

2.17896

GEOPHYSICAL REPORT
ON THE
BRISTOL TOWNSHIP PROPERTY
INDUCED POLARIZATION SURVEY
LOCATED IN
BRISTOL TOWNSHIP - PORCUPINE MINING DIVISION
FOR
MARL/PELANGIO LARDER J.V.

[^0]
TABLE OF CONTENTS

INTRODUCTION 1
LOCATION AND ACCESS 1
CLAIMS 1
PERSONNEL 2
GEOLOGY 2
GEOPHYSICAL WORK PROGRAM 3
GENERAL IP THEORY 3
ELECTRODE ARRAY 3,4
SURVEY RESULTS 5,6
RECOMMENDATIONS AND CONCLUSIONS 6
CERTIFICATE 7
LIST OF EIGURES

LOCATION MAP
REGIONAL LOCATION MAP CLATM AND IP SKETCH

FIG. 1
FIG. 2
EIG. 3

APPENDIX

LIST OF MAPS

I.P. PSUEDOSECTIONS $1: 2500$
PLATE 1: LOE, L100W, L200W, L300WPLATE 2: L400W, L500W, L600W

INTRODUCTION

Rayan Exploration Limited of Timmins, ontario was hired by Marl Resources to conduct an Induced polarization survey on a group of 5 claims (8 units), located in Bristol Township. This report describes the survey parameters and results of the survey.

The property is situated southeast of and possibly on strike With the Homer Gold Mines gold occurrence and north of the Bandore discoveries. The I.P. Survey was carried out to detect disseminated sulphide mineralization, reported to be associated with the above discoveries.

LOCATION AND ACCESS

The property is located in the south/central part of Bristol Tomnship, approumately l Bkm southmest of the city of timmins, Cochrane District, Porcupine Hining Division, ontario (see figs.1,2,3).

Access to the property was gained vi三 HWY 101 west for approx. 23 km , then south on Hwy 144 , 6 km to the Tatachikapika River. A logging road goes east then northeast across Thorneloe Twp. parallel and just west of the river through the property in southern Bristol Top. This road continues north through the property and on to Hwy 101 but is only driveable on the north part.

CLAIM STATUS

The Property is comprised of 5 contiguous, unpatented mining claims(8 units) in Bristol Twp., Porcupine mining Division, ontario.

The claim numbers are as follows:

1202989	$(2$ units)	Bristol Township
1201513	$(3$ units)	Bristol Township
1201511	$(1$ unit)	Bristol Township
1025234	$(1$ unit)	Bristol Township
1198971	$(1$ unit)	Bristol Township

FlO 2

Client:MARL/PELANGIO LARDER J.V.		
Property: BRISTOL TOWNSHIP PROPERTY		
Title:		
	REGIONAL	LOCATION MAP
\|rwimeot ONT ${ }^{\text {a }}$	N.f.c.'42A/SW	1
${ }^{\text {da }}$: $100000{ }^{\text {P }}$	$0^{\text {Drasinat }} \mathrm{sDA}$	

PERSONNEL

The people directly involved in this program were all employed by Rayan Exploration Limited, during July, 1996, and are as follows:

```
Lanny Anderson.......................Timmins
Aurel Chaumont.......................Timmins
Danny Brazeau........................Timmins
Phil Mackmer.......................Timmins
Kim Giroux...........................Timmins
```

All work was supervised by R.J. Meikie, Timmins.

GEOLOGY

The property is shown on the Timmins-kirkland iake Map No. 2205, to be situated within the Abitibi Greenstone Belt which covers much of northeastern ontario and Northwestern Quebec.

Generally this belt is underlain by a variety of mafic to feisic volcanics and related sediments as well as felsic to ultramafic intrusive.

Map 2205, Timmins Kirkland Lake Geological Compilation series show the property to be uncierlain by metasediments vith north-northwest striking diabase dikes.

GEOPHYSICAI PROGRAM

A total of 800 meters of chainsaw cut grid lines were established to cover a single unit claim (1198971) which was not covered by the original magnetometer survey.

