63.5243

2405SE0056 63.5243 THORNELOE

010

SUMMARY REPORT ON THE 1987/88 WORK PROGRAM

AND

RECOMMENDATIONS FOR 1988 SUMMER WORK PROGRAM

ON THE ROBELE JOINT VENTURE

THORNELOE AND BRISTOL TOWNSHIPS PORCUPINE MINING DIVISION

NTS: 42A/5,6

FOR

ESSO MINERALS CANADA A DIVISION OF ESSO RESOURCES CANADA LTD.

AND

TOROGOLD RESOURCES INC.

April, 1988 Timmins, Ontario Disk.127 Joseph A. MacPherson Geologist, Esso Minerals Canada File No. Ont 88. C603

J. A. Mor Piberson

0M87-5-JV-240

1-

TABLE OF

Ø10C

Page

SUMMARY AND RECOMMENDATIONS	1			
INTRODUCTION	2			
PROPERTY GEOLOGY	2			
STRUCTURE	6			
SUMMARY OF PREVIOUS EXPLORATION PROGRAMS	7			
PURPOSE OF 1987/88 EXPLORATION PROGRAM	8			
RESULTS OF THE PROGRAM	8			
1 Thorneloe East Group, North Half 2 Thorneloe East Group, Southeast Part 3 Step-out Drilling, No. 1 and No. 2 Shears 4 Discovery Zone				
INTERPRETATION OF RESULTS	11			
PROPOSAL FOR 1988 SUMMER PROGRAM	22			

TABLES

Page

	Drill Hole Summaries G x W Values, Longitudinal Section, Discovery Zone	3 16, 17
Table 4 Table 5	Significant Gold Intersections, A" Zone Significant Gold Intersections, "B" Zone Significant Gold Intersections, "C" Zone Proposed Drilling, 1988 Summary Program	18 19 20 23

FIGURES

Figure	1	Significant Gold Intersections According to Rock Type	12
Figure	2	Significant Gold Intersections by Rock Type G x W Values > 7.0	13
Figure	3	Vertical Section Looking West, All G x W Values	14
Figure	4	Pierce Points of G x W Values Relative to Reference Plane	21

MAPS

Page

Location Map, 1.25" = 1 mile	4
Drill Hole Location Map & Compilation, 1:10,000	9
Map 1: Property Compilation, Thorneloe East and West Group 1:5,000	Pocket 1
Map 2: Geology, Discovery Zone, 1:2500	Pocket 2
Map 3: Idealized Cross Section, Discovery Zone, 1:500	Pocket 2

APPENDICES

- Appendix A: Claim Status
 Appendix B: Breakdown of Expenditures, 1987/88 Program
 Appendix C: Proposed Budget for 1988 Summer Program
 Appendix D: Significant Gold Intersections, 1987/88
 Drilling
 Appendix E: References
 Appendix F: Statement of Qualifications
 Appendix G: Drill Logs. DH T-7, T-9 to T-41 inclusive
- Appendix H: Drill Sections, Scale 1:500, DH T-7, T-9 to T-41 inclusive

:-

SUMMARY AND RECOMMENDATIONS

The 1987-88 exploration program on the Robele Joint Venture property in Thorneloe and Bristol Townships held by Torogold Resources and Esso Resources Canada Limited was completed in mid-February, 1988. A total of \$600.000.00 was spent on geophysics (linecutting and magnetometer surveys) and 4,270 m (14,004 feet) of diamond drilling (Appendix D). The geophysical surveys were carried out by Exsics Exploration Ltd. of Timmins during June-August, 1987 and the drilling was completed by Longyear Drilling Co. of North Bay from October, 1987 to February, 1988.

Three areas were proposed for drill testing: 1) magnetic highs defined by magnetometer survey, north half, Thorneloe East Group, 2) East strike extension of the No. 1 shear, 3) the Discovery Zone, Thorneloe East Group (see Map 1).

Two holes were drilled on the northern magnetic highs. Both intersected moderately magnetic porphyry complexes which were not altered and contained no encouraging gold values. The stepout holes on the No. 1 shear confirmed that the zone of deformation and shearing has a minimum strike length of 3500 meters. The strong alteration related to gold mineralization is more restricted in extent to the area within the No. 1 shear which hosts the Porphyry Complex (Map 2). Seven holes were drilled in the Discovery Zone in order to better define the structural controls on the mineralization. The results from these holes, along with data from previous drill programs, suggest that there is a mineralization control striking 110 degrees and dipping 40 to 45 degrees to the south.

The Porphyry Complex hosting the gold mineralization is still open to depth. The strike length of this body is approximately 500 meters and it may have a moderate to steep easterly plunge.

A total of 2,250 meters of diamond drilling is proposed for the next phase of the exploration program. Of this, 1,750 meters is slated for the Discovery Zone to test the depth potential and the attitude of the gold mineralization. The remaining 500 meters will be drilled on the Thorneloe West Property to test a magnetic high similar to the high over the Discovery Zone and also to test the west strike extent of the three shears. The total proposed budget is \$207,000.00 (Appendix C).

INTRODUCTION

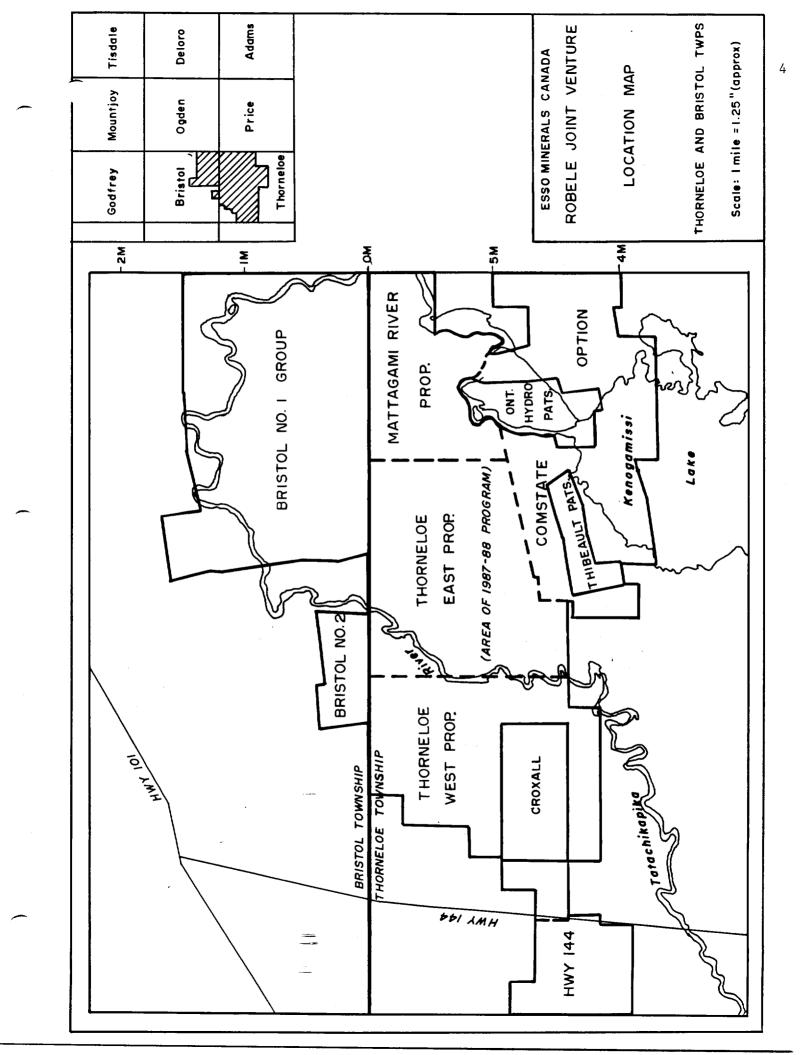
This report summarizes the results of the most recent exploration program on a group of claims in Thorneloe and Bristol Townships held in joint venture by Esso Resources Canada Limited and Torogold Resources Inc.

The land holdings of the Joint Venture consist of 210 claims in seven contiguous groups in the north half of Thorneloe Township and the south half of Bristol Township (see Appendix A for detailed group breakdown and claim status). The center of the property is located 20 kilometers southwest of the city of Timmins and is easily accessible by two major highways (Hwy 144 and Hwy 101).

Since the staking of the original claims in April, 1984, the property has undergone several major exploration programs which have included geology, geophysics (IP and magnetometer) and diamond drilling. To date, a total of 8,304 meters (27,238 feet) of diamond drilling has been completed. The latest drill program, which ran from October, 1987 to mid-February, 1988, consisted of 4,269 meters (14,004 feet) in 23 drill holes (Table 1). This diamond drilling constituted the major portion of a \$600,000 program which also included nearly 200 line kilometers of linecutting and magnetometer surveys along with minor IP and resistivity surveys.

PROPERTY GEOLOGY

Most of the property is underlain by a thick sequence of metasediments which are interpreted to be part of the Temiskaming Group of metasedimentary rocks. Three rock types dominate this group: argillite (including graphitic argillite), arenite and conglomerate. A brief description follows:


1. <u>Argillite:</u> Fine-grained to very fine-grained, moderately soft, thinly bedded, dark grey to black to various shades of green depending on the amount of sericite present. The unaltered rock may contain up to 1% coarse cubic pyrite and minor amounts of calcite. More altered argillite may contain up to 5% fine disseminated pyrite and locally trace to 1% fine arsenopyrite needles. This rock type constitutes 80% of the metasedimentary sequence.

DRILL HOLE SUMMARIES

HOLE NO	LOCATION	DIP	AZUMITH	LENGTH	
т-1	L 1680E, 3+25S	-45.00	180.00	198.17	
T-2	L 1680E, 1+50S	-45.00	180.00	227.20	
т-3	L 1680E, 1+50S L 2400E, 2+75N	-45.00	180.00	78.05	
Т-4	L 2400E, 5+20N	-45.00	180.00	304.87	
T-5	L 2160E, 4+25N L 3360E, 5+65N L 3360E, 4+50N L 5160E, 15+25N	-45.00	180.00		
T-6	L 3360E, 5+65N	-45.00	180.00		
T-7	L 3360E, 4+50N	-45.00	180.00		
T-8	L 5160E, 15+25N	-45.00	180.00	170.00	
T-9	L 384UE, 2+50N	-45.00	180.00	251.76	
T-10	L 3480E, 1+00N L 3600E, 3+75N L 3600E, 3+25N	-45.00	0.00	446.84	
T-11	L 3600E, 3+75N	-45.00	180.00	462.20	
T-12	L 3600E, 3+25N	-50.00	180.00	123.40	
T-13	3540E, 3+50N	-50.00	160.00	154.23	
T-14	3540E, 3+50N 3575E, 3+65N 3640E, 3+25N 3640E, 3+75N	-45.00	180.00		
T-15	3640E, 3+25N	-45.00	180.00		
T-16	3640E, 3+75N	-45.00	180.00		
T-17	L 3600E, 4+25N	-50.00	180.00		
T-18		-45.00	180.00		
T-19	L 3780E, 325N	-45.00	180.00		
T-20		-45.00	180.00	315.85	
T-21		-45.00	180.00		
	L 4200E, 2+25N	-45.00	180.00		
T-23		-45.00	180.00		
T-24	L 4260E, 0+50N	-45.00	0.00		
T-25		-45.00	180.00		
T-26		-45.00			
T-27	L 4560E, 1+75N	-45.00	0.00	233.84	
T-28	3630E, 3+25N	-45.00	180.00	96.65	
T-29	3360E, 3+25N	-65.00	180.00		
T-30	L 3660E, 3+30N	-57.00	180.00		
T-31	L 3660E, 3+30N	-45.00	180.00		
T-32	L 3300E, 4+75N	-45.00	180.00	233.84	
T-33	L 3300E, 4+60N	-45.00	0.00		
	L 4620E, 10+75N				
T-36	L 5940E, 9+00N L13W, 14+25N*		180.00	204.88	
T-37	L 13W, 13+50N*		180.00	197.26	
	1350W, 1335N*		180.00	111.89	
T-39	3620E, 2+90N	-4J.00 -85 00	180.00	41.16	
T-40	3615E, 2+70N		180.00	75.30	
T-41	3580E, 2+80N		180.00	62.50 60.06	
	330027 2100M	50.00	~		
* Comsta	ate Grid			8304.33	
				METERS	 FEET

-		
FEBRUARY-MARCH, 1985 (DH T-1 to T-5 incl.)	1042.49	3419.37
DECEMBER, 1985 (DH T-8)	170.00	557.60
NOV. 1986 to FEB 1987 (T-6,7 & T-9 to T-18 incl)	2822.27	9257.05
OCT 1987 to FEB 1988 (DHT-19 to T-41 incl)	4269.57	14004.18
=	=======================================	
TOTAL TO DATE	8304.33	27238.19

2. <u>Arenite:</u> Medium to dark grey, beds vary in thickness from a few centimeters to greater than 1 meter. Generally fine to medium grained with minor coarse and very coarse-grained beds. Individual beds are usually well sorted except where there is grading to conglomerate, where the beds are poorly sorted. Individual grains are sub-rounded to rounded and are predominantly quartz. Sub-rounded feldspar grains may also be present as well as subangular rock fragments, both particle types making up less than 5% of the rock by volume. Matrix to the grains is usually siliceous and locally carbonatized (calcite, and ankerite within the shear zones). Up to 1% subhedral cubic pyrite may be present in the unaltered rock.

3. <u>Conglomerate:</u> Usually polymictic. Clasts are quartz, mafic volcanic rock (now altered to sericite or chlorite) fine grained sediments, felsic to intermediate porphyritic volcanic rock (sometimes exhibiting trachytic texture), and minor felsic porphyritic intrusives. Often very poorly sorted, with clasts ranging in size from a few millimeters to greater than 5 centimeters. Matrix is usually argillaceous and normally chloritic. Within the alteration zones, the matrix is sericitic and siliceous, as are the clasts. Unaltered conglomerate contains trace to 1% pyrite. while the altered rock may contain up to 20% fine disseminated pyrite.

The most significant rock type in terms of gold mineralization is quartz-feldspar porphyry, which occurs as thin dykes or small stocks elongated subparallel to regional foliation. These intrusions usually consist of several types of porphyry (see legend on drill sections), probably reflecting the changing composition of the source magma.

The more significant types of porphyry that are at least spatially associated with gold mineralization are quartz-feldspar porphyry (variation is foliated QFP), legend codes 2A and 2I; quartz porphyry, legend code 2B; pyritic porphyry, legend code 2E; red magnetite bearing quartz feldspar porphyry, legend code 3A, and to a lesser degree, 2D and 2H.

The quartz porphyry (2B) is probably late and is represented mainly by a set of narrow dykes trending 045 degrees and dipping vertically.

Red magnetite-bearing porphyry forms the host rock for the gold mineralization. A more accurate term would be Porphyry Complex, as a number of individual units are present within the boundaries of the porphyry (see Map 3, back pocket). These are described briefly below. Units of the Porphyry Complex, Discovery Zone

1. <u>Red Magnetite-Bearing Porphyry (3A):</u> Light to medium orange-red colour, fine grained to aphanitic. Very little porphyritic texture remains due to intense sericitization and silicification. (In thin section a few highly altered remnant feldspar phenocrysts may be present). Occurs both massive and well foliated, usually dipping steeply to the north. Unit may contain up to 2% euhedral magnetite grains 1-2 millimeters in size. Pyrite is present as coarse cubes and fine disseminations and locally may partially or totally replace magnetite. Specular hematite is also present in minor amounts. Sericite and/or guartz-filled fractures randomly cut the unit. Contacts with the other units in the complex vary from sharp with guartz carbonate sericite schist to gradational with the intense silica-carbonate flooding.

2. Intense Silica-Carbonate Flooding (3C): Aphanitic, very hard. Colour varies from buff grey to reddish-brown to dark purple. Intensely crackle fractured, with some fractures filled with quartz and/or pyrite. Pyrite also occurs as fine disseminations in amounts up to 15%. The rock is not magnetic and rarely hosts significant gold values. Contacts with the red magnetite-bearing porphyry are gradational and contacts with the quartz carbonate sericite schist are usually sharp.

3. <u>Quartz-Carbonate-Sericite-Schist (3B)</u>: Well banded. Bands are 1-3 cm thick and consist of alternating quartz, ankerite, quartz-pyrite and sericite. Colour is usually grey to grey-green. Pyrite content for the unit is usually 10-15%. Individual quartz-pyrite bands may contain up to 50% pyrite. Contacts are usually sharp. This unit comprises crack seal quartz veins separated by sericitic fractures and hosts or is spatially related to nearly 70% of the significant gold values.

4. <u>Sericite Schist:</u> Boundary rock to the Porphyry complex. Very sericitic, highly deformed, may contain 2-3% fine disseminated pyrite. Colour is bright green and rock is often cut by late barren quartz veins. Unit varies in thickness from 5 to 20 meters.

STRUCTURE

The Porphyry Complex is characterized by at least two foliations and one or possibly two sets of folds. The F foliation is the regional one and it strikes 110 degrees and dips 75 to 85 degrees to the north. The F foliation is near horizontal with a dip of 10 degrees to the north or south. The axial plane of the first set of folds strikes ENE, dips steeply north and plunges steeply east. A second set of drag folds, evident in the drill core, have axial planes that dip steeply to the northeast, plunge to the southeast and may reflect the regional folding. A second set of open folds may also be present within the Porphyry Complex, having an axial plane that dips 40 to 50 degrees to the south (see Map 3) and an unknown plunge. Evidence of the structural complexity of the area is visible in outcrops along the Tatachikapika River, 600 meters west of the Discovery Zone.

SUMMARY OF PREVIOUS EXPLORATION PROGRAMS

The original Thorneloe claims (now part of the Thorneloe West Group) were staked as part of a grass roots exploration program to explore the western extension of the Destor-Porcupine Fault System which had received little exploration attention to that date. As the exploration program advanced the results confirmed that the property was located on the north side of the Destor-Porcupine Fault system in Temiskaming or Porcupine Group metasedimentary rock (Pyke, 1982).

A set of at least three sub-parallel shears trending 110 degrees and dipping steeply to the north were defined by the first three diamond drilling programs (Map 1, back pocket). The 1985 drilling defined a wide shear zone on the west side of the Tatachikapika River which contained highly anomalous gold values, the best of which was 420 ppb over 42 meters. This particular part of the shear was characterized by a moderately strong IP anomaly.

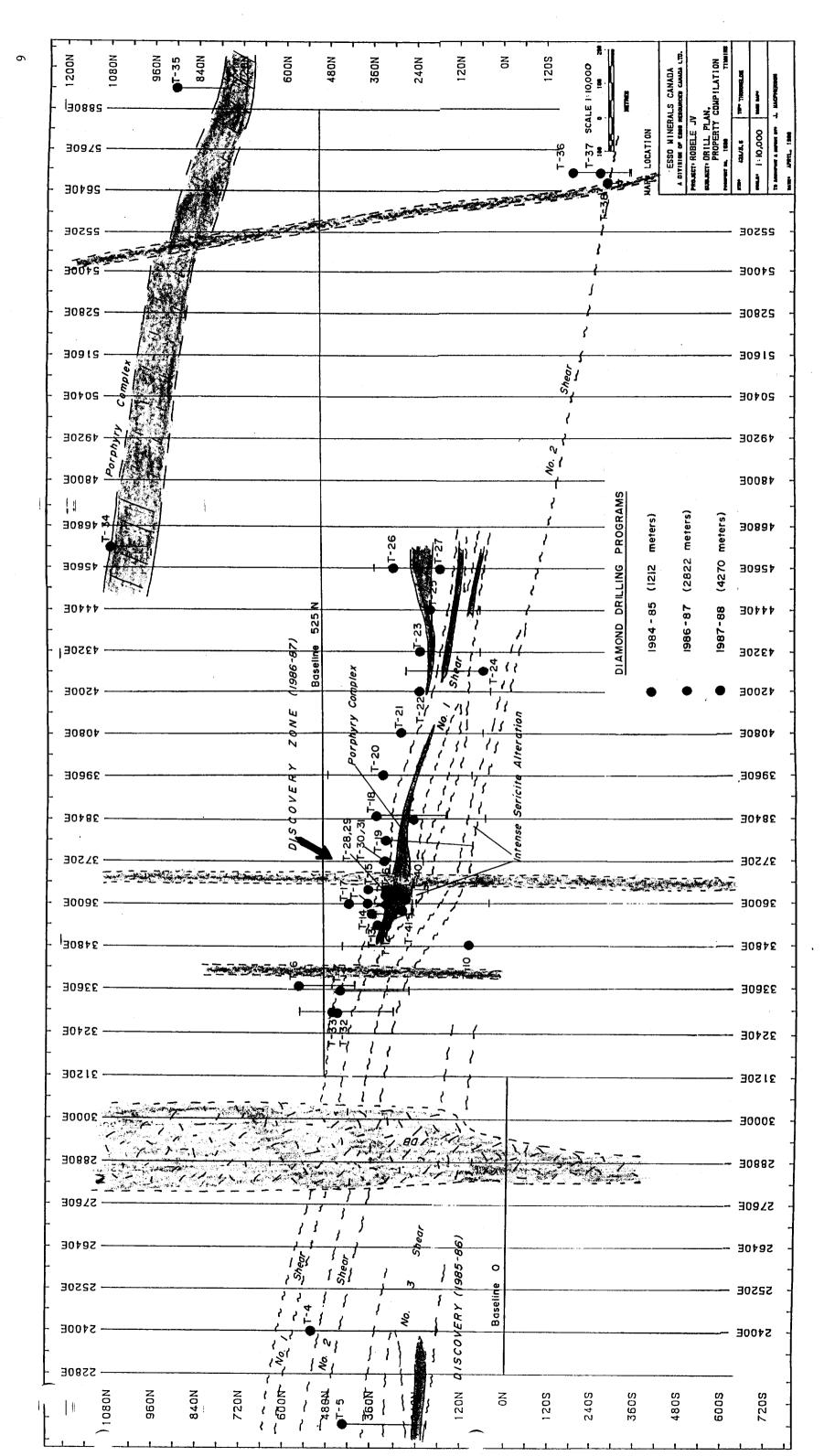
The November, 1986 to February, 1987 program extended the strike length of the shearing to the east and indicated the presence of at least two separate shears. During the course of this drilling a highly altered magnetite/ pyrite-bearing quartz feldspar porphyry complex was located (Discovery Zone, 1986-87 on Map 1). Economic gold values over mineable widths were intersected within the Porphyry Complex (MacPherson, 1987), which was located entirely within the most northerly shear (now called the No. 1 shear). The porphyry body had a minimum strike length of 250 meters, a width of 30 to 40 meters and was open to depth. No. 2 shear, located 100 meters to the south, contained moderate gold values associated with arsenopyrite in very sericitic fine-grained metasedimentary rocks. The strike length of the system of shearing had been extended to 1700 meters as a result of this drill program. Intersections in the 2 to 4 grams/metric tonne range over widths varying from 5 to 20 meters were intersected in parts of the porphyry complex. These sections also contained shorter intervals of much higher grade material (7 to 9 g/t) (MacPherson, 1987, Appendix 3).

PURPOSE OF THE 1987-88 EXPLORATION PROGRAM

The program was divided into two phases. The first phase was designed to explore the potential of other parts of the joint venture area. Approximately 200 line kilometers of linecutting and magnetometer surveys were carried out over the summer months. Several magnetic anomalies detected during this survey were drill tested during the winter.

The second phase of the program was designed to drill test the easterly strike extension of the zones of shearing using stepout drill holes 200-300 meters in length spaced at 120 meter intervals. Several drill holes were also planned for the Discovery Zone, in an attempt to establish the controls on the mineralization.

RESULTS OF THE PROGRAM


1. THORNELOE EAST GROUP, NORTH HALF

Several magnetic highs were located during the magnetometer survey. These were aligned along a 110 degree trend and had an individual strike length of 60-240 meters. The trend they defined extended for 3000 meters across the north half of the Thorneloe East Grid. These magnetic highs exhibited characteristics in terms of amplitude and size that were similar to the magnetic high present over the Discovery Zone (Porphyry Complex). As a result, these magnetic highs were thought to represent magnetite- bearing porphyries.

Two holes, T-34 and T-35 (see Appendices G and H for logs and sections) were drilled on the magnetic trend. Both holes intersected a magnetic porphyry complex, containing trace to 1% magnetite and 5% fine disseminated pyrite over a few meters. There was no shearing and alteration in these holes.

2. SOUTHEAST PART OF THORNELOE EAST GRID

A second east-west magnetic high trend was defined by the magnetometer survey along the border between the Thorneloe East Group and the Comstate Option, centered on L 5940 E, 3+00 S (Esso Grid: see Drill Plan and Compilation, Page 9). This feature was cut by three north-south trending Matachewan diabase dykes and had a strike length of 600 meters. Holes T-36, 37 and 38 were drilled on this magnetic trend. In this case, the feature was not explained by drilling, although T-37 and T-38 did intersect 10-15 meters of moderate sericite alteration associated with quartz porphyry dykes and quartz veins. The mineralization was similar to that encountered in Comstate Hole #3, 800 meters to the west, and returned only anomalous gold values.

 $\widehat{}$

3. STEPOUT DRILLING, NO. 1 AND NO. 2 SHEARS

The majority of the drilling (2424 meters) consisted of holes drilled on 120 meter intervals east of the Discovery Zone to determine the potential of the shear zones along strike.

Hole T-21, located on L 4080 E, was the most easterly hole to contain significant gold values related to the magnetic Porphyry Complex. East of this hole (shown on Map 2), drilling confirmed that the shearing continues, but the degree of alteration, reflected most notably by the presence of sericite, decreases away from the Porphyry Complex (Map 2). The shears still hosted anomalous gold values, but there were no economic gold intersections in Holes T-22 to T-27. The drilling did confirm that the shear zones continue for a significant distance to the east of the Discovery Zone, thus extending the strike length of the gold-bearing structure to 3500 meters.

Several smaller bodies of weakly to moderately magnetic quartz and/or feldspar porphyry were intersected in the section drilling near the east end of the drilling pattern (Map 2). These were similar in appearance to the porphyry in the Discovery Zone, except they were less altered and deformed and contained only anomalous gold values

4. DISCOVERY ZONE

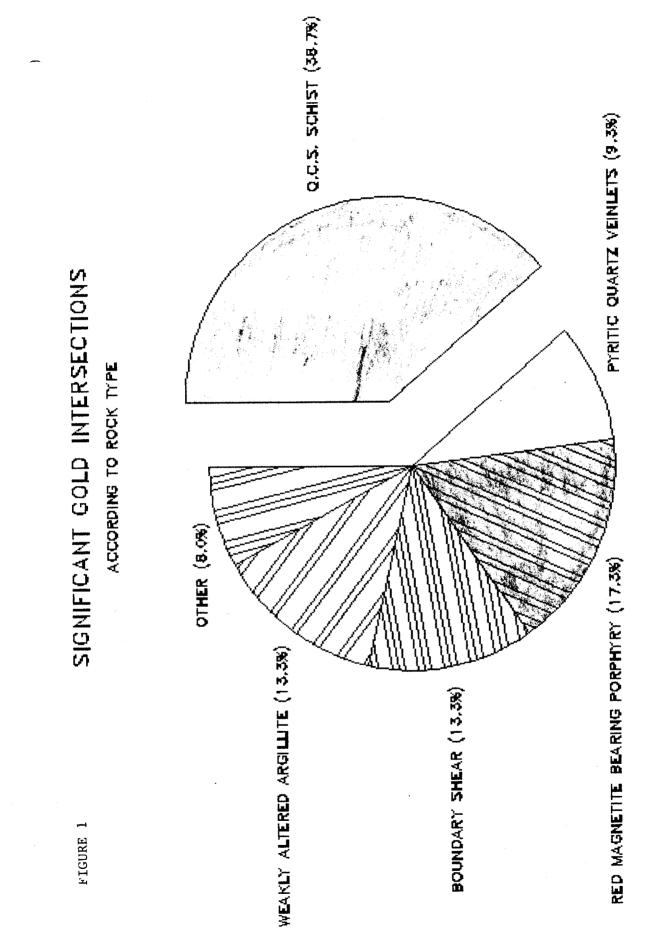
A total of seven holes were drilled in the Discovery Zone in an attempt to determine the attitude of the controls on the gold mineralization. Four were inclined 2 hole fans drilled to the south at -45 and -60 degrees (DH T-28 to T-31). The last three holes (T-39, 40, 41) in the program were short vertical holes drilled to test the attitude of three of the higher grade intersections. These holes are described in the logs and sections in Appendices G and H.

Holes T-28 and T-29, drilled west of the diabase (see Map 2, back pocket) intersected numerous gold values in the 2 to 5 g/t range (0.06 to .15 oz/ton) over widths varying from 1 to 3 meters (3.3 to 10 feet). The best results in these holes (and in the program) were obtained in DH T-28, which returned a value of 122.20 g/t over 0.60 meters (3.56 oz/ton over 2 feet). This section contained 9 sites of visible gold. The host rock is highly silicified and sericitic red magnetic porphyry. The visible gold occurs in and mantling coarse subhedral magnetite and is also present as free flakes and pinheads.

Holes T-39, 40 and 41 were vertical holes, and again all three returned multiple intersections in the 2 to 5 g/t range (.06 to .15 oz/ton) over widths of 1.5 to 3.9 meters (4.95 to 12.8 feet).

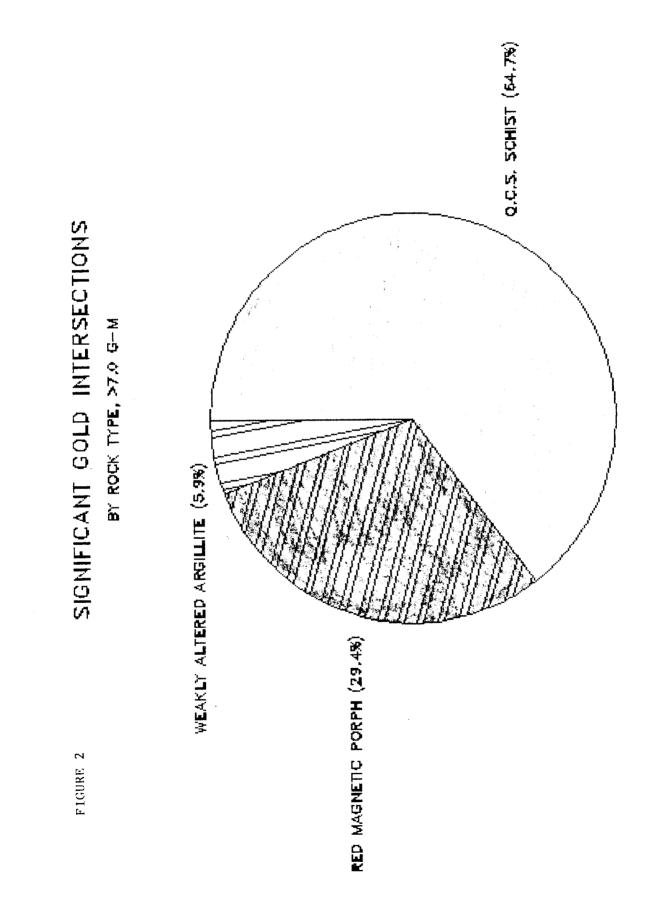
INTERPRETATION OF RESULTS

Discovery Zone

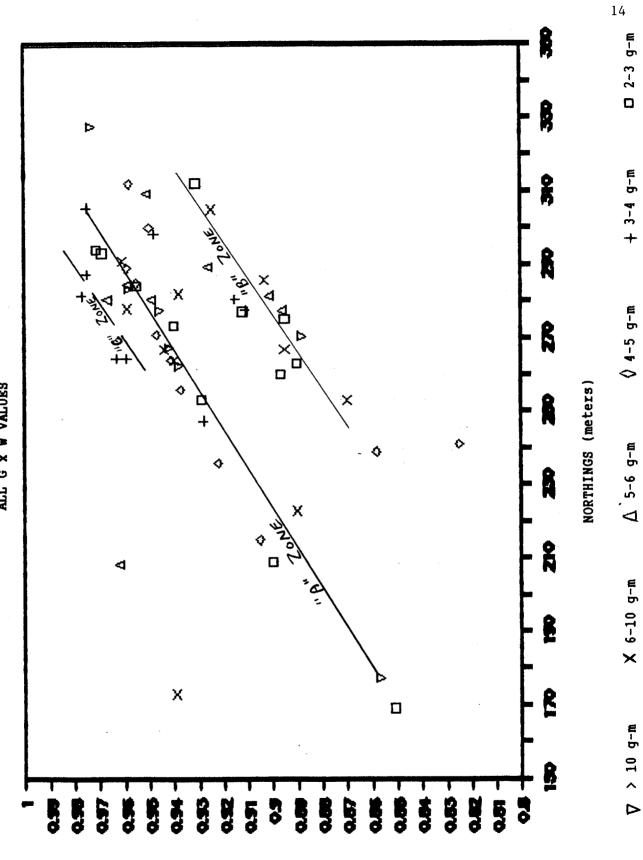

The main area of interest on the property to date is the "Discovery Zone", located between L 3500 and L 4080 E. Economic gold values are present in a 25 to 40 meter wide highly altered and deformed quartz-feldspar porphyry complex occuring entirely within a wide shear zone trending 110 degrees and dipping steeply to the north.

Gold occurs with pyrite and/or magnetite in several rock types within the Porphyry Complex. In order of importance, gold occurrences are in: 1) Quartz carbonate sericite schist, 2) Red Magnetite-bearing Porphyry, 3) Sericitic Boundary Shear, 4) Weakly altered argillite, 5) Pyritic quartz veinlets, 6) other host rocks (Figure 1). When values with a Grade x Width value of greater than 7 are selected, quartz- sericite carbonate schist and red magnetic porphyry are by far the most important host rocks for gold mineralization (Figure 2). Despite the fact that the quartz carbonate sericite schist is the dominant host rock type for gold, in most cases, drilling over or under a particularly good intersection did not indicate that the gold zone was of sub-vertical orientation.

In drill holes with economic values, there were long sections of the core that assayed better than 1.0 g/tonne (.044 oz/ton). These are listed below:


Hole No.	Assay	Assay	From	То	Leng	gth
	(q/t)	(oz/ton)	(m)	<u>(m)</u>	(m)	<u>(ft)</u>
	_					
T-11	1.54	.045	129.3	157.28	27.98	91.77
т-12	4.21	.123	65.84	74.76	8.92	29.25
т-15	3.98	.116	79.22	88.79	9.57	31.39
T-18	6.10	.178	221.28	227.38	3.79	12.43
T-19	1.33	.039	105.20	112.76	7.56	24.80
T-20	1.19	.035	187.91	194.70	6.79	22.27
T-28	4.77	.139	77.64	85.30	7.66	25.12
T-29	1.79	.052	55.61	61.90	6.29	20.63
	1.69	.049	141.60	148.74	7.14	23.42
т-31	1.17	.034	110.95	116.31	5.36	17.58
T-39	1.48	.043	61.25	68.25	7.00	22.96
T-40	1.17	.034	37.00	46.00	9.00	29.52
T-41	1.69	.049	35.86	44.15	8.29	27.27

The graph in Figure 3 shows the location of all significant gold intersections in a volume defined by elevation vs. northing, over a strike length of 500 meters (L3580E to L4080E). This plot indicates that there is a definite trend of gold values towards the origin, or, in


12

_

ELEVATION (meters) (thousands) terms of the ground grid, towards the south. The average dip appears to be between 40 and 45 degrees. This trend, along with the extensive core lengths of significant gold values above, suggests the existence of a structural control on mineralization trending 110 degrees and dipping 40-45 degrees to the southwest. Therefore, the majority of the drilling, even though intersecting the regional foliation nearly at right angles, appears to have been subparallel to this structural control.

Table 2 lists all gold intersections and their relative position to a reference plane which strikes 110 degrees and dips 43 degrees to the south. These data clearly shows the existence of two, and possibly three, zones of gold mineralization.

Zone "A" is located -3 to +3 meters from the reference plane and is the most significant economically. Table 3 lists all the values in this zone, and an average grade and width of the significant gold intersections (G x W values > 7.0) is given as 6.48 g/t over 2.51 meters (.189 oz/ton over 8.2 feet). Current strike length is 240 meters and the deepest intersection is 70 meters vertically below the surface. This zone is still open in both strike directions as well as down dip.

Zone "B" is located -33 to -39 meters (north) from the reference plane. The average grade and width of this zone, (based on G x W values greater than 7.0) is 4.21 g/t over 2.68 meters (.123 oz/ton over 8.8 feet) (Table 4). The strike length is approximately 240 meters and the deepest intersection is 143 meters below surface. Strike and down-dip extensions have not been closed off.

