

RECEIVED

DEC 11 1980

SEWELL-REEVES PROJECT

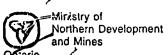
ASSAY RESULTS

MINING LANDS SECTION

RE:

EAST BLOCK DRILLING

SEWELL, REEVES, KENOGAMING AND


PENHORWOOD TOWNSHIPS

2.12954

Contents

- copy of Report of Work
- claim sketch showing claims where assays were taken
- summary of assay sheets
- representative invoice
- breakdown of assays re: Diamond Drilling ... by claim
- Technical Data Statement
- assay sheets in chronological order

Dale R. Alexander Senior Exploration Geologist

2.12954

Instructions - Please type or print.

Refer to Subsection 77(19), the Mining Act for assessment work requirements and maximum credits allowed under this Subsection.

Technical Reports, maps and proof of expenditures in duplicate should be submitted to Mining Lands Section, Mineral Development

	and Mines
)	-6
	* T

Report of Work

Mi	ning Act	(Expen	ditures, S	Subsection 1	77(19))			and	Lands	Branch.	see br	eakdown	, , , , , , , , , , , , , , , , , , , ,
Type of Work							Division			wnship of	^{Area} Pe	nhorwood	
Assay:		ill Cor	<u>`e</u>		 	Por	cupin	<u>e</u>	Se	ewell,	Reeves Prospector's	Kenoga:	ming Twps
	an Barric	k Resou	rces C	orporatio	n, opt	ione	e of	record		1	T-8	34	
Address									>	4	Telephone N		
P.O. E Work Performe	Box 1203,	Kirklar	id Lake	, Ontario	P2N	3M7	<u>6·</u>	151			(705)56	7-4941	
	an Barric			orporatio	n								
Name and Add	dress of Author (c	of Submission)								From:	Work was Perf	
Dale F	R. Alexand	ler, c/c	Ameri	can Barri	ck, Ki	rkla	nd La	ke			20 09 Day M6.	89 30	<u> 0,9 8,9 </u>
All the work v	was performed of of days performe	n Mining Cla	aim(s): laim.	Mining Claim	No. of Da			No. of Days	1	=	1	Mining Claim	No. of Days
*See Note No Mining Claim	O. 1 on reverse	side		P.798200 Mining Claim	55.5 No. of Da			24.5 No. of Days	P. C	901335 Claim	No. of Days	P. 929612 Mining Claim	47.0 No. of Days
	98.5 P.	•		P.933575	1	· `	•		L	947253	1		
Mining Claim	No. of Days Min	ing Claim	No. of Days	Mining Claim	No. of Da	ys Mining	Claim	No. of Days	Mining	Claim	No. of Days	Mining Claim	No. of Days
Instruction			<u> </u>	Calculation of I	Expenditur	e Days (Credits		ــــــــــــــــــــــــــــــــــــــ	Total	Total Nun	nber of Mining (Claims Covered
holder's cho	credits may be pice. Enter numb	er of davs c	redits per	Total Expen	ditures	· · · · · ·		 .	Day	s Credits	by this Re	port of Work	1
claim in th (below).	e expenditure	days credi	t column	\$ 53	77.50		÷	15 =	3	58.5			J
<u></u>	ns (List in nui								requ				
Prefix	ng Claim Number	Expend. Days Cr.	Prefix	ning Claim Number	Expe		Prefix	ning Claim Number		Expend. Days Cr.		ining Claim Number	Expend. Days Cr.
Sitt	AMI	12/04	150-	TA		-00	1/1	7	1.		,		
246	/			· = - /-			444						
		1		· · · · · · · · · · · · · · · · · · ·		-	CIL	ED		<u> </u>	<u> </u>		
			PURVEY		1		EIA		$\neg f$	RE	OR	DED	
	ASSESS	MENT F	LES	·		JAN	716	90	-	-	 		-
		FFICE								Dr	6 4 4	4000	<u> </u>
	FFR	27 199	n	 	- M1NH	NG L	ANDS-	SECTION		DE	<u> </u>	1989	
	1 1, 17								_				
	RFC	EIVE	D										<u> </u>
Total Number	of Days Performe			Total Number of	Days Clair	ned			Tota	l Number o	Days to be	Claimed at a F	uture Date
	358.5			-							358.5	,	
	of Beneficial							· · · · · · · · · · · · · · · · · · ·					
of work were i	fy that, at the tim recorded in the cur at recorded holder	e the work wa rent recorded	noider's nam	1, the claims cover ne or held under a	ered in this beneficial	report interest	30	c//8	>9	Rex	rded Holde	r or Agent (Sig	nature)
	Verifying Re		rk			····	17.77	// 0	+	<u> </u>		12 XK	MANNA
I hereby certify	y that I have a pe after its completion	ersonal and in	itimate know	ledge of the fact	s set forth	in the F	Report of V	Vork annexed	heret	o, having p	erformed the	work or witnes	sed same
	dress of Person C												
Dale R.	Alexander	, c/o A	merican			rces	, Exp	loratio	n Di	visio			. <u>.</u>
Kirkland	llake			Telepho	ne No.) 567–4	10):1	2	10 EC 11	159	,]	Certified By	(Signature)	In A
	· Danc			1(10)	7701-4	941	Re	ceived Starns	<u>ر</u> ران را	CUENTE NO	JON STU	12 X TV	10000
or Office	Use Only	,		0	Λ			1 1	则	CIE!	IWIS		
Total Days	Date Recorded		Mining	Recorder /				.	211		ζ,	עיי	
Cr. Recorded	Nec .	1/05	ر ا ح	NU	Much			'	•	JEC 1	1 1989		
.~	Date Approved	as Recorded	Varovino	ial Manager, Min	ing Lands			i				}	
767	Fol	>110	21/	Reon	- L	-		11.	v./1			1	,
- سم	(W)	~6/ TA		1									

Ministry of Northern Development and Mines

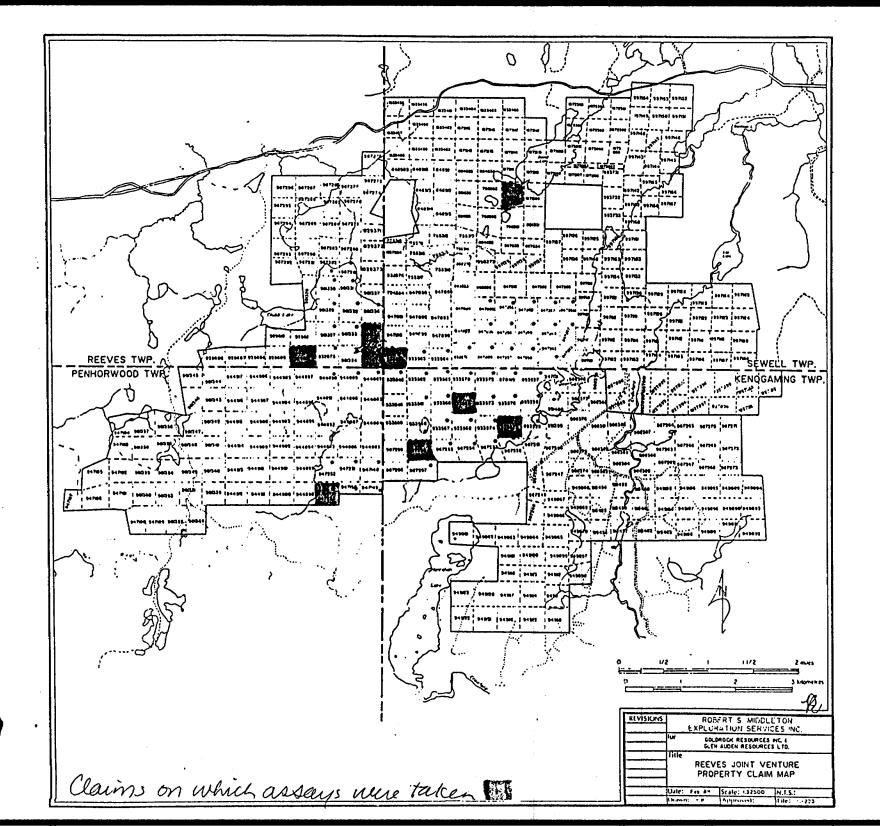
Report of Work

instructions
- Please type or print.

Refer to Subsection 77(19), the Mining Act for assessment work requirements and maximum credits allowed under this Subsection - Technical Reports, maps and proof of exponditures in duplicate should be submitted to Mining Lands Section, Minarel Development and Lands Section, Minarel Development

	withing Act	(Expe	aditures	s, Subsection 77	7(19))		Anu	Landa Brai		a a la 12 4	_	
Type of V	Work Performed				IM	ining Divisio	on .	Towns	OI Oio or	<u>eskuowi</u> Aisa		
Assa	ying - Drill	Core				orcupi		} `		₽6	nhorwood,	
Recorded	Holder							lSewe	إوسلساد	Prospector'	Kenogan Licence No.	ving Typ
Amer	ican Barrick	Resour	rces (corporation,	option	ee of	record		1	T83		
Address	•									Telephone		
P.O.	Box 1203, K	irkland	d Lake	, Ontario P	2N 3M7	7			Į,	-	7-4941	
Work Per	formed By							·		1107770	7177-2	
Amer	ican Barrick	Resou	rces C	orporation								
	d Address of Author (or pot action		·····	·····			Date When	Work was Perio	
Į.	,		·					1	- 1	From:	i To:	ornied
Dale	R. Alexande	r, c/o	Ameri	can Barrick,	Kirkl	and La	ke			SD 1 03	QE QB	୍ୟର ବ୍ୟ
All the w	ork was performed o	n Mining C	laim(s):	Mining Claim	Vo. of Days h	Aming Cialm	No. of Days	Mining Clai			Mining Ctalm	
Indicate	ork was performed one. of days performe	d on each	claim.	1 [ĺ		. 1.	1			1 '	No. of Days
Mining Class	te No. 1 on reverse		No. of D	P.798200 5	0. of Days 1.	.93207		P.901	<u>335 </u>		P.929612	47.0
D 022	. X	-	1	· ·	1	-	i i	Mining Clas			Mining Claim	No. of Days
Mining Clair	528" 98.5 P.	933569	120.5 No. 01 D	P. 933575 5	3.5 P	98725	6 129.0	P. 947	253	25.5		<u></u>
			1	,	1 0. 00);[annig Casim	140. 01 0875	Mining Citil	n	FIG. OF DAYS	Mining Claim	No. of Days
Instruc	lione			1000				<u></u>				<u></u>
Total da	evs credits may be	distributed	i at clain	Calculation of Exp		lys Credits		Total Days Cre	**	Total Nur	nber of Mining Cl	alms Covored
holder's	choice. Enter numb	er of days o	credits per	, Landan						"	7,011,011,110,11	
(below).	i ine expenditure	days cleu	it commi	\$ 5377	.50	+	15 =	358.	5			
Mining C	laims (List in nur	nerical se	quence)	. If space is insuf	licient, a	ttach sch	edules with	required	infor	mation		
	Mining Claim	Expend.		Mining Claim	Expend.		Mining Claim		pend.		ining Claim	Expend.
Prefix	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number		ys Cr.		Number	Days Cr.
P.	848909	40								1	7	
			· 		 -					 	**************************************	
	848910	40 .						.				
	848911	40										
		1.								 		 -
	848912	40						:				
	848913	40									*	
		1			-	 						
	848914	40	i				-	· ·		1		
	848915	40		· · · · · · · · · · · · · · · · · · ·					···			
	040917	[40			ļ					ļ	· · · · · · · · · · · · · · · · · · ·	
			ļ			ļ						
Total Num	ber of Days Performer	4		TAILUNI DA DE	. Olekara							
7 7 101 7 1011	•			Total Number of Day	2 Cigiman			I CORT NOT	per or		Claimed at a Fu	iure Date
	•	358.5		280						78.5		
Certificat	ion of Beneficial	nterest '	See Not	e No. 2 on revers	e side			L				
I hereby	certify that, at the time	the work wa	s perform	ed, the claims covered	in this ren	ort Date	· · · · · · · · · · · · · · · · · · ·		Repo	ded Holder	or Agent, (Signa	lure)
by the cu	ere recorded in the curr rrent recorded holder.	ent recorded	holder's na	ame or held under a ben	eficial Intere	:S1	12.22	/x9.	1	11.	Allen	in the
	ion Verliying Rep		rk	· · · · · · · · · · · · · · · · · · ·				0/	بريا	AAL	MAXI	
												
during and	enny that t have a per Vor after its completion	sonal and in And the an	limale kno nexed rep	wiedge of the facts se	i forth in th	e Report of	Work annexed	hereto, hav	ing pe	rformed the	work or witnesse	d same
	Address of Person Co									~~~~		
_			Amazzi	ean Barrick I	Dono			m Die				
200	11. MIENGINGI	, 670	WilleT.T.C	Telephone N			cploratio	נענת חו			(61-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
Wi w1-7	am A. Talia			1 .	•	1 1	12/22/	· ~ ^		elticled By	(Signature)	ONIN
VILKI	and Lake			(705)50	07-494.		7070	<u> </u>				XX (1/2:1)
						. [A	eceived Stamp	/		7		
For Off	ice Use Only						. 1					Í
Yalal D	- I Date Committee									•		
Total Day: Cr. Record			Mining	Recorder		7				•		

Ministry of Northern Development Ontario


878 (89/06)

Instructions

Please type or print.
Refer to Subsection 77(19), the Mining Act for assessment work requirements and maximum credits allowed under this Subsection.
Technical Reports, maps and proof of expenditures in duplicate should be submitted to Mining Lands Section, Mineral Development

ing willes	Report of Work			9	5	4
Miningct	(Expenditures, Subsection	77(19))			

Min	ingct			Subsection 7			and	Lands Branch.	•	eakdown_	ii botolopilietk
Type of Work P	erformed			·	1	Mining Division)	Township d		nhorwood,	
		Drill Cor	re			Porcupi	ne	Sewell,	Reeves	Kenogam Licence No.	ing Twos.
Recorded Holde					•						,
American Barrick Resources Corporation, optionee of record							T-8				
P.O. Bo	ox 1203	, Kirklar	nd Lake	, Ontario	P2N 3	BM7	-		(705)56	7-4941	
	•	ick Resou	rces C	orporation	1						
		or (of Submission							Date When From:	Work was Perfo	rmed
Dale R	. Alexa	nder, c/c	Ameri	can Barric					20 00 bay 1 Mo	89 30 Bay 1	88 88
All the work wa	as performe	d on Mining Cl rmed on each o	aim(s):	Mining Claim		Mining Claim	1	Mining Claim		Mining Claim	No. of Days
*See Note No. Mining Claim	. 1 on rever	se side Mining Claim		P.798200 Mining Claim	55.5	P.93207	4 24.5	P.901335		P. 929612 Mining Claim	No. of Days
-		P.933569		P.933575	1	-				waning plans	110.01.51,5
Mining Claim		Mining Claim	No. of Days	Mining Claim	No. of Days	Mining Claim	No. of Days	P.947253 Mining Claim	No. of Days	Mining Claim	No. of Days
Instructions				Calculation of E	kpenditure (L Days Credits		Total	Total Nur	nber of Mining Cl	aims Covered
Total days c	redits may ce. Enter nu	be distributed umber of days o	at claim redits per	Total Expend	litures		 1	Days Credits	by this H	eport of Work	1
claim in the (below).	expenditu	ire days credi	t column	\$ 537	7.50	÷	15 =	358.5			İ
	s (List in	numerical se	quence).	If space is ins	ufficient,	attach sch	edules with	required info	rmation		
Mining	Claim	Expend.	M	ining Claim	Expend	j	Mining Claim	Expend	I. N	fining Claim	Expend.
Prefix	Number	Days Cr.	Prefix	Number	Days C	r. Prefix	Number	Days C	r. Prefix	Number	Days Cr.
					/	<u> </u>					
				$\bigcap \setminus A$	/			٠,			
/	/ 		7.	7 7							
 			$\rightarrow H +$		1					<u> </u>	
			-+++							ļ	
			V_							<u> </u>	
											
										 	
							<u> </u>		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	
Total Number of	of Days Perio	ormed		Total Number of D	ays Claime	d		Total Number	of Days to b	e Claimed at a Fu	ture Date
	358.5)							358.5	5	
Certification (See Note	No. 2 on reve	rse side			<u></u>	<u> </u>		
I hereby certify of work were re by the current	y that, at the ecorded in the recorded ho	time the work we current recorded	as performe I holder's na	d, the claims cove me or held under a l	red in this r beneficial in	report Date terest	C1/8	_ 1	orded Hold	er or Agent (91gr	iature) INANA
Certification	Verifying I	Report of Wo	rk					$T \sim$		700	
I hereby certify during and/or a	that I have a	a personal and in eletion and the a	ntimate knov nnexed repo	wledge of the facts ort is true.	set forth in	the Report o	f Work annexe	d hereto, having	performed th	e work or witness	sed same
Name and Add	ress of Pers	on Certifying									
Dale R.	Alexand	ler, c/o <i>l</i>	America	n Barrick				n Divisio	n Izonale a -	A	
Kirkland	Lake			Telephon (705)	e No. 1567-49	941	Becli	189	Day	y (Signature)	xad
For Office	Use O	nlv					Received Start	p /			
Total Days	Date Record		Mining	Recorder	· · · · · · · · · · · · · · · · · · ·						
Cr. Recorded											
1	Date Appro	ved as Recorded	Provin	icial Manager, Mini	ng Lands						

SEWELL-REEVES PROJECT

SUMMARY OF ASSAY SHEETS

EAST BLOCK DRILLING, 1989

September	20	_	54	samples		
October	3	_	51			
	3 4	_	6			
	11	_	28			
	15	-	39			
	15	_	66			
	16	_	25			
	17	_	73			
	19	_	27			
	20	_	16			
	22	-	34			
	24	_	2			
	25	_	18			
	27	_	33			
	27	_	29			
	29	_	51			
	31	-	38			
November	3	_	78			
Movember	3 8	_	49			
	U		43			
			······································			
			717	- Tota	1 2002110	E

	717	-	Total	assays	East	Block
x \$	7.50			-		

\$5377.5 / 15 = 358.5 days credit

All assaying was completed at the Holt-McDermott assay lab at a charge of \$7.50 per sample -- a representative invoice signed by the Regional Exploration Manager is attached. The charge is all-inclusive of sample preparation and assaying. Since the assay rate is much less than a commercial lab, check samples and assays of additional elements are charged at the same \$7.50 per element rate. All samples are assayed for gold in gms (or ppm).

Dale R. Alexander
Senior Exploration Geologist

American Barrick Resources Corporation HOLT-MCDERMOTT MINE

P.O. Box 278

Kirkland Lake, Ontario

P2N 3H7

Telephone: 1 (705) 567-9251

Fax: 1 (705) 567-6867

November 2, 1989

American Barrick Resources Corporation Exploration Division P. O. Box 1203 Kirkland Lake, Ont P2N 3H7

INVOICE NO. 89-08

Assays performed at Holt-McDermott Mine for August, September and October, 1989

August

718 at 7.50

5,385.00

September

827 at 7.50

6,202.50

October

2162 at 7.50

= 16,215.00

Invoice Total

= 27,802.50

Please make cheque payable to:

American Barrick Resources Corporation Holt-McDermott Mine P. O. Box 278 Kirkland Lake, Ont

P2N 3H7

Yours truly,

D. Mitchell

Chief Accountant

DM:rb

BREAKDOWN OF ASSAYS

DIAMOND DRILLING RE:

... by Claim

Sewell Township	102	(9)			
Claim 798200 - DDHs SR-1,2,	3 √111	assays	-	55.5 d	ays
Reeves Township Claim 932074 - DDH SR-4 Claim 901335 - DDH SR-4	(5) 53 /49	assays assays	_	24.5 d	iays iays
Reeves Township	f				
Reeves Township Claim 929612 - DDH SR-5	J 94	assays	-	47.0 d	ays
Sewell Township (SR-6,6B) Kenoga	ming Townsh	ip (SR-11	.)		
Claim 933528 - DDHs SR-6,6B	,11 197	assays	-	98.5 d	lays
Kenogaming Township Claim 933569 - DDH SR-7	6) 36 41	assays	_	20.5 d	lays
Kenogaming Township Claim 933575 - DDH SR-8	@ 97 107	assays	-	53.5 d	lays
Kenogaming Township Claim 987256 - DDH SR-9	© 52 58	assays		29. 0 d	lays
Penhorwood Township Claim 947253 - DDH SR-10	(i) 40 51	assays	_	25. 5 d	lays
	717	assays	-	358.5 d	lays

Dole R Alexander Dale R. Alexander Senior Exploration Geologist

10

 G_{q_i}

837 (85/12)

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

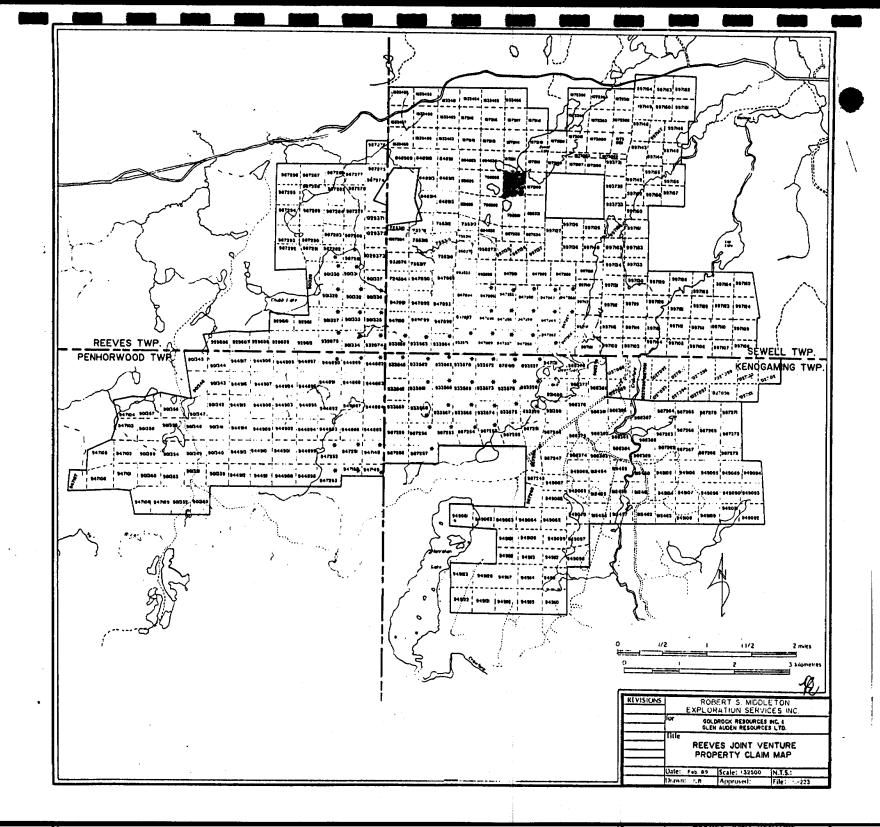
File	
T. HIC	

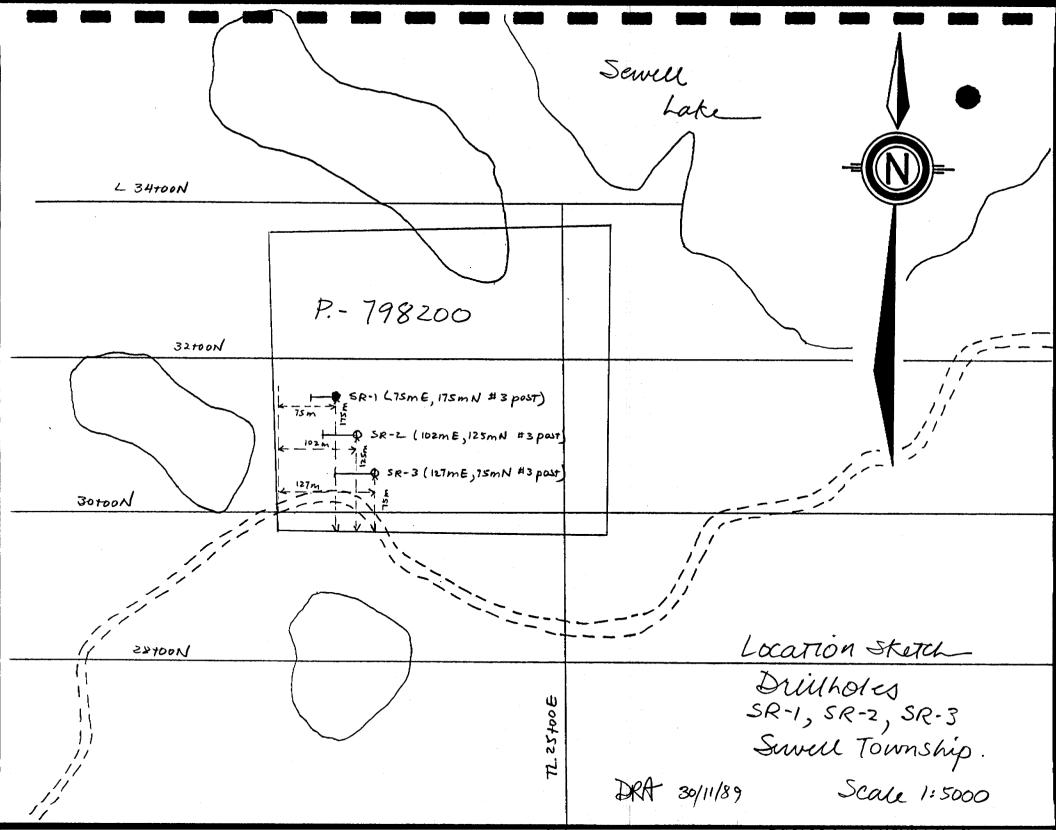
TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Assaying -	Duill Cone 77 10	antiones as w		
Township or Area Sewell Town	/	optionee of r	ecora	
•	k Resources Corp., Exploratio	MINING CLAIMS TRAVERSED List numerically		
` '	203, Kirkland Lake, Ontario	. Last II	umericany	
Survey CompanyAmerican Barric	DOM 2M7	P .	798200	
Author of Report Dale R. Alex	• • • • • • • • • • • • • • • • • • • •	(prefix)	(number)	
Address of Author_c/o American	•	***************************************	932074	
Covering Dates of Survey Sept 3		901335		
	;	929612		
Total Miles of Line Cut		, , ,		
SPECIAL PROVISIONS		:	933528	••••••
CREDITS REQUESTED	DAYS Geophysical per claim	***************************************	933569	•••••
	-Electromagnetic	•••••••••	933575	
ENTER 40 days (includes	-Magnetometer	,	987256	
line cutting) for first survey.	-Radiometric			
ENTER 20 days for each	-Other Assaying		947253	••••••
additional survey using	Geological	***************************************		•••••
same grid.	Geochemical			•••••
AIRBORNE CREDITS (Special provision	on credits do not apply to airborne surveys)		1	
MagnetometerElectromagne	eticRadiometric			*******
The 1/00	ys per claim)	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
DATE: SIGNAT	TURE: Author of Report of Agent			••••••

V		:		
Res. GeolQualific	cations	•••••		••••••
Previous Surveys			.,	••••••
File No. Type Date	Claim Holder	•••••		•••••
ļ				
			•••••••	*******
			••••••	••••••
		TOTAL CLAIM	\$ <u>9</u>	

GEOPHYSICAL TECHNICAL DATA


GROUND SURVEYS	_ If more than one survey, s	pecify data for each type of survey	
Number of Stations _		Number of Readings	
		Line spacing	
Contour interval			
Instrument			
i.			
Diurnal correction	method		
	•		
Base Station location	on and value		
-			
Instrument			
Coil configuration			
Coil configuration Coil separation Accuracy Method: Frequency			
Accuracy			
Method:	☐ Fixed transmitter		☐ Parallel line
Frequency			
		(specify V.L.F. station)	
Parameters measure	ed		
Instrument			
Scale constant			
Corrections made			
Base station value a			
Base station value a	nd location		
		· · · · · · · · · · · · · · · · · · ·	
Elevation accuracy			
Instrument			
Method Time		☐ Frequency Domain	
		Frequency	
Off +		Range	
_ Delay	time	•	
Inter	ration time		
⊼			
Floatrada serre			
•			
I une of electrode			


IDUCED POLARIZATI

Instrument Range Survey Method Corrections made RADIOMETRIC Instrument Values measured Energy windows (levels) Background Count Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) Alarborne SURVEYS (Spee of survey(s)		, K	
Survey Method	SELF POTENTIAL		
RADIOMETRIC Instrument Values measured Energy windows (levels) Height of instrument Size of detector Overburden (type, depth - include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) Altropy Survey(s) Instrument Accuracy (specify for each type of survey) Accuracy Literaft used Survey(specify for each type of survey) Accuracy Literaft altitude Line Spacing			
RADIOMETRIC Instrument Values measured Energy windows (levels) Height of instrument Overburden (type, depth – include outerop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Ippe of survey. Instrument Accuracy. Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Aircraft used lensor altitude Line Spacing	Survey Method		
RADIOMETRIC Instrument Values measured Energy windows (levels) Height of instrument Background Count Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Accuracy (specify for each type of survey) Aircraft used Energy windows (levels) Interaft used Line Spacing			
Instrument Values measured Energy windows (levels) Height of instrument Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Aircraft used Seiensor altitude Values measured Line Spacing Line Spacing	Corrections made		
Instrument Values measured Energy windows (levels) Height of instrument Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Aircraft used Seiensor altitude Values measured Line Spacing Line Spacing			
Instrument Values measured Energy windows (levels) Height of instrument Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Aircraft used Seiensor altitude Values measured Line Spacing Line Spacing	*		
Values measured Energy windows (levels) Height of instrument Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) Already for survey(s) Instrument(s) (specify for each type of survey) Accuracy (specify for each type of survey) Aircraft used Sensor altitude Navigation and flight path recovery method Aircraft altitude Line Spacing			
Energy windows (levels) Height of instrument Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Aircraft used Gensor altitude Navigation and flight path recovery method Lincraft altitude Line Spacing			
Height of instrument			
Size of detector Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey Instrument Accuracy Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Accuracy (specify for each type of survey) Aircraft used Sensor altitude Navigation and flight path recovery method Line Spacing			
Overburden (type, depth – include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey (Instrument — Accuracy — Parameters measured — Additional information (for understanding results) — Additional information (for understanding results) — AIRBORNE SURVEYS Type of survey(s) — (specify for each type of survey) Accuracy — (specify for each type of survey) Aircraft used — (specify for each type of survey) Aircraft used — (specify for each type of survey) Aircraft altitude — Line Spacing — L	Height of instrument	Background Count	
(type, depth — include outcrop map) OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey. Instrument Accuracy. Parameters measured Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Accuracy. (specify for each type of survey) Aircraft used Sensor altitude. Navigation and flight path recovery method Linc Spacing			
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey		ath _ include outcom man)	
Accuracy		• ••	
Accuracy		•	1 1 1 2 2 2
Accuracy	Type of survey		
Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Accuracy (specify for each type of survey) Aircraft used Gensor altitude Navigation and flight path recovery method Line Spacing	Instrument		
Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Accuracy (specify for each type of survey) Aircraft used Sensor altitude Aircraft altitude Line Spacing	Accuracy		
Additional information (for understanding results) AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Accuracy (specify for each type of survey) Aircraft used Sensor altitude Varigation and flight path recovery method Aircraft altitude Line Spacing	Parameters measured		
AIRBORNE SURVEYS Type of survey(s) Instrument(s) (specify for each type of survey) Accuracy (specify for each type of survey) Aircraft used Sensor altitude Navigation and flight path recovery method Aircraft altitude Line Spacing			
Instrument(s)	Additional information (for understanding results)_		
Instrument(s)			
Instrument(s)			
Instrument(s)			
Instrument(s)	AIRBORNE SURVEYS		
(specify for each type of survey) Accuracy	Type of survey(s)		
(specify for each type of survey) Aircraft used Sensor altitude Navigation and flight path recovery method Line Spacing	Instrument(s)		
(specify for each type of survey) Aircraft used		r each type of survey)	
Navigation and flight path recovery methodLine Spacing	(specify fo		
Navigation and flight path recovery methodLine Spacing			
Aircraft altitudeLine Spacing			
Aircraft altitudeLine Spacing Miles flown over total areaOver claims only	Navigation and flight path recovery method		
Ailes flown over total areaOver claims only	Aircraft altitude	Line Spacing	
	Miles flown over total area	————Over claims only	

GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples takenDrill	holes on claims P.798200, 932074, 901335,
929612	2, 933528, 933569, 933575, 987256, 947253.
• · · · · · · · · · · · · · · · · · · ·	
Total Number of Samples 717	
•	ANALYTICAL METHODS
Type of Sample split drill core (Nature of Material)	Values expressed in: per cent D. p. m. X
Average Sample Weight 1.5 kgs	p. p. m.
Method of Collection diamond drilling	
	Cu, Pb, Zn, Ni, Co, Ag, Mo, As, (circle)
Soil Horizon Sampled n/a	Others Au
Horizon Development n/a	Field Analysis (tests)
Sample Depth variable	Extraction Method
Terrain	Analytical Method
The state of the s	Reagents Used
Drainage Development	Field Laboratory Analysis
Estimated Range of Overburden Thickness 0 to 30m	No. (tests)
	Extraction Method
	Analytical Method
	Reagents Used
SAMPLE PREPARATION	Commercial Laboratory (
(Includes drying, screening, crushing, ashing)	Name of Laboratory Holt-McDermott
Mesh size of fraction used for analysis	Extraction Method Aqua regia
	Analytical Method fire and AA
	Reagents Used flux, AgNO3, HNO3, HCl
	5
General The sample is dried, crushed (jaw	General The sample is fluxed and fused
crusher and cone crusher) and is	to produce a gold bead which
pulverized (disc pulverizer) to	is subsequently dissolved in
- 200 mesh.	Aqua regia and read with
- 200 mesn.	Atomic Absorption.