Lines $0-6$ West were all surveyed with Induced Polarization, resulting in 7 km . of grid lines being covered.

The following is a brief description on the Geophysical Survey Method used:

General IP Theory

The IP method invoives applying voitage across tho
electrodes in a pulsed manner i.e. 2 seconds on, 2 seconds off. A second "dipole" or electrode pair, measures the residual potential or voltage between them after the voltage is shut off or during the 2 second off cycle. The potential is recorded at different times after the shut off. If, for example, there is sulphide mineralization within the measuring dipoles, they will be poiarized or charges set up on the sulphide particles. This polarization gives the zone a capacitor effect, thereby blocking the current delay giving a higher chargeability reading.

A typical signature for many gold showings would be a chargeability high, resistivity high and magnetic low. This would be characteristic of a mineralized, highiy altered carbonated and/or silicified zone. However, this is by no means the only geological setting for gold, therefore every profile should be looked at individually and correlated with all other geophysicalgeological data.

Electrode Array

The electrode array used for the survey was the pole-Dipole Array. In this array, one current electrode (ci) and two receiver or potential electrodes (P1, P2), are moved down a line in unison. A second current electrode ($C 2$), is placed normal to the expected strike direction an infinite distance away, at least one km. The two current electrodes are hooked up to a motor-generator and a current applied across them, usually less than 3 amperes. The applied voltage is pulsed in a 2 second on, 2 second off pattern controlled by the transmitter.

Thus we have a single pole current electrode following a pair or dipole of potential electrodes moving down the line. The advantage of this "Pole-Dipole" array over the "Dipole-Dipole" array is a deeper current pattern between the infinite and moving current electrode, resulting in better penetration of conductive overburden. Also, this array is considerably faster in areas of high electrode contact impedance due to frozen and or rocky ground conditions because only one current electrode placement is needed for each reading. A disadvantage of the "Pole-Dipole" array is a slightly more ambiguous interpretation due to the assymetry of the array.

The distance between the potential electrodes is fixed, usually 25 or 50 meters and this is called the "a" spacing. When the potential dipole is positioned with one "a" spacing between the C1 and the nearest P_{C}, it is called a "N=1" reading with a theoretical plot point at the intersection of a 45 degree line drawn down in a section format from the di and nearest pi. When this $N=1$ reading is finished, the $C 1$ remains stationary and the P1P2 dipole moves anead one "a" spacing and a $N=2$ reading is obtained. Using the above plot convention it can be seen that the plot point is now further from the Cl and deeper. This is repeated for as many "N" readings as desired.

IP Survey Parameters

The If survey was carried out using the following parameters:

Method: Time Domain
Electrode Array: Pole-Dipole "a" spacing: 25 meters
Number of Dipoles Read: 1-6 inclusive
Pulse Duration: 2 seconds on, 2 seconds off
Delay Time: 310 milliseconds
Integration Time: 140 milliseconds
Receiver: Scintrex IPR-12
Transmitter: Scintrex TSQ-3 3KVA.
Data Presentation: Individual Psuedosections Scale: 1:2500

SURVEY RESULTS

The Induced Polarization Survey outlined three separate parallel chargeability anomalies, all striking in generally a northwesterly direction. The entire grid is underlain by a variable thickness of sand, which was extremely dry and frozen during the survey period. This resulted in high contact resistance and very low output current(low receiver signal). Because of the ground conditions, stainless steel electrodes were used resulting in noise due to polarization. Because of the high contact resistance and low signal, this noise was significant and in some cases reliable data was not obtained. The worst area was on $44,5,6 \mathrm{~W}$. . The previous magnetic survey shows a north-northwest linear mag high in this area which correlates with an interpreted diabase dike shown on O.G.S. map no. 2205, Timmins-Kirkiand Lake Geological Compilation Series. The noise encountered appeared to be from another I.P. Survey crew as well as geological type noise, both of which could be carried some distance from a distance along this dike. The other I.P. signal observed necessitated locating the crew and correlating survey time together. A considerable amount of down time resulted from this.

