42A03NE1031 2. 12469 CLEAVER
010

GEOPHYSICAL REPORT
ON THE
CLEAVER TOWNSHIP PROPERTY
CLEAVER TOWNSHIP
LARDER LAKE MINING DIVISION
FOR
COMINCO LIMITED

Prepared by:
J.C. Grant

CET FGAC
Exsics Eyptomation April

TABLE OF CONTENTS

Page
INTRODUCTION 1
PERSONNEL 1
CLAIM GROUP 2
LOCATION AND ACCESS 2
ACCESS 3
GEOPHYSICAL PROGRAM 3
SURVEY RESULTS 6
RECOMMENDATIONS AND CONCULSIONS 9
CERTIFICATION
LIST OF FIGURES
Figure 1...................... Location MapFigure 2...........................Area Location MapFigure 3...................... Claim GroupFigure 4............................ Geology Map
LIST OF BASE MAPS IN BACK POCKET

APPENDICES

Appendix A EDA Omni lV System Specifications
Appendix B MaxMin II SpecificationsAppendix C..................Technical Data Statement

INTRODUCTION

Cominco Limited holds a group of 18 mining claims all of which are located in the west central section of Cleaver Township, District of Temiskamining in the Larder Lake Mining Division. (Figure 3, M.N.D.M. Plan Map G-3619).

Exsics Exploration Ltd., was contracted by Cominco during the month of February 1989, to perform a geophysical program on the property.

The purpose of this program was to locate and define favorable structure suitable for base metal and or gold deposition.

This report will deal with the results of the geophysical program as well as recommendations for future follow-up work.

PERSONNEL

The people directly involved with the field surveys were all employed by Exsics Exploration Ltd and are as follows:

Wayne Pearson.............Party Leader.............. Timmins, Ontario
Dan Collin...............Assistant.................. Timmins, Ontario
Brian Keen................ Operator......................Timmins, Ontario
John Penttinen........... Operator..................Timmins, ontario

All of the work was supervised by J.C. Grant.

CLAIM GROUP

The claim group consisted of 18 contiguous unpatented mining claims and all are located in Cleaver Township. They are as follows:

L 1027642
L 1027643
L 1027644
L 1027645
L 1027646
L 1027647
L 1027648
L 1027649
L 1027650

L 1027651
L 1027652
L 1027653
L 1027654
L 1027655
L 1027656
L 1027657
L 1088373
L 1088374
(Refer to Figure 3, Plan Map G-3619 of the M.N.D.M).

LOCATION AND ACCESS

The Cleaver property is located approximately 35 kilometers southeast of the City of Timmins, in the west central section of Cleaver Township (Figure $1 \& 2$).

More specifically, it is situated east of Forkes River and covers the majority of Little Nighthawk Lake and a portion of the Little Nighthawk River which flows into Little Nighthawk Lake. (Refer to Figure 2 for the property location).

ACCESS

Access to the property during the survey period was by truck from Timmins to South Porcupine, through South Porcupine along the Langmuir Road in a southeasterly direction to the junction of the Langmuir Road and the Stringer Road. The Stringer Road travels south through Eldorado and Fallon Townships and into Cleaver Township. A short skidoo ride along secondary gravel roads provides good access to the group itself. (Refer to Figure 2).

GEOPHYSICAL PROGRAM

This program consisted of a total field magnetic survey and a MaxMin II, horizontal loop, electromagnetic survey. Both of these surveys were completed over a cut grid which covered the entire group of 18 claims.

Linecutting:

A detailed metric grid was first cut over the property which would provide good control of all the geophysical surveys.

A baseline was cut across the block at an azimuth of 115 degrees. Cross lines were then turned off of this base line at 100 meter intervals and cut to the north and south boundaries of the block. All of the lines and base line were chained with 25 meter station intervals. In all, a total of 33 kilometers of grid lines were established over the property.

Magnetic Survey

This survey was completed using the EDA Omni IV system. Specifications for this unit can be found under Appendix A of this report.