Zone "C" is 9 to 18 meters from the reference plane and contains low gold values over narrow widths (Table 5). Further drilling is required to determine the economic potential of this zone.

The three gold zones defined to date are shown graphically in Figure 4. The cluster of values between 30 and 100 meters down-dip (x-axis) is a function of the mainly shallow drilling completed to date, leaving potential for defining further subparallel zones at depth.

OTHER PORPHYRY BODIES

The magnetic porphyry present in the north half of the Thorneloe East Group does not host significant gold values. It lacks most of the characteristics of the porphyry complex in the Discovery Zone, the most notable being alteration and shearing.

_

G x W VALUES, LONGTITUDINAL SECTION, DISCOVERY ZONE

HOLE #						PERP DISTANCE		ZONE
				95.0		-61		
	1.70			95		-50		
T-29	8.20					-47		
T-29						-41		
T-29	3.29					-39		В
	2.31		4.73	167.0				В
T-11	1.27	1.55	1.97		895			В
	2.38	2.30			893			В
T-11	1.64	3.05	5.00		888.5			В
T-11	1.51		2.45		882.5			B
T-11	1.11	2.31	2.56	121.0	879		3600	В
T-11	3.34			126.0			3600	В
T-11	1.26			92.0				В
T-11	4.80			101.5				В
T-18	6.15	3.05	18.76	142.0	858	-36	3840	В
T-11	1.45	1.47	2.13	63.0	937	-35	3600	В
T-11	3.48	2.30	8.02	73.0	927	-35	3600	В
T-18	2.09	1.30	2.72	151.0			3840	В
T-29	2.23	1.52	3.39		905		3630	В
T-29	4.09	0.75		92.0		-33	3630	В
T-19	7.66	0.53	4.06	73.0	927	-32	3780	
T-19	14.50	0.31	4.50	80.0	920	-32	3780	
T-19	4.99	0.95	4.74	110.0	890	-30	3780	
T-19	4.03	0.72	2.90	114.0	886	-29	3780	
T-13	1.19	1.53	1.82	129.0	871	-27	3569	
T-31	1.04	1.14	1.19	56	944	-26	3720	
T-31	4.29	0.91	3.90	85	915	-26	3720	
T-31	2.19	0.80		107			3720	
T-13	1.82	1.50	2.73	106.0	894	-21	3564	
	4.43			54.0				
T-29	6.27			53.0			3630	
T-13	4.21			89.0		-17	3561	
T-39	3.78	2.39	9.05	72	928	-16	3620	
T-14	1.82	3.18	5.78	60.0	940	-13	3570	
T-13	3.00	1.66	4.98	58.0		-12	3553	
T-14	0.69	2.05	1.42	94.0		-11	3570	
T-14	0.73	1.50	1.16	121.0		-10	3570	
T-13	2.45	3.59	8.79	34.0		-5	3545	
T-39	1.41	1.60	2.26	63		-4	3620	
T-28	14.63	1.68	24.59	80.0		-3	3630	A
T-28	3.09	2.33	7.20	84.0		-3	3630	A
T-28	3.28	1.50	4.92	96.0		-3	3630	A
T-15	1.41	1.50	2.12	39.0		-2	3640	A
T-15	1.05	1.55	1.63	53.0		-2	3640	A
T-28	5.52	1.80	9.93	65.0		-2	3630	A
T-15	3.38	1.30	4.39	73.0		-2	3640	A
T-15	5.32	1.54	8.19	77.0		-2	3640	A
T-15	7.92	3.19	25.27	85.0		-2	3640	A
T-15	1.35	1.76	2.38	98.0		-2	3640	A
T-15	1.13	1.50	1.70	153.0	847	-2	3640	A

G x W VALUES, LONGTITUDINAL SECTION, DISCOVERY ZONE

HOLE #	ASSAY (g/mt)	WIDTH (m)	G x W (g-m)	HEIGHT DOWN DIP	ADJ TO REF 1000	PERP DISTANCE	EASTING (m)	ZONE
T-28	1.52	1.55	2.34	44.0	956	-1	3630	A
T-12	1.44	1.57	2.26	87.0	913	-1	3600	A
T-12	0.77	3.05	2.36	110.0	890		3600	A
т-9	3.85	1.53	5.97	55.5	944.5	0	3840	A
T-39	4.73	1.11	5.25	60		0	3620	A
T-12	10.45	2.78	29.05	80.0		0	3600	A
T-40	1.11	1.50	1.67	92	908	0	3615	A
T-12	7.20	0.64	4.61	67.0	933	1	3600	A
T-12	3.18	1.76	5.60	75.0	925	1	3600	A
T-12	2.16	4.10	8.84	58.5		2	3600	A
т-12	1.87	2.23	4.16	62.0	938	2	3600	A
T-9	0.92	1.54	1.42	83.5	916.5	2	3840	A
T-40	5.94	0.73	4.34	89	911	2	3615	A
T-9	3.25	2.51	8.15	101.0	899		3840	A
T-12	1.81	2.14	3.87	36.0	964	5	3600	
T-9	1.03	1.75	1.80	157.0	843	9	3840	С
T-9	0.80	1.55	1.24	163.0	837	10	3840	С
T-39	2.10	1.47	3.09	47	953	11	3620	С
T-40	3.10	1.00	3.10	79	921	11	3615	С
T-41	2.94		11.47	74	926	13		C C
T-40	3.13	1.18	3.69	74		15	3615	
T-9	1.02	1.30	1.33	225.0	775	15		C
T-9	0.75		1.01	230.0		16		C
T-41	3.12		6.01	70	930			С
T-41	2.22	1.35	3.00	63	937	26	3580	

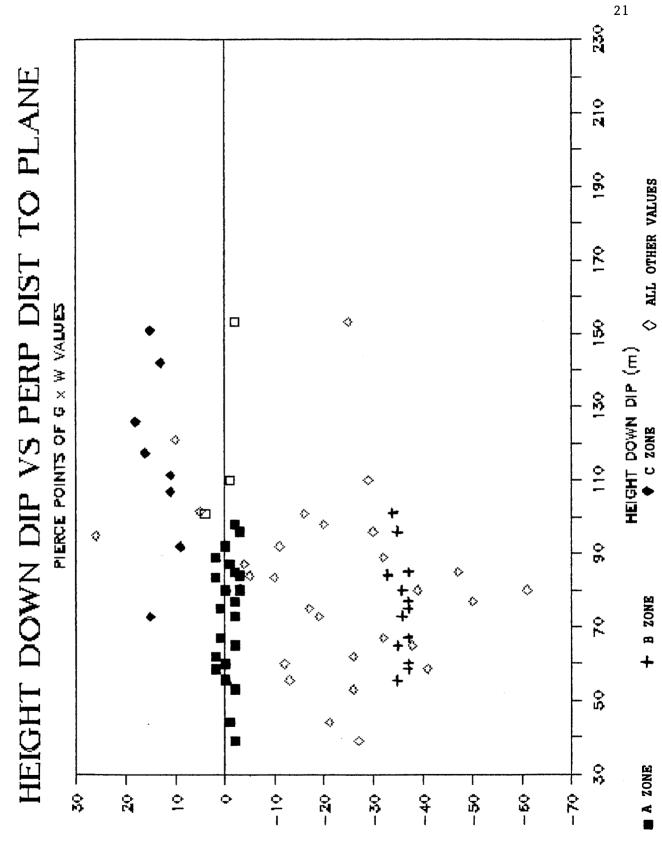
Note: The heading "PERP. DISTANCE" is the distance the drill hole intersection ---- lies at right angles to the plane of reference, which dips 43 degrees to the south. Clusters of values within a range of 3 to 6 meters of each other are interpreted to be part of the same "zone".

, **-**

SIGNIFICANT GOLD INTERSECTIONS, "A" ZONE

AVG. WIDTI AVG GRADE AVG GxW:		2.51 6.48 16.29	greater than 7.0				
HOLE #	ASSAY (g/mt)	WIDTH (m)	GxW (g-m)	HEIGHT DOWN DIP	ADJ TO REF 1000	PERP DISTANCE	EASTING (m)
т-12	10.45	2.78	29.05	80.0	 920	0	3600
T-15	7.92	3.19	25.27	85.0	915	-2	3640
T-28	14.63	1.68	24.59	80.0	920	-3	3630
T-28	5.52		9.93	65.0	935	-2	3630
T-12	2.16	4.10	8.84	58.5	941.5	2	3600
T-15	5.32		8.19	77.0	923	-2	3640
T -9	3.25	2.51	8.15	101.0	89 9	4	3840
T-28	3.09	2.33	7.20	84.0	916	-3	3630
Т-9	3.85	1.53	5.97	55.5	944.5	0	3840
T-12	3.18	1.76	5.60	75.0	925	1	3600
т-39	4.73	1.11	5.25	60	940	0	3620
T -28	3.28	1.50	4.92	96.0		-3	3630
T-12	7.20	0.64	4.61	67.0		1	3600
T-15	3.38	1.30	4.39	73.0		-2	3640
T-40	5.94	0.73	4.34	89		2 2	3615
T-12	1.87	2.23	4.16	62.0			3600
T-15	1.35	1.76	2.38	98.0		-2	3640
T-12	0.77	3.05	2.36	110.0		-1	3600
T-28	1.52	1.55	2.34	44.0		-1	3630
T-12	1.44	1.57	2.26	87.0		-1	3600
т-15	1.41	1.50	2.12	39.0		-2	3640
T-15	1.13	1.50	1.70	153.0		-2	3640
T-40	1.11	1.50	1.67	92		0	3615
T-15	1.05	1.55	1.63	53.0		-2	3640
T-9	0.92	1.54	1.42	83.5	916.5	2	3840

values sorted according to descending grade x width


SIGNIFICANT GOLD INTERSECTIONS, "B" ZONE

AVG. WIDTH AVG GRADE: AVG GxW:	· · · · · ·								
HOLE #	ASSAY (g/mt)	WIDTH (m)	GxW (g-m)	HEIGHT DOWN DIP	ADJ TO REF 1000	PERP DISTANCE	EASTING (m)		
T-18	6.15	3.05	18.76	142.0	858	-36	3840		
T-11	3.34	3.05	10.19	126.0	874	-37	3600		
T-29	3.29	2.98	9.81	114	886	-39	3630		
T-11	4.80	2.00	9.60	101.5	898.5	-36	3600		
T-11	3.48	2.30	8.02	73.0	927	-35	3600		
Ť-11	2.38	2.30	5.47	107.0	893	-37	3600		
T-11	1.64	3.05	5.00	111.5	888.5	-37	3600		
T-11	2.31	2.05	4.73	167.0	833	-38	3600		
T-29	2.23	1.52	3.39	95	905	-34	3630		
T-29	4.09	0.75	3.07	92.0	908	-33	3630		
T-18	2.09	1.30	2.72	151.0	849	-35	3840		
T-11	1.11	2.31	2.56	121.0	879	-37	3600		
T-11	1.51	1.62	2.45	117.5	882.5	-37	3600		
T-11	1.45	1.47	2.13	63.0	937	-35	3600		
T-11	1.27	1.55	1.97	105.0	895	-37	3600		
T-11	1.26	1.45	1.83	92.0	908	-36	3600		

	SIG	NIFICANT (GOLD INTE	RSECTIONS,	"C" ZONE		
AVG. WIDTH AVG GRADE AVG GXW:		1.89 2.89 5.47		calculation greater the		W values	
HOLE #	ASSAY (g/mt)	WIDTH (m)	G x Ŵ (g-m)	HEIGHT DOWN DIP	ADJ TO REF 1000	PERP DISTANCE	EASTING (m)
T-41 T-41 T-41	2.94	3.90 1.92	11.47 6.01	74 70		13 18	3580 3580
T-40 T-40	3.12 3.13 3.10	1.18	3.69	74 74 79	926 921	15 11	3615 3615
T-39 T-9	2.10	1.47 1.75	3.09	47 157.0	953 843	11 9	3620 3840
T-9 T-9 T-9	1.02 0.80 0.75	1.30 1.55 1.35	1.33 1.24 1.01	225.0 163.0 230.0	775 837 770	15 10 16	3840 3840 3840

values sorted according to descending grade x width

FIGURE 4

PERP DISTANCE TO PLANE (m)

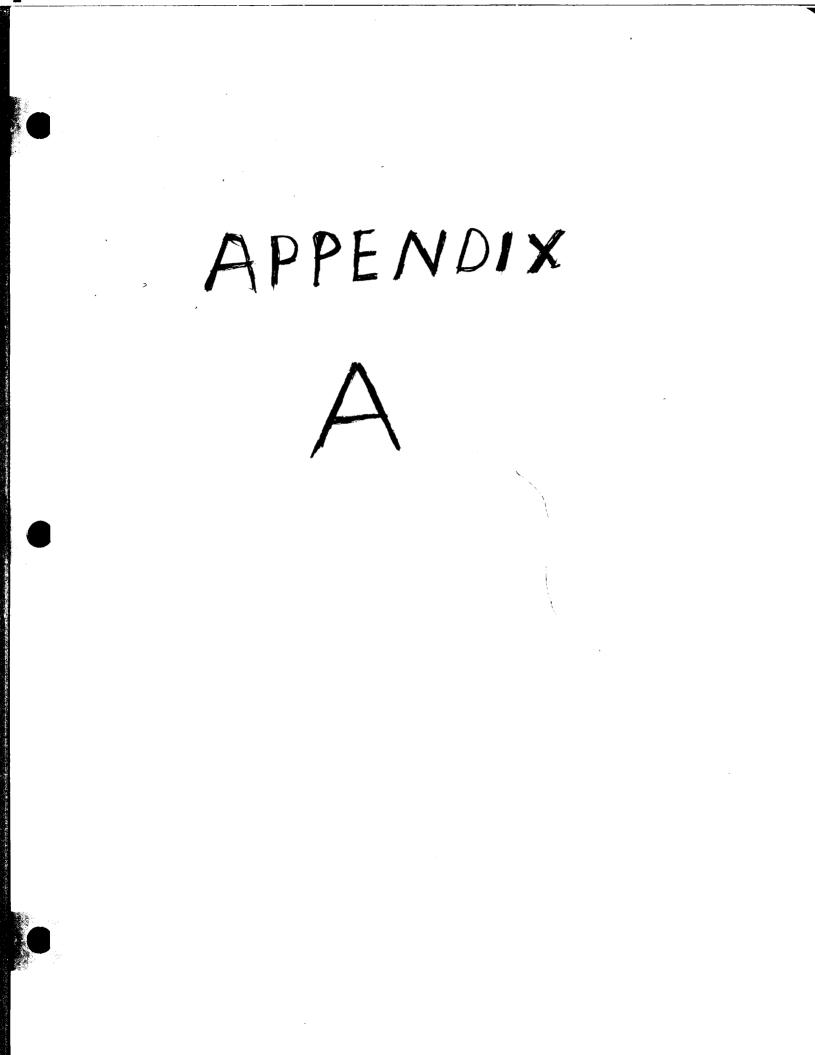
The same is true to a slightly lesser degree for the small porphyry dykes on the holes drilled just south of the Esso/Comstate boundary. These porphyries do have minor associated sericite alteration, but lack the intensity of shearing and alteration present in the Discovery Zone. The gold values associated with the porphyries reflect this, and rarely exceed 1 g/t over narrow widths.

EAST STRIKE OF NO. 1 AND NO. 2 SHEARS

The stepout drilling to the east of the Discovery Zone (DH T-22 to T-27 inclusive) did not locate any other significant gold-bearing structures. The intensity of alteration and shearing lessens towards the east and as a result the potential for locating significant gold values is low. Several small bodies of red magnetic porphyry (legend symbol 3A) were located but these were generally only weakly altered and deformed, and hosted slightly anomalous gold values

PROPOSAL FOR 1988 SUMMER EXPLORATION PROGRAM

More drilling is needed on the Discovery Zone to test the attitude of the mineralization as well as the depth potential of the Porphyry Complex host. Nine holes are recommended for drilling in the Discovery Zone. They should be drilled in three "fans" of three holes each at -45, -60and -75 degrees to the north. This will allow for testing of the mineralization control (110/40-45S) as well as the depth potential, using the steepest of the three holes in each fan setup (Table 6).


A further 500 meters of drilling is recommended for the West Thorneloe Group. Two holes would be drilled in this phase of the program. The first of these would be drilled to the north from the setup of hole T-4, as that hole collared in intense sericite alteration. Proposed length is 250 meters. The second hole is recommended to test a magnetic high trending at 065 degrees. It has magnetic characteristics similar to the magnetic high present over the Discovery Zone. Also this magnetic high may lie on the westerly strike extension of the No. 1 shear, producing the same type and intensity of alteration and gold mineralization found in the Discovery Zone.

Helicopter mobilization of the drill across the Tatachikapika River is recommended for the summer program. Support for the drill would then be available by skidder through the river or by boat with truck connections by bush road and paved highway to Timmins. Total cost for the program including helicopter time, analytical and staff time is estimated at \$207,000.00.

PROPOSED DRILLING, 1988 SUMMER PROGRAM

		CDI 1 AP	~						== ==						PROJ	PROJECTED INTERSECTIONS	VIERS	ECTIONS						
			A FT INC	 010		ATIMITU		LENGTU	= == =			A	ZONE				== =			8 7	ZONE			
_	(U)		(U)	 110	c 		5 	(•)		ELEVATION IDIST DOWN NORTHING		IST DOW Plane	NC	RTHING (m)		DIST DOWN		EVATION (m)		:: ELEVATION :DIST DOWN :NORTHING :: (m) : PLANE : (m)	N	RTHING (a)	DIST DOWN	HDLE HDLE
======== T-42	1 250	" "	3590	 -45 -45	ii 11 11		 	120	i	960	n n	63		293	;; ;; ;;	60		====== 931		====== 109		318		16
	1 250		3590	 -60		0		200	==	947		80		280		61	==	913		129		298		100
	1 250		3590	 -75		0		300	=	929		8		261		89	=	863		158		277		H
	1 250		3635	 -45		0		110	==	965		50		285		49	==	938		89		312		87
	1 250		3635	 -60		0		130	::	957		68		276		50	=	923		115		295		83
	; 250		3635	 -75		0		320	==	947		78		265		55	=	905		140		275		66
	1 150		3820	 -45		0		150	=	947		76		203		74	==	922		116		229		111
	150		3820	 -60		0		110	==	336		36		187		76	::	936		145		207		114
	150		3820	 -75		0	8	300	=	920		119		168		84	=	880		180		178		125
	400		2400	 -45		0		250	= = = :	irpose:	to t	est shi	earin	g & al	ler at	l Purpose: to test shearing & alteration north of the collar of DH T-4	ih of	the co	ilar	of DH	1-4			
	11125		1920	 -45		180		250		: asod Ji	to t (maj	est n ai qnetic	gneti hiqh	c high is sit	cut Nilar	i Purpose: to test magnetic high cut by vest extension of the No. 1 Shear ! (magnetic high is similar in intensity and shape to the one defining	exte Insit	nsion (y and s	uf thi hape	e No. 1 to the	She	ar definir	Ď	

TOTAL:

APPENDIX A

HIGHWAY 144

<u>CLAIM #</u>	DUE DATE		<u>CLAIM #</u>	DUE DATE	
792829	April 2, 1989	*	892796	Feb. 6, 1989	+
796737	April 2, 1989	*	892797	Feb. 6, 1989	+
796738	April 2, 1989	*	892798	Feb. 6, 1989	+
796739	April 2, 1989	*	892799	Feb. 6, 1989	+
892793	Feb. 6, 1989	+	892800	Feb. 6, 1989	+

- **TOTAL: 10**
- * 40 days magnetometer and linecutting filed February 3rd, 1988. Additional credits, if approved, will not offset next due date.
- + 40 days magnetometer and linecutting filed February 3rd, 1988. Additional credits, if approved will change due date to February 6, 1990.

WEST THORNELOE GROUP

CLAIM #	DUE DATE	<u>CLAIM #</u>	DUE DATE
796729 796730 796731 796732 796733	April 2, 1990 * April 2, 1990 * April 2, 1990 * April 2, 1990 * April 2, 1990 *	923647 923648 923650 930782 930783	Dec. 31, 1992 * Dec. 31, 1992 * Dec. 31, 1992 * Dec. 31, 1990 Dec. 31, 1990
796734 796740 805191 805192 805193 834158 834159 834367 834368	April 2, 1989 * April 2, 1989 June 1, 1990 * June 1, 1990 * June 1, 1990 * Dec. 4, 1989 Dec. 4, 1989 Dec. 19, 1989 Dec. 19, 1989	930786 956080 956081 956082 956206 956207 956208 956209 1029035	Dec. 31, 1990 Feb. 12, 1992 Feb. 12, 1992 Arpil 6, 1989
834369 923646	Dec. 19, 1989 Dec. 31, 1992 *	1029036 1029037 1029038 1029039 1033819 1033820	Arpil 6, 1989 Arpil 6, 1989 Arpil 6, 1989 Arpil 6, 1989 Arpil 6, 1989 Arpil 6, 1989

TOTAL: 36

* 200 days credit, ready for lease at due date.

THORNELOE EAST GRID

CLAIM #	DUE DATE		<u>CLAIM #</u>	DUE DATE	
838437	April 9, 1989		956095	Feb. 12,	1993 *
838438	April 9, 1989		956096	Feb. 12,	
838439	April 9, 1989		956097	Feb. 12,	
838440	April 9, 1989		956098	Feb. 12,	
838441	April 9, 1989		956099	Feb. 12,	
383442	April 9, 1989		956100	Feb. 12,	
838443	April 9, 1989		956216	Feb. 12,	
838444	April 9, 1989		956217	Feb. 12,	
838445	April 9, 1989		956218	Feb. 12,	1993 *
838446	April 9, 1989		956219	Feb. 12,	1992 *
838447	April 9, 1989		956226	Feb. 12,	1992
838448	April 9, 1989		956227	Feb. 12,	1992
930784	Dec. 31, 1990		956228	Feb. 12,	1992 '
930785	Dec. 31, 1990		956229	Feb. 12,	1992 -
956076	Feb. 12, 1992		956230	Feb. 12,	1992
956077	Feb. 12, 1992		956231	Feb. 12,	1993 *
956078	Feb. 12, 1993	*	956201	Feb. 12,	1992
956079	Feb. 12, 1993	*	995645	Feb. 12,	1992
956092	Feb. 12, 1993	*	995646	Feb. 12,	
956093	Feb. 12, 1993	*		·	

* 200 days credit, ready for lease at due date

1033821	April 6	, 1989	
1033822	April 6	, 1989	
1033823	April 6	, 1989	
1033824	April 6	, 1989	

TOTAL: 44

MATTAGAMI RIVER GROUP

<u>CLAIM #</u>	DUE DATE	<u>CLAIM #</u>	DUE DATE
923601 923602 923603 923604 923605 923605 923606 923607 923608	May 12, 1991 May 12, 1991	923611 923612 923613 923614 923615 923615 923616 923617 923618	May 12, 1991 May 12, 1991
923609 923610	May 12, 1991 May 12, 1991	892792	Feb. 6, 1989

T O T A L: 19

NOTE: All claims currently have 40 days linecutting and magnetometer survey filed for assessment credit approved. Upon receipt of this approval, the due dates will remain unchanged except for 892792, which will have a new due date of February 6, 1990.

BRI. L #1 GROUP

CLAIM #	DUE DATE	CLAIM #	DUE DATE
952796	Feb. 6, 1989	952824	Feb. 6, 1989
952797	Feb. 6, 1989	952825	Feb. 6, 1989
952798	Feb. 6, 1989	955374	Feb. 6, 1989
952799	Feb. 6, 1989	955375	Feb. 6, 1989
952800	Feb. 6, 1989	955376	Feb. 6, 1989
952801	Feb. 6, 1989	955377	Feb. 6, 1989
952802	Feb. 6, 1989	955378	Feb. 6, 1989
952803	Feb. 6, 1989	955379	Feb. 6, 1989
952804	Feb. 6, 1989	955380	Feb. 6, 1989
952805	Feb. 6, 1989	955381	Feb. 6, 1989
952806	Feb. 6, 1989	955382	Feb. 6, 1989
952807	Feb. 6, 1989	955383	Feb. 6, 1989
952808	Feb. 6, 1989	955384	Feb. 6, 1989
952809	Feb. 6, 1989	955385	Feb. 6, 1989
952810	Feb. 6, 1989	955386	Feb. 6, 1989 *
952811	Feb. 6, 1989	955387	Feb. 6, 1989 *
952812	Feb. 6, 1989	955388	Feb. 6, 1989 *
952813	Feb. 6, 1989	955389	Feb. 6, 1989 *
952814	Feb. 6, 1989	955390	Feb. 6, 1989 *
952815	Feb. 6, 1989	955391	Feb. 6, 1989 *
952816	Feb. 6, 1989	955392	Feb. 6, 1989 *
952817	Feb. 6, 1989	955393	Feb. 6, 1989 *
952818	Feb. 6, 1989	955394	Feb. 6, 1989 *
952819	Feb. 6, 1989	955395	Feb. 6, 1989 *
952820	Feb. 6, 1989	955396	Feb. 6, 1989
952821	Feb. 6, 1989	955397	Feb. 6, 1989
952822	Feb. 6, 1989	955398	Feb. 6, 1989
952823	Feb. 6, 1989		

* 40 days linecutting and magnetics submitted February 3, 1988. If approved, the new due date will be February 3, 1989

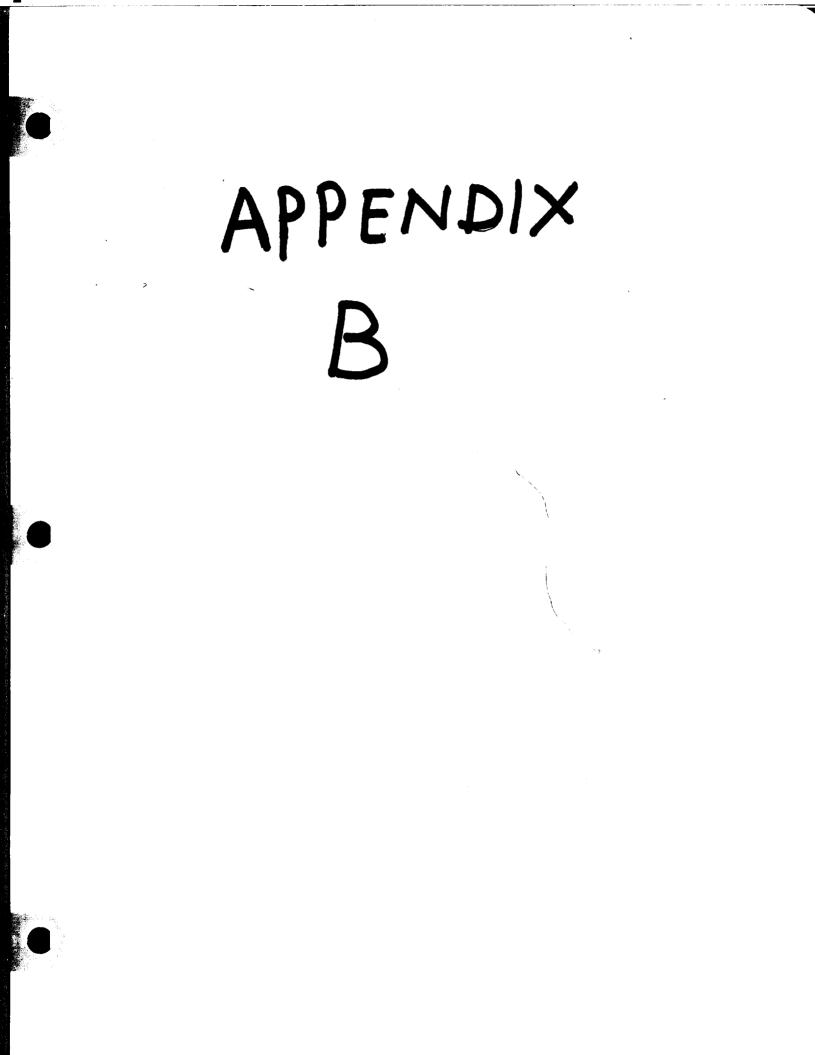
BRISTOL #2 GROUP

CLAIM # DUE DATE

923649	MAY	26/89	*
930787	MAY	26/89	*
930788	MAY	26/89	*
930789	MAY	26/89	*
930790	MAY	26/89	*
930791	MAY	26/89	×

* 40 days linecutting and magnetics submitted Feb. 3, 1988 Dpon approval, the due date will be May 26, 1990

COMSTATE OPTION


<u>CLAIM #</u>	<u>DUE DATE</u>	<u>CLAIM #</u>	DUE DATE
568441	July 29, 1987 *	871713	Oct. 22, 1989
568443	Oct. 30, 1987 *	871714	Oct. 22, 1989
568444	July 29, 1988 *	871715	Oct. 22, 1989
568445	Jan. 29, 1988 *	871716	Nov. 4, 1990
594919	Jan. 20, 1988 *	871717	Nov. 4, 1990
595029	Dec. 4, 1987 *	901590	Apr. 14, 1990
595030	Dec. 4, 1987 *	901591	Apr. 14, 1990
595031	Dec. 4, 1987 *	901592	Apr. 14, 1990
595032	Dec. 4, 1987 *	901593	Apr. 14, 1990
595997	Jan. 20, 1988 *	933333	Jul. 11, 1990
595998	Jan. 20, 1988 *	933334	Jul. 11, 1990
595999	Jan. 20, 1988 *	946108	Jul. 14, 1990
596000	Jan. 20, 1988 *	946109	Jul. 14, 1990
804618	Jul. 13, 1990 +	946110	Jul. 14, 1990
804619	Jul. 13, 1990 +	946111	Jul. 14, 1990
832256	Nov. 15, 1989	946112	Jul. 14, 1990
832701	Nov. 15, 1989	946113	Jul. 14, 1990
871712	Oct. 22, 1989	946114	Jul. 14, 1990
		946115	Jul. 14, 1990

TOTAL: 37

* 200 days credit as of due date shown, currently under extension of time to prepare for lease.

+ 200 days credit, ready for lease as of due date.

 $\widehat{}$

APPENDIX B

BREAKDOWN OF EXPENDITURES, MARCH/87 TO APRIL/88

<u>STAFF</u>

MacPherson: Verville: Wilson: Casual	\$28,865.00 5,090.00 4,948.00 10,940.00	
	49,843.00	\$49,843.00

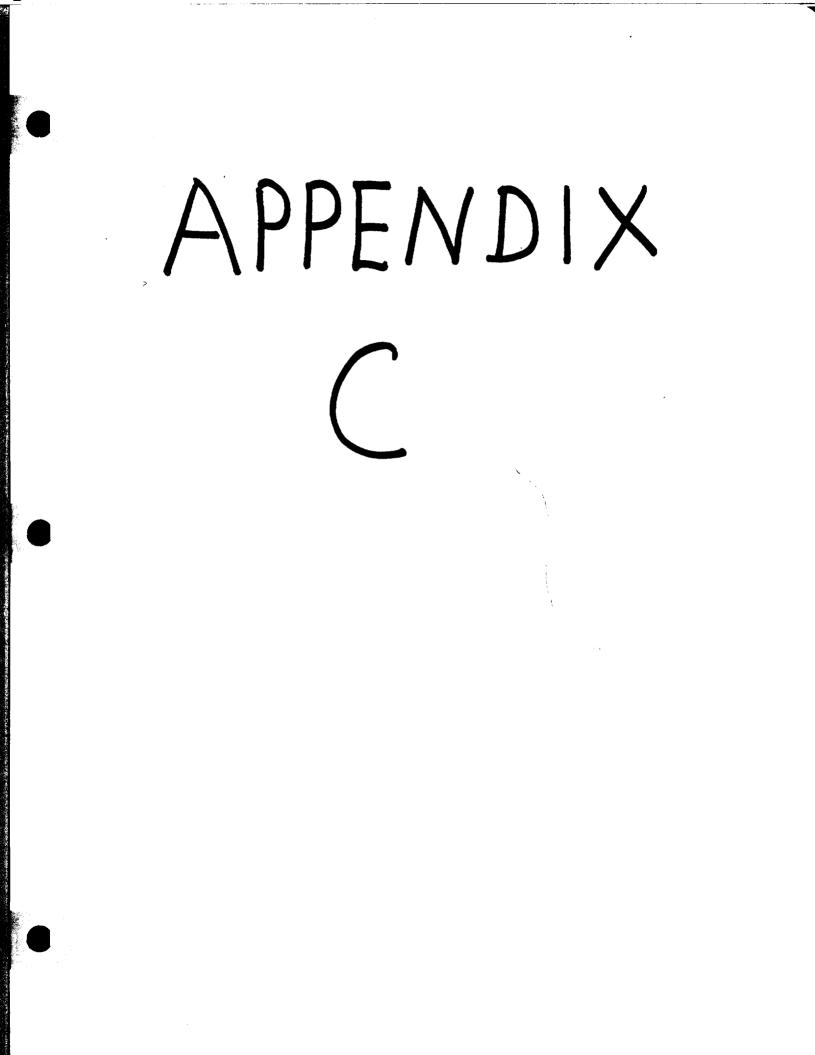
DRILLING

Longyear Inc.