, 0 , Ø DIAMOND DRILL RECORD

HOLE NO .:

SR.89-1

Azimuth:

270.0

Section: 3150N

Property:

SEWELL REEVES

Dip:

Location:

2200E

-50.0

Core Size: RQ

Elevation: Length:

Comments:

.0 50.6

Date Started:

September 20,1989 Date Completed: September 21, 1989

3150N

Logged by:

M. Bergeron

Measurement: Metric

Casing left in hole

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth

50.60

-51.0

----Log Summary-----

.00 1.22 CASING.

1.22 8.37 BASALT.

8.37 45.90 FDL1ATED BASALT.

41.15 - 41.70 : silirified, hematized, sericitized, mineralized zone.

45.90 50.60 BASALT amygdular.

50.60 END OF HOLE.

Dare R. Alexander AMERICAN BARRICK RESOURCES CORPORATION

Hole No.: SR.89-1 Page No.: 2

.00 1.22 CASING

1.22 B.37 BASALT

Moderately hard, grey-green to dark green, fine grained to medium grained, weakly foliated and magnetic mafic volcanic.

This unit is weakly calcitic and moderately chloritic. From 5.0 to 8.37 these is a moderate leucoxene alteration. There are 1 to 3%, 2 to 5 cm wide, carbonate veins along foliation or filling fractures.

There is nil to rare pyrite as fine grained disseminations.

Foliation is very weakly developed at 35 to 45 degrees to the core axis.

Lower contact is sharp at 90 degrees to the core axis. 1.22 6.30 : moderately fractured core.

8.37 45.90 FOLIATED BASALT

	99702	19.90	20.90	1.00	TR-1	.200	.20
Moderately hard, greenish-grey to pale green, fine	99703	20.90	21.90	1.00	7R-5	.350	.35
grained, weakly to moderately magnetic, foliated mafic	99704	21.90	22.90	1.00	TR-5	.100	.10
volcanic.	99705	22.90	23.90	1.00	TR-5	.120	.12
This unit is moderately calcitic and chloritic. There	99706	23.90	24.90	1.00	TR-5	.200	.20
are locally i to 5%, 2 mm to 5 cm wide grey pink, thinly	99707	24,90	25.90	1.00	TR-5	.170	.17
bedded silicified hematized sericitized zones	99708	25.90	26.90	1.00	TR-5	.150	. 15
subparallel to foliation.	99709	26.90	27.90	1.00	TR-5	.160	.16
These zones contain 1 to 5% pyrite as fine euhedral	99710	27.90	28.90	1.00	TR-5	.140	.14
grains disseminated and 1 to 2% magnetite as fine to	99711	28.90	29.90	1.00	TR-5	.170	.17
medium enhedral grains disseminated.	99712	29.90	30.90	1.00	TR-5	.250	, 25

99701 10.00 11.00 1.00 TR-1

.060

.06

Hole No.: SR.89-1 Page No.: 3

<u> </u>		From		Length	7 201	GW	Au g/t
There are 5 to 10%, 1 to 2 mm wide, white, pinched	99713	30.90	31.90	1.00	TR-5	.120	.12
carbonate (ankerite) veins subparallel to foliation at	99714	31.90	32.90	1.00	TR-5	.330	.33
40 to 45 degrees to the core axis. These veins are	99715	32.90	33.90	1.00	TR-5	.130	.13
barren. There are a few odd om to om white, barren,	99716	33.90	34.90	1.00	TR-5	.080	.OB
quartz - carbonate veins at random angles.	99717	34.90	35.90	1.00	TR-5	.150	. 15
There are trace to 1% very fine pyrite points or blebs	99718	35.90	36.90	1.00	7R-5	. 130	.13
disseminated across the unit.	99719	36.90	37.90	1.00	TR-5	.870	. 87
Foliation is well developed at 40 to 45 degrees to the	99720	37.90	38.90	1.00	TR-5	.310	.31
· · · · · · · · · · · · · · · · · · ·	99721	38.90	39.90	1.00	TR-5		.49
	99722	39,90			7R-5	.102	.17
					TR-5	.059	.09
· · · · · · · · · · · · · · · · · · ·							.10
•							.08
mineralization sections.	99726						.71
29.90 45.90: there are 2 to 10% hematized silicified	99727						22
							.14
				****	•		•••
,							
· · · · · · · · · · · · · · · · · · ·							
·							
· · · · · · · · · · · · · · · · · · ·							
·							
• ,							
- ' ' ' '							
· · · · · · · · · · · · · · · · · · ·							
• • • • • • • • • • • • • • • • • • • •							
· · · · · · · · · · · · · · · · · · ·							
nippemingran.							
	40 to 45 degrees to the core axis. These veins are barren. There are a few odd om to cm white, barren, quartz - carbonate veins at random angles. There are trace to 1% very fine pyrite points or blebs disseminated across the unit. Foliation is well developed at 40 to 45 degrees to the core axis, lower contact is 40 degrees to the core axis. 16.50 - 16.90, 17.4 - 17.6: moderately fractured core, weak yellow brown oxidized alteration. 20.90 29.90: there are 1 to 2%, 2 mm to 5 cm wide laminated silicified sericitized	40 to 45 degrees to the core axis. These veins are 59715 barren. There are a few odd om to cm white, barren, 99716 quartz - carbonate veins at random angles. 99717 There are trace to 1% very fine pyrite points or blebs 99718 disseminated across the unit. 99718 foliation is well developed at 40 to 45 degrees to the 59720 core axis, lower contact is 40 degrees to the core axis. 99721 16.50 - 16.90, 17.4 - 17.6; moderately fractured core, weak yellow brown oxidized alteration. 99723 core, weak yellow brown oxidized alteration. 99724 laminated silicified sericitized 99725 mineralization sections. 99726 29.90 45.90; there are 1 to 2%, 2 mm to 5 cm wide 10 sericitized mineralized sections, 2 mm to 10 sericitized mineralized sections, 2 mm to 10 sericitized altered sections, 1 to 5 cm wide along fractures subparallel to foliation. 41.15 41.70 MINERALIZED JONE. Silicified, hematized, sericitized mineralized zone. Moderately hard well bedded alternating in mm beds pale grey to grey pink and black strongly magnetic altered zone. There are 2 to 6% very fine grained pyrite disseminations and 1% magnetite as fine beds or grains	40 to 45 degrees to the core axis. These veins are part of the core axis. There are a few odd on to cm white, barren, part of the core axis. Part of the core axis part of the core axis part of the core axis, lower contact is 40 degrees to the core axis. Part of the core axis, lower contact is 40 degrees to the core axis. Part of the core, weak yellow brown oxidized alteration. Part of the core, weak yellow brown oxidized alteration. Part of the core, weak yellow brown oxidized alteration. Part of the core, weak yellow brown oxidized alteration. Part of the core axis, lawing and the core axis. Part of the core axis, lower contact is 40 degrees to the core axis. Part of the core axis, lower contact is 40 degrees to the core axis. Part of the core axis, lower contact is 40 degrees to the core axis. Part of the core axis, lower contact is 40 degrees to the core axis. Part of the core axis, lower contact is 40 degrees to the core axis. Part of the core a	40 to 45 degrees to the core axis. These veins are barren. There are a few odd om to cm white, barren, 99716 33.90 34.90 quartz - carbonate veins at random angles. 97717 34.90 35.90 There are trace to 1% very fine pyrite points or blebs 97718 35.90 36.90 disseminated across the unit. 97719 36.90 37.90 foliation is well developed at 40 to 45 degrees to the core axis, lower contact is 40 degrees to the core axis. 97721 38.90 37.90 16.50 - 16.90, 17.4 - 17.6; moderately fractured core, weak yellow brown oxidized alteration. 97723 40.50 41.15 20.90 29.90; there are 1 to 2%, 2 mm to 5 cm wide silicified sericitized mineralization sections. 97724 41.15 41.70 42.70 sericitized mineralized sections, 2 mm to 10 cm wide. There are a few odd yellow brown oxidized altered sections, 1 to 5 cm wide along fractures subparallel to foliation. 97728 44.70 45.90 cm will bedded alternating in mm beds pale grey to grey pink and black strongly magnetic altered zone. There are 2 to 6% very fine grained pyrite disseminations and 1% magnetite as fine beds or grains	40 to 45 degrees to the core axis. These veins are barren. There are a few odd on to cm white, barren, quartz - carbonate veins at random angles. There are trace to 1% very fine pyrite points or blebs quartz - carbonate veins at random angles. There are trace to 1% very fine pyrite points or blebs quartz - carbonate veins at random angles. There are trace to 1% very fine pyrite points or blebs quartz - carbonate veins at random angles. There are trace to 1% very fine pyrite points or blebs quartz - carbonate veins at random angles. 99716 33.90 1.00 99717 34.90 35.90 1.00 99718 35.90 36.90 1.00 99719 36.90 37.90 1.00 99719 36.90 37.90 1.00 99719 36.90 37.90 1.00 99719 36.90 37.90 1.00 99710 37.90 36.90 1.00 99710 37.90 36.90 1.00 99710 37.90 36.90 1.00 99710 37.90 36.90 1.00 99711 36.90 37.90 1.00 99711 36.90 37.90 1.00 99712 37.90 38.90 1.00 99712 37.90 38.90 1.00 99712 37.90 38.90 1.00 99712 37.90 38.90 1.00 99712 37.90 38.90 1.00 99712 37.90 38.90 1.00 99712 37.90 40.50 41.15 45.00 99712 44.15 41.70 42.70 1.00 99712 44.15 41.70 42.70 1.00 99712 44.15 41.70 42.70 1.00 99712 44.15 41.70 42.70 1.00 99712 44.15 41.70 42.70 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712 44.70 45.90 1.00 99712	40 to 45 degrees to the core axis. These veins are barren. There are a few odd om to cm white, barren, 99716 33.90 33.90 1.00 TR-5 quartz - carbonate veins at random angles. There are trace to 1% very fine pyrite points or blebs disseminated across the unit. Foliation is well developed at 40 to 45 degrees to the core axis, lower contact is 40 degrees to the core axis. 16.50 - 16.90, 17.4 - 17.6 : moderately fractured core, weak yellow brown oxidized alteration. 20.90 29.90 : there are 1 to 2%, 2 mm to 5 cm wide along fractures subparallel to foliation. 41.15 41.70 MINERALIZED IDNE. Silicified, hematized, sericitized mineralized zone. Moderately hard well bedded alternating in ma beds pale grey to grey pink and black strongly magnetic altered zone. There are 2 to 6% very fine grained pyrite disseminations and 1% magnetite as fine beds or grains	40 to 45 degrees to the core axis. These veins are barren. There are a few odd om to cm white, barren, 99715 32.90 33.90 1.00 TR-5 .080 quartz - carbonate veins at random angles. There are trace to 1% very fine pyrite points or blebs disseminated across the unit. P9718 35.90 35.90 1.00 TR-5 .130 disseminated across the unit. 99719 36.90 37.90 1.00 TR-5 .130 disseminated across the unit. 99719 36.90 37.90 1.00 TR-5 .310 disseminated across the unit. 99719 36.90 37.90 1.00 TR-5 .870 sericitized across the unit. 99719 36.90 37.90 1.00 TR-5 .870 sericitized across the unit. 99719 36.90 37.90 1.00 TR-5 .870 sericitized across the unit. 99720 37.90 38.90 1.00 TR-5 .870 sericitized across the unit. 99721 38.90 39.90 1.00 TR-5 .310 sericitized across the unit. 99722 39.90 40.50 .60 TR-5 .059 sericitized across the matized sericitized across the unit. 99724 41.15 41.70 .55 TR-5 .059 sericitized across the matized sericitized across the unit. 99725 41.70 42.70 1.00 TR-5 .880 sericitized across the matized sericitized across the unit. 99728 44.70 45.90 1.20 TR-5 .168 sericitized across the unit. 41.15 41.70 KINERALIZED IDNE. Silicified, hematized, sericitized mineralized zone. Moderately hard well bedded alternating in ma beds pale grey to grey pink and black strongly acquetic altered zone. There are 2 to 6% very fine grained pyrite disseminations and 1% magnetite as fine beds or grains

45.90 50.60 BASALT AMYBOULAR

99729 47.50 48.50 1.00 TK .120 .12

Moderately hard, fine grained, green to grey-green, locally weakly magnetic mafic volcanic. Amygdular.

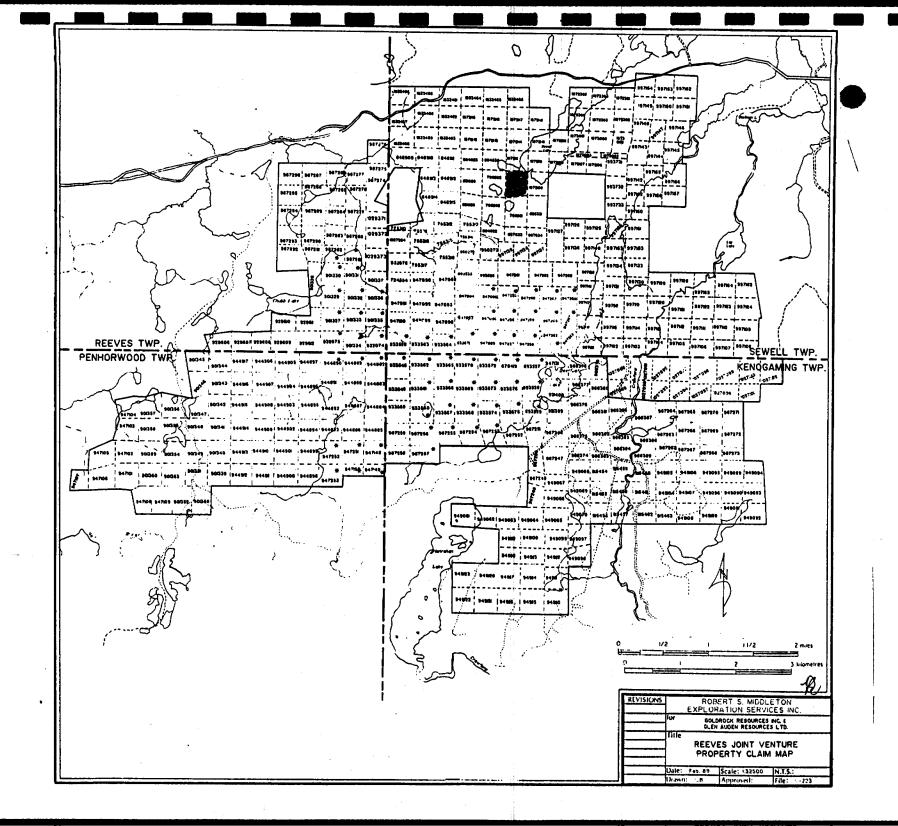
There are 2 to 3%, 3 to 5 am subrounded quartz amygdules elongated along foliation at 30 to 35 degrees to the core axis.

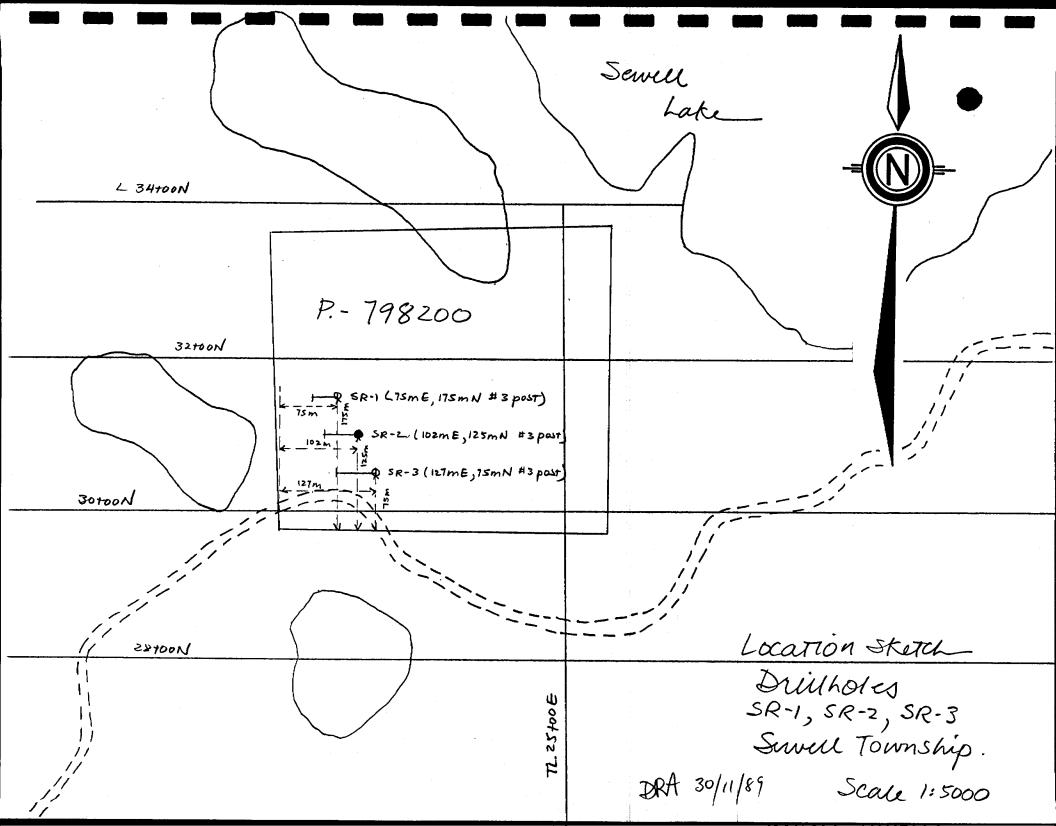
Along foliation there are locally 20 to 40 cs spaced, 2 to 5 cm wide horizons with 5 to 10% hypidiomorphic feldspar phenocrysts 1 to 3 mm long, that may represent pillow selvages.

This unit is weakly calcitic and moderately chloritic.

There are 1 to 3% mm, barren, carbonate veins elongated

along foliation, and trace, 5 mm to 1 cm wide, white quartz - carbonate veins crosscutting foliation with


trace pyrite and magnetite.
There is trace pyrite as fine eu


There is trace pyrite as fine euhedral grains disseminated. Foliation is weakly developed at 30 to 35 degrees to the core axis.

Hole No.: SR.89-1

Page No.: 4

50.60 END OF HOLE.

.0

DIAMOND DRILL RECORD

HOLE NO.:

SR.89-2

Aziauth:

270.0

.0

Section: 22+27E

Property:

SEWELL-REEVES

Dip:

-49.0

Core Size: BD

Location:

22+27E 31+00N

Elevation:

.0

Date Started:

September 21, 1989

Length:

Comments:

65.8

Date Completed: September 22, 1989

Logged by:

M. Bergeron

Measurement: Metric

Casing left in ground

Depth Azimuth Dip

Depth Aziauth Dip

Depth Aziauth Dip

45.72

-49.0

------Log Suggary-----

.00 1.22 CASING.

1.22 65.84 FOLIATED BASALT.

4.60 - 5.15 BASALT.

6.60 - 6.61 fault plane.

19.80 - 19.81 fault plane.

65.84 END OF HOLE.

Dare R Alexander

AMERICAN BARRICK RESOURCES CORPORATION

Hole No.: SR.89-2 Page No.: 2

NIL .070

NIL .040

.040

NIL

99761 63.40 64.40 1.00

.07

.06

.04

From To ------Description------ Sample From To Length I Sul GW Au g/t

.00 1.22 CASING

1.22 65.84 FOLIATED BASALT

, , , , , , , , , , , , , , , , , , , ,							
	99730	2.77	3.77	1.00	1-5	.110	.11
	99731	3.77	4.60	.83	1-5	.066	.08
Moderately hard, dark grey-green to pale grey-green,	99732	5.50	6.60	1.10	TR-5	.110	.10
fine grained, weakly to moderately magnetic mafic	99733	8.60	9.60	1.00	TR-1	.090	.09
volcanic. Foliated to thinly bedded.	99734	9.60	10.60	1.00	TR-3	.210	.21
From 1.22 to 22.56 there are trace to 1%, 1 mm to 5 mm,	99735	12.00	13.00	1.00	TR-3	.090	.09
quartz-carbonate amygdules elongated along foliation.	99736	16.30	17.80	1.50	TR-4	.150	.10
From 22.56 to END OF HOLE, foliated mafic volcanics are	99737	19.50	20.50	1.00	TR-2	.100	.10
fine grained to granular.	99738	23.50	24.50	1.00	TR-4	.150	. 15
This unit is moderately to strongly calcitic	99739	24.50	25.50	1.00	TR	.150	. 15
pervasively, and soderately chloritic.	99740	27.00	28.00	1.00	TR-5	.120	.12
There are 2 to 5%, 1 to 2 am wide carbonate veins	99741	31.60	32.75	1.15	NIL-TR	.149	. 13
pinched along foliation at 40 to 45 degrees to the core	99742	37.20	38.20	1.00	NIL-TR	.110	.11
axis. There are a few odd white to white grey quartz -	99743	39.20	40.20	1.00	TR-3	.160	.16
carbonate veins, 5 mm to 1 cm wide at random angles,	99744	44.70	45.70	1.00	NIL-TR	.100	.10
those veins contain nil to trace pyrite as fine to	99745	45.70	46.30	.40	TR-4	.102	.17
medium euhedral grains disseminated.	99746	48.40	49.40	1.00	NIL	.130	.13
There are locally, 2 am to 5 cm wide, grey pink,	99747	49.40	50.40	1.00	NIL	.100	.10
silicified hematized sericitized zones, subparallel to	99748	50.40	51.40	1.00	NIL	.100	.10
foliation. Those zones contain 3 to 5% pyrite as fine	99749	51.40	52.40	1.00	NIL	.100	.10
grained disseminations or fine stringers and trace to 1%	99750	52.40	53.40	1.00	NIL	.090	.09
magnetite as fine to medium ewhedral grains disseminated.	99751	53.40	54.40	1.00	NIL	.120	.12
There is trace to 1% pyrite as fine points or blebs	99752	54.40	55.40	1.00	NIL	.100	.10
disseminated and nil to trace magnetite as fine grain	99753	55.40	56.40	1.00	NIL	.090	.09
disseminations.	99754	56.40	57.40	1.00	NIL	. 050	.05
Foliation is well developed at 40 to 45 degrees to the	99755	57.40	58.40	1.00	NIL	.120	.12
core axis.	99756	58.40	59.40	1.00	NIL	.160	.16
1.22 4.60 : grey-green, not anygdular section. There are	99757	59.40	60.40	1.00	NIL	.120	.12
2 to 3% grey pink hematized, silicified,	99758	60.40	61.40	1.00	NIL	.080	.08

sericitized mineralized zones as described 99759 61.40 62.40 1.00

below. Lower contact is sharp and weakly 99760 62.40 63.40 1.00

sericitic at 30 degrees to the core axis.

.02

ros To

-----Description-----

Sample From To Length I Sul BN Au g/t

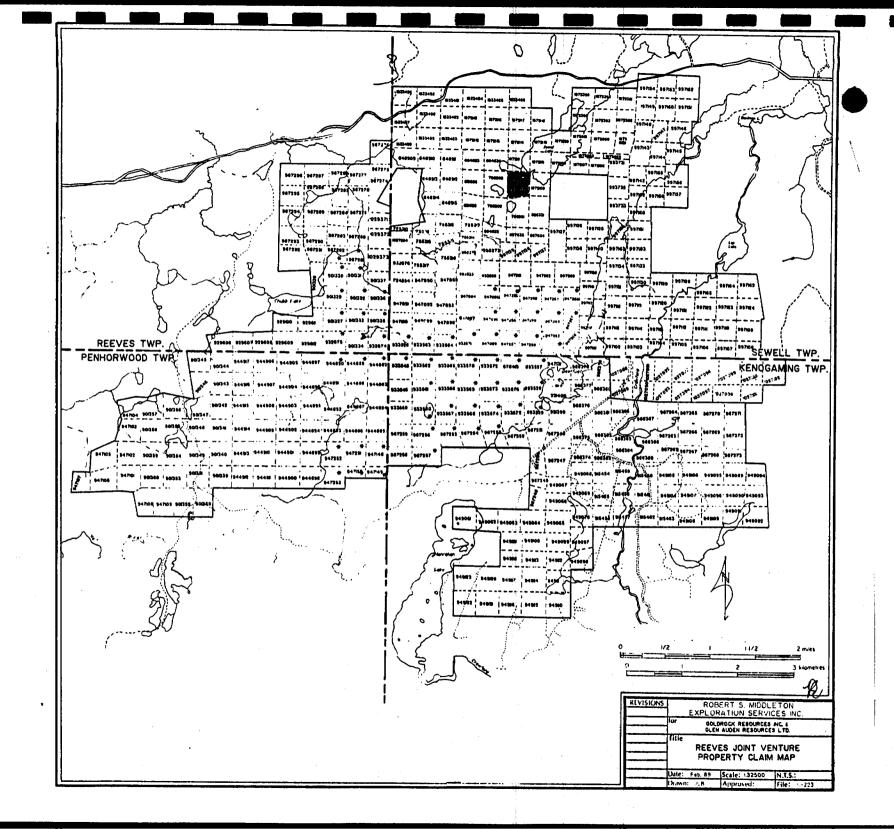
99762 64.40 65.40 1.00

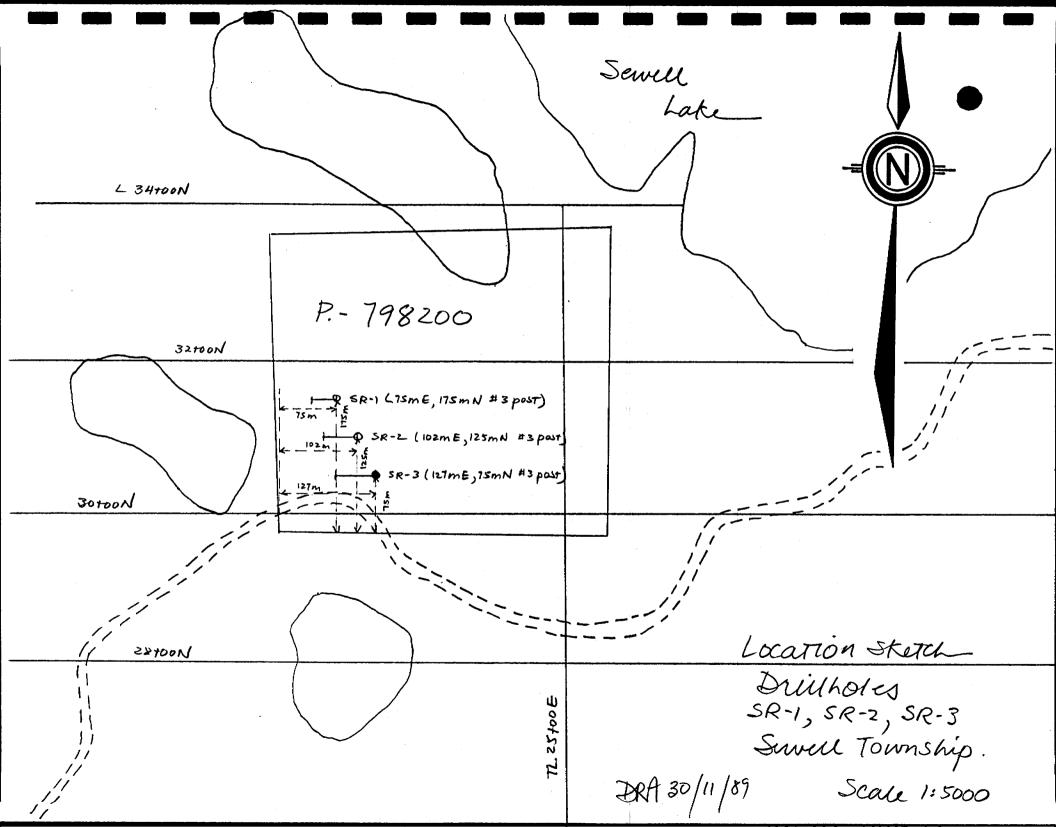
Note: 1.55 m lost core at the collar.

- 4.60 5.15 BASALT. Green, amygdular, massive to weakly foliated, unveined and barren of mineralization, weakly magnetic. Lower contact is sharp at 40 degrees to the core axis.
- 5.15 5.50: brown yellow oxidation along weakly fractured core.
- 5.50 6.60: there are 2%, 1 to 2 cm wide, grey pink hematized, sericitized, silicified, mineralized zones.
- 6.60 6.61 Fault plane. Ground core. Intercalated minor gouge and gravel at 40 degrees to the core axis
- 6.90 7.00 : foliation is subparallel to core axis. There is a moderate yellow brown oxidation alteration
- 9.60 13.00: trace, 0.5 to 1 cm wide, hematized, sericitized, silicified mineralized zones.
- 16.30 17.75 : 12 hematized, sericitized, m silicified mineralized zones, 1 to 1.5 cm wide. There is a weak brown yellow oxidation alteration along fractures subparallel to foliation.
- 19.80 19.81 Fault plane. Souge. Fracture filling at 40 degrees to the core axis. Wallrock is hematized and silicified with 2% pyrite for 2 cm.
- 20.77 20.84, 21.00 21.8 : yellow brown alteration along fractures.
- 21.80 24.72: trace to 1% silicified, hematized, sericitized mineralized sections, 1 to 4 cm
- 24.72 24.90: moderately fractured core intercalated minor gouge.
- 27.50 27.63: hematized, sericitized, silicified, with one mm fracture filling by carbonate and syrite.
- 31.60 32.75: yellow brown altered section. Upper contact is sharp crosscutting foliation at 60 degrees to the core axis. Lower contact is diffuse.
- 36.75 38.20: there are a few odd ma fractures at random angle filled with carbonate and 2 to 3% pyrite.
- 38.20 44.90 : there are a few odd, 1 to 10 cm wide, hematized silicified sericitized mineralized sections along foliation.
- 44.90 45.10: yellow brown oxidized alteration, weakly fractured core. Upper contact is diffuse, lower contact crosscuts foliation at 40 degrees to the core axis.
- 45.70 46.30 : silicified hematized sericitized zone mineralized.
- 48.40 64.60: there are 1% of an to cm hematized silicified sericitized mineralized zones.

