ASSESSMENT REPORT

ON

MAGNETIC AND VLF-EM SURVEYS

CONDUCTED ON CLAIMS

```
724587 - 724591
740864 - 740873
752195 - 752205
779457-779461
779509 - 779515
825436 - 825440
```

Located in the Bristol Township in the
Porcupine Mining District, Ontario

Submitted by:
PA. DIORIO
December 10, 1984

TABLE OF CONTENTS

I INTRODUCTION ... 1

II LOCATION AND ACCESS .. 1

III GEOLOGY .. 2

IV PREVIOUS WORK .. 2

V SURVEY GRIDS .. 4

VI GEOPHYSICAL SURVEY ... 4
(1) Magnetometer
(2) VLF-EM

VII RESULTS AND RECOMMENDATIONS 5

REFERENCES

APPENDIX I - SCINTREX MP3 MAGNETOMETER

APPENDIX II - GEONICS EM-16

This report covers geophysical surveys carried out by UTAH MINES LTD., 1238 Riverside Drive, Timmins, Ontario, on two claim groups located in the Bristol Township within the Porcupine Mining District of Ontario. The property is currently under option by UML from Mr. Rolland Poirier, sole holder to the mining rights, who resides at 561 Birch St. North, Timmins, Ontario.

Two geophysical surveys (Magnetometer, and VLF-EM) were conducted as an aid to geologic mapping. The surveys commenced September 29th, 1984 and finished October 21st, 1984.

II LOCATION AND ACCESS:

The property, consisting of two claim groups, is located approximately 12 miles southwest of the Timmins City Centre in Bristol Township (Figure 1). Easy access is afforded to the larger claim group (38 claims) via highway 101 which crosses the southwest corner of the property. The smaller group (5 claims) is in the same vicinity and may be accessed by highway 144 .

The following information was obtained from Ferguson (1959). The entire "five claim group" is shown to be underlain by Kewatin andesite. The northwest half of the main claim group is mapped as Kewatin andesite with some rhyolite. The southeastern part of this claim group is mapped as greywacke and argillite intruded by quartz feldspar porphyry. All units are cut by Matachewan diabase dykes trending north and northwest.

IV PREVIOUS WORK

The following drill results are compiled from Ferguson (1959). DDH numbers are shown (where possible) on Figure 2.
D.D.H.

HOST ROCK
\# OF FEET ASSAYED
porphyry with
quartz and arseno
needles

781-874
agglomerates \& 3 separate tuffs needles
421-433
slate tuffs
graphitic slates with quartz carbonate stringers samples from 497-723

73 497-723

quartz veined graphitic slates	160
porphyry with quartz stringers	60

graphitic 50 slate
porphyry with 20 qtz-clct-tourmaline
graphitic slate $\quad 1$
graphitic tuffs 50
porphyry with quartz and arseno
.02 to $.06 \mathrm{oz} /$ ton Au 60
$.02 \mathrm{oz} /$ ton Au
$.02 \mathrm{oz} /$ ton Au
trace Au
.02 to $.04 \mathrm{oz} /$ ton Au
$.01 \mathrm{oz} /$ ton Au $.02 \mathrm{oz} /$ ton Au $.02 \mathrm{oz} /$ ton Au

No further drilling is recorded on the property in both the property in both the east and west sectors since 1945. Dome Mines optioned the Cortez ground in 1973, conducted Mag and Em surveys. No significant conductors were recorded and the property was subsequently dropped.

Survey grids were established with east-west base lines. Traverse lines were cut at 400^{\prime} intervals using conventional compass and chain techniques. Pickets were established at 100^{\prime} intervals along each line and marked with the appropriate line and station designation. Control lines were cut so as to intersect the ends of all traverse lines.

A total of 38.9 miles of grid were cut on the main claim group, of which 33.1 miles were surveys. An additional 3 miles of grid was cut and surveyed on the small claim group.
(1) Magnetometer;

Magnetometer used on the Bristol Property was a Scintrex MP-3 Proton Precession Magnetometer. This instrument is accurate to ± 0.1 of a gamma. Appendix I describes the general features of this instrument.

A base station magnetometer was set up in close proximity to the grids and programed to take readings every 15 seconds. While the base Mag was running, a field Mag was used to survey individual grid stations on the various traverse lines. At the end of each working day, the stationary (base) Mag was
used to automatically correct the field Mag for diurnal drift. A total of 1762 readings were recorded and corrected in this manner.
(2) VLF - EM;

A Geonics EM-16 VLF receiver was used to conduct the survey. Details of the specifications and operating procedures for this instrument are shown in Appendix II.

