REPORTT
 ON
 GROPHYSLCAL BURVEYB
 ON PROPRRTHETS

IN

MCARTEIUR TOMABHIP
OSTPARIO

IATRODUCTION

Ground geophyeical work, conaieting of both electromagnetic and magnetometer surveys, were completed over 12 claima in McArthur Township in the porcupine Mining Division, Ontario. The program was carried out in March and April 1972.

The following report and accompanying map: deacribe the results of the surveys and give a geological interpretation of the results.

CONCLUSIONS AND RECOMMENDAKIONS
The Electromagnetic survey outilned one definite eonductor and 5 posisible conductorfe The definite conductor (conductor "A") requires more detailed geophysical work to determine the strike.

However it coincides with an area where two previous drill holes are recorded and it has probably been tested by these holes.

The 5 possible conductore are extremely weak and are probably caused by conductive overburden.

PROPERTY AND LOCATION

The property consists of 12 unpatented claime covering approximately 480 acres. These are all regietered with the Ontario Department of Mines as follows and are shown on the accompanying maps.

Claim NO.	Status	Acres
P 320800	Unpatented	40
P 320802	"	40
P 320803	"	40
P 320804	"	40
P 320805	"	40
P 320806	"	40
P 320807	"	40
P 320808	"	40
P 320809	"	40
P 320810	"	40
P 320812	"	40
P 320813	"	40

The claims are located in the southeant quarter of MoArthur Township, Porcupine Mining Division, Ontario.

GEOLOGY

The northeast two-thirde of the olaime are underlain by
serpentinized dunite-peridotite and the eouthwest third of the property is underlain by felsic volcanice. The general strike is northwest.

SURVEY METHODS AND RREBEYTATLON OF RESULTR
The Electromagnetic urvay mployed the 8.E.-600. slectrom magnetic instrument operated in the vertical coll conficuration, using the broadside method with tranmitter-receiver meparation of 400 feet. Readings of the dip angle at 1600 C.P. 8 . were recorded at station intervals of 100 feet.

If one thinks of the plane of the receiving coil as that of a geologic bed, then the tilt anglea at the null in the proximity of a typical conductor approximate the ohape of an anticiine with the conductor axis under the orest of the anticilne.

The Magnetic readinge were taken with a MoPhar M700 Fluxgate magnetometer measuring the variations of the vertical component of the earth' magnetic field, The magnetic remponses, as plotted on the accompanying map, are correoted for diurnal variation and instrument drift.

The electromagnetic and magnetic resulte are plotted on separate maps on a cale of 200 feet to the inch.

Survey readinge were taken along chain and compare ines
at 400 foot line spacings.

INTERPRETATION OF REGULTS

The Electromagnetic arvey, as plotted on the accompanying map outlines one definite conductor and five possible conductore. The definite conductor requires more detailed geophysical work in order to outline the etrike. However it coinciden with the location of two previously recorded drill holes and hat probably been tested by these old holes. The five poseible conductora are probably caused by conductive overburden.

The magnetometer readinge over the northeast two-thirds of the claims are relatively high, reflecting the underlying ultrabasic rocke.

Rempeotfuliy 8ubmitted

E. W. Bazinet, P. Eng.

Timmins, Ontario.
April 30, 1972.

GEOPH

900

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey

Township or Area Claim holder $(\mathrm{s}) _E, N \cdot B A Z \angle A E T$

Author of Report EM $M, B A Z N A F$
 Covering Dates of Survey $\frac{M \text { arch } 1,1972 \text { to } A p r i / 30,1972}{\text { (linccutting to office) }}$ Total Miles of Line cut Qaexi Compass Lares 12.58 Mit

SPECIAL PROVISIONS
 CREDITS REQUESTED

ENTER 40 days (includes
line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

	DAYs Geophysical perclaim -Electromagnetic -Magnetometer - 20 -Radiometric_- -Other Geological Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric (enter days per claim)

date: April 30,19 signature:

Res. Geol.
Previous Surveys \square

Checked by \qquad date \qquad

GEOLOGICAL. BRANCH \qquad

Approved by \qquad date \qquad

GEOLOGICAL BRANCH

Approved by \qquad date

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS
Number of Stations
540 Number of Readings 540
Station interval. 100 fut
Line spacing 4 woifuet
(specify for each type of survey)
MaGnetic M 1 TOO Me Phat

Base station location_ Base line at line 0

coil configuration Vertical Configuration - Broadicde Method

Parameters measured Tilt angle (specify V.L.F. station) degrees.
GRAVITY
Instrument \qquad
Scale constant \qquad
Corrections made \qquad
\qquad
Base station value and location \qquad

Elevation accuracy \qquad
INDUCED POLARIZATION - RESISTIVITY
Instrument \qquad
Time domain. \qquad Frequency domain \qquad
Frequency \qquad Range
Power \qquad
Electrode array \qquad
Electrode spacing \qquad
Type of electrode \qquad