The most southerly zone strikes from LOE/25S to L4N/125N, remaining open to the southeast, and possibly to the northwest as geological noise in this area on $L 5 W$ and $L 6 W_{\text {m }}$ made it difficult to obtain reliable reading. It is moderateiy chargeable and occurs within a resistive background. There does not appear to be any significant magnetic correlation with this feature other than on L3W where it occurs along the north end of a wide break in a north-south striking magnetic high, which is most likely a diabase dike.

The central zone extends across the survey area from LOE/200n to L6W/550N, remaining open in both directions. The chargeable response is similar to the previous zone, being slightly stronger from LOE-L2W. Although not as bad as the southern zone, geological noise on L5W and L6W again made it difficult to obtain quality readings over this feature. The anomalous chargeabilities tends to be situated along the contact between a resistive unit to the south and conductive unit to the north, possibly indicating the contact between two geological units or structures. As with the previous zone, there does not appear to be any obvious magnetic correlation other that on L4W where it appears to occur within the centre portion of the same broken north-south striking magnetic high.

The third and most northerly anomaly is located on L5W/825N and L6W/875N, remaining open in both directions. This zone shows a weak response with incomplete coverage on L5W due to geological noise. Its resistive signature on L 5 W shows a contact, similar to that of the central zone. Also on L5w the anomaly seems to occur
within a narrow broken section of the north-south running magnetic high. This break is separate from the one in which the previous two zones occur. Other than this, there is no significant magnetic correlation.

As mentioned above, what was thought to be geological noise, was encountered on $L 4 W$, L5W and L6W. The source of this noise was not determined and it could not be eliminated. However, all three zones described above appear to be legitimate bedrock responses and should be further tested.

RECOMMENDATIONS AND CONCLUSIONS

The results of the current Induced polarization Survey indicate that the property hosts three separate, parallel, chargeability anomalies. Despite the noise problems encountered, all would appear to be legitimate responses worthy of additional testing.

All three of the zones outlined appear to strike northwesterly. It should be noted that the three zones appear to cut through the northwest striking magnetic anomaly in areas of lower magnetic susceptibility. Also, all three zones if projected to the southeast are coincident with prominent bends in the river, indicating a possible structural feature, possibly associated with the Homer gold Mines gold zone and several gold occurrences further along strike to the northwest in central Bristol Township.

A compilation of all available data both on the property and in the immediate area should be done. It is the authors opinion that the above proposed structural feature should be evaluated.

The property is favourably located with respect to the current high level of exploration activity in the area and all three anomalies should be drill tested. It is possible that the two northern zones may extend southeast and back on to the property, east of the river. The I.P. Survey should be extended to cover the eastern part of the property when the river is frozen.

CERTIEICATION

I, Steve Anderson of Timmins, Ontario hereby certify that:

1. I hold a three year Technologist Diploma from sir Sandford Fleming College, Lindsay, ontario, obtained in May 1981.
2. I have been practising my profession since 1979 in Ontario, Quebec, Nova Scotia, New Brunswick, Newfoundland, NWT, Manitoba, and Saskatchewan.
3. I have been employed directly with Asamera oil Inc. Urangellschaft Canada Ltd.. Nanisivik Mines Ltd., R.S. Middleton Exploration Services Ltd., and Rayan Exploration Ltd.
4. I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience and on the results of the field work conducted on the property during 1996.

APPENDIX A

SCINTREX IPR-12 RECEIVER

GONTRAX

 IPR-12 Time Domain Induced Polarization/Resistivity Receiver
Brief Description

The IPR-12 Time Domain IP/Resistivity Receiver is principally used in exploration for precious and base metal mineral deposits. In addition, it is used in geoelectrical surveying for groundwater or geothermal resources, often to great depths. For these latter targets, the induced polarization measurements may be as useful as the high accuracy resistivity results since it often happens that geological materials have IP contrasts when resistivity differences are absent.

Due to its integrated, lightweight, microprocessor based design and its large, 16 line display screen, the IPR-12 is a remarkably powerful, yet easy to use instrument. A wide variety of alphanumeric and graphical information can be viewed by the operator during and after the taking of readings. Signals from up to eight potential dipoles can be measured simultaneously and recorded in solid-state memory along with automatically calculated parameters. Later, data can be output to a printer or a PC (direct or via modem) for processing into profiles and maps.