Hole No.: SR.89-2

Page No.: 4


GN


------ Sample From To Length % Sul

Au g/t

sericitized silicified 64.60 65.15 : hematized mineralized zone.

. 65.84 END DF HOLE.

.0 .0 DIAMOND DRILL RECORD HOLE NO.: SR.89-3 Azieuth: 270.0 Section: 22+50E **Property:** SEWELL-REEVES Core Size: 80 Dip: -50.0 Locations 22+50E 30+50N .0 Elevation: Date Started: September 22, 1989 78.0 Date Completed: September 23, 1989 Length:

Measurement: Hetric

Comments: Casing left in hole

.00 1.22 CASING.

1.22 51.15 FOLIATED BASALT.

5.85 - 5.95 fault plane. 30.70 - 31.40 fault plane. 40.70 - 40.72 fault plane.

51.15 62.25 MINERALIZED ZONE.

53.25 - 60.00 QUARTZ - FELDSPAR PORPHYRY.

62.25 78.03 FOLIATED BASALT.

78.03 END OF HOLE.

AMERICAN BARRICK
RESOURCES CORPORATION

Logged by:

M. Bergeron

ron To ------ To Length I Sul GW Au g/t

.00 1.22 CASING

1.22 51.15 FOLIATED BASALT

Hoderately hard, dark grey-green to pale grey-green, fine grained, weakly to anderately magnetic mafic volcanic. Foliated.

There is a weak to moderate calcitic alteration pervasively and a moderately chloritic alteration.

There are 2 to 5%, 1 to 2 mm wide, white grey barren carbonate - quartz veins pinched or boudinaged along foliation at 40 to 45 degrees to the core axis. From 1.22 to 40.70 those veins are truncated by a second set of carbonate veins (5 to 10 veins / m) crosscutting foliation at 45 to 90 degrees to the core axis. They are white coloured, 2 mm to 8 mm wide, barren of mineralization.

There are a few odd 1 to 5 cm wide, white quartz calcite veins with trace - nil fine pyrite disseminated, at random angle.

There are trace to 1% very fine pyrite blebs disseminated, and trace fine euhedral magnetite grains disseminated.

Foliation is well developed at 40 to 45 degrees to the core axis.

Lower contact is sharp at 45 degrees to the core axis.

3.24 3.35 : 4.66 4.67 5.0 5.02 there are 5 to 102, 1 to 2 mm hypidiomorphic feldspar grains elongated along foliation that may represent pillow selvages.

5.85 5.95 Fault plane. There are two mm fault plane at 15 and 45 degrees to the core axis filled with minor yellow brown oxidized gouge.

7.40 7.60 : hematized, silicified, sericitized zone with 1 to 2% pyrite, trace magnetite.

99763	6.80	7.80	1.00	TR-2	.060	.06
99764	30.00	31.00	1.00	TR	.070	.07
99765	31.00	32.00	1.00	TR	.080	.08
99766	33.00	34.00	1.00	TR	.040	. 06
99767	37.00	38.00	1.00	TR	.030	.03
99768	39.70	40.70	1.00	TR	.030	.03
99769	40.70	41.70	1.00	TR-5	.160	.16
99770	41.70	42.70	1.00	TR-5	.170	.17
99771	42.70	43.70	1.00	TR-5	.130	.13
99772	43.70	44.70	1.00	TR-5	.140	.14
99773	44.70	45.70	1.00	TR-5	.100	.10
99774	45.70	46.70	1.00	TR-5	.120	.12
99775	46.70	47.70	1.00	TR-5	.100	.10
99776	47.70	48.70	1.00	TR-5	.110	.ii
99777	48.70	49.70	1.00	TR-5	.120	.12
99778	49.70	51.15	1.45	TR-5	. 131	.09

Hole No.: SR.89-3 Page No.: 3

81

Froe

To ----- Sample From

Sample From To Length % Sul

Au g/t

30.10 30.25 : yellow brown oxidized zone.

30.70 31.40 Fault plane as fracture at 5 degrees to the core axis filled with hematized gouge.

37.15 : open joint filled with calcite and 32 pyrite.

40.70 51.15 : FOLIATED BASALT is intercalated with 12 (
2 to 5 / m). 0.5 to 10 cm wide, well bedded hematized, silicified zones subparallel to foliation with 3 to 52 pyrite, trace to 12 magnetite.

40.70 40.72 Fault plane. Upper contact is faulted at 45 degrees to the core axis crosscutting foliation and marked by a 2 mm calcite vein with minor gouge.

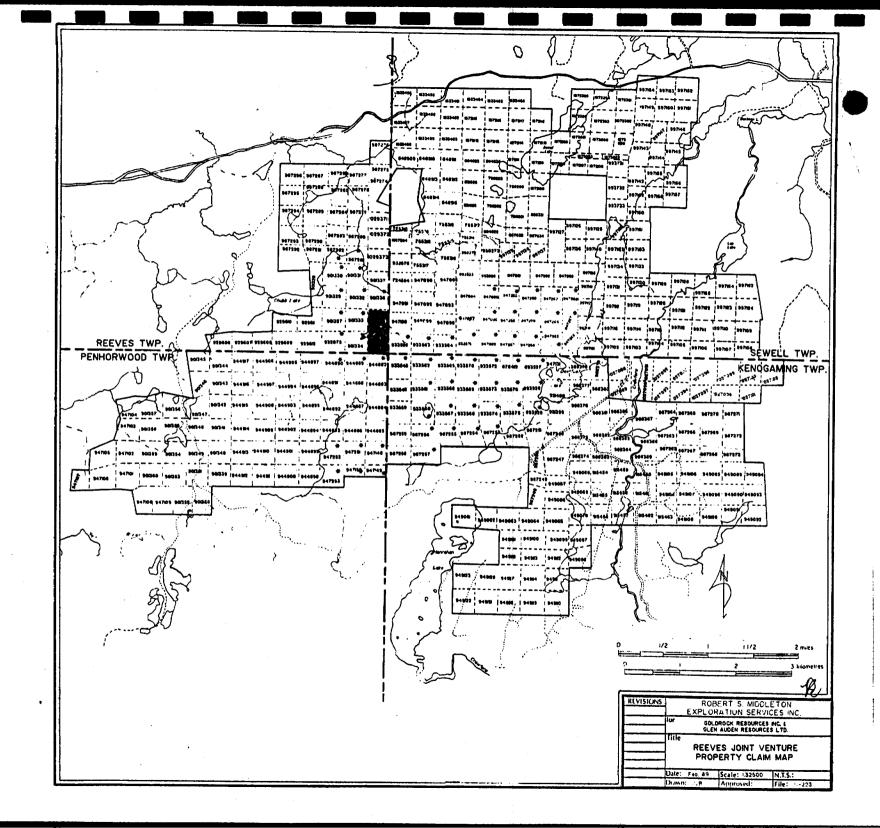
51.15 62.25 MINERALIZED ZONE

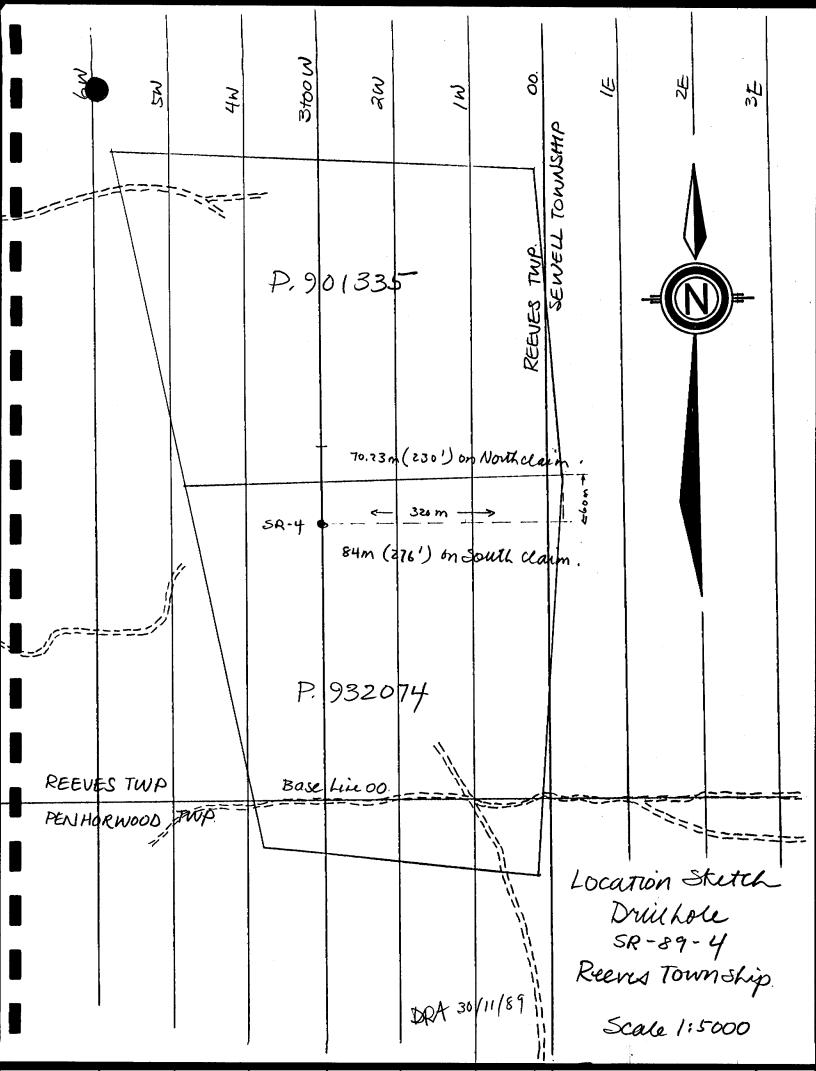
Silicified hematized sericitized mineralized zone. Hard, fine grained to very fine grained, thinly bedded, pale grey pink to beige brown, altered foliated mafic volcanic, moderately magnetic.

Moderately silicified, weakly sericitized and hematized and weakly to moderately calcitic as patchy alteration. There are 1 to 3% white grey mm quartz veinspinched along foliation at 40 to 45 degrees to the core axis. There are 1 to 4% fine pyrite blebs or euhedral grains disseminated and trace to 1% fine hypidiomorphic magnetite grains disseminated.

Foliation is well developed at 45 degrees to the core

Upper and lower contact are sharp at 45 degrees to the core axis.


53.25 60.00 QUARTZ - FELDSPAR PORPHYRY. Hard, medium to coarse grained, mottled grey brown to grey beige, very weakly magnetic quartz syenite. There are 55 to 60%, 1 to 4 mm hypidiomorphic feldspar phenocrysts, 2 to 5%, 1 to 2 mm xenomorphic biotite and 2 to 5%, 2 to 4 mm subrounded quartz phenocrysts. There are nil to trace mm white carbonate quartz veins at 65 to 90 degrees to the core axis.


There are nil to trace very fine pyrite grains disseminated. Upper contact is subparallel to foliation at 45 degrees to the core axis, lower contact crosscuts the foliation at 60 degrees to the core axis.

99779 51.15 52.15 1.00 .11 99780 52.15 53.25 1.10 1-4 .099 .09 99781 53.25 54.25 1.00 NIL-TR .130 .13 99782 54.25 55.25 1.00 NIL-TR .120 .12 99783 55.25 56.25 1.00 NIL-TR .080 .08 99784 56.25 57.25 1.00 NIL-TR .100 .10 99785 57.25 58.25 1.00 NIL-TR .070 .07 99786 58.25 59.25 1.00 NIL-TR .090 .09 99787 59.25 60.00 .75 NIL-TR .053 .07 99788 60.00 61.00 1.00 1-4 .080 .08 99789 61.00 62.25 1.25 1-4 .162 .13

Hole No.: SR.89-3

					f	age No.:	4
Fra ToDescription	Sample	From	To	Length	Z Sul	en	Au g/t
62.25 78.03 FOLIATED BASALT							
	99790	62.25	63.25	1.00	TR-3	.180	. 18
	99791	63.25	64.25	1.00	TR-3	.150	. 15
Same as 1.22 to 51.15.	99792	45.50	66.50	1.00	TR-3	.140	.14
Foliated mafic volcanics are intercala	ted with a few 99793	67.50	68.50	1.00	TR-3	.160	. 16
odd, 5 mm to 10 cm wide, hematized	- silicified - 99794	48.50	69.50	1.00	TR-3	.220	.22
sericitized mineralized zones subparm	llel to the 99795	49.50	70.50	1.00	TR-3	.160	. 16
foliation at 45 degrees to the core axis.	99796	70.50	71.50	1.00	TR-3	.150	. 15
There is 1% white grey to grey blue qua	rtz veins, 5 mm 99797	71.50	72.50	1.00	TR-3	.170	.17
to 1 cm wide, subparallel to foliati	on, with trace 99798	72.50	73.50	1.00	TR-3	.180	.18
pyrite as fine euhedral grains.	99799	73.50	74.50	1.00	TR-3	.250	. 25
	99800	74.50	75.50	1.00	TR-3	.170	.17
	99801	75.50	76.50	1.00	TR-3	.140	.14
78.03 END OF HOLE.	99802	76.50	77.50	1.00	TR-3	.130	.13

.0 .0 DIAMOND DRILL RECORD HOLE NO. : SR.89-4 360.0 Azimuth: Section: L3+00W **Property:** SEWELL-REEVES Dip: -50.0 Core Size: BQ Location: L3+00W 3+60N Elevation: .0 Date Started: September 28, 1989 154.2 Length: Date Completed: October 4, 1989 D. Alexander Logged by:

Measurement: Metric

Comments:

Casing pulled

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip
45.72 -49.0 154.23 -46.0
-----Log Summary------

.00 1.22 CASING.

1.22 38.52 BASALT variably veined and brecciated as surface exposure.

38.52 154.23 MAFIC VOLCANICS generally dark green, chloritic, and uniform.

64.12 - 65.06 GRANITE. 106.35 - 107.56 LAMPROPHYRE.

154.23 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

Hole No.: SR.89-4 Page No.s

.12

97031 31.02 32.00 .98 TR .118

------ Sample From To Length Z Sul 6W Au g/t

.00 1.22 CASING

1.22 38.52 BASALT

being largely vein generated.

	97001	1.22	2.00	.78	NIL	.125	.16
	97002	2.00	3.00	1.00	NIL	.130	.13
A sequence of fine grained to very fine grained ag-rich	97003	3.00	4.00	1.00	NIL	.190	.19
tholeiitic basalt. In general the rock is medium to dark	97004	4.00	5.00	1.00	NIL	.320	.32
grey in colour with dull yellowish grey to putty	97005	5.00	6.00	1.00	TR	.170	.17
coloured sections in areas of increased sericite	97006	6.00	7.00	1.00	TR.	.350	.35
alteration. Most of these sericitic sections are also	97007	7.00	8.00	1.00	TR	.280	.28
very fine grained.	97008	8.00	9.00	1.00	TR	.260	.26
The sequence is nonmagnetic and is variably altered with	97009	9.00	10.00	1.00	TR	.730	.73
chlorite, sericite and ankerite. The zone is weakly to	97010	10.00	11.00	1.00	NIL	. 270	.27
moderately veined with up to 25% stringers of calcite -	97011	11.00	12.00	1.00	NIL	. 250	. 25
quartz very locally - average veining is 5 to 10%. Most	97012	12.00	13.00	1.00	NIL	.300	.30
veins are at 0 to 20 degrees to the core axis indicative	97013	13.00	14.00	1.00	2-3	.360	.36
of the veins noted in the trench just north of the hole.	97014	14.00	15.00	1.00	TR	.360	.36
Several of the veins have some measure of smoky quartz,	97015	15.00	16.00	1.00	TR	.320	.32
either as tiny brecciated fragments or as complete	97016	16.00	17.00	1.00	TR	.250	.25
sugary textured veins.	97017	17.00	18.00	1.00	1-2	.180	.18
Veins and to a lesser the wallrocks are sparsely	97018	18.00	19.00	1.00	TR	.190	.19
mineralized with 1 to 2% pyrite and rare chalcopyrite.	97019	19.00	20.00	1.00	TR	.200	.20
The flat vein with visible gold noted on surface is not	97020	20.00	21.00	1.00	TR	.200	.20
seen in the drillhole.	97021	21.00	22.00	1.00	TR	.180	. 18
The core is variably pitted and rusty due to weathering	97022	22.00	23.00	1.00	TR	.180	. 18
from the collar to 9.66 m.	97023	23.00	24.00	1.00	TR	.190	.19
The core is weakly to moderately brecciated throughout,	97024	24.00	25.00	1.00	NIL	.190	.19
brecciation being largely a function of veining and	97025	25.00	26.00	1.00	TR	170	.17
fracturing except around the lower contact of the	97026	26.00	27.00	1.00	TR	.140	. 14
system from 35.60 to 38.52 where the rock is clearly	97027	27.00	28.00	1.00	TR	.120	.12
fractured and brecciated in addition to hosting some	97028	28.00	29.00	1.00	TR	.140	. 14
irregular veining. The sequence is weakly to moderately	97029	29.00	30.00	1.00	TR	.110	.11
brecciated also from 20.0 m to 23.41 m. This brecciation	97030	30.00	31.02	1.02	1-2	.122	. 12
haine langely water property	87874	74 45	TA AA	88	**	448	

Hole No.: SR.89-4

.073

.14

TR

97038 38.00 38.52 .52

						•	age no.s	J
From To	Description	Sample	From	To	Length	Z Sul	811	Au g/t
	The section from 23.41 to 35.60 m is a medium grey to	97032	32.00	33.00	1.00	TR	.100	.10
	brownish grey very fine grained basalt with dull ochre	97033	33.00	34.00	1.00	TR	.130	.13
	to straw coloured streaks of sericite alteration most	97034	34.00	35.00	1.00	TR	.180	.18
	often subparallel to irregular or highly contorted veins	97035	35.00	36.00	1.00	1-2	.340	. 34
	of grey to smoky quartz and carbonate. This section is	97036	36.00	37.00	1.00	TR	.130	. 13
	also more strongly ankeritic than previous.	97037	37.00	38.00	1.00	TR	. 150	.15

The basel zone is a relatively well defined breccia with variably bleached and altered fragments of basalt up to 1 cm in size. Some of the brecciation and fracturing is vein related and there are narrow sections of massive basalt in this area. The core continues to be streaked with other - coloured sericite as well. Veins in this basal section are often broken and attenuated unlike some of the highly contorted to dragfolded veins seen in

The core is weakly to moderately foliated at 25 to 35

the overlying massive section. Traces of biotite alteration are also present in this area.

The lower contact is irregular with veining.

This overall zone appears to cover the trenched sequence seen on surface. The two largest grey quartz veins are at 30.17 - 30.22 and 30.98 - 31.02 m both of which are at 55 to 60 degrees to the core axis and without accessory mineralization.

35.60 38.52 Brecciated.

degrees to the core axis.

38.52 154.23 MAFIC VOLCANICS

A sequence of fine grained to very fine grained mafic volcanics. The rock varies from dull brownish grey to grey at the top of the zone and grades to dark green and much more strongly chloritic circa 62 m. The change in colour also reflects a changing alteration from sericite, chlorite and ankerite at the start of the zone to chlorite and calcite with depth. The interval across which this change occurs is finely speckled with carbonate from 44.6 to 61.4 m - the carbonate possibly representing finely altered feldspar.

In general the rocks are massive to very weakly foliated at 20 to 35 degrees to the core axis. The core is poorly veined with 5 to 10% milky white to slightly greyish quartz and carbonate stringers and is very sparsely mineralized with pyrite +/- pyrrhotite.

64.12 65.06 GRANITE. The mafic volcanics are cut by a narrow granitic dyke to quartz feldspar porphyry at 20 degrees to the core axis. The dyke is reddish grey to orangish in colour with about 50% pinkish to orangish

97039	38.52	39.52	1.00	TR	.130	.13
97040	50.00	51.00	1.00	NIL	.130	.13
97041	63.00	64.12	1.12	NIL	.112	.10
97042	64.12	65.06	.94	TR	. 103	.11
97043	65.06	66.00	.94	NIL	.075	.08
97044	69.50	70.50	1.00	1-2	. 090	.09
97045	B1.00	82.00	1.00	TR	. 150	.15
97046	93.00	94.00	1.00	NIL	.090	. 09
97047	105.50	106.35	.85	NIL	.102	.12
97048	106.35	107.56	1.21	NIL	. 133	.11
97049	107.56	108.50	.94	NIL	.103	.11
97050	117.00	118.00	1.00	TR	.100	.10
97051	131.00	132.00	1.00	NIL	.100	.10
97052	141.00	142.00	1.00	NIL	.110	.11
97053	153.00	154.00	1.00	TR	.090	. 09

From To

-----Description-----

Sample From To Length % Sul

6W Au q/t

and off white feldspar, about 30% quartz and 20% mafics as dark clots. The dyke is weakly fractured, poorly veined and very sparsely to unmineralized. Both contacts are relatively clean and sharp.

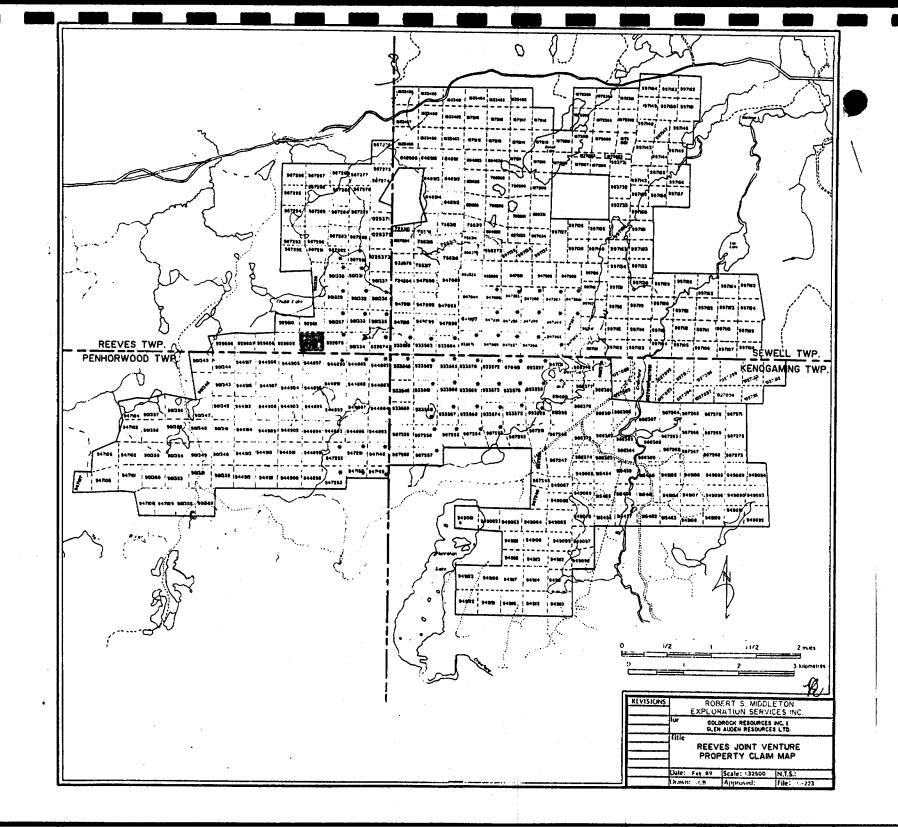
Below the dyke the rocks become relatively uniform in nature. The core is fine grained to very fine grained, medium to dark green in colour, weakly to nonfoliated at 0 to 45 degrees to the core axis and moderate to strongly calcitic. Calcite +/- quartz veining is very common in the system with an average of 10 to 15% veins in two sets - one at 0 to 25 degrees to the core axis and a second set at 35 to 45 degrees to the core axis. The shallow set locally appears younger but the relationship between the two sets is often ambiguous. The rocks are moderate to strongly altered with chlorite and calcite, and are very sparsely to unmineralized.

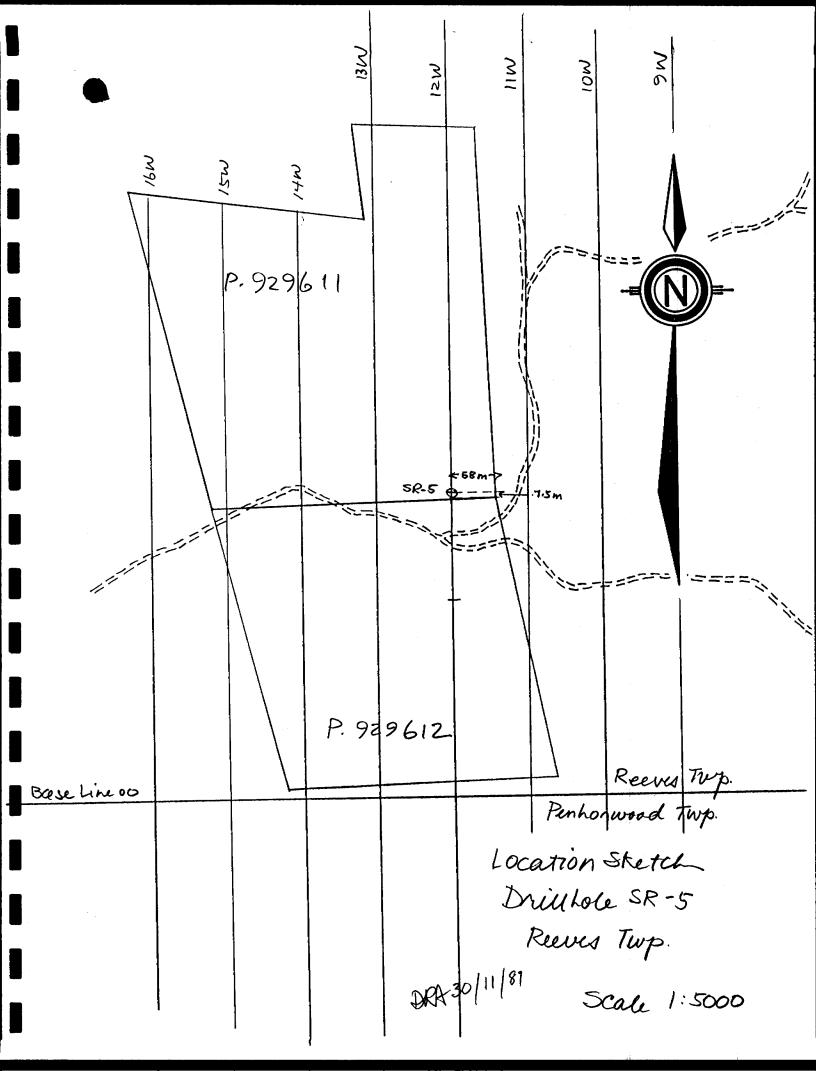
Circa 94.0 m the mafic volcanics begin to have a meakly spotted nature with several sections of core having numerous 1 to 2 mm sized chlorite blebs along a meakly developed foliation at 20 to 35 degrees to the core axis. The chlorite spotting continues to 125.66 where there is a meakly developed contact at 20 degrees to the core axis. This sequence may represent an individual flow on alteration associated with a dyke of LAMPROPHYRE 106.35 107.56 LAMPROPHYRE. A dyke of medium to coarse

grained LAMPROPHYRE, characterized by mafic clots up to 8 mm in size in a pervasively biotitic and calcitic matrix. The dyke is brown in colour, moderate to strongly magnetic and is moderately fractured with stringers of calcite up to 1 cm in size. The dyke is weakly chilled with the adjacent mafic volcanics being cooked, darkened and strongly chloritized. Contacts are at 55 irregular / 35 degrees to the core axis. A similar, but very fine grained dyke occurs at 104.09 m, 16 mm in

width at 32 degrees to the core axis.

The volcanics in the area remain dark green, chloritic and calcitic with more uniform massive flows again noted below the chlorite — spotted zone (after 125.66 m). Very fine grained, medium to dark green, chloritic, calcitic, nonmagnetic uniform mafic volcanics with 10 to 15% calcite — quartz veining continue to the end of the hole. Approching the end of the hole — a weak foliation is present at 30 to 40 degrees to the core axis The I. P. Target of moderate strength is not explained. That may be due to the strong northerly dip here, although the I. P. Target is weak.


AMERICAN BARRICK RESOURCES CORPORATION


Hole No.: SR.B9-4 Page No.: 5

Au g/t

154.23

END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

.0 .0 DIAMOND DRILL RECORD HOLE NO.: SR.89-5 Azimuth: 180.0 Section: L12+00W Property: SEWELL-REEVES Dip: -50.0 Core Size: BQ Location: L12+00W 4+00N Elevation: .0 Date Started: September 25, 1989

Measurement: Metric

Length:

Connents:

Casing pulled

221.3

Depth	Azimuth	Dip	Depth	Azimuth	Dip	Depth	Azimuth	Dip
45.72	-4	7.0	137.16	-4/	5.0	221.28	-41,	0
91.44	4	8.0	182.88	-43	5.0			
		n Rumma	FV					

.00 3.66 CASING.

3.66 101.20 SCHIST.

23.7 - 31.75 mafic intrusive.

27.5 - 30.50 DIABASE.

66.3 - 69.95 mafic intrusive.

69.95 - 73.20 MINERALIZED ZONE.

92.0 - 93.0 MINERALIZED ZDNE.

94.85 - 96.23 MINERALIZED ZONE.

101.20 129.60 CHLORITE SCHIST.

129.60 221.28 BASALT.

148.9 - 148.96 fault gouge. 157.20 - 158.3 DIABASE.

