Sir

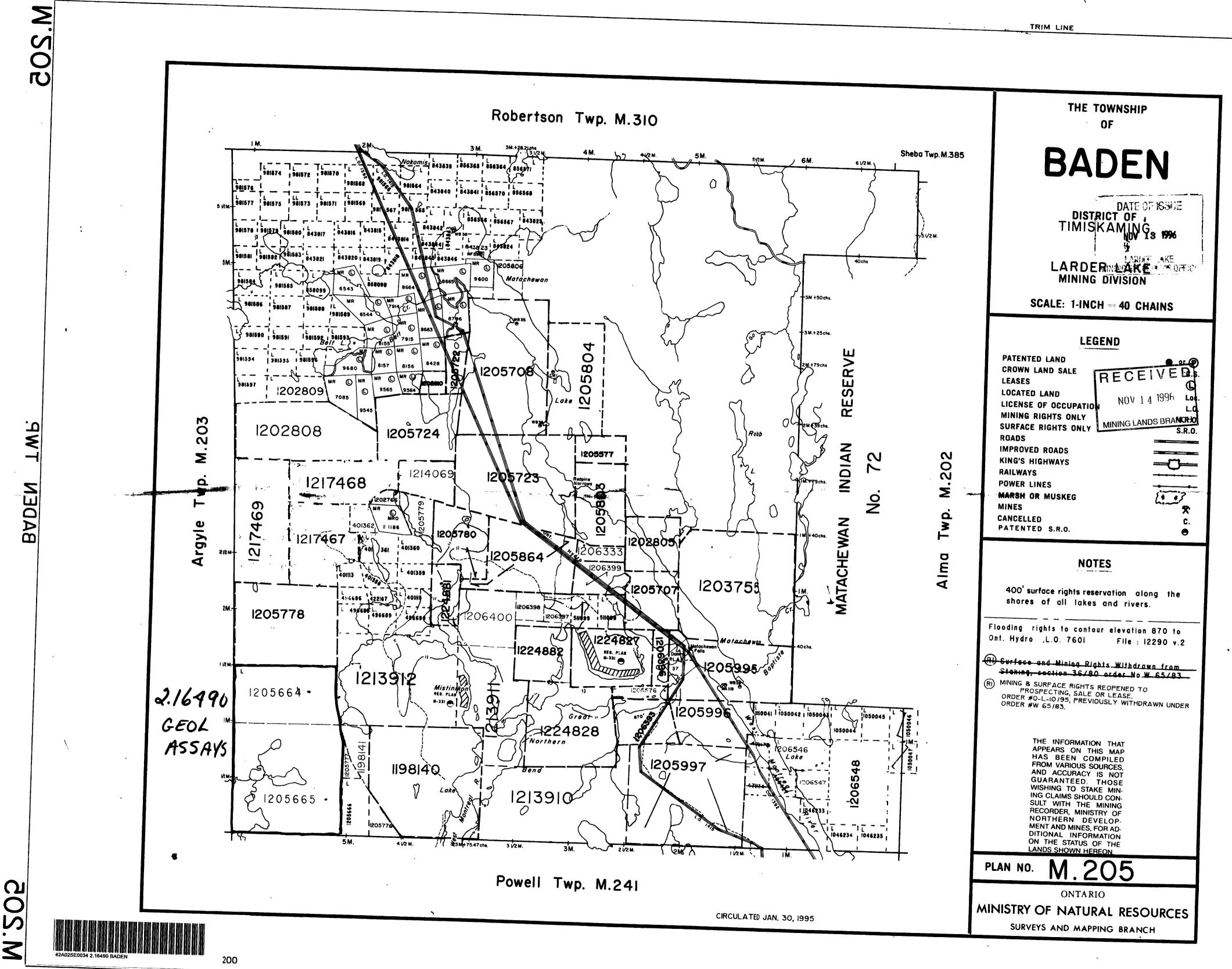
SUBJECT: Report of Work #W9680.00117 & W9680.00118 Power Stripping, Diamond Drilling L 1047785 et al, Powell Township

The above mentioned report of works were filed in this office February 26, 1996. According to subsection 6(7) of the assessment work regulations under The Mining Act, eligible assessment work shall be deemed to be approved for credit if this Ministry does not identify a deficiency within 90 days of filing.

The 90 day period has expired and therefore the work submitted in your report is to be considered automatically approved and recorded as you had indicated on the reverse side of your report of work form (attached).

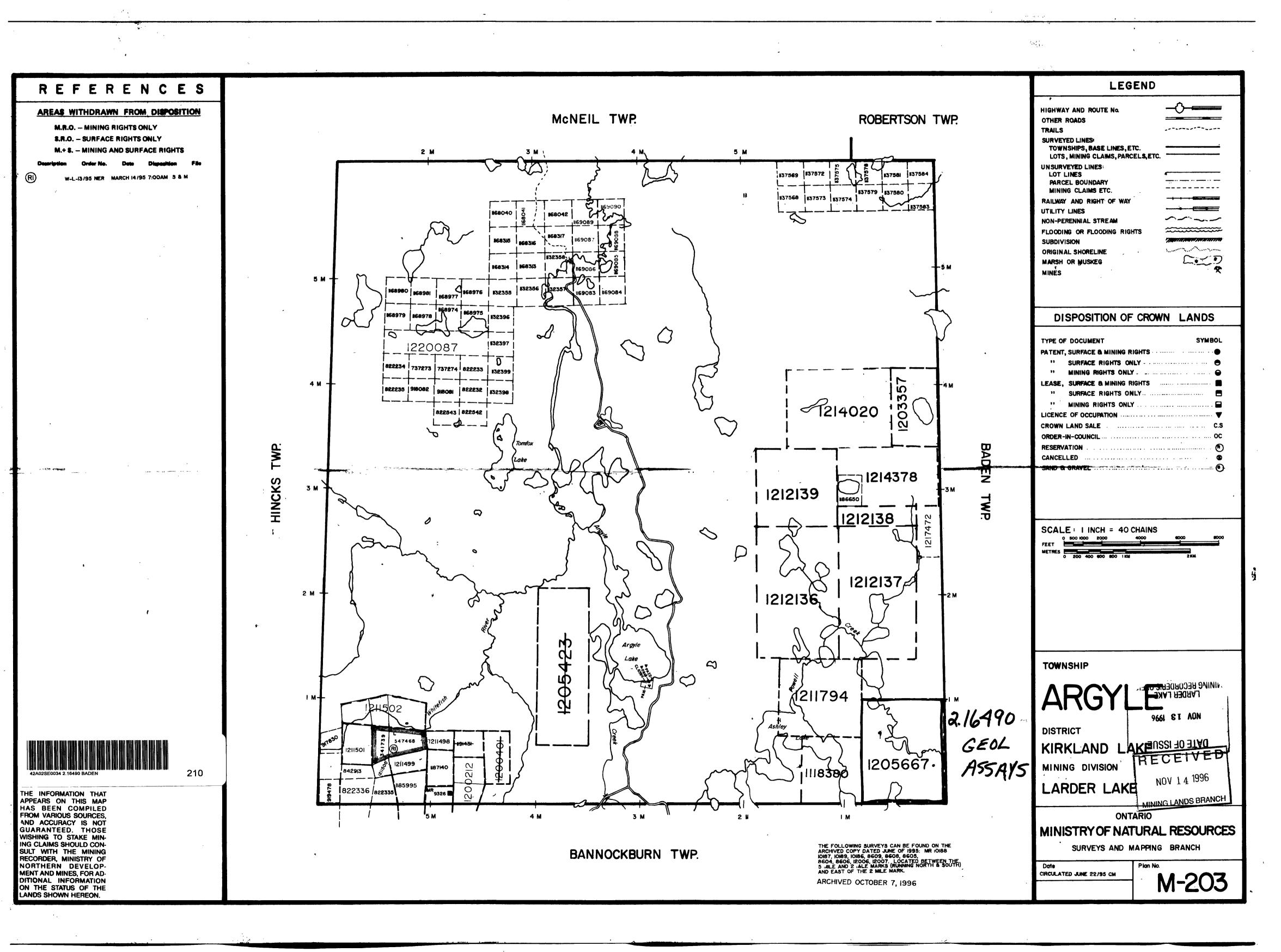
If you have any questions please call us.

Yours truly A.