The IPR-12 is compatible with Scintrex IPC and TSQ Transmitters, or others which output square waves with equal on and off periods and polarity changes each half cycle. The IPR-12 measures the primary voltage (Vp), self potential (SP) and time domain induced polarization (Mi) characteristics of the received waveform. Resistivity, statistical and Cole-Cole parameters are calculated and recorded in memory with the measured data and time.

Scintrex has been active in induced polarization research, development, manufacturing, consulting and surveying for over thirty years. We offer a full range of instrumentation, accessories and training.

The IPR-12 Receiver measures spectral IP signals from eight dipoles simultaneously then records measured and calculated parameters in memory.

Benefits

Speed Up Surveys

The IPR-12 saves you time and money in carrying out field surveys. Its capacity to measure up to eight dipoles simultaneously is far more efficient than older receivers measuring a single dipole. This advantage is particularly valuable in drillhole logging where electrode movement time is minimal.

The built-in, solid-state memory records all information associated with a reading, dispensing with the need for any hand written notes. PC compatibility means rapid electronic transfer of data from the receiver to a computer for rapid data processing.

Taking a reading is simple and fast. Only a few keystrokes are virtually needed
since the IPR-12 features automatic circuit resistance checks, SP buckout and gain setting.

High Quality Data

One of the most important features of the IPR-12 in permitting high quality data to be acquired, is the large display screen which allows the operator easy real time access to graphic and alphanumeric displays of instrument status and measured data. The IPR-12 ensures that the operator obtains accurate data from field work.

The number and relative widths of the IP decay curve windows have been carefully chosen to yield the transient information required for proper interpretation of spectral IP data. Timings are selectable to permit a very wide range of responses to be measured.

Specifications

Inputs

1 to 8 dipoles are measured simultaneously.

Input Impedance

16 Megohms

SP Bucking

± 10 volt range. Automatic linear correction operating on a cycle by cycle basis.

Input Voltage (Vp) Range
50μ volt to 14 volt
Chargeability (M) Range
0 to 300 millivolt
Tau Range
1 millisecond to 1000 seconds
Reading Resolution of Vp, SP and M Vp, 10 microvolt; SP, 1 millivolt; M, 0.01 millivolt/voit

Absolute Accuracy of Vp, SP and M
Better than 1\%

Common Mode Rejection

At input more than 100db
Vp Integration Time
10% to 80% of the current on time.

IP Transient Program

Total measuring time keyboard selectable at $1,2,4,8,16$ or 32 seconds. Normally 14 windows except that the first four are not measured on the 1 second timing, the first three are not measured on the 2 sec ond timing and the first is not measured on the 4 second timing. (See diagram on page 2.) An additional transient slice of minimum 10 ms width, and 10 ms steps, with delay of at least 40 ms is keyboard selectable.

Transmitter Timing

Equal on and off times with polarity change each half cycle. On/off times of $1,2,4,8$, 16 or 32 seconds. Timing accuracy of $\pm 100 \mathrm{ppm}$ or better is required.

External Circuit Test

All dipoles are measured individually in sequence, using a 10 Hz square wave. The range is 0 to 2 Mohm with 0.1 kohm resolution. Circuit resistances are displayed and recorded.

Synchronization

Self synchronization on the signal received at a keyboard selectable dipole. Limited to avoid mistriggering.

Filtering

RF filter, 10 Hz 6 pole low pass filter, statistical noise spike removal.

Internal Test Generator

1200 mV of $\mathrm{SP} ; 807 \mathrm{mV}$ of Vp and 30.28 mV / V of M .

Analog Meter

For monitoring input signals; switchable to any dipole via keyboard.

Keyboard

17 key keypad with direct one key access to the most frequently used functions.

Display

16 lines by 42 characters, 128×256 dots, Backlit Liquid Crystal Display. Displays instrument status and data during and after reading. Alphanumeric and graphic displays.

Display Heater

Available for below $-15^{\circ} \mathrm{C}$ operation.