221.28 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

Date Completed: September 28, 1989

M. Bergeron

Logged by:

.00 3.66 CASING

3.66 101.20 SCHIST

V 0011101							
	99841	3.66	4.66	1.00	TR-1	.030	.03
	99842	4.66	5.66	1.00	TR-1	.030	.03
Sericite carbonate schist.	99843	5.66	6.66	1.00	TR-1	.040	. 04
Moderately hard, pale grey to pale grey beige, fine	99844	6.66	7.66	1.00	TR-1	.030	.03
grained, not magnetic sericite - carbonate - schist.	99845	7.66	8.66	1.00	TR-1	.040	.04
Moderately sericitized, weakly chloritic, moderately	99846	8.66	9.66	1.00	TR-1	.030	. 03
carbonatized as ankeritic alteration with rare patchy	99847	9.66	10.66	1.00	TR-1	.040	.04
calcitic alteration, very weakly silicified.	99848	10.66	11.66	1.00	TR-1	.130	. 13
There are trace, barren, 1 to 2 am wide, white carbonate	99849	11.66	12.66	1.00	TR-1	.140	.14
veins subparallel to the foliation at 50 to 55 degrees	99850	12.66	13.66	1.00	TR-1	140	,14
to the core axis. There are few odd am to ca blue grey	99851	13.66	14.66	1.00	TR-1	.150	.15
quartz calcite veins subparallel to foliation with 1%	99852	22.70	23.70	1.00	TR-1	.150	. 15
pyrite as fine grained disseminations.	99861	23.70	24.70	1.00	NIL-TR	.150	.15
There are trace to 1% very fine pyrite blebs	99862	24.70	25.70	1.00	NIL-TR	.130	.13
disseminated. Foliation is well developed at 50 to 55	99863	25.70	26.70	1.00	NIL-TR	.120	.12
degrees to the core axis. Lower contact is fractured and	99864	26.70	27.50	.80	NIL-TR	.096	.12
contains minor gouge at 45 degrees to the core axis.	99865	27.50	28.50	1.00	TR	.100	.10
3.66 23.70 : sericite - carbonate - schist is	99866	29.50	30.50	1.00	TR	.110	.11
intercalated with 2 to 3%, 1 cm to 10 cm	99867	30.50	31.75	1.25	NIL-TR	.138	.11
wide, silicified to cherty zones weakly	99868	31.75	32.75	1.00	TR-1	.090	.09
brecciated and poorly mineralized. There is	99869	32.75	33.75	1.00	TR-1	.070	.07
trace to 1% rusty weathering along fractures	99870	35.00	36.00	1.00	TR-1	.070	.07
subparallel to foliation or at 5 to 15	99871	41.00	42.00	1.00	TR-1	.050	. 05
degrees to the core axis.	99872	47.00	48.00	1.00	TR-1	.040	. 04
23.70 31.75 Mafic intrusive. Moderately hard, mottled	99873	50.00	51.00	1.00	TR-I	.050	.05
grey blue to grey-green, fine grained, not	99874	65.30	66.30	1.00	TR-1	.040	. 04
magnetic, unveined. There is a moderate		66.30	67.30	1.00	1	.030	.03
chloritic alteration pervasively and a	99876	67.30	68.30	1.00	1	.040	. 04
strong calcitic alteration at the contact		48.30	69.30	1.00	1	.040	. 06
with the diabase dyke. Contacts are 45 to 80		69.30	69.95	. 65	1	.026	.04
degrees to the core axis. Nil to trace pyrite		69.95	70.95	1.00		.050	. 05
27.50 30.50 DIABASE. Mottled grey - brown to grey green.	99880	70.95	71.95	1.00	2-4	.060	.06
Fine grained to medium grained. Moderately	99881	71.95	73.20	1.25	2-15	.063	. 05

	Description
	magnetic diabase. Strongly calcitic, and
	chloritic. Upper and lower contacts are
	marked by a mm aphanitic chilled margin.
	Contacts are 50 to 45 degrees to the corr
	axis. There is trace pyrite and pyrrhotite
	in fine blebs disseminated.
31.75 66.30	: SCHIST is intercalated with a few ode
	decimeter to metric yellow brown oxidize
	alteration along fractures. SCHIST is
	locally very weakly brecciated.
66.30 69.95	Mafic intrusive. Grey, fine grained no
	magnetic, mafic intrusive. Moderately
	chloritic, not carbonatised not veined. 1
	Pyrite as medium blebs or euhedral grains
	disseminated. Contacts are 85 to 60 degrees
	to the core axis.
69.95 73.20	MINERALIZED ZONE. Grey brown to grey black
	very fine grained, sheared and mineralize
	sericite - carbonate - schist. Moderately to
	strongly magnetic. Weakly biotitic
	moderately ankeritic, weakly sericitic,
	There are 1%, am, ankerite veins pinche
	along foliation at 45 to 50 degrees to the
	core axis. There are few odd dark grey blue
	quartz veins at random angles.
	There is 1 to 15% pyrrhotite increasing
	downhole, as fine stringers or bleh
	disseminated along foliation. There is trace
	to 2% pyrite as fine blebs or stringers
	disseminated. Lower contact is 60 degrees to
	the core axis.
73.20 101.2	O: pale grey beige, very weakly magnetic
	sericite carbonate schist with trace pyrite
	and pyrrhotite blebs disseminated.
	Schist is intercalated by 2%, 1 cm to 10 cm
	wide, mineralized horizons. These horizons
	are dark grey to grey. Thinly bedded at 45
	to 55 degrees to the core axis, with minor
	am graphite along foliation. There is 2 to
	10% pyrrhotite, 1 to 2% pyrite as stringers
	or blebs.
22.00 93.00	MINERALIZED ZONE. Weakly to strongly
,2100 ,0100	magnetic, moderately hard, dark grey blue to
	grey, very fine grained, thinly laminated to
	sheared, graphitic, sericitic, carbonate
	schist. Moderately chloritic and ankeritic
	with 1 to 4% am graphitic beds along
	foliation at 45 to 55 degrees to the core
	axis. There are il an ankerite quartz veins
	•
	contorted. There is 1 to locally 101

pyrrhotite, and 1% pyrite as fine stringers or blebs disseminated. Contacts are 70 to 60

Sample From To Length % Sul GN Au g/t 99882 73.20 74.20 1.00 NIL .220 .22 99883 74.20 75.20 1.00 NIL .110 .11 99884 75.20 76.20 1.00 TR .180 .18 99885 76.20 77.20 1.00 TR .170 .17 99886 77.20 78.20 1.00 **TR-3** .410 .41 99887 78.20 79.20 1.00 TR .160 .16 99888 79.20 80.20 1.00 TR-8 .170 .17 99889 80.20 81.20 1.00 TR .200 .20 99890 81.20 82.20 1.00 TR-2 .160 .16 99891 82.20 83.20 1.00 TR .110 .11 99892 83.20 84.20 1.00 TR .190 .19 99893 84.20 85.20 1.00 .180 TR-2 .18 99894 85.20 86.20 1.00 TR .200 .20 99895 86.20 87.20 1.00 .180 TR-1 .18 99896 87.20 88.20 1.00 TR .220 .22 99897 88.20 89.20 1.00 TR-2 .180 .18 99898 89.20 90.20 1.00 TR .180 . 18 99899 90.20 91.20 1.00 TR .180 .18 99900 91.20 92.00 .80 TR . 152 .19 99901 92.00 93.00 1.00 1-10 .210 .21 99902 93.00 94.00 1.00 TR .210 .21 99903 94.00 94.85 .136 . 85 TR .16 99904 94.85 96.23 1.38 1-5 .400 .29 99905 96.23 97.35 1.12 TR-4 .213 .19 99906 97.35 98.25 .90 NIL .108 .12 99907 98.25 99.50 1.25 TR .200 .16 99908 99.50 100.30 .80 5-10 .192 .24 99909 100.30 101.20 .90 TR-1 .144 .16

Sample From

To Length % Sul

Au g/t

degrees to the core axis.

94.85 96.23 MINERALIZED ZONE. Same as 92.0 to 93.0. There are 1 to 5% sulphides. From 95.35 to 95.90 foliation is subparallel to core axis and there is a 10 cm dark black - blue quartz vein.

97.35 98.25 : quartz vein. Dark blue to black, barren, contacts are 35 degrees to the core axis.

99.50 100.30 : quartz vein, dark blue to black, barren, contacts are 45 to 50 degrees to the core axis. From 99.50 to 99.70, there is 5 to 10% pyrrhotite and trace pyrite as fine blebs disseminated within thinly bedded white to grey blue quartz veins and calcite quartz veins.

100.90 101.20 : quartz vein, dark blue to black. Contacts are 45 degrees to the core axis. 1% pyrrhotite as pods.

101.20 129.60 CHLORITE SCHIST

Moderately hard pale grey to grey-green, fine grained, not magnetic. Moderately chloritic and ankeritic, locally weakly calcitic. There are 2 to 4%, 2 to 5 mm ankerite quartz veins, pinched along the foliation at 50 to 75 degrees to the core axis. Foliation angle increases downhole.

There is trace pyrite as fine blebs disseminated. Lower contact is 60 degrees to the core axis.

101.20 107.00: weakly sericitic chlorite schist. There is trace pyrite and pyrrhotite as fine blebs disseminated. From 106.45 to 106.70 : 10% pyrrhotite as fine stringers within a quartz calcite vein.

126.50 129.60: granular textured chloritic schist. There are 5%, 1 to 2 am wide calcite veins, crosscutting foliation at 50 degrees to the core axis.

99910 101.20 102.20	1.00	TR	.180	. 18
99911 102.20 103.20	1.00	TR	.330	.33
99912 103.20 104.20	00.1	TR	.130	.13
99913 104.20 105.20	1.00	TR	. 130	.13
99914 105.20 106.20	1.00	TR	.120	.12
99915 106.20 107.20	1.00	TR-10	. 120	.12
99916 107.20 108.20	1.00	TR	.130	.13
99917 108.20 109.20	1.00	TR	. 140	.14
99918 127.60 128.60	1.00	TR	.110	.11
99919 128.40 129.40	1.00	TD	150	15

129.60 221.28 BASALT

129.60 135.20 DIORITE : moderately hard, pale grey to fine grained to medium green, grained, granular textured, diorite not

99920 129.60 130.60 1.00 TR .120 .12 99921 134.20 135.20 1.00 TR ,120 .12 99922 145.00 146.00 1.00 TR .090 .09 99923 148.50 149.50 1.00 .250 TR . 25 99924 156.20 157.20 1.00 TR .160 .16

To

	Description
	magnetic. Moderately chloritic, moderately to strongly calcitic. There are 1%, 0.5 to 1 cm wide, white grey quartz calcite veins at random angle. There is trace pyrite as fine blebs disseminated. Lower contact is 85 degrees to the core axis.
135.20 142.40	Very fine grained massive flow. Grey-green, not magnetic, moderately chloritic, weakly calcitic, there are 1 to 3%, 1 to 3 m wide carbonate veins at 70 to 75 degrees to the core axis. Trace finely disseminated pyrite.
142.40 154.15	Fine to medium grained massive flow. (SABBRO ?) pale grey-green not magnetic, moderately chloritic, weakly to moderately calcitic, weakly bleached. There are 12, 1 to 3 mm wide, calcite fracture fillings. Trace finely disseminated pyrite.
148.90 148.96	Fault gouge. Fault gouge intercalated gravel. Contacts are 85 and 60 degrees to the core axis.
154.15 182.00	Very fine grained massive flow. Hard to moderately hard, pale beige grey to pale grey, not magnetic, weakly chloritic, moderately bleached, weakly silicified, anderately to strongly calcitic. There are 1%, 1 to 5 mm wide, white grey quartz carbonate veins. Trace finely disseminated
157.20 158.30	pyrite. DIABASE. Moderately hard, dark grey black, medium grained, moderately magnetic. Strongly calcitic. Trace finely disseminated pyrite pyrrhotite. Contacts are marked by 20 cm aphanitic chilled margins at 45 to 50 degrees to the core axis.
182.00 186.90	Medium grained massive flow. (SABBRO?). Pale grey green, not magnetic, moderately chloritic, moderately calcitic as patchy alteration, weakly bleached. There are 1%, 2 to 5 am wide, white grey quartz - carbonate veins. Trace finely disseminated pyrite.
186.90 192.55	Very fine grained massive flow. Grey to pale green, not magnetic, moderately chloritic, weakly calcitic as patchy alteration. There is 1%, 1 to 5 mm wide calcite fracture filling and trace, mm, white grey quartz veins at random angles. Wil to trace fine pyrite disseminated.
192.55 199.20	Fine to medium grained massive flow. Pale

Sa e ple	From	To	Length	1 Z Sul	BW	Au g/t
99925	157.20	158.30	1.10	TR	. 165	.15
99926	158.30	159.30	1.00	TR	.190	. 19
99927	167.05	168.05	1.00	TR	.330	.33
99928	178.57	179.57	1.00	TR	.210	.21
99929	184.70	185.70	1.00	TR	.130	.13
99930	186.90	187.90	1.00	NIL-TR	.200	. 20
99931	187.90	188.90	1.00	NIL-TR	.100	.10
99932	200.00	201.00	1.00	TR	.160	.16
99933	209.00	210.00	1.00	TR	.110	.11
99934	215.00	216.00	1.00	TR	.120	.12

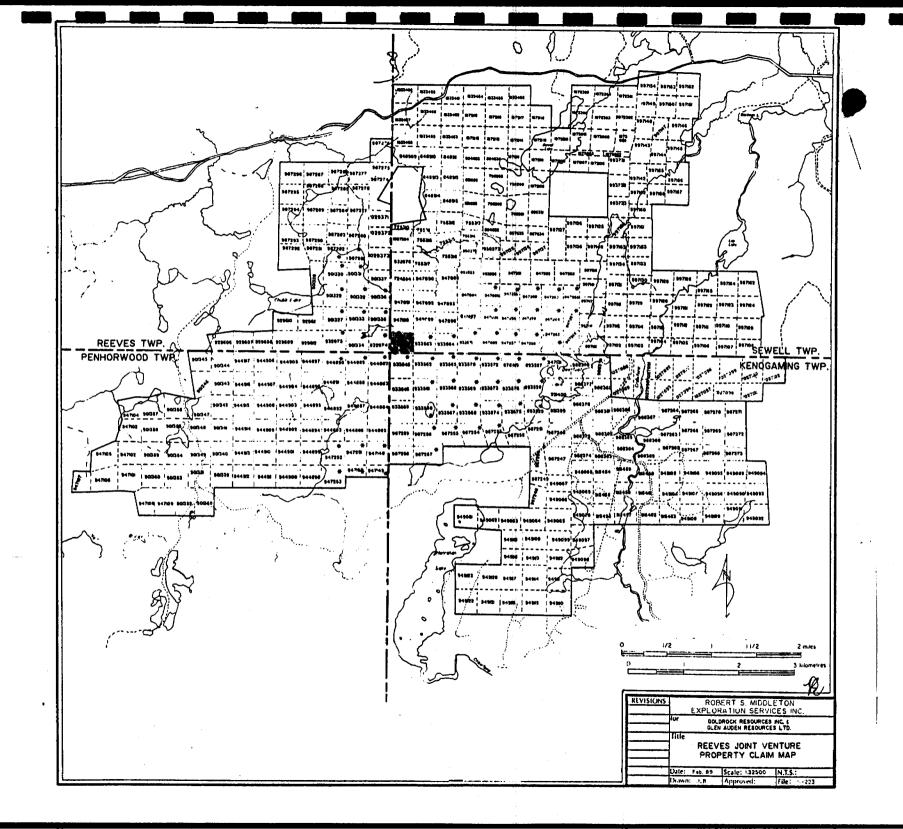
Au g/t

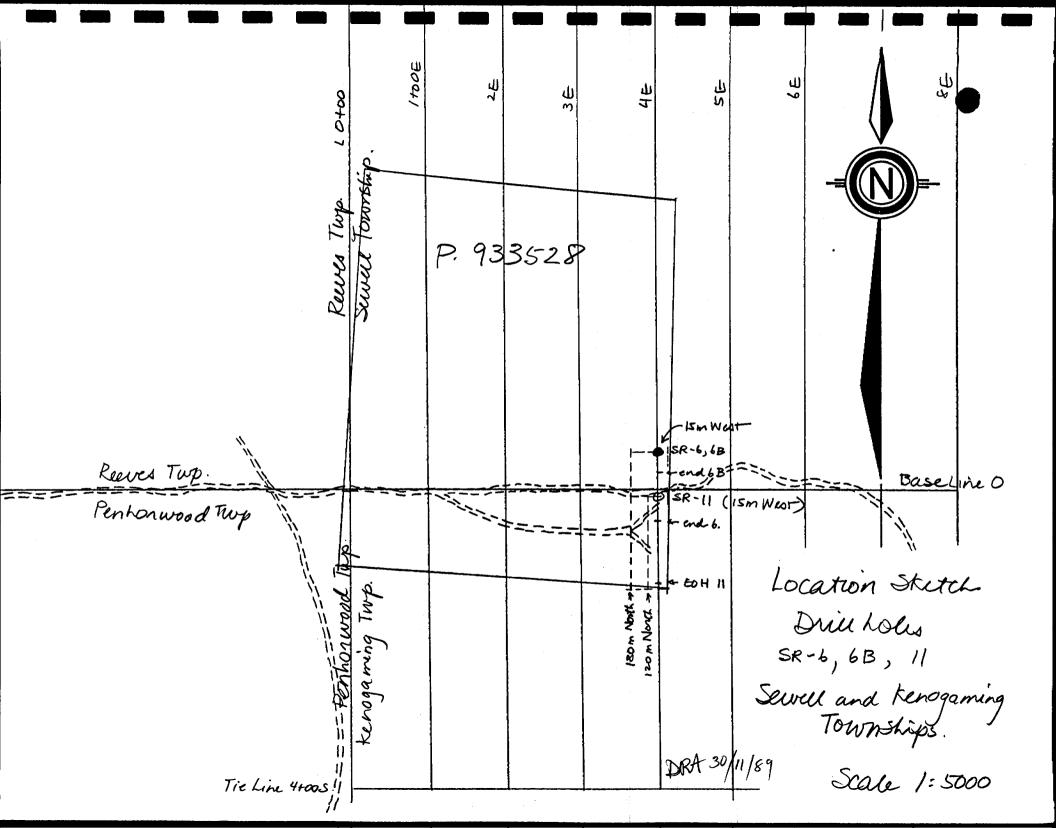
BW

grey-green,

To Length X Sul

magnetic, moderately chloritic, weakly to moderately calcitic, weakly bleached. There is 1%, 1 to 3 am


wide calcite fracture filling. Nil to trace finely disseminated pyrite.


not

199.20 221.28 Very fine grained massive flow. Pale green beige to green grey, not magnetic, moderately calcitic as patchy alteration, locally weakly bleached. There is 1%, 1 to 3 mm wide calcite fracture filling and rare, 3 to 7 am wide, white grey to blue grey, quartz veins at random angles. Trace pyrite as fine grains disseminated or coating fractures.

209.85 215.20: there is 2 to 3%, 2 to 4 mm wide, calcite fracture filling.

221.28 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

.0 .0 DIAMOND DRILL RECORD HOLE NO.: SR.89-6 Azimuth: 180.0 Section: 4+00E Property: SEWELL-REEVES Dipt -53.0 Core Size: BQ Location: 4+00E 0+50N Elevation: .0 Date Started: October 5, 1989 Length: 145.1 Date Completed: October 11, 1989 Logged by: M. Bergeron

Measurement: Metric

Casing in, hole abandoned Comments:

> Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -50.0 137.16 -47.0 -----Log Summary-----

.00 30.18 CASING.

30.18 94.60 FAULT ZONE mineralized.

94.60 105.52 BASALT.

94.6 - 102.6 MINERALIZED ZONE. 102.6 - 104.0 fractured zone. 104.0 - 105.52 fine grained massive flow.

105.52 145.08 Sheared BASALT.

136.1 - 137.8 mafic intrusive. 137.8 - 139.0 felsic intrusive. 139.0 - 139.95 quartz vein. 139.95 - 142.0 FOLIATED BASALT to VOLCANICLASTICS. 142.0 - 144.50 flow breccia.

145.08 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

99935 30.18 31.18 1.00 1-3 .130 .13

.00 30.18 CASING

Casing driven to 31.09 m.

30.18 94.60 FAULT ZONE

		99936	31.18	32.18	1.00	1-3	.070	.07
1	fineralized.	99937	32.18	33.00	.82	1-3	.090	.11
1	foderately soft, dark grey to pale grey, fine grained,	99938	34.60	35.60	1.00	1-3	.080	.08
ı	not magnetic, FOLIATED BASALT to CHLORITE SCHIST.	99939	35.60	36.60	1.00	1-3	.100	.10
1	Strongly sheared and faulted.	99940	37.84	38.84	1.00	2-4	.100	.10
1	foderately to strongly fractured core with intercalated	99941	38.84	39.84	1.00	1-2	.140	.14
	numerous clay-grit seams, ground core, and gouge. There	99942	39.84	40.84	1.00	1-2	.060	.06
	are 17.94 m of lost core,	99943	40.84	41.84	1.00	2-6	.080	.08
5	Strongly chloritic pervasively, weakly hematized along	99944	41.84	42.84	1.00	2-6	.070	.07
	ractures and within cavities, moderately ankeritic as	99945		43.B4	1.00	2-4	.070	.07
	ninor veins pinched along foliation. Locally yellow	99946	43.84	44.84	1.00	2-4	.180	.18
	prown iron oxide alteration. There is a weak graphitic	99947	44.84	45.84	1.00	2-4	.090	.09
	alteration along foliation.	99948	45.84	46.84	1.00	2-4	.040	.06
1	here is 1 to 5% pyrite as fine blebs or very fine	99949	46.84	47.84	1.00	2-4	1060	.06
	rains disseminated, also as fine stringers or pods	99950	47.84	48.84	1.00	2-4	.110	.11
	clongated along foliation, associated with minor quartz	99951	49.34	50.34	1.00	2-4	.150	.15
	and ankerite veins and finally as very fine subedral	99952	50.34	51.34	1.00	2-4	.120	.12
	rains associated with quartz and hematite filling	99953	52.94	53.94	1.00	2-4	.120	.12
	avities.	99954	55.44	56.44	1.00	2-4	.110	.11
1	here are 2 to 5% very fine, barren, ankerite veins	99955	56.44	57.44	1.00	2-4	.100	.10
P	inched or boudinaged along foliation. There are 1 to	99956	57.44	58.10	.66	2-4	.033	. 05
	X, 2 mm to 1 cm wide, pinched quartz - ankerite veins	99957	61.80	62.80	1.00	TR	.070	.07
	nineralized.	99958	65.10	65.80	.70	TR	.049	.07
F	oliation averages 60 degrees to the core axis.	99959	67.10	68.10	1.00	TR-3	.700	.70
	0.18 42.84 : pale grey, granular texture, weakly	99960	68.10	69.10	1.00	TR-3	.050	.05
	bleached, locally iron oxide alteration, in	99961	69.10	70.10	1.00	1-4	.050	.05
	decimeter patches.	99962	70.40	71.40	1.00	1-3	.120	.12
3	3.00 35.36 : moderately fractured core intercalated mud	99963	71.40		1.00	1-4	.120	.12

Hole No.: SR.89-6

						P	age No.:	3
Fi To	Description	- Sample	From	To	Length	X Sul	BW	Au g/t
	and gravel, 1.60 m lost core.	99944	72.80	73.80	1.00	1-2	.130	.13
	35.36 38.40: moderately fractured core intercalated	99965	73.80	74.80	1.00	1-2	.120	.12
	gravel, 1.24 m lost core.		74.80	75.80	1.00	1	.130	.13
	38.84 42.84: weakly to moderately fractured core	99967	77.30	78.30	1.00	1-2	.120	.12
	intercalated minor gravel.	99948	79.70	B0.70	1.00	1-3	.140	.14
	42.84 94.60 : dark grey to pale grey weakly graphitic,	99969	80.70	B1.70	1.00	1-4	.120	.12
	anderately fractured to strongly fractured	99970	81.70	B2.70	1.00	1-3	.220	.22
	core intercalated ground core and minor	99971	B2.70	83.70	1.00	2	.120	.12
	clay-grit seams.	99972	83.70	84.70	1.00	1-2	.120	.12
	47.50 50.60 : 50 cm lost core.	99973	84.70	85.70	1.00	TR-1	.050	.05
	50.60 53.60 : 1.6 m lost core.	99974	86.00	87.00	1.00	1-3	.070	.07
	53.60 56.70 : 1.5 m lost core.	99975	87.00	BB.00	1.00	2-4	.050	.05
	56.70 59.70 : 1.6 m lost core.	99976	88.00	89.00	1.00	2-6	.070	.07
	59.70 62.80 : clay-grit seam, 2.1 m lost core.	99977	89.00	90.00	1.00	2-6	.070	, 07
	62.80 65.80 : ground core intercalated aud, 2.3 m lost	99978	90.00	91.00	1.00	2-6	.050	.05
	core.	99979	91.00	92.00	1.00	2-6	.040	.04
	65.80 68.90 : highly fractured core intercalated ainor	99980	92.00	93.00	1.00	2-6	.050	. 05
	ground core, 1.30 m lost core.		93.00	94.30	1.30	2-6	.078	.06
	68.90 71.90 : moderately fractured core, 0.30 a lost core							
	71.90 75.00 : moderately fractured core intercalated							
	ground core, 0.40 a lost core.							
	75.00 78.00 : 1.5 m lost core.							
	78.00 81.10 : 1.4 a lost core.							
	93.30 94.60 : 30 cm lost core.							
94.60 105.52	PRASALT							
. / 1144 144106		99982	94.60	95.60	1.00	2-4	.040	.04

94.

94.60 102.60 MINERALIZED ZONE. Fine grained, pale grey to grey brown, moderately hard, not magnetic, weakly foliated mafic volcanic. Moderately chloritic and calcitic, weakly sericitic. There is 1 to 10% pyrite as blebs or stringers elongated at 45 to 65 degrees to
the core axis.
Foliation is weakly developed at 50 to 60 degrees to the core axis.
102.60 104.00 Fractured zone. Fine grained, pale grey to grey brown, moderately hard, not magnetic, weakly foliated mafic volcanic. Moderately chloritic and calcitic, weakly sericitic. Trace to 2% pyrite. Strongly
fractured core.
104.00 105.52 Fine grained massive flow. Fine grained, pale grey to grey brown, moderately hard, not magnetic, weakly foliated mafic volcanic. Moderately chloritic and

calcitic, weakly to moderately sericitic.

99982	94.60	95.60	1.00	2-4	.040	. 04
99983	95.60	96.60	1.00	2-8	.030	.03
99984	96.60	97.60	1.00	2-5	.100	.10
99985	97.60	98.60	1.00	3-10	.110	.11
99986	98.60	99.60	1.00	3-10	.070	.07
99987	99.60	100.60	1.00	1-4	.070	. 07
99988	100.60	101.60	1.00	1-3	.080	.08
99989	101.60	102.60	1.00	1-3	.060	.06
99990	102.60	104.00	1.40	TR-2	.126	. 09
99991	104.00	105.52	1.52	TR-2	.182	.12

------ Sample From To Length X Sul

6W Au g/t

Trace to 2% pyrite.

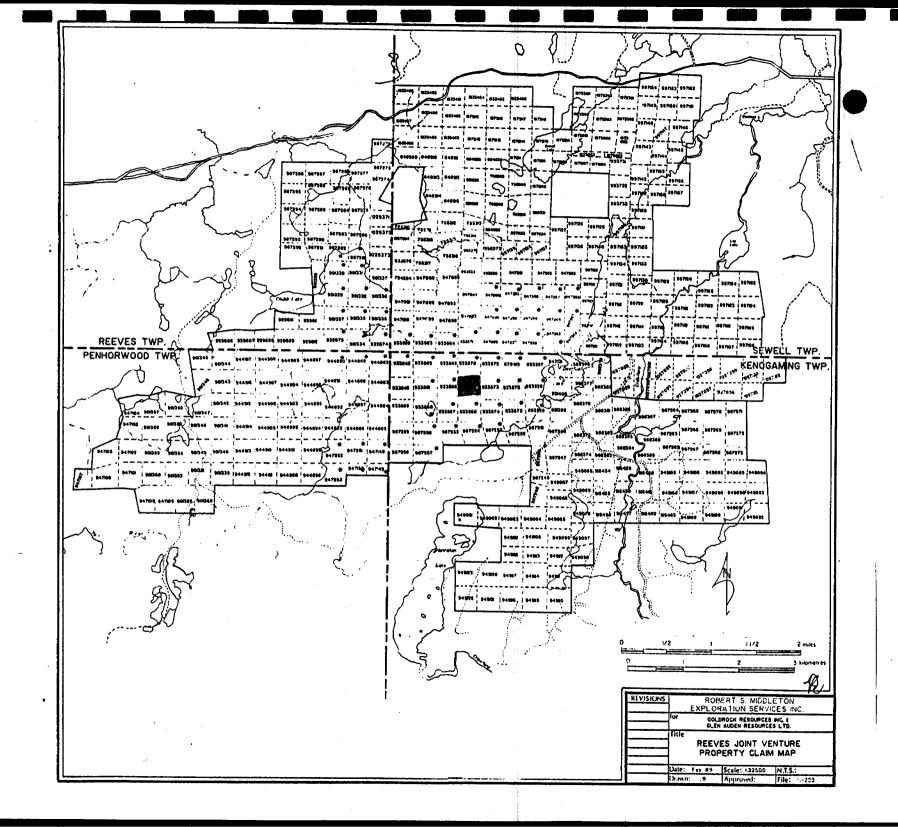
105.52 145.08 SHEARED BASALT

Pale grey to grey brown, moderately hard, fine grained, not magnetic, sheared and folded mafic volcanic.
Moderately chloritic and calcitic, moderately sericitic
as on to co bands subparallel to foliation.
There are 1 to 5%, 2 mm to 1.5 cm wide white calcite
veins, pinched or brecciated along foliation, these
veins are mineralized.
There is 1 to 4% pyrite, locally up to 5%, as fine blebs
or stringers or nodules within calcite quartz veins.
Foliation averages 60 degrees to the core axis but is
frequently contorted. Common crenulations are
crosscutting foliation at 40 to 50 degrees to the core
axis.
128.52 136.10 : weakly magnetic, trace very fine
magnetite grains disseminated.
136.10 137.80 Mafic intrusive. Moderately hard, dark
grey, fine grained, not magnetic, mafic
intrusive. Moderately chloritic, poorly
veined, trace pyrite as fine euhedral
grains disseminated. Contacts are 80 to 85
degrees to the core axis.
137.80 139.00 Felsic intrusive. Pale beige, very fine
grained to aphanitic not magnetic, felsic
intrusive.
Moderately to strongly sericitic, poorly
veined. Trace very fine pyrite disseminated. 1 to 4%, 2 to 4 mm quartz
eyes. Lower contact is veined at 65
degrees to the core axis.
139.00 139.95 Quartz vein. Hard, grey blue not magnetic,
quartz vein, 12 very fine pyrite
disseminated, intercalated 10 to 15%
subangular sericitic fragments.
139.95 142.00 FOLIATED BASALT to VOLCANICLASTICS.
Moderately hard, fine grained, weakly magnetic, foliated to thinly bedded.
Weakly chloritic and ankeritic, moderately
sericitic. There are 1 to 3% ankerite
quartz veins and 1% white cm quartz veins.
There is 1 to 22 very fine pyrite
disseminated and trace magnetite.

Foliation is 60 degrees to the core axis.