This unit is capable of recording and storing magnetic values accurate to the decimal point, thus greatly improving the accuracy as well as the quality of the collected data.

A base station was established on the survey grid at a fixed point and this unit was tuned to a reference field of 58556 gammas. The field unit was also tuned at the same fixed point and set to the same reference field.

The base station unit was set to record and store readings at 30 second intervals so as to monitor any spiking or change in the earth's diurnal throughout the day.

At the end of each survey day, the field unit and base station unit are coupled together and the raw field data is dumped to the base station mag where it is merged. The internal microprocessor then computes the diurnal variation in the earth's magnetic field for each survey grid coordinate by comparing the times at which readings were taken and computing any mid-interval values.

This is most useful in these northern latitudes where more detailed monitoring of the diurnal variations is required.

This correction is done during the data dump of the unit. The retreived data is the correct data ready for plotting.

This plotted data has had a background of 58000 gammas removed for ease in plotting.

Horizontal Loop Survey

This survey was completed using the MaxMin II system manufactured by Apex Parametrics of Toronto. Specifications for this unit can be found as Appendix B of this report.

This survey is a two man continuously portable system which is designed to measure both the vertical and horizontal in-phase, (IP), and quadrature, (OP), field from electrically conductive zones. For the initial MaxMin survey, a coil separation of 100 meters was used between the receiver and transmitter operators. This would allow us a theoretical search depth of 50-55 meters. It was also decided to use three frequencies, the 3555,1777 and 444 Hz which would deal effectively with a wide range of 'overburden and bedrock conductor conductivities.

After the initial survey was completed over the entire grid, several of the grid lines were re-read with a 150 meter coil seperation in the hopes of better defining any questionable responses.

The data was collected at the mid-point of the two operators over the entire grid. One in-phase and one quadrature value was recorded at each station.

This collected data was then plotted directly onto the base maps, one base map for each frequency.

Base Maps

These maps were set up at a scale of 1:5000 and all of the collected data was put on them.

For the magnetic data, 58,000 gammas has been subtracted from each reading for ease in plotting. The data was then contoured at 100 gamma intervals wherever possible.

The MaxMin maps were profiled at 1 cm to 20% and one map was used for each frequency. The plot point is the mid-point between the operators which accounted for the 50 or 75 meter blanks at the north and south end of each line.

All of these maps can be found in the back pocket of this report.

Survey Results

The geophysical surveys were successful in locating several areas of interest on the grid. Each of these areas will be discussed seperately and in detail in the following text.

The magnetic survey outlined 3 major structural features which are well defined on the survey grid.

Certainly the most predominant feature is the north-south striking feature along the east section of the grid. The feature may relate to a suspected contact zone between the Intermediate and Mafic volcanics to the west and the sediments to the east. The feature well defines this suspected contact. It also appears that none of the EM targets strike past this contact zone.

The best EM zone strikes across lines 200 ME to 300 MW at about 200 MN. This feature appears to represent a legitimate bedrock conductor at a depth range of 20-35 meters with a conductivity value of 2 to 10 mhos. The zone appears to be dipping near vertical.

The zone has good magnetic signature represented by a low to high to low correlation striking east to west. This zone may also represent a lead, zinc mineral occurence which has been mapped previously and is shown on the Timmins-Kirkland Geological Compilation series Map 2205 (Refer to Figure 4).

This feature was also covered by the 150 meter coil, detailed, MaxMin survey. The feature was enhanced and defined to be at a depth of 20-43 meters with a conductivity value of 2 to 10 mhos. This survey further suggests that the zone represents a good legitimate bedrock response.

A second EM target located on the grid strikes across lines 300 ME to 100 MW from 150 MS to 325 MS . This feature appears to be bedrock related however, it is somewhat weaker than the primary target to the north.

The zone does have a moderate to good magnetic signature represented by a high to low correlation from east to west. The magnetics appear to show a narrow, weak structure striking into the geological contact to the east and a possible intrusion to the west. This feature was also covered by the larger coil seperation but little new information was obtained.