374,868.95

15,927.50

GEOPHYSICS

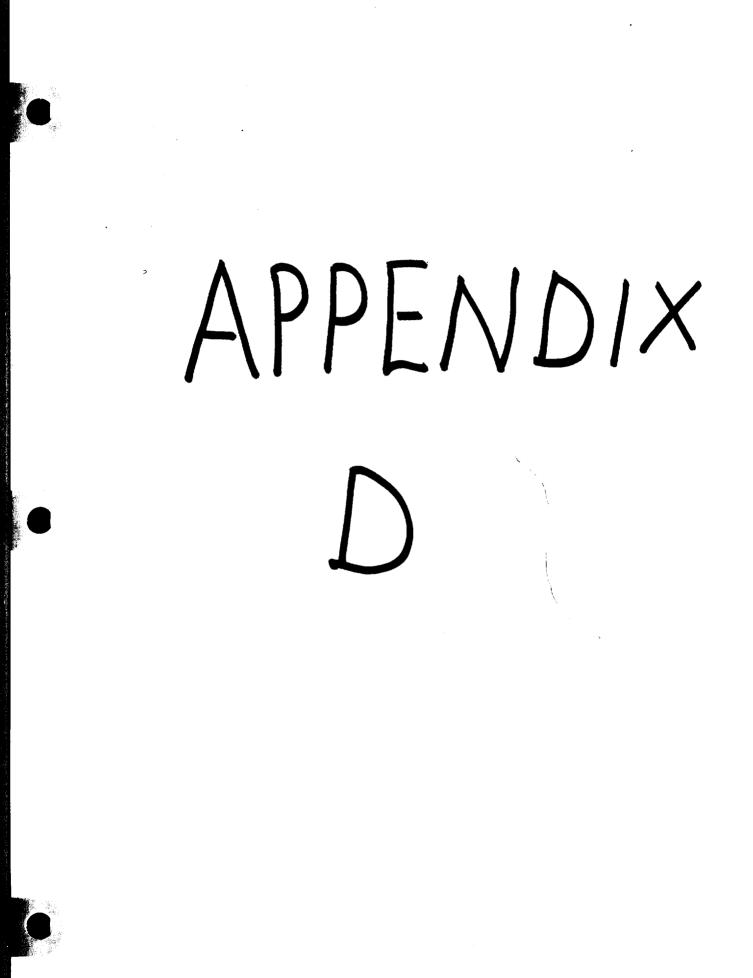

Exsics Exploration Geoprobe Dighem	60,767.00 1,500.00 5,000.00	
	67,267.00	67.267.00
	, = = : • • • •	07.207.00

ANALYTICAL

Min-En Labs

MISCELLANEOUS

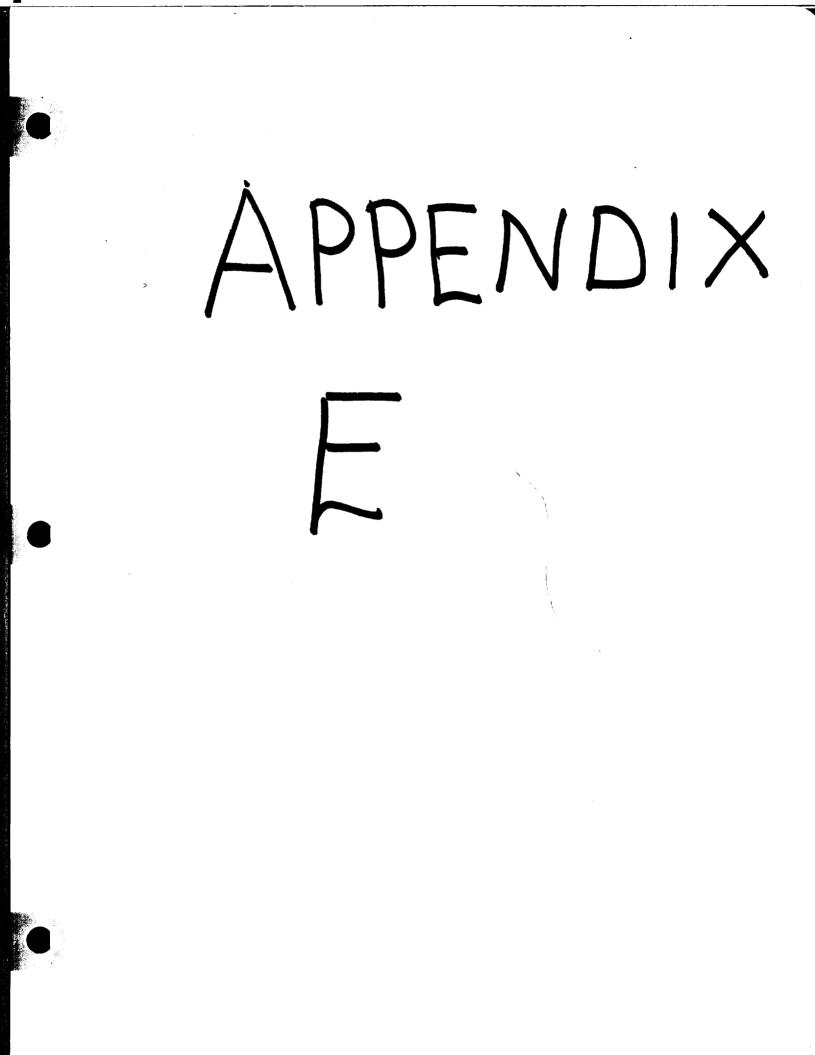
Truck Rental LogII Rental Staking Expense Account Saw Blades Core Boxes Gas Janwil Petrographics Dam Repair	5,498.00 3,600.00 11,050.00 2,948.72 3,761.43 5,000.00 1,200.00 342.80 3,000.00	
	27,302.95	27,302.95
TOTAL		\$544,307.40
10% DSS		54,430.74
GRAND TOTAL		\$598,738.14 ====================================



APPENDIX C

PROPOSED BUDGET, 1988 SUMMER PROGRAM

STAFF:


J. MacPherson 3 months @ \$3675/month J. Pirie 5 days @ \$435/day	\$11,025.00 2,175.00	
	13,200.00	13,200.00
EQUIPMENT RENTALS:		
Truck: 2 months @ \$1000/month Gas : 2 months @ \$250/month LogII: 4 months @ \$600/month	2,000.00 500.00 2,400.00	
	4,900.00	4,900.00
DIAMOND DRILLING:		
 Helicopter-support Mob/Demo 10 hrs X \$600/hr (incl. fue 		
2. Drilling-Local Contractor, \$65/meter, 2250 m X \$65/m	146,250.00	
3. Analytical Est. \$17/sample incl. labou saw blades and assays \$17 X 800 samples	r 13,600.00	
4. Core Boxes 1000 trays @ \$4/tray	4,000.00	
total	169,850.00	
SUB TOTAL		\$187,950.00
10% DSS		18,795.00
	TOTAL	\$206,745.00 ========

APPENDIX D SIGNIFICANT INTERSECTIONS, 1987-88 PROGRAM

HOLE	FROM (m)	ТО (m)	WIDTH (m)	AU (g/t)	FROM (ft)	TO (ft)	WIDTH (ft)	AU oz/ton
T-19 incl.	105.20 110.02	112.76 110.55	7.56 0.53	1.33	345.06 360.86	369.85 362.6	24.80 1.74	0.039 0.223
11101.	117.12	117.43	0.31	14.5	384.15	385.17	1.02	0.423
	146.85	147.80	0.95	4.99	481.66	484.78	3.12	0.146
	151.68	152.40	0.72	4.03	497.51	499.87	2.36	0.118
	230.26	234.50	4.24	1.93	755.25	769.16	13.91	0.056
T-20	187.91	194.70	6.79	1.19	616.34	638.61	22.27	0.035
T-21	180.95	181.97	1.02	12.4	593.51	596.86	3.35	0.362
	241.90	243.40	1.50	2.69	793.43	798.43	4.92	0.078
T -28	54.50	54.83	0.33	2.22	178.76	179.84	1.08	0.065
1 20	64.08	65.88	1.80	5.52	210.18	216.09	5.90	0.161
	79.16	85.30	6.14	14.00 (un		279.78	20.14	0.408
incl. *		80.84	0.60	122.20 (un	-	265.15	1.97	3.560
or	79.16	85.30	6.14	5.41 (cu		279.78	20.14	0.158
incl. *	80.24	80.84	0.60	34.29 (cu	t) 263.18	265.15	1.97	1.000
	95.12	96.62	1.50	3.28	311.99	316.91	4.92	0.096
T-31	55.61	58.00	2.39	3.42	182.40	190.24	7.84	0.10
	97.40	100.75	3.35	2.32	319.47	330.46	10.99	0.07
	118.45	121.43	3.98	3.29	388.51	398.00	9.77	0.10
	147.13	148.74	1.61	5.97	482.59	487.88	5.28	0.17
	110.95	112.73	1.88	2.92	363.91	369.75	6.17	0.09
T-32	62.60	63.90	1.30	2.70	205.33	209.59	4.26	0.079
T-39	40.11	41.22	1.12	4.73	131.56	135.20	3.67	0.138
	62.61	65.00	2.39	3.78	205.36	213.20	7.84	0.110
T-40	38.32	39.50	1.18	3.13	125.69	129.56	3.87	0.091
	45.00	46.00	1.00	3.10	147.60	150.88	3.28	0.090
T-41	31.98	33.07	1.09	4.21	104.89	108.47		0.123
	38.75	43.15	4.40	2.14	127.10	141.53	14.43	0.062

-

APPENDIX E

REFERENCES

Choudry, A.G. 1982: Precambrian Geology of Thorneloe Township, Cochrane District; Ontario Geological Survey, Map P.2502, Geological Series-Preliminary Map, Scale 1:15,840 or 1 inch to 1/4 mile. Geology 1981

Ferguson, S.A.

Geology of Bristol Township, District of Cochrane, Ontario Department of Mines Annual Report, 1957, Volume 66, Part 7. Accompanied by Map 1957-7, 1 inch = 1000 feet.

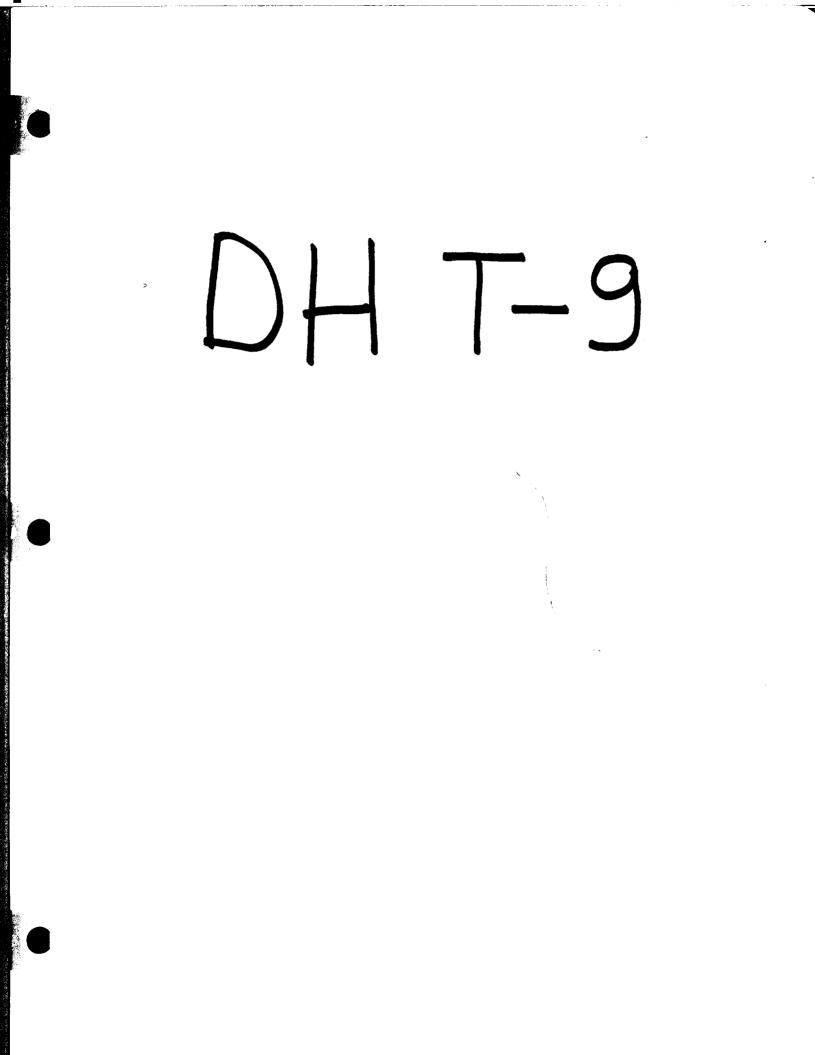
MacPherson, J.A.

1987: Summary of Drilling, November, 1986 to February 1987, In House Report on the Esso Resources/Robele Resources Joint Venture Property in Thorneloe Township.

Pyke, D.R.

1982: Geology of the Timmins Area, District of Cochrane, Ontario Geological Survey Report 219, 141p. Accompanied by Map 2455, Scale 1:50,000, 3 Charts and 1 Sheet Microfiche.

APPENDIX F


APPENDIX F

STATEMENT OF QUALIFICATIONS

- I, Joseph A. MacPherson, do certify the following:
- 1. I am a graduate of Laurentian University in Sudbury, Ontario, and hold an Honours Bachelor of Science degree in Geology.
- 2. I have been practising my profession continuously since graduation in 1980.
- 3. I have no personal monetary or stock interest in any of the properties which are discussed in this report.

Date: April 20, 1988

signed: J. A. Moulduna

~

Core size:	BQ Azimuth:		180	Gri	d:	Deta	il 13,	Vest H	alf		
Drilled by:	J.T. THOMAS D.D. Dip:		-45	Pur	pose:				on of Au	zone	
				Cla	i n:	9560	78				1
Started:	Dec. 6/86										
Finished:	Dec. 9/87 Depth	λz	Dip		thing:		N		Mod	1. h. w	21
.	91.46		-37.5		ting:		408	0	Mod	que	
	J. WacPherson 182.92		-38.0	Ble	vation	:		J.	,,,,,		
Date logged:	Dec. 12/86 251.76		-36.5	_				(
System:				Len	gth:	251.	76 m	0			
Interval	Description		Sample		rval	Length			ALTERATIO		
(m)			No.	(1)	(m)	(g/t)	SIL	SBR	CARB	¥ PY
.00 28.3	5 OVERBURDEN										
29 25 46 2	0 1A: ARGILLITE										
20.33 40.3	20% 10 To 40 cm thick arenite beds	e in	2102	30.76	22 21	1 55	.01				
	this section as well. Argillite		2102	32.31	33.81		.01				
	black, fine grained and thinly bed		2103	33.81	35.36		.01				
	Aremite is grey, medium grained		2105	35.36	36.86		.01				
	weakly locally siliceous. 10% qua		2106	36.86	38.40		.02				
	ankerite veinlets with trace to		2107	38.40	39.90		.01				
	fine pyrite. Lower contacts of		2108	39.90	41.45		.01				
	arenite are broken and assimila		2109	41.45	42.95		.01				
	into the underlying argillite bed	for		42.95			.01				
	a distance of 5 to 10 cm.		2112	46.00	41.55	1.55	.02				
						.					

2101 28.35 30.76 2.41

2111 44.50 46.00 1.50

28.35 30.76 Trace to 1% fine disseminated pyrite. 44.50 46.00 5 cm quartz ankerite vein with 5% disseminated pyrite.

46.30 70.00 1A: ARGILLITE

Very similar to section above except211347for local patchy sericite and silica211449alteration.21155053.6455.14In section from 46.3 to211670.0metres, there may be up to15%2117fine disseminated pyrite in 2 to 5 cm21205855.1456.6920%pyrite in 1 cm wide211855.bedding parallel seams.212159

2113	47.55	49.05	1.50	. 48			
2114	49.05	50.60	1.55	.01			
2115	50.60	52.10	1.50	.01	H	¥	N
2116	52.10	53.64	1.54	.17	K	V	Ĩ
2117	53.64	55.14	1.50	.03			
2119	56.69	58.19	1.50	.03	N	V	M
2120	58.19	59.74	1.55	.01	N	¥	N
2118	55.14	56.69	1.55	3.85	V	¥	T
2121	59.74	61.24	1.50	.04	H	V	I
2122	61.24	62.79	1.55	.01	N	V	ľ
2123	62.79	64.29	1.50	.01	X	V	N
2124	64.29	65.84	1.55	.02	N	¥	I
2125	65.84	67.34	1.50	.20	H	Ŧ	N
2126	67.34	68.88	1.54	.03			

.24

.18

 $\widehat{}$

 $\widehat{}$

Ľ.

-

inte {m	rval I)	Description	Sample No.		erval B)	Length (m)	Au (g/t)) Sil	LTERATIO SER	CARB	
			2127	68.88	70.00	1.12	.01				
10.00	81.20	1A: ARGILLITE									
		Thinly bedded at 30 degrees to the	2128	70.00	71.93	1.93	.01				
		core axis. A few 1 cm thick beds of	2129	71.93	74.98	3.05	.01				
		pyrite.			78.03		.01				
			2131	78.03	81.20	3.17	.13	H	ĩ	N	
1.20	90.22	1A: ARCILLITE									
		Numerous interbeds of cherty material	2132	81.20	82.58	1.38	.04	I	¥.	N	
		and 10% quartz ankerite veins up to 30			85.50		.02	Ň	ÿ	Ĩ	
		cm wide.	2136	87.17	88.92	1.75	.03	T	V	¥	
		82.58 84.12 Speck of chalcopyrite at	2133	82.58	84.12	1.54	.92	N	ĩ	K	
		edge of thin quartz stringer.									
		85.50 86.17 3 to 5% pyrite in thin	2135	85.50	86.17	.67	.01	¥	¥	V	
		quartz ankerite stringers with									
		chloritic margins.					••				
		88.92 90.22 1 to 2% very fine pyrite.	2137	88.92	90.22	1.30	.01	V	V	V	
0.22	98.90	1F: CONGLOWERATE									
		Noderately deformed with clasts	2140	94.80	96.32	1.52	.01	X	T	X	
		stretched at 45 to 55 degrees to the			97.23	.91	.21	Ň	ÿ	Ň	
		core axis. Clast supported. Matrix is			98.90		.20	Ň	, in the second s	Ň	
		very fine grained quartz and ankerite									
		with a few fuchsite streaks. Pragments									
		are variably silicified and consist of									
		75% chert and 25% soft sediments.									
		Many clasts are rimmed by chlorite.									
		From 93.5 to 94.8 metres, the									
		conglomerate contains 1% fine									
		disseminated euhedral magnetite in the matrix. This is accompanied by an									
		increase in the pyrite and fuchsite									
		content.									
		90.22 93.50 Trace to 2% pyrite in	2138	90.22	93.50	3.28	.02	X	V	M	
		matrix of conglomerate.						••	•	••	
		93.50 94.80 1 to 2% magnetite, 1 to 5%	2139	93.50	94.80	1.30	.01	X	V	M	
	ł	pyrite.									
1.90.1	07 A1 -	3C: INTENSE SILICA-CARBONATE FLOODING									
		Unit is actually conglomerate but it									
		is highly altered and pyritic. Clasts									
	i i	have been selectively sericitized or									
		silicified depending on their original									
		composition.									
		98.90 100.40 2 to 10% pyrite in									

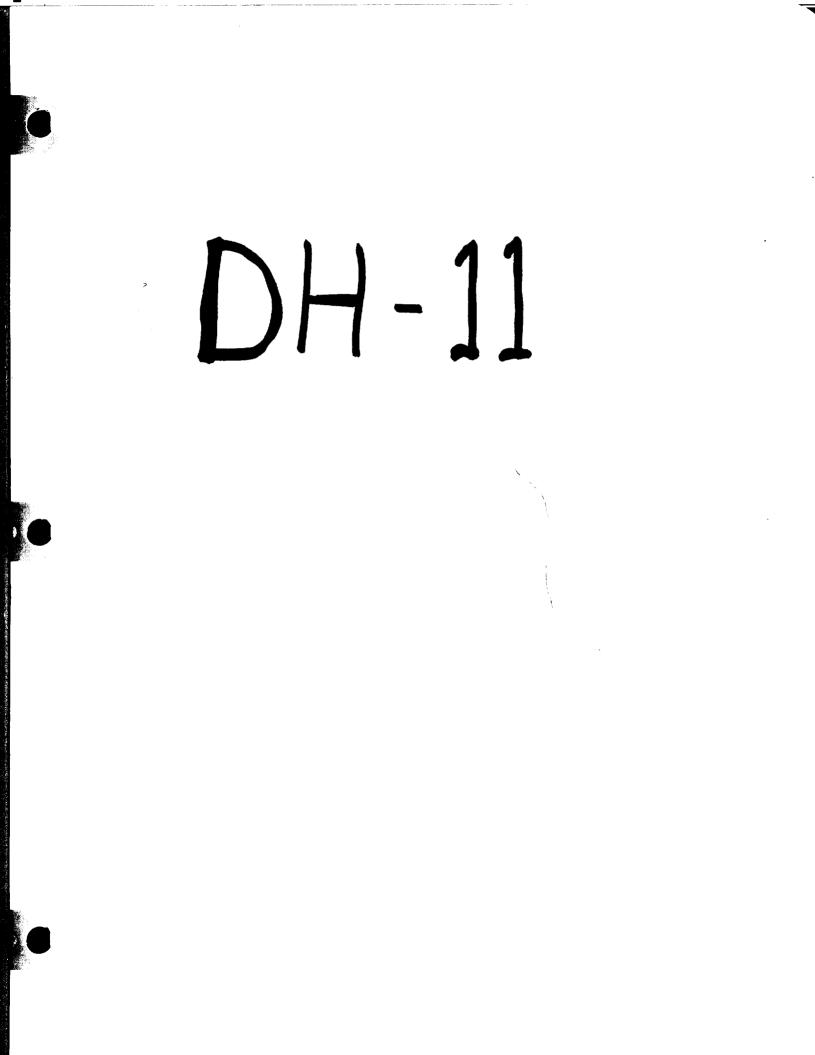
Bsso Minerals Canada - Robele JV (Ont 88)			Hole: T-9 Page: 3								
(lacerval (m)	Description	Sample No.	Inter (m)		Length (m)	Au (g/t)	A SIL	LTERATION SER	CARB	\$ PY
		conglomerate matrix. 100.40 102.41 10% fine disseminated pyrite in matrix of conglomerate.	2144 1	00.40 1	102.41	2.01	3.43	I	K	I	
	102.41 123.85	1A: ARGILLITE Fine grained, thinly bedded. Moderately altered. 1 to 3% quartz ankerite stringers, 2% fine disseminated pyrite.	2148 1 2149 1 2150 1 2151 1 2152 1 2153 1 2154 1 2155 1 2156 1 2157 1		L05.46 L06.96 L08.51 L10.01 L11.56 L13.06 L14.60 L14.60 L16.10 L17.65 L19.15 L20.70 L22.20	1.55 1.50 1.55 1.50 1.55 1.50 1.54 1.50 1.55 1.50 1.55 1.50	2.52 .15 .08 .01 .01 .01 .02 .01 .05 .01 .04 .02	8 8 8 8 8 8 8 8 8 8 8	A A A A A A A A A A A A A A A A A A A	5 7 7 7 7 7 7 7 7 7 7 7 7	
	123.85 137.84	18: ARGILLITE WITH GRAPHITIC SLIPS Unaltered. Numerous graphitic slips in this thinly bedded unit. At 124.5 metres there is thin graphitic fault gouge. Section contains several 1 to 3 metre zones of quartz carbonate veining with sericitic inclusions and haloes. 125.50 126.00 20 to 30% quartz ankerite veining with 5 to 15% pyrite in the veins.	2161 1 2162 1	27.00 : 31.95 : 34.44 : 25.50 :	134.44 138.99	2.49	.01 .01 .06	R R R	A A	R A R F	
-	137.84 179.21	<pre>1A: ARGILLITE Sharp upper contact. Unit is moderately sericitic and contains trace to locally 3% fine disseminated pyrite. 146.58 148.13 Trace arsenopyrite. 155.53 157.28 5% pyrite over 40 cm from 156.2 to 156.8 metres. 166.42 167.92 5% pyrite from 166.9 to 167.3 metres.</pre>	2164 1 2165 1 2167 1 2166 1 2168 1 2168 1 2169 1 2170 1 2171 1 2173 1 2174 1 2175 1 2176 1	42.04 45.08 48.13 46.58 49.63 151.18 152.68 157.28 157.28 158.78 160.32 161.82	145.08 146.58 149.63 148.13 151.18 152.68 154.23 155.53 158.78 160.32 161.82 163.37	3.05 3.04 1.50 1.55 1.55 1.55 1.50 1.55 1.30 1.55 1.30 1.50 1.55 1.50	.04 .03 .01 .15 .17 .06 .04 .53 .50 .05 .02 .80 .27	H R R R R R R R R R R R R R R R	4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	

Interval	Description	Sample	mple Interval f		Au	λ			
(n)	-	No.	(m)	(n)	(g/t)	SIL	SER	CARB	\$ PY
		2178 1	64.87 166.42	1.55	.18	¥	V	V	
		2180 1	67.92 169.47	1.55	.17	N	¥	V	
		2181 1	69.47 170.97	1.50	.01	N	V	۳	
		2182 1	70.97 172.52	1.55	.19	R	¥	V	
		2183 1	72.52 174.02	1.50	.02	N	¥	T	
		2184 1	74.02 175.56	1.54	.06	N		V	
		2185 1	75.56 177.06	1.50	.01	Ň	3 V	T I	
		2186 1	77.06 179.21	2.15	.01	N	W	V	

179.21 181.40 18: LITHIC ARENITE

Medium grained, light grey. Numerous quartzo-feldspathic clasts 1 to 5mm in size are set in a very fine grained quartz sericite ankerite matrix.

- 181.40 183.71 1A: ARGILLITE Moderately sericitic, interbedded with fine grained siltstone.
- 183.71 185.11 1E: LITHIC AREMITE Medium grained, moderately to strongly silicified. Sharp upper contact at 30 degrees to the core axis.
- 185.11 200.90 3E: MODERATE SERICITE SCHIST (+/- QTZ) Variably silicified, moderate to strongly sericitized. 188.66 189.26 4A: QUARTZ-CARBOHATE VEIM 199.95 200.90 2 to 10% very fine disseminated pyrite.
- 200.90 206.24 2G: SILICIPIED PORPHYRY (QUARTI &/OR FELDSPAR)


Highly silicified, locally well crackle fractured. Upper contact is at 0 to 10 degrees to the core axis and the lower contact is at 45 degrees to the core axis. Quartz and feldspar phenocrysts are shattered and partially replaced by secondary quartz and ankerite. Numerous sericitic slips at 40 to 60 degrees to the core axis. 202.80 203.30 4A: QUARTZ-CARBONATE VEIN

203.0. Broken, very sericitic,

_

Sample Interval Length Au ALTERATION Interval -----Description-----(m) (g/t) SIL SER CARB \$ PY No. (m) possible fault gouge, contains 10% arsenopyrite needles. 202.00 202.80 1 to 5% fine disseminated pyrite, 1% small arsenopyrite needles. 202.80 203.30 1 to 5% pyrite and 15% fine arsenopyrite in 2 cm fault gouge at 203 metres. 204,80 206.24 5 to 30% pyrite locally over 5 cm, 1% chalcopyrite. 206.24 210.60 3F: STRONG SERICITE SCHIST (+/- OTZ) Strongly sericitic, 25% chlorite blebs parallel to the strong foliation at 10 degrees to the core axis. 1% fuchstic fragments. 206.24 207.59 1 to 3% cubic pyrite. 210.60 212.44 3B: NODERATE SERICITE SCHIST (+/- QTZ) Sericitic, thinly bedded, 2% disseminated pyrite. . 212.44 215.69 3F: STRONG SERICITE SCHIST (+/- OTZ) Similar to section from 206.24 to 210.60. 215.69 221.28 1D: SILTSTONE Light grey green, beds are 80 to 150 cm thick. 221.28 239.45 1A: ARGILLITE Thinly bedded with local streaky sericite. 5% black quartz ankerite veinlets. Bedding contacts are at 50 degrees to the core axis. 236.52 238.02 Average is 2% fine disseminated cubic pyrite, locally trace arsenopyrite in the black quartz anterite veinlets. 239.45 243.42 18: LITHIC ARBNITE Thickly bedded, 10% mafic fragments. Grain size decreases down the hole.

incerval	Description	Sample	Interval	Length	Au	é	ETBRATI (B K	
(n)		No.	(=)	(1)	(g/t)	SIL	SER	CARB	\$ PY
243.42 251.76	1A: ARGILLITE								
	Weakly altered, thinly bedded. 1 to 3%								
	thin quartz carbonate stringers with								
	1% pyrite.								
	251.76 End Of Hole.								
	243.42 245.67 Less than 1% fine cubic								
	pyrite.				•				

Esso Minerals Canada - Robele JV (Ont 88)

Hole: T-11 1 Page:

Core size: Drilled by:	BQ J.T. THOMAS D.D.	Azimuth: Dip:	180 -50	Grid: Purpose: Claim:	DETAIL #3, WEST HALP Cross section IP and mag high zone 956079
Started:	NOV. 28/86				
Finished:	DEC. 5/86	Depth &	Az Dip	Northing:	3+75N
	•	91.46	-46.0	Basting:	L 3600B D L AND
Logged by:	J. NACPHERSON	182.92	-44.5	Elevation:	L 3600B A Marbiherro
Date logged:	DEC.6/86	274.39	-42.0		
System:	,	365.85	-44.5	Length:	462.20m
-1		462.20	-39.0	•	v

Interval	Description	Sample	Interval	Length	Au	1	LTBRATI(DN	
(=)		No.	(1)	(m)	(g/t)	SIL	SBR	CARB	\$ PY

4923 26.21 27.71 1.50

.00 24.58 OVERBURDEN

24.58 60.60 1A: ARGILLITE

(

Fine grained to very fine grained, variably sericitized, locally quartz carbonate veined. Thinly bedded, locally slumped or folded. Moderately strong crenulation cleavage at 70 degrees to the core axis and bedding attitudes vary from 0 to 80 degrees to the core axis.

24.58 26.90 Highly deformed, very sericitic.

30.85 30.90 Fault zone, broken core.

30.70 33.75 4A: QUARTI-CARBONATE VEIN. Minor chlorite in vein. Very sericitic margins.

41.40 41.70 Broken core, minor quartz vein. Possible fault zone.

24.58 26.21 1% pyrite, locally up to 5% pyrite in areas of narrow quartz carbonate veining.

1323	*****		T144			-	-
4924	27.71	29.26	1.55	.01	Ĭ	¥	¥
4925	29.26	30.80	1.54	.02	N	¥	T
4926	30.80	32.31	1.51	.04	ji i	T	Y
4927	32.31	33.81	1.50	.01	N	V	V
4928	33.81	35.36	1.55	.01	N	Ŧ	V
				.01	I	V	V
	36.86				N	V	7
	38.40				I	ų.	¥
				.01	Ň	V	¥
	41.45				H	¥	V
	42.95				H	¥	V
				.01	l	¥	V
	46.00				K	¥	V
				.01	¥	V	V
				.01	¥	Ÿ	¥
				.01	N	¥	T
	50.60				8	¥	¥
				.01	V	V	V
	53.64				¥	¥	¥
				.03	V	V	V
				.01	¥	V	V
				.01	V	¥	¥
				.02	V	¥	¥
4938	61.35	62.79	1.44	.02	V	V	W

.01

Ĩ

¥

Ŧ

Medium grained, clasts are sub-rounded quartz feldspar set in a quartz ankerite sericite matrix. 20% cubic pyrite in matrix. Rare fuchsite

60.60 61.50 1E: LITHIC ARBHITE

interval (m)	Description	Sample No.	Inte (1	rval 1)	Length (m)	€]u €-/t)		LTERATIO SER	N CARB	\$ 1
	fragment. 60.60 61.35 2% pyrite in 1 cm quartz veinlet.	4937	60.60	61.35	.75	.01	M	V	V	
1.50 81.08	3B: MODERATE SERICITE SCHIST (+/- QTZ)									
	Similar to 24.58 to 60.6, except this	4939	62.79	64.29	1.50	. . ∔04	V	V	ų.	
	section is more sericitic and pyritic.	4940	64.29	65.84	1.55	.03	Ŧ	ĩ	¥	
	Contains 1 to 2% thin quartz ankerite			67.34		.01	V	V	V	
	stringers. Colour is light buff to grey			68.88		.01	T	ï	¥	
	62.1 62.85. 60% narrow pyritic quartz			70.38		.01	V	M	Ŵ	
	stringers in sericitic argillite.			71.93		.01	Ĩ	H	¥.	
	Below 66 metres, the argillite becomes			73.43		.01	Ĩ	M	V	
	interbedded with thin siltstone beds			75.08		.02	Ĩ	N	ų,	
	which are weakly silicified and			76.58		.01	N I	H	Ĩ	
	contain trace pyrite. 72.05 73.45 4A: QUARTI-CARBOWATE VEIN.			78.03		.10	A K	N S	8	
	Vinor chlorite, sericitic			81.08	1.47	.12	n M	S	V V	
	maigins.	4330	13.30	01.00	1.30		ā	ð	V	
	76.55 76.9. Breccia. Possibly									
	tectonic. Unit consists of poorly									
	sorted quartz feldspar sericite									
	ankerite clasts in a fine grained									
	chloritic matrix. Pine dusting and									
	the occasional cube of pyrite are									
	present. Clasts have similar									
	composition and vary in size from.5 to									
	3cm. Sharp upper contact lost core is									
	marked by a 1 cm quartz vein with very									
	sericitic margins.									
.08 90.80	1A: ARGILLITE									
	Moderately chloritic. Contains up to			82.58		.04	M	S	V	
	5% pyrite associated with silica			84.12		.26	M	S	V	
	replacements or narrow quartz veinlets.			85.62		.19	M	S	W	
				87.17		.22	N	N	¥.	
				88.67		.01	I	N	¥.	
				90.22		.01	X	N	¥.	
		3216	90.22	91.80	1.58	.28	V	N	V	
0.80 93.27	3B: QUARTI-SERICITE-CARBONATE SCHIST									
	Thinly banded at 60 degrees to the	3217	91.80	93.27	1.47	1.45	M	N	V	
	core axis. Last 1.5 meters contains 5% disseminated pyrite.									

93.27 101.65 3A: RED WAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY \sim

i

interval (m)	Description	Sample To.	Inte (1	erval N)	Gength (m)	Au (g/t)	AI SIL	SER	N CARB	\$ PY
	Section is highly variable in	4951	93.27	94.77	1.50	.34	H	N	M	
	composition and alteration intensity.			97.82		.01	H	Ň	H	
	General description would be as			99.36		.01	K	N	N	
	follows:. Weakly banded to massive cherty sediments which take on a light	4900	33.30	101.65	1.19	.01	M	N	M	
	red hue and become moderately magnetic									
	below 93.5 metres. Cumerous chloritic					•				
	stringers oriented sub-parallel to									
	bedding in upper 5 metres of section.									
	Average pyrite content is 1 to 3% and									
	average magnetite content is 1 to 2%. The highest magnetite concentrations									
	occur in the deeper red sections.									
	Locally the rock is moderately to									
	heavily crackle fractured and these									
	fracture may contain up to 40% very							N		
	fine disseminated pyrite. 93.4 93.6. Pault zone. Rusty, broken									
	core. Red brown colour, locally							•		
	bleached grey-white.									
	94.77 96.32 Trace to 1% pyrite,	4952	94.77	96.32	1.55	.62	M	N	Ħ	
	locally 2% pyrite in bleached sections.									
101.65 102.45	3C: INTENSE SILICA-CARBONATE PLOODING									
	Reavy crackle fracture, several quartz									
	carbonate stringers.			100 15		• • •	•		-	
	101.65 102.45 15% disseminated pyrite in silicified arenite and narrow	4326	101.02	102.45	.80	7.45	S	¥.	S	
	quartz carbonate veinlets.									
102 45 105.00	3A: RBD MAGNETITE-BEARING ARENITE OR									
	QUARTZ-PELDSPAR PORPHYRY									
	As per description of unit from 93, 27			103.95		1.37	S	V	S	
	to 101.65 meters.	4958	103.95	105.46	1.51	.02	H	N -	H	
105.00 119.00	3B: QUARTZ-SERICITE-CARBONATE SCHIST									
	This unit consists of alternating			108.51		.01	N	N .	X	
	bands of chlorite-rich and quartz-carbonate rich material. Where			110.01 111.56		.01 .19	H N	X N	N N	
	chlorite is present, magnetite is			113.06		.04	л М	N	X	
	absent or present in very minor			114.60		.01		N	H.	
	amounts compared to the quartz			116.10		.02	Ň	H	M	
	carbonate altered sections.			117.65		.01	N	H	M	
	105.46 106.96 Locally 5% disseminated pyrite and trace to 1% magnetite.	4959	105.46	106.96	1.50	.21	X	H	H	
	117.65 119.35 3 to 10% pyrite in	4967	117.65	119.35	1.70	.12	X	N	X	
	bleached and red stained arenite.				1.10	*11	n	a	n	

~									
Interval (n)	Description	Sample No.	Interval (m)	Length (m)		SIL	ALTERATION SER	CARB	\$ PY
119.00 136.74	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY								
	At 120 metres, the unit is very thinly	4968 1	19.35 120.70	1.35	.03		())	K	
	banded at 65 degrees to the core axis.		20.70 122.15					X	
	130.54 131.3. Pault zone. Broken core,		25.30 126.80		. 🕮			M	
	2% fine disseminated pyrite.		26.80 127.85		.01	N		N	
	122.15 123.75 Section contains 5 cm quartz vein and 5 to 10% pyrite in		22.15 123.75 29.30 131.30		.30 4.80	ľ		H	
	heavy crackle fracture.			2.00 1.09	1.00	S		S M	
	123.75 125.30 Local strong crackle		23.75 125.30		.03	, N	i ni I Ni	ň	
	fracture with 10% pyrite.		32.89 134.44		1.27	N		Ň	
	127.85 129.30 3 to 5% pyrite as	4974 1	27.85 129.30	1.45	.65	M	l N	M	
	stringers and disseminations in silicified cherty unit.	4978 1	34.44 136.74	2.30	2.38	9	V	M	
136.74 146.70	3B: NODERATE SERICITE SCHIST (+/- QTI)								
	The alteration intensity gradually	3219 1	38.99 142.04	3.05	1.64	S	V	M	
	decreases to very minor sericite by		42.04 145.08		.02	\$		X	
	the end of this section. Minor interbedded red hematitic alteration with trace magnetite grains.	3221 1	45.08 146.70	1.62	1.51	N	l M	H	
	136.74 138.99 Avg pyrite is 7 to 10% and locally it may reach 30% in and	3218 1	36.74 138.99	2.25	.34	S	¥	M	
	near narrow bedding parallel quartz veins.								
146.70 189.00	1A: ARGILLITE								
	Moderately chloritic, very little		46.70 148.13		.42	M		M	
	alteration. Thinly bedded but highly		8.13 151.18		1.11	X	-	X	
	deformed. Strong crenulation cleavage at 70 to 90 degrees to the core axis.		51.18 154.23 54.23 157.28		3.34 1.00	N N		K K	
	Local minor thin beds of red hematitic		57.28 160.32		.03	n 7		n V	
	alteration are present and these are		50.32 163.37		.28	ÿ	-	v	
	very weakly magnetic. There are also	3228 10	53.37 166.42	3.05	.07	N	N	V	
	several cherty beds with semi-massive		56.42 159.47		.02	N	N	¥	
	pyrite.		59.47 172.52		.01	I	-	۲ ۲	
			12.52 175.57 15.57 178.62	3.05	.01 .01	N N	-	V	
			18.62 181.67		.01	1 1	-	V V	
			81.67 184.72		.12	Ĩ	-	7	
			4.72 186.21		.01	8	-	Ÿ	
			86.21 187.76		.01	V	-	M	
		3230 18	7.76 189.00	1.24	.01	Y	T	X	

189.00 194.85 1E: LITHIC ARENITE

(

Bsso Minerals	Canada - Robele JV (Ont 88)				le: T- ge:	11 5				
interval (m)	Description	Sample No.	: I	nterval (m)	Length (m)	Au (g/t)	A Sil	LTERATIO SER	K Carb	\$ PY
	Fine grained. Feldspar clasts are altered to ankerite. Chloritic matrix. Thickly bedded. Becomes weakly altered last 1 metre.	3232	190.	00 190.80 80 193.85 85 194.85	3.05	.01 .01 .01	A A A	8 8 8	M M N	
194.85 201.70	1D: SILTSTOWE Interbedded with argillite. Top 2 metres weakly altered. Siltstone appears to be broken and the more argillaceous beds flow around the broken fragments of the siltstone. The angles to the core axis are highly variable. A few graphitic slips are present. 194.85 196.90 1 to 3% fine disseminated pyrite in conglomerate.	4785 4786	198.	90 198.40 40 199.90 90 201.70 85 196.90	1.50	.01 .04 .02 2.31	A R R	A N N R	H H H	
201.70 208.50	1F: CONGLONBRATE Moderately altered, weakly pyritic (1 to 2%). Alteration contacts correspond with bedding contact. Clasts are mainly subrounded quartzo-feldspathic set in a sericite quartz matrix. Unit is clast-supported. Very sharp lower bedding contact corresponding with end of weak alteration.	3236 3237	203. 204.	70 203.20 20 204.70 70 206.60 50 208.50	1.50 1.90	.01 .04 .11 .05	4 A A A	9 9 9	H K X	
208.50 214.50	1B: ARGILLITE WITH GRAPHITIC SLIPS Black, fine grained, contains 1 to 2% cubic pyrite. Heavily veined with crenulated quartz ankerite veins from 208.5 to 211.5 metres. These veins contain 1 to 10% pyrite as masses. Humerous graphitic slips in and around the veins.			00 211.50				I	X	
214.50 215.50	208.50 210.00 30% pyritic quartz veins in section of graphitic argillite. 1D: SILTSTONE Weakly altered, contains 3% quartz ankerite veinlets.	4373	208.:	50 210.00	1.50	.19	. 7	Ÿ	K	
	214.50 215.50 3% pyrite in quartz ankerite veinlet in altered siltstone.	4981	214.	50 215.50	1.09	.01	H	H	X	

215.50 261.50 1B: ARGILLITE WITH GRAPHITIC SLIPS

interval (m)	Description	Sample Bo.	Interval (m)	Length (m)	Au (a/t)	∮_⊒L	ALTERATION SER	CARB	\$ PY
(m)		80.	(#)	(=)	(9/5)	3 -410	JBA	VAAD	* F1
	Interbedded with fine grained light	4982 2	20.25 222.80	2.55	.07	H	i V	M	
	grey silst.	3239 2	22.80 224.33	1.53	.07	1	I W	M	
	220.25 222.80 4A: QUARTI-CARBONATE	3240 2	24.33 227.38	3.05	.02	I	i V	M	
	VEIN. Chloritic margins.	3241 2	27.38 230.43	3.05	.01	ļ	l 🛛 🖌 -	H	
	Below the veins, light grey fine	4983 2	57.40 258.40	1.00	.01	l	I V	ų.	
	grained siltstone is dominant. It is		58.40 259.25		.14	Ĩ	I N	V	
	weakly sericitic and contains 10%		59.85 261.50		.04			¥	
	quartz ankerite stringers.								
	230.43 234.18 From 215.5 to 234.8 the	3242 2	30.43 234.18	3.75	.02	Ĭ	l V	M	
	pyrite appears sedimentary in nature.								
	234.18 235.00 1 to 3% pyrite.	3243 2	34.18 235.00	.82	.15	1	I X	M	

261.50 294.15 1A: ARGILLITE

Locally sericitic, becoming more so down the hole. 2% pyrite.

