

The claims are in Sothman Township, on Map 42 A 3. They are about 35 miles west of Matachewan on the extension of Highway 588, which roes striaght to the property. There is also access by road from limmins and Gowganda.

PROPERTY HOLDER

The claims are held by D. F. Des Rosiers, 2910-280 Wellesley Street East, Toronto 282, Ontario.

SUBMITTING PARTY

The work is submitted by Watts, Griffis and McOuat Limited, Consulting Engineers and Geologists, 911-159 Bay Street, Toronto 1, Ontario.

CLAIMS SURVEYED

The following claims were surveyed, 316676-316695 inclusive and 206139

COVERING DATES

Cowrring dates, including linecutting, were December 13, 1971Mis 20, 1972.

PREVIOUS WORK

Cimbric mapping and electromagnetic and magnetic surveys had been l.ant out over part of the area by Hollinger Consolidated Gold Mines l.abithed.

Six drill holes are reported in the southeastern part of the claim group. These are all intersected voleanic rocks. Pyrrhotite and chalcopyrite are reported in one hole. Siven packsack drill holes are mapped by Hollinger on the more northerly of the iron formation zones.

GEOLOGY

The rocks mapped by the Ontario Department of Mines and by Hollinger are all volcanic rocks, andesites and rhyolites. The iron formation appeared to be pyrite in silicified volcanic rock rather than sedimnetary iron formation.

work Carried out

The geophysical work by Hollinger included a Crone J.E.M. survey. However, this is not a deep-penetrating method. The so-called iron formation zones appeared to contain sufficient pyrite to cause an anomaly, but no anomaly had been obtained on the Hollinger survey. It was therefore decided to carry out a vertical loop electromagnetic survey with a line spacing of iov tcet using_ a Scintrex 250 unit.

Accordingly, baselines were laid_out at approximately 1.000 -foot intervals N $45^{\circ} \mathrm{E}$ and niciet lines were cut S 45° Enat 400 -foot intervals, with stations at 100-foot intervals.

> METHOD USED

The method used was a standard vertical loop survey with moving transmitter ("broceside" or "parallel").

A conducto: $: 5$ maticated by a change in the dip of the resultant field at the receiver ton bemp in the opposite direction of the direction of travel of the rece:\% : \because a do in the same direction as the direction of travel. This is kerne: a cromgover. The dip angles are plotted as a distance above or tain ?a hat at rach station. When the receiver operator is facinat : \because : matrr fips to the left are plotted above the line, and to the rite $\because \because$:tere. Thus, a true crossover indicating a conducter, \%ere, w: : athere frection, or if it starts to increase in the sarme efrel in called an incipient crossover, and generally indluates a -o.e bur.

A rough measure of conductivity is obtained by rating the amount of the minimum signal at what should theoretically be the null point when the coil is zero-coupled with the resultant field. This signal is proportional to the dip angle, and theoretically (but not in practice) is always zero when the dip angle is zero. It was not possible to rate the minimum over all of the claims because of a power line a few hundred feet east of the property.

Scale

1. Clear null.
2. Slight change in null.
3. Weak but definite minimum signal.
4. Definite minimum signal.
5. Very strong signal.
6. Minimum almost equal to maximum.

As a general rule any rating from 4 to 6 means that the anomaly is not caused by massive sulphides. A rating of 1 throughout indicates possible orientation errors rather than a conductor.

RESULTS

A weak anomaly was found on the more northerly of the iron formation zones on Lines 4400 N and 4800 N . Another weak was found on Lines 2400 N and 2800 N offset about 150 feet from the southern zone as mapped by Hollinger, but partly coinciding with iron formation as mapped by the Ontario Department of Mines. There was a possible weak extension on 1600 N and 2000 N .

Another small anomaly appeared on Lines 4400 and 4800 N , at about 9800 E . A third anomaly appeared on Lines 3600 N to 5200 N near the southern boundary of the claims. This anomaly coincides with the pyrite-graphite anomaly on the Ontario Department of Mines maps.

CONCLUSIONS

The first anomaly is compatible with massive or near-massive sulphides at depth. It was associated with what is mapped as iron formation, but which appears to be pyrite with traces of chalcopyrite in silcified volcanic rock.

A hole was, therefore, recommended and drilled. It encountered near-massive pyrite at a vertical depth of 245 feet.
:The second anomaly appears to be a shallow, flat-lying conductor and is too small to be of interest.

The third anomaly is probably caused by a pyrite -graphite zone already drilled.

Respectfully submitted,
R. Helangto

Toronto, Ontario. May 30, 1972.
R. H. Clayton, M. Sc., P. Eng. Watts, Griffis and McOuat Limited

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS

Number of Stations_8_ Number of Readings 811
Station interval _100 feel
Line spacing 400 fest
Profile scale or Contour intervals 1 ire $=40^{\circ}$
(specify for each type of survey)

MAGNETIC

Instrument

\qquad
Accuracy - Scale constant \qquad
Diurnal correction method \qquad
Base station location \qquad

ELECTROMAGNETIC

Instrument_Sh, ar pe SE 250
Coil configuration Vertices lop op
Coil separation 400 fee C
Accuracy
Method: \square Fixed transmitter \square Shoot back \square In line \square Parallel line
Frequency 1,000 cycles per second
Parameters (specify V.L.F. station)
GRAVITY
Instrument
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy
INDUCED POL ARIZATION - RESISTIVITY
Instrument
Time domain Frequency domain \qquad
Frequency Range
Power
\qquad
\qquad

Electrode array
Electrode spacing \qquad
Type of electrode \qquad

ISTRICT OF SUDBURY

LARDER LAKE

MINING DIVISION | MINING DIVISION |
| :--- |
| 10 CHANS $(1 / 2$ MIL $)$ | …mat ONTARIO DEPARTMENT OF MINES AND NORTHERN AFFAIRS

ㅇ

400' surface rig,
lakes and rivers.