Roy Spopner Mining Recorder Larder Lake Mining Division Telephone (7050 567-9241

RS/lp

encl.


c.c.: Resident Geologist Assessment File Office Fred Kiernicki Michael Leahy





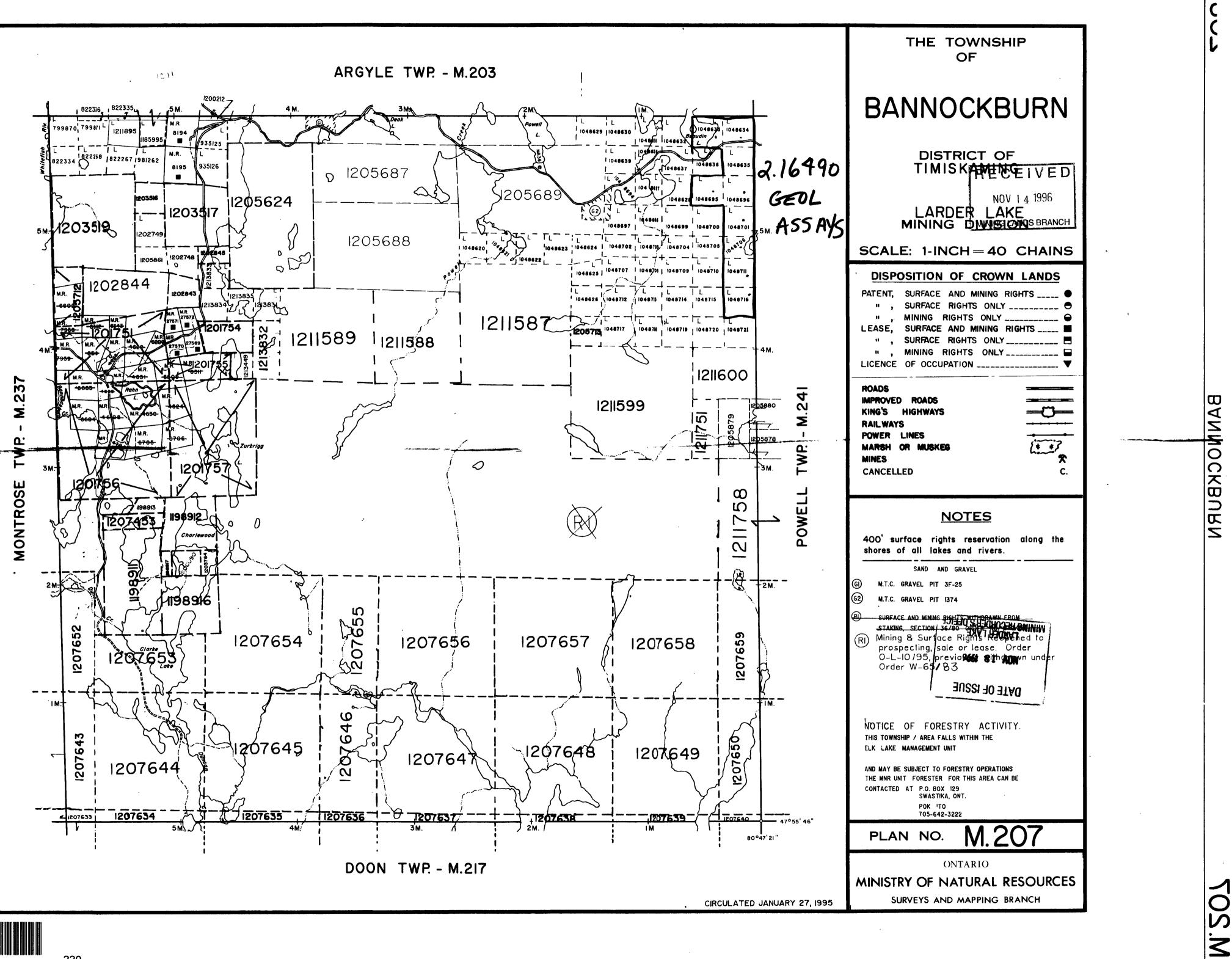
TRIM LINE

• •



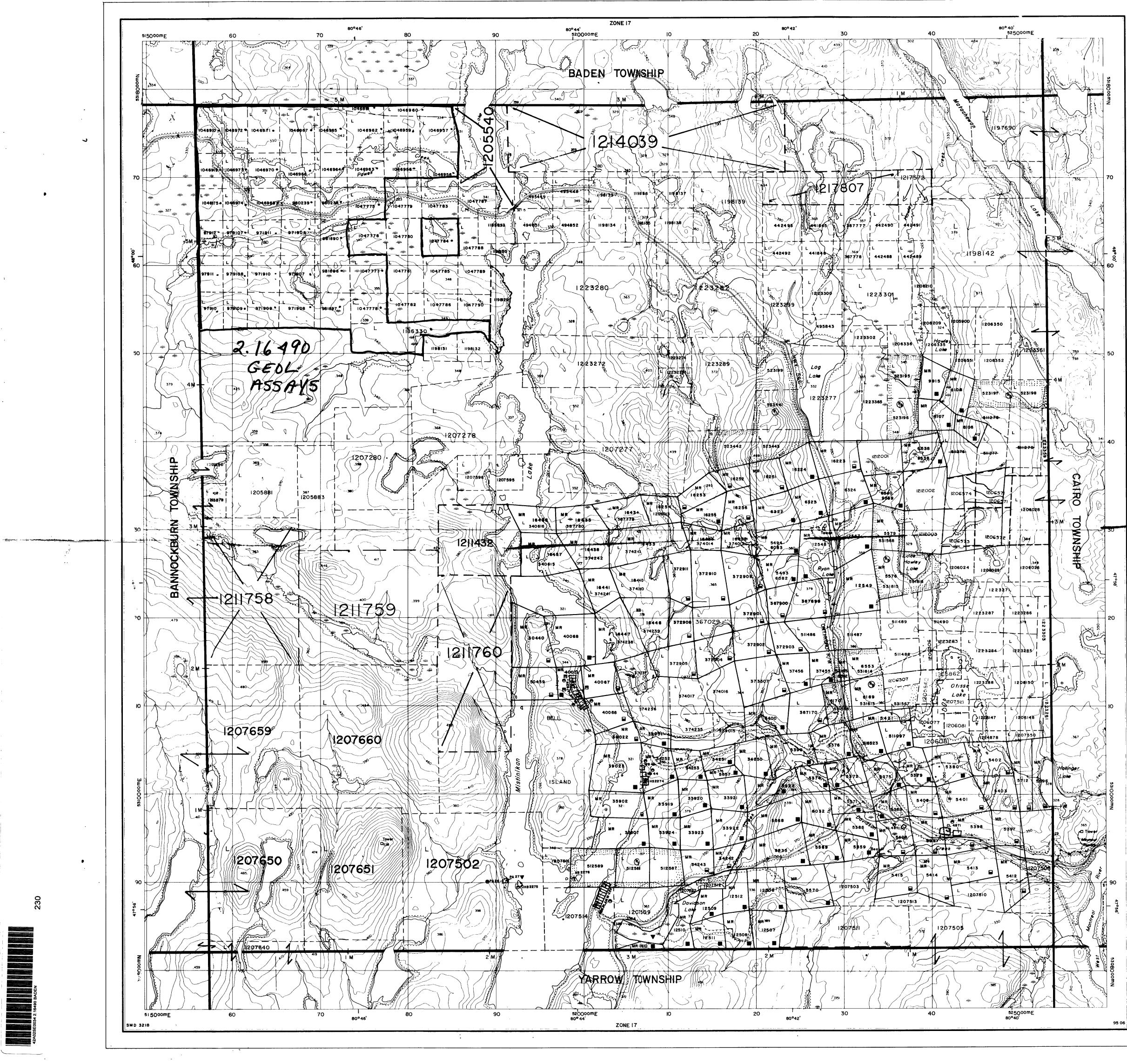
1 ВЙИОСКВЛВИ <sup>ي</sup> آ

•


N.SOJ

A

2


SOV

THE INFORMATION THAT APPEARS ON THIS MAP HAS BEEN COMPILED FROM VARIOUS SOURCES, AND ACCURACY IS NOT GUARANTEED. THOSE WISHING TO STAKE MIN-ING CLAIMS SHOULD CON-SULT WITH THE MINING RECORDER, MINISTRY OF NORTHERN DEVELOP-MENT AND MINES, FOR AD-DITIONAL INFORMATION ON THE STATUS OF THE LANDS SHOWN HEREON.