141.65 142.00 : dark blue grey quartz vein, 1% pyrite. 142.00 144.50 Flow breccia. Moderately hard, pale grey

```
99992 105.52 106.52 1.00
                              1-4
                                    .060
                                            .06
99993 106.52 107.52 1.00
                              1-4
                                    .140
                                            .14
99994 107.52 108.52 1.00
                                    .180
                              1-4
                                            .18
99995 108.52 109.52 1.00
                              1-4
                                    .040
                                            . 04
99996 109.52 110.52 1.00
                              1-4
                                    .080
                                            .08
99997 110.52 111.52 1.00
                              1-4
                                    .100
                                            .10
99998 111.52 112.52 1.00
                              1-4
                                    .120
                                            .12
99999 112.52 113.52 1.00
                              1-4
                                    .120
                                            .12
100000 113.52 114.52 1.00
                              1-4
                                    .130
                                            .13
97501 114.52 115.52 1.00
                              1-4
                                    .050
                                            . 05
97502 115.52 116.52 1.00
                                    .050
                                            .05
97503 116.52 117.52 1.00
                              1-4
                                    .070
                                            .07
97504 117.52 118.52 1.00
                              1-4
                                    .100
                                            .10
97505 118.52 119.52 1.00
                              1-4
                                    .060
                                            .06
97506 119.52 120.52 1.00
                                    .090
                                            .09
97507 120.52 121.52 1.00
                              1-4
                                    .050
                                            .05
97508 121.52 122.52 1.00
                              1-4
                                    .060
                                            .06
97509 122.52 123.52 1.00
                              1-4
                                    .070
                                            .07
97510 123.52 124.52 1.00
                                    .090
                                            .09
97511 124.52 125.52 1.00
                              2-5
                                    .060
                                            .06
97512 125.52 126.52 1.00
                                    .100
                              2-5
                                            .10
97513 126.52 127.52 1.00
                              2-5
                                    .180
                                            .18
97514 127.52 128.52 1.00
                              2-5
                                    .130
                                            .13
97515 128.53 129.52
                     .99
                              2-5
                                    .079
                                            .OB
97516 129.52 130.52 1.00
                                            .04
                              1-3
                                    .040
97517 130.52 131.52 1.00
                              1-3
                                    .030
                                            .03
97518 131.52 132.52 1.00
                              1-3
                                    .040
                                            .06
97519 132.52 133.52 1.00
                              1-3
                                    .080
                                            .08
97520 133.52 134.52 1.00
                              1-4
                                    .070
                                            .07
97521 134.52 135.52 1.00
                              1-3
                                    .040
                                            .04
97522 135.52 136.10
                     . 58
                              1-3
                                    .128
                                            .22
97523 136.10 137.10 1.00
                              TR
                                    .310
                                            .31
97524 137.10 137.80
                     .70
                                            .27
                              TR
                                    .189
97525 137.80 139.00 1.20
                                    .108
                                            .09
97526 139.00 139.95
                     . 95
                                    .123
                              - 1
                                            .13
97527 139.95 141.00 1.05
                              1-2
                                    .105
                                            .10
97528 141.00 142.00 1.00
                                            .08
                             1-2
                                    .080
97529 142.00 143.00 1.00
                             TR-1
                                    .070
                                            .07
97530 143.00 144.50 1.50
                            TR-1
                                    . 150
                                            .10
97531 144.50 145.08
                             1-3
                                    .023
                                            .04
```


------ Sample From To Length % Sul

Au g/t

to grey, weakly magnetic. Weakly silicified and sericitized. Poorly veined. very fine pyrite, pyrrhotite disseminated with local pyrrhotite blebs.

144.50 145.08: sheared BASALT, weakly magnetic, trace to 1% pyrite, pyrrhotite, disseminated with local pyrrhotite blebs.

145.08 END OF HOLE.

IOTOE	11 to E 12 to E 13 to E	14 Face 15 Pace 15 Pac
	Base Lin 4400s.	Location States Drickole SR-7 Kenogaming Township. Scale 1:5000

AMERICAN BARRICK RESOURCES CORPORATION

Co-ort .0 .0 DIAMOND DRILL RECORD HOLE NO.: SR.89-7 180.0 Section: L16+00E Azimuth: **Property:** SEWELL-REEVES Dip: -50.0 Core Size: BQ L16+00E 6+50S Locations **Elevation:** .0 Date Started: October 18, 1989 Lenath: 154.2 Date Completed: October 19, 1989

Measurement: Metric

Comments: Casing pulled

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -50.0 91.44 -49.0 154.23 -47.0

.00 6.25 CASING.

6.25 84.80 BASALT weakly foliated.

84.80 101.96 BASALT weakly foliated, locally brecciated.

86.98 - 87.82 brecciated. 88.45 - 89.20 brecciated. 93.45 - 93.72 brecciated.

98.20 - 98.60 brecciated.

101.96 109.75 BASALT sericitized.

109.75 125.00 BASALT.

119.35 - 119.80 mafic tuff.

123.00 132.90 FOLIATED BASALT.

132.90 138.90 BASALT.

138.90 154.23 BASALT moderately foliated.

154.23 END OF HOLE.

AMERICAN BARRICK RESOURCES CORPORATION

M. Bergeran

Logged by:

Hole No.: SR.89-7 Page No.: 2

From To ------Description------ Sample From To Length Z Sul SW Au g/t

.00 6.25 CASING

Casing driven to 6.71 m.

6.25 B4.80 BASALT

97185 38.50 39.50 1.00 TR Weakly foliated. 97186 55.50 56.50 1.00 TR Green to green grey, fine grained, not magnetic, weakly 97187 58.50 59.50 1.00 TR foliated mafic volcanic, moderately moft. 97188 66.10 67.10 1.00 TR Strongly chloritic, moderately to strongly calcitic 971B9 B2.B0 B3.B0 1.00 pervasively. 97190 83.80 84.80 1.00 TR There are 2 to 4%, 1 am to 6 mm wide, calcite veins as fracture filling or subparallel to the weakly developed foliation. There are rare odds as to ca white quartz veins at random angle. There is trace pyrite as fine grain; or blebs disseminated There is a weak foliation at 60 to 70 degrees to the

97184 16.00 17.00 1.00

97191 84.80 85.45

. 65

1-2

.045

.07

TR

.090

.230

.130

.160

.040

.060

.090

.09

.23

.13

.16

.04

.06

.09

core axis.

55.73 55.74: mm gouge plane crosscutting foliation at 65 degrees to the core axis.

66.35 67.10 : fracture plane subparallel to core axis.
67.10 74.98 : trace hematite alteration filling fractures
80.80 84.80 : grey green to pale grey green, pervasively
weakly bleached section. Weakly brecciated
from 84.40 to 84.80. Lower contact is 75
degrees to the core axis.

84.80 101.96 BASALT

97192 85.45 86.45 1.00 TR .080 .08
Weakly foliated, locally brecciated.
97193 86.45 87.45 1.00 TR .080 .08
Moderately hard, dark grey to grey, very fine grained, 97194 87.45 88.45 1.00 TR-1 .080 .08

Hole No.: SR.B9-7

			-				age No.:	3
From To	Description	Sample	From	To	Length	I Sul	6N	Au g/t
•	very weakly foliated to locally brecciated mafic	97195	88.45	89.45	1.00	TR-2	.070	.07
	volcanic, locally weakly magnetic.	97196	89.45	90.45	1.00	TR-2	.230	.23
	Moderately chloritic and carbonatized, mostly as	97197	90.45	91.45	1.00	TR-1	.090	.09
	ankeritic alteration, weakly sericitic pyritic.	97198	91.45	92.45	1.00	TR-1	.090	.09
	This unit is poorly veined overall. There are 3 to 5%	97199	92.45	93.45	1.00	TR	.090	.09
	subangular, 3 mm to 1 cm wide, ankerite vein fragments	97200	93.45	94.45	1.00	TR-1	.200	.20
	within the brecciated sections.	97201	94.45	95.45	1.00	TR	.490	.49
	There is traces to locally 2% pyrite as fine blebs		98.00			TR	. 280	.28
	disseminated and rare traces of pyrrhotite. Foliation		100.00			TR	.080	.08
	averages 50 to 55 degrees to the core axis.		101.00			TR	.067	.07
	B4.B0 85.45 : quartz vein, dark blue grey, 1 to 2%	*****	******			•••		•••
	pyrite, not magnetic, contacts are 75 and 70							
	degrees to the core axis.							
	86.98 87.82 Brecciated.							
	B8.54 89.20 Brecciated.							
	93.45 93.72 Brecciated.							
	98.20 98.60 Brecciated foliation is subparallel to core							
	axis.							
	100.56 100.90 : blue grey quartz vein brecciated. Barren of mineralization.							
101.96 109.75	BASALT							
		97205	101.96	102.96	1.00	TR	.140	.14
		97206	104.00	105.00	1.00	TR	.070	.07
	Sericitized.		108.75			TR	.060	.06
	Moderately hard, pale beige grey, very fine grained,						***	
	weakly to moderately foliated sericitized mafic volcanic							
	not sagnetic.							
	Weakly to moderately chloritic, moderately ankeritic,							
	anderately to strongly sericitic.							
	There are 1 to 3%, 3 to 5 am wide ankerite quartz veins							
	pinched along foliation averaging 50 to 60 degrees to							
	the core axis. There are trace to 1% white grey, as to							
	cm quartz veing subparallel to foliation.							
	There are rare traces of disseminated pyrite.							
	THE E ALE IN E FINES AT ATMREMINATED NATIONS							

109.75 123.00 BASALT

Moderately soft, green grey spotted by numerous white grey specks, not magnetic, massive to weakly foliated flow to medium grained mafic volcanic.

104.34 104.84: pale grey to dark grey, moderately

104.79 104.80: fracture plane filled with gouge at 80 degrees to the core axis.

chloritic section.

97208 109.75 110.75 1.00 MIL-TR .060 .06 97209 122.00 123.00 1.00 MIL .050 .05

Hole No.: SR.89-7 Page No. :

To Length X Sul

Au q/t

Strongly chloritic, moderately carbonatized. There are trace to 1% very fine phlogopite flakes disseminated. There are 1%, 1 to 5 am wide calcite veinsand or ankerite veins filling fractures and subparallel to the weakly developed foliation at 50 to 60 degrees to the There are a few odd on to ca white quartz core axis. calcite veins at random anoles.

This unit contains 10 to 152 fine carbonate specks, possibly representing finely altered feldspar.

There is nil to trace pyrite as very fine grains disseminated.

118.35 119.80 Mafic tuff. Moderately hard, green to grey-green, very fine grained, locally weakly magnetic, thinly bedded at 60 degrees to the core axis strongly chloritic moderately to strongly calcitic. There are 1 to 3% quartz calcite veins along bedding, 2 to 5 am wide. There are nil to trace very fine augnetite grains disseminated. Contacts are 60 degrees to the core axis.

121.70 123.00 : pale green grey, weakly bleached.

123.00 132.90 FOLIATED BASALT

Moderately hard alternating grey, beige grey and grey green, fine grained, not magnetic, foliated mafic volcanic.

Moderately chloritic and carbonatized pervasively. Moderately sericitized as 2 mm to 2 cm wide bands subparallel to foliation. Both contacts are poorly sericitized and veined for the first 1 to 2 metres.

There are 10 to 15% ankerite quartz veins, 3 to 5 as forming truncated lamellae subparallel to foliation strongly developed at 60 degrees to the core axis.

There is nil to trace pyrite as fine blebs disseminated. 123.00 124.80 : upper contact zone is weakly sericitized and poorly veined.

131.60 132.90 : lower contact zone is weakly sericitized and contains 1 to 4% ankerite quartz veins.

97210 123.00	124.00	1.00 NIL-TR	.140	.14
97211 124.00	125.00	1.00 NIL-TR	.040	.04
97212 125.00	124.00	1.00 NIL-TR	.060	.06
97213 126.00	127.00	1.00 NIL-TR	.040	.04
97214 127.00	128.00	1.00 NIL-TR	.050	.05
97215 128.00	129.00	1.00 NIL-TR	.090	.09
97216 129.00	130.00	1.00 NIL-TR	.070	.07
97217 130.00	131.00	1.00 MIL-TR	.050	. 05
97218 131.00	132.00	1.00 NIL-TR	.090	.09
97219 132.00	132.90	.90 NIL-TR	.072	. 08

132.90 138.90 BASALT

Hole No.: SR.89-7 Page No.: 5

From To

-----Description-----

Sample From

To Length I Sul

6M

Au q/t

Moderately hard, fine grained, dark green, spotted by numerous white grey specks, not magnetic, massive to weakly foliated.

Strongly chloritic, moderately carbonatized.

There are trace 1%, 1 to 2 am wide quartz calcite veins filling fractures or subparallel to the locally weakly developed foliation at 65 degrees to the core axis. There are 1 to 15%, fine carbonate specks possibly

representing finely altered feldspar.

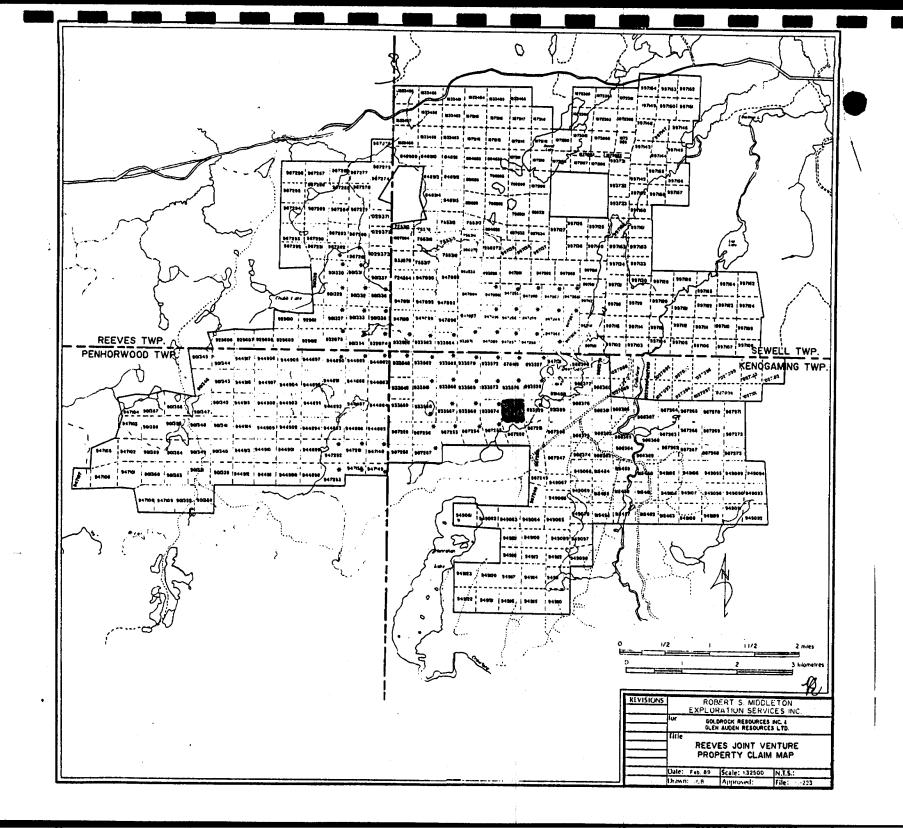
There is nil to trace events as very fine subsdeal

There is nil to trace pyrite as very fine euhedral grains disseminated.

Both contacts are gradational and are weakly foliated for approximately one metre.

138.90 154.23 BASALT

97220 145.80 146.80 1.00 TR .120 .12


Moderately foliated. Moderately hard, fine grained, pale grey green to pale grey beige, not magnetic moderately foliated mafic volcanic.

Strongly chloritic pervasively, moderately carbonatized, locally weakly bleached and sericitized.

There are 3 to 5%, 2 am to 5 am wide, ankerite calcite quartz veins pinched along foliation at 70 degrees to the core axis. There are a few odd am to cm quartz calcite veins as filling fractures.

There is nil to trace pyrite as fine blebs disseminated. 138.90 150.35 : there are 1 to 10%, fine carbonate specks

154.23 END OF HOLE.

19700E	ZOTOOE	2/700E	22700E	2370E	24400E	Strue Zhue Zhue Zhue Zhue Zhue Zhue
	12t00.	s. Tie Li		P. 93	3575	SR-8.
						Location Sketch. Drill hole SR-8 Kenogaming Township. DRA 30/11/89 Scale 1:5000.

AMERICAN BARRICK RESOURCES CORPORATION

£0- 0 3	.0 .0	DIAMOND DRILL RECORD	HOLE NO.: SR.89-8
Azimuth:	180.0	Section: L25+00E	Property: SEWELL-REEVES
Dip:	-50.0	Core Size: 80	Location: 125+00E 10+25S
Elevation:	.0	•	
Length:	154.2		Date Started: October 20, 1989 Date Completed: October 22, 1989 Logged by: M. Bergeron
Measurement:	Metric		cogged by: III. beigei bii

Comments: Casing pulled

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -50.0 91.44 -51.0 154.23 -51.0

.00 9.85 CASING.

9.85 40.35 BASALT.

20.40 - 20.92 ALBITITE.

35.35 - 36.52 ALBITITE.

38.50 - 40.35 ALBITITE.

40.35 68.50 ULTRAMAFIC.

40.50 - 40.90 fault zone.

43.35 - 47.20 ALBITITE.

46.80 - 47.20 brecciated.

47.20 - 55.0 FAULT ZONE.

51.80 - 53.90 ALBITITE.

61.63 - 61.85 fault zone.

68.60 79.50 DXIDE IRON FORMATION.

79.50 101.40 BASALT.

101.40 130.40 ULTRAMAFIC.

102.3 - 103.73 quartz vein.

105.0 - 105.04 fault plane.

107.01 - 117.73 felsic intrusive.

130.40 145.54 Felsic intrusive.

131.02 - 131.52 brecciated.

144.65 - 145.54 brecciated.

145.54 154.23 Altered BASALT.

145.54 - 152.25 BASALT brecciated.

152.25 - 154.23 BASALT weakly foliated.

AMERICAN BARRICK
RESOURCES CORPORATION

GW

------ Sample From

Sample From To Leng

Length % Sul

Au g/t

154.23 END OF HOLE.

.00 9.85 CASING

Casing driven to 10.36 m.

9.85 40.35 BASALT

Moderately hard, fine grained, dark grey to greenish-grey, not magnetic mafic volcanic. Strongly chloritic, weakly to moderately carbonatized, very weakly hematized as fracture fillings. There are 1 to 5%, 1 to 5 am wide, pale white greenish grey, ankerite quartz veins weakly epidotized and locally weakly hematized. There i s trace pyrite as fine euhedral grains disseminated. 20.40 20.92 ALBITITE. Hard, light grey pink, nonmagnetic aphanitic ALBITITE. There are 10 to 25% mm albite phenocrysts. There is nil to trace pyrite as fine grains disseminated. Contacts

that host cm mafic angular clasts.

29.60 30.85: fine grained to medium grained mafic volcanic. There are 5%, 1 to 3 mm chloritic clasts.

are sharp at 40 to 55 degrees to the core axis. From 20.50 to 20.78 ALBITITE is cut by a brecciated white pink quartz calcite vein

30.85 35.35: weak and patchy sericitic and hematitic alteration through the mafic volcanic.

35.35 36.52 ALBITITE. Hard light grey brown, aphanitic ALBITITE, nonmagnetic. There are 5 to 10%, 1 to 2 mm wide albite phenocrysts. There is trace pyrite as fine euhedral grains disseminated. Contacts are sharp at 45 to 50 degrees to the core axis. Both contacts are marked by a 5 cm wide foliated and talcose

97221	19.40	20.40	1.00	TR	.170	. 17
97222	20.40	20.92	.52	NIL-TR	. 187	. 36
97223	20.92	21.92	1.00	TR	.040	.04
97224	26.00	27.00	1.00	TR-1	.090	.09
97225	30.85	31.85	1.00	TR	.100	.10
97226	31.85	32.85	1.00	TR	.080	.08
97227	32.85	33.85	1.00	TR	.070	.07
97228	33.85	34.85	1.00	TR	.010	.01
97229	34.85	35.35	.50	TR	.020	.04
97230	35.35	36.52	1.17	TR	.035	.03
97231	36.52	37.85	1.33	TR	.106	.08
97232	37.85	38.50	. 45	TR	.065	.10
97233	38.50	39.50	1.00	TR	.070	.07
97234	39.50	40.35	. 85	TR	.068	. 08

Au g/t

Fra

------- Sample From

ample From To Length % Sul

margin. From 36.0 to 36.25, ALBITITE is cut by a white pink, brecciated, quartz calcite vein.

37.85 38.50: moderately silicified, weakly hematitic mafic volcanic at the contact with an ALBITITE dyke.

38.50 40.35 ALBITITE. Light grey brown to grey pink, same as 35.35 to 36.52. Upper contact is irregular at 70 degrees to the core axis, lower contact is sharp and veined at 60 degrees to the core axis.

40.35 68.50 ULTRAMAFIC

Soft, dark grey black to dark grey, fine grained, weakly magnetic, talc - chlorite - carbonate schist.

Strongly chloritic, moderately talcose and calcitic.

There are 2 to 5%, 2 to 5 mm wide, white grey colour, calcite quartz veins, forming truncated lamellae pinched along foliation.

This unit is strongly foliated. Foliation averages 45 degrees to the core axis but is very often contorted. There is nil to trace very fine pyrite disseminated. Lower contact is sharp at 45 degrees to the core axis.

40.50 40.90 Fault zone. Strongly faulted section into minor 2 mm to 1 cm wide gouge and gravels along foliation at 50 to 70 degrees to the core axis.

43.35 47.20 ALBITITE. Hard, light grey pink to pink, aphanitic to fine grained, not magnetic. There are 1 to 52, 1 to 3 mm wide, albite phenocrysts. There is trace pyrite disseminated or coating fractures. There are 12 white quartz calcite veins at random angles. Contacts are sharp at 50 and 30 degrees to the core axis.

46.80 47.30 Brecciated.

47.20 55.00 FAULT ZONE.

47.20 51.80 : moderately to strongly fractured talcchlorite - carbonate schist intercalated
with numerous millimetric to centimetric
gouge and gravel sections. Few odd,
angular, 0.5 to 1.5 cm wide, ALBITITE
fragments are noted. Foliation varies from
80 to 5 degrees to the core axis.
ULTRANAFIC is intercalated by the few odd 2
cm to 10 cm wide ALBITITE dyke.

51.80 53.90 ALBITITE. Same as 43.35 to 47.20, contacts

97235 40.35 41.35 1.00 NIL-TR .040 .04 97236 41.35 42.35 1.00 NIL-TR .060 .06 97237 42.35 43.35 1.00 NIL-TR .090 .09 97238 43.35 44.30 .95 .152 .16 - 97239 44.30 45.30 1.00 TR .100 .10 97240 45.30 46.30 1.00 TR .100 .10 .072 97241 46.30 47.20 .90 TR .08 .150 97242 47.20 48.20 1.00 NIL-TR .15 97243 48.20 49.20 1.00 NIL-TR .090 .09 97244 49.20 50.20 1.00 NIL-TR .10 .100 97245 50.20 51.20 .080 1.00 NIL-TR .DB 97246 51.20 51.80 .60 NIL-TR .036 .06 97247 51.80 52.80 TR 1.00 .070 .07 97248 52.80 53.90 1.10 TR .264 .24 97249 53.90 55.00 1.10 NIL-TR .154 .14 97250 : 55.00 56.00 1.00 NIL-TR .120 .12 97251 61.00 62.00 1.00 NIL-TR .120 .12 97252 67.50 68.50 1.00 NIL-TR .240 . 24 Fr

------ Sample From

mple From To Lengt

Length % Sul

Au g/t

are 65 and 40 degrees to the core axis. Weakly fractured.

53.90 55.00 : 1 to 3 mm subangular quartz and ULTRAMAFIC fragments cemented by gravel and gouge.

55.00 56.80 : foliation is subparallel to core axis.

57.60 58.72 : sheared section intercalated minor gouge.

61.63 61.85 Fault zone. Brecciated ULTRAMAFIC intercalated minor gouge and gravel.

68.50 79.50 DXIDE IRON FORMATION

Hard, strongly magnetic, thinly bedded magnetite - chert and magnetite - cht - chlorite - pyrite.

68.50 69.50: dark green, aphanitic, silicate layers, massive, not magnetic. There is 1% very fine pyrite disseminated.

69.50 72.20 : dark brown red to light grey, siderite magnetite beds intercalated chert. There are 5 to 10% mm magnetite beds, trace to 2% pyrite as recrystallized euhedral grains, disseminated or along foliation. Foliation subparallel the bedding at 45 degrees to the core axis. Numerous micro-folds are noted.

72.20 77.20: light grey to grey green chert intercalated chlorite - magnetite beds.

There are 2 to 5% am magnetite beds and trace to locally 5% pyrite as very fine euhedral grains forming bands along foliation. Foliation subparallels the bedding at 45 degrees to the core axis. Few odd cm chert fragments noted within chloritic beds.

77.20 78.00: dark green to light green, aphanitic, silicate layer, massive, not magnetic. Trace very fine pyrite disseminated.

78.00 79.50 : dark grey black, magnetite - pyrite - graphite. There is 20 to 25% magnetite, 10 to 15% pyrite.

97253	68.50	69.50	1.00	1	.030	. 03
97254	69.50	70.50	1.00	5-10	. 150	.15
97255	70.50	71.50	1.00	5-10	.170	.17
97256	71.50	72.20	.70	5-10	.091	. 13
97257	72.20	73.20	1.00	2-5	.180	.18
97258	73.20	74.20	1.00	2-5	.080	.08
97259	74.20	75.20	1.00	2-5	.050	.05
97260	75.20	76.20	1.00	2-5	.070	.07
97261	76.20	77.20	1.00	2-5	. 150	. 15
97262	77.20	78.00	.80	TR	.080	.10
97263	78.00	78.75	.75	10-25	. 157	.21
97264	78.75	79.50	.75	10-25	. 040	. 08

79.50 101.40 BASALT

Hard, fine grained to medium grained, green grey, not magnetic, weakly foliated mafic volcanic. There are 1 to 5%, 1 to 3 mm wide subrounded to subangular calcite specks disseminated.

97265	79.50	80.50	1.00	TR-1	.090	.09
97266	80.50	81.50	1.00	TR-1	.070	. 07
97267	B1.50	82.50	1.00	TR-1	.190	.19
97268	82.50	83.50	1.00	TR-1	.170	.17
97269	83.50	84.50	1.00	TR-1	.240	. 24
97270	90.00	91.00	1.00	Ŧ₽	. 120	. 12

Fr

To

Moderately chloritic, moderately to strongly calcitic, very weakly silicified.

-----Description-----

There are trace carbonate - quartz filled fractures and very fine euhedral pyrite disseminated.

Foliation is weakly developed at 55 degrees to the core axis.

Lower contact is sharp and brecciated at 60 degrees to the core axis.

79.50 84.20 : light grey to grey, weakly to moderately silicified, very weakly sericitized. There are no calcite specks. There is trace to 12 very fine pyrite disseminated.

88.00 88.20 : trace magnetite as fine grains disseminated 100.40 101.40 : strongly silicified, weakly hematized and sericitized. Moderately foliated at 50 degrees to the core axis. Few micro-folds noted.

Sample From To Length Z Sul 6M Au g/t 97271 99.40 100.40 1.00 TR .060 .06 97272 100.40 101.40 1.00 TR .080 .08

101.40 130.40 ULTRAMAFIC

Soft, dark grey black to grey blue, fine grained, weakly magnetic, talc - chlorite - carbonate schist.

Strongly chloritic, moderately talcose and ankeritic.

There are 5 to 10%, 2 to 5 mm wide, white grey coloured, ankerite quartz veins forming truncated lamellae along the contorted foliation averaging 60 degrees to the core axis.

There are nil to rare traces of very fine pyrite points disseminated.

Lower contact is 60 degrees to the core axis.

101.40 102.30: dark green grey chlorite schist, very weakly talcose. There are 12, 1 to 10 cm dull milky white barren quartz veins subparallel to foliation.

102.30 103.73 Quartz vein. Milky white dull, barren quartz vein, contacts are 85 degrees to the core axis.

105.00 105.04 Fault plane. 2 to 4 mm subangular fragments of ULTRAMAFIC are intercalated with gouge. Contacts are 40 degrees to the core axis.

105.90 107.01: ULTRAMAFIC is intercalated with 30%, 1 cm to 20 cm wide, milky white dull barren quartz veins crosscutting foliation at 85 to 5 degrees to the core axis.