A third area of interest noted by the EM survey and more so with the larger coil seperation is a north-south striking feature in the area of lines 300 ME to 0 MW from 600 MN to 1000 MN .

This feature may in fact relate to the contact zone between the volcanics to the west and the sediments to the east

RECOMMENDATIONS AND CONCLUSIONS

The surveys were successful in outlining one major area of interest, that being the area of conductor A at 200 MN . Several other areas worthy of notice were located, however, at this time there is insufficient results tol give a better definition of the targets. These secondary zones should not be ruled out at this time.

The author suggests only that future work be concentrated on the more predominate zone and depending on encouraging results, focus should then shift to the secondary targets.

Future programs should consist of a detailed mapping program in the area of the major zone with the intention of correlating the lead-zinc occurence to the EM ground target. General mapping of the area in the vicinity of the minor targets should also be considered.

A diamond drill program should be considered to test the main feature and if encouraging results are obtained, further drilling of the secondary targets may be considered.

In lieu of diamond drilling, and if the overburden is shallow enough, stripping and trenching may be considered to explain the main feature and also to trace the limits of the lead-zinc mineral occurences.

An IP survey or Pulse EM survey may be considered to better define the secondary targets and any parallel features not detected in the initial geophysical program.

Respectfully Submitted,

CERTIFICATE OF QUALIFICATIONS

I, John Charles Grant do hereby certify:

1. That I am a Geophysicist and reside at Lot 2 Martineau Avenue, Kamiskotia Lake, Timmins, Ontario.
2. That I am a Fellow of Geological Association of Canada.
3. That I am a member of the Certified Engineering Technologist Association.
4. That I graduated from Cambrian College of Applied Arts and Technology, Sudbury Campus, in 1975 with an Honour's Diploma in Geology Technology.
5. That I have practised my profession continuously for 13 years.
6. That my report on CLEAVER TOWNSHIP, LARDER LAKE MINING DIVISION, for COMINCO LIMITED, is based on work carried out under my supervision.
7. I hold no specific or special interest in the described property. I have been retained as a Consulting Geophysicist for "the property".

Dated this 17 th day of April, 1989 at Timmins, Ontario.

John C. Grant,

"Tie-Line" magnetometer

 OMNI IV's Major Benefits
 - Four Magnetometers in One
 - Self Correcting for Dlurnal Varlations
 - Reduced Instrumentation Requirements
 - 25\% Welght Reduction
 - User Friendly Keypad Operation
 - Universal Computer Interface
 - Comprehensive Software Packages

Specifications

Dipoles	simultaneous input dipoles.
Input Voltage (Vp) Range	.40 microvolts to 4 volts, with automatic ranging and overvoltage protection.
Vp Resolution	10 microvolts.
Vp Accuracy	0.3\% typical; maximum 1\% over temperature range.
Chargeability Resolution	1%.
Chargeability Accuracy	0.3% typical; maximum 1\% over temperature range for $\mathrm{Vp}>10 \mathrm{mV}$.
Automatic SP Compensation	$\pm 1 \mathrm{~V}$ with linear drift correction up to $1 \mathrm{mV} / \mathrm{s}$.
Input impedance	1 Megohm.
Sample Rate	10 milliseconds.
Automatic Stacking	. 3 to 99 cycles.
Synchronization	Minimum primary voltage level of 40 microvolts.
Rejection Filters	.50 and 60 Hz power line rejection greater than 100 dB .
Grounding Resistance Check	100 ohm to 128 kilo-ohm.
Compatible Transmitters.	Any time domain waveform transmitter with a pulse duration of 1 or 2 seconds and a crystal timing stability of 100 ppm .
Programmable Parameters	Geometric parameters, time parameter, intensity of current, type of array and station number.
Display	Two line, 32 -character alphanumeric liquid crystal display protected by an internal heater for low temperature conditions.
Memory Capacity	600 sets of readings.
RS-232C Serial I/O Interface	1200 baud, 8 data bits, 1 stop bit, no parity.
Console Power Supply	. Six-1.5V "D" cell disposable batteries with a maximum supply current of 70 mA and auto power save.
Operating Environmental Range	.$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} ; 0-100 \%$ relative humidity; weatherproof.
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Weight and Dimensions	$.5 .5 \mathrm{~kg}, 310 \times 230 \times 210 \mathrm{~mm}$.
Standard System Complement	. Instrument console with carrying strap, batteries and operations manual.
Available Options	Stainless steel transmitting electrodes, copper sulphate receiving electrodes, alligator clips, bridge leads, wire spools, interface cables, rechargeable batteries, charger and software programs.