220

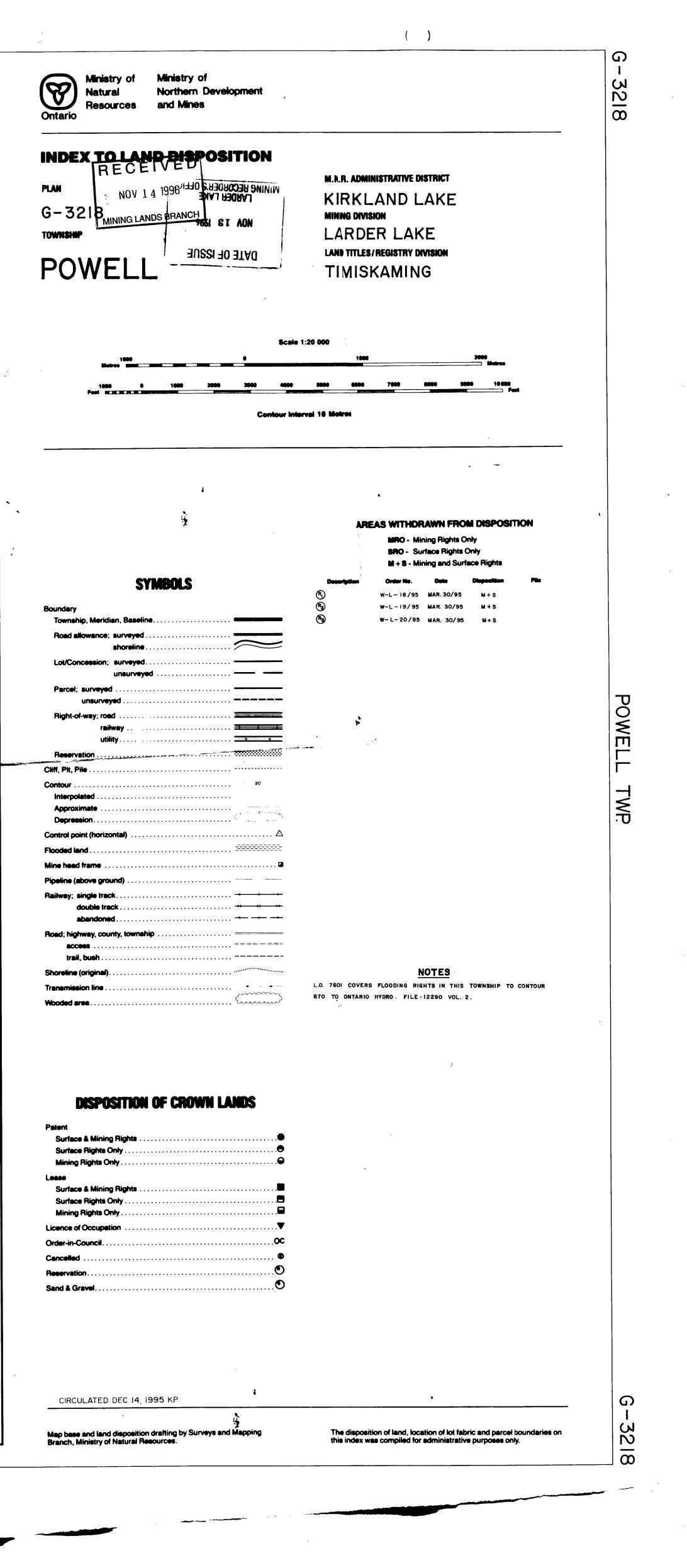
TRIM LINE



•

~

;


\*

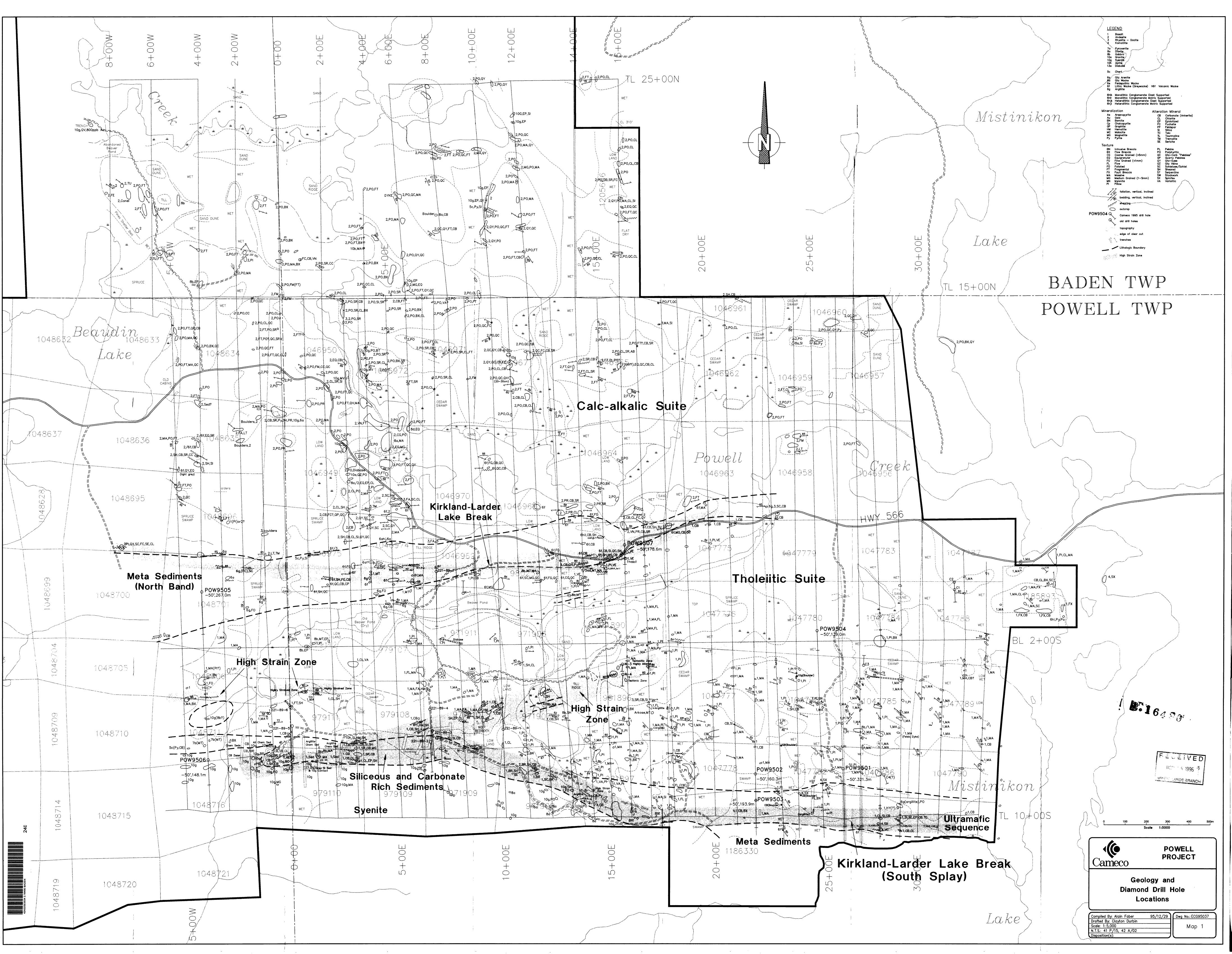
a.