107.01 117.73 Felsic intrusive. Hard, aphanitic, medium grey to grey pink at contacts, not magnetic, felsic intrusive. There are

97274 102.30 103.73 1.43 MIL-TR .114 97275 103.73 104.73 1.00 MIL-TR .060 97276 104.73 105.48 .75 MIL-TR .038 97277 105.48 106.48 1.00 MIL-TR .040 97278 106.48 107.01 .53 MIL-TR .021 97279 107.01 108.01 1.00 TR .050 97280 108.01 109.01 1.00 TR .080 97281 109.01 110.01 1.00 TR .060 97282 110.01 111.01 1.00 TR .070 97283 111.01 112.01 1.00 TR .070 97284 112.01 113.01 1.00 TR .040 97285 113.01 114.01 1.00 TR .040 97286 114.01 115.01 1.00 TR .040 97287 115.01 116.01 1.00 TR .060 97288 116.01 117.01 1.00 TR .060 97289 117.01 117.73 .72 TR .086 97290 117.73 118.73 1.00 MIL-TR .110 97291 118.73 119.73 1.00 MIL-TR .140 97292 127.40 128.40 1.00 MIL-TR .140							
97275 103.73 104.73 1.00 NIL-TR .060 97276 104.73 105.48	97273	101.40	102.30	.90	NIL-TR	.135	.15
97275 103.73 104.73 1.00 NIL-TR .060 . 97276 104.73 105.48 .75 NIL-TR .038 . 97277 105.48 106.48 1.00 NIL-TR .040 . 97278 106.48 107.01 .53 NIL-TR .021 . 97279 107.01 108.01 1.00 TR .050 . 97280 108.01 109.01 1.00 TR .080 . 97281 109.01 110.01 1.00 TR .060 . 97282 110.01 111.01 1.00 TR .070 . 97283 111.01 112.01 1.00 TR .070 . 97284 112.01 113.01 1.00 TR .100 . 97285 113.01 114.01 1.00 TR .040 . 97286 114.01 115.01 1.00 TR .040 . 97287 115.01 116.01 1.00 TR .060 . 97288 116.01 117.01 1.00 TR .060 . 97289 117.01 117.73 .72 TR .086 . 97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 . 97292 127.40 128.40 1.00 NIL-TR .140 .	97274	102.30	103.73	1.43	NIL-TR	.114	.08
97276 104.73 105.48 .75 NIL-TR .038 .77277 105.48 106.48 1.00 NIL-TR .040 .97278 106.48 107.01 .53 NIL-TR .021 .97279 107.01 108.01 1.00 TR .050 .97280 108.01 109.01 1.00 TR .080 .97281 109.01 110.01 1.00 TR .060 .97282 110.01 111.01 1.00 TR .070 .97283 111.01 112.01 1.00 TR .070 .97284 112.01 113.01 1.00 TR .100 .97285 113.01 114.01 1.00 TR .040 .97285 113.01 114.01 1.00 TR .040 .97286 114.01 115.01 1.00 TR .040 .97287 115.01 116.01 1.00 TR .060 .97288 116.01 117.01 1.00 TR .060 .97289 117.01 117.73 .72 TR .086 .97290 117.73 118.73 1.00 NIL-TR .110 .97291 118.73 119.73 1.00 NIL-TR .140 .97292 127.40 128.40 1.00 NIL-TR .140 .97293 128.40 129.40 1.00 NIL-TR .100 .	97275	103.73	104.73	1.00	NIL-TR	.060	
97277 105.48 106.48 1.00 NIL-TR .040 . 97278 106.48 107.01 .53 NIL-TR .021 . 97279 107.01 108.01 1.00 TR .050 . 97280 108.01 109.01 1.00 TR .080 . 97281 109.01 110.01 1.00 TR .060 . 97282 110.01 111.01 1.00 TR .070 . 97283 111.01 112.01 1.00 TR .070 . 97284 112.01 113.01 1.00 TR .100 . 97285 113.01 114.01 1.00 TR .040 . 97286 114.01 115.01 1.00 TR .040 . 97286 114.01 115.01 1.00 TR .060 . 97287 115.01 116.01 1.00 TR .060 . 97288 116.01 117.01 1.00 TR .060 . 97289 117.01 117.73 .72 TR .086 . 97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 . 97292 127.40 128.40 1.00 NIL-TR .140 . 97293 128.40 129.40 1.00 NIL-TR .100 .	97276	104.73	105.48	.75	NIL-TR	.038	
97278 106.48 107.01 .53 NIL-TR .021 . 97279 107.01 108.01 1.00 TR .050 . 97280 108.01 109.01 1.00 TR .080 . 97281 109.01 110.01 1.00 TR .060 . 97282 110.01 111.01 1.00 TR .070 . 97283 111.01 112.01 1.00 TR .070 . 97284 112.01 113.01 1.00 TR .100 . 97285 113.01 114.01 1.00 TR .040 . 97286 114.01 115.01 1.00 TR .040 . 97287 115.01 116.01 1.00 TR .060 . 97288 116.01 117.01 1.00 TR .060 . 97289 117.01 117.73 .72 TR .086 . 97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 . 97292 127.40 128.40 1.00 NIL-TR .140 .	97277	105.48	106.48	1.00	NIL-TR	.040	
97279 107.01 108.01 1.00 TR .050 . 97280 108.01 109.01 1.00 TR .080 . 97281 109.01 110.01 1.00 TR .060 . 97282 110.01 111.01 1.00 TR .070 . 97283 111.01 112.01 1.00 TR .070 . 97284 112.01 113.01 1.00 TR .070 . 97285 113.01 114.01 1.00 TR .040 . 97286 114.01 115.01 1.00 TR .040 . 97287 115.01 116.01 1.00 TR .060 . 97288 116.01 117.01 1.00 TR .060 . 97289 117.01 117.73 .72 TR .086 . 97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 . 97292 127.40 128.40 1.00 NIL-TR .140 .	97278	106.4B	107.01				. 04
97280 108.01 109.01 1.00 TR .080 .07281 109.01 110.01 1.00 TR .060 .07282 110.01 111.01 1.00 TR .070 .070 .07283 111.01 112.01 1.00 TR .070 .070 .07284 112.01 113.01 1.00 TR .100 .070 .07285 113.01 114.01 1.00 TR .100 .040 .07285 113.01 114.01 1.00 TR .040 .07286 114.01 115.01 1.00 TR .040 .07287 115.01 116.01 1.00 TR .060 .07288 116.01 117.01 1.00 TR .060 .07289 117.01 117.73 .72 TR .086 .07290 117.73 118.73 1.00 NIL-TR .110 .07291 118.73 119.73 1.00 NIL-TR .140 .07292 127.40 128.40 1.00 NIL-TR .140 .07293 128.40 129.40 1.00 NIL-TR .100 .00							
97281 109.01 110.01 1.00 TR .060 97282 110.01 111.01 1.00 TR .070 97283 111.01 112.01 1.00 TR .070 97284 112.01 113.01 1.00 TR .100 97285 113.01 114.01 1.00 TR .040 97286 114.01 115.01 1.00 TR .040 97287 115.01 116.01 1.00 TR .060 97288 116.01 117.01 1.00 TR .060 97289 117.01 117.73 .72 TR .086 97290 117.73 118.73 1.00 NIL-TR .110 97291 118.73 119.73 1.00 NIL-TR .140 97292 127.40 128.40 1.00 NIL-TR .140	97280	108.01	109.01	1.00	TR		.08
97282 110.01 111.01 1.00 TR .070 97283 111.01 112.01 1.00 TR .070 97284 112.01 113.01 1.00 TR .100 97285 113.01 114.01 1.00 TR .040 97286 114.01 115.01 1.00 TR .060 97287 115.01 116.01 1.00 TR .060 97288 116.01 117.01 1.00 TR .060 97289 117.01 117.73 .72 TR .086 97290 117.73 118.73 1.00 NIL-TR .110 97291 118.73 119.73 1.00 NIL-TR .140 97292 127.40 128.40 1.00 NIL-TR .140							
97283 111.01 112.01 1.00 TR .070 97284 112.01 113.01 1.00 TR .100 97285 113.01 114.01 1.00 TR .040 97286 114.01 115.01 1.00 TR .040 97287 115.01 116.01 1.00 TR .060 97288 116.01 117.01 1.00 TR .060 97289 117.01 117.73 .72 TR .086 97290 117.73 118.73 1.00 NIL-TR .110 97291 118.73 119.73 1.00 NIL-TR .140 97292 127.40 128.40 1.00 NIL-TR .140	97282	110.01	111.01	1.00			.07
97284 112.01 113.01 1.00 TR .100 . 97285 113.01 114.01 1.00 TR .040 . 97286 114.01 115.01 1.00 TR .150 . 97287 115.01 116.01 1.00 TR .060 . 97288 116.01 117.01 1.00 TR .060 . 97289 117.01 117.73 .72 TR .086 . 97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 . 97292 127.40 128.40 1.00 NIL-TR .140 .	97283	111.01	112.01	1.00			
97285 113.01 114.01 1.00 TR .040 97286 114.01 115.01 1.00 TR .150 97287 115.01 116.01 1.00 TR .060 97288 116.01 117.01 1.00 TR .060 97289 117.01 117.73 .72 TR .086 97290 117.73 118.73 1.00 NIL-TR .110 97291 118.73 119.73 1.00 NIL-TR .140 97292 127.40 128.40 1.00 NIL-TR .140 97293 128.40 129.40 1.00 NIL-TR .100	97284	112.01	113.01	1.00			
97286 114.01 115.01 1.00 TR .150 . 97287 115.01 116.01 1.00 TR .060 . 97288 116.01 117.01 1.00 TR .060 . 97289 117.01 117.73 .72 TR .086 . 97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 , 97292 127.40 128.40 1.00 NIL-TR .140 . 97293 128.40 129.40 1.00 NIL-TR .100 .	97285	113.01	114.01	1.00			
97287 115.01 116.01 1.00 TR .060 97288 116.01 117.01 1.00 TR .060 97289 117.01 117.73 .72 TR .086 97290 117.73 118.73 1.00 NIL-TR .110 97291 118.73 119.73 1.00 NIL-TR .140 97292 127.40 128.40 1.00 NIL-TR .140 97293 128.40 129.40 1.00 NIL-TR .100	97286	114.01	115.01	1.00	TR	.150	
97288 116.01 117.01 1.00 TR .060 97289 117.01 117.73 .72 TR .086 97290 117.73 118.73 1.00 NIL-TR .110 97291 118.73 119.73 1.00 NIL-TR .140 97292 127.40 128.40 1.00 NIL-TR .140 97293 128.40 129.40 1.00 NIL-TR .100	97287	115.01	116.01	1.00			
97289 117.01 117.73 .72 TR .086 . 97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 . 97292 127.40 128.40 1.00 NIL-TR .140 . 97293 128.40 129.40 1.00 NIL-TR .100 .							.06
97290 117.73 118.73 1.00 NIL-TR .110 . 97291 118.73 119.73 1.00 NIL-TR .140 . 97292 127.40 128.40 1.00 NIL-TR .140 . 97293 128.40 129.40 1.00 NIL-TR .100 .	97289	117.01	117.73	.72			
97291 118.73 119.73 1.00 NIL-TR .140 , 97292 127.40 128.40 1.00 NIL-TR .140 . 97293 128.40 129.40 1.00 NIL-TR .100 .						****	
97292 127.40 128.40 1.00 NIL-TR .140 . 97293 128.40 129.40 1.00 NIL-TR .100 .	97291	118.73	119.73				
97293 128.40 129.40 1.00 NIL-TR .100 .							.14
The state of the s							
97294 129.40 130.40 1.00 NIL-TR .100						.100	. 10

Hole No.: SR.89-8

few odd decimetric chlorite - schist sections crosscutting the intrusive with sharp and well defined contacts at 70 degrees to the core axis. There is a weak sericitic alteration. There is trace pyrite as very fine points disseminated.

107.94 108.03: 4 to 8 cm wide subrounded felsic fragments intercalated with chlorite and schist material. Contacts are 70 and 55 degrees to the core axis.

130.40 145.54 FELSIC INTRUSIVE

Hard, aphanitic, light grey to grey pink at contacts, not magnetic, felsic intrusive.

There is a weak sericitic alteration.

There are nil to trace carbonate - quartz filled fractures.

There is nil to trace pyrite is fine blebs or points disseminated.

Lower contact is sheared and brecciated at 75 degrees to the core axis.

131.02 131.52 Brecciated. Medium grained silicified mafic volcanic intercalated with 5 to 10%, 2 am to 1 cm wide subangular felsic fragments. Contacts are sharp at 60 to 55 degrees to the core axis.

144.65 145.54 Brecciated. Felsic intrusive is finely brecciated at the lower contact. There are 60 to 70%, 2 mm to 1 cm angular fragments.

97295 130.40 131.52 1.12 NIL-TR .090 .08 97296 131.52 132.40 .88 NIL-TR .088 .10 97297 132.40 133.40 1.00 NIL-TR .150 .15 97298 133.40 134.40 1.00 NIL-TR .090 .09 97299 134.40 135.40 1.00 NIL-TR .100 .10 97300 135.40 136.40 1.00 NIL-TR .080 .08 97301 136.40 137.40 1.00 NIL-TR .130 .13 97302 137.40 138.40 1.00 NIL-TR .090 .09 97303 138.40 139.40 1.00 NIL-TR .080 .08 97304 139.40 140.40 1.00 NIL-TR .080 .08 ,07 97305 140.40 141.40 1.00 NIL-TR .070 97306 141,40 142,40 1.00 NIL-TR .050 .05 97307 142.40 143.40 1.00 NIL-TR .270 .27 97308 143.40 144.40 1.00 NIL-TR .090 .09 97309 144.40 145.54 1.14 NIL-TR .057 .05

145.54 154.23 BASALT

Altered.

Strongly silicified, weakly sericitized and chloritic, very weakly ankeritic and hematized. There are trace to 1% ankerite quartz veins as fracture fillings.

There is nil to trace pyrite as fine blebs disseminated. This unit is weakly brecciated in situ. Mafic volcanics are finely brecciated along foliation plane at 65 degrees to the core axis.

Lower contact is sharp at 65 degrees to the core axis.

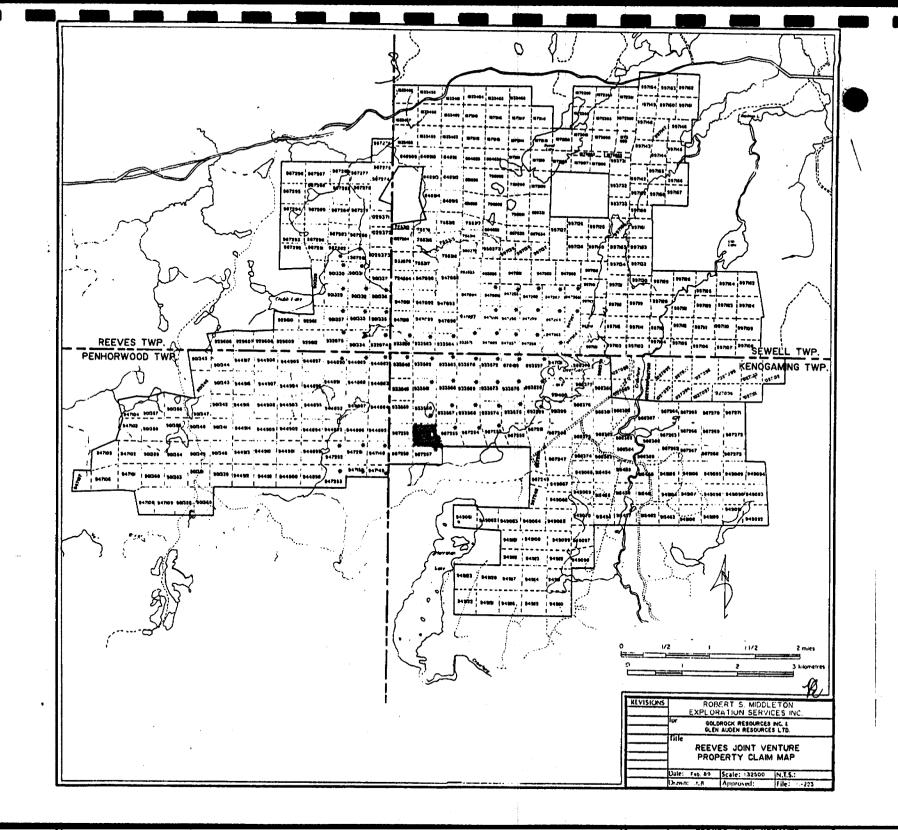
145.54 152.25 Brecciated. Hard, light grey green to grey brown, medium grained, granular textured,

.54 1.00	NIL-TR	.110	.11
.54 1.00	NIL-TR	.090	.09
.54 1.00	NIL-TR	.040	.04
.54 1.00	NIL-TR	.040	.06
.54 1.00	NIL-TR	.290	. 29
.54 1.00	NIL-TR	.040	. 04
.25 .71	NIL-TR	. 192	.27
.25 1.00	NIL-TR	.030	.03
.23 .98	NIL-TR	.431	, 44
֡	.54 1.00 .54 1.00 .54 1.00 .54 1.00 .54 1.00 .25 .71 .25 1.00	.54 1.00 NIL-TR .54 1.00 NIL-TR .54 1.00 NIL-TR .54 1.00 NIL-TR .54 1.00 NIL-TR .25 .71 NIL-TR .25 1.00 NIL-TR	.54 1.00 NIL-TR .090 .54 1.00 NIL-TR .040 .54 1.00 NIL-TR .060 .54 1.00 NIL-TR .290 .54 1.00 NIL-TR .040 .25 .71 NIL-TR .192 .25 1.00 NIL-TR .030

Hole No.: SR.89-8

Page No.: 7

------ Sample From


To Length % Sul

6W · Au g/t

weakly brecciated silicified BASALT.

152.25 154.23 BASALT weakly foliated. Hard, light grey, very fine grained, weakly foliated altered BASALT. Moderately silicified and sericitic. There are trace carbonate-quartz filled veinlets. There is to trace very fine pyrite disseminated. Foliation is weakly developed at 50 to 60 degrees to the core axis.

154.23 END OF HOLE.

Penhorwood Townshy Tie Line 12toos. P. 987256 Location Sketch Drill hole SR-9 Kenogaming Township Scale 1:5000 DRA 30/11/89

AMERICAN BARRICK RESDURCES CORPORATION

Co-or	.0	.0	DIAMOND DRIL	L RECORD		HOLE NO.:	SR.89-9	
Azimuth:	180.0		Section:	L8+00E		Property:	SEWELL-R	EEVES
Dip:	-50.0		Core Size:	BQ	•	Location:	18+00E	15+25\$
Elevation:	.0					Note Observed.	0-1-1	20 1200
Length:	154.2					Date Completed:		23, 1989
Measurement:	Metric	·				Logged by:	N. Berge	ron
Comments:	Casing Pulled	đ						

Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip 45.72 -49.0 91.44 -47.0 154.23 -46.0 -----Log Summary----

.00 10.50 CASING.

10.50 10.80 DIABASE.

10.80 25.15 BASALT foliated.

10.80-15.30 FAULT ZONE.

25.15 64.85 BASALT massive to weakly foliated.

64.85 66.50 Braphitic ARGILLITE.

66.50 74.50 BASALT foliated.

74.50 B1.35 BASALT massive.

81.35 88.20 HIGH MAG BASALT.

BB.20 131.12 BASALT massive to weakly foliated.

99.6-100.2 Braphitic ARBILLITE.

131.12 131.92 Graphitic ARBILLITE.

131.92 134.35 Felsic intrusive brecciated.

134.35 147.95 Altered foliated BASALT.

134.35-143.0 Silicified, sericitic, foliated BASALT.

134.35-135.35 Brecciated.

143.0-145.75 Silicified, foliated BASALT.

145.75-147.95

Silicified, sericitic,

foliated BASALT.

147.95 154.23 Fine to medium grained massive flow.

149.44-149.68 FAULT ZONE.

149.88-150.40 Brecciated quartz - carbonate

151.40-152.10 Brecciated foliated.

154.23 END OF HOLE.

RESOURCES CORPORATION

Hole No.: SR.89-9

From To ------Description-------- Sample From To Length X Sul GW Au g/t

.00 10.50 CASING

Casing driven to 12.8 m.

10.50 10.80 DIABASE

Dark greenish-grey, medium grained, moderately magnetic diabase dyke, poorly veined and mineralized. Strongly chloritic weakly calcitic.

Lower contact is 55 degrees to the core axis.

10.80 25.15 BASALT FOLIATED

Moderately hard, light grey to beige grey, fine grained, not magnetic foliated mafic volcanic.

Moderately to strongly calcitic, weakly bleached and sericitized, moderately chloritic.

There are 2 to 4%, 2 mm to 5 mm wide calcite quartz veins subparallel to foliation that is moderately developed at 55 to 60 degrees to the core axis.

There is nil to rare trace fine pyrite disseminated.

From 24.80 to lower contact, mafic volcanics are weakly silicified and contain trace to 1% very fine pyrite disseminated and trace pyrrhotite. Lower contact is 50 degrees to the core axis.

10.80 15.30 FAULT ZONE. Moderately fractured foliated mafic volcanic intercalated with numerous

millimetric to decimetric gravel and gouge

97319	10.80	11.BO	1.00 NIL-TR	.080	.08
97320	11.80	12.80	1.00 NIL-TR	.030	.03
97321	12.80	13.80	1.00 WIL-TR	.040	.04
97322	13.80	14.80	1.00 NIL-TR	.040	. 04
97323	14.80	15.30	.50 NIL-TR	.015	.03
97324	23.15	24.15	1.00 NIL-TR	.020	.02
97325	24.15	25.15	1.00 TR-1	.020	. 02

To Length % Sul

Au q/t

sections.

25.15 64.85 BASALT

Massive to weakly foliated. Fine grained, moderately hard, dark greenish-grey to medium greenish-grey, not magnetic massive to weakly foliated mafic volcanic. Strongly to moderately chlorite and calcitic. There are 1% carbonate - quartz filled fractures. There are nil to rare traces fine pyrite disseminated. Foliation is locally weakly developed at 55 degrees to the core axis. Lower contact is sharp at 60 degrees to the core axis.

- 25.15 37.40 : dark green to greenish-grey, weakly foliated at 55 degrees to the core axis mafic volcanic. There are 1 to 2%, 1 to 3 mm calcite specks elongated along foliation.
- 37.40 44.45 : medium grey to grey-green massive mafic volcanic fine to medium grained. There are 2 to 10%, 1 to 2 am wide calcite specks disseminated.
- 44.45 49.55 : medium grey to dark grey-green, very weakly foliated fine grained mafic volcanic. There are 1 to 2%, 1 to 2 mm wide carbonate specks along the foliation at 50 to 60 degrees to the core axis.
- 49.55 51.60: light green to green, medium grained massive mafic volcanic.
- 51.60 63.35 : medium grey-green, fine grained massive mafic volcanic. There are 1 to 5%, 2 to 8 mm wide, carbonate - quartz filled fractures. From 62.65 to 63.55, there are 5%, 1 to 2 mm calcite specks disseminated.
- 63.35 64.85 : light grey, very fine grained, weakly sericitic, massive mafic volcanic.

64.85 66.50 GRAPHITIC ARBILLITE

Moderately hard to hard, dark grey to dark grey black. Very fine grained thinly bedded graphitic ARBILLITE. Variably graphitic, moderately calcitic, very weakly silicified. Foliation subparallels the bedding at 50 degrees to the core axis.

64.85 65.50 : argillite contains 3 to 5%, 1 to 2 mm wide

97326 25.15 26.10 .95 NIL-TR .019 .02 97327 62.35 63.35 1.00 NIL-TR .180 .18 97328 63.35 64.85 1.50 NIL-TR .075 .05

.06 97329 64.85 65.50 . 65 TR .039 97330 65.50 66.50 1.00 TR-1 .150 .15

To Length % Sul

Au o/t

graphitic beds, poorly veined sections. Upper contact is 60 degrees to the core There is trace pyrite as fine blebs disseminated along foliation. From 64.85 to 64.97 there are 5 to 10%, 2 to 5 cm wide, quartz-carbonate veins pinched along foliation.

65.50 66.20 : argillite contains 50 to 60%, 1 to 5 mm wide graphitic beds. There are 5 to 10% calcite quartz veins, 1 to 10 mm wide, pinched along foliation. There is trace to 1% very fine pyrite disseminated and trace magnetite.

66.20 66.50 : same as 64.85 to 65.60, lower contact is 50 degrees to the core axis.

66.50 74.50 BASALT FOLIATED

Moderately hard greenish-grey to pale grey, fine grained, not magnetic weakly to moderately foliated mafic volcanic.

Moderately calcitic and chloritic. Weakly bleached and sericitic from 72.60 to 74.50.

There are 1 to 3%, 1 to 2 mm wide carbonate - quartz veins along foliation at 45 to 50 degrees to the core

There is nil to trace pyrite.

97331 66.50 67.50 1.00 NIL-TR .100 .10 .09 97332 67.50 68.50 1.00 NIL-TR .090 97333 68.50 69.50 1.00 NIL-TR .100 .10 .300 97334 72.50 73.50 1.00 NIL-TR .30 97335 73.50 74.50 1.00 NIL-TR .090 .09

74.50 B1.35 BASALT MASSIVE

Moderately hard, dark greenish-grey, fine grained, not magnetic, massive mafic volcanic.

Strongly chloritic, moderately calcitic.

There are 2 to 4%, 1 to 4 mm wide, carbonate - quartz fractures. There is nil to trace pyrite disseminated.

Upper and lower contacts are weakly foliated at 60 degrees to the core axis.

97336 74.50 75.50 1.00 NIL-TR .110 .11 97337 80.35 81.35 1.00 NIL-TR . 150 .15

81.35 BB.20 HIGH MAG BASALT

97338 81.35 82.35 1.00 3-5 .130 .13

Au g/t

GW

From To

97339 87.20 88.20 1.00 3-5 .160 .16

Dark green, moderately hard fine to medium grained, strongly magnetic massive mafic volcanic.

Strongly chloritic, weakly calcitic. There are 1%, 2 to 5 mm wide, carbonate - quartz filled fractures.

There are 3 to 5%, 1 to 3 mm, hypidiomophic magnetite grains disseminated and trace pyrite as fine blebs disseminated.

Lower contact is 55 degrees to the core axis.

88.20 131.12 BASALT

Massive to weakly foliated.

Moderately hard, fine grained, dark green to pale grey-green, not magnetic, massive to weakly foliated mafic volcanic.

Strongly chloritic and calcitic, locally weakly sericitic There are 2 to 4%, 1 to 5 mm wide, carbonate - quartz filled fractures along the weakly developed foliation at 55 to 60 degrees to the core axis.

There is nil to trace pyrite as fine blebs disseminated. Lower contact is sharp and veined at 70 degrees to the core axis.

88.20 99.60: dark green massive section. Meakly foliated at 55 degrees to the core axis from 99.2 to 99.6.

99.60 100.20 Graphitic ARGILLITE. Moderately hard, very fine grained dark grey black to dark grey, thinly bedded not magnetic graphitic argillite.

Foliation subparallels the bedding at 60 degrees to the core axis. Strongly calcitic and graphitic. Poorly veined except from 99.87 to 100.0 where there are 30%, 2 to 10 am wide carbonate - quartz veins along foliation. There is trace pyrite as fine blebs along foliation. Contacts are sharp at 50 to 60 degrees to the core axis. Lower contact is micro folded for 10 cm.

100.20 124.90: pale greenish-grey weakly foliated mafic volcanic. Foliation varies from 45 to 55 degrees to the core axis. There are a few odd centimetric sericitic layers along foliation. From 124.30 to 124.90 foliation is weakly contorted.

124.90 131.12: pale grey, very weakly bleached mafic volcanic.

97340 98.60 99.60 1.00 NIL-TR 1.000 1.00 97341 99.60 100.20 .60 .126 .21 97342 100.20 101.20 1.00 NIL-TR .310 .31 97343 105.50 106.50 1.00 NIL-TR .080 .08 97344 119.50 120.50 1.00 NIL-TR .070 .07 97345 123.90 124.90 1.00 NIL-TR .080 .08 97346 130.12 131.12 1.00 NIL-TR .070 .07

Hole No.: SR.89-9 Page No.:

97348 131.92 132.92 1.00

97349 132.92 133.85 .93

97350 133.85 134.35 .50

97363 145.75 146.75 1.00

97364 146.75 147.95 1.20

To Length % Sul

NIL

NIL

NIL

.070

.074

.045

.110

.156

TR

.11

.13

.07

.08

.09

Au o/t

131.12 131.92 GRAPHITIC ARGILLITE

97347 131.12 131.92 .80 .088 . 11

Moderately hard, very fine grained, dark grey black to grey thinly bedded, not magnetic graphitic argillite. Foliation subparallels the bedding at 70 to 75 degrees to the core axis. Strongly graphitic and calcitic, poorly veined. There is 1% pyrite as fine blebs disseminated along

foliation. Contacts are sharp and brecciated at 60 to 80 degrees to the core axis.

131.92 134.35 FELSIC INTRUSIVE BRECCIATED

Hard, pale grey - beige, fine grained, not magnetic brecciated felsic intrusive.

There are 5 to 10%, 0.5 to 1.5 mm wide white feldspar phenocrysts. There are 2 to 5%, 1 cm to 5 cm subangular fragments interfilled by pale plive green talc.

Weakly to moderately calcitic, weakly talcose poorly veined. barren.

Lower contact is 80 degrees to the core axis.

134.35 147.95 BASALT

Altered foliated.

Moderately silicified pervasively, weakly sericitic as occurring in millimetric to alteration centimetric bands subparallel to foliation. Moderately to strongly calcitic pervasively, weakly chloritic.

These are 1 to 4%, 2 mm to 10 mm wide carbonate - quartz veins along foliation or as fracture filling.

There is trace pyrite as fine grains disseminated or coating fractures.

Foliation is moderately to strongly developed at 30 to 65 degrees to the core axis.

134.35 135.35 Brecciated.

134.35 143.00 : silicified sericitic, foliated BASALT. Hard, dark grey brown to dark grey, very fine grained, not magnetic moderately

97351 134.35 135.	35 1.00	TR .	060 .	80
97352 135.35 136.	35 1.00	TR .	120 .	12
97353 136.35 137.	35 1.00	TR .	100 .	10
97354 137.35 138.	35 1.00	TR .	180 .	18
97355 138.35 139.	35 1.00	TR .	060 .	40
97356 139.35 140.	35 1.00	TR .	100 .	10
97357 140.35 141.	35 1.00	TR .	180 .	18
97358 141.35 142.	35 1.00	TR .	270 .	27
97359 142.35 143.	00 .65	TR.	071 .	11
97360 143.00 144.	00 1.00	NIL-TR .	130 .	13
97361 144.00 145.	00 1.00	NIL-TR .	110	11
97362 145.00 145.	75 .75	NIL-TR .	218	29

Au g/t

GW

From To

weakly sericitic foliated

mafic volcanic. 143.00 145.75: silicified foliated BASALT. Moderately hard to hard, medium grained, not magnetic, weakly to moderately silicified mafic volcanic. Weakly to foliated silicified pervasively, moderately moderately to strongly calcitic, weakly chloritic. There are 2 to 5%, 2 to 5 mm wide carbonate - quartz veins along The foliation is strongly foliation. developed at 60 degrees to the core axis.

silicified.

disseminated.

145.75 147.95: silicified, sericitic, foliated BASALT.

Same as 134.35 to 143.0. Lower contact is sharp at 70 degrees to the core axis.

There is nil to trace very fine pyrite

147.95 154.23 BASALT

Fine to medium grained massive flow.

Moderately hard dark grey-green to medium grey, not magnetic.

Moderately chloritic, strongly calcitic. There are 1%, carbonate - quartz filled fractures, 1 to 5 mm wide. There is trace pyrite as fine euhedral grains disseminated.

149.44 149.68 FAULT ZONE. Strongly fractured core with intercalated minor graphitic gouge.

Contacts are 75 and 80 degrees to the core axis.

149.68 149.88: strongly foliated, weakly bleached and sericitized very fine grained mafic volcanic. Foliation is 45 degrees to the core axis. Trace graphite along foliation plane. Unveined. Trace pyrite.

149.88 150.40 Brecciated quartz vein. Milky white to white grey, weakly brecciated quartz - carbonate vein with intercalated minor chloritic subangular fragments. Barren. Contacts are 50 and 60 degrees to the core axis.

151.40 152.10 Brecciated, foliated. Moderately soft, pale grey-green nonmagnetic, moderately foliated mafic volcanic weakly brecciated.

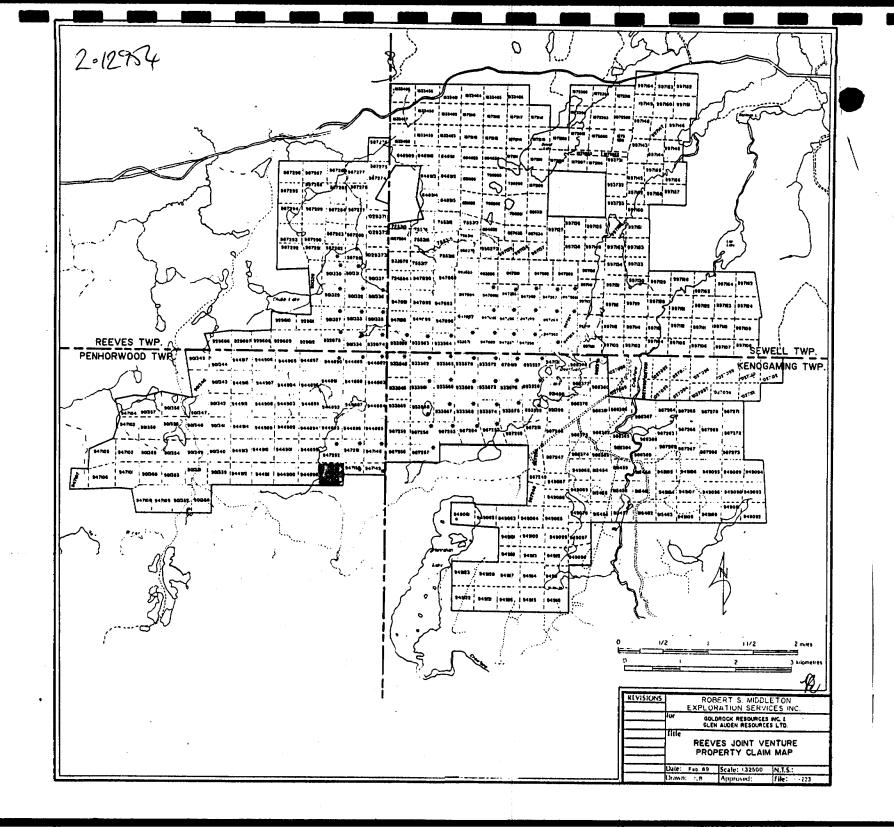
Foliation is 50 to 60 degrees to the core axis. There are 50 to 70%, 5 mm to 1 cm wide subangular fragments elongated along

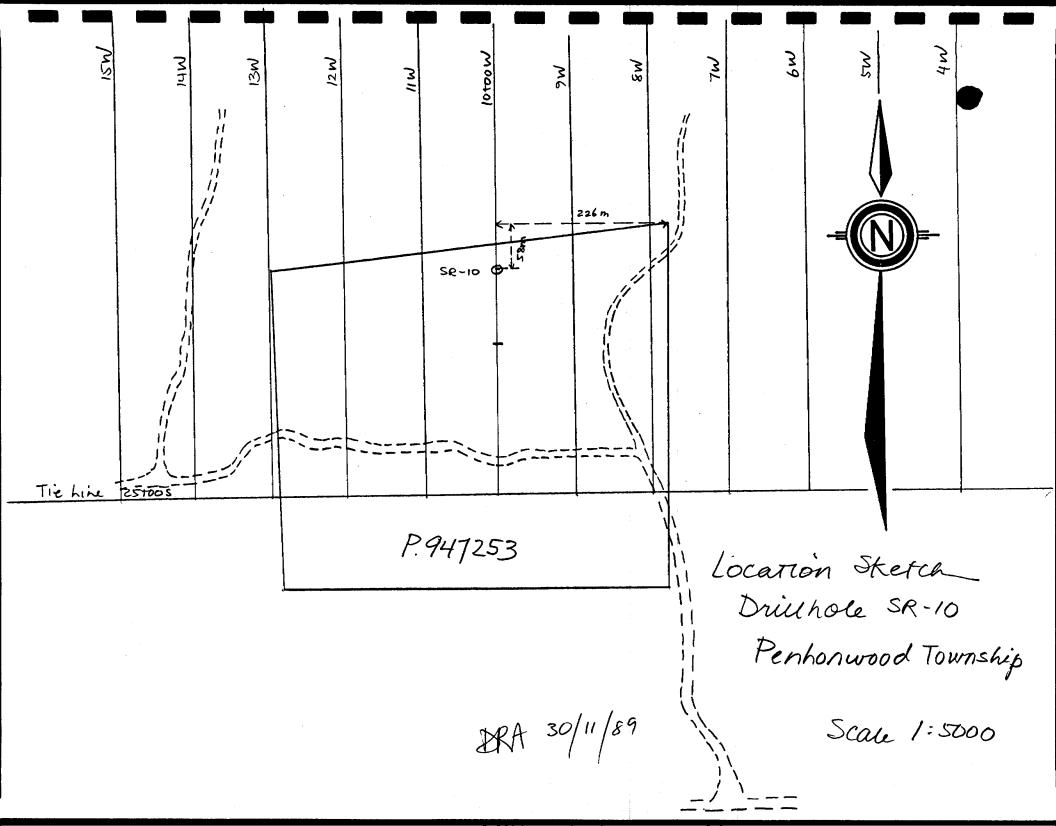
97365	147.95	148.95	1.00	TR	.090	. 09
97366	148.95	149.88	.93	TR	.074	.08
97367	149.88	150.40	.52	TR	.125	. 24
97368	150.40	151.40	1.00	NIL	.120	.12
97369	151.40	152.10	.70	NIL-TR	.070	.10
97370	152.10	153.10	1.00	TR	.060	.06
97371	153.10	154.23	1.13	TR	.113	.10

To

Length % Sul

------ Sample From To Length % Sul


GW | Au g/t


foliation. There is a weak talcose alteration along foliation. Contacts are 50 and 60 degrees to the core axis.