294.15 344.00 3E: MODERATE SERICITE SCHIST (+/- QTZ) Alteration intensity increases here

and 3 to 5% black quartz ankerite stringers are present with up to 5% pyrite contained in these stringers. These stringers are bedding parallel but occasionally may crosscut the bedding.

295.94 297.48 In section from 294 to 315 metres, there is 1 to 2% disseminated pyrite in argillite and trace pyrite in black guartz ankerite stringers.

329.46 331.01 2% pyrite.

3244	294.64	295.94	1.30	.09	¥	¥	W
3246	297.48	298.98	1.50	.09	¥.		1
3247	298.98	300.53	1.55	.01	T	¥	٧
3248	300.53	302.03	1.50	.03	¥	¥	
3249	302.03	303.58	1.55	.01	T	¥	V
3250	303.58	305.08	1.50	.20	¥	¥	V
3251	305.08	306.63	1.55	.12	V	¥	¥
3245	295.94	297.48	1.54	.01	¥	¥	¥
3252	306.63	308.13	1.50	.04	V	¥	V
3253	308.13	309.68	1.55	.01	¥	¥	¥
3254	309.68	311.18	1.50	.08	¥	¥	V
3255	311.18	312.72	1.54	.03	T	¥	V
3256	312.72	314.22	1.50	.05	V	¥	V
3257	314.22	315.77	1.55	.04	¥.	¥	¥
3258	315.77	317.27	1.50	.01	¥	¥	V
3259		318.82	1.55	.01	¥.	¥	¥
3260	318.82	320.32	1.50	.01	V	¥	Ÿ
3261	320.32	321.87	1.55	.01	1	¥	ų,
3262	321.87	323.37	1.50	.02	¥	Ŧ	V
3263	323.37	324.92	1.55	.95	¥.	V	V
3264	324.92	326.42	1.50	.01	V	ï	¥.
3265	326.42	327.96	1.54	.03	Ĩ	¥	V
3266	327.96	329.46	1.50	.07	V	V	¥
3268	331.01	332.56	1.55	.01	¥	V	Y
3269	332.56	334.06	1.50	.01	V	T	V
3270	334.06	335.56	1.50	.01	V	¥	Ĩ
3271	335.56	337.11	1.55	.02	V	¥	V
3272	337.11	338.66	1.55	.01	¥	V	T
3273	338.66	340.16	1.50	.01	T	¥	¥
3274		341.66	1.50	.01	¥	¥	Ĩ
3275	341.66	343.20	1.54	.01	V	ÿ	· - 🖬

Interval -----Description-----

3276 343.20 344.00 .80 .03 ¥ ¥ ¥

344.00 352.05 1B: LITHIC ARENITE Weakly altered. Ankerite replaces clasts which are up to 2 mm in diam.

352.05 355.19 1A: ARGILLITE

Fine grained, black, thinly bedded. 2 to 5% pyrite in bedding parallel seams 2 to 5 mm wide. 1% black quartz ankerite stringers. Bedding attitudes are at 45 degrees to the core axis and crenulation cleavage is at 70 degrees to the core axis. 352.05 353.30 2 to 4% pyrite in bedding parallel stringers.

355.19 386.82 1B: LITHIC ARENITE

Moderately silicified, fine grained to medium grained, hard. Clasts replaced by quartz and ankerite, sericitic matrix. Bedding at 45 degrees to the core axis.

357.84 359.34 From 356.34 to 377.62 metres, there are numerous.5 to 2cm wide bedding parallel stringers of quartz and ankerite with 20% pyrite.

359.34 361.00 Section contains up to 15% quartz ankerite stringers, as described above.

364.00 366.98 Avg pyrite content is 10%, locally 25% in and near heavier concentrations of black qyz ankerite veinlets.

374.58 376.12 Prom 375.5 to 378.47 metres there is 2 to 4% coarse arsenopyrite needles, 5 to 10% pyrite. 385.88 387.38 1% fine disseminated pyrite, 5% thin quartz veinlets.

386.82 388.80 1B: LITHIC ARENITE

Medium to fine grained, weakly silicified.

388.80 392.72 3E: MODERATE SERICITE SCHIST (+/- QTI)

cucerval -----Description----(m)

\$ PY

Sericitic, fine grained, thinly bedded, black. 5% black quartz ankerite stringers parallel to bedding. Bedding is at 40 degrees to the core axis. 388.92 390.42 Black quartz ankerite stringers contain 20% pyrite and trace to 1% arsenopyrite.

392.72 394.90 1B: LITHIC AREMITE Medium to fine grained, moderately silicified, a few 1.5 cm veinlets. 393.47 395.02 Up to 2% fine disseminated pyrite.

- 394.90 400.60 3E: MODERATE SERICITE SCHIST (+/- QTZ) Moderately sericitic, fine grained, thinly bedded, beds are at 45 degrees to the core axis. 399.57 401.12 Pyrite content incresing down the hole to 3 to 5%.
- 400.60 407.00 1B: LITBIC AREWITE Medium to fine grained, weakly silicified. Bedding is at 50 degrees to the core axis. 405.66 407.21 5% disseminated pyrite from 407 to 414 metres.
- 407.00 423.85 3E: HODERATE SERICITE SCHIST (+/- QTZ) Moderately sericitic, veakly silicified. Several quartz carbonate veinlets up to 8 cm wide carry trace pyrite. Bedding is at 60 degrees to the core axis and decreases to 0 degrees near the end of the section.

423.85 430.43 1B: LITHIC AREMITE Weakly silicified, ankerite rich. Medium grey, hard, trace pyrite. 423.95 425.50 1 to 2% disseminated pyrite, weakly silicified. Up to 10% pyrite in very narrow guartz carbonate veinlets.

Interval	Description	Sample	Interval	Length	λu	X	LTERATI	ON	
(m)		No.	(1)	(m)	(g/t)	SIL	SBR	CARB	11

430.43 438.12 1A: ARGILLITE

Fine grained, thinly bedded, dark grey to black. 5% thin guartz ankerite veinlets parallel to bedding. Bedding is at 50 degrees to the core axis. 434.64 436.19 Minor green carbonate present in narrow guartz carbonate veinlets from 433.72 to 433.8 metres.

438.12 441.03 1B: LITHIC ARENITE

Medium to fine grained, grey, hard. Veakly altered, 2% thin grey quartz ankerite veinlets at varying orientations to the core axis.

441.03 448.13 1A: ARGILLITE

Moderately sericitic, fine grained, thinly bedded. Up to 10% fine arsenopyrite needles noted at 446.2 metres.

448.13 462.20 1B: LITHIC ARBNITE

Medium to fine grained, medium grey in colour, moderately hard. Moderately ankeritic, weakly sericitic. Bedding is at 45 degrees to the core axis. 1% pyrite, trace arsenopyrite needles. 462.20 Bad Of Hole.

Interval	Length	Au	۸ ک	LTERATIO)8
(=)	(m)	(g/t)	SIL	SBR	CARB

PY

DH T-12

J.T. THOMAS D.D.

Dec. 14/85

DEC.16/86

J. NACPHERSON

BQ

Date logged: DEC. 18/86

.00 25.60 OVERBURDEN

Hole: T-12 Page: 1

956076

3+25 H

L 3600g

To test up-dip extension of gold intersection in T-1

Length: 123.75m

Grid:

Claim:

Purpose:

Northing:

Basting:

(m)

Blevation:

\$ PY

Interval -----Description-----(m)

Azimuth:

Dip:

Depth

123.40

180

-50

Dip

Sample

No.

-48.0

λz

Interval Length Au ALTERATION (m) (g/t) SIL SER CARB

Detail 13, West Half

25.60 43.65 3E: MODERATE SERICITE SCHIST (+/- QTZ) Thinly bedded and locally highly deformed and brecciated. Strong crenulation cleavage at 90 degrees to

the core axis. 25.60 27.52 Sediment breccia. Highly deformed, moderately sericitic, soft, greenish black. Unit consists of fragments angular of cherty sediment in sericite carbonate matrix.

- 29.66 33.86 Medium to dark green bands interbedded with light grey hard bands with 3 to 5% pyrite. Possible quartz carbonate sericite schist. 40.65 41.20 4A: QUARTZ-CARBONATE VEIN.
- Chlorite in vein and margins.

25.60 27.52 Average 1% pyrite as fine disseminations or small cubes. 31.65 32.31 Quartz ankerite veinlet

with 3 to 7% fine pyrite. 43.65 46.70 3A: RED MAGNETITE-BEARING ARENITE OR

QUARTZ-FELDSPAR PORPHYRY Contains 1 to 5% fine euhed magnetite grains set in a fine grai quartz ankerite hematite matr Colour varies from orange red to light

4758	27.52	29.66	2.14	1.81	7	S	M
4759	29.66	31.65	1.99	.03	¥	S	M
4761	32.31	33.86	1.55	.01	¥	M	M
4762	33.86	35.36	1.50	.04	¥	K	K
4763	35.36	36.80	1.44	.13	V	Ħ	K
4764	36.80	38.30	1.50	.02	ų	X	X
4765	38.30	39.75	1.45	.03	V	M	M
4766	39.75	40.65	.90	.01	Y	N	X
4767	40.65	41.20	.55	.01	Ţ	Ň	Ň
4768	41.20	42.05	.85	.05	Ň	Ÿ	Ň
4769	42.05	42.75	.70	.02	X	Y	Ň
4770	42.75	43.65	.90	.06	N	¥	N

4757	25.60	27.52	1.92	.19	V	S	Ħ
4760	31.65	32.31	.66	.01	V	N	H

dral	4771	43.65	45.20	1.55	. 32	X	N	M
ined rix.	4772	45.20	46.70	1.50	.03	N	N	M

(

Core size:

Started:

Pinished:

Logged by:

System:

Drilled by:

Ç,

cerval (m)	Description	Sample No.		erval m)	Length (m)	Au (g/t)		TERATION SER	CARB	\$ PY
	grey buff. In the latter sections magnetite is absent and there is a substantial increase in the amount of pyrite to near 20% on the average. Core angles vary from 30 to 45 degrees where banding is present. 43.65 45.20 Grey buff, very hard, 10% pyrite.									
46.70 48.65	5 3C: INTENSE SILICA-CARBONATE FLOODING Local semi-massive pyrite, very heavy alteration. 46.70 48.65 Locally 15% pyrite over 5 cm, several massive pyrite bands sub-parallel to the core axis.	4773	46.70	48.65	1.95	.33	S	ÿ	H	
48.65 51.52	2 3A: RED NAGNETITE-BEARING AREMITE OR QUARTZ-FELDSPAR PORPHYRY Typical red hematitic alteration with 1 to 2% euhedral magnetite and 3% pyrite.	4774	48.65	51.52	2.87	1.28	S	¥	M	
51.52 52.75	3C: INTENSE SILICA-CARBONATE FLOODING Grey white, near complete magnetite destruction and 10% pyrite on the average. 51.52 52.75 Heavy sulphides - up to 30% over a few centimeters, average is 10%.	4775	51.52	52.75	1.23	4.20	S	V	S	
52.75 53.85	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY 1 to 2% euhedral magnetite, 3% fine disseminated pyrite. 52.75 53.85 Section contains a 2 cm quartz vein with 40% pyrite.	4776	52.75	53.85	1.10	.15	¥	¥	S	
53.85 54.45	3C: INTENSE SILICA-CARBONATE FLOODING Hilghly altered, buff colour, 10% pyrite. 53.85 54.45 10 to 15% disseminated pyrite.	4787	53.85	54.45	.60	4.22	S	M	S	

54.45 67.60 3A: RED MAGNETITE-BEARING ARENITE OR

~

Ĺ

interval (m)	Description	Sample No.		erval m)	Lengt) (m)	n Au (g/t)	Å SIL	LTERATIO SER	CARB	\$ PI
	QUARTI-FELDSPAR PORPHYRY									
	Red brown, 1% magnetite and 3 to 5%			57.65		.02	S	M	S	
	fine disseminated pyrite in a very			59.10		.01	S	M	S	
	siliceous matrix. A few marrow zones			64.34		.03	K	M	H	
	of quartz carbonate replacement			65.84		.01	X	М	N	
	usually 10 cm wide or less.			67.60		3.18	S	M	S	
	54.45 56.08 1 to 5% magnetite, 3 to 5% fine disseminated pyrite.	4/88	54.45	56.08	1.63	1.00	S	M	S	
	59.10 59.74 Average 10 to 15% fine	4794	59 10	59.74	64	7.20		ч		
	disseminated pyrite.	1771	33.10	77+14	.03	1.20	S	M	S	
	59.74 61.00 Average 5 to 8% fine	4795	59.74	61.00	1.26	. 25	S	M	S	
	disseminated pyrite.					123			0	
	61.00 62.79 Average 1 to 3% euhedral	4796	61.00	62.79	1.79	.27	S	M	S	
	magnetite grains, 3 to 5% fine						_		-	
	disseminated pyrite.									
67 60 71 80	3B: QUARTZ-SERICITE-CARBONATE SCHIST									
07.00 11.03	Noderately sericitic with thin bands									
	of quarts carbonate alternating with									
	sericite and carbonate rich bands.									
	Unit also carries 15% banded pyrite.									
	67.60 69.48 Average 2 to 3% fine	4800	67.60	69.48	1.88	.23	¥	н	S	
	disseminated pyrite.						•		5	
	69.48 70.50 25 to 30% fine	2201	69.48	70.50	1.02	.27	V	S	S	
	disseminated pyrite, also banded pyrite									
	70.50 71.15 10 to 15% pyrite.			71.15	.65	.43	V	S	S	
	71.15 71.98 20 to 30% banded pyrite.	2203	71.15	71.98	.83	6.48	V	S	S	
71.89 73.74	3A: RED MAGNETITE-BEARING AREMITE OR									
	QUARTI-FELDSPAR PORPHYRY									
	Typical red hematitic alteration with									
	1% euhedral magnetite and 5% fine									
	disseminated pyrite.									
	71.98 73.74 50% pyrite in thin quartz	2204	71.98	73.74	1.76	13.80	N	S	S	
	carbonate replacements 1 to 3 cm wide at 60 degrees to the core axis.									
	at ve degrees to the tore dais.									
73.74 90.57	3C: INTENSE SILICA-CARBONATE PLOODING									
	Varies in colour from light brown to	2206	74.76	76.18	1.42	.07	S	¥	S	
	grey. Weakly banded at 50 degrees to		76.18	78.03		.06	S	8	S	
	the core axis. Cut by several narrow		81.08	82.40		.01	X	Y	Ň	
	quartz carbonate veinlets with 3 to 5%			85.47		.05	M	¥	M	
	fine disseminated pyrite.			87.17		.02	M	۷	M	
	73.74 74.76 5% pyrite.			74.76		1.31	S	¥	S	
	78.03 79.60 3 to 5% fine disseminated	2208		79.60		1.44	S	V	S	
	pyrite. 79.60 81.08 1% magnetite and 3 to 5%			90.57		.06	N	¥	M	
	area to maynetice dill 3 to 38	2209	13.00	81.08	1.48	.01	Ħ	V	S	

Bsso Minerals										
erval (m)	Description	Sample No.		erval m)	Length (m)	Au (g/t)	AI SIL	TERATION SER	CARB	\$ PY
	fine disseminated pyrite. 82.40 83.85 2% euhedral magnetite and 3% fine disseminated pyrite.	2211	82.40	83.85	1.45	.01	M	¥	Ņ	
	87.17 88.80 2% magnetite and 3% fine disseminated pyrite.	2214	87.17	88.80	1.63	.04	X	¥	H	
90.57 95.66	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-PELDSPAR PORPHYRY					•				
	Red colour fading out towards the end	2217	an ag	92.10	1 1 2	47		в	v	
	of the section coincident with smaller			93.27		.02 .22	S M	V	M	
	amount of euhedral magnetite. Pyrite			94.47		.01	n M	¥	N M	
	concentration varies from 2 to 10%			95.66		.01	n M	T T	X	
	locally over a few centimeters where there has been some weak silica carbonate replacement.							•		
	90.57 90.98 Light brown quartz crackle with 10 to 15% fine disseminated pyrite	2216	90.57	90.98	.41	.21	S	Ÿ	H	
95.66 114.60	3E: NODERATE SERICITE SCHIST (+/- QTZ)									
	Veakly sericitic, thinly bedded,			97.50		.21	T	٧	T	
	black, very fine grained. Crenulation			99.36		.06	¥	¥	¥	
	cleavage is at 85 degrees to the core			100.91		.60	W	Ÿ	V	
	axis. A few quartz veins up to 25			102.41		.69	Ĩ	V	V	
	centimeters thick are present. These			103.96		.85	V	¥	V	
	have sericitic margins and contain trace amounts of pyrite.			105.46		.02	1	¥	¥	
	erace amounts of pyrice.			107.01 108.51		.04 .10				
				110.06		.03				
				111.56		.01				
				113.10		.01				
				114.60		.02				
	IE: LITHIC ARENITE									
	Medium to fine grained, grey, bedding			117.65		.03				
	is at 35 degrees to the core axis,			119.15		.06				
	moderately hard. 5% quartz ankerite			120.70		.04				
	veining.			122.20		.08				
	123.75 End Of Hole.			123.75		.02				
	114.60 116.10 1% disseminated pyrite.	3161 1	14.60	116.10	1.50	.01				

Ţ

DH T-13

E SSO	Minerals	Canada	-	Robele	J۷	(Ont	88)

C

Started: D Finished:	.T. THOMAS D.D. ec. 16/86 Dec. 19/86 . MacPherson lec. 19/86	Azimuth: Dip: Depth Az 91.46	160 -50 Dip -48.0	Clai Nort Bas Ble	pose:	To te 95607 350 1 3540	st Red 9 1 B	id, Ves Zone		funo	
Interval (m)	Description		Sample No.	Inte: (m		Length (m)	λu (g/t)	ALT SIL	FERATION SER	CARB	¥ PY
.00 23.16	OABBBRBGBN										
23.16 28.86	magnetite in a fine gra	ained euhedral ained siliceous Minor bedding cs. Bedding is	2223 2224	24.35 25.15 26.95 23.16	26.95 28.86	1.80 1.91	.01 .01 .13 .20	A A A A	N K K	A A A A	
28.86 29.26	4A: QUARTZ-CARBONATE VEI Vein contains 20% chlor and as inclusions.		2225	28.86	30.05	1.19	.01	V	Ŋ	¥	
29.26 32.31	interbedded with margillite. Section is	tic alteration inor chloritic moderately to intensity of	 	30.05	32.31	2.26	1.02	¥	Ĭ	M	
32.31 32.71	4A: QUARTZ-CARBONATE VBI Sheared contacts. Mark of moderate to carbonate alteration. 32.31 33.81 2 to 5% pyri	s the beginning intense silica	l	32.31	33.81	1.50	.74	N	N	N	

Esso Ninerals (
Interval (m)	Description	Sample No.	Inte (1	rval)	-	Au (g/t)		TERATION SER	CARB	\$ PI
32.71 38.65	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Medium orange red colour, up to 23 euhedral magnetite locally. Sections 20 to 100 cm wide contain 5:10 fine disseminated pyrite. Best concentrations of pyrite occur where the magnetite is absent.	2228	33.81	35.90	2.09	1.41	K	Ŋ	K	
	35.90 37.40 5 to 10% fine disseminated	2229	35.90	37.40	1.50	3.90	Ħ	N	N	
	pyrite, locally in masses. 37.40 38.65 2% pyrite.	2230	37.40	38.65	1.25	.05	N	H	M	
38.65 48.00	3C: INTENSE SILICA-CARBONATE FLOODING Colour is buff grey to yellow. Finely banded at 0 to 20 degrees to the core axis. Top 20 cm is blue grey quartz with 10% very fine pyrite. Trace fuchsitic fragments are present. Bands are highly deformed and exhibit moderate crenulation cleavage at right angles to the core axis. Bottom three metres of this unit contains interbeds of a fine grained chloritic unit, also highly deformed with bedding angles at 20 degrees to the core axis.	2232 2026 2027	40.10 41.20 44.50	41.20 44.50 47.55		.01 .05 .22	M S S S	L K K K	M S S S S	
48.00 50.20	4A: QUARTI-CARBOWATE VEIN Quartz ankerite chlorite vein with numerous inclusions of sericitic sediments.									
50.20 52.05	3C: INTENSE SILICA-CARBONATE PLOODING Blue grey quartz fracture fillings and flooding throughout the section, locally brecciated. 10% Crackle fracture, 5 to 15% fine pyrite as disseminations and fracture fillings. 50.20 52.05 5 to 15% fine pyrite as disseminations and fracture fillings.	2233	50.20	52.05	1.85	.18	I	Ħ	I	
52.05 53. 80	3B: QUARTI-SERICITE-CARBONATE SCHIST Well banded at 70 degrees to the core axis. Consists of alternating bands of									

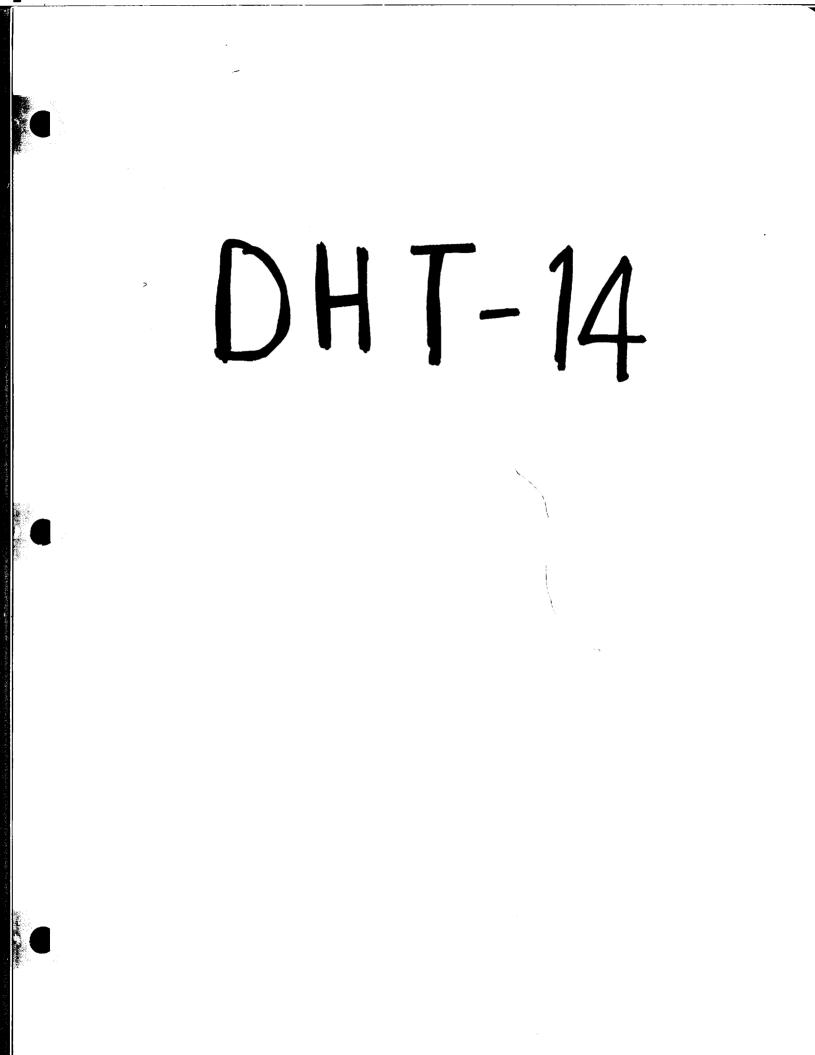
٠

~

 \sim

Esso Minerals	Hole: T-13 Page: 3									
cerval (n)	Description	Sample No.		rval)	Length (m)	Au (g/t)		EBATION SEL		\$ PY
	sericite carbonate, silica carbonate, and pyrite usually less then 1 cm wide. Bands are locally deformed and bedding angles may decrease locally to 20 degrees to the core axis. 52.05 53.80 Average 3% pyrite, varies fron 2 to 10%.	2234	52.05	53.80	1.75	. 40	S	đ	S	
53.80 61.79	3A: RED MAGHETITE-BEARING AREMITE OR QUARTI-FELDSPAR PORPHYRY Typical red hematitic alteration, with last 2 metres interbedded with fine grained chloritic sediments. Section is moderately to intensely altered. Where present, bedding is at 50 degrees to the core axis. 53.80 55.30 Average 3 to 7% fine disseminated pyrite. 57.55 57.95 At 57.4 metres there is a 2 cm band of semi-massive pyrite.	2237 2239 2240 2241 2242 2235 2243	56.70 57.95 58.84 59.74 60.35 53.80	57.55 58.84 59.74 60.35 60.55 55.30 61.79	.90 .61 .20 1.50 1.24	.04 1.08 .40 1.70 .77 .02	H M M M S K I H	R R R R R R	I H H H K H	
61.79 63.45	A: QUARTZ-CARBONATE VEIN Brecciated quartz ankerite pyrite vein. Upper contact at 10 degrees to the core axis, lower contact at 60 degrees to the core axis. Vein show signs of numerous re-openings and remobilizations giving rise to an excellent crack-seal texture. Pyrite occurs as masses and fracture fillings in the vein. Average pyrite content is 30%, but this may increase to 60% over 15 to 20 cm of heavily fractured vein material. Interior fracture fillings of tourmaline or graphite are visible.	2244	61.79	63.45	1.66	3.00	I	ł	I	
63.45 66.00) 1A: ARGILLITE Brecciated and intensely silicified. Weakly banded at 60 degrees to the core axis. Chloritic. Banding disappears at 64.0 metres. From this point to the end of the section the unit is a quartz ankerite pyrite breccia.	2246		65.00	.55 1.00 1.05	.17 .19 .21		N N	I I I	

Bsso Minerals	Hole: T-13 Page: 4									
interval (B)	Description	Sample No.		erval N)	Length (m)	Au (g/t)	SIL	ALTERATION SER	i Carb	\$ PY
66.05 67.60	3B: QUARTZ-SERICITE-CARBONATE SCHIST Well banded. Numerous bedding parallel quartz ankerite stringers containing 2 to 5% fine pyrite. Also contains numerous chloritic blebs making up 5% of the rock. Final 10 cm of section is intensely silicified and pyritic.	2248	66.05	67.60	1.55	.47	S	H	S	
67.60 70.08	4A: QUARTZ-CARBOWATE VEIN Probable brecciated quartz ankerite vein similar to that from 61.79 63.45 metres. Local good crackle fracture t/- chloritic stringers. Upper and lower contacts are at 60 degrees to the core axis. Last 70 cm is a late pink quartz calcite vein with sharp contacts andesite inclusions of moderately pyritic wallrock. 67.60 68.30 5 to 15% pyrite as cubes andesite masses.	2251	69.40	69.40 70.08 68.30	.68	1.22 .43 .38	S S S	Å Å	S S S	
70.08 72.75	3B: QUARTI-SERICITE-CARBONATE SCHIST Weakly to moderately banded at 60 to 70 degrees to the core axis. Locally heavy silicification and brecciation. Lower contact brecciated but sharp at 70 degrees to the core axis.	2253	70.90	70.90 72.45 72.75	1.55	.98 .81 1.00	S I I	8 8 8	S I I	
72.75 73.80	3C: INTENSE SILICA-CARBONATE PLOODING Locally sericitic and siliceous with 30% silica ankerite crackle fracture. Bottom 30 cm is very siliceous and contains 25% quartz veins with 25% pyrite. 72.75 73.80 20% pyrite in quartz vein.	2255	72.75	73.80	1.05	.38	I	K	I	
73.80 77.00	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Very minor magnetite only but still has the orange red colour. Pyrite content averages 5 to 7% but may increase to 30% over short intervals of silica carbonate flooding.	2257 2258	74.51 74.98	74.51 74.98 75.76	.47 .78	.36 .27 .21	I I I	N X	I I I	
	75.76 77.00 3 to 7% pyrite as cubes and blebs.	2259	75.76	77.00	1.24	.19	S	V	N	


t.

Esso Minerals	Canada - Robele JV (Ont 88)				le: T-: ge:	13 5							
,erval (m)	Description	Sample No.		erval m}	Length (m)	Au (g/t)	Å SIL	LTERATIO SER	CARB	\$ PY			
77.00 78.83	4A: QUARTZ-CARBONATE VEIN Light pink hue, weakly chloritic, minor sericitic in margins and in some inclusions. Upper contact is at 15 degrees to the core axis.	2260	77.00	78.83	1.83	.04	S	¥	H				
78.83 88.55	3A: RED MAGNETITE-BEARING AREMITE OR QUARTI-FELDSPAR PORPHYRY Magnetite present in amounts up to 5%.	2261	78.83	80.78	1.95	.01	N	¥	K				
	Variably pyritic and weakly banded at			82.40		.01	N	¥	X				
	65 degrees to the core axis. Colur			84.12		.02	M	¥	M				
	fades to a pale grey green by the end of the section and the magnetite disappears.	2265	86.60	88.55	1.95	.03	H	V	N				
	84.12 86.60 Trace to 2% pyrite.	2264	84.12	86.60	2.48	.01	K	V	M				
88.55 96.50	3E: MODERATE SERICITE SCHIST (+/- QTZ)												
	Moderately sericitic and siliceous.			91.10		.22	M	V	M				
	Pale green, fine grained, thinly			91.70		.45	¥	S	M				
	bedded at 55 degrees to the core axis.			93.27		.01	Ĩ	S	M				
	Average pyrite content is 3 to 5% pyrite.			93.85 96.50		.01 .23	¥ ¥	S S	K H				
							_	-					
96.50 97.70	3B: QUARTZ-SERICITE-CARBOHATE SCHIST Grey buff colour weakly banded, colour is pale green grey. Rock is moderately hard and contains up to 5% fine disseminated pyrite.												
	96.50 97.70 5% fine disseminated pyrite	2271	96.50	97.70	1.20	4.24	V	S	Ħ				
97.70 105.20	3E: NODERATE SERICITE SCHIST (+/- QTZ) Same as section from 88.55 to 96.50	1121	67 74	AA 37	1	**	-	-					
	netres.			99.36				S	N M				
	#			101.55 102.70		.UJ A1	¥ V	5 C	N N				
				104.20		.01	u U	S					
				105.20			N.	V	X				
	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY												
	Pale orange red colour, 1 to 2% fine euhedral magnetite, 2% fine disseminated pyrite.	2277 1	.05.20	106.30	1.10	.01	¥	S	M				

sso Ninerals	Canada – Robele JV (Ont 88)	Hole: T-13 Page: 6									
interval	Description	Sample		erval	Length					• •	
(m)		No.	1	m)	(=)	(g/t)	SIL	SER	CARB	11	
106.30 117.60	3B: QUARTZ-SERICITE-CARBONATE SCHIST										
	Strongly sericitic, well banded, hard.			107.80		.01	T	S	Ň		
	Locally very deformed with bands running sub-parallel to the core axis.			109.35		.01 .03	V V	5 5	N M		
	Becoming more chloritic down the hole.			112.10		.01	Ÿ	S	п S		
				113.10		. 20	Ţ	Ň	Ň		
				114.60		.07	M	S	5		
				116.10		1.82	N	S	S		
		3192 1	16.10	117.60	1.50	.04	K	K	M		
17.60 130.00	1B: LITHIC ARBWITE										
	Pine grained to medium grained,	3193 1	17.60	119.20	1.60	.91	V	¥	V		
	chloritic stringers and bedding			120.70		.01	ľ	ÿ	Ï		
	parallel seams. Very weak sericitic	3195 1	20.70	122.20	1.50	.02	Ĭ	V	7		
	alteration. Gradational down the hole			123.75		.01	N	V	T		
	to conglomerate.			125.25		.01	Ň	V	T		
				126.80		.01	I	V	۲ ۲		
				128.30 129.84		.02 .01	N N	V V	V V		
				131.44		.02	Ĭ	V	¥		
.50.00 138.70	1F: CONGLONBRATE Matrix supported (mainly chlorite and	2002 1	21 44	132.99	1 55	.01	W	u	g		
	minor sericite). Clasts vary in size			134.49		.01	I N	¥ ¥	V V		
	from 1 to 3 cm and consist of			135.94		.01	N	ÿ			
	predominantly argillite and siltstone			137.44		.03	ľ	¥	Ÿ		
	with minor chert and possible porphyry	2006 1	37.44	138.99	1.55	1.19	N	M	T		
	clasts. Below 135 metres, the										
	conglomerate become weakly sericite										
	altered but this fades out again at the lower contact.										
	cut lower contact.										
38.70 140.50	1A: ARGILLITE										
	Veakly sericitic, fine grained, medium grey black in colour, trace pyrite.	2007 1	38.99	140.50	1.51	.04	N	K	V		
40.50 140.80	4A: QUARTZ-CARBONATE VEIN								_		
	Quartz ankerite veins mark an abrup end to the alteration system.	3181 1	40.50	142.03	1.53	.01	N	N	R		
40.80 154.23	1B: ARGILLITE WITH GRAPHITIC SLIPS 1 to 2% cubic pyrite. Graphite on	3182 1	42.03	143.53	1.50	.02					
	bedding planes. Unaltered.				1.55	.01					
	154.23 End Of Hole.				1.50	.01					
		3185 1				.01					

(

_erval	Description	Sample	Interval	Length	λu	ALTERATION					
(n)		No.	(m)	(m)	(g/t)	SIL	SER	CARB	\$ PY		
		3186	148.13 149.63	1.50	.02						
		3187	149.63 151.18	1.55	.01						
		3188	151.18 152.68	1.50	.01						
		3189	152.68 154.23	1.55	.01						

Bsso Mi	nerals	Canada	-	Robele	J¥	(Ont	88)	
---------	--------	--------	---	--------	----	------	-----	--

Azimuth:

Dip:

Depth

70.12

145.12

180

-45

Az Dip

-40.0

-39.5

Grid:

Purpose: Claim:

Basting:

Blevation:

Northing: 365 N

BQ

Drilled by: J.T. THOMAS D.D.