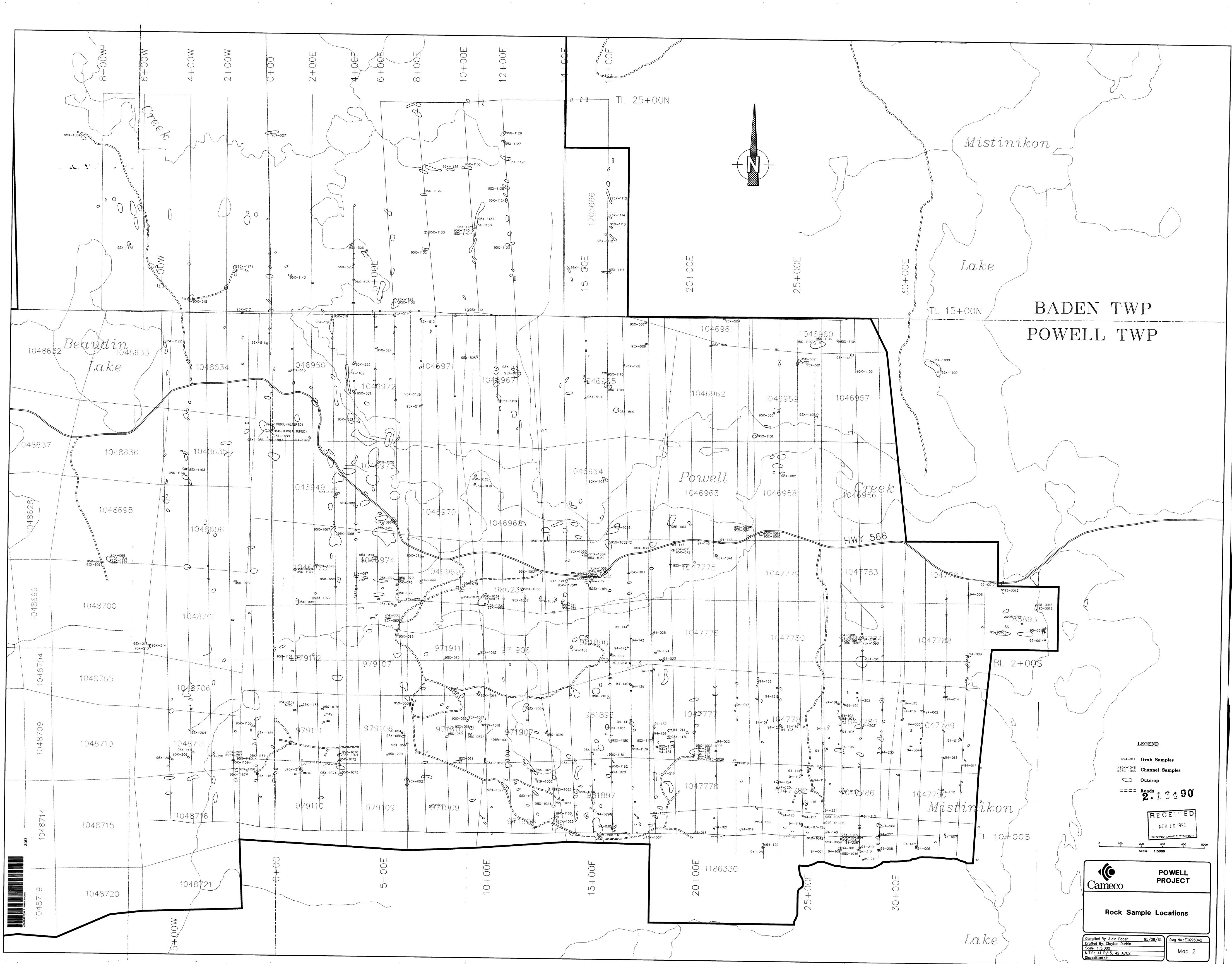
(\_\_\_

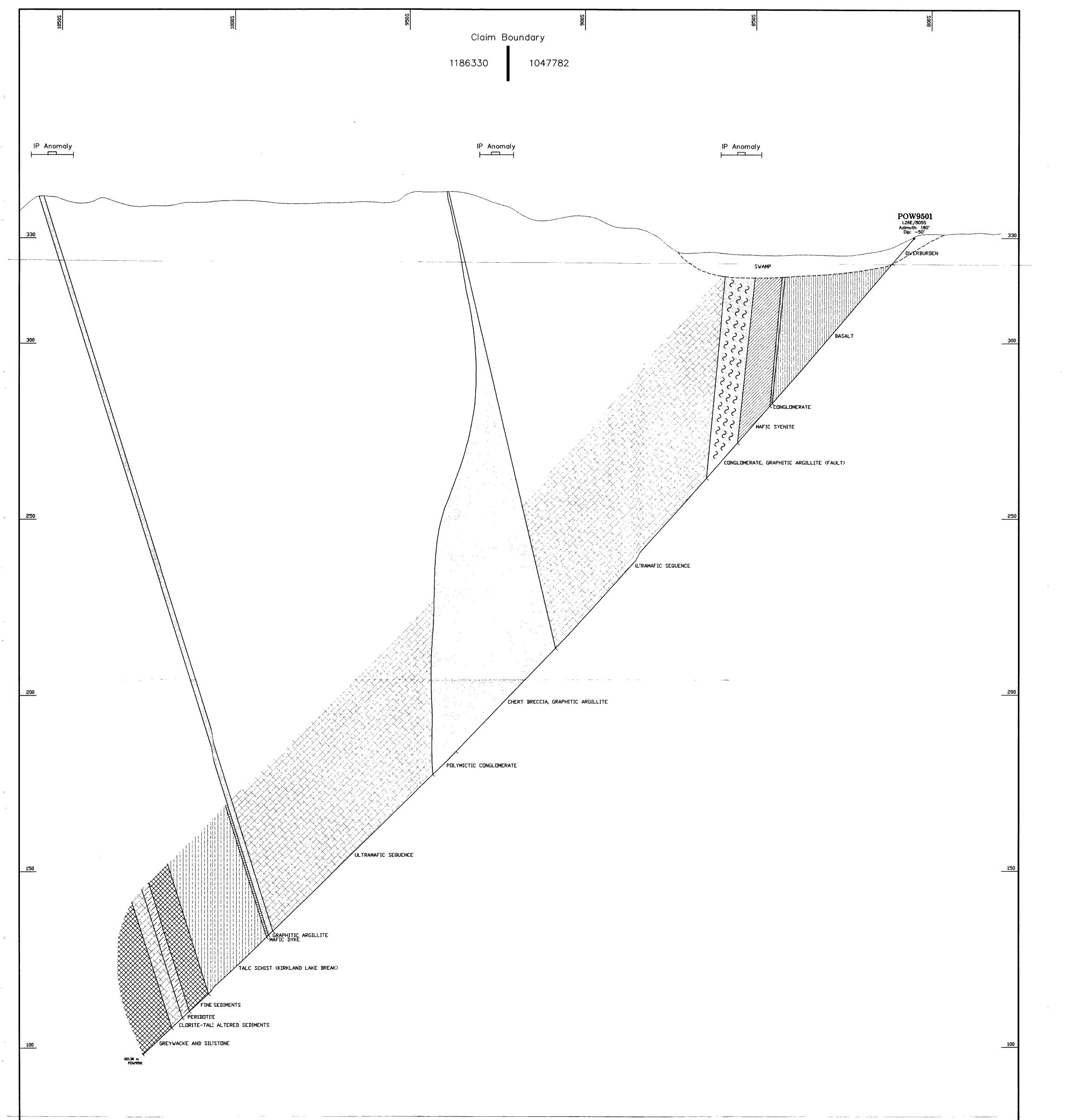
.