Memory Capacity

Stores approximately 400 dipoles of information when 8 dipoles are measured simultaneously.

Real Time Clock

Data is recorded with year, month, day, hour, minute and second.

Digital Data Output

Formatted serial data output for printer and PC etc. Data output in 7 or 8 bit ASCII, one start, one stop bit, no parity format. Baud rate is keyboard selectable for standard rates between 300 baud and 51.6 kBaud. Selectable carriage return delay to accommodate slow peripherals. Handshaking is done by X -on/X-off.

Standard Rechargeable Batteries

Eight rechargeable Ni-Cad D cells. Supplied with a charger, suitable for $110 / 230 \mathrm{~V}, 50$ to $60 \mathrm{~Hz}, 10 \mathrm{~W}$. More than 20 hours service at $+25^{\circ} \mathrm{C}$, more than 8 hours at $-30^{\circ} \mathrm{C}$.

Ancillary Rechargeable Batteries

An additional eight rechargeable Ni-Cad D cells may be installed in the console along with the Standard Rechargeable Batteries. Used to power the Display Heater or as back up power. Supplied with a second charger. More than 6 hours service at $-30^{\circ} \mathrm{C}$.

Use of Non-Rechargeable Batteries

Can be powered by D size Alkaline batteries, but rechargeable batteries are recommended for longer life and lower cost over time.

Operating Temperature Range
$-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temperature Range
$-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Dimensions

Console: $355 \times 270 \times 165 \mathrm{~mm}$
Charger: $120 \times 95 \times 55 \mathrm{~mm}$
Weights
Console: 5.8 kg
Standard or Ancillary Rechargeable
Batteries: 1.3 kg
Charger: 1.1 kg

Transmitters available

IPC-9	200 W
TSQ-2E	750 W
TSQ-3	3 kW

TSQ 3 kW
TSQ-4 10 kW

scintar

In Canada

222 Snidercroft Rd. Tel.: (905) 669-2280
Concord, Ontario
Fax: (905) 669-6403
Canada, L4K 1B5
Telex: (905) 06-964570
In the U.S.A.
85 River Rock Drive Tel.: (716) 298-1219
Unit \# 202
Fax: (716) 298-1317
Buffalo, N.Y.
U.S.A. 14207

APPENDIX B

SCINTREX TSQ-3 TRANSMITTER

Function

The TSQ-3 is a multi-frequency, square wave transmitter suitable for induced polarization and resistivity measurements in either the time or frequency domain. The unit is powered by a separate motorgenerator.

The favourable power/weight ratio and compact design of this system make it portable and highly versatile for use with a wide variety of electrode arrays. The medium range power rating is sufficient for use under most geophysical conditions.

The TSQ-3 has been designed primarily for use with the Scintrex Time Domain and Frequency Domain Receivers, for combined induced polarization and resistivity measurements, although it is compatible with most standard time domain and frequency domain receivers. It is also compatible with the Scintrex Commutated DC Resistivity Receivers for resistivity surveying. The TSQ-3 may also be used as a very low frequency electromagnetic transmitter.

Basically the transmitter functions as follows. The motor turns the generator (alternator) which produces 800 Hz , three phase, 230 V AC. This energy is transformed upwards according to a front panel voltage setting by a large transformer housed in the TSQ-3. The resulting AC is then rectified in a rectifier bridge. Commutator switches then control the DC voltage output according to the waveform and frequency selected. Excellent output current stability is ensured by a unique, highly efficient technique based on control of the phase angle of the three phase input power. tion for maximum safety.

Digital readout of output current.
Programmer is crystal controlled for very high stability.

Low loss, solid state output current regulation over broad range of load and input voltage variations.

Rectifier circuit is protected against transients.

Excellent power/weight ratio and efficiency.

Designed for field portability; motor-generator is installed on a convenient frame and is easily man-portable. The transmitter is housed in an aluminum case.

The motor-generator consists of a reliable Briggs and Stratton four stroke engine coupled to a brushless permanent magnet alternator.

New motor-generator design eliminates need for time domain dummy load.