Dec.19/86

Dec. 21/86

J. MacPherson

Core size:

Started:

Finished:

Logged by:

ł

(

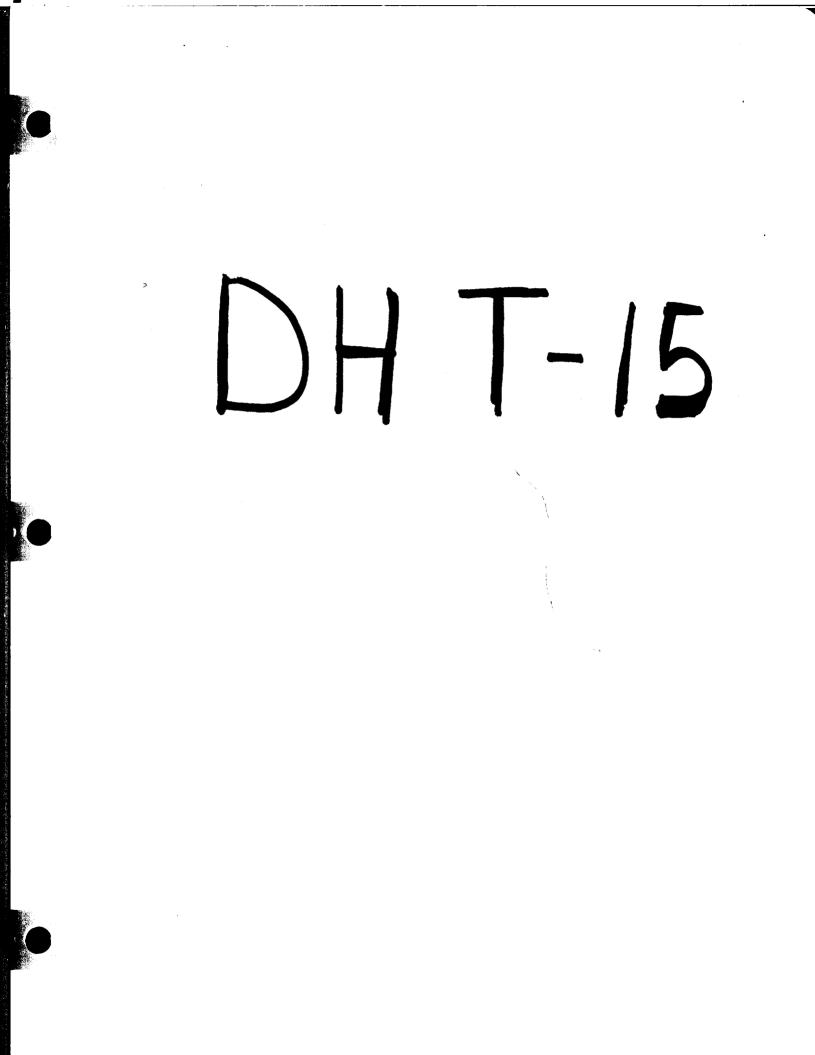
1

956079

3630 B

Detail Gride, Vest Half Test V extension of Au zone

		A. L	us and
Q.	Ma	Jor	usa
1.			


	-39.5	816	vation	:		4.1	///		
DeC. 22/86		Ler	igth:	145.		0.			
Description	Sample No.	Interval (m)		Length (m)	Au (g/t)	A SIL	LTERATION SER	CARB	% P
9 OVERBURDEN									
4 3P: STRONG SERICITE SCHIST (+/- QTZ)									
	2008					Ĩ	S	N	
						¥			
							-		
•	4790					ÿ	S	Ň	
guartz ankerite veinlets.	2022				.05	Ÿ	S	Ň	
59.95 62.75 4A: QUARTZ-CARBONATE VEIN.	2026	41.46	44.51	3.05	.05	V	S	M	
Contains numerous					. 22	V	8	N	
sericific inclusions.						-	-		
						-			
							-		
					.01	 N	S	Ä	
	2283	62.79	66.24	3.45	.01	X	S	M	
0 3B: QUARTI-SERICITE-CARBONATE SCHIST									
						H	S	N	
						-	-		
					.66	Š	v		
quartz veins oriented sub-parallel to the core axis.				.80	.03	S	Ÿ	S	
Strong crenulation cleavage at 60 degrees to the core axis.									
71.12 71.94. 20% banded pyrite.									
71.94 73.94 Moderately siliceous, locally brecciated, 2 to									
10% pyrite over 10 cm. 73 94 75 17 Crack seal wein at shallow									
	 Dec. 22/86 Description 9 OVERBURDEN 4 3F: STRONG SERICITE SCHIST (+/- QTI) Generally thinly bedded with occasional thicker bed of siltstone. Very sericitic and moderately ankeritic. Locally silicified and contains up to 1% fine pyrite in thin guartz ankerite veinlets. 59.95 62.75 4A: QUARTI-CARBONATE VEIN. Contains numerous sericitif inclusions. 0 3B: QUARTI-SERICITE-CARBONATE SCHIST Moderately to well banded, locally intensely silica and carbonate altered and brecciated. 66.24 69.59. More siliceous with 30 to 40% fine disseminated pyrite. 5% thin guartz veins oriented sub-parallel to the core axis. Strong crenulation cleavage at 60 degrees to the core axis. 71.12 71.94. 20% banded pyrite. 71.94 73.94 Moderately siliceous, locally brecciated, 2 to 10% pyrite over 10 cm. 	Dec. 22/86 Description	Dec. 22/86 Ler DescriptionDescription	Dec. 22/86Length:DescriptionDescriptionDescriptionDescriptionSample Interval No. (m)9 OVERBURDEN4 3F: STRONG SERICITE SCHIST (+/- QTI) Generally thinly bedded with occasional thicker bed of siltstone. Yery sericitic and moderately ankeritic. Locally silicified and contains up to 1% fine pyrite in thin quartz ankerite veinlets. Sericiti€ in€lNSi@NS.2008 24.39 26.21 2008 24.39 26.21 2009 26.21 29.26 2019 25.21 29.26 2019 25.21 29.26 2019 25.21 29.26 2019 25.23 31.41 2024 41.46 44.51 2022 38.41 41.46 44.51 2022 38.41 41.46 44.51 2022 38.41 41.46 44.51 2022 38.41 41.46 44.51 2023 33.45 56.70 2023 53.45 56.70 2023 53.45 56.70 2023 53.45 56.71 2023 53.45 56.71 2025 59.75 62.79 2023 53.45 56.71 2023 53.45 56.71 2023 53.45 56.71 2024 66.24 66.75 2023 53.45 56.71 2025 59.75 62.79 2023 62.79 66.240 38: QUARTI-SERICITE-CARBOMATE SCHIST Moderately to well banded, locally intensely silica and carbonate altered and brecciated. 66.24 69.59. More siliceous with 30 to 40% fine disseminated pyrite. 5% thin 2029 65.59 71.12 2266 66.12 69.59 2270 69.59 71.12 2283 62.79 66.240 38: count of the core axis. Strong crenulation cleavage at 60 degrees to the core axis. 71.12 71.94 73.94 Moderately siliceous, locally brecciated, 2 to 10% pyrite over 10 cm.	Dec. 22/86 Length: 145. DescriptionDescription	Dec. 22/86 Length: 145.08m Description	Dec. 22/86 Length: 145.08a Description	Dec. 22/86 Length: 145.08m Length: 145.08m Length: 145.08m Sample Interval Length Am ALTERATION Boor Call of the Colspan="2">ALTERATION Sample Interval Length Am ALTERATION Boor Call of the Colspan="2">ALTERATION Source Call of the Colspan="2">ALTERATION OVERBURDEN A TRONG SERICITE SCHIST (4/- OTT) Generally thinly bedded with occasional thicker bed of siltstone. Contains up to 1% fine pyrite in thin quart anterite velolets. Contains numerous contains up to 1% fine pyrite in thin quart anterite velolets. Contains numerous contains numerous sericitic inclusions. Sericitic inclusions. Contains numerous sericitic inclusions. Sericitic contains numerous sericitic inclusions. Sericitic contains and carbonate altered and breactiated. Contains anumerous sericitic and carbonate altered and breactiated. <	Dec. 22/66 Length: 145.08m Description

73.94 75.12 Crack seal vein at shallow

Ć

_erval (∎)	Description	Sample No.		erval m)	Length (m)	Au (g/t)		TERATION SER	CARB	\$ PY
	angle to the core axis. 77.63 79.10 Intense silicification containing up to 40% fine disseminated pyrite.									
	66.75 68.12 20% quartz ankerite veinlets with 10% pyrite.	2285	66.75	68.12	1.37	.28	N	S	M	
	71.12 71.94 20% pyrite im bands.	2291	71.12	71.94	.82	.60	S	¥	S	
	73.94 75.12 20 to 30% perite in narrow crack seal vein sub-parallel to the core axis.			75.12		3.12	S	V	S	
	77.63 79.10 40% pyrite locally over 15 cm.	2295	77.63	79.10	1.47	.37	S	¥	\$	
79. 90 103.50	3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY									
	Orange red colour. Contains up to 3%	2297	79 9N	81 08	1.18	.01	Ţ	N	X	
	fine grained euhedral magnetite			82.58		.22	, T	N N	X	
	grains. Usually massive, but may show			84.12		.80	ÿ	H	Ň	
	local weak banding at 60 degrees to			85.62		.06	ÿ	Ň	N	
	the core axis.	2029		87.17		.01	V	N	Ň	
		2030		88.67		.20	Y	N	N	
		2031		90.22		.02	U	H	N	
				91.72		.14	V	Ĭ	X	
		2033	91.72	93.27	1.55	.01	V	N	M	
		2034	93.27	94.77	1.50	.01	¥	Ĭ	Ĩ	
		2035	94.77	96.32	1.55	.01	V	N	V	
		2036	96.32	97.82	1.50	.02	V	N	¥	
		2037	97.82	99.37	1.55	.03	V	N	V	
		2038	99.37	100.87	1.50	.04	V	ľ	¥	
		2039	100.87	102.41	1.54	.01	M	R	H	
		2040	102.41	103.50	1.09	.01	M	Ĭ	X	
103.50 107.00	3C: INTENSE SILICA-CARBONATE FLOODING					••	_	-	_	
	Silica carbonate alteration is patchy				1.06		S	¥.	S	
	but strong where present. Locally			106.12		.13	S		S	
	banded at 70 degrees to the core axis.			107.00				V V	S S	
	103.50 103.80 20% pyrite in banded silicified section.	2041	103.30	103.80	.30	.07	9	·	3	
107.00 109.05	4A: QUARTI-CARBONATE VEIN 5% Sericitic inclusions, 3% chloritic fracture fillings. Gradational upper contact, sharp lower contact.	56 I F	107	100 00		~	_	_	-	
	107.00 109.05 1% pyrite in quartz ankerite vein.	2045	184.00	103.02	2.05	.69	S	V	S	

Bsso Minerals (Hole: T-14 Page: 3									
erval (m)	Description	Sample No.		erval m)	Gength (m)	Au (g/t):		LTERATION SER	CARB	¥ PY
109.05 116.45	3C: INTENSE SILICA-CARBONATE PLOODING Local blue grey colour. Crackle fractured with 5 to 10% disseminated pyrite in fractures.	2047 2048 2049	110.00 111.56 113.06		1.56 1.50 1.54			M M M	S S S S	
116.45 120.45	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Wklt altered, light orange red colour, trace pyrite.	2052	118.25	118.25 119.80 120.45	1.55	.02 .02 .01	S S S	R K N	5 V V	
120.45 121.25	3C: INTENSE SILICA-CARBONATE PLOODING 10% Pyrite in guartz crackle veins.	2054	120.45	121.25	.80	.02	S	N	¥	
121.25 128.30	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Locally weakly crackle fractured with 5 to 10% fine disseminated pyrite. Trace to 1% fine euhedral magnetite.	2056 2057 2058	122.75 123.75 125.25	122.75 123.75 125.25 126.80 128.30	1.00 1.50 1.55	.02 .02 .02 .03 .01	3 5 5 5 8	A N N N	8	
128.30 145.08	38: MODERATE SERICITE SCHIST (+/- QTI) Locally weakly altered. Thinly bedded, black with local greenish tinge. Deformed over short intervals. Average angle to the core axis is 60 degrees. Weakly chloritic over the last 5 metres 145.08 End Of Hole.	2011 2012 2013 2014 2015 2016 2017 2018 2019	129.84 131.34 132.89 134.39 135.94 137.44 138.99 140.49 142.04	129.84 131.34 132.89 134.39 135.94 137.44 138.99 140.49 142.04 143.54 145.08	1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.50	.02 .16 .10 .06 .73 .55 .01 .05 .15 .04 .10	4 4 4 4	4 4 4	A A A A	

Bsso Minerals Canada - Robele JV (Ont 88)

ore size: villed by:	BQ J.T. THOMAS D.D.	Azimuth: Dip:	180 -45		d: pose: i n:	To t	Detail Grid #3, West Half To test west extension of Au zone 956078, 956079						
tarted: 'inished:	Jan. 18/87 Jan. 21/87	Depth Az	Dip		thing: ting:		-		40.	P. h.	um		
ogged by: ate logged: yste n :	J.MacPherson Jan. 21/87				evation		160.32m		J. Mould				
Interval (m)	Descripi	ion	Sample No.	Inte (1	erval 1)	Length (m)	∆ u (g/t)	AL SIL	TERATION SER	CARB	\$ PY		
.00 32.3	O OVERBURDEN										-		
32.30 53.7	0 3F: STRONG SERICITE S Strongly sericite	CHIST (+/- QTI) altered, thinly	2301	32.31	33.40	1.09	.65	. F	S	K			
	bedded, fine grained	l, greenish black.	2302	33.40	34.44	1.04	1.40	Ĩ	S	Ň			
	Consists of paralle rich and sericite		2303		35.75		.57	ľ	S	K			
	at 60 degrees to the		2304 2305	37.19	37.19 38.40		1.01 .14	Ĭ	S S	K K			
	is soft and contains		2306	38.40		1.50	.04	Ī	S	Ä			
	disseminated to cubic		2307		41.45		.18	Ĭ	S	M			
	the end of the se fades to moderate.	ction alteration	2305 2309	41.45	42.95		1.41 .23	N N	\$ \$	N M			
	Idues to moutrate.		2309	44.50		1.50	.02	Ĭ	S	L K			
			2311	46.00	47.55	1.55	.01	I	S	M			
			2312			1.50	.01	ľ	S	K			
			2313 2314	49.05 50.60		1.55 1.80	.01 .05	N N	S S	X			
				52.40		1.30	.72	ï	S	H			
53.70 69.2	0 1A: ARGILLITE							_	_				
	Weakly carbonate and with a strong foliat		2316 2317	53.70 55.14		1.44 1.55	.03 1.05	N N	S S	N N			
	to the core axis. Bed	-	2317		58.39		.01	, i	S	л М			
	15 degrees to the core		2319	58.39	60.02	1.63	.01	Ň	S	N			
				60.02			.01	J	V	K			
				61.15 61.46			.01 .02	N N	¥ V	N X			
				61.96			.01	ľ	Ÿ	A N			
			2324	62.98	63.77	.79	.01	l	. 1	Ň			
				63.77			.01	N	V	K			
				65.30 66.70			.02 .01	N N	¥ V	M M			
			6361	vv. / v	44.60	1.30	• V I	a	Ŧ	a			

(

.

(

~

Bsso Minerals (Canada - Robele JV (Ont 88)			Hol Pag	.e: T-) je:	15 2				
incerval (m)	Description	Sample No.	Inte: (1		Gength (m)	Au (g/t)		ERATION SER	CARB	¥ PY
69.20 70.10	3A: RED MAGHETITE-BEARING AREWITE OR QUARTI-FELDSPAR PORPHYRY Gradational contact with overlying unit and lower contact is same. Unit contains 1 to 2% euhedral magnetite as foliation parallel streaks and discrete grains and trace pyrite.	2329	69.20	70.10	.90	.03	ı	¥	H	
70.10 71.73	lB: LITHIC ARBNITB Thickly bedded, weakly altered, fine grained. Patchy orange alteration.	2330	70.10	71.73	1.63	.01	M	S	S	
71.73 74.86	3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY Light orange red colour, trace pyrite, 1% magnetite.		71.73 73.48			.14 .09	ų	H	N S	
74.86 76.16	3B: QUARTZ-SERICITE-CARBONATE SCHIST Strongly altered, banded at 60 degrees to the core axis with numerous quartz carbonate stringers oriented parallel to the core axis. Locally quartz phyric, especially near the lower contact. Pyrite up to 20% in thin 1 cm bands.	2333	74.86	76.16	1.30	3.38	S	S	I	
76.16 77.00	3A: RED NAGHETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Top 25 cm contains up to 5% euhedral magnetite and this decreases down the hole as patchy guartz carbonate replacements become more prominent. Pyrite content increases along with the alteration intensity. Unit contains numerous dark guartz carbonate stringers oriented at 65 degrees to the core axis.	2334	76.16	77.00	.84	.12	K	Ÿ	8	
77.00 77.72	2 3C: INTENSE SILICA-CARBONATE FLOODING Moderate to heavy carckle fracture. Colour is bluish purple and contains a few narrow quartz ankerite stringers with 2% pyrite oriented at 0 to 5	2335	77.00	77.72	2.72	.83	I	¥	S	

 $(\widehat{})$

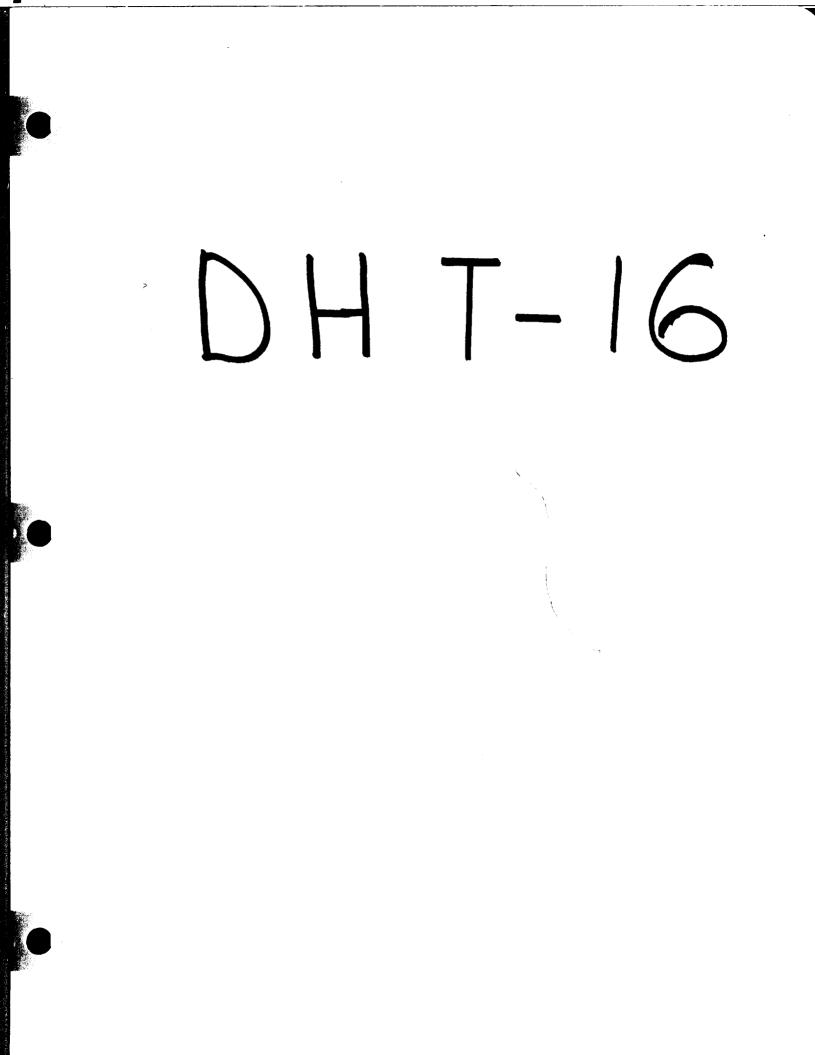
Ĵ,

i,

1

1e (1	erval m)	Description	Sample No.	Inte (1	erval 1)	Length (m)			LTERATIO SER	N Carb	\$ PY
		degrees to the core axis.									
77.72	80.76	3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY									
		Well banded at 60 degrees to the core axis. Orange red colour is present only where there is appreciable amount of euhedral magnetite present. Orange red colur is broken by patches of quartz carbonate flooding accompanied. With 5 to 15% fine disseminated pyrite.		77.72 79.22			.03 5.32	S S	A A	S S	
80.76	85.60	3C: INTENSE SILICA-CARBONATE FLOODING									
		Reavy bluish purple crackle fracture.				1.14		I	I	I	
		Locally very pyritic to 30%, trace magnetite. Unit contains 20% irregular		81.90 82.71			1.22 .49	I	N N	I	
		quartz ankerite stringers.				1.42	1.28	I N	N. V	I M	
85.60	88.79	3A: RED WAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY									
		Light orange red colour, trace to 1% magnetite, 5 to 20% fine disseminated pyrite in areas of intense quartz carbonate crackle fracture. \$7.89 \$8.79. Fault zone. Badly broken. Local 5 cm patches of very pyritic red hematitic alteration whicj is variably altered by quartz and ankerite flooding.		85.60 87.89		2.29 .90	7.70 8.49	N	¥	M N	
88.79	95.35	18: LITHIC ARENITE									
		Noderate carbonate alteration, grey		88.79			.07	X	V	N	
		with light red tinge, weakly magnetic, 3 to 5% fine disseminated pyrite.		90.22 91.39		1.17	.03 .02	N V	V V	X V	
		s to sa tine aisseminated printe.		93.90			.05	Ÿ	Ÿ	Ÿ	
95.35	95.82	3C: INTENSE SILICA-CARBONATE FLOODING Heavy quartz carbonate crackle fracture. 1 15 cm quartz vein with 10% pyrite.	2348	95.35	95.82	.47	.01	S	V	S	
95.82	114.83	18: LITHIC ARENITE	2240	05 47	07 AE	1 77	A 1		Ľ	v	
			2349	95.82	97.05	1.23	.01	۷	¥	X	

 $\overline{}$


÷., .

incerval (m)	Description	Sample No.	Interval (m)	Length (m)	λu {g/t}	AI SIL	LTERATIO SER	N CARB	\$ PY
	grey with a light green tinge. Pyrite		97.05 98.05		.01	V	V	K	
	content variable up to 10%. Usually		98.05 99.14		.01	V	V	Ň	
	thickly bedded except towards the lower contact where the beds become		99.10 100.80 00.86 102.41		1.35 1.01	V V	N N	¥ V	
	thinner and there is a 10% component				.41	ÿ	N N	ÿ	
	of argillite.		03.91 105.4		.50	Ï	N	Ŷ	
	·····		05.46 106.90		.46	ų	N	¥	
			06.96 108.5		.01	¥	H	¥	
			08.51 109.2		.91	¥	Ŋ	¥	
			.09.25 111.50 .11.56 112.50		.01 .02	¥ K	N N	V V	-
			12.50 114.8		.02	J	X	¥.	
114 82 121 65	3E: HODERATE SERICITE SCHIST (+/- QTI)								
111.03 131.03	Fine grained, thinly bedded.	2362 1	14.83 116.1	5 1.32	.01	I	N	V	
	Interbedded with thin arenite beds for		16.15 117.8			Ĭ	X	¥	
	top 2 metres. Locally strongly	2364 1	17.85 119.2	1.35	.01	H	N	V	
	deformed and weakly sericitic.		19.20 120.7		.02	l	H	V	
	Towards the bottom of the section the		20.70 122.2		.01	Ĩ	N.	V -	
	unit is interbedded with thin		22.25 123.75		.01 .01	N N	N N	V V	
	conglomerate beds.				.01	K	, a M	¥	
			26.80 128.3		.01	n N	N	ÿ	
			28.30 129.8		.01	- M	Ÿ	Ÿ	
			29.84 131.0		.01	N	H	V	
131.05 135.30	1F: CONGLOMERATE								
	Clast supported, poorly sorted. Clasts		31.05 132.8		.01	I	N	V	
	are sub-rounded and vary in size from		32.89 134.4		.01	T T	¥	V	
	a few mm to greater than 3 cm. There are three types of clasts. The first and most dominant is	2375 1	34.42 135.3	.88	.02	V	V	V	
	quartzo-feldspathic. Bext are sericite chlorite replacements of	-							
	original mafic clasts. The third are a deep green, very chloritic and are								
	stretched parallel to foliation which is at 65 degrees to the core axis.								
	Below 132.7 metres the								
	quartzo-feldspathic clasts take on a slight reddish tinge and the unit is weakly magnetic.								
135,30 143.50	18: LITHIC ARBNITE								
	Massive, thickly bedded, medium	2376	135.30 137.4	4 2.14	.01	¥	V	V	
	grained, dark grey with weak greenish		137.44 138.9		.01	V	¥	¥	
	tinge.	2378	138.99 140.4	9 1.50	.01	K	¥	¥	

Bsso Minerals (Canada - Robele JV (Ont 88)	Hole: T-15 Page: 5								
	Description	Sample No.	Sample Interval No. (m)		Length (m)	Aa (g/t)	A Sil	LTERATIO SER	N CARB	¥ PY
				142.04 143.50		.01 .03	n	8	A A	
143.50 152.68	lA: ARGILLITE Unit is gradational with overlying	2381	143.50	145.08	1.58	.75	ÿ	¥	¥	
	section and contains 10% conglomerate			146.58		.01	ï	v	ÿ	
	beds, as per description above.			148.13		.20	l	V	V	
		2384	148.13	149.63	1.50	.46	F	М	M	
		2385	149.63	151.18	1.55	.01	N	¥	V	
		2386	151.18	152.68	1.50	.01		¥	¥	
152.68 156.73	18: ARGILLITE WITH GRAPHITIC SLIPS									
	Graphite on bedding planes. Unit is	2387	152.68	154.23	1.55	.21	ł	V	V	
	thinly bedded, fine grained, black and			155.73		1.13	N	H	N	
	contains less than 1% cubic pyrite. Unaltered.	2389	155.73	156.73	1.00	.04	K	X	M	
156.73 160.32	1A: ARGILLITE					•	-			
	As per description of section from			157.28		.01	I I	X	Ň	
	143.50 to 152.68 metres.			158.78		.02	Ň	V V	¥ ¥	
	End Of Hole.	7237	130.10	160.32	1.74	.01		4	•	

- - End Of Hole.

Bsso Minerals	: Canada - Robele JV (Ont 88)				8ol Pag	e: T-i e:	1				
Core size: Drilled by:	Longyear Drilling I	Azimuth: Dip:	180 -45		id: :pose: iim:	Test		est Hali p of Au 79		n T -15	
Started: Finished:		Depth Az	Dip	Bas	thing: ting:	3+75 6 364	N Iob		Mm	file	6.9
Logged by: Date logged: System:	J. MacPherson Jan. 25/87				vation: ngth:	148.1		ġ.	11494	· •	
Interval (m)	Description		Sample No.	Inte (∎		Gength (m)	Au (g/t)	AL1 SIL	'ERATIO SER	S CARB	\$ PY
.00 35.5	5 OVERBURDEN										
35.55 41.9	0 1A: ARGILLITE 30% arenite, 20% siltston grey, unaltered and com pyrite. Beds are orie degrees to the core axis.	itains trace									
41.90 43.4	8 4A: QUARTI-CARBONATE VEIN Ione of quartz stringers w sericitic inclusions a margins.	vith numerous and sericite	2401	41.90	43.48	1.58	.01	H	¥	¥	
43.48 61.9	0 3E: NODERATE SERICITE SCHIS Weakly to moderately alt bedded, grey with green ti beds are highly deformed to the core axis. Ninor	ered, thinly nge. Locally dip parallel	2403 2404	45.08 46.63	45.08 46.63 48.13 49.63	1.55 1.50	.01 .01 .01 .01	K K K K	A A A A	9 9 9	

2406 49.63 51.13 1.50

2407 51.13 52.42 1.29

2408 52.42 53.54 1.12

2409 53.54 55.04 1.50

2410 55.04 56.70 1.66

2411 56.70 58.20 1.50

2412 58.20 59.70 1.50

2413 59.70 61.90 2.20

.01

.01

.01

.01

.01

.01

.01

.01

V

Ŧ

V

Ĩ

Ĭ

Ĩ

1

H

M

M

M

M

M

M

Ň

M

M

M

N

M

X

H

l

Interbedded with thinly bedded argillite. Are component slightly dominant. Unaltered except for very

in interbedded arenite beds. Atln is

Of the section. Bud of section is

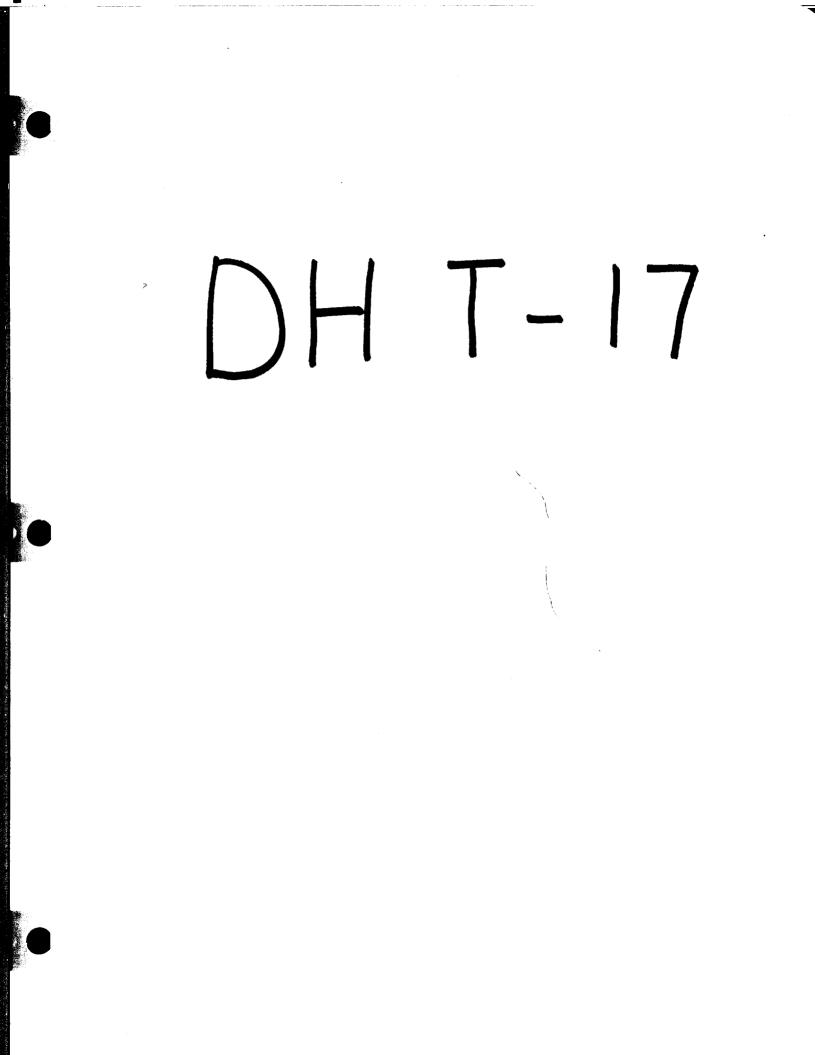
marked by a zone of quartz ankerite

sericite stringers, similar to section

strongest at the top and bottom.

from 41.90 43.48 0.

61.90 75.50 1E: LITHIC ARENITE


ť

Bsso Minerals	Hole: T-16 Page: 2									
incerval (m)	Description	Sample No.		erval m)	Length (m)	Au (g/t)	AI SIL	LTERATION SER	CARB	\$ PY
	weak sericitization of argillite beds.									
75.50 78.20	4A: QUARTI-CARBONATE VEIN Nostly shear zone, with 10% quartz ankerite veinlets. Very sericitic and soft.	2414	75.50	78.20	2.70	.01	ł	H	¥	
78.20 108.70	3F: STRONG SERICITE SCHIST (+/- QTZ) Moderately to locally highly altered. Vell foliated at 60 degrees to the core axis. Beds are deformed and average angle to the core axis is less than 10 degrees. Towards the end of the section there is a 15% arenite. Component. This contains magnetite and has developed a light red tinge where magnetite is present. Occasional fuchsitic fragment is present in this unit as well.	2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2424 2425 2426 2427 2428 2429 2430 1 2431 1 2432 1 2433 1 2434 1	79.60 81.10 82.60 84.10 85.60 87.10 88.70 90.20 91.70 93.20 94.70 96.30 97.80 99.36 00.99 01.55 02.60 04.10 05.40	90.20 91.70 93.20 94.70 96.30 97.80 99.36 100.90 101.55 102.60	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	.01 .01 .01 .01 .01 .20 .23 .04 .01 .01 .01 .01 .01 .01 .01 .01 .01	A A A A A A A A A A A A A A A A A A A	M S S I I I I I I S S S S S S S S S S S	M S S S S S S S S S S S S S S S S S S S	
	38: HODERATE SERICITE SCHIST (+/- QT2) Less altered than above, trace pyrite, no magnetite, moderate deformation and beds are oriented at 70 degrees to the core axis.	2437 1 2438 1 2439 1 2440 1	11.50 14.60 17.60 20.60	111.50 114.60 117.60 120.60 123.70 126.70	3.10 3.00 3.00 3.10	.04 .05 .01 .02 .02 .02	R R R A A	r r r r r r	R A A H	

127.80 148.13 5A: DIABASE DYKE

(

Very fine grained, chill margin contains epidote. Black, fine grained and weakly magnetic further down the hole. Contains the odd small country rock inclusion. 148.13 End Of Hole.

B SSO	Ninera)	ls	Canada	-	Robele	J۷	(Ont	88)

80

Drilled by: J.T. THOMAS D.D.