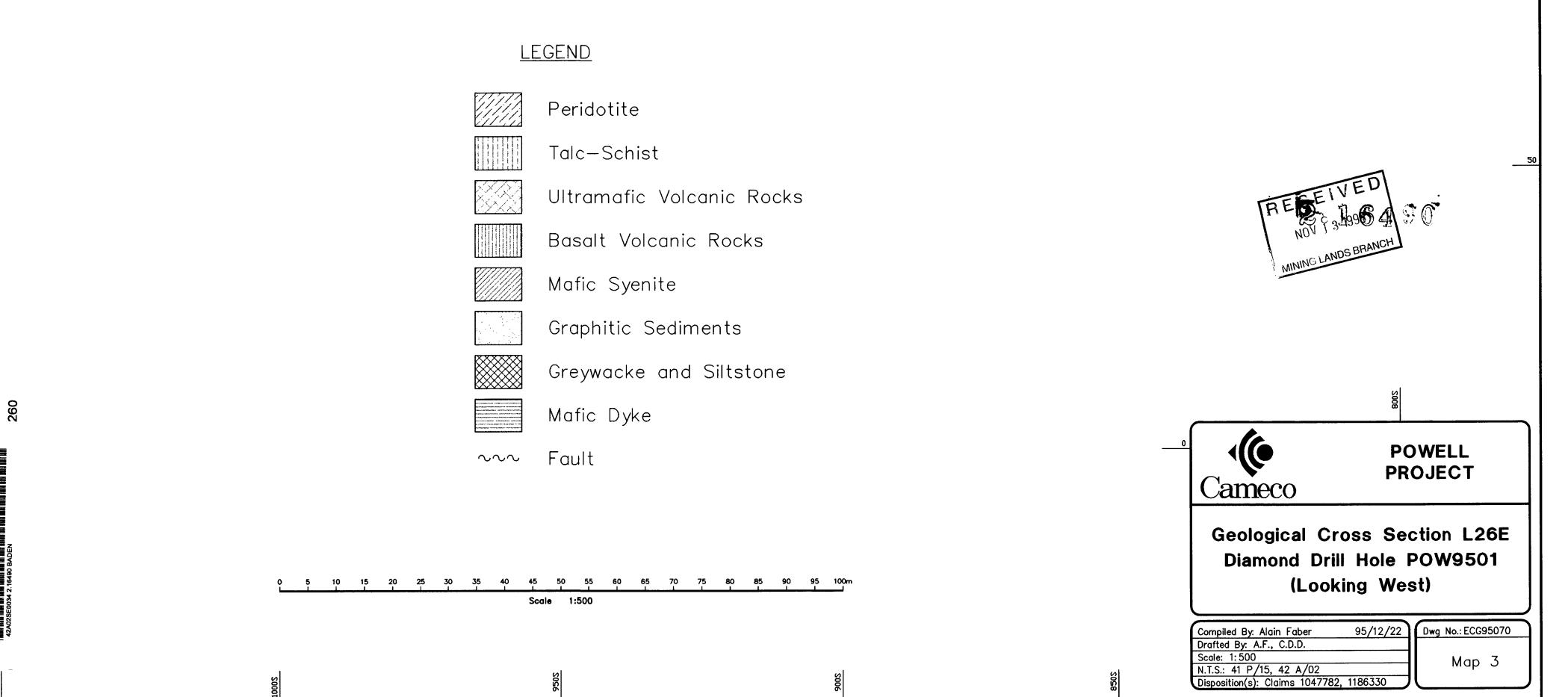
: ```

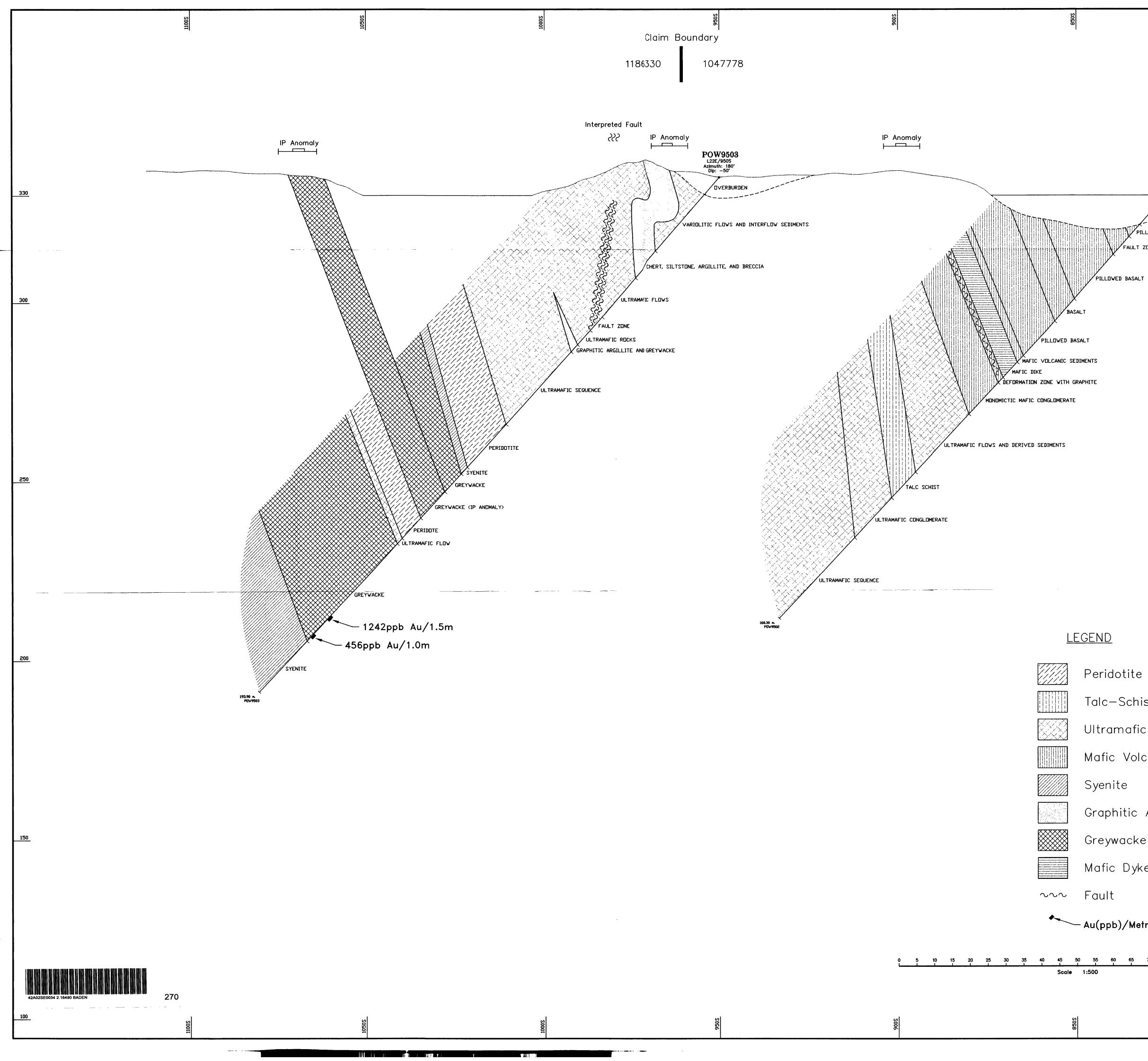



-


(


· ·


.

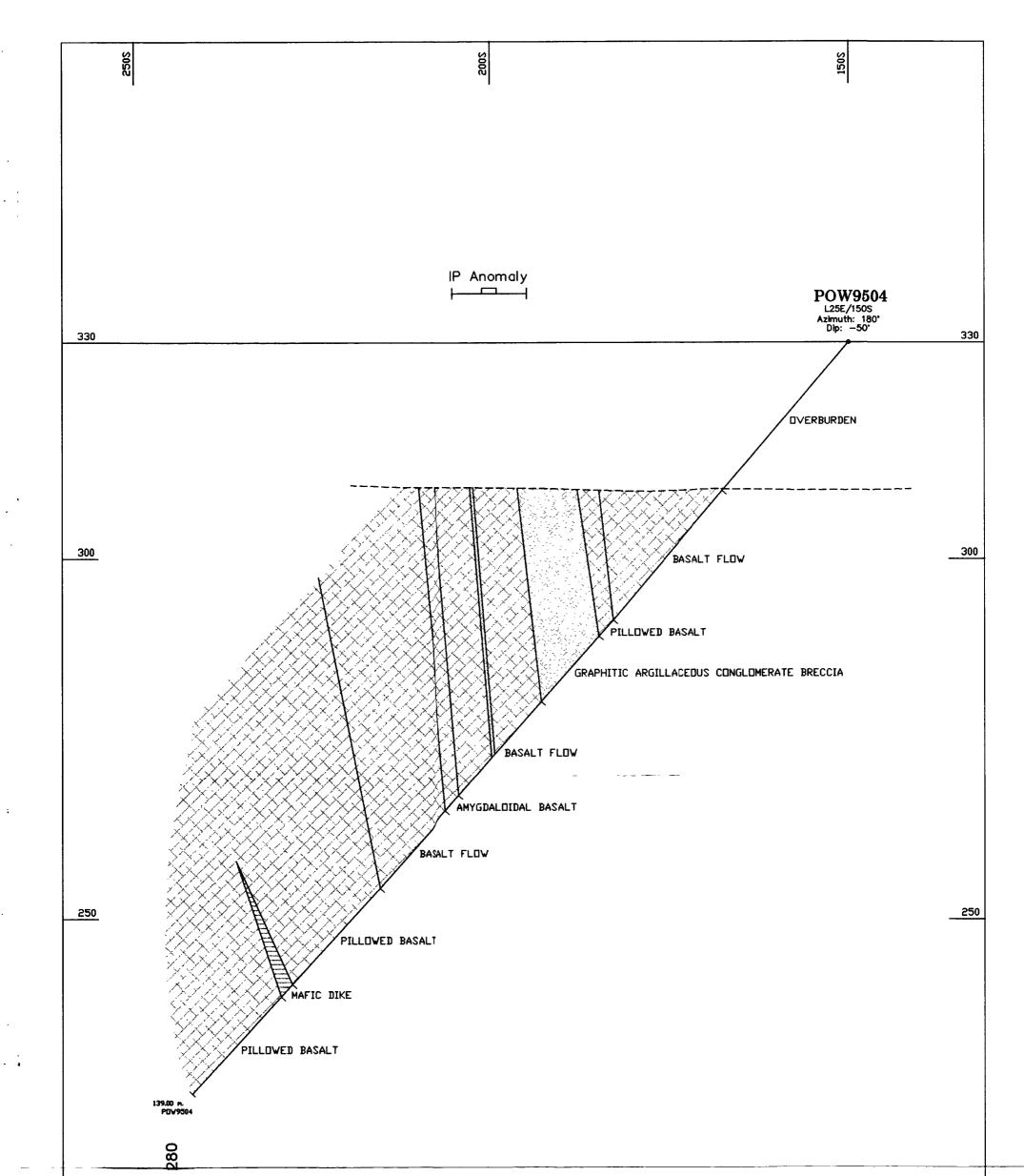

۰ ۰












POW9502 JUL ASSO DVCPARTORN PULLOVED BASALT FALT ZONE D BASALT

- -

330

|                                                                    | 200                                                                                                                                                                                                                            |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| te                                                                 |                                                                                                                                                                                                                                |
| chist                                                              |                                                                                                                                                                                                                                |
| ific Volcanic Rocks                                                |                                                                                                                                                                                                                                |
| olcanic Rocks                                                      |                                                                                                                                                                                                                                |
| o Araillito                                                        | RECEIVED<br>NOV 13 1966                                                                                                                                                                                                        |
| c Argillite                                                        | MINING LANDS OF NOH                                                                                                                                                                                                            |
| cke                                                                | 150<br>150                                                                                                                                                                                                                     |
| yke                                                                | Cameco POWELL<br>PROJECT                                                                                                                                                                                                       |
| Metres                                                             | Geological Cross Section L22E<br>Diamond Drill Holes POW9502,3                                                                                                                                                                 |
| 55 70 75 80 85 90 95 100m<br>I I I I I I I I I I I I I I I I I I I | (Looking West)                                                                                                                                                                                                                 |
|                                                                    | Compiled By: Alain Faber         95/12/22           Drafted By: A.F., C.D.D.         Dwg No.: ECG95071           Scale: 1:500         Map 4           N.T.S.: 41 P/15, 42 A/02         Disposition(s): Claims 1047778, 1186330 |





•

÷

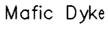
.