The survey was conducted using a transmitter located at Cutler Maine, operating at a frequency of 24.0 KHz . A total of 1801 in phase and out of phase measurements were recorded.

VII RESULTS AND INTERPRETATION

The results of these surveys are shown on the accompanying plan maps at t scale of $1^{\prime \prime}=400^{\prime}$.

The map data is dominated by north and northwest trending diabase dykes. Since these run sub-parallel to the survey grid, they are very poorly resolved and, hence, no attempt has been made to contour the data. Inferred geology is shown on the enclosed interpretation map.

VLF data was "Fraser filtered" and shown on the interpretation map along with conductor axes. These may correspond to conductive
zones such as water filled shears, bedrock conductors, or discontinuities in the conductive overburden layers.

Both mag and VLF data are best used (in this case) as an aid to geologic mapping.

PAD/ak

FERGUSON, S.A.; (1957) Geology of Bristol Township Sixty-Sixth Annual Report of the Ontario Department of Mines, Vol. LXVI, Part 7, 1957

1.0 Introduction

1.1 General Information

The MP-3 Proton Magnetometer is a high resolution microprocessorbased instrument whose flexibility permits it to function as a portable, mobile, or base station magnetometer. By varying the sensor configuration, the same console can be used to measure both total field and vertical magnetic gradients with a resolution of 0.1 nT .

Data is stored in the MP-3 in an expandable, solid state memory. Data processing is done in field by connecting the instrument to a printer, tape recorder, modem or microcomputer. Diurnal corrections are performed automatically by connecting a portable MP-3 to a base station unit and keying in suitable instructions.

The 32 character digital display uses full words in most cases, ensuring clear communication. Both present and previous data are displayed simultaneously, allowing comparisons to be made at a glance during a survey.

The MP-3 records header information, data values, station number, line number and the time of each observation in its internal memory. Data are first sorted by grid number, then in order of increasing line number and, within each line, by increasing station number. In this way, the data are organized logically regardless of the sequence in which they were taken. Ancillary data can also be manually entered and recorded at a given station, along with the magnetic parameters.

The MP-3 may appear complex because of the new microprocessorbased technology employed in its design. However, it does not perform any operation that is, in principle, unfamiliar to an experienced operator. Only the procedures have changed. For instance, recording data, normally performed by hand in a notebook, is executed in the MP-3 by a series of keystrokes and stored in the instrument's digital memory. Likewise, an error spotted in the records, which would be corrected or erased by hand, is now corrected by means of the Edit function which allows the error to be removed from memory, corrected, and then refiled, or erased altogether.

The MP-3 has been designed primarily for use in mineral and groundwater exploration or geological mapping; however, it can be equally useful in archeological searches or marine salvage operations.

1.2 Features

The features of the MP-3 are summarized below in point form. A more comprehensive description can be found in the MP-3 brochure, available from Scintrex.

- 0.1 gamma resolution over 20 K to 100 K gamma range
- Total field and vertical gradient measurements
- High gradient tolerance
- Same console for portable, base station or mobile survey applications
- Keyboard selectable automatic or manual tuning
- Automatic diurnal correction without a microcomputer
- Simple operation via keypad
- 32 character LCD display
- Alarm and warning messages ensure data quality
- 'Speaks' any language with Latin characters
- Solid-state nemory expandable to hold several days' data
- Records actual coordinates
- Records time
- Records header information
- Records ancillary data
- Permits revision of data
- Outputs to commonly available printers, modems, tape recorders and microcomputers
- Prints data lists and plots profiles directly on a digital printer
- Organizes data by grid, line and station number, regardless of the order in which data were taken
- Several power supply options
- Wide operating temperature range

2.0 Instrument Description

2.1 Introduction

The following section provides a detailed descriotion of the visible components of the console, both front and rear, and of the battery pack.

2.2 Front Panel

The front panel eontains the l.co display, the kevhorit for

Pigure 2

2.2.1 Display

 लasily, withoul referring (:) a list of cones.