Date logged: Jan. 30/87

Jan. 24/86

Jan. 29/87

J. NACPHERSON

956079

4+25 N

L 3600B

230.43m

Detail #3, West Half

J. Moulike	un
J. Moul Und	

To test down dip extension of Au zone

Interval	Description	Sample	Interval	Length	Length Au		LTERATIO)N	
(n)		No.	(m)	(m)	(g/t)	SIL	SBR	CARB	\$ PY

180

-50

Dip

-43.5

-40.0

-37.5

λz

Grid:

Claim:

Purpose:

Northing:

Basting:

Length:

Blevation:

Azimuth:

Dip:

Depth

75.00

151.20

227.40

.00 30.30 OVERBURDEN

Core size:

Started:

Finished:

Logged by:

System:

(

30.30 35.05 1B: LITHIC ARENITE Fine grained, medium grey colour, 2445 33.20 35.05 1.85 .01 ï ¥ T bedded, rare argillaceous thickly interbed, massive. Cut by.5% thin black quartz ankerite stringers. Locally stained reddish brown and may contain up to 2% bright cubic pyrite. 30.30 31.70 2% bright cubic pyrite. 2443 30.30 31.70 1.40 .01 I V ٧ 31.70 33.20 1% cubic pyrite. 2444 31.70 33.20 1.50 .01 X ¥ ¥ 35.05 88.60 1B: LITHIC ARENITE <u>Às</u> above, except unit has a 20% 2446 35.05 35.70 .65 .01 ¥ 1 ¥ argillaceous component. Several quartz 2447 35.70 37.20 1.50 .01 ¥ ľ ï veinlets containing 30 to 50% pyrite 2448 37.20 38.00 .01 ¥ ¥ ¥ . 80 cut the unit at angles less than 45 2449 38.00 39.70 1.70 .01 K ų ¥ degrees. These exhibit a 2 to 5 cm 2450 39.70 40.10 .40 .01 ľ T Ŧ alteration halo of carbonate. Bedding 2451 40.10 41.30 1.20 .01 ï ¥ ¥ contacts are at 60 degrees to the core 2452 41.30 42.60 1.30 .01 ij ¥ H axis and foliation is at 0 degrees to 2453 42.60 44.00 1.40 .01 Ĭ. ¥ V the core axis. Below 50 metres, the 2454 44.00 45.50 1.50 .01 ï ų T argillite component increases to 40% 2455 45.50 46.00 I ¥ Ï .50 .01 and sericite alteration is stronger. 2456 46.00 47.00 1.00 .01 I IJ ¥ Locally the argillite beds are slumped 2457 47.00 48.00 1.00 .01 Ì ¥ ¥ 10 to 40 degrees to the core axis and 2458 48.00 49.30 1.30 .01 Ĩ ¥ ¥ this deformation increases towards 2459 49.30 50.30 1.00 .01 N Ÿ ¥ the end of the section. 2460 50.30 51.30 1.00 .01 ï T ¥ 2461 51.30 52.00 .70 .01 ľ ¥ 7 2462 52.00 53.34 1.34 .02 I Ŧ 1 2463 53.34 54.80 1.46 .01 N Ŧ ¥

2464 54.80 56.39 1.59

2465 56.39 57.91 1.52

.01

.01

Ĭ

N

ų.

¥

¥

¥

-

- -

) a farwal	Description	6 1-	F L	1		• -				
lnterval (m)	Description	Sample No.		erval m)	Length (m)	(g 1		LTERATIO SER	N CARB	₹ PY
		201	•	-,	(=)	(Jimeses	010	U DIA	CARD	• • • •
				59.74		.01	N	¥	¥	
				60.96		.01	I	٧	V	
				62.46		.01	Ĭ	¥	V	
				64.00		.01	Ĩ	¥	T	
				65.60 67.06		.01	ľ	¥		
				68.56) N	V V	T T	
				70.06		Sa tin		Ÿ	Ÿ	
				71.32		.Ħ	ï	ÿ	v	
				72.82		.01	I	v	ÿ	
				74.07		.01	Ň	Ÿ	Ÿ	
88 60 97 80	4A: QUARTI-CARBONATE VEIN									
	A series of quartz ankerite veins make	2478	90.60	92.80	2 20	.01	S	S	S	
	up this section. Typically they have	21/0		72.00	2.24		J	4	2	
	sericitic margins and inclusions. The									
	sericitic sections may contain up to									
	10% pyrite.									
	88.60 90.60 Black guartz ankerite	2477	88.60	90.60	2.00	.02	H	S	N	
	veinlets with 10% fine pyrite.									
92.80 99.00	3E: MODERATE SERICITE SCHIST (+/- QTI)									
	Fine grained, thinly bedded, black.	2480	94.37	96.37	2.00	.01	1	X	M	
	Locally the beds are highly deformed			97.87		.01	Ň	Ň	Ň	
	and contain numerous sericitic slips.			99.00		.01	1	Ň	Ň	
	92.80 94.37 Trace to 2% fine disseminated pyrite.	2479	92.80	94.37	1.57	.01	ľ	N	H	
99 AG 118 10	18: LITHIC ARENITE									
77.00 110.10	Very fine grained, variably altered.	7482	66 AN	100.86	1 80	01			м	
	10% argillaceous beds, highly deformed.			100.80		.01 .01	N.	S M	N W	
	100.86 101.80 From 101.0 to 101.4			101.80	.94	.01	A N	n K	X N	
	there is 5 to 8% pyrite as cubes and			104.70		.01	X	X	X	
	Basses.			106.10		.01	Ň	Ň	Ň	
				107.40		.01	Ň	Ň	X	
		2489 1	07.40	108.51	1.11	.01	M	X	M	
		2490 1	08.51	110.10	1.59	.01	¥	M	M	
110.10 134.19	3B: NODERATE SERICITE SCHIST (+/- QTZ)									
	Noderately sericitic, highly deformed.	2492 1	11.60	113.10	1.50	.01	¥	K	X	
	Foliation is at 50 degrees to the core			114.60		.01	ï	X	Ň	
	axis and is bedding parallel.			116.15		.01	Ī	K	N.	
	128.30 128.70 4A: QUARTZ-CARBONATE			117.65		.01	N	Ň	Ň	
	VBIN. Trace pyrite in			119.15		.01	l	Ň	N	
	margins.			120.70		.01	Ĩ	H	K	
	110.10 111.60 Average is 1% pyrite,	2491 1	10.10	111.60	1.50	.01	V	Ň	H	

_					ge:	3				
Interval (n)	Description	Sample No.	Intern (m)	val	Length (m)	λu (g/t)	A SIL	LTBRATIO SBR	N CARB	\$ PY
										• • •
	may reach 2 to 3% over 20 cm locally.		20.70 12			.01	N.	H	M	
			22.20 12			.01	I	Ň	X	
			23.75 12 25.25 12			.01 .01	8	Ň	N	
			26.80 17			.01	1 X	л м	N N	
	•		28.30 12			.01	E E	n M	n N	
			29.84 13			.01	ï	N N	Ň	
			31.40 13			.01	Ï	Ň	H	
		2398 1	32.89 13	84.19	1.30	.01	N	X	X	
134.19 135.6	0 1E: LITHIC ARENITE									
	Medium to coarse grained. Subrounded to rounded carbonate altered clasts in a carbonate sericite matrix. Numerous sericitic stringers.	2399 1	34.19 13	35.40	1.21	.01	Ÿ	M	X	
135.40 136.3	0 4A: QUARTZ-CARBONATE VEIN									
	Numerous sericite inclusions with 1% pyrite. Lower contact is broken and sericitic alteration is much stronger below the vein.	2400 1	35.40 13	6.30	.90	.02	H	S	S	
	• •• ·····									
136.30 148.3	0 3B: QUARTZ-SERICITE-CARBONATE SCHIST	9861 1			1 70				. .	
	20% Pree quartz, 60% sericite, 20% ankerite. Very fissile in sericitic		37.60 13 38.99 14			.01 .01	Ň	S	5	
	sections. Very well banded.		40.50 14			.01	N H	S S	S S	
	136.30 137.60 5% fine pyrite		36.30 13		1.30	.01	n X	5 5	a S	
	disseminated throughout the section.		42.04 14			.01	Ň	S	S	
	Several.5 cm thick semi-massive bands		13.50 14			.01	X	S	S	
	of pyrite.	2066 14	45.08 14	6.50	1.42	.01	Ň	M	Ň	
		2067 14	16.50 14	8.30	1.80	.01	M	K	X	
148.30 148.6	0 3C: INTENSE SILICA-CARBONATE FLOODING Very heavy silica carbonate replacement, numerous thin quartz crackle veinlets. Upper and lower contacts are at 65 degrees to the core									
	axis. 148.30 148.60 10% pyrite in intense silica carbonate crackle fracture.	2068 14	18.30 14	8.60	. 30	1.22	I	N	Ι	
148.60 152.1	0 3B: QUARTZ-SERICITE-CARBOWATE SCHIST Not as sericitic as section from 136.3 to 148.3. Well foliated with splashes	2070 1!	50.10 15	2.10	2.00	.06	¥	S	I	

Hole: T-17

Bsso Minerals Canada - Robele JV (Ont 88)

.

Esso Minerals Canada - Ro	obele JV ((Ont 88)
---------------------------	------------	----------

. ~

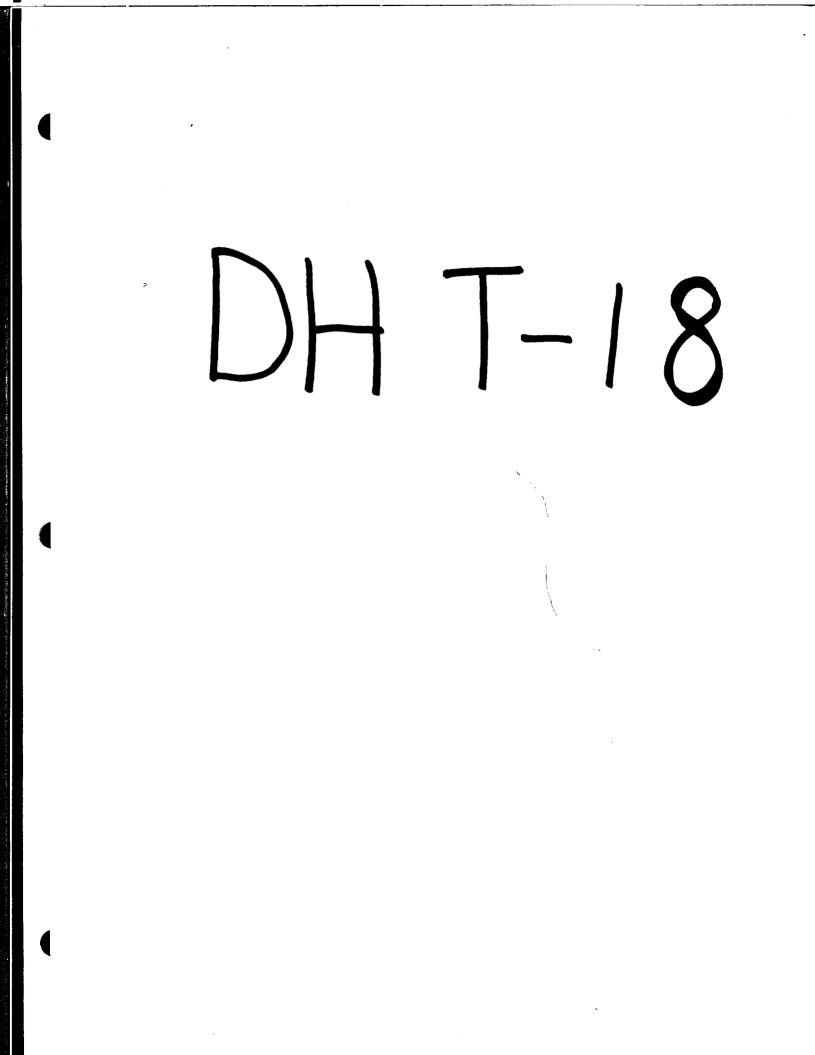
									•
incerval (m)	Description	Sample No.	Interval (m)	-	Au (g/t)		LTERATIO SER	í Carb	L.M
	148.60 150.10 1% pyrite.	2069 1	48.60 150.10	1.50	.03	¥	S	X	
152.10 154.94	3B: QUARTZ-SERICITE-CARBOWATE SCHIST Shear zone. Very fissile and sericitic. 80 cm of sericitic fault breccia at bottom of section.								
	152.10 154.13 3% fine disseminated pyrite in quartz carbonate fracture fillings.		52.10 154.13	2.03	.04	¥	M	S	
	154.13 154.94 3% fine pyrite in and surrounding clasts.	2072 1	54.13 154.94	.81	.02	X	N	M	
154.94 157.90	1A: ARGILLITE								
	Noderately chloritic, thinly bedded, not nearly as altered as previous sections.	2073 1	54.94 156.50	1.56	.10	I	8	¥	
	156.50 157.90 3 to 5% cubic pyrite.	2074 1	56.50 157.90	1.40	.03	1	V	V	
157.90 160.07	3B: QUARTI-SERICITE-CARBOWATE SCHIST Pale buff green in colour, well foliated. Contains 1% stringers that are filled with a black hard mineral and may be tourmaline. Trace pyrite, 1% angular fuchsitic fragments.								
	157.90 158.55 3% fine to medium grained pyrite.	2075 1	57.90 158.55	.65	.04	¥	S	N	
	158.55 160.07 Trace pyrite.	2076 1	58.55 160.07	1.52	.01	V	I	I	
	3C: INTENSE SILICA-CARBONATE PLOODING Paintly banded at 65 degrees to the core axis, very hard. Sharp upper and lower contacts.								
	160.07 160.50 20% fine cubic pyrite.	2077 10	50.07 160.50	.43	.02	I	S	S	
	3B: QUARTI-SERICITE-CARBONATE SCHIST Top 1 metre is chloritic and this grades to a good gcss which is banded	2078 10	0.50 161.80	1.30	.01	I	¥.	S	
	at 65 degrees to the core axis. 161.80 162.75 5% cubic pyrite.	2079 16	1.80 162.75	.95	.03	S	¥	S	
	4A: QUARTI-CARBONATE VEIN Massive, with a few sericitic Inclusions and very sericitic margins.	2080 16	2.75 165.52	2.77	.01	Ĩ	¥	H	

Bsso Minerals Canada - Robele JV (Ont 88)		Hole: T-17 Page: 5								
Interval (m)	Description	Sample No.	Interve [*] (m)			Au (g/t)		ALTERATION SBR	I CARB	\$ PY
165.52 166.87	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Well foliated, orange red in colour, very hard, fine grained. Contains 1% disseminated euhedral magnetite grains. Chloritic shear at top of section. 165.52 166.87 1% magnetite, 1% pyrite.	2081 165	.52 16 6.	57	1.35	.03	I	X	Ħ	
166.87 171.82	3C: INTENSE SILICA-CARBONATE PLOODING Variable intensity of flooding, occasional hint of orange red colour of the typical red hematitic alteration and contains up to 25% very fine disseminated pyrite in purple coloured very hard silicified zones. Sharp upper and lower contact with the foliated red hematitic alteration.	2085 169	.70 171.	82	2.12	.18	I	I	I	
	166.87 167.50 3 to 5% fine disseminated pyrite.	2082 166				.68	I	S	S	
	167.50 168.20 Average is 10% pyrite, locally 20% over 15 cm. 168.20 169.70 5% disseminated pyrite.						I	-	I I	
171.82 173.65	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Vell foliated, orange red colour. Contains 1% disseminated euhedral magnetite grains and 3% fine disseminated pyrite in thin fractures. 171.82 173.65 3% fine cubic pyrite.	2086 171						ľ	ľ	
173.65 175.40	38: QUARTI-SERICITE-CARBONATE SCHIST Grey green, moderately soft, fissile, trace chloritic stringers. 173.65 175.40 34 cubic pyrite occuring as clusters in more siliceous sections.	2087 173	.65 175.	40	1.75	. 09	H	V	¥	
175.40 176.26	3C: INTENSE SILICA-CARBONATE PLOODING Not as intense as earlier sections, veakly foliated, a few euhedral magnetite grains are still visible. 175.40 176.26 5 to 10% pyrite as fracture fillings and masses in highly	2088 175	.40 176.	26	.86	.01	Я	ÿ	K	

į

B sso Minerals	Canada - Robele JV (Ont 88)			ole: T- Ige:	17 6				
cerval (B)	Description	Sample No.		Gength (m)	Au (g/t)		TERATIO SER	I Carb	↓ PY
	silicified sections.								
176.26 182.00	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY								
	Orange red, moderately foliated at 65 degrees to the core axis, local chloritic stringers. A few zones of qcss minor quartz carbonate flooding, although less intense than those described above.		80.35 180.85 80.85 182.00			N M	N K	N N	
	176.26 177.16.5% Magnetite and 2% fine disseminated pyrite.	2089 1	76.26 177.16	.90	.10	I	N	S	
	177.16 177.86 5% cubic pyrite.		77.16 177.86		.02	S	li	S	
	177.86 178.67 2% magnetite and 1% fine	2091 1	77.86 178.67	.81	.01	X	N	N	
	disseminated pyrite. 178.67 179.05 7% pyrite in 15 cm section of heavy crackle fracture.	2092 1	78.67 179.05	.38	.19	K	N	M	
	179.05 180.35 Trace magnetite and 1% pyrite.	2093 1	79.05 180.35	1.30	.10	N	N	K	
182.00 184.75	3C: INTENSE SILICA-CARBONATE FLOODING Colour is orange purple. This may be a transition zone between the red hematitic alteration and the true quartz carbonate crackle pyrite content decreases down the hole from 5% to 1%. 182.00 182.80 5 to 10% pyrite. 182.80 184.75 5% pyrite more finely disseminated than above section.		82.00 182.80 82.80 184.75		. 39 . 02	H	V X	K	
184.75 186.85	3A: RED MAGNETITE-BEARING AREMITE OR QUARTI-FELDSPAR PORPHYRY Typical orange red colour, local 5 to 20 cm areas of silica carbonate flooding, 1% euhedral magnetite, 2% pyrite.								
	184.75 185.65 2% pyrite, 1% magnetite.		4.75 185.65		.01	X	H	M	
	185.65 186.20 20% pyrite in 3 cm wide zones of complete silica replacements.	2099 18	5.65 186.20	.55	. 42	H	N	H	
	186.20 186.85 1% magnetite, 4% pyrite.	2100 18	6.20 186.85	.65	.24	M	N	N	
	4A: QUARTI-CARBOWATE VEIN Chloritic inclusions and margins, no pyrite.								
	186.85 187.60 Trace pyrite in vein.	2501 18	6.85 187.60	.75	.51	K	¥	M	

Bsso Minerals Canada - Robele JV (Ont 88)			Hole: T-17 Page: 7						
(m)	Description	Sample No.			th Au (g/t)		TBRATIO SBR	N CARB	\$ PY
187.60 193.45	3A: RED MAGNETITE-BEARING AREMITE OR QUARTZ-PELDSPAR PORPHYRY Variable section in alteration and compostion. Some remnant textures visible in the last 1 metre of the section. Massive to very weakly foliated at 60 degrees to the core axis. Colour varies from orange red to light buff grey. The last 1 metre contains 20% rectilinear clasts of possible chert. These clasts exhibit faint banding paeallel to the long axis of the clast. The long axis of the clasts vary in length from.5 cm to 2 cm and the long axis is oriented parallel to the foliation. There are		87.60 189. 92.55 193.			N M	Ŭ K	K X	
	also subrnd mafic clasts which have ragged edges and are weakly chloritic. 189.26 190.60 Trace to 2% pyrite, trace magnetite. 190.60 192.55 Trace to 1% fine pyrite in narrow quartz carbonate stringers.		89.26 190. 90.60 192.			N - K	ji Ji	H	
193.45 194.75	3C: INTENSE SILICA-CARBONATE PLOODING Colour is purple blue. Unit is massive and fractured at all angles. Upper and lower contacts are gradational. 193.45 194.75 Trace cubic pyrite in 2 to 4 mm quartz carbonate stringers.	2506 1	93.45 194.	75 1.30	.12	S	H	H	
194.75 197.33	3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY Magnetite content varies from.5 to 1% and pyrite varies from 1 to 3%. Weakly foliated at 70 degrees to the core axis 194.75 196.00 Trace to 1% magnetite, trace pyrite.		96.00 197. 94.75 196.			S S	ĸ	N	
197.33 197.90	3C: INTENSE SILICA-CARBONATE FLOODING Weak crackle fracture, no magnetite. 197.33 197.90 Trace magnetite, 7% fine disseminated pyrite.	2509 1	97.33 197.	90 .57	1.53	X	V	Ň	
148 44 444 54	•• •••								


197.90 201.50 3A: RED MAGNETITE-BEARING ARENITE OR

(

incerval (n)	Description	Sample Ho.		erval m)	Length (m)			LTBRATIC SBR	N CARB	\$ PY
	QUARTI-FELDSPAR PORPHYRY 1% Magnetite, which drops to 0 as colour changes from orange red to buff grey down the section. Gradational	2513	200.85	201.50	.65	.20	M	X	K	
	upper and lower contacts. 197.90 199.45 1% magnetite, 2 to 3%	2510	197.90	199.45	1.55	.07	ň	Ŧ	M	
	fine cubic pyrite. 199.45 199.95 5% pyrite, up to 20% pyrite in intense silica altered	2511	199.45	199.95	.50	.02	K	¥	H	
	sections. 199.95 200.85 1% magnetite, 2% fine disseminated pyrite.	2512	199.95	200.85	.90	.21	H	N	M	
201.50 202.15	3B: QUARTZ-SERICITE-CARBONATE SCHIST Very finely banded at 45 degrees to the core axis. Consists of alternating bands of silica and ankerite, sericitic and carbonate, and pyrite. Average bed thickness is 1 cm. Rare fuchsite fragment visible. 5% 1 to 2 cm foliation parallel quartz veinlets. 201.50 202.15 3% pyrite, up to 10% pyrite over 10 cm of heavy quartz carbonate crackle.	2514	201.50	202.15	.65	. 08	H	Я	M	
	 3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY Variable section, very similar to 187.6 to 193.45 metres. 203.85 205.20 Trace magnetite, 1% pyrite. 205.20 206.10 5 to 10% pyrite in narrow quartz chlorite fracture fillings. 206.10 206.66 15 to 20% pyrite in 20 cm zones of intense silica carbonate flooding. 207.22 209.68 Trace magnetite, 2 to 3% fine disseminated pyrite. 211.16 212.14 10% fine disseminated pyrite, trace magnetite. 	2519 2516 2521 2517 2522 2524 2518 2518	206.66 203.85 209.68 205.20 210.30 212.14 206.10	203.85 207.22 205.20 210.30 206.10 211.16 214.00 206.66 209.68 212.14	.56 1.35 .62 .90 .86 1.86 .56 2.46	.01 .01 .03 .02 .01 .01 .80 .02 .01	H H S M S N H	X N N N N N N N N	H H S H S H S	

214.00 218.50 3B: QUARTZ-SERICITE-CARBONATE SCHIST Moderately well banded, description is the same as the section from 201.5 to 202.15 metres. Variable deformed and chloritic, with the alteration

interval (m)	Description	Sample No.	Interval (m)	j (∎)	Au (g/t)	A SIL	LTERATIO SER	N Carb	\$ PY
	intensity decreasing down the hole. 214.00 214.80 Average is 10% pyrite and section contains up to 25% pyrite over 10 to 30 cm.	2525 2	14.00 214.8	0.80	.04	X	H	H	
	214.80 215.90 1 to 3% disseminated pyrite.	2526 2	14.80 215.9	0 1.10	1.50	N	M	K	
	215.90 217.60 2% disseminated pyrite.	2527 2	15.90 217	1.70	i.13	M	H	X	
	217.60 218.50 2% pyrite. Bottom 20 cm contains 20% pyrite.		17.60 218.5		.14	X	N	X	
218.50 230.43	3E: NODERATE SERICITE SCHIST (+/- QTZ)								
	Weakly altered, thinly bedded, fine	2529 2	18.50 220.00	0 1.50	.50	N	M	M	
	grained. Minor chlorite as veinlets.	2530 2	20.00 221.28	1.28	n/a	N	X	X	
	Several weak zones of quartz carbonate	2531 2	21.28 222.7	B 1.50	.15	Ħ	M	H	
	flooding with minor pyrite are	2532 2	22.78 224.31	7 1.59	.02	N	H	H	
	visible. Well foliated at 60 degrees	2533 2	24.37 225.83	3 1.46	.01	M	H	M	
	to the core axis.	2534 2	25.83 227.33	3 1.50	.05	H	X	M	
	230.43 Bnd Of Hole.	2535 2	27.33 228.83	3 1.50	.01	Ж	M	M	
		2536 2	28.83 230.43	3 1.60	.01	М	K	M	

-

(

Core size: Drilled by: Started: Finished:	BQ J.T. THOMAS D.D. Jan. 31/87 Feb. 2/87	Azimuth: Dip: Depth Az	•	Cla	d: pose: im: thing:	test 9560 3+50	east si		tension		zone
tored but	T MasDhargan	77.70 154.30	-40.0 -39.0		ting: vation	L 38-	40B	nl	mall	un -	
Logged by: Date logged:	J. HacPherson Feb. 5/87		-39.0	616	Vacion			Y	/ •>		
System:				Len	gth:	248.	18m (0			
Interval (=)	Descriptio	1	Sample No.	Inte (1	rval	Length (m)	Au (g/t)	AI SIL	TBRATION SER	CARB	\$ PY
.00 54.7	5 OVERBURDEN										
54.75 64.7	2 1D: SILTSTONE						A.				
	Fine grained, thinly be dark grey, occasional :			56.38 57.88			.02 .01				
	Beds are deformed and t				60.60		.01				
		egrees. À few			61.18	.58	. 02				
	locally nore sericitic associated fine cubic py			61.18 63.68	63.68 64.72		.01 .02				
	54.75 56.38 15% pyrit 64.72 metres.	e from 54.75 to		54.75			.02				
64.72 72.8	3 4A: QUARTZ-CARBONATE VEI	¥									
	Several veins of varyin			64.72			.01	¥	V	T T	
	this zone. They have se and inclusions.	cicicic margins		66.72 68.18	68.58	1.40 .40	.01 .01	V V	V V	T T	
	68.58 70.48 Trace pyrite		2547	68.58	70.48	1.90	.01	¥	¥	ĩ	
			2548	70.48	72.83	2.35	.01	V	¥	V	
72.83 79.4	0 1A: ARGILLITE Well foliated, weakly	caricitic Cot	2549	72.83	74 67	1 R.A	.01	ĩ	u	V	
	by 1% fine cubic pyrite.			74.67			.02	K	Ÿ	V	
				76.17			.01	I	V V	V	
			2552	77.72	13.40	1.68	.01	L	¥	¥	
79.40 110.0	0 3B: NODERATE SERICITE SC Similar to section fro		2552	79.40	80.77	1.37	.01	y	X	¥	
	metres except more se			80.77			.01	Ň	Ň	Ţ	
	few 20 to 40 cm wide	zones of strong	2555	82.27			.01	I	N	V	
	silica carbonate a present. Alterati	lteration are on intensity		83.82 85.32			.01 .01) N	H N	V V	
	Present. AIteleti	vu incusit]	LJJI	VJ.JL	44.10	.41		8	n		

_

ĺ,

Esso Minerals C	anada – Robele JV (Ont 88)				le: T-] ge:	2				
erval	Description	Sample No.	Inte (1	rval	Length (m)	Au (g/t)		BRATIO	N CARB	\$ PY
(=)		80.	()	()	1.81	(9/0)	5111 4		VARD	• • •
	generally increases down the hole.		86.16			.04	N	V	¥	
			88.36			.01	N	V	۲ ۲	
			89.91 91.30			.01 .01	N N	V V	A A	
			92.55			.01	N	Ň	Ÿ	
			94.50			.01	Ĩ	Ň	Ţ	
			96.00			01	Ĭ	M	¥	
			97.55			.01	N	<u>H</u>	¥	
			99.46			.01	N	M	٧	
			100.54			.01	I	Ň	Ĩ	
			101.60			.01	N	M	¥	
			103.10			.01 .01	N N	¥ ¥	V V	
			104.65 107.00			.01	N	N	v	
			108.50			.03	N	H	Ï	
110.00 111.15	18: LITHIC ARBNITE Noderately silicified with 10% fine disseminated pyrite.	2573	110.00	111.15	1.15	.02	K	۷	M	
111.15 124.70	3E: MODERATE SERICITE SCHIST (+/- QTZ)									
	Increasing sericitic alteration down				1.90	.01	1	N N	N N	
	the hole through this section with				1.55	.01	N T	M M	N H	
	patchy silicification accompanied by				i 1.55	.02 .05	l I	л S	s n	
	an increase in pyrite %. Locally the unit is well foliated at 70 degrees to		119.30			.40	Ĩ	S	Š	
	the core axis.				1.50	.04	Ĭ	S	S	
	116.15 117.80 1% cubic pyrite.				1.65	.01	N	H	M	
	**	2581	122.20	123.70	1.50	.20	N	S	S	
		2582	123.70	124.70) 1.00	.06	¥	S	S	
124.70 128.25	18: LITHIC ARBWITE Fine grained, thickly bedded, light to	2583	124.70	126.2	0 1.50	.32	N	N	S	
	medium grey colour. Abrupt upper and lower contacts with sericitic argillite. This contact is coincidental with increased silica alteration. Unit contains 3 to 5% well rounded quartz clasts and a few fuchsitic clasts. 5% thin black quartz ankerite stringers oriented sub-parallel to the core axis. Matrix of unit is fine grained and is composed of quartz and ankerite.									
	126.20 128.25 3% cubic pyrite.	2584	126.20	128.2	5 2.05	. 22	M	H	S	

Ń

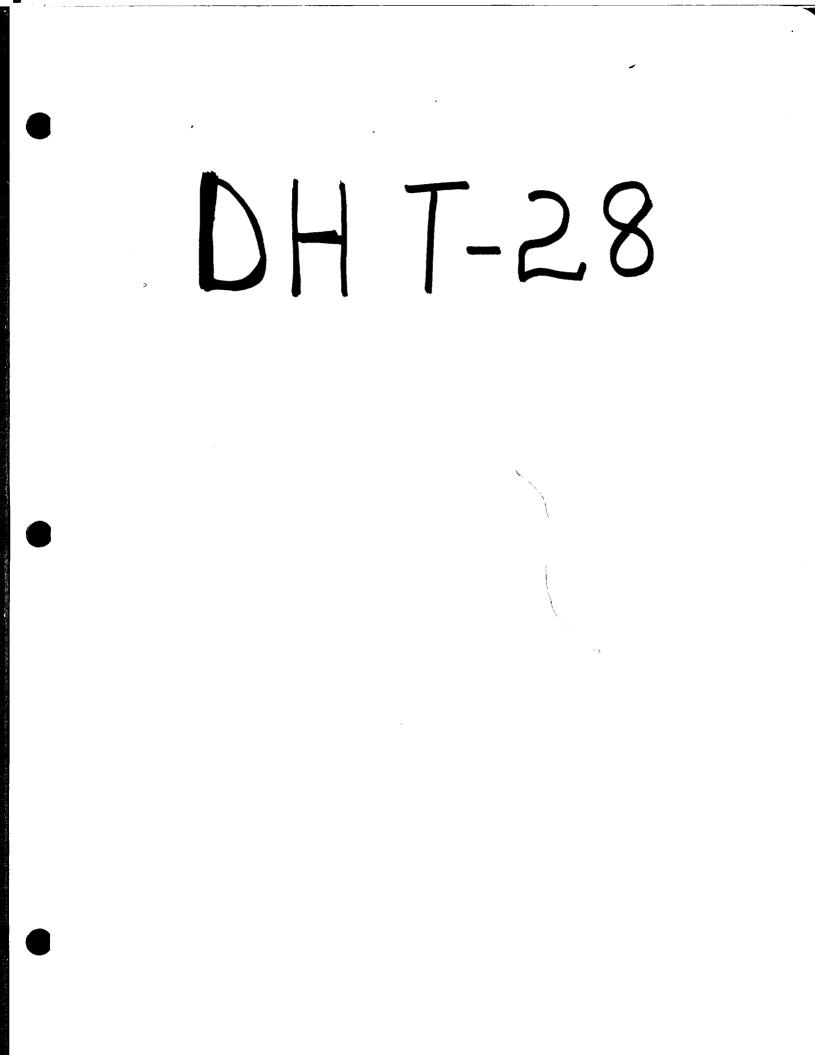
~

	Description	Sample No.		erval (m)	-	Au (g/t)		LTERATIO SER	N CARB	\$ P1
	P: STRONG SERICITE SCHIST (+/- QTZ)							N		
	oderately to locally strongly			5 129.40		.08 .05	N N	W S	S S	
	ltered, thinly bedded argillite with			132.89 134.39		.05	H	S	S	
	0% thickly bedded siltstone. Prom 30 to 135 metres, rock is highly) 135.10		.03	N N	X	Ň	
	ericitized and ankeritic.			0 137.30		.63	Ÿ	 M	N	
_	36.24 137.30 4A: QUARTZ-CARBONATE WEIN			8 140.48		.86	4	N	X	
	29.40 131.34 From 128.5 to 135.1			0 131.34		. 93	I	Ħ	S	
	here is trace to 2% fine disseminated	2593	140.4	8 142.03	1.55	.03	X	¥	ï	
	yrite.			3 143.53		.01		ų.	¥	
	37.30 138.98 20% fine disseminated			0 138.98			Ÿ	M	Н	
PY	yrite over 10 cm intervals.	2595	143.5	3 144.95	1.42	.01	N	¥	V	
5 1 F	B: LITHIC ARBNITE									
	ighly silicified. Contains 1%									
	uchsite fragments with ragged edges.					A.				
	lso there are 3% large fragments									
	reater than 2 cm in diameter. Unit is									
	ocally intensely altered by silica									
	nd ankerite.	1585	1.4.4	5 146.4	1 45	.10	S	N	Ň	
	44.95 146.40 Fine disseminated pyrite	2000	111.3	3 190.94	1.11	.10	Ű			
	p to 20% over 10 cm. Average for ection is 10% pyrite.									
	46.40 147.45 20% pyrite in 10 cm bands	2597	146.4	0 147.4	5 1.05	1.09	S	N	S	
7.2	10.10 111.15 IVA PILICE IN 14 CM DURD									
	B: LITHIC ARBNITE Similar to 144.95 to 147.45 except the	2598	147 4	5 149.2	3 1.78	.93	X	K	M	
	opper contact marks the beginning of	2330	11111	5 11511				••		
	oderate to strong sericite									
	Alteration. Also there is 1 to 2%									
	chloritic clasts along with the									
	uchsite clasts.									
51	A: ARGILLITE									
	Thinly bedded, numerous chlorite and	2599) 149.3	23 149.9	5.72	.21	M	V	K	
S	silica bands parallel to bedding.									
92	2H: COARSB-GRAINED (HEMATITIC)									
	PORPHYRY									
	Much veaker in terms of buff									
	alteration within the typical red									
e	elongated sub-parallel to a veak									
f	foliation which is at 60 degrees to									
ig 2 P M a Z C c e	2H: COARSE-GRAINED (HEMATITIC) PORPHYRY Much weaker in terms of buff									

Esso Winerals C	Hole: T-18 Page: 4									
.erval (B)	Description	Sample No.	Inte (∎		Length (m)	Au (g/t)	AL SIL	TERATION SER	CARB	\$ PY
	the core axis. Unit is weakly magnetic and contains 1% cubic pyrite. 149.95 150.89 1% cubic pyrite.	2600	149.95	150.89	.94	.07	H	¥	K	
150.89 154.50	18: LITHIC ARENITE Medium to light grey with local reddish tinges, thickly bedded, medium to coarse grained. Minor interbeds of fine grained to medium grained siltstone. A few chloritic bands are also present in the unit parallel to bedding. 150.89 152.40 2 to 4% fine disseminated pyrite.	2603	153.40	154.50	1.00 1.10 1.51	.03	A X A	K N K	N N	
154.50 161.65	2H: COARSE-GRAINED (HEMATITIC) PORPHYRY Similar to 149.95 to 150.89 metres. Red colour and increased alteration correspond to upper and lower contacts. Unit is magnetic, although there is no visible magnetite grains as in other parts of the red hematitic alteration intersected in earlier holes to the east. The presence of 3 to 5% 1 to 2 cm long cherty clasts also distinguishes this part of the red hematitic alteration from others. 154.50 156.00 10% very fine disseminated pyrite distributed evenly throughout section. 158.85 160.32 5% fine disseminated pyrite.	2606 2607 2608 2610 2604	157.70 157.84 158.42 160.32 154.50	157.84 158.42 158.85 161.65	.58		N M M S N N	A R A A N N K	K K K K	
161.65 162.35	5 1A: ARGILLITE Chloritic, thinly banded, very weak alteration, trace pyrite.	2611	161.65	i 162.3	5.70	.02	M	K	S	
162.35 165.4) 2H: COARSE-GRAINED (HEMATITIC) PORPHYRY Same as section from 154.5 to 161.65. 162.35 163.80 5 to 8% fine disseminated cubic pyrite, weakly magnetic.				0 1.60 0 1.45		N M		5 S	

 $\widehat{(}$

Ę


÷

erval (m)	Description	Sample No.		erval m)	Length (m)	Au (g/t)	λ SIL	LTERATIO SER	N CARB	\$ PY
165.40 181.40	1A: ARGILLITE									
	Upper contact marks abrupt end to red	2615	166.42	167.92	1.50	4.15	V	¥	H	
	hematitic alteration. Unit is thinly	2616	167.92	169.47	1.55	.20	V	ų.	M	
	bedded, fine grained and weakly	2617	169.47	170.97	1.50	.21	I	¥.	H	
	chloritic. Spotty silicified areas	2618	170.97	172.51	1.54	.02	N	Y	X	
	occur within the unit and there is a	2619	172.51	174.01	1.50	.11	ľ	H	M	
	20% arenite component. Bedding is at			175.56		.03	Į.	H	H	
	60 degrees to the core axis.			177.06		.02	ľ	N	¥	
	165.40 166.42 1 to 2% fine	2614	165.40	166.42	1.02	. 59	X	N	S	
	disseminated pyrite.	2622	177.06	178.61	1.55	.04	Ĭ	M	¥	
				180.11		.01	K	V	¥.	
		2624	180.11	181.40	1.29	.12	T	N	H	
101 10 102 00	1C: ARGILLITE WITH SEMI-MASSIVE BANDS									
101.90 1)].00	OF PYRITE									
	Fine grained argillite with varying					4				
	percentage of quartz and pyrite bands									
	which may be diagenetic. Pyrite occurs									
	semi-massive with quartz gangue.									
	There are sharp contacts with py-poor									
	argillite and whole section is weakly									
	sericite altered.	9695	101 40	182.36	.96	2.14	ų	Ĭ	M	
	181.40 182.36 Top 20 cm is quartz	2023	101.90	102.30	. 30	1.17	•	A	п	
	carbonate flooded with 20% fine									
	disseminated pyrite.	2626	102.20	183.80	1 44	.20	V	N	H.	
	182.36 183.80 2% quartz veins, 5%	2020	102.30	T07.00	1.11		•	þ	"	
	pyrite in 1 cm thick bands. 183.80 185.25 1 seam semi-massive	2627	183 80	185.25	1 45	.06	. 7	N	K	
	pyrite.	2021	103.00	103.63	4.13			-		
	185.25 187.56 30% pyrite, 5% guartz in	2628	185.25	187.56	2.31	. 39	V	N	M	
	bands up to 6 cm wide.	1414	143.54				-	-		
	187.56 188.36 30% pyrite, 5% quartz in	2629	187.56	5 188.36	.80	.31	V	R	M	
	bands up to 6 cm wide.		10/100				-	-		
	188.36 189.40 3% pyrite, 5% quartz.	2630	188.36	5 189.40	1.04	.08	Ţ	N	M	
	189.40 191.10 15%py, 5% quartz as			191.10		.05	ÿ		X	
	bands up to 1.5 cm wide.									
	191.10 193.00 10 to 15% pyrite, 2 to	2632	191.10) 193.00) 1.90	.15	V	X	Ň	
	3% quartz in bands.									
	34 Ånarte in panao.									
193.00 195.50	1A: ARGILLITE									
	Interbedded with siltstone. Section is									
	thinly bedded and very weakly altered.									
	Poliation is parallel to bedding at 60									
	degrees to the core axis.						-			
	193.00 195.50 Blebs of pyrite, amounts	2633	193.00	0 195.5	J 2.50	.01		N N	M	
	less than 1%.									