### <u>LEGEND</u>



10

5


Ultramafic Volcanic Rocks

Graphitic Sediments

15

20

Scale

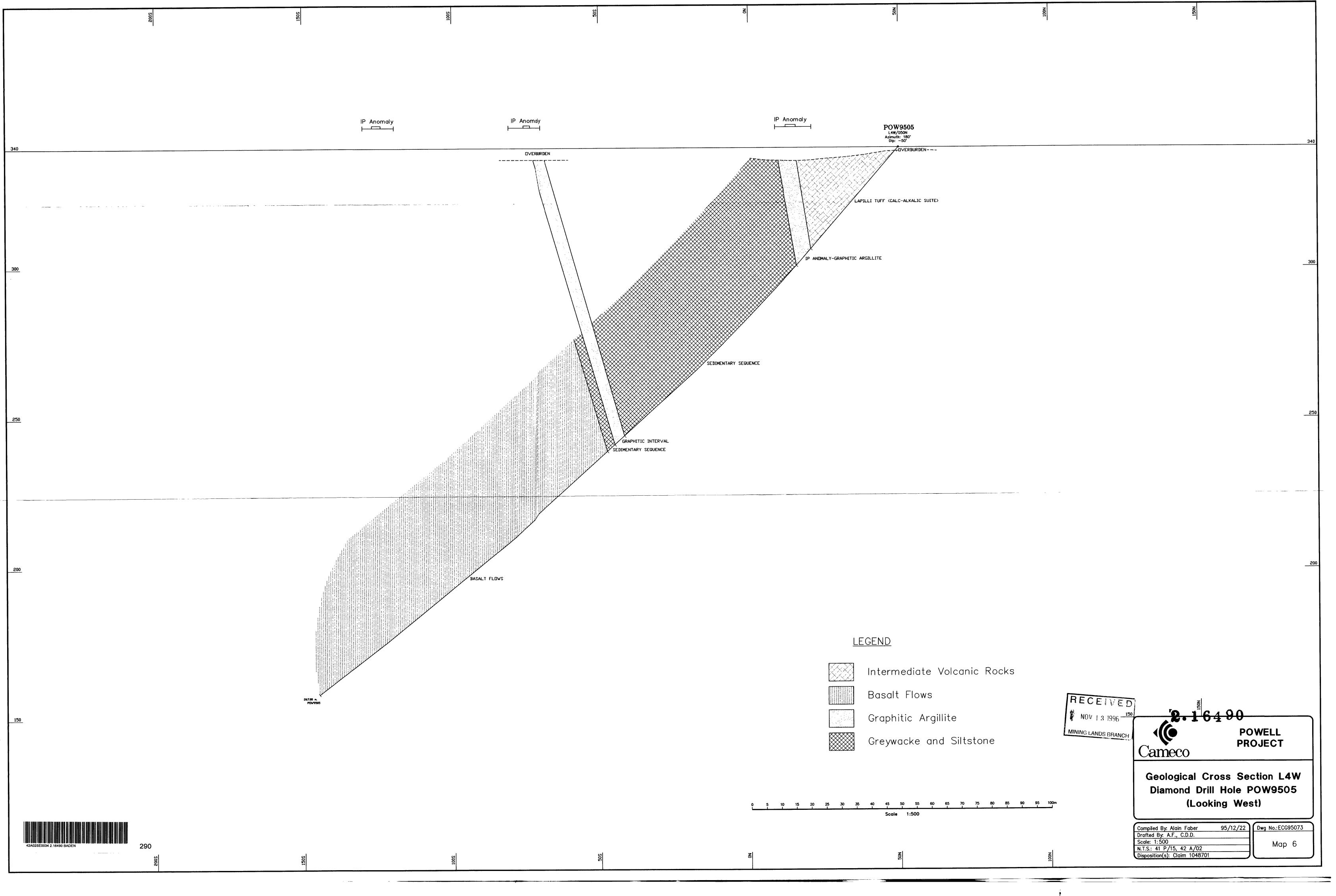


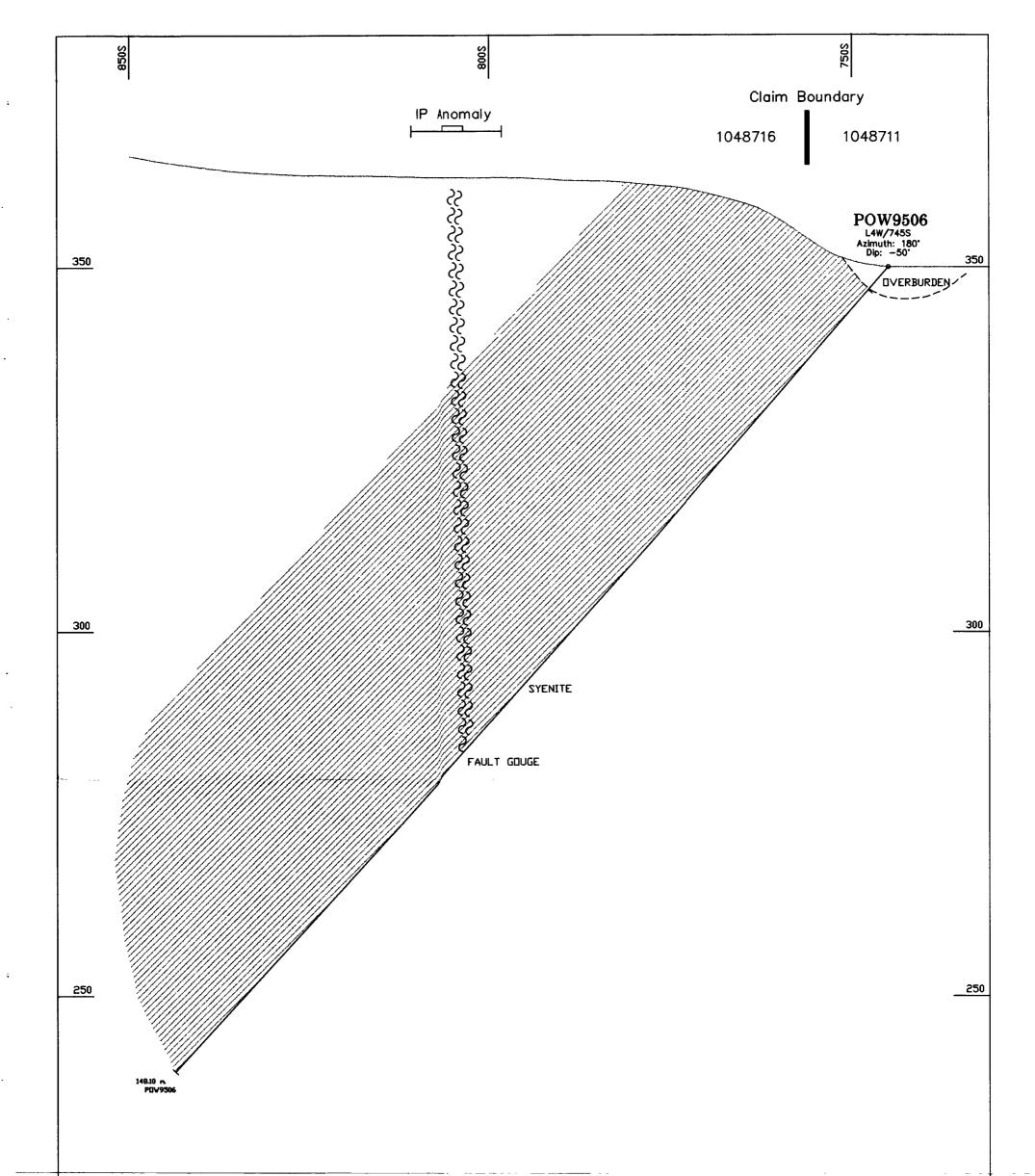
25

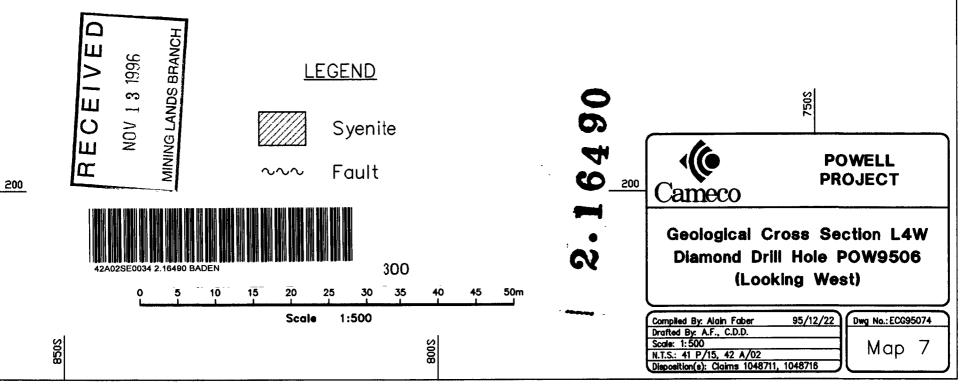
30

1:500

35

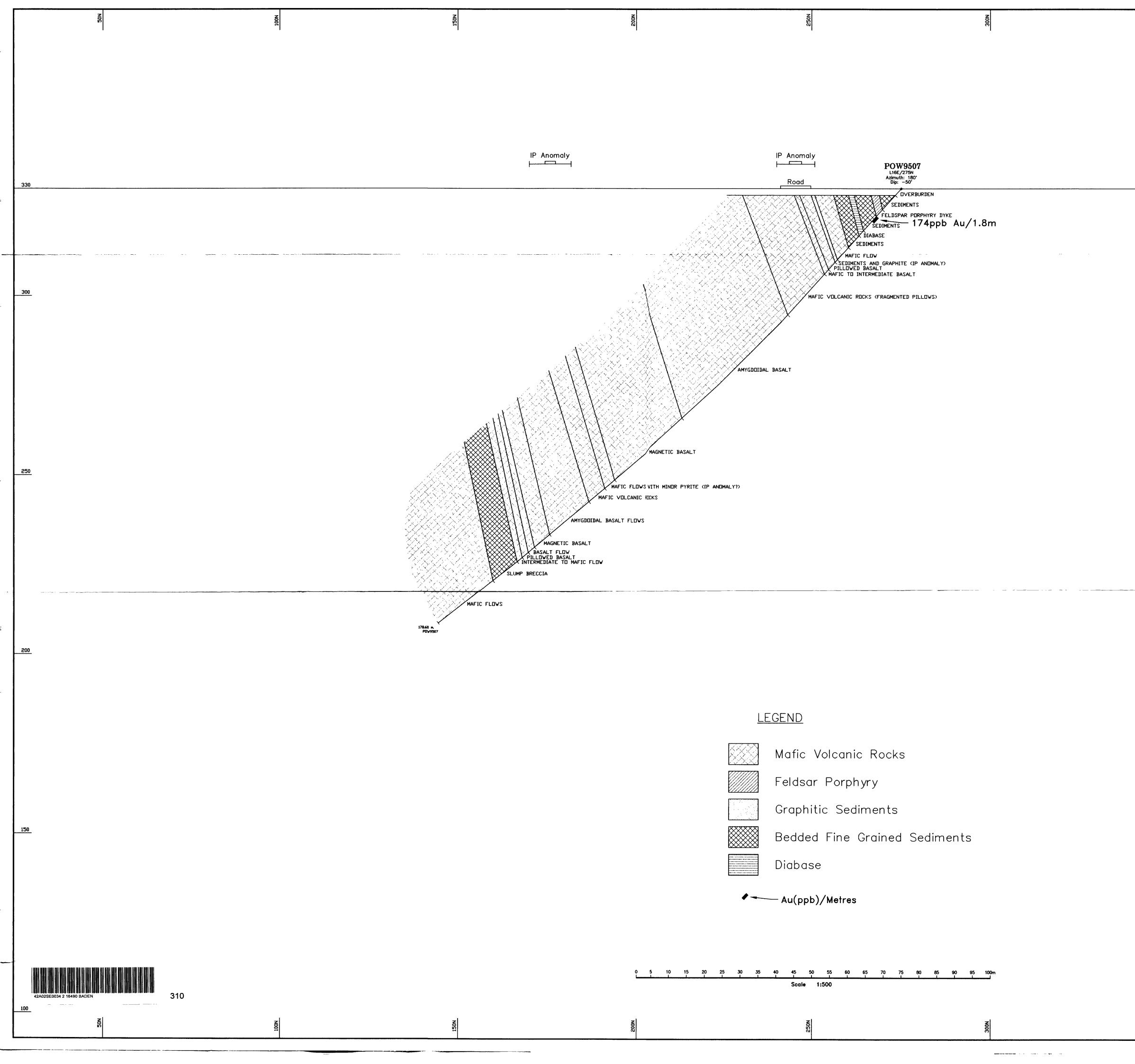

40


2002

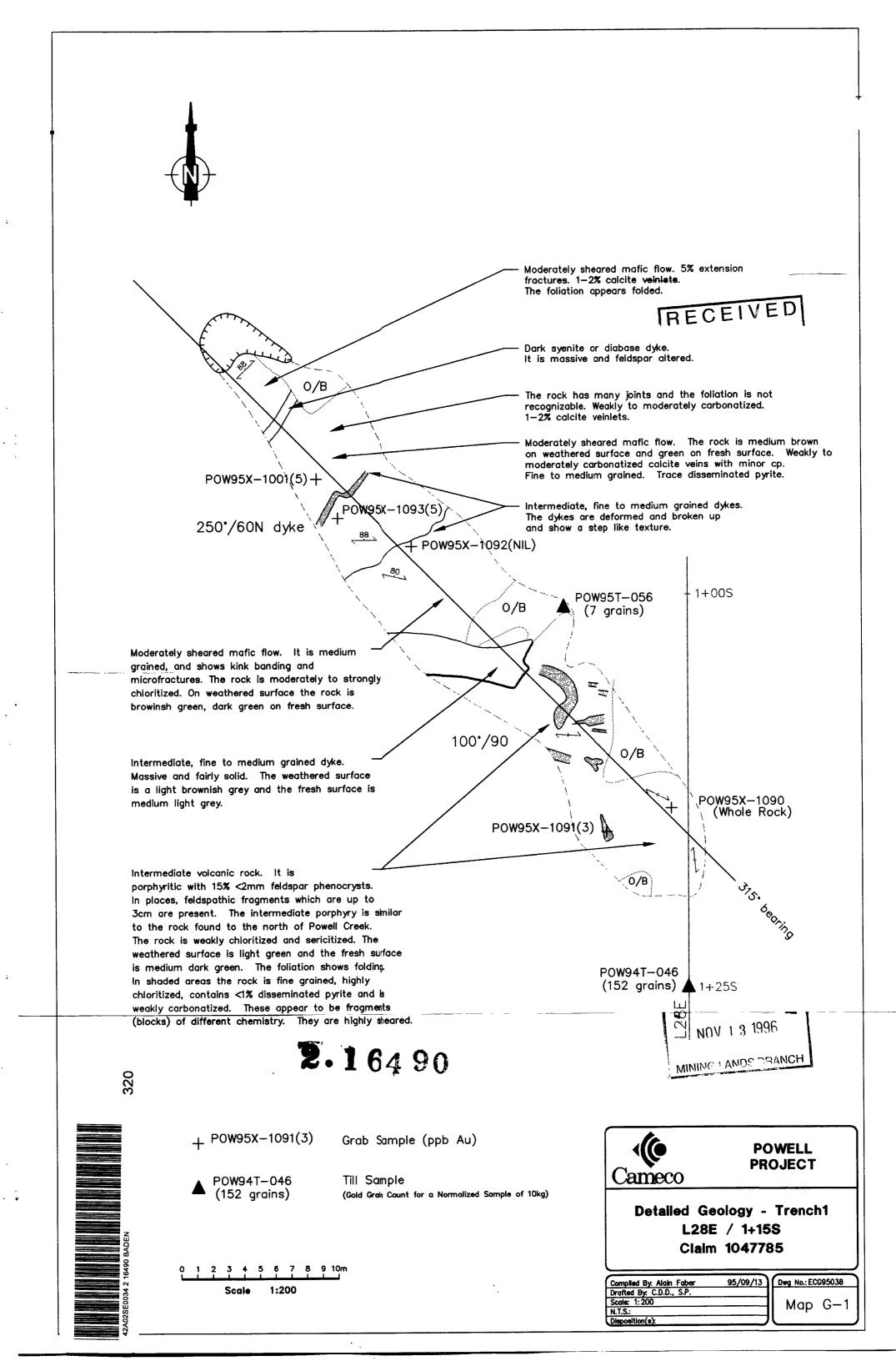

45

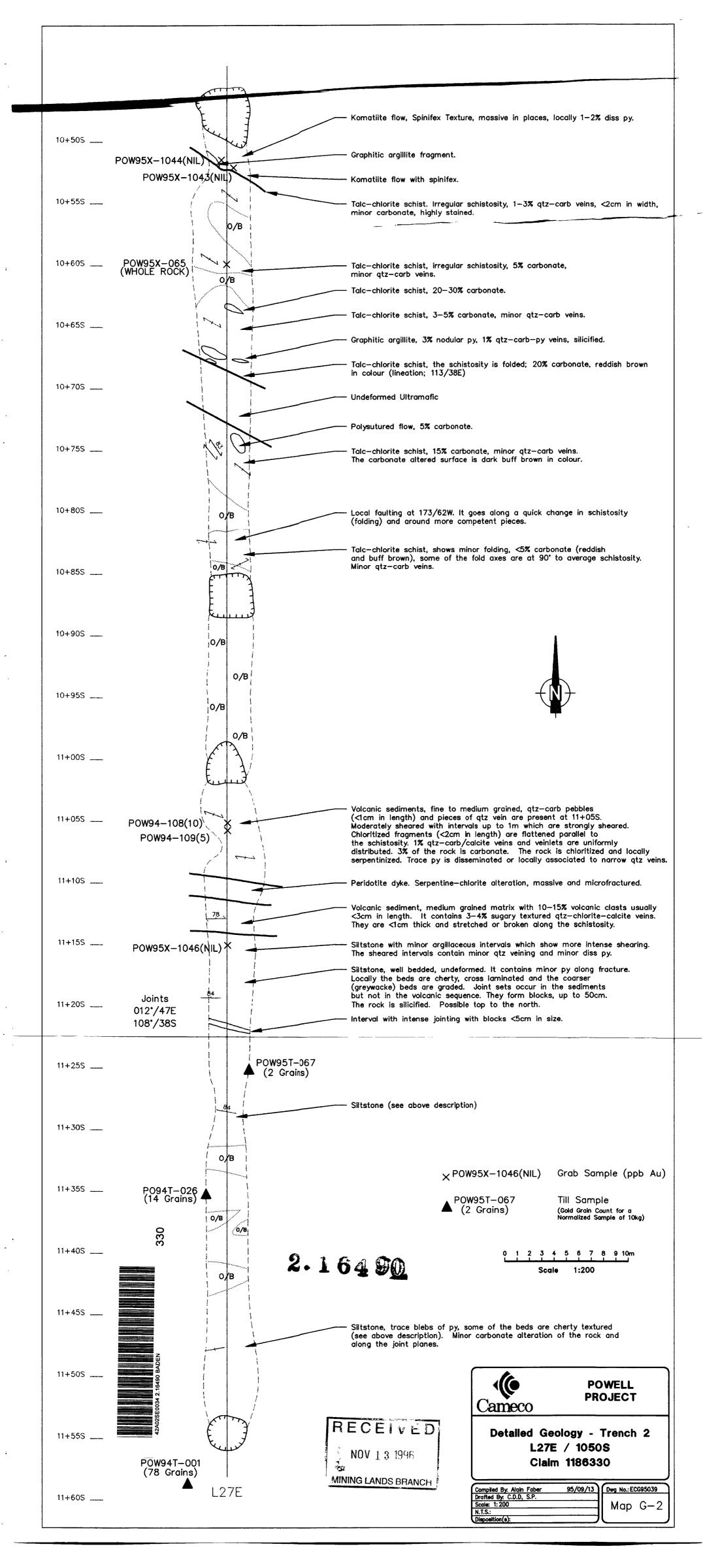
50m

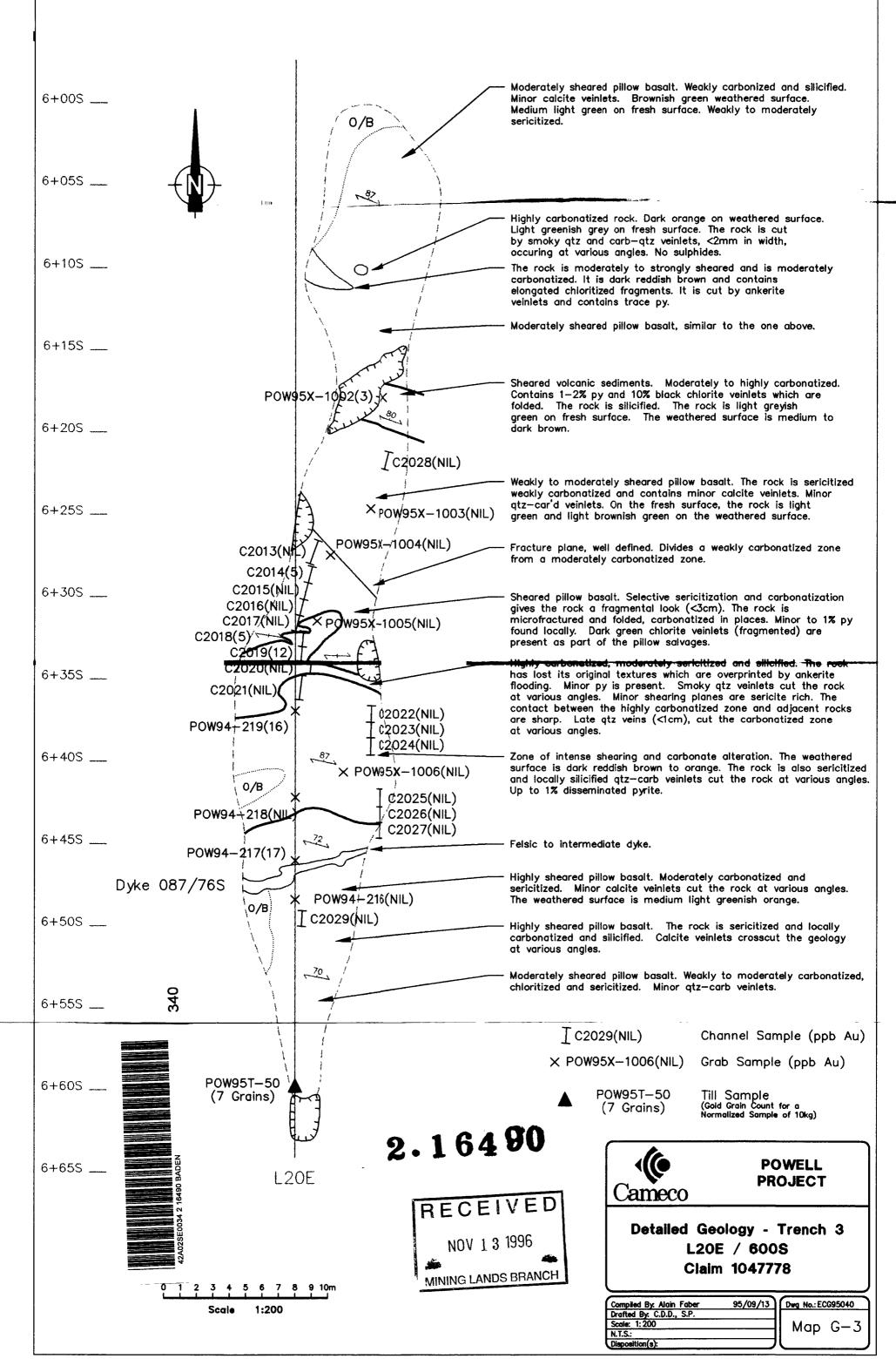
1505 200 **(**() POWELL PROJECT Cameco **Geological Cross Section L25E** Diamond Drill Hole POW9504 (Looking West) Compiled By: Alain Faber Drafted By: A.F., C.D.D. Scale: 1:500 95/12/22 Dwg No.: ECG95072 Map 5 N.T.S.: 41 P/15, 42 A/02 Disposition(s): Claim 1047780







\_\_\_\_


.



| 400N                                                     | 450N                       |
|----------------------------------------------------------|----------------------------|
| ·                                                        |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          | 330                        |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          | 300_                       |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          | 250                        |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          | 200                        |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          |                            |
|                                                          | 150                        |
|                                                          | 450N                       |
|                                                          |                            |
| Cameco                                                   | POWELL                     |
|                                                          | PROJECT                    |
| Lameco                                                   |                            |
| Geological C                                             | ross Section L16E          |
|                                                          | Il Hole POW9507            |
|                                                          | king West)                 |
|                                                          |                            |
| Compiled By: Alain Faber                                 | 95/12/22 Dwg No.: ECG95075 |
| Drafted By: A.F., C.D.D.<br>100 Scale: 1:500             | Map 8                      |
| N.T.S.: 41 P/15, 42 A/02<br>Disposition(s): Claim 980238 |                            |
| 4                                                        |                            |
|                                                          |                            |







-