E D A instruments inc 4 Thorncliffe Park Drive. Toronto, Ontario Canada M4H 1H1 Telex: 0623222 EDA TOR Cable: Instruments Toronto (416) 4257800

In U.SA.
E D A instruments inc
5151 Ward Road. Wheat Ridge, Colorado USA. 80033
(303)4229112

APEX

MAXIVIN II PORTABLE EM

■ Five frequencies: ReR, 444, $8 日 \in, 1777$ and 3558 Hz .

- Maximum coupled (horizontal-loop) operation with reference cable.
- Minimum coupled operation with reference cable.
m Vertical-loop operation without reference cable.
- Coll separations: E5, ED, 10D, 150, 2OD and EEOm (with cable) or $100,200,300,400,800$ and EOD ft.
- Reliable data from depths of up to 180 m (EDO ft).
- Built-in voice communication circuitry with cable.
(Tilt meters to control coll orientation.

EPECIFICATIDNE:

Frequencles: $\mathrm{Pe}, 444,888,1777$ and 3555 Hz .
Modes of Operation: MAX: Transmitter coil plane and receiver coil plane horizontal (Max-coupled; Horizontal-loop mode). Used with refenicable.
MIN: Transmitter coil plane horizon. tal and receiver coil plane ver. tical (Min-coupled mode). Used with reference cable.
V.L. : Tranamitter coilplane vertical end receiver coil plene hortzontel (Vertical-loop mode). Used without reference cable, in parallel lines.

Coll Beparations:

$25,50,100,150,200$ \& 250 m (MMI) or 100, 200, 300, 400,600 and BOO ft. (MMIF).
Coil seperations in V.L.mode not reetricted to fixed values.

Parameters Readi - In-Phase and Quadrature componente of the secondary field in MAX and MIN modea.

- Tilt-engle of the totel field in V.L. mode.

Peadouts: - Automatic, direct readout on 90 mm ($3.5^{\prime \prime}$) edgewise meters in MAX and MIN modes. No nulling or compensation necessery.

- Tilt engle end null in 90 mm edgewise meters in V.L.mode.

Boale Ranges:

Paadablity:

Peparatablity:
$\pm 0.25 \%$ to $\pm 1 \%$ normally, depending on conditions, frequencies and coil separation used.

Transmitter Output:- $222 H z: 220 A t m{ }^{2}$

- 444 Hz : ROO Atm²
- BeBHz: 120Atme
- 1777Hz: 6OAtm²
- 3555 Hz : 30 Atm ${ }^{2}$

Recelvar 日atterles: $9 V$ trans. radio typa batteries (4). Life: epprox. 35 hre continuous duty (alkaline, 0.5 Ah), less in cold weather.

Transmitter
Batteries:

Peference Cable 1 Light weight 2 -conductor teflon ceble for minimum friction. Unshielded. All reference cables optional et extre cost. Please apecify.

Volee LInk
Bult-in intercom aystem for volce communicetion between recaiver and trenamitter operators in MAX and MIN modes, via reference cable.

Indiostor Llghts: Built-in aignal and reference warning lights to indicate erroneous readinge.