EM16 SPECIFICATIONS

MEASURED QUANTITY	In-phase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).
SENSITIVITY	In-phase $: \pm 1508$
	Ouad-phase : ± 408
RESOLUTION	± 18
OUTPUT	Nulling by audio tone. In-phase indication from mechanical inclinometer and quad-phase from a graduated dial.
OPERATING FREQUENCY	15-25 kHz VLF Radio Band. Station selection done by means of plug-in units.
OPERATOR CONTROLS	On/Off switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.
POWER SUPPLY	6 disposable 'AA' cells.
DIMENSIONS	$42 \times 14 \times 9 \mathrm{~cm}$
WEIGHT	$\begin{aligned} & \text { Instrument: } 1.6 \mathrm{~kg} \\ & \text { Shipping }: 4.5 \mathrm{~kg} \end{aligned}$

CASE
FIG.I EM IG

The VLF-transmitting stations operating for communications with submarines have a vertical antenna. The Antenna current is thus vertical, creating a concentric horizontal magnetic field around them. When these magnetic fields meet conductive bodies in the ground, there will be secondary fields radiating from these bodies. (See Figures 3 \& 4). This equipment measures the vertical components of these secondary fields.

The EM16 is simply a sensitive receiver covering the frequency band of the VLF-transmitting stations with means of measuring the vertical field components.

The receiver has two inputs, with two receiving coils built into the instrument. One coil has normally vertical axis and the other is horizontal.

The signal from one of the coils (vertical axis) is first minimized by tilting the instrument. The tilt-angle is calibrated in percentage. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the other coil, after being shifted by 90°. This coil is normally parallel to the primary field, (See instrument Block Diagram - Figure 2).

Thus, if the secondary signals are small compared to the primary horizontal field, the mechanical tilt-argle is an accurate measure of the vertical real-component, and the compensation $\mathbb{\pi} / 2-s i g n a l$ from the horizontal coil is a measure of the quadrature vertical signal.

Some of the properties of the VLF radio wave in the ground are outlined by Figures 4 thru 9.

ACCOMPANYING NOTES FOR FIGURES $2-9$
FIGURE 2
is the block diagram of the EMI6. The diagram is self-explanatory. Both the coils (reference and signal coil) are housed in the lower fart of the handle. The directions of the axis of the coils are as follows: The reference coil axis is basically horizontal and is kept more or less parallel to the primary field during measurement. The signal coil is at right angles to the reference coil and its axis is, of course, vertical.

The signal amplifier has the two inputs, one connected to the signal coil and one to the reference channel. By tilting the coils, the operator minimizes the signal from the signal (vertical axis) coil. Any remaining signal is reduced to zero by the quadrature control in the reference channel. The signal amplifier has zero output

Continued...
when both input signals are equal in amplitude and phase. Thus, the setting of the quadrature control for minimum output from the receiver indicates the relative amount of the quadrature signal of the vertical coil. The measured value does not depend on the absolute value of the signal, only the relative values are measured.

FIGURE 3 shows the proper planning of survey in relation to the direction of strike and primary field, direction of survey lines etc.

FIGURE 4

FIGURE 5
explains the time delay (phase lag) of of travelling electromagnetic wave above and in the conductive ground. The amplitude of the wave in the ground is also attenuated.
shows on the left the physical direction of the primary $\left(H_{x}\right)$ and secondary $\left(H_{z}\right)$ field vectors in relation to conductive ground and target. The location of secondary current distribution in the target is shown schematically. We see that most current concentration is in the upper edge of the good conductor. The return secondary current is more spread due to the diminishing primary field in the conductive rock. On the right, the time vectors show the retarded phase of H_{x} in the target and the phase advance of the secondary field H_{z} compared to H_{X}. We must remember that the H_{2} will have additional phase lag when it penetrates back towards the surface.

This figure shows a positive real component of the H_{2} while the quadrature-remains neqative.

FIGURE 6
6
This graph shows the primary field attenuation in nepers, relative amplitude and phase lag in radians of the primary field as function of depth and conductivity of the qround. This graph is for 20 kHz .

FIGURE 7
shows the maximum obtainable amplitude H_{2} from a sphere or horizontal cylinder as a function of the radius-to-depth ratio. The schematic on the left shows the depth determination for the spherical or cylindrical target.

FIGURE 7 Continued...
The equation for the phase shift and attenuation of the primary field in conductive material, where $\sigma / \varepsilon \omega \gg 1$ is as follows:

$$
\begin{aligned}
\alpha=B=\frac{/ \omega \mu \sigma}{2} \quad \text { where } \alpha & =\text { attenuation, nepers } / \mathrm{m} \\
B & =\text { phase lag, radian } / \mathrm{m} \\
\omega & =2 \pi \mathrm{f} \\
\nu & =\text { magn. permnahility }-1 \| \times 10^{-7} \\
0 & =\text { mhos } / \mathrm{m}
\end{aligned}
$$

FIGURE 8 This graph gives the amplitude and phase shift of the field (in conductive media) as function of skin depth, $\delta=1 / \alpha$.