Time Domain: $T=1,2,4$ or 8 seconds, swith selectate

Waveforms output by the TSQ-3

Technical Description of
 TSQ-3/3000W
 Time and Frequency Domain IP and Resistivity Transmitter

TSQ-3 transmitter with portable motor generator unit

SCINTREX

222 Snidercroft Road

Concord Ontario Canada L4K 1B5

Telephone: (416) 669-2280
Cable: Geoscint Toronto
Telex: 06-964570

Transmitter Console	
Output Power	3000 VA maximum
Output Voltages	$300,400,500,600,750,900,1050,1200,1350$ and 1500 volts, switch selectable
Output Current	10 amperes maximum
Output Current Stability	Automatically controlled to within $\pm 0.1 \%$ for up to 20% external load variation or up to $\pm 10 \%$ input voltage variation

Digital Display Light emitting diodes permit display up to 1999 with variable decimal point; switch selectable to read input voltage, output current, external circuit resistance. Dual current range, switch selectable

Absolute Accuracy	$\pm 3 \%$ of full range			
Current Reading Resolution	10 mA on coarse range (0-10A)			
1 mA on fine range $(0-2 \mathrm{~A})$			Srequency Domain Waveform	Square wave, continuous with approximately 6% off time at polarity change
:---	:---			
Frequency Domain Frequencies	Standard: $0.1,0.3,1.0$ and 3.0 Hz, switch selectable Optional: any number of frequencies in range 0 to 5 Hz.			

Time Domain Cycle Timing	$\mathrm{t}: \mathrm{t}: \mathrm{t}: \mathrm{t}$;on:off:on:off;automatic
Time Domain Polarity Change	each 2t; automatic
Time Domain Pulse Durations	Standard: $\mathrm{t}=1,2,4$ or 8 seconds Optional: any other timings
Time and Frequency Stability	Crystal controlled to better than $.01 \%$
Efficiency	.78
Operating Temperature Range	$-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Overload Protection	Automatic shut-off at 3300 VA
Underload Protection	Automatic shut-off at current below 75 mA
Thermal Protection	Automatic shut-off at internal temperature of $+85^{\circ} \mathrm{C}$
Dimensions	$350 \mathrm{~mm} \times 530 \mathrm{~mm} \times 320 \mathrm{~mm}$
Weight	25.0 kg.

Power Source	
Type	Motor flexibly coupled to alternator and instal-

Motor	Briggs and Stratton, four stroke, $8 \mathrm{H} . \mathrm{P}$.
Alternator	Permanent magnet type, 800 Hz, three phase
	$230 \vee$ AC

Output Power	3500 VA maximum
Dimensions	$520 \mathrm{~mm} \times 715 \mathrm{~mm} \times 560 \mathrm{~mm}$
Weight	72.5 kg
Total System	150 kg includes transmitter console, motor generator, connecting cables and re-usable wooden crates
Shipping Weight	

Ministry of Northern Development and Mines

Declaration of Assessment Work Performed on Mining Land
Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

the Mining Act. Under section 8 of the correspond with the mining land holder.

Development and Mines, fth Floor,

Personal information collected Mining Act, the information is a 933 Ramsey Lake Road, Sud

Instructions: - For wort, p...unou un crown Lands before recording a claim, use form 0240.

- Please type or print in ink.

1. Recorded holders) (Attach a list if necessary)

| Name | Client Number |
| :--- | :--- | :--- |
| Address | Telephone Number |
| Address | Fax Number |

2. Type of work performed: Check (μ) and report on only ONE of the following groups for this declaration.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name S.D. Anderson	Telephone Number
Address	2684866
Rayon Exploration.	Fax Number 3607722
Address	Telephone Number
Name	Fax Number
Address	Telephone Number

4. Certification by Recorded Holder or Agent

I, \qquad , do hereby certify that I have personal knowledge of the facts set forth in this Declaration of Assessment Work having caysed the work to be performed or witnessed the same during or after its completion and, to the best of mykngylegge, the annexed report is true.