B sso Minerals (Canada - Robele JV (Ont 88)		le: T-1 ge:	L8 6				
(m)	Description	Sample Interval No. (m)	Length (m)	Åu (g/t)		BRATION SBR	CARB	¥ PY
195.50 197.00	1C: ARGILLITE WITH SEMI-MASSIVE BANDS OF PYRITE Same as section from 181.4 to 193.0.	2634 195.50 197.00	1.50	.03	ÿ	N	M	
197.00 221.28	Variable section with average 15%	2635 197.00 198.50 2636 198.50 199.95		⁻ .04 .02	8	H	K	
	arenite beds. Argillite is thinly bedded, fine grained and weakly to selectively strongly altered. Arenite is grey, fine grained to medium grained and locally siliceous.	2636 136.36 137.35 2637 199.95 200.46 2638 200.46 200.95 2639 200.95 201.50 2640 201.50 202.95	.51 .49 .55	.01 .15 .02 .21	X A A A	N N N N	A A K X	
	glainea and incarry briteroup.	2641 202.95 203.80 2642 203.80 204.65 2643 204.65 205.95 2644 205.95 206.44	.85 .85 1.30	.03 .03 .04 .20	A A R	A A H H	4 4 4 7	
		2645 206.44 207.13 2646 207.13 208.50 2647 208.50 209.50 2648 209.50 211.00	1.37 1.00 1.50	.02 .02 .29 .01	R A A A	H A A A	T T N	
		2649 211.00 212.14 2650 212.14 213.64 2651 213.64 215.19 2652 215.19 216.69	1.50 1.55 1.50	.02 .01 .01 .01	K K K	K K M K	H H H H	
		2653 216.69 218.24 2654 218.24 219.74 2655 219.74 221.28	1.50	.01 .01 .03	N S	S	M S	
221.28 227.38	3C: INTENSE SILICA-CARBONATE FLOODING Fairly abrupt upper contact, gradational lower contact with less altered sediments. Yone is very siliceous and ankeritic and contains up to 40% very fine disseminated pyrite over 30 to 50 cm. Numerous sericitic slips at 30 degrees to the core axis. Silica carbonate replacement is near total in the areas of highest pyrite content.	2656 221.28 222.78 2659 225.83 227.38				S K	I S	
	Unit exhibits a weak foliation sub-parallel to the core axis. Also there are 10% thin quartz ankerite veinlets which are oriented parallel to this foliation. 1% fuchsite							
	fragments also present in this unit. 222.78 224.33 20 to 30% very fine disseminated pyrite.	2657 222.78 224.3	3 1.55	8.99	. I	S	I	
	224.33 225.83 20% fine disseminated pyrite.	2658 224.33 225.8	3 1.50	3.22	I	S	Ι	

i.

Bsso Minerals Canada - Robele JV (Ont 88)			Hole: T-18 Page: 7								
incerval (m)	Description	Sample No.		erval - n)	-Sength ¦(m)		AI Sil	LTBRATIO SBR	N CARB	\$ PY	
227.38 236.52	3B: MODERATE SERICITE SCHIST (+/- QTI) Alteration intensity decreases down the hole away from previous section. Unit is thinly bedded and fine grained. Sericite alteration weakens down the hole and takes on the form of bedding parallel stringers.	2661 2662 2663 2663 2664	228.88 230.42 232.92 233.48	230.42 232.92 233. 4 5	.56 1.30	.18 .55 .02	n R N R	A A A A H	A A A A Y		
236.52 246.17	1B: ARGILLITE WITH GRAPHITIC SLIPS Numerous graphitic slips in thinly bedded argillite, 1 to 2% cubic pyrite. Weak foliation sub-parallel to bedding.	3503 2 3504 2 3505 2 3506 2 3506 2	238.18 239.38 240.50 241.90 243.52	238.18 239.38 240.50 241.90 243.52 244.83 246.17	1.20 1.12 1.40 1.62 1.31	.01 .03 .04 .02 .02 .03 .02	R R R R R	K A A A A A	8 8 8 8 8 8 8		
246.17 248.18	 1A: ARGILLITE Moderately sericite altered argillite, intensity apparently increasing down the hole. 1 to 2% cubic pyrite, 2 to 10% thin guartz ankerite stringers at random orientations in the unit. 248.18 End Of Hole. 247.15 248.18 2% fine cubic pyrite. 			247.15 248.18	.98	.04	N N	K	K		

Bsso Minerals Canada - R	Robele JV ((Ont 88)
--------------------------	-------------	----------

Hole: T-28 Page: 1

€.

Core size: Drilled by: Started: Finished: Logged by: Date logged: System:	Longyear Drilling Co. December 4/87 December 5/87 J. MacPherson December 7/87	Azimuth: Dip: Depth Az 127.13	180 -45 Dip -45.0	Grid: Purpose: Claim: Worthing: Basting: Blevation Length:	test 9560 3+251 6 363	79 N 30 e	lunge ex g	•		ene pro)
Interval (m)	Description		Sample No.	Interval (m)	Length (m)	Au (g/t)	AL! SIL	FERATION SER	CARB	\$ PY
	OVERBURDEN 3B: MODERATE SERICITE SCH Very sericitic, thinly at 60 degrees to the cor crenulation cleavage at the core axis. Colour grey and the rock is mo Trace pyrite.	banded/bedded e axis. Strong 90 degrees to is greenish	5880	28.04 30.00	1.96	n/a	¥	S	M	TR
30.00 30.3(degrees to the core axis contact is sharp at 85 core axis. 30% deformed quartz phenocrysts are s carbonate sericite foliation at 80 degree axis in the form	degrees to the and shattered et in a guartz matrix. Weak s to the core of sericitic grained cubic coarse grained	5881	30.00 30.36	.36	.16	\$	M	H	1
30.36 31.50	3B: MODERATE SERICITE SCH Similar to section from metres. More deformed local echedral pods o arsenopyrite present. T less than 1% of the rock.	28.04 to 30.00 and there are E quartz and	5882	30.36 31.50	1.14	.57	V	S	H	TR

Esso	Minerals	Canada	-	Robele	JV	(Ont	88)	
------	----------	--------	---	--------	----	------	-----	--

_

/

Incerval (m)	Description	Sample No.		erval m)	Gength (m)	Au (g/t)	A SIL	LTERATIO SER	N CARB	S PY
31.50 32.73	2 2B: QUARTZ PORPHYRY Similar to previous dyke. 30% subhedral quartz phenocrysts in a quartz carbonate sericite matrix. Trace pyrite, rare arsenopyrite grains. Sharp upper and lower contact. Colour is light grey and rock is hard.	5883	31.50	32.73	1.23	.04	S	K	H	TR
32.73 33.25	5 3F: STRONG SERICITE SCHIST (+/- QTZ) Very sericitic, trace arsenopyrite and pyrite.	5884	32.73	33.25	.52	.06	K	S	M	TR
33.25 35.35	2B: QUARTZ PORPHYRY More sericitic than previous dykes. Colour is light greenish grey and the rock is moderately hard. 1 to 2% very fine disseminated pyrite throughout.	5885	33.25	35.35	2.10	.02	X	S	M	2
35.35 36.35	4A: QUARTZ-CARBONATE VEIN Zone of quartz veining. Wallrock is only weakly sericitic and chloritic. Wein material make up about 20% of the section. Pyrite content in inclusion in the vein is 2 to 3%.	5886	35.35	36.35	1.00	.19	M	· V	¥	1
36.35 38.53	1F: CONGLOMERATE Matrix supported. Clasts are mainly siliceous and sericitic. They are subhedral, often stretched very highly altered. Matrix of the dyke is guartz, carbonate and sericite. Colour is medium grey green. The rock is cloudy, making grain edges indistinct. Matrix contains at least 10% fine disseminated cubic pyrite, especially to 37.30 metres. This section also contains trace fuchsitic fragments and minor tourmaline as thin fracture fillings. The section from 37.30 metres is well banded at 65 degrees to the core axis and contains 5% pyrite as thin banding parallel stringers and occasional disseminations.		36.35 37.30	37.30 38.53	.95 1.23	.17 .20	S M	S M	SS	10 3

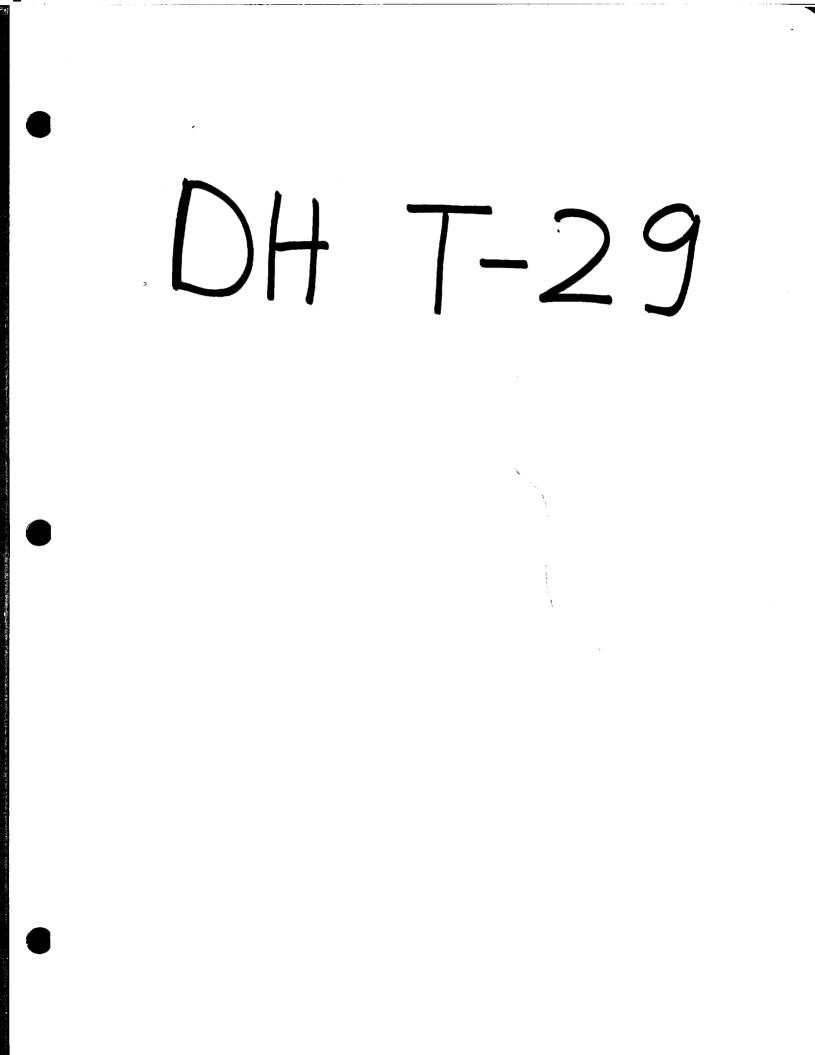
lrval	Description	Sample	Inte	erval	Length	Au	Å	LTERATIO	l I	
(n)	< ⊨	No.	(m)		(m)	(g/t)	SIL	SER	CARB	\$ PY
78 57 50 7 7	1A: ARGILLITE									
	Thinly bedded at 75 degrees to the	5893	44.81	46.31	1.50	.17	T	¥	T	2
	core axis. Locally moderately deformed			47.85		.36	ÿ	ÿ	Ÿ	2
	and slumped. Colour varies from light			49.35		.03	Ţ	Ŷ		2
	to dark green and locally black	5896	49.35	50.33	.98	.04	V	¥	¥	2
	depending on the degree of alteration. Generally the degree of alteration as well as the pyrite content decreases towards the end of the section. The last 4 metres is chloritic and contains only trace pyrite.									
	38.53 39.73 2 zones of guartz	5889	38.53	39.73	1.20	.21	¥	M	X	3
	carbonate sericite schist with 5% pyrite.						•	4	п	3
	39.73 41.76 20 cm quartz carbonate sericite schist with 5% pyrite.	5890	39.73	41.76	2.03	.18	۷	N	M	2-3
	41.76 43.26 Pyrite in thin bedding parallel bands and fine disseminations.	5891	41.76	43.26	1.50	.20	٧	V	V	2-3
	43.26 44.81 Pyrite in several bands of	5892	43.26	44.81	1.55	1.52	V	V	V	2-3
	quartz carbonate sericite.									
50.33 60.04	3A: RED NAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Typical red hematitic alteration with 1 to 2% disseminated eubedral magnetite and occasional magnetite fracture filling. Locally magnetite is replaced with cubic pyrite. Pyrite also occurs in thin bands oriented at 70 degrees to the core axis and also in splashes of guartz carbonate replacements.			53.30 56.93		.19 .21	N K	Å	X X	2 3
	50.33 50.95 1 to 2% magnetite, local magnetite replacement by pyrite.	5897	50.33	50.95	.62	.07	N	V	M	3-5
	50.95 52.00 Dark green colour, less pyrite and magnetite, 15 cm pink quartz carbonate veinlet.	5898	50.95	52.00	1.05	.06	Ŷ	X	¥	2
	53.30 54.50 2 to 3% magnetite, a little more silicified, several guartz carbonate patches over 20 cm core length.	5900	53.30	54.50	1.20	.43	M	M	H	3
	54.50 54.83 Light purple tinge, less magnetite, more disseminated pyrite.	5901	54.50	54.83	.33	2.22	S	K	S	5
	54.83 55.69 Magnetite occurs as fracture fillings and euhedral grains. Weak guartz carbonate crackle fracture.	5902	54.83	55.69	.86	.14	M-S	M	S	3
	56.93 58.13 Several bands of quartz carbonate pyrite up to 3 cm wide.	5904	56.93	58.13	1.20	.21	S	Ħ	S	5
	58.13 59.41 Pyrite occurs semi-massive	5905	58.13	59.41	1.28	.07	M	H	N	3

so Minerals	Hole: T-28 Page: 4									
(m)	Description	Sample No.	Inte (m			λu (1/t)	AL SIL	TERATIO SER	N CARB	\$ PI
	in quartz carbonate patches. 59.41 60.04 Red colour fades here and there and is up to 5% magnetite as fracture fillings in the first 30 cm.	5906	59.41	60.04	.63	.14	S	H	X	2
60.04 65.88	B 3B: QUART2-SERICITE-CARBOWATE SCHIST Variable section dominated by quartz carbonate sericite schist. 25% of section is fine grained weakly altered lithic arenite. Pyrite content for the section is 3 to 5% with most of the pyrite restricted to the intense quartz carbonate sericite schist or banded quartz carbonate sericite section. Banding is present at 55 degrees to the core axis. Section is not magnetic except for a short section of red hematitic alteration	5914	65.48	66.73	1.25	.41	K	N	X	3
	between 62.70 and 63.09 metres. 60.04 60.58 Grey green. Pyrite occurs as disseminated cubes. 10 cm fine grained quartz porphyry dyke in this section.	5907	60.04	60.58	.54	.37	K	N	N	5
	60.58 61.20 Dark green chloritic	5908	60.58	61.20	.62	.38	٩	¥	¥	1
	lithic arenite, weakly siliceous. 61.20 61.80 Banded quartz carbonate sericite section. Local semi-massive pyrite, thin tourmaline stringers.	5909	61.20	61.80	.60	.11	S	N	X	5
	61.80 62.70 Grey green, a few chloritic fracture fillings, local weak deformation.	5910	61.80	62.70	.90	.23	M	X	M	2-3
	62.70 63.09 Red hematitic alteration, weakly magnetic, 2% cubic pyrite replacing magnetite. Light red colour, gradational contacts.	5911	62.70	63.09	. 39	.38	N	V	K	2
	63.09 64.08 Quartz carbonate sericite schist, well banded at 60 degrees to the core axis. Strongest portion is at top of the section and it contains thin tourmaline fracture fillings.	5912	63.09	64.08	.99	.62	S	X	X	3-5
	64.08 65.88 Strong quartz carbonate sericite schist, well banded quartz carbonate sericite tourmaline pyrite. Light greenish grey, hard.	5913	64.08	65.88	1.80	5.52	S	S	S	5

QUARTI-FELDSPAR PORPHYRY Light reddish orange, massive to

Interval (m)	Description	Sample No.	Inte (1	rval }	Length (m)	Au (g/t)	SIL	ALTERATION SER	CARB	\$ PY		
	weakly banded at 75 degrees to the core axis. 2% euhedral magnetite grains, 2 to 5% pyrite. Pyrite occurs replacing magnetite, as discrete cubes and as masses in thin bands oriented at 75 degrees to the core axis. These bands host most of the pyrite and vary in width from.1 to 1 cm. Contacts with overlying and underlying units are gradational.											
66.73 68.9 7	3C: INTENSE SILICA-CARBONATE PLOODING Colour is dark purple to red to locally light brown. Weakly magnetic throughout. 15% randomly oriented quartz veins. 1% euhedral magnetite grains are present in the less altered parts of the unit. Pyrite occurs mainly in and near the quartz veins. Sharp upper contact, lower contact marked by a 10 cm quartz vein. Magnetite also occurs as thin fracture fillings.											
	66.73 67.83 Several seams of magnetite and hematite, strong crackle fracture.	5915	66.73	67.83	1.10	.37	1	L N	S	2-3		
	67.83 68.97 The quartz vein at the end of this section contains 3% euhedral magnetite grains and 5% disseminated pyrite.	5916	67.83	68.97	1.14	.22]	i n	S	2		
58.97 74.20	3A: RED MAGNETITE-BEARING AREMITE OR											
	QUARTI-PELDSPAR PORPHYRY Colour varies from light reddish orange to purple. Moderately magnetic throughout. 2% euhedral magnetite and 2 to 3% fine disseminated pyrite in the unit. Pyrite occurs also as masses with quartz carbonate pods randomly scattered throughout the unit. Well banded at 65 degrees to the core axis. Colour lightens towards the lower contact. 5% randomly oriented late quartz veining.				1.63 1.63			L M L H	N N	1 1		
	72.23 73.63 5% late purple guartz carbonate crackle with 1% pyrite.	5919	72.23	73.63	1.40	.70	S	H.	M	1-2		
	73.63 74.20 Banded quartz carbonate sericite pyrite makes up less than 5% of this section.	5920	73.63	74.20	.57	.05	₩-S	N-S	H	3-5		

Bsso Minerals Canada - Robele JV (Ont 88)				Ho] Pag	le: 1-21 je:	6					
(m)	DescriptionDescription	Sample No.	Inter (m)		Length (m)			SERTION SER	CARB	\$ PY	
PORPH Light 60 d conta 01	OLIATED QUARTI (PELDSPAR) YRY (+/- FUCHSITE) greyish green, well foliated at egrees to the core axis. Sharp cts with red hematitic alteration either side. Trace fuchsitic ments. 2% disseminated cubic pyrite		74.20 75.28			.19 .18	\$ S	S S	M N	2 2	
QUART Typic bande 1 to fine conta fract	ED MAGNETITE-BEARING AREWITE OR Z-FELDSPAR PORPHYRY al red hematitic alteration. Well d at 60 degrees to the core axis. 2% euhedral magnetite, 1 to 2% disseminated pyrite. Last 15 cm lins guartz vein with tourmaline ure fillings and 5% fine minated pyrite.	5923	76.33	77.64	1.31	.81	H	N	X	1	
7 to very degre tourn is 1	NTENSE SILICA-CARBOWATE FLOODING 10% disseminated cubic pyrite, siliceous. Well banded at 60 tes to the core axis. 1% haline fracture filling. Colour light greyish green, unit is very 15% quartz pyrite veining.	5924	77.64	78.53	. 89	1.69	S	S	S	7	
QUART Very euhed magne filli quart	RED MAGNETITE-BEARING AREMITE OR C-FELDSPAR PORPHYRY dark red, weakly magnetic, trace tral magnetite, 10% pyrite as etite replacements and fracture ings. Gradational contacts with tz carbonate flooding uphole and ible quartz porphyry dyke down the	5925	78.53	79.16	.63	.50	S	S	S	10	
PORPI Light quart fucht marke	POLIATED QUARTI (FELDSPAR) HYRY (+/- FUCHSITE) t greyish green, hard. Only a few tz phenocrysts visible, trace sitic streaks. Both contacts ed by thin quartz veins. Trace te only in this unit.	5926	79.16	80.24	1.08	3.72	H	S	K	TR	


Esso	Minerals	Canada	-	Robele	JV	(Ont	88)	
					••	1.444	••,	

-

r -										
Interval (m)	Description	Sample No.	Int (erval m}		h A u (g/t)	SIF	LTERATION SER	I CARB	\$ PY
80.24 80.8	4 3A: RED MAGNETITE-BEARING AREWITE OR QUARTZ-FELDSPAR PORPHYRY Light red with grey sections. Grey areas are silica carbonate flooding with 5% disseminated and fracture filling pyrite. 80.24 80.84 9 sites of visible gold in this section associated with silicified red hematitic alteration.	5927	80.24	80.84	.60	122.20	9 1 9 1	: N	N	5
80.84 83.4	2 3B: QUARTI-SERICITE-CARBOWATE SCHIST Bighly variable section of porphyry dyke, red hematitic alteration, and quartz carbonate sericite schist. Local quartz carbonate flooding with pyrite, a few pyritic bands in the red hematitic alteration.									
	80.84 81.60 30 cm quartz carbonate chlorite sericite vein at top of this section. Fractures in the vein are filled with pyrite.	5928	80.84	81.60	.76	1.12	S	N	H	3
	81.60 82.06 Thin porphyry dyke with silicified and sericitic wallrock. Pyrite occurs as cubes and fracture fillings.	5929	\$1.60	82.06	. 46	1.90	I	S	S	3
	82.06 82.47 Silicified red hematitic alteration. Wagnetite locally replaced by pyrite.	5930	82.06	82.47	.41	1.04	H	M	M	3
	82.47 83.42 Quartz carbonate flooding, minor porphyry. Locally very pyritic over 10 to 20 cm.	5931	82.47	83.42	.95	2.60	S	S	S	5
83.42 85.93	3 3A: RED WAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY									
	Reddish orange, hard, massive. Numerous chloritic fractures. Minor local quartz carbonate flooding with accompanying pyritization.	5932	83.42	84.80	1.38	3.43	N	M	X	2-3
	84.80 85.30 Hore chloritic stringers, less magnetite.			85.30		1.52	V	V.	V	1
	85.30 85.93 Fault zone, broken, rusty core.	JJ 34	83.JU	85.93	.63	.37		¥	V	TR
85.93 96.62	1A: ARGILLITE									
	Locally highly deformed and slumped sub-parallel to the core axis. Colour			89.00 90.65		n/a .19	N M	A A	¥ K	TR 3

Bsso Minerals Canada - Robele JV (Ont 88)			Hole: T-28 Page: 8								
Interval (m)	Description	Sample No.	Inte (m		Cength (m)	Au (g/t)	AI SIL	LTBRATION SER	CARB	\$ PY	
	<pre>varies from light to dark green. The unit is moderately chloritic. Trace pyrite except for sections described below. 89.00 90.65 40 cm brecciated quartz vein in this section. Lower contact contains 20% banded pyrite over 15 cm. Quartz vein is pure white with numerous grey fractures which may be fault gouge. 96.62 End Of Hole. 95.12 96.62 Humerous thin pyritic bands and patches.</pre>			95.12		n/a 3.28	¥	Ÿ	¥	TR 2	

•

Isso Minerals	Canada - Robele JV (Ont 8	8)			Hol Pag	e: T- e:	29 1				
core size: Drilled by:	BQ Longyear Drilling Co.	Azimuth: Dip:	180 -65	Grid: Purpo			il 3W plunge	of Au	zone		
	Denselve 1/07			Clair	1:	9560					
	December 4/87 December 6/87	Depth A 92.46	z Dip -61.0	Norti Basti	ning: ing:	3+25 36+3			M	Ph	e u.e. Bur
•• •	J. MacPherson December 7/87	148.78	-58.0		tion:			J	////	il •	
ysten:				Lengt	: b :	148.	74m	/			
Interval (m)	Descriptio	Q	Sample Wo.	Interv (m)	ral I	Length (m)	Au (g/t)	Al SIL	LTBRATIC SER	N CARB	\$ PY
.00 22.00	OVERBURDEN										
22.00 32.05	deformed. Common beddin to 70 degrees to the con is light grey green with sericitic sections. intensity is low gradually down the hole. The first 1.4 meth sericitized, broken There is trace pyrite is	cally high ng angle is (ce axis. Color th patchy ligh Alteratic but increase res is high and deformed in this section this section	ly WS 50 Ir 1t 25 S Y 1. 20 N	22.00 2 24.00 3			.04 0/a	Υ K	ų	A. A	1 TR
32.05 40.65		bedded, lig y, moderate hin zones o d/or quart st are presen th these unit may be marke contain trac vic pyrite. Th martz carbonat ontain up to S	t 5938 y 5939 f 5940 z t s d e e e	32.05 3 33.50 3 35.00 3	5.00	1.50	.06 .04 .05	8	\$ \$ \$	H N M	TR TR 1
	36.30 37.30 Less deforme quartz carbonate sericite	d, approachin	ıg 5941	36.30 3	7.30	1.00	.03	¥	S	N	1

interval (m)	Description	Sample	Interval (m)	Length (m)		AI SIL	SER SER	CARB	₹ PY
	37.30 38.90 Two thin porphyry dykes, quartz carbonate sericite schist at contacts of the dykes. 38.90 40.65 Trace to 1% arsenopyrite, very sericitic towards the lower contact.	5943	37.30 38.90 38.90 40.65		.66	¥	S S	K	2-3 1
40.65 42.00	3B: QUARTI-SERICITE-CARBOWATE SCHIST Very thinly banded at 65 degrees to the core axis. Colour is light grey green and rock is moderately hard. 2% pyrite, trace arsenopyrite.		40.65 42.00	1.35	.08	¥	N-S	N	2
42.00 43.00	2B: QUARTZ PORPHYRY Fine grained, massive, sericitic with 15% deformed quartz phenocrysts. Colour is light grey green. 1 to 2% fine disseminated pyrite in top 20 cm. Remainder of dyke contains trace pyrite.		42.00 43.00	1.00	.05	H	S	M	1
43.00 43.95	3B: QUARTI-SERICITE-CARBOWATE SCHIST Well banded at 55 degrees to the core axis. Pyrite occurs in these bands, especially from 43.40 to 43.60 metres. Colour varies from dark grey where pyrite is more dominant to light grey green.	5947	43.00 43.40 43.40 43.95		.03 .56	H	S S	N N	1 2-3
43.95 45.70	18: LITHIC ARBWITE Chloritic, medium to dark green, medium grained. Noderately deformed. Strong crenulation cleavage at 80 degrees to the core axis. Trace pyrite.		43.95 45.70	1.75	n/a	J	¥	¥	TR
45.70 47.65	<pre>1A: ARGILLITE Chloritic, thinly bedded, trace pyrite, moderately deformed, well bedded at 55 degrees to the core axis.</pre>		45.70 47.65	i 1 .9 5	n/a	J	¥	V	TR
47.65 48.94	3B: QUARTI-SERICITE-CARBONATE SCHIST Moderately altered, well banded at 65 degrees to the core axis. Trace pyrite, trace fuchsitic streaks.		47.65 48.94	1.29	.17	¥	H	M	TR

sso Minerals	Canada - Robele JV (Ont 88)				le: T- ge:	29 3				
cerval (m)	Description	Sample No.	Inte (1	erval 1)	Length (m)	Au (g/t)	AL' SIL	IBRATIO SER		_
48.94 49.85	1A: ARGILLITE Chloritic, thinly bedded, fine grained to medium grained, trace pyrite, trace quartz tourmaline stringers.	5949	48.94	49.85	.91	.21	I	¥	¥	TR
49.85 52.30	3B: QUARTI-SERICITE-CARBOWATE SCHIST Weakly to moderately altered. Well banded at 60 degrees to the core axis. 1 to 2% fine disseminated pyrite, trace fuchsitic streaks. Trace tourmaline fracture fillings.			50.90 52.30		.58 .22	M X	H	N K	2
52.30 53.28	4A: QUART2-CARBONATE VEIN Zone of quartz veining. Veins are quartz carbonate, white in colour. They contain numerous sericitic inclusions and the wallrock between weins is pyritic.	5952	52.30	53.28	.98	. 39	S	S	S	2
53.28 58.00	3B: QUARTI-SERICITE-CARBOWATE SCHIST Fine grained, thinly banded at 60 degrees to the core axis. Unit consists of alternating fine quartz carbonate sericite pyrite bands.			54.77 57.13		.11 .15	S N	K	H X	3-5 2
	Colour is light greenish grey. 54.77 55.61 Nore chloritic here, less	5954	54.77	55.61	.84	.17	۷	M	K	2
	quartz carbonate and pyrite. 55.61 56.28 2 to 10 cm sections of	5955	55.61	56.28	.67	6.27	Ħ	M	K	2
	quartz carbonate sericite schist. 57.13 58.00 Minor quartz carbonate tourmaline veining.	5957	57.13	58.00	.87	4.43	S	S	S	2-3
58.00 96.26	3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY Light reddish orange to locally buff grey. Thin quartz carbonate stringers or bands may be filled with fine grained cubic pyrite. These stringers make up less than 1% of the unit. Hote: assay intervals are based on colour changes which are directly related to the degree of quartz carbonate flooding and pyrite content. 86.01 &6.42 This section contains a 5	5984 5985	87.05 87.61	86.42 87.61 88.34 92.03	.56	.20 1.22 .72 .02	I I S S	S S N	S S N	10 15 7 1

~

۰.

 $\overline{}$

 \sim

.....