This equation gives the skin-depth in meters for certain conductivity and frequency. Normalize this to one, and the graph in Figure 8 gives the amplitude and phase shift of the wave at any relative depth.

FIGURE 9
The vertical field from a long wire source is plotted here. A vertical semi-infinite sheet target would be simulated this way. In practice it hardly works accurately due to the spread of the secondary current in the target because of the finite conductivity and the attenuation and phase shift of the primary field as function of depth.

Planning of survey

Directional vectors

$$
\begin{aligned}
& H_{X}=\text { primary field } \\
& H_{z}=\text { sec. field, vert. } \\
& \text { component }
\end{aligned}
$$

Time vectors

Conductive target in conductive medium

Long cylinder or sphere in horizontal field $H_{x}=1$
Depth $z=1.16 \Delta x$ for cylinder, 3 $z=\Delta x$ for sphere
$\sigma=\infty$

FIG. 7

Maximum available anomaly from

SELECTION OF THE STATION

The magnetic field lines from the station are at right angles to the direction of the station. Always select a station which gives the field approximately at right angles to the main strike of the ore bodies or geological structure of the area you are presently working on. In other words, the strike of geology should point to the transmitter. (See Figu: ${ }^{2}$). Of course, $\pm 45^{\circ}$ variations are tolerable in practice.

Tuning of the EMI 6 to the proper transmitting station is done by means of plug-in units inside the receiver. The instrument takes two selector-units simultaneously. A switch is provided for quick switching between these two stations.

To change a plug-in unit, open the cover on top of the instrument, and insert the proper plug. (Figure lo) Close the cover and set the selector switch to the desired plug-in.

On the following pages is a variety of information on the most commonly used (i.e. reliable) VLF Transmitters including transmission frequency, geographical location and their scheduled maintenance periods.

FIELD PROCEDURE

Orientation \& Taking a Reading
The direction of the survey lines should be selected approximately along the lines of the primary magnetic field, at right angles to the direction to the station being used. Before starting the survey, the instrument can be used to orient oneself in that respect. By turning the instrument sideways, the signal is minimum when the instrument is pointing towards the station, thus indicating that the magnetic field is at right angles to the receiving coil inside the hande. (Fig.11).

To take a reading, first orient the reference coil (in the lower end of the handle) along the magnetic lines. (Fig.l2) Swing the instrument back and forth for minimum sound intensity in the speaker. Use the volume control to set the sound level for comfortable listening. Then use your left hand to adjust the quadrature component dial on the front left corner of the instrument to further minimize the sound. After finding the minimum signal strength on both adjustments, read the inclinometer by looking into the small lens. Also, mark down the quadrature reading.

While travelling to the next location you can, if you wish, keep the instrument in operating position. If fast changes in the readings occur, you might take extra stations to pinpoint accurately the details of anomaly.

The dials inside the inclinometer are calibrated in pusitive and negative percentages. If the instrument is facing 180° from the original direction of travel, the polarities of the readings will be reversed. Therefore, in the same area take the readings always facing in the same direction even when travelling in opposite way along the lines.

The lower end of the handle, will as a rule, point towards the conductor. (Figs. 13814) The instrument is so calibrated that when approaching the conductor, the angles are positive in the in-phase component. Turn always in the same direction for readings and mark all this on your notes, maps, etc.

THE INCLINOMETER DIALS
The right-hand scale is the in-phase percentagelie. Hs/Hp as a percentage). This percentage is in fact the tangent of the dip angle. To compute the dip angle simply take the arctangent of the percentage reading divided by 100 . See the conversion graph on the following page.

The left-hand scale is the secant of the slope of the ground surface. You can use it to "calculate" your distance to the next station alonq the slope of the terrain.

Page 20

(1) Open both eyes.
(2) Aim the hairline along the slope to the next station to about your eye level height above ground.
(3) Read on the left scale directly the distance necessary to measure along the slope to advance 100 (ft) horizontally.

We feel that this will make your reconnaissance work easier. The outside scale on the inclinometer is calibrated in degrees just in case you have use for it.

PLOTTING THE RESULTS

For easy interpretation of the results, it is good practice to plot the actual curves directly on the survey line map using suitable scales for the percentage readings. (Fig.15) The horizontal scale should be the same as your other maps on the area for convenience.