153.65 153.82: felsic intrusive. Hard, light grey beige, massive, fine grained felsic intrusive. Unveined, barren of mineralization. Contacts are sharp at 65 and 50 degrees to the core axis.

154.23

END OF HOLE.

Co-pr	.0 .0	DIAMOND DRILL RECORD	HDLE ND.: SR.89-10
Azimuth:	180.0	Section: £10+00W	Property: SEWELL-REEVES
Dip:	-50.0	Core Size: 80	Location: 110+00W 22+00S
Elevation:	.0		
Length:	153.9		Date Started: September 23, 1989 Date Completed: September 25, 1989
Measurement:	Metric		Logged by: M. Bergeron

Comments:

Casing left in hole

Depth	Azimuth	Dip	Depth	Azimuth	Dip	Depth	Azimuth	Dip	
45.72	-5	1.0	91.44	-5	2.0	137.15	-52.	0	
			·FV						

.00 1.22 CASING.

1.22 32.50 BASALT.

32.50 39.80 BASALT porphyritic.

38.30-39.20 : cherty mineralized zone.

39.80 67.10 BASALT.

66.30-67.10 : fault zone.

67.10 71.65 Foliated - biotitic - BASALT.

71.65 77.00 Intermediate intrusive.

77.00 115.15 BASALT.

84.80-85.30 : FAULT ZONE.

101.30-101.65 : FAULT ZONE.

102.80-103.25 : FAULT ZONE.

111.05-112.05 : FAULT ZONE.

115.15 145.50 BASALT.

115.15-145.50 : pillowed variolitic.

145.50 153.92 Intermediate to felsic intrusive.

153.9 END DF HDLE.

AMERICAN BARRICK
RESOURCES CORPORATIONS

.00 1.22 CASING

1.22 32.50 BASALT

Moderately hard to hard, very fine grained to aphanitic, pale grey-green massive mafic volcanic. Not magnetic. There is a weak silicification pervasively, a moderate chloritic alteration and a weak patchy calcitic alteration.

There are 1 to 22 mm, barren, carbonate - quartz filled fracture veins and a few odd, 0.5 to 1 cm wide, carbonate-quartz epidote veins, barren of mineralization, at random angle with core axis (pillow selvage ?).

This unit contains trace pyrite as very fine blebs disseminated.

Lower contact is sharp at 45 degrees to the core axis.

3.05 3.47: highly fractured core, 25 cm lost core.

Upper and lower contact are 70 degrees to the core axis.

27.75 28.10 : there are 40%, 0.5 to 1.5 cm blue-grey quartz veins at 45 to 15 degrees to the core

axis.

32.50 39.80 BASALT

Porphyritic.
Moderately hard, mottled beige green to green, fine grained to medium grained BASALT. Porphyritic. Locally weakly magnetic where pyrrhotite is present. There are 1 to 42 very fine, hypidiomorphic feldspar phenocrysts.

99804	7.50	8.50	1.00	TR	.090	.09
99805	16.00	17.00	1.00	TR	.100	.10
99806	17.00	18.00	1.00	TR	.120	.12
99807	20.00	21.00	1.00	TR-1	.130	.13
					.130	
99809	31.50	32.50	1.00	TR	.120	.12

TR

.180

.18

4.47 1.00

99803

3.47

99810 32.50 33.50 1.00 TR-1 .110 .11 99811 33.50 34.50 1.00 TR-1 .080 .08 99812 34.50 35.50 1.00 TR-1 .100 .10 99813 35.50 36.50 1.00 TR-1 .040 .04 99814 36.50 37.50 1.00 TR-1 .080 .08 99815 37.50 38.30 .80 TR-1 .072 .09 99816 38.30 39.20 5-25 .090 .90 .10

.10

.060

Fran 1

To --

99817 39.20

39.80

.60

TR-3

Chloritic alteration is strong and there is a moderate calcitic alteration pervasively.

There are i to 3% white - grey calcite quartz veins i mm to 2 cm wide at 40 to 90 degrees to the core axis, with nil to trace pyrite, pyrrhotite blebs.

There is trace to locally 1% pyrrhotite as fine blebs disseminated. Lower contact is veined at 45 degrees to the core axis.

32.50 35.00: there are 5 to 10%, 2 to 4 on biotite grains disseminated.

37.78 37.91: grey blue, quartz calcite veins, 1 to 2% pyrrhotite blebs, trace pyrite. Contacts are 45 degrees to the core axis.

38.30 39.20 Cherty MINERALIZED ZONE. Hard to moderately hard, alternating grey blue, brown, and grey brown, cherty mineralized zone, moderately to strongly magnetic. Porphyritic BASALT is intercalated by 90%, 5 cm to 40 cm wide, mineralized chert section. Chert is dark grey blue, and is intercalated by 2 to 4% white quartz calcite veins. Chert is thinly bedded at 80 to 85 degrees to the core axis frequently micro-folded. There is 5 to 25% pyrrhotite and 1 to 2% pyrite in fine blebs or stringers disseminated along foliation. Porphyritic BASALT is weakly silicified and contains 1 to 3% pyrrhotite and trace pyrite as fine blebs disseminated. Upper and lower contacts are 85 degrees to the core axis.

39.20 39.80: SABBRO intercalated 5%, 2 to 4 cm white - grey to blue-grey quartz calcite veins with trace to 3% pyrite.

39.80 67.10 BASALT

Moderately hard, very fine grained, grey green, massive mafic volcanic not magnetic.

There is a moderate chlorite and calcite alteration pervasively. There are 1 to 3%, 2 to 5 mm wide, white carbonate fracture filling veins at random angle, and rare 5 mm to 1 cm wide blue-grey quartz carbonate veins, with nil to trace pyrite as fine blebs at 45 to 90 degrees to the core axis.

There is nil to trace pyrite as fine blebs disseminated. Lower contact is brecciated and marked by a 2 mm fracture filling with gouge at 50 degrees to the core axis.

99818	39.80	40.80	1.00	NIL-TR	.090	.09
99819	45.00	46.00	1.00	NIL-TR	.110	.11
99820	50.50	51.50	1.00	NIL-TR	.100	.10
99821	51.50	52.50	1.00	NIL-TR	.070	.07
99822	52.50	53.56	1.06	TR-1	.074	.07
99823	53.56	54.56	1.00	NIL-TR	.060	.06
99824	56.50	57.50	1.00	TR	.030	.03
99825	57.50	58.50	1.00	TR	.040	. 04
99826	65.30	66.30	1.00	TR	.050	.05
99827	66.30	67.10	.80	TR	.032	. 04

From T

-----Description-----

Sample From To Length % Sul

Au g/t

52.50 53.56: moderately silicified BASALT intercalated minor cm cherty beds. Trace to 1% pyrite as fine blebs disseminated. Contacts are 80 to 85 degrees to the core axis.

.56.15 56.23 : white quartz vein, barren, contacts are 85 degrees to the core axis.

56.70 58.40: there are 5 to 8%, 1 to 4 cm wide, white grey and blue-grey quartz calcite veins at 80 to 85 degrees to the core axis. Veins are barren, wallrock contains trace pyrite as fine blebs disseminated.

66.30 67.10 Fault zone. Weakly brecciated, faulted BASALT. There are 4 fault planes, including upper and lower contact marked by 2 em of gouge filling fractures at 45 degrees to the core axis. There are 3 to 5%, 1 to 3 cm mafic volcanic angular fragments.

67.10 71.65 BASALT

Foliated - biotitic.

Moderately hard, dark brown grey to brown green, fine grained, moderately foliated, sheared mafic volcanic. Biotitic. Not magnetic.

There is a moderate to weak cola coloured biotitic alteration decreasing downhole from 69.90.

Calcitic alteration is weak and patchy, chloritic alteration is weak to moderate. There is a moderate silicification as cm beds where biotitic alteration is moderate.

There are 3 to 52 mm calcite - ankerite quartz veins forming truncated lamellae along foliation at 60 to 70 degrees to the core axis and as fracture filling at random angles. There is rare pyrite as fine blebs disseminated.

Mafic volcanics are moderately foliated at 65 degrees to the core axis.

Lower contact is veined at 20 degrees to the core axis.

71.65 77.00 INTERMEDIATE INTRUSIVE

99833 71.65 72.65 1.00 NIL .430 .43 99834 76.00 77.00 1.00 NIL .360 .36

Hard, dark grey to grey, fine grained, not magnetic. Weakly chloritic, weakly calcitic as fracture filling, weakly silicified pervasively. 99828 67.10 68.10 1.00 NIL-TR .050 .05 99829 68.10 69.10 1.00 NIL-TR .040 .04 99830 69.10 70.10 1.00 NIL-TR .090 .09 99831 70.10 71.10 1.00 NIL-TR .250 .25 99832 71.10 71.65 .55 NIL-TR .231 .42

6W

From

Jample From To Length % Sul

Au g/t

There are 1%, 1 to 3 mm wide, white, barren calcite veins and quartz calcite veins at random angle.

Barren of mineralization. Lower contact is sharp at 85 degrees to the core axis.

73.80 75.00: moderately to strongly fractured core at 65 to 85 degrees to the core axis.

77.00 115.15 BASALT

Moderately hard, very fine grained, grey-green, massive mafic volcanic not magnetic.

There is a moderate chloritic alteration and a weak to moderate calcitic alteration pervasively.

There are 2 to 4%, 2 mm to 7 mm wide, white barren calcite quartz veins, along a weak foliation averaging 45 degrees to the core axis.

There is nil to trace pyrite as fine blebs or grains disseminated.

Lower contact is irregular at 5 to 10 degrees to the core axis.

80.90 81.65: mafic intrusive, pale grey, fine grained, not magnetic, poorly veined, barren, contacts are 85 and 70 degrees to the core axis.

84.80 85.30 FAULT ZONE. Weakly fractured core at 50 to 60 degrees to the core axis intercalated ainor mud gouge.

101.30 101.65 FAULT ZONE. Highly fractured and ground core. Upper and lower contacts are 45 and 30 degrees to the core axis.

102.80 103.25 FAULT IONE. Highly fractured core. Upper and lower contacts are 45 and 15 degrees to the core axis.

103.25 111.05: trace pyrrhotite as fine blebs disseminated.

111.05 112.05 Fault zone. Strongly fractured core, intercalated minor gouge fracture filling at 5 to 10 degrees to the core axis. There are 3, 4 to 41 cm wide, barren white quartz veins.

112.05 115.15: weakly brecciated and silicified grey-green to green mafic volcanic.

99835	77.00	78.00	1.00 NIL-TR	.380	. 38
99836	110.05	111.05	1.00 NIL-TR	.340	. 34
99837	111.05	112.05	1.00 NIL-TR	.290	. 29
99838	112.05	113.05	1.00 NIL-TR	.290	. 29
99839	113.05	114.05	1.00 NIL-TR	.300	.30
99840	114.05	115.15	1.10 NIL-TR	. 341	.31

From To	Description	Sample	From	To	Length X Sul	GW	Au g/t
					1.00 NIL-TR	.230	.23
	Pillowed varialitic. Grey green, very fine grained, not	99855	130.75	131.75	1.00 NIL-TR	. 150	. 15
	magnetic, variolitic, pillowed flow. Moderately	99856	140.50	141.50	1.00 NIL-TR	.220	.22
	chloritic, very weakly calcitic. There are 1 to 32	99857	143.50	144.50	1.00 NIL-TR	. 260	.26
	carbonate veins as fracture filling. Nil to trace pyrite as fine blebs disseminated. Upper and lower contact are 15 and 50 degrees to the core axis. 1 to 4	99858	144.50	145.50	1.00 NIL-TR	.260	.26

118.44 119.30 : moderately fractured core.

120.05 120.80 : moderately fractured core.

120.80 123.14: anderately fractured core intercalated 12, 5 to 8 cm white barren quartz - carbonate veins.

mm variolites appear on pillow selvages, 10 cm to 1 m

130.00 131.52: white barren, quartz vein, contacts are 15 and 60 degrees to the core axis.

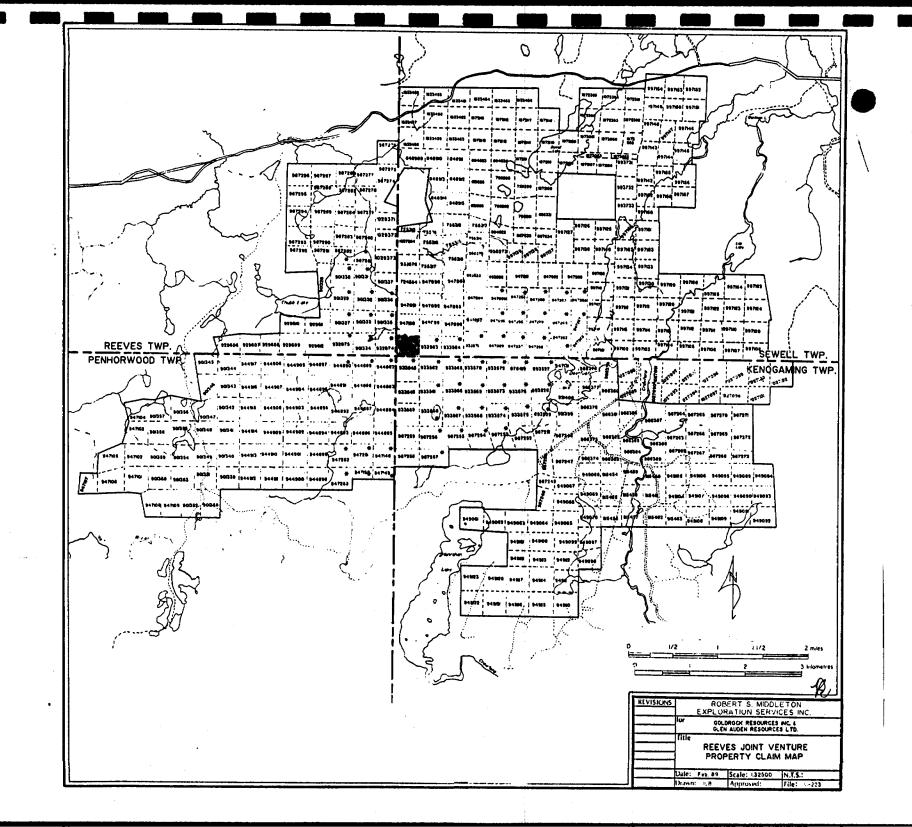
140.80 141.04: white barren quartz - chlorite vein contacts are 45 degrees to the core axis.

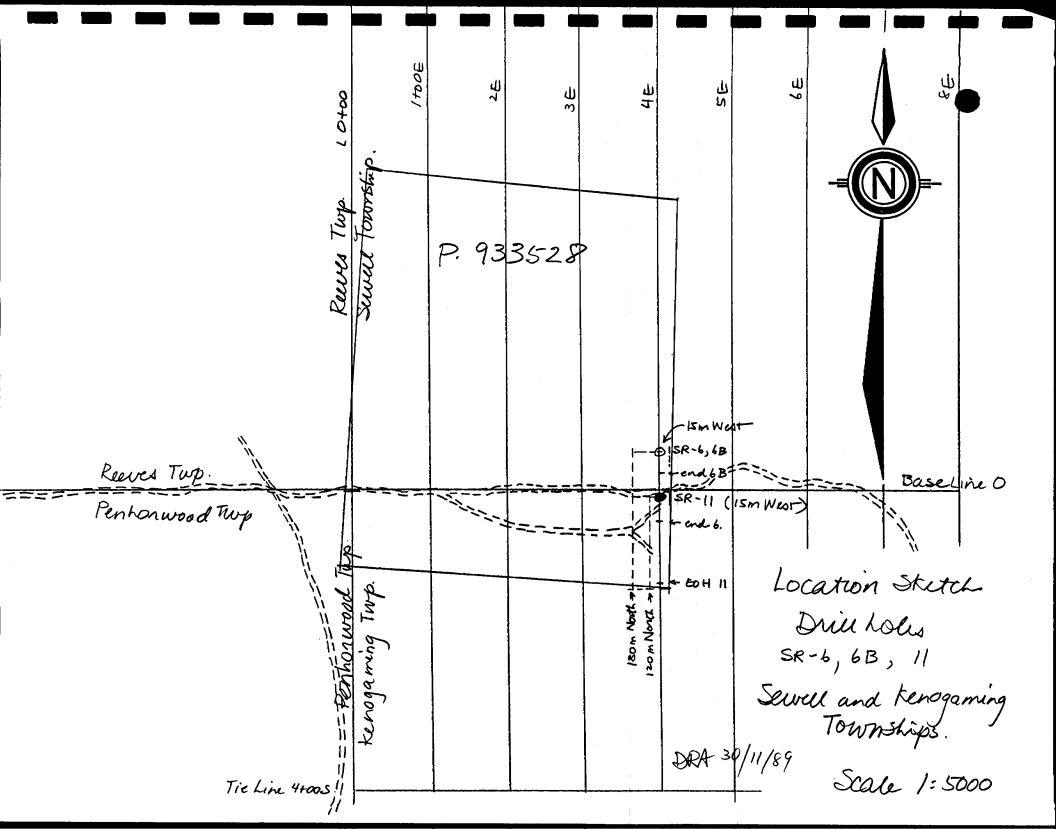
144.50 145.50: BASALT is intercalated with 12 cm silicification and quartz veins.

115.15 145.50 Pillowed variolitic.

145.50 153.92 INTERMEDIATE INTRUSIVE

99859 148.10 149.10 1.00 NIL .190 .19 99860 149.10 150.10 1.00 NIL .260 .26


To felsic intrusive.


Light grey, fine grained to medium grained, not magnetic. Weakly epidotised. Trace calcite veins as fracture fillings. Barren of mineralization.

148.40 150.10: intrusive is intercalated with a few odd 1 to 15 cm white barren quartz veins.

152.00 153.92 : granular textured.

153.90 END OF HOLE.

.0 .0 DIAMOND DRILL RECORD HOLE NO.: SR.89-11 180.0 Azimuth: Section: L4+00E Property: SEWELL-REEVES Core Size: BQ Dip: -50.0 Locations L4+00E 0+07S Elevation: .0 Date Started: October 11, 1989 Length: 184.7 Date Completed: October 18, 1989 Logged by: M. Bergeron

Measurement: Metric

Comments: Cas:

Casing lost in hole

.00 21.34 CASING.

21.34 4B.71 FAULT ZONE mineralized.

48.71 87.20 Sheared BASALT.

79.30 - 80.0 felsic intrusive. 81.30 - 82.45 felsic intrusive.

B7.20 184.71 BASALT.

130.45 - 131.80 felsic intrusive. 151.18 - 154.10 LAMPROPHYRE.

184.71 END OF HOLE.

AMERICAN BARRICK
RESOURCES CORPORATION

From To ------ To Length X Sul GW Au g/t

.00 21.34 CASING

Casing reamed to 31.09 m.

21.34 48.71 FAULT ZONE

Mineralized. Moderately soft dark grey to pale grey,
fine grained to granular textured, not magnetic,
FOLIATED BASALT. Strongly sheared and faulted.
Moderately to strongly fractured core with intercalated
numerous clay-grit seams, ground core, and gouge. There
are 3.67 m lost core.
Strongly chloritic pervasively, weakly hematized along
fractures and within vugs, moderately ankeritic as ma
veins pinched along foliation. Locally yellow brown
iron oxide alteration. There is a weak graphitic
alteration along foliation.
There are 2 to 5% am to cm yugs within the fault zone.
There is 1 to 6% pyrite as fine blebs or grains
disseminated, also as fine stringers or modules
elongated along foliation associated with minor quartz
and ankerite veins and as very fine euhedral grains
filling vugs.
There are 2 to 5% very fine, barren, ankerite veins
pinched or boudinaged along foliation. There are 1 to
3%, 2 mm to 1 cm wide, pinched quartz - ankerite veins
aineralized.
Foliation averages 60 to 70 degrees to the core axis.
21.34 23.16 : 0.22 m lost core.
23.16 26.21 : 0.55 m lost core.
26.21 29.26 : 0.45 m lost core.
29.26 32.31 : 1.25 m lost core.
32.31 35.36 : 0.65 m lost core.
41.45 44.50 : 0.55 m lost core.

97101	21.34	21.94	.60	2-3	.030	. 05
97102	21.94	22.94	1.00	2-3	.070	.07
97103	23.71	24.71	1.00	1-3	.040	.06
97104	24.71	25.71	1.00	1-3	.090	.09
97105	25.71	26.71	1.00	1-3	.060	.06
97106	26.71	27.71	1.00	1-3	.040	.04
97107	27.71	28.81	1.10	1-3	.088	.08
97108	30.51	31.51	1.00	1-3	.070	.07
97109	31.51	32.51	1.00	1-3	.060	.06
97110	32.51	33.51	1.00	1-3	.080	.08
97111	34.16	35.16	1.00	1-3	.070	.07
97112	35.16	36.16	1.00	1-2	.060	.06
97113	36.16	37.16	1.00	1-2	.090	.09
97114	37.16	38.16	1.00	1-2	.040	.06
97115	38.16	39.16	1.00	2-6	.090	.09
97116	39.16	40.16	1.00	1-4	.070	.07
97117	40.16	41.16	1.00	2-6	.OB0	.OB
97118	41.16	42.16	1.00	2-5	.120	.12
97119	42.16	43.16	1.00	2-6	.160	.16
97120	43.16	44.16	1.00	2-6	.190	.19
97121	44.71	45.71	1.00	2-6	.090	.09
97122	45.71	46.71	1.00	1-3	.060	.06
97123	46.71	47.71	1.00	1-3	.080	.08
97124	47.71	48.71	1.00	1-5	.090	.09

						rage no. :	ı ş
From To	Description	Sample	From	To	Length I Su	1 6W	Au g/t
48.71 87.20	A RAÇALT						
70171 0712	, MUNICI	97125	48.71	49.71	1.00 1-	4 .260	.26
			49.71				.02
	Sheared. Pale grey to grey brown, moderately hard, fine	97127					.04
	grained, not magnetic, sheared and foliated mafic	97128					.01
	volcanic.	97129					.11
	Moderately chloritic and calcitic, moderately sericitic	97130	53.71	54.71	1.00 1-	4 .190	.19
	as mm to cm bands subparallel to foliation.	97131	54.71	55.71	1.00 1-	4 .200	.20
	There are 1 to 5%, 2 am to 1.5 cm wide white calcite	97132	55.71	56.71	1.00 1-	4 .160	.16
	veins pinched or brecciated along foliation. These veins	97133		57.71			.13
	contain pyrite blebs or modules.	97134		58.71		4 .150	. 15
	There is 1 to 4% pyrite as fine blebs or nodules	97135		59.71			.17
	disseminated.	97136		60.71			.13
	Foliation average 70 degrees to the core axis. Common		60.71				.15
	crenulations crosscut foliation at 40 to 50 degrees to	97138		62.71			17
	the core axis.		62.71				.20
	53.50 56.35 : moderately to strongly fractured section.		63.71				.19
	72.90 87.20 : gradational contacts into mafic volcanic sericitic weakly foliated to massive. This		64.71 65.71				.13 .18
	section is locally weakly to moderately		66.71				.23
	magnetic. There is 1 to 42 pyrite, nil to	97144		68.71			.15
	2% pyrrhotite.	97145		69.71			.21
	79.30 80.00 81.30 82.45 felsic intrusive. Hard, grey to	97146		70.71			.23
	pale grey, aphanitic, felsic intrusives.	97147		71.71			.22
	There are 5 to 15%, 1 to 3 am wide quartz	97148			1.00 1-		.20
	phenocrysts. Contacts are irregular. Trace		72.71				.22
	very fine pyrite disseminated.	97150	73.71	74.71	1.00 1-		.19
		97151	74.71	75.71	1.00 1-	4 .190	.19
		97152	75.71	76.71	1.00 1-	4 .170	.17
			76.71				. 19
	•						.21
		97155					.21
	•	97156					.18
		97157		81.30			.42
		97158 97159		82.45 83.45			. 28 . 28
		97160		84.45			. 25
		97161		85.45			.23
		97162		86.45			.22
			86.45				. 25
AD A4 1-1 -		•					
B7.20 184.7	BASALI	07114	87.20	00 24	1 00 T	D 17A	17
		97165		89.20			.17 .15
	A sequence of very fine grained to fine grained mafic	97166	89.20				. 25
	volcanics, anderately hard, pale grey to being grey,		90.20				.25
	weakly foliated, not magnetic.		101.00			R .140	.14

•	
From	To

·
Moderately chloritic, weakly to moderately sericitic,
weakly to moderately carbonatized, mostly ankeritic.
There are 1 to 3%, 1 to 3 mm wide ankerite quartz veins
subparallel to the weak foliation averaging 60 degrees
to the core axis, with rare 1 to 3 mm white to white - blue quartz veins along foliation.
There is trace pyrite as fine blebs or recrystallized
euhedral grains disseminated.
87.20 91.22 : pale grey, weakly to moderately foliated,
locally weakly brecciated mafic volcanic.
There are 1 to 2% white and white - blue
quartz veins, 2 mm to 1 cm wide at random
angles.
91.22 100.00: pale grey, massive to weakly foliated
section.
100.00 107.00: beige grey, weakly foliated at 0 to 5
degrees to the core axis, moderately sericitic section, weakly to moderately
calcitic.
107.00 110.80: beige grey, weakly foliated, moderately
sericitic mafic volcanic.
110.80 110.97 : LAMPROPHYRE dyke, contacts are 50 and 60
degrees to the core axis, weakly magnetic. 110.97 114.65: pale grey to beige grey, variably
sericitic section, weakly foliated.
114.65 115.15: pale grey moderately foliated mafic
volcanic with 2 LAMPROPHYRE dykes, 2 cm
and 9 cm wide, contacts are 55 degrees to
the core axis.
115.15 115.35 : strongly fractured core.
115.35 130.45 : alternating in meter-wide bands pale
grey and beige grey mafic volcanics.
Weakly to moderately foliated. Locally
trace pyrrhotite.
130.45 131.80 Felsic intrusive. Hard, grey to pale grey
aphanitic felsic intrusive. There are 5 to
15%, 1 to 5 mm wide quartz phenocrysts.
Trace very fine pyrite disseminated.
Contacts are 40 and 85 degrees to the core
axis.
131.80 143.40 : pale grey to dark grey, weakly sericitic
section, massive to weakly foliated. From
140.70 to 140.90 there are two, 7 cm and
4 cm wide white blue quartz calcite veins
mineralized with 10% nodular pyrite. Veins are subparallel to foliation at 60 to 70
degrees to the core axis.
147 40 (6) 10 a new balan ha new mann andonobal w

143.40 151.18: grey beige to grey green, moderately

151.18 154.10 LAMPROPHYRE. Mottled dark grey brown,

sericitic, weakly epidotised, weakly foliated and locally contorted section.

medium to coarse grained lamprophyre dyke.

Sample	From	To	Length	X Sul	6W	Au g/t
97169	102.00	103.00	1.00	TR	.140	.14
97170	110.00	111.00	1.00	TR	.100	.10
97171	122.50	123.50	1.00	TR	.070	.07
97172	129.45	130.45	1.00	TR	.110	.11
97173	130.45	131.80	1.35	TR	. 135	.10
97174	131.80	132.B0	1.00	TR	.100	.10
97175	140.20	141.20	1.00	TR-10	.190	.19
		151.18		TR	.620	. 62
		152.18		NIL	.180	.18
		153.18	• • • •	WIL	.080	.08
		154.10			.074	.08
		155.10			.310	.31
		160.50				.21
		172.80		TR	.080	.08
4/183	172.B0	1/5.80	1.00	TR	.040	.04

61 Au g/t

Strongly calcitic, moderately biotitic. Moderately magnetic. Poorly veined, barren of mineralization. Contacts are 20 and 40 degrees to the core axis.

154.10 159.78: pale grey, weakly sericitic, massive to weakly foliated section.

159.78 160.32 : beige grey, moderately sericitic, moderately to strongly foliated and contorted section. Foliation varies from 60 to 5 degrees to the core axis. 12 pyrite as medium grained blebs disseminated

160.32 173.80: pale grey to grey beige, eassive to moderately foliated. Some locally decimeter sections are weakly brecciated. Foliation varies from 70 to 5 degrees to the core axis.

173.80 184.71: pale beige grey to grey - green, moderately sericitic, weakly epidotised section. Weakly foliated to massive. Foliation is contorted from 178.20 to 179.0.