Temperature Aange: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$.
Pecelver Welght: Ekg (13 lbs.)
Tranamitter Walghti 13kg (ee lbs.)
Bhipping Welghti Typically 60kg (135 lbs.), depending on quantities of reference cable and betteries included. ghipped in two field/shipping cases.

Specificetions aublect to onenge without notification

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File \qquad

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) MAAGU'ETIC, HeRIzENTHL Loop EMU Township or Area C EACAEA Toundstif Claim Holder (s) CoM, NCo LIMiTED
 Survey Company ExSLCS Ex\& $\rightarrow T A$ Author of Report of Ci CARANT Address of Author Covering Dates of Survey \qquad
Total Miles of Line Cut \qquad
1
In cutting to office) niles)

SPECIAL PROVISIONS CREDITS REQUESTED

ENTER 40 days (includes line cutting) for first survey.

ENTER 20 days for each additional survey using same grid.

Geophysical	DAys per claim
-Electromagnetic	20
	Magnetometer

-Radiometric
-Other
Geological
Geochemical

AIRBORNE CREDITS (Special provision credits do not a ply to pirboffe suiveyig) Magnetometer \qquad Electromagnetic \qquad
DATE:

\qquad

Res. Geol. \qquad Qualifications \qquad 2.5347

Previous Surveys

\qquad

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS－If more than one survey，specify data for each type of survey
Number of Stations \qquad Number of Readings led vo
Station interval
$-25 \mathrm{~m}$ Line spacing＿$\quad 100 \pi$
Profile scale $\quad \angle C, \mu=20 \%$
Contour interval 100 SOMA

Instrument ED A OWN IN RROTON NIAG．
Accuracy－Scale constant $\quad \pm 1$ gबーロner ．
Diurnal correction method \qquad station $R=C A B E R$
Base Station check－in interval（hours）AEAO／N1C 1NT 30 SEC．
Base Station location and value $\angle 9$ Coom $5 / 650 \mathrm{~ms}=158556$ g． 0401015

Coil configuration CO PLANER
Coil separation

Accuracy
土 ．5 9．
Method：
\square Fixed transmitterShoot back
（ DIn line
Parallel line
Frequency $3555 H z, 1227 M \underset{\text {（specify V．L．F．station）}}{35}$
Parameters measured＿CNEF $\angle N$ PAPS＝

Instrument \qquad
Scale constant
Corrections made

Base station value and location

Elevation accuracy

Instrument

Via: Purolator Courier
Mr. M. Weirmeir
Mining Recorder
4 Government Road East
P.O. Box 984

Kirkland Lake, Ontario P2N lAR

April 18, 1989

Dear Mr. Weirmeir:
Re: Claims L. 1027642 et al Cleaver Township and L. 983163 et al Robertson Township

Attached hereto are two Reports of Work covering the above mentioned 27 mining claims. These reports of work request a total of 60 geophysics per claim on the 27 claims listed.

The required reports will be forwarded to A. Barr in Toronto within the required 60 days.

Yours truly,

R.C. La Roche

Records Technician
Exploration, E.D.
$\mathrm{RCL} / \mathrm{ml}$
cc: S.Selke, Vancouver
Enc.

400 surface rights reservation along the shores of al lakes and rivers.

Ooth East comener reonette oct 2e, 1988
AREAS WITHDRAWN FROM DISPOSITION
:A.R.O. - MINING RIGHTS ONLY
s.f.O. - SURFACE RIGHTS ONLY
M.+ S. - MINING AND SURFACE RIGHTS Dascribtion - Order No. Date Ohpoation Fite

NOTICE OF FORESTRY ACTIVITY
thes townsha / area falls within the ONTARIO PAPER FOREST MANAGEMENT AGREEMENT
 THE MNR UNT FORESER FOR TH
CONTACTED AT: B9G RIVERSIDE

DISTRICT OF TIMISKAMING

LARDER LAKE
MNING IVISION
SCALE: 1 INCH .. 40 CHAINS ($1 / 2$ MILE)