A more convenient form of this data is easily achieved by transforming the zero-crossings into peaks by means of a simple numerical filtering technique. This technique is described by D.C. Fraser in his paper "Contouring of VLF-EM Data", Geophysics, Vol. 34, No. 6. (December 1969)pp958-967. A reprint of this paper is included in this manual for the convenience of the user.

This simple data manipulation procedure which can be implemented in the field produces VLF-EM data which can be contoured and as such provides a significant advantage in the evaluation of this data.

\qquad

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL

 TECHNICAL DATA STATEMENTTO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer \qquad Electromagnetic \qquad Radiometric \qquad DATE: 10 thee fe/SIGNATURE: $\frac{\text { Author of Report or Agent }}{\text { receit }}$

Res. Geol. \qquad Qualifications \qquad
Previous Surveys

File No.	Type	Date	Claim Holder

Assessment Work Breakdown

Man Days are based on eight (8) hour Technical or Line-cutting days. Technical days include work performed by consultants, draftsmen, etc..

GEOPHYSICAL TECHNICAL DATA

GROLNNI SURVEYS - If more than one survey, specify data for each type of survey

Number of Stations_ VLF $=1801, \mathrm{MAG}=1762$	Number of Readings VLF $=3602$, MAG $=1.762$
Station interval 100	Iine spacing 400
Profile scale __As shown	
Contour interval As shown	

Instrument Scintrex MP-3
Accuracy - Scale constant +/-. 1 gammas
Diurnal correction method Base Magnetometer
Base Station check-in interval (hours)
Base Station location and value_100' South east of base_line at IOE Value 59088

Instrument \qquad
Coil configuration Fixed transmitter/Tilt angle

Coil separation
Accuracy \qquad \square Shoot back

Parallel line
Method:
XX Fixed transmitter都 (specify V.L.F. station)
Parameters measured \qquad

Instrument \qquad
Scale constant \qquad
Corrections made \qquad
Base station valuc and location

Elevation accuracy

Instrument \qquad
Method \square Time Domain
Parameters - On time \qquad

- Off time \qquad
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing
Type of electrode \qquad

SELF POTENTIAL
Instrument Range \qquad
Survey Method \qquad

Corrections made \qquad

RADIOMETRIC

Instrument \qquad
Values measured
Energy windows (levels) \qquad
Height of instrument \qquad Background Count \qquad
Size of detector
Overburden \qquad (type, depth - include outcrop map)
)THERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument \qquad
Accuracy \qquad
Parameters measured \qquad

Additional information (for understanding results)
\qquad
\qquad

AIRBORNE SURVEYS
Type of survey(s)
Instrument(s)
(specify for each type of survey)
Accuracy
(specify for each type of survey)
Aircraft used
Sensor altitude \qquad
Navigation and flight path recovery method \qquad

Aircraft altitude Line Spacing
Miles flown over total area Over claims only

Numbers of claims from which samples taken. \qquad
\qquad
\qquad

Total Number of Samples
Type of Sample \qquad
Average Sample Weight \qquad

Soil Horizon Sampled \qquad
Horizon Development \qquad
Sample Depth \qquad
Terrain. \qquad

Drainage Development \qquad
Estimated Range of Overburden Thickness \qquad
\qquad
\qquad

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis \qquad
\qquad
\qquad
\qquad

General
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PREFIX	NUMBER
P	752202
P	752203
P	752204
P	752205
P	779457
P	779458
P	779459
P	779460
P	779461
P	779509
P	779510
P	779511
P	779512
P	779513
P	779514
P	779515
P	825436
P	825437
P	825438
P	825439
P	825440

Technical Assessment Work Credits

Recorded Holder	UTAH MINES LTD
Township or Area	BRISTOL TOWNSHIP

Special credits under section 77 (16) for the following mining claims

> | 20 DAYS ELECTROMAGNETIC |
| :--- |
| 10 DAYS MAGNETOMETER |

10 DAYS ELECTROMAGNETIC 5 DAYS MAGNE TOMETER

P 779459 P 779514
779515
825440

No credits have been allowed for the following mining claims
not sufficiently covered by the survey Insutficient technical data filed

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geological - 40; Geochemical - 40; Section 77(19)—60:

Mining Recorder
Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
PAN 2 ST
Dear Sir:

Enclosed are two copies of a Notice of Intent with statements listing a reduced rate of assessment work credits to be allowed for a technical survey. Please forward one copy to the recorded holder of the claims and retain the other. In approximately fifteen days from the above date, a final letter of approval of these credits will be sent to you. On receipt of the approval letter, you may then change the work entries on the claim record sheets.
For further information, if required, please contact
Mr. R.J. Pichette at 416/965-4888.

Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
MFA 1W3
R. ${ }^{\text {D. Isherwood:mc }}$
Encls.
cc: Utah Mines Ltd
1238 Riverside Drive
Timmins, Ontario
PAR IA
Attention: G.L. Treadwell
cc: Mr. G.H. Ferguson
Mining \& Lands Commissioner Toronto, Ontario

Ministry of
Natural
Resources
Notice of Intent
for Technical Reports

19841221
2.7565/450/84

An examination of your survey report indicates that the requirements of The Ontario Mining Act have not been fully met to warrant maximum assessment work credits. This notice is merely a warning that you will not be allowed the number of assessment work days credits that you expected and also that in approximately 15 days from the above date, the mining recorder will be authorized to change the entries on his record sheets to agree with the enclosed statement. Please note that until such time as the recorder actually changes the entry on the record sheet, the status of the claim remains unchanged.

If you are of the opinion that these changes by the mining recorder will jeopardize your claims, you may during the next fifteen days apply to the Mining and Lands Commissioner for an extension of time. Abstracts should be sent with your application.

If the reduced rate of credits does not jeopardize the status of the claims then you need not seek relief from the Mining and Lands Commissioner and this Notice of Intent may be disregarded.

If your survey was submitted and assessed under the "Special Provision-Performance and Coverage" method and you are of the opinion that a re-appraisal under the "Man-days" method would result in the approval of a greater number of days credit per claim, you may, within the said fifteen day period, submit assessment work breakdowns listing the employees names, addresses and the dates and hours they worked. The new work breakdowns should be submitted direct to the Land Management Branch, Toronto. The report will be re-assessed and a new statement of credits based on actual days worked will be issued.

Mining Recorder Ministry of Natural Resources 60 Wilson Avenue Timmins, Ontario P4N 257

Dear SIr:

```
RE: Notice of Intent dated December 21, 1984 Geophysical (Electromagnetic and Magnetometer) Survey on Mining Claims P 724587 et al in Bristol Township
```

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

S.E. Yundt

Director
Land Management Branch
Whitney Block, Room 6643
Queen's Park
Toronto, Ontario
M7A 1 W3
Phone: (416)965-4888
D. Isherwood:mc
cc: Utah Mines Ltd 1238 Riverside Drive
Timmins, Ontario
PAR 1 A4
Attention: G.L. Treadwell
Encl.
cc: Mr. G.H. Ferguson Mining \& Lands Commissioner Toronto, Ontario
cc: Resident Geologist Timins, Ontario

UTAH MINES LTD.

MINERAL EXPLORATION

1238 RIVERSIDE DR., TIMMINS, ONTARIO P4R IA4
(705) 264-7221

October 23, 1984

```
Mining Recording Office
Whitney Block
Queen's Park
TORONTO, Ontairo
M7A lW3
Dear Sir;
    Please find enclosed in duplicate geophysical
technical data statements outlining geophysical surveys
to be applied as assessment credit on the claims as
listed in the statement in Bristol Township. A technical
report of these surveys, including maps, interpretations,
conclusions, etc, will follow within the allotted 60
day period.
```

Thankyou

Sincerely

J.W. Newsome Geologist/Timmins

ENCL

UTAH MINES LTD.
 MINERAL EXPLORATION

SUITE 1406, 4 KING STREET WEST, TORONTO, ONTARIO, CANADA M5H 186 (416) 368.3884

December 13, 1984.

Mr. J.C. Smith,
Supervisor,
Mining Land Section,
Ministry of Natural Resources,
Room 6451, Whitney Block,
99 Wellesley Street, West,
Toronto, Ontario
M5S 1C5

RECEIVED

DEC 141984
mining landos section

Dear Sir:
Please find enclosed 2 signed copies of a techical report, accompanying plan maps and "Technical Data Statement" concerning work performed on claims within Bristol Township (Work Report \#450/84). The enclosed "Technical Data Statement" replaces the one inadvertently sent to you on October 21 , 1984 when the Report of Work was filed with the Mining Recorder.

Respectfully submitted,

Peter A, Diorio Geophysicist

PAD/ak

Encl.

Control Sheet

TYPE OF SURVEY
GEOPHYSICAL
___ GEOLOGICAL
\qquad GEOCHEMICAL
\qquad EXPENDITURE

MINING LANDS COMMENTS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 Whin

\%HHMEMTHTHE