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

1, Levin $F_{\text {(Print Full Name) }}^{1}$

, do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.
Signature of Recorded Holder or Agent Authorized in Writing

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (r) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.2. Credits are to be cut back starting with the claims listed last, working backwards; or
2. Credits are to be cut back equally over all claims listed in this declaration; or
\square 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only

Received Stamp

Deemed Approved Date	Date Notification Sent
Date Approved	Total Value of Credit Approved
Approved for Recording by Mining Recorder (Signature)	

Personal information collected on this form is obtained under the authority of subsection $\mathbf{6 (1)}$ of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the Information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry, of Northern Development and Mines, fth Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.
2.17796

1. Work filed within two years of performance is filmed at 100% of the above Total Value of Assessment Work.
2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:
TOTAL VALUE OF ASSESSMENT WORK
$\times 0.50=$
Total \$ value of worked claimed.

Note:

- Work older than 5 years is not eligible for credit.
- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

I,
 do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as $\frac{1}{\text { (recorded holder, agent, or state company position with signing authority) }}$ am authorized to make this certification.

Ministry of Northern Development and Mines

Ministère du
Développement du Nord et des Mines

January 27, 1998
DESTOR RESOURCES CORP. CEDAR HILL
CONNAUGHT, ONTARIO
PON-1AO

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor
Sudbury, Ontario
P3E 6B5
Telephone: (888) 415-9846
Fax: (705) 670-5881

Dear Sir or Madam:
Submission Number: 2.17796

Status

W9760.00348 Approval After Notice

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Lucille Jerome by e-mail at jeromel2@epo.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

ORIGINAL SIGNED BY
Blair Kite
Supervisor, Geoscience Assessment Office
Mining Lands Section

Work Report Assessment Results

Submission Number: $\quad 2.17796$
Date Correspondence Sent: January 27, 1998
Assessor:Lucille Jerome

| Transaction | First Claim
 Number Township(s) / Area(s) Status | | |
| :--- | :--- | :--- | :--- | :--- |
| Number 1201511 BRISTOL Approval After Notice | Approval Date | | |
| W9760.00348 | | | January 26, 1998 |

Section:
14 Geophysical IP
The 45 days outlined in the Notice dated December 10, 1997 have passed.
Assessment work credit has been approved as outlined on the attached Distribution of Assessment Work Credit sheet.

Correspondence to:

Resident Geologist
South Porcupine, ON

Assessment Files Library
Sudbury, ON

```
Recorded Holder(s) and/or Agent(s):
Kevin Filo
TIMMINS, ONTARIO, CANADA
DESTOR RESOURCES CORP.
CONNAUGHT, ONTARIO
JOHN KEVIN FILO
TIMMINS, Ontario
DAVID V. JONES
SOUTH PORCUPINE, Ontario
PELANGIO - LARDER MINES, LIMITED
CONNAUGHT, Ontario
```


Distribution of Assessment Work Credit

The following credit distribution reflects the value of assessment work performed on the mining land(s).
Date: January 27, 1998
Submission Number: 2.17796
Transaction Number: W9760.00348

Claim Number		Value Of Work Performed
1201511		$1,300.00$
1025234		$1,300.00$
1198971		$1,100.00$
		$3,700.00$

CLAIM HOLDERS- BRISTOL TOWNSHIP

```
CLAIM P 1025234
50%- PELANGIO LARDER MINES, LIMITED #180621
    CEDAR HILL, CONNAUGHT PON 1AO
    PH 363 3100 FX 363 2169
50%- DESTOR RESOURCES CORP. #300234
    CEDAR HILL, CONNAUGHT PON 1AO
    PH 363 3100 FX 363 2169
CLAIMS P 1201511 and P 1198971
50%- JOHN KEVIN FILO #131784
    53 BARTLEMAN, TIMMINS
    PH 268 0371 FX 268 5894
50%- DAVID V JONES #149868
    909 GOVERNMENT ROAD SOUTH PORCUPINE
    PH 235 2474
```


4275. $4995,375,3595$ 44, Sis. and
\qquad

\qquad N. 664, coses
\qquad $-$ \qquad

Mis.

[^0]: Submitted by: S.D. Anderson
 Rayan Exploration Ltd.
 December. 1996