184.71 END OF HOLE.

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 66

Lab ID: 89930-1x

Date: Sept 30, 1989

Acct. No.: Exploration

SAMPLE	g/t Au	SAMPLE	g/t Au		SAMPLE	g/t Au
99701 02 03 04 05 06 07 08 09 10 11 12 13	0.06 0.20 0.35 0.10 0.12 0.17 0.15 0.16 0.14/0.13 0.17 0.25 0.12 0.33	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	0.13 0.08 0.15 0.13 0.87 0.28 0.49 0.17 0.09 0.10 0.08 0.71 0.22 0.14 0.12 0.14 0.12 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.08	7-68-85	99747 48 49 50	0.10 0.10 0.09

Signed Signed

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 77

81

82

0.13

Lab ID: 89003-1x

Date: Oct. 03, 1989

Acct. No.: Exploration

SAMPLE	g/t Au	SAMPLE	g/t Au
99751 52 53 54 55 55 57 58 59 61 62 63 64 65 66 67 71 72 73 74 75 77 78 79 80	0.12 0.09 0.05 0.12 0.16 0.12 0.08 0.07 0.06 0.07 0.08 0.09 0.03 0.16 0.17 0.15 0.13 0.14 0.10 0.12 0.09 0.11 0.12	99783 84 85 86 87 88 89 90 91 92 93 94 95 96 97	0.08 0.10 0.07 0.09 0.08 0.13 0.18/0.17 0.15 0.14 0.16 0.22 0.16 0.17
90	0.00/0.05		

proper

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 93

Lab ID: 89004-1x

Date: Oct. 04, 1989

Acct. No.: Exploration

SAMPLE o/t Au

SAMPLE g/t Au

SAMPLE o/t Au

SR-3

99798 0.18 99 0.25 99800 0.18/0.15 01 0.14 02 0.13

181

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 105

Lab ID: 89011-2x

Date: Oct. 11, 1989

Acct. No.: Exploration

SAMPLE o/t Au

SAMPLE q/t Au

SAMPLE o/t Au

au SR-10 99803 0.18 04 0.09 05 0.10 05 0.12 07 0.13 98 0.13 09 0.12 10 0.11/0.10 11 0.08 12 0.10 13 0.04 14 0.08 15 99822 0.09 0.07 16 0.10 23 0.06 17 0.10 24 0.03 25 18 0.09 0.04 19 0.11 26 0.05 20 0.10/0.10 27 0.04 21 28 0.07 0.05

ATRICE-

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 99 Lab ID: 89015-3x

g/t Au

SAMPLE

Date: Oct. 15, 1989 Acct. No.: Exploration

SAMPLE	g/t Au	SAMPLE	g/t Au
		99964	0.13
		65	0.12
		66	0.13
		67	0.12
		68	0.14
		69	0.12
			0.19/0.25
		71	0.12
		72	0.12
		73	0.05
		74	0.07
		75	0.05
		76	0.07
		77	0.07
		78 70	0.05
		79 80 (0.04
		81	0.05/0.05
		82	0.04
		83	0.03
		84	0.10
		85	0.11
C	Ch 1	88	0.07
au	SR-6.	87	0.07
99956	0.05	88	0.08
57	0.07	89	0.06
58	0.07	90	0.08/0.10
59	0.70		
60 0	.05/0.04		
61	0.05		
62	0.12		
63	0.12		

13/ Wable

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 102

Lab ID: 89015-2x

Date: Oct. 15, 1889 - Acct. No.: Exploration

2	SAMPLE	g/t Au		SAMPLE	g/t Au	SAMPLE	g/t Au.
	99929	0.13		99835	0.38	•	
	30	0.18/0.22		36	0.34		
	31	0.10	9	37	0.29		
'n	32	0.16	07-	38	0.29		
SR. S	33	0.11	S	39	0.30	,	
	34	0.12		40	0.30/0.32		
	35	0.13		41	0.03		
	36	0.07		42	0.03		
	37	0.11		43	0.04		
	38	0.08		44	0.03		
	39	0.10		45	0.04		
	40	0.11/0.09	1	46	0.03	_	
	41	0.14	V	47	0.04	·	
	42	0.06	S S	48	0.13		
	43	0.08	01	70	0.14		
9-	44	0.07		50	0.15/0.13		
~	45	0.07		51	0.15	-	
S	46	0.18		52	0.15	_	
	47	0.09		53	0.25		
	48	0.06		54	0.23		
	49	0.06		55	0.15		
	50	0.10/0.12	٥	56	0.22		
	51	0.15	7 ~	57	0.26	•	
	52 53	0.12	Š	58	0.26		
	53 54	0.12		59	0.19		
 	54	0.11	•	60	0.26/0.25	-	
	99829	0.04		00055	0.10	0 - 1	
	30	0.09/0.10		99955	0.10	- Sr-6	
0	31	0.25					
Sp-10	32	0.42					
W	33	0.43					
	34	0.36					

FMW. - Signed

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 86

Lab ID: 89016-1x

Date: Oct. 16, 1989

Acct. No.: Exploration

SAMPLE	g/t	Au	SAMPLE	g/t	Au	Same	LE g/t Au
						99861	0.15
						62	
						63	
						64	
						65	
						68	
						67	
						68	
						69	
						70	
						71	
						72	
						73	
						74	
						75	
!						76	
						77	
						78	
						79	
						80	
						81	
						82	
						83	0.11

are sp-5

AMAG

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 100 Lab ID: 89017-1x

Date: Oct. 17, 1989 Acct. No.: Exploration

99892 0.19 99924 0.18 93 0.18 4 25 0.19 95 0.18 97001 0.16 96 0.22 02 0.1 97 0.18 03 0.19 98 0.18 05 0.17 999884 0.18 06 0.12 12 0.36 06 0.12 12 0.36 07 0.16 13 0.37 08 0.24 14 0.38 85 0.17 08 0.24 86 0.41 09 0.16 15 0.36 87 0.16 0 0.20/0.15 16 0.22 98 0.17 10 0.20/0.15 16 0.22 99 0.18/0.17 11 0.33 -17 0.16 99 0.15/0.17 13 0.13 19 0.26 91 0.11 14 0.12 20 0.20/0.19 91 0.11 14 0.12 20 0.20/0.19
18 0.11 24 0.19 19 0.15 20 0.12/0.12 21 0.12 22 0.09

Holt-McDermott Mine
P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 98

Lab ID: 89019-1x

Date: Oct. 19, 1989

Acct. No.: Exploration

SAMPLE	g/t Au	SAMPLE	g/t Au	SAMP	LE g/t Au
				97025	0.17
				26	0.14
				27	0.12
				28	
				29	
				30	0.12/0.12
				31	0.12
				32	
,				33	
				34	
				35	
			:	. 36	
				37 23 38 39	
				₹ 38	
				•	
				. 40	
				41	
				42	
				43	
				44	
				45	
				1 46	
				enNnt \ 47	
				9/10/ 48	
				(Jarn. 49	0.11

:/V/

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 102

Lab ID: 89020-1x

Date: Oct. 20, 1989

Acct. No.: Exploration

SAMPLE oft Au

SAMPLE D/t Au

SAMPLE p/t Au

	97050	0.10/0.10
s.	51	0.10
SR-4 North clair	52	0.11
North clai	m 53	0.09
	99991	0.12
•	92	0.06
50.4	93	0.14
SR-6	94	0.18
-	- 95	0.04
•	96	0.08
	97	0.10
	98	0.12
	99	0.12
	100000	0.14/0.12

pm

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 98

Lab ID: 89022-1x

Date: Oct. 22, 1989

Acct. No.: Exploration

	SAMPLE	g/t Au	SAMPLE	g/t Au	SAMPLE	g/t Au
	97501	0.05				
	02	0.05				
	03	0.07				
	04	0.10				
	0 5	0.06				
	Ø 6	0.09				
	07.					
	08	0.06				
	09	0.07				
	10	0.08/0.09				
	11	0.05				
	12	0.10				
	13	0.18			•	
	1 4	0.13				
SR-6	15	0.08				
,	16	0.04				
	17	0.03				
,	18	0.06				
	19	0.08				
	20	0.07/0.06			•	
	21	0.04				
	22	0.22				
	23	0.31				
	24	0.27				
	25	0.09				
	26	0.13				
	27	0.10				
	28	0.08				
	29	0.07		. ₩		
	30	0.10/0.09				
	31	0.04				

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 63

Lab ID: 89024-1x

Date: Oct. 24, 1989

Acct. No.: Exploration

SAMPLE g/t Au

SAMPLE o/t Au

SAMPLE p/t Au

99927 0.33 SK-5 28 0.21

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 73

Lab ID: 89025-1×

Date: Oct. 25, 1989

Acct. No.: Exploration

SAMPLE	g/t Au	SAMPLE	g/t Au	SAMPLE	g/t Au
				97101	0.05
				02	0.07
				03	0.06
				04	0.09
				05	0.06
				0 6	0.04
				07	0.08
				Ø8 ₁	0.07
				09	0.06
•				10	0.08/0.08
				11	0.07
				12	0.06
				13	0.09
				14	0.05
				15	0.09
				16	0.07
				17	0.08

SR-11

MAR

Signed

•

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 79

g/t Au

Lab ID: 89027-1x

SAMPLE

Date: Oct. 27, 1989

Acct. No.: Exploration

97134 0.15 35 0.17 36 0.13 37 0.15 38 0.17 39 0.20 40 0.19/0.19 41 0.13 42 0.18
35 0.17 36 0.13 37 0.15 38 0.17 39 0.20 40 0.19/0.19 41 0.13 42 0.18
36 0.13 37 0.15 38 0.17 39 0.20 40 0.19/0.19 41 0.13 42 0.18 43 0.23 44 0.15 45 0.21 \$R-1/ 46 0.23 47 0.22 48 0.20
37 0.15 38 0.17 39 0.20 40 0.19/0.19 41 0.13 42 0.18 43 0.23 44 0.15 45 0.21 \$\$\mathref{R}\$-1/ 46 0.23 47 0.22 48 0.20
39 0.20 40 0.19/0.19 41 0.13 42 0.18 43 0.23 44 0.15 45 0.21 46 0.23 47 0.22 48 0.20
40 0.19/0.19 41 0.13 42 0.18
41 0.13 42 0.18 - 43 0.23 44 0.15 45 0.21 46 0.23 47 0.22 48 0.20
42 0.18 - 43 0.23 44 0.15 45 0.21 46 0.23 47 0.22 48 0.20
43 0.23 44 0.15 45 0.21 46 0.23 47 0.22 48 0.20
\$\text{44} & 0.15 \\ 45 & 0.21 \\ \$\text{46} & 0.23 \\ 47 & 0.22 \\ 48 & 0.20
\$R-11 45 0.21 46 0.23 47 0.22 48 0.20
SR-1/ 46 0.23 47 0.22 48 0.20
47 0.22 48 0.20
48 0.20
49 0.22
50 0.20/0.18
51 0.19
52 0.17
53 0.19
54 0.21
55 0.21
56 0.18
57 0.42
58 0.28
59 0.28
60 0.26/0.23
61 0.23
62 0.22
63 0.25

BR

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 96

Lab ID: 89027-2x

Date: Oct. 27, 1989

Acct. No.: Exploration

SAMPLE	g/t	Au	SAMPLE	g/t	Au	SAMPLE	g/t Au
						_97118	0.12
						19	0.16
						20	0.19
						21	0.09
						22	0.06
						23	0.08
						24	0.09
						25	0.26
_						26	0.02
						27	0.04
						28	0.01
						29	0.11
						30	0.19/0.18
						31	0.20
						32	0.16
						33	0.13
						97164	0.17
						65	0.15
						66	0.25
						67	0.11
						68	0.14
						69	0.14
						70	0.09/0.10
						71	0.07
						72	0.11
						73	0.10
						74	0.10

SR-11

J1/

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 107

SAMPLE p/t Au

Lab ID: 89029-1x

Date: Oct. 29, 1989

Acct. No.: Exploration

	SAMPLE	g/t Au	SAMPL	E g/t Au
			97188	0.04
			89	0.06
			90	0.09/0.08
			91	0.07
			92	0.08
			93	0.08
			94	0.08
			95	0.07
			96	0.23
			97	0.09
			98	0.09
			99	0.09
			97200	0.18/0.22
			01	0.49
			02	0.28
			03	0.08
			04	0.07
			05	0.14
) 05 06	0.07
	97175	0.19	07	0.08
	76	0.62	08	0.06
	77	0.18	09	0.05
	78	0.08	10	0.14/0.14
1	79	0.08	11	0.04
518-11	80	0.29/0.32	12	0.06
O,	81	0.21	13	0.04
	82	0.08	14	0.05
	83	0.04	15	0.09
	84	0.09	16	0.07
_	85 00	0.23	17	0.05
1-25	86	0.13	18	0.09
স	87	0.16	19	0.08
			20	0.12/0.12

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 45

Lab ID: 89031-2x

Date: Oct. 31, 1989 Acct. No.: Exploration

SAMPLE g/t Au SAMPLE g/t Au SAMPLE g/t Au 97221 0.17 0.36 22 23 0.04 24 0.09 25 0.10 26 0.08 27 0.07 28 0.01 97253 0.03 29 0.04 54 0.15 30 0.03/0.03 55 0.17 31 0.08 32 0.10 33 0.07 34 0.08 35 0.04 36 0.06 37 0.09 38 0.16 39 0.10 40 0.10/0.10 41 0.08 0.15 42 43 0.09 0.10 44 45 0.08 46 0.05 47 0.07 48 0.24 49 0.14 50 0.13/0.11 51 0.12 52 0.24

SK-8

pm

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

No. of Determinations: 108

Lab ID: 89N03-1x

Date: Nov. 03, 1989

Acct. No.: Exploration

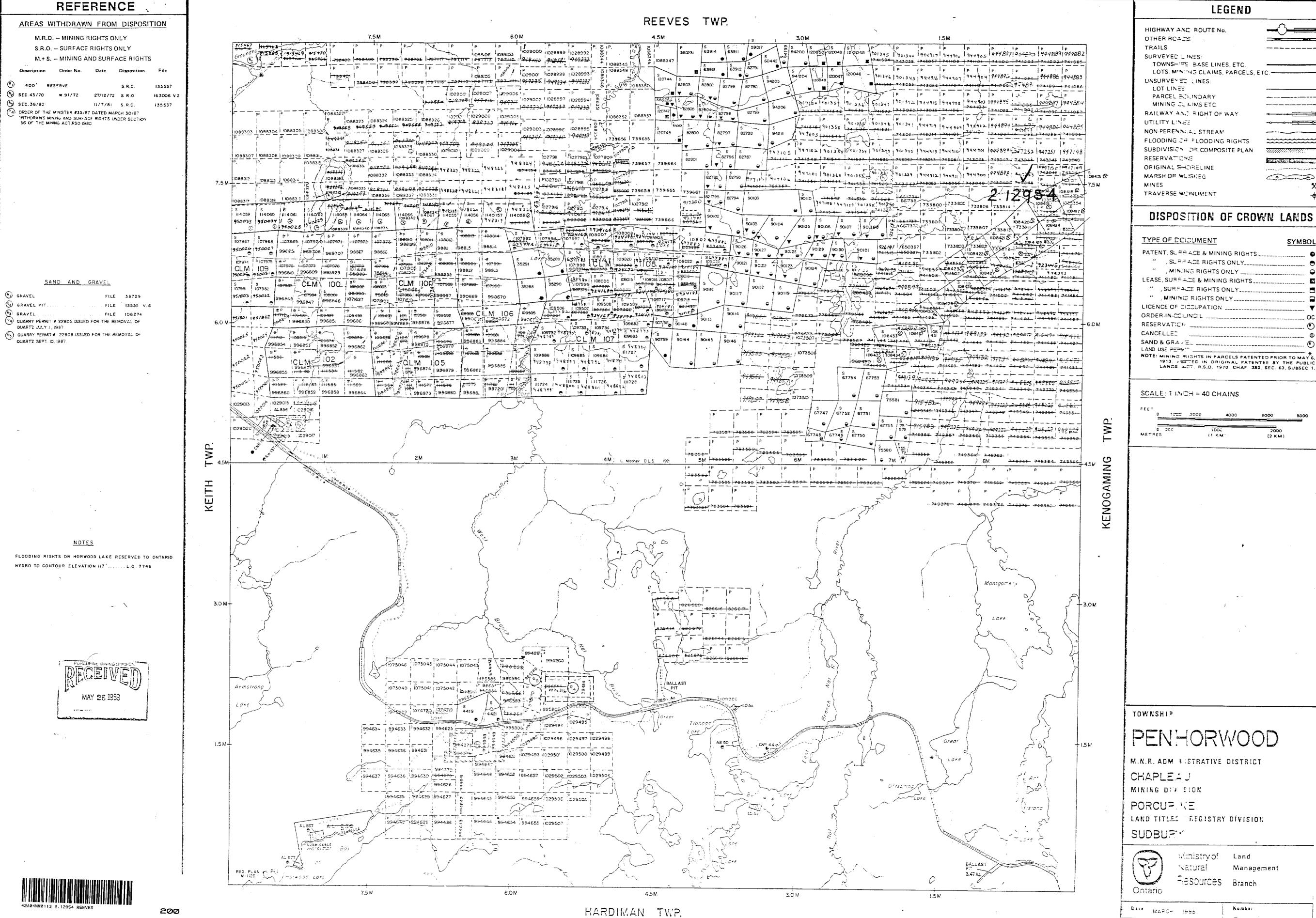
SAMPLE	g/t Au	SAMPLE	g/t Au	SAMPLE	g/t Au
		97256	0.13	97288	0.05
		57	0.18	89	0.12
		58	0.08		0.10/0.12
		59	0.05	91	0.14
		60	0.07/0.06	97292	0.14
		61	0.15	93	0.10
		62	0.10	94	0.10
		63	0.21	95	0.08
		64	0.08	96	0.10
		65	0.09	97	0.15
		66	0.07	98	0.09
		67	0.19	99	0.10
		68	0.17		0.07/0.08
•		69	0.24	- 01	0.13
		70	0.13/0.10	02	0.09
		a 71	0.06	03	0.08
		× 72	0.08	∞ 04 05	0.08
		× 73	0.15		0.07
		74	0.08	× 06	0.05
		75	0.05	07	0.27
		76	0.05	08	0.09
		77	0.04	09	0.05
		78	0.04		0.11/.010
		79	0.05	11	0.09
		80	0.08/0.07	12	0.04
		81	0.06	97313	0.06
		82	0.07	14	0.29
		83	0.07	15	0.04
97320	0.03/0.02	84	0.10	16	0.27
21	0.04	85	0.04	17 🙃	0.03
22	0.04	86	0.15	18	0.44
o 23	0.03	87	0.06	19	0.08 ≤R-9
6 - 24 25 25	0.02				
% 25	0.02				
26	0.02			14716	

Holt-McDermott Mine P.O. Box 278, Kirkland Lake, Ont., P2N 3H7

Assay Certificate

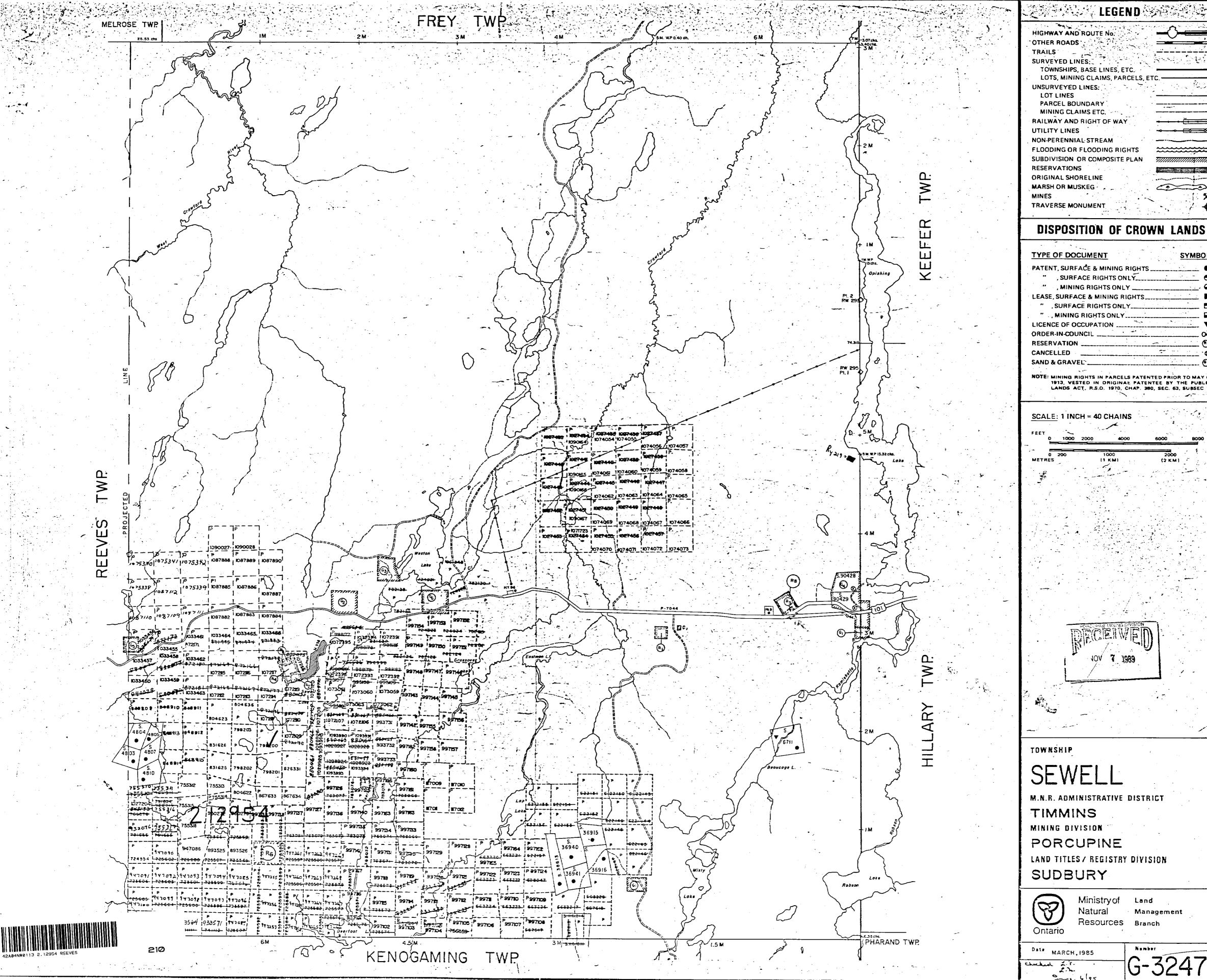
No. of Determinations: 100

g/t Au

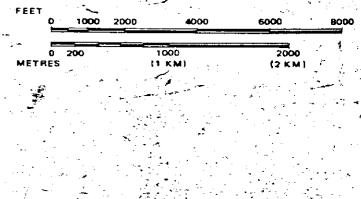

Lab ID: 89N08-1x

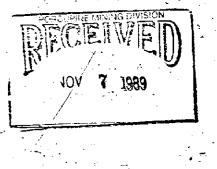
SAMPLE

Date: Nov. 08, 1989

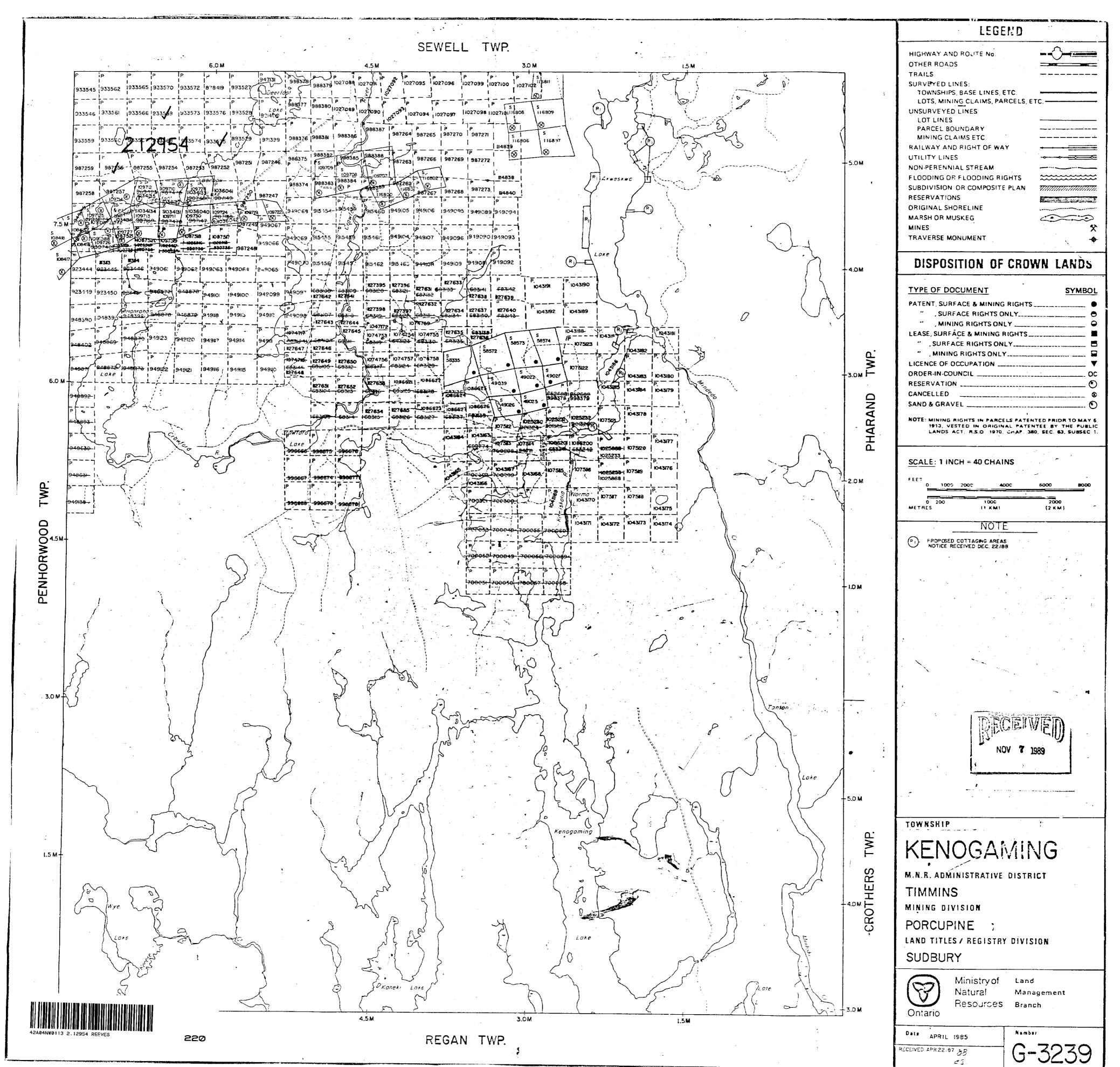

Acct. No.: Exploration

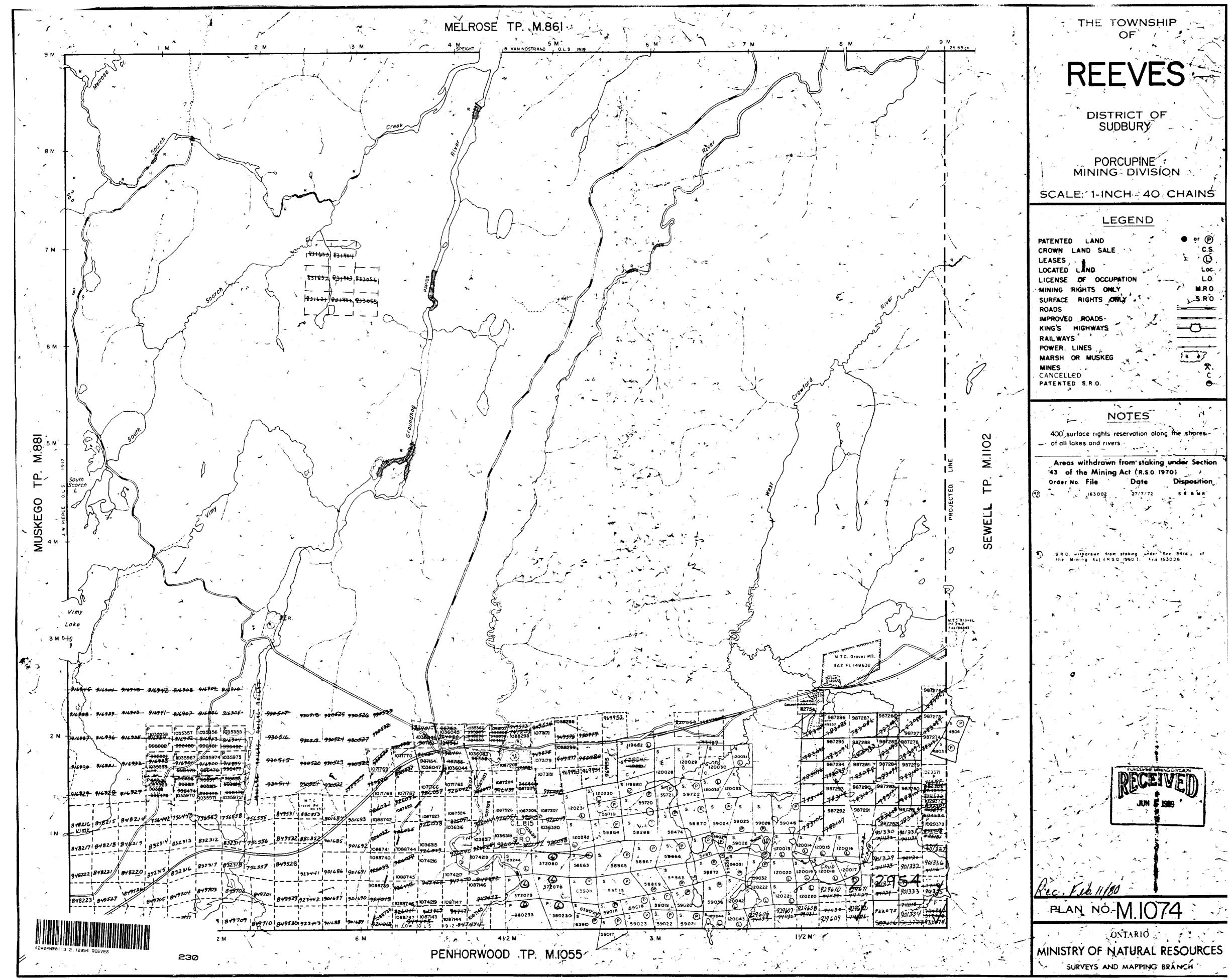
SAMPLE g/t Au	SAMPLE o/t Au
	97327 0.18
	28 0.05
	29 0.05
	30 0.16/0.13
	31 0.10
	32 0.09
	33 0.10
	34 0.30
	35 0.09
	36 0.11
	37 0.15
SR-9	38 0.13
, ,	39 0.16
	40 1.00
	41 0.21
97359 0.11	42 0.31
60 0.10/0.15	43 0.08
61 0.11	44 0.07
62 0.29	45 0.08
63 0.11	46 0.07
64 0.13	47 0.11
65 0.09	48 0.07
66 0.08	49 0.08
67 0.24	50 0.08/0.10
68 0.12	51 0.06
69 0.10	52 0.12
70 0.06/0.05	53 0.10
71 0.10	54 0.18
	55 0.06
	56 0.10
	57 0.18
	58 0.27




Chicked 1985

G-3244


YPE OF DOCUMENT	SYMBOL
ATENT, SURFACE & MINING RIGHTS	•
" , SURFACE RIGHTS ONLY	<u> </u>
", MINING RIGHTS ONLY	©
EASE, SURFACE & MINING RIGHTS_	
" , SURFACE RIGHTS ONLY	5
" , MINING RIGHTS ONLY	<u> </u>
ICENCE OF OCCUPATION	—
RDER-IN-COUNCIL	oc
ESERVATION	
ANCELLED	<u>~~</u> ` .⊗
AND & GRAVEL	and the second s
IOTE: MINING RIGHTS IN PARCELS PATE 1913, VESTED IN ORIGINAL PATE LANDS ACT, R.S.O. 1970, CHAP. 3	NTED PRIOR TO MAY 6, NTEE BY THE PUBLIC



Management

G-3247