Interval	Description	Sample	e Inte	erval	Length	λa) A	LTERATIO	K	
(m)		40 .	(1	n)	(m)	(g/t)	SIL	SER	CARB	\$ 1
	cn guartz carbonate									
	tourmaline vein with									
	banded pyrite. Pyrite									
	content for the vein is									
	40%, tourmaline makes up									
	5% of the vein. Contact is									
	at about 30 degrees to the									
	core axis there is a weak pyritic halo for 15 cm on									
	either side of the vein									
	where there is complete									
	magnetite destruction.									
	\$7.05 \$7.61 4A: QUARTI-CARBONATE VEIN									
	a 3 cm quartz carbonate									
	(feldspar?) veinlet is									
	surrounded by a 20 cm									
	banded quartz carbonate									
	tourmaline pyrite halo.									
	Section also contains several sites of									
	several sites of chalcopyrite. Pyrite									
	content for the section is									
	about 15%.									
	87.61 \$8.34 In this section the red									
	hematitic alteration has a									
	yellow tinge and there is									
	complete replacement of									
	the magnetite by pyrite.									
	As distance from the									
	quartz vein with the pyritic halo increases,									
	the degree of of									
	replacement of magnetite									
	by pyrite increases.									
	58.00 58.45 Light reddish orange, well	5958	58.00	58.45	.45	.70	S	N	M	5
	banded at 65 degrees to the core axis,									
	pyrite occurs in siliceous bands and									
	replacing magnetite.	****				••		-		
	58.45 59.40 Mainly dark greenish brown, weakly magnetic, pyrite found	2223	58.45	59.40	.95	.21	Н	V	N	1
	only in one light red area with thin									
	random quartz stringers.									
	59.40 60.02 Medium red colour, pyrite	5960	59.40	60.02	.62	. 20	S	X	H	2-3
	in siliceous bands, also replacing							**	••	
	magnetite, 2% enhedral magnetite,									
	trace tourmaline fracture fillings.									
	60.02 61.15 Colour is light orange. 2	5961	60.02	61.15	1.13	.52	S	M	S	3
	to 10 cm zones of silica carbonate									
	flooding contain 5 to 7% pyrite and									

~

(
interval (m)	Description	Sample No.	Inte (1		Length (m)	Au (g/t)	A SIL	LTERATIO SER	N CARB	e pr
	61.15 61.90 Slightly darker than previous section. 2 to 3% fine grained euhedral magnetite, trace to 1% fine grained pyrite. Occasional pyritic quartz carbonate patch is present.	5962	61.15	61.90	.75	2.37	S	Ň	M	2
	61.90 63.49 Dark purple to brown, massive, more magnetic but less magnetite visible. Weak quartz carbonate crackle fracture with little pyrite.	5963	61.90	63.49	1.59	.10	H-S	M	Ħ	1-2
	63.49 65.00 Section has greenish tinge and is less magnetic than previous sections.	5964	63.49	65.00	1.51	.16	K	¥	M	1
	65.00 65.67 Medium to dark greenish brown, a few chloritic stringers, weakly magnetic.	5965	65.00	65.67	.67	.07	X	V	M	1
	65.67 67.07 Possible quartz porphyry dyke. Colour is light orange, very hard, trace to 1% fine disseminated cubic pyrite.	5966	65.67	67.07	1.40	14	M-S	M	N-S	1
	67.07 68.47 Well foliated at 55 degrees to the core axis. Very few magnetite replacements by pyrite.	5967	67.07	68.47	1.40	.13	\$	M	M	1
	68.47 69.84 Similar to previous section except that pyrite replaces magnetite and is also present in quartz carbonate patches.	5968	68.47	69.84	1.37	.20	S	K	K	2
	69.84 71.24 Purple, well banded at 55 degrees to the core axis. Pyrite mainly in core axis parallel guartz veins. Sharp colour contrast to units above and below.	5969	69.84	71.24	1.40	.17	S	Ÿ	M	1
	71.24 72.67 Light reddish orange, 1% euhedral magnetite. Pyrite occurs replacing magnetite, as individual cubes and in quartz carbonate patches and veinlets.	5970	71.24	72.67	1.43	.19	S	M	Ľ	3
	72.67 73.80 Patchy purple and light reddish orange. 1% euhedral magnetite grains in the lighter coloured unit, although both colours are magnetic.	5971	72.67	73.80	1.13	.21	S	V	H	TR
	73.80 74.81 Light reddish orange, pyrite in patches of quartz carbonate replacements.	5972	73.80	74.81	1.01	.16	X	V	H	1
	74.81 75.28 Light greyish red, pyrite in silicified section occurs in fractures with magnetite and specular hematite.	5973	74.81	75.28	.47	.24	I	Ħ	S	10
	75.28 76.42 Variable section, purple quartz carbonate crackle fracture	5974	75.28	76.42	1.14	.03	S	V	H	3-5

	Decembrahise	Sample Interval Gength									
Lucerval (m)	Description		: INC (-	Aŭ (g/t)		LTERATIO SER	B CARB	\$ PY	
	contains 5% pyrite along fractures. 76.42 77.46 Nagnetite occurs as	5975	76.42	77.46		.19	\$	N	K	2	
	fracture filling and euhedral cubes. Pyrite occurs as magnetite replacements and in thin stringers with chlorite.										
	77.46 79.09 Humerous chloritic stringers. Pault zone at 78.3 metres. 1% euhedral magnetite.	5976	77.46	79.09	1.63	.01	X	X	M	1	
	79.09 79.92 First 25 cm is pyritic porphyry dyke with 20% cubic pyrite. Below dyke pyrite replaces magnetite and also occurs in silica carbonate patches.	5977	79.09	79.92	.83	.03	S -I	K	S	1	
:	79.92 \$1.38 2 to 3% euhedral magnetite, patchy purple colour, pyrite replaces magnetite, also occurs in narrow quartz carbonate veinlets.	5978	79.92	81.38	1.46	.02	S	K	H	2	
	81.38 82.74 Top 20 cm contains magnetite filled fractures sub-parallel to the core axis. 2% euhedral magnetite throughout the section. Colour is light reddish orange			82.74		.01	S	M	M	2	
	82.74 83.91 Series of late quartz veins with sericitic margins intruding red hematitic alteration.	5980	82.74	83.91	1.17	.03	S	S	N	2	
	83.91 86.01 Light reddish orange, 2 to 3% euhedral magnetite, pyrite replaces magnetite rarely, pyrite more commonly in thin quartz carbonate tourmaline stringers.	5981	83.91	86.01	2.10	.04	K	K	M	2	
	<pre>86.42 87.05 Well banded at 45 degrees to the core axis. 2 to 3% euhedral magnetite. Tourmaline stringers near lower contact.</pre>	5983	86.42	87.05	.63	.03	S	M	H	1	
	88.34 89.42 Partial quartz carbonate replacement and moderate crackle fracture with fracture filling pyrite.	5986	88.34	89.42	1.08	1.12	I	S	S	5	
	89.42 90.15 Massive section with purple quartz carbonate flooding and pyrite fracture fillings.	5987	89.42	90.15	.73	.03	I	S	S	3-5	
	92.03 93.35 Light purple crackle fracture, 3% cubic pyrite, rare euhedral magnetite grains. Core broken.	5989	92.03	93.35	1.32	.04	I	S	S	3	
	93.35 95.07 Light orange colour, 1% magnetite, pyrite occurs in quartz carbonate pods as masses or cubes. Wavy texture, siliceous pods are discontinuous.	5990	93.35	95.07	1.72	.06	S	S	S	5	
	95.07 96.26 Similar to previous	5991	95.07	96.26	1.19	.03	S	S	S	3	

Interval (m)	Description	Sample No.	Inte (m	rval }		Au (g/t)		LTERATIO SER	N CARB	۲ 🛱 🕆
	section. Section is massive and contains cubic pyrite replacements of magnetite as well as pyrite in silica carbonate patches.									
96.26 99.23	38: QUARTZ-SERICITE-CARBOWATE SCHIST Variable texture and colour, cut by at least two 10 to 20 cm quartz porphyry dykes. Pyrite occurs as individual cubes and as 1 to 3 cm bands with sericite and quartz carbonate.	5993	97.40	98.15	.75	4.09	S	I	S	7
	96.26 97.40 Light green, very sericitic, mainly cubic pyrite with a few discontinuous quartz carbonate pyrite patches.	5992	96.26	97.40	1.14	.61	S	I	S	5-7
	98.15 99.23 Dark grey, well banded at 40 to 50 degrees to the core axis. Very pyritic with 2 to 3% thin tourmaline fracture fillings parallel to banding.	5994	98.15	99.23	1.08	1.23	I	S	S	15
99.23 110.42	3A: RED MAGNETITE-BEARING AREWITE OR QUARTI-FELDSPAR PORPHYRY Typical red hematitic alteration with 1 to 3% euhedral magnetite. Colour waries from light reddish orange to dark purple with local areas of buff coloured quartz carbonate flooding. Pyrite occurs as magnetite replacements, individual cubes and also as thin fracture fillings with quartz and carbonate. Total pyrite content for this section is 3%.									
	99.23 100.75 Light reddish orange, 3% small euhedral magnetite grains, little replacement by pyrite.		99.23 1				X	W	X	1
	100.75 101.32 Buff grey to red. Magnetite content less here and pyrite replaces magnetite as well as in thin siliceous fractures and patches.	5996	100.75 1	101.32	.57	.13	S	H	K	3
	101.32 102.13 2 to 3% magnetite, red colour.	5997	101.32 1	102.13	.81	.02	M	M	M	1
	102.13 103.54 Colour is very light red with buff tinge. Local weak crackle fracture. Pyrite replaces magnetite and also occurs in thin random quartz carbonate stringers.	5998	102.13 1	103.54	1.41	.03	S	X	S	3
	103.54 104.47 Section contains a 15 cm	5999 (LO3.54 1	104.47	.93	.07	I	S	S	5

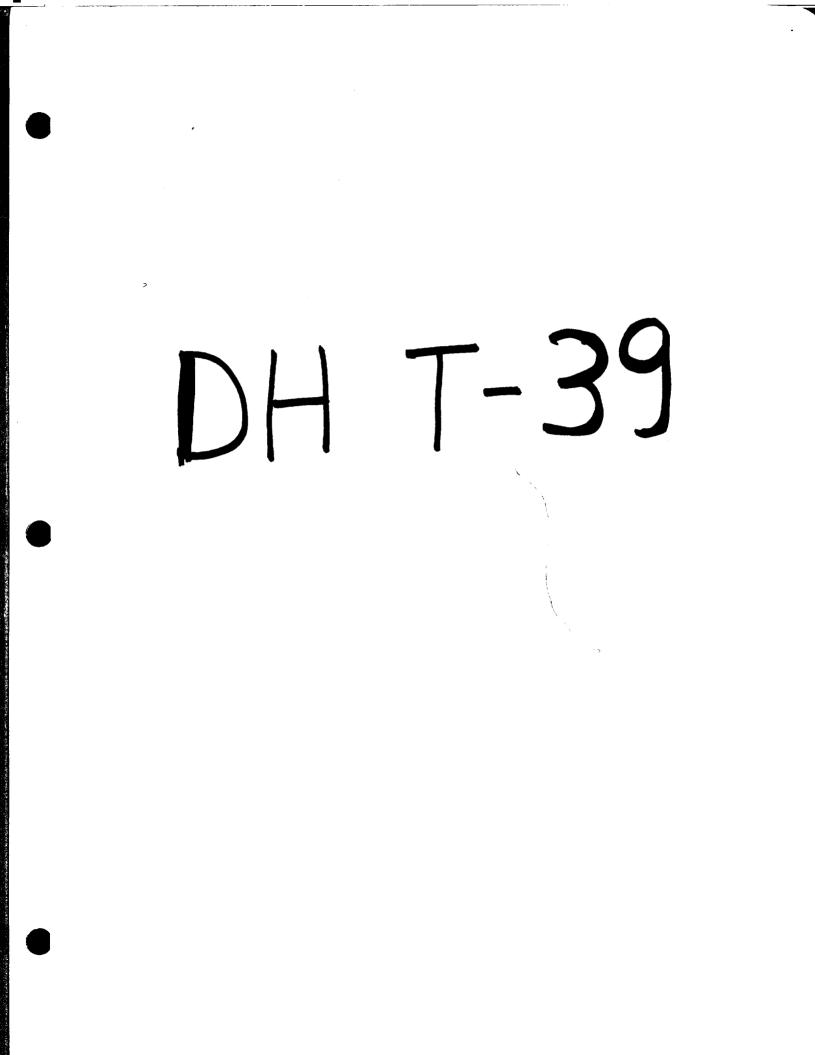
~

-

interval (m)	Description	Sample Interval Wo (m)	Length (m)	Au (g/t)		LTERATION SER	r Carb	\$ PY
	quartz porphyry dyke with 20% pyrite. Rest of section contains 3% pyrite as magnetite replacements and fracture fillings.							
	104.47 106.57 Colour is light orange red. 1 to 2% fine grained euhedral magnetite. Pyrite in fractures. 1% tourmaline stringers.	6000 104.47 106.57	2.10	.02	S	K	X	2-3
	106.57 107.82 3 to 5% euhedral magnetite, pyrite in siliceous patches and rarely replaces magnetite.	6001 106.57 107.82	1.25	.02	S	X	K	2
	107.82 108.91 Magnetite occurs as cubes and also as massive fracture filings. Colour is dark brownish red.	6002 107.82 108.91	1.09	.01	H	N	K	1
	108.91 110.42 Patchy silica pyrite replacements, trace tourmaline stringers, 1 to 2% euhedral magnetite.	6003 108.91 110.42	1.51	1.11	M	M	H	2
110.42 117.33	2A: QUARTI FELDSPAR PORPHYRY Differs from most other porphyry dykes in two ways. Phenocrysts are mainly feldspar making up 10 to 40% of the dyke and in some locations taking in a light pink tinge. Secondly the matrix of the dyke is mafic and quite chloritic. Contacts of the dyke are slumped sub-parallel to the core axis. The core of the dyke is medium grained to coarse grained. Pink tinged sections are slightly magnetic and occasionally there are a few magnetite	WS 110.42 114.42 6004 114.42 116.00 6005 116.00 117.33	1.58	n/a .03 .02	4 4 1	8	4 4	1 1-2 1-2
117.33 125.75	grains visible. Contacts with the red hematitic alteration both above and below are gradational. Fine grained disseminated cubic pyrite. 3A: RED MAGNETITE-BEARING AREMITE OR QUARTI-FELDSPAR PORPHYRY Colour varies from light reddish green to dark green. 1 to 2% magnetite							
	throughout the section. 2% pyrite as single cubes and masses within small silica carbonate patches. 117.33 118.45 Dark green chloritic	6006 117.33 118.45	1.12	.04	H	M	X	1
	matrix. 118.45 120.20 Typical red hematitic alteration with 2% euhedral magnetite, pyrite as magnetite replacements and	6007 118.45 120.20	1.75	3.14	S	H	Ħ	1-2

-								
interval (m)	Description	Sample Interval No. (m)	•	Au (g/t)		ALTERATION SER	CARB	\$ PY .c. See
	fracture fillings. 120.20 121.43 Very sericitic, trace magnetite, well foliated at 55 degrees to the core axis. Pyrite in bands or silica carbonate patches. Occasional quartz phenocrysts visible.	600B 120.20 121.4	13 1.23	3.51	X	I	S	3
	121.43 123.00 Foliation is parallel to the core axis. 1% euhedral magnetite, pyrite occurs as magnetite replacements, colour is light reddish orange.	6009 121.43 123.0	1.57	· .7 1	S	S	S	2
	123.00 123.40 Colour is light buff orange, foliation is sub-parallel to the core axis. Magnetite absent from this section.	6010 123.00 123.4	0.40	.95	I	S	S	1
	123.40 124.30 Light buff orange, 2% euhedral magnetite grains and fracture fillings.	6011 123.40 124.3	0.90	.98	S	S	S	1
	124.30 125.75 Buff coloured towards the end of the section and the degree or pyrite replacement of the magnetite increases.	6012 124.30 125.7	5 1.45	1.90	S	S	S	2-3
125.75 127.75	4A: QUARTZ-CARBONATE VEIN Quartz vein network cutting highly altered red hematitic alteration. Numerous inclusions of sericitized red hematitic alteration. Wallrock to the veins is also very sericitic. Trace pyrite in veins. Locally magnetite is replaced by pyrite.	6013 125.75 126.7 6014 126.75 127.7		. 36 .02	S		S S	1 1
127.75 132.19	18: LITHIC ARBNITE Locally red stained. Medium grained to coarse grained, commonly with a dark green chloritic matrix. Local buff quartz carbonate alteration. A few magnetite grains, trace to 1% pyrite. Clasts are mainly quartzo-feldpathic and are subrounded to angular, well sorted.	6015 127.75 129.1	5 1.40	.18	V		V	TR
	129.15 130.43 2 sections of buff quartz carbonate flooding with minor pyrite.	6016 129.15 130.4	3 1.28	.03	X	M	¥	2
	130.43 131.50 Dark green, chloritic matrix, patchy red colour.	6017 130.43 131.5	0 1.07	.17	V	Ÿ	V	TR
	131.50 132.19 Banded buff quartz carbonate sub-parallel to the core axis	6018 131.50 132.1	9.69	.03	H	M	V	TR

-


Luterval	Description	Sample	Interval	Length	Åa	1	LTERATIO	N	
(n)	-	No.	< (1)	(m)	(g/t)	SIL	SBR	CARB	\$ PY

_

132.19 135.55 3A: RED MAGNETITE-BEARING ARENITE OR							
QUARTZ-FELDSPAR PORPHYRY Highly variable section. Colour varies							
from buff grey to orange. Magnetite							
content varies in proportion with the colour with the most magnetite present	,						
in the orange section. Buff section							
may contain up to 5% pyrite as fine							
disseminations or fracture fillings.							
Weak banding at 50 degrees to the core axis. Contacts are fairly sharp.							
132.19 132.85 Colour is grey brown. 18	6019 132.19 132.85	.66	.02	S	S	M	3
fine grained euhedral magnetite,							
banded at 45 degrees to the core axis. Pyrite occurs as fracture fillings.							
132.85 133.25 Possible well bedded	6020 132.85 133.25	.40	.02	¥	V	¥	TR
argillite, moderate crenulation							
cleavage at 80 degrees to the core axis	6021 133.25 134.85	1 60	.18	S	S	X	2-3
133.25 134.85 Buff grey to purple, weakly banded at 55 degrees to the	0V21 133.23 134.03	1.00	.10	9	3	п	2-3
core axis. Trace to 1% euhedral							
magnetite, pyrite occurs disseminated							
and concentrated in buff grey carbonate bands.							
134.85 135.55 Light reddish orange. 2%	6022 134.85 135.55	.70	.07	S	S	S	3
euhedral magnetite. Pyrite replaces							
magnetite and is also in thin guartz carbonate bands. Lower contacts sharp.							
135.55 137.55 3B: QUARTE-SERICITE-CARBOWATE SCHIST							
Thinly banded/bedded at 50 degrees to							
the core axis. Unit is variable in							
colour and pyrite content with the greatest pyrite content contained in							
the buff grey quartz carbonate bands.							
Pyrite is also disseminated evenly							
throughout the rest of the section. 135.55 136.40 Banded guartz carbonate	6023 135.55 136.40	.85	.13	S	S	S	7
sericite pyrite.	4823 IJJ'JJ IJG'4A	6 V 4	.17	J	J	U	,
136.40 137.55 Strong crenulation	6024 136.40 137.55	1.15	.24	N	M	M	3-5
cleavage at 80 degrees to the core axis. Moderate to strong deformation.							
137.55 148.74 1A: ARGILLITE							
Mixture of chloritic argillite,	6025 137.55 138.25		1.10	H	¥	V	2
sericitic argillite, thin boudanaged	6027 140.05 141.60	1.55	.11	X	V	V	1-2

Esso 1	Minerals	Canada	-	Robele	JV	(Ont	88)	
--------	----------	--------	---	--------	----	------	-----	--

Interval (m)	Description	Sample No.	Interval (m)	Gength (m)	A u (g/t)		TERATION SER		s py = -
	quartz veinlets and banded pyrite. This section looks very similar to the unit in hole T-11 located just south of the red hematitic alteration. Colour can best be described as alternating greenish black and siliceous (white) bands. These are locally stle deformed and slumped sub-parallel to the core axis. Pyrite bands are interbedded sporadically with these bands throughout the section. Overall pyrite content is 3 to 5%. Minor amounts of red hematitic alteration are also present. 148.74 End Of Hole.	6028 1	41.60 143.00	1.40	1.38	I	۷	ų	1
	138.25 140.04 Several 1 cm bands of massive pyrite with quartz and carbonate. 5% quartz veining.	6026 1	38.25 140.04	1.79	. 39	¥	H	H	3-5
	143.00 143.69 Marrow band of red hematitic alteration, 5 cm of quartz carbonate pyrite schist. 10% quartz veining.	6029 1	43.00 143.69	.69	.42	Ÿ	M	M	3
	143.69 145.11 1 thin zone of quartz carbonate pyrite banding, 3 to 5% quartz veining.	6030 14	43.69 145.11	1.42	.02	V	V	¥	2
	145.11 146.00 10% guartz veining.	6031 14	45.11 146.00	.89	.03	7	M	Ħ	1-2
	146.00 147.13 Interbedded red	6032 14	6.00 147.13		.14	Ň	X	X	2
	hematitic alteration and banded guartz and argillite, minor banded pyrite.				•••		44	u	L
	147.13 148.11 30% buff banded guartz carbonate pyrite. Minor guartz veining.		47.13 148.11		8.20	H	X	M	3-5
	148.11 148.74 15% quartz veining, minor banded pyrite.	6034 14	10.11 148.74	.63	2.50	V	V	¥	1

~							
Core size: Drilled by:	BQ	Azimuth: Dip:	180 -85	Grid: Purpose: Claim:	Detail 38 test Au zon 956079	ie	
Started: Finished:	Feb. 12/88 Feb. 13/88	Depth Az 75.28	Dip -82.0	Northing: Basting:	2+90N 3620B	n M	Nouther
Logged by: Date logged: System:	J. MacPherson Feb. 18/88			Blevation Length:	: 75.28m	y.r.	
Interval (m)	Descriptio	Ŋ	- Sample No.	Interval (m)	Length Au {m} (g/t)	ALTERAT. SIL SER	ION CARB \$ PY
.00 18.2	8 OVERBURDEN						
18.28 28.7	altered. Unit consists thin bands of quart carbonate rich bands. carbonate sericite sch wide is interbedded unit. These sections more pyrite in narrow b width from.5 to 2 cm. highly crenulated and the core axis vary degrees. There is crenulation cleavage a the core axis. These into sericitic fractur content of the q carbonate schist is 1 the interbedded qu sericite schist may c fine disseminated bande	eakly sericite of alternating z, chlorite and Hinor quarts ist up to 20 cr with the main usually contain ands varying in The bands are the angles with from 0 to 4 a strong t 75 degrees to often open up es. The pyrite uartz chlorite ess than 1% but artz carbonate ontain up to 5 d pyrite.	g HS 1 z 1 a a a a a a a a a a a a a a a a a	24.66 25.15 27.90 28.76	•		
	Generally, the angles to the core axis incre lower contact wi carbonate sericite sch only the intercalated carbonate sericite sc sampled in this section. 18.28 20.42 Strong cleavage developed at 7 to the core axis esp intercalated quartz car	ease towards the the the guart list. Note tha pyritic guart thist has bee g crenulatio 0 to 90 degree pecially in th	e z t z n NS s e	18.28 20.42	? 2.14 n/a	. H-A J	V TR

erval (m)	Description	• • •		rval)	Length (m)	A u (g/t)	ALTERATION SIL SER		N CARB	\$ PY	
	schist. 20.42 21.05 Moderately sharp contacts, numerous sericitic stringers at 10 to 20 degrees to the core axis. Trace disseminated pyrite. Strong crenulation cleavage at 70 degrees to the core axis.	6256	20.42	21.05	.63	.42	H	S-I	S	TR	
	21.05 23.19 Mainly quartz chlorite carbonate schist with very minor interbedded quartz carbonate sericite schist.	NS	21.05	23.19	2.14	n/a	N-7	V	¥	TR	
	23.19 24.66 Mainly quartz carbonate sericite schist with 15% quartz veining. Locally well banded with some bands moderately pyrite rich (10%). Wumerous bright green sericitic fractures.	6257	23.19	24.66	1.47	2.10	V-X	S	H	2	
	25.15 25.78 Thinly banded guartz carbonate sericite schist with trace euhedral magnetite grains, light orange tint to the rock where magnetite is present.	6258	25.15	25.78	.63	.01	V	S	X	1	
	25.78 26.28 Becoming more sericitic	NS	25.78	26.28	.50	n/a	V	Ħ	¥	TR	
	towards the lower contact. 26.28 27.90 More intercalated quartz carbonate sericite schist in this section with 2 to 3% banded pyrite.	6259	26.28	27.90	1.62	.01	V-N	K	N	1	

28.76 31.20 3B: QUARTI-SERICITE-CARBONATE SCHIST

Characterized by shallow angles to the core axis and a medium to light green colour caused by numerous sericitic oriented from 30 to 60 fractures dearees to the core axis. Winor chlorite present but this disappears towards the lower contact and the unit becomes mainly quartz, sericite and pyrite. Lower contact sharp, upper contact gradational. Unit consists of and sericite alternating quartz carbonate rich bands, locally highly deformed and slumped sub-parallel to core axis. The subhorizontal the crenulation cleavage noted in the previous section is not present. Local semi-massive banded pyrite, especially near the lower contact. This lower contact is marked by a 5 cm quartz tourmaline veinlet which consists of

Interval (m)	Description	Sample No.		erval m}	Length (m)	Au (g/t)	sít	LTBRATIO SBR	N CARB	\$ PY
	40% quartz, 55% tourmaline and minor pyrite and ankerite. The lower contact of this vein marks the beginning of the red hematitic alteration and this contact is oriented at 70 degrees to the core axis.					·				
	28.76 30.45 Trace magnetite grains.	6260	28.76	30.45	1.69	.83	PH	M-S	H	1
	30.45 31.20 Practure fillings at 60 degrees to the core axis of sericite and minor tournaline Lover contact is	6261	30.45	31.20	.75	.01	S	\$-I	S	2

and minor tourmaline. Lower contact is 5 cm quartz tourmaline veinlet.

31.20 41.22 3A: RED WAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY

Highly variable in colour, magnetite content and pyrite content. Colour varies from a light orange red to reddish green to dark green and All of these colours are purple. magnetic but only the orange red colour and more rarely the red green colour contain euhedral magnetite. Average magnetite content of this section is 2%. The magnetite appears to be late as it is disseminated throughout the core and evenly actually can be seen to overprint the strong crenulation cleavage and foliation which can still be vaguely seen at various locations throughout the core.

There are many different subtle variations in the core and the sample interval will usually reflect this. Larger sample intervals are used in areas where there is little magnetite remobilization and quartz pyrite replacements.

32.63 36.90 Colour is generally green to dark reddish vith minor green Magnetic variations. throughout, but magnetite grains only occasionally visible. Minor remobilized magnetite along fractures sub-parallel to the core axis. Minor local pyrite. More or less massive with

34.15	35.66	1.51	.01	M	M	X	TR-1	
35.66	36.90	1.24	.02	X	M	M	TR	
36.90	38.70	1.80	.03	S	5	S	1	
38.70	40.10	1.40	.10	S	S	S	1-2	
40.11	41.22	1.11	4.73	S	S	S	5	
	35.66 36.90 38.70	35.66 36.90 36.90 38.70 38.70 40.10	35.6636.901.2436.9038.701.8038.7040.101.40	35.66 36.90 1.24 .02 36.90 38.70 1.80 .03 38.70 40.10 1.40 .10	35.66 36.90 1.24 .02 N 36.90 38.70 1.80 .03 S 38.70 40.10 1.40 .10 S	35.66 36.90 1.24 .02 N N 36.90 38.70 1.80 .03 S S 38.70 40.10 1.40 .10 S S	35.66 36.90 1.24 .02 M M M 36.90 38.70 1.80 .03 S S S 38.70 40.10 1.40 .10 S S S	34.15 35.66 1.51 .01 M M TR-1 35.66 36.90 1.24 .02 M M H TR 36.90 38.70 1.80 .03 S S S 1 38.70 40.10 1.40 .10 S S S 1-2 40.11 41.22 1.11 4.73 S S S 5

Lucerval	Description	Sample	Interval	Length Au	
(m)		No.	(n)	(m) (g/t))

local weak foliation.

36.69 40.11. In this section the reddish green section fades out and the core resumes its normal orange red colour. Moderate foliation at 30 40 degrees to the core axis. to Section contains 1 to 2% subhedral aliqned parallel to magnetite fractures, usually foliation in mantled by quartz. Towards the end of this section, the magnetite becomes gradually replaced by pyrite, but the quartz mantling remains. The amount of vein guartz also increases towards lower contact. Magnetite and the pyrite bearing fractures are oriented at less than 20 degrees to the core axis.

40.1 41.22. Zone of higher pyrite content. Pyrite at the top and bottom of this zone pyrite gradually replaces magnetite but still retains the quartz mantle. The central part of this section is silica flooded and contains no magnetite. Pyrite is present in amounts of up to 15%. It is usually fine grained and concentrated more in the sericitic portions of this siliceous core.

31.20 32.00 Colour is orange red. Magnetite disseminated evenly throughout the section. Nost of pyrite is in top 25 cm in and is mantled by quartz. Strong foliation at 50 degrees to the core axis.

32.00 32.63 Colour is light reddish green, less than 1% magnetite, strong crenulation cleavage at 70 degrees to the core axis. Sharp contacts.

32.63 34.15 Minor remobilized magnetite

41.22 42.80 3C: INTENSE SILICA-CARBONATE PLOODING

Colour is variable from purple to light reddish orange. Rock is very hard and is cut by numerous randomly oriented quartz carbonate crackle fractures. 2% pyrite in this unit. Upper and lower contacts are marked by 2 to 3 cm quartz veinlets with

mple	Interval	Length	Au	Å			
No.	(n)	(m)	(g/t)	SIL	SER	CARB	\$ PY

ł

6262	31.20	32.00	.80	.02	S	N-S	N-S	1-2
(2(2	22.00	22 (2	()	01	¥ ¢	e t	N_0	• D _1
6263	32.00	32.63	.63	.01	M-2	2-1	N-2	IK-I
6264	32.63	34.15	1.52	.01	M	K	H	TR
6270	41.22	42.80	1.58	.71	S-I	S	S	5

.

_							-	-		
cerval (m)	Description	Sample No.	Inte (m	rval 1)	Length (m)	λu (g/t)	∦ \$1L <	TERATIO SER	CARB	\$ PY
	pyritic margins. Last 30 cm of section is less crackle fractured and may contain up to 7% very fine disseminated pyrite.									
42.80 52.46	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Local minor quartz carbonate crackle fracture. 3% pyrite for first 20 cm, pyrite content averages 2% for rest of section. Colour is light orange red and there is 1 to 2% disseminated euhedral magnetite throughout. Local replacement of magnetite by pyrite and quartz. Moderate to strong foliation at 20 to 40 degrees to the core axis. 46.4 46.92. Medium purple colour, hard, weakly magnetic, quartz chlorite stockworks restricted to this interval. 1% pyrite in earlier quartz fracture fillings. 46.92 48.82. Typical orange red hematitic alteration. Weakly foliated at 40 degrees to the core axis. 1 to 2% disseminated euhedral magnetite, 1% disseminated pyrite. 48.82 49.39. Silicified and crackle fractured.	6275 6276 6277 6278 6279 6280 6281 6281 6282	42.80 46.40 46.92 47.65 48.35 48.82 49.39 50.08 50.86 51.47	46.92 47.65 48.35 48.82 49.39 50.08 50.86 51.47	.39 .52 .73 .70 .47 .57 .69 .78 .61 .99	.01 .05 .01 .02 .22 .03 .02 .01 .09	S N-S N-S S-I N-S S-I N N	S N-S N-S N-S N-S N-S N-S	S H-S H-S H-S H-S M	3 1-2 1 3 1 1-2 1-2 2-3 TR 1-3
	fractured red hematitic alteration. Colour is grey with light pink tinge. Where silicification is most intense the rock is not magnetic and is massive. When the foliation returns the magnetite does as well and the colour changes to the more typical orange red. 1 to 2% disseminated pyrite, 1% late chloritic fractures at 55 degrees to the core axis. 49.39 50.08. Typical red hematitic alteration, as described in the section from 48.35 to 48.82 meters. 2% disseminated euhedral magnetite, 1 to 2% disseminated pyrite. 50.08 50.86. Two zones of intensely silicified red hematitic alteration with chloritic boundary fractures are present in this section. A quartz stringer running sub-parallel to the core axis is 1 cm wide and contains 60% semi-massive pyrite. This veinlet									

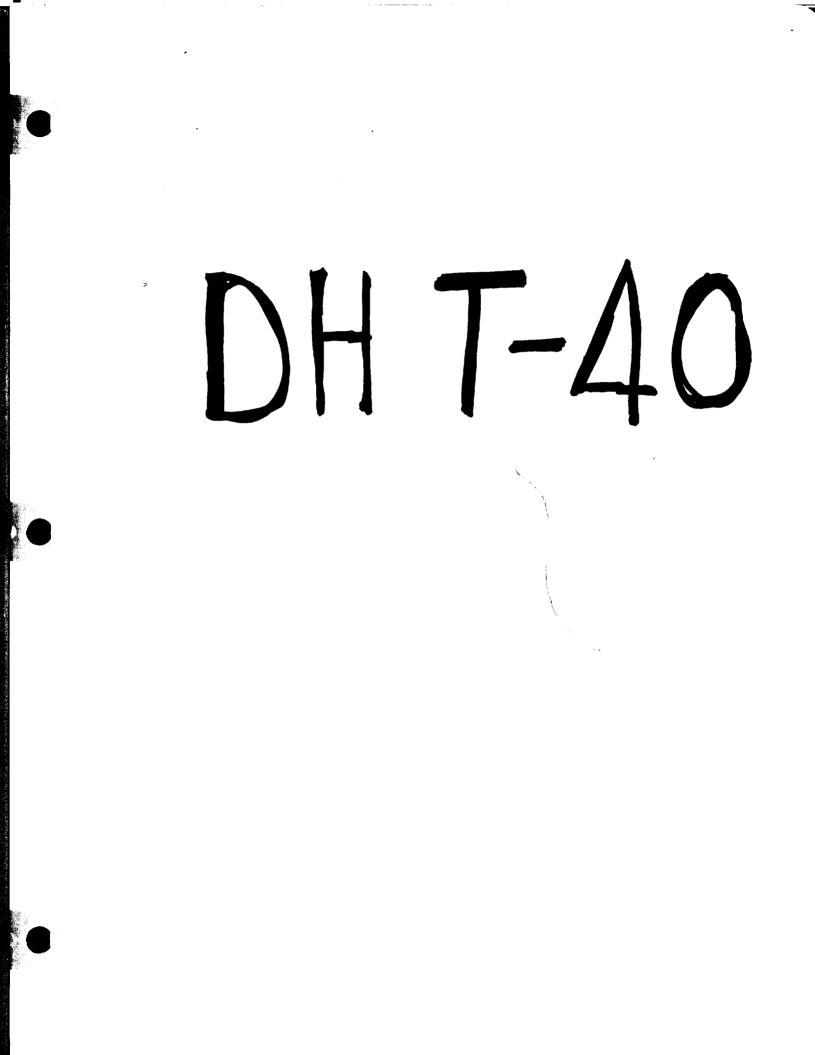
.

erval (m)	Description	Sample No.	Inter (m)		Length (m)	Au (g/t)	SIL	ALTERATION SER	CARB	\$ PY	
	is present for the first 25 cm of the section. A second weaker quartz flood 15 cm wide is present at the bottom of this section. It contains 24 fine disseminated pyrite. 50.86 51.47. Typical red hematitic alteration. Trace to 14 fine disseminated euhedral magnetite, trace cubic pyrite, well foliated at 40 degrees to the core axis. 50.86 52.46. Transition zone between typical red hematitic alteration and quartz carbonate sericite schist. More sericitic than the red hematitic alteration, there is also minor chlorite in the matrix of this weakly fod rock. The foliation is at 40 to 45 degrees to the core axis. Trace to 14 magnetite present, 1 to 34 pyrite also present as magnetite replacements and in this discontinuous stringer sub-parallel to the foliation. 43.19 44.30 14 disseminated euhedral pyrite. 44.30 44.80 1 cm quartz ankerite veinlet sub-parallel to core axis with coarse anhedral magnetite and masses of pyrite in and near the veinlet. 44.80 46.40 Typical red hematitic alteration with a 12 cm quartz ankerite veinlet with trace pyrite and	6273	43.19 44.30 44.80	44.80	.50	.01 .01 1.41	5	5 S 5 S 5 S	S S S	1-2 2-3 2	
52.46 54.0	 very thin pyritic margins cutting the unit. 5 3B: QUARTI-SERICITE-CARBOWATE SCHIST Colour varies from light grey green to dark green where chlorite is present. It is very well foliated at 25 degrees to the core axis. Bands consist of alternating guartz, carbonate, pyrite and towards the end, chlorite with pyrite occuring in all three bands in amounts up to 7% locally. Average for this section is 3 to 5% pyrite. The more chloritic parts of this section appear to have the most pyrite. 52.46 52.90 Sericite dominated schist. 52.90 53.60 Chlorite dominated schist. 	6284	52.46 52.90					S S S H	S S	2-3 5-7	

1	Bsso Nin	erals (Canada - Robele JV (Ont 88)			Ho) Pac	le: T-: ge:	39 7				
	înte (m	rval 1}	Description	Sample No.		rval)	Length (m)	Àa (g∕t)		TERF (ON		\$ PY
			53.60 54.05 Sericite dominated shcist.	6286	53.60	54.05	.45	.04	S	S	S	3
	54.05	56.05	3D: QUARTZ CHLORITE CARBONATE SCHIST Moderately chloritic, colour is dark green with occasional red patch with trace magnetite grains. Poliation variable from 10 to 30 degrees to the core axis. Fairly sharp upper and lower contacts.	6287	54.05	56.05	2.00	.01	H	H	H	1
	56.05	58.33	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Colour is different than the typical red hematitic alteration. This is a light orange, contains less magnetite and seems to have more sericite in the matrix of the rock as well as in narrow random fractures. Pyrite content is generally quite low and in places pyrite can be seen replacing magnetite with siliceous mantles around the replacement. Local greenish chloritic patches. Weak foliation for the first 1 meter. After this point the rock becomes much more massive looking. 56.05 57.00 Foliated portion of this	6288	56.05	57.06) .95	.02	Ň-S	S	H-S	TR
			unit. 57.00 58.33 Massive light orange colour				3 1.33		N-S	S	M-S	1
-	58.33	59.73	3D: QUARTI CHLORITE CARBOWATE SCHIST Dark grey to black, siliceous, well banded at 40 degrees to the core axis. Minor sericite as bands and rare cross-cutting fracture fillings. 5% quartz as bands. Minor tourmaline also as bands, most notably at 59.03 meters, where it is the margin to a pyritic quartz veinlet. A very weak crenulation cleavage may be present at 90 degrees to the core axis. Pyrite is present as clots and small masses throughout the section, except in the more siliceous parts , where it is much finer grained and disseminated evenly throughout.	6290	58.33	59.7	3 1.40	.21	K	M	K	2-3

~

-


.erval (m)	Description	Sample No.	Inte (m		Length {m}	Au (g/t)	AL SIL	SBR	N CARB	¥ PY
59.73 61.25	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Light orange red with sericitic light green upper margins. This margin is 50 cm long and is massive to weakly foliated at 30 degrees to the core axis. It contains numerous chloritic and tourmaline filled fractures oriented at 30 degrees to the core axis and is not magnetic. Below 60.4 meters the rock is more typical of the red hematitic alteration and it is weakly foliated at 35 degrees to the core axis and contains 14 fine disseminated euhedral magnetite with pyrite locally replacing the magnetite. Minor tourmaline fractures. Sharp lower contact. 59.73 60.40 Bleached margin of red hematitic alteration.		60.40 59.73		. 85	.01	N-S S	M-S S	H-S S	1-2
61.25 62.61	3D: QUARTZ CHLORITE CARBONATE SCHIST Nore accurate description for this unit would be a quartz chlorite sericite carbonate schist, with the chlorite and sericite being present in more or less equal amounts throughout the section. Unit is very well banded at 30 to 40 degrees to the core axis. It consists of alternating bands of each of the minerals mentioned above. All of these bands host abundant pyrite with perhaps the siliceous and anteritic bands carrying a bit more pyrite. Pyrite occurs semi-massive in some bands and gives the overall section a pyrite content of at least 10%. Colour is the unit is variable from dark grey green to light grey locally. Lower contact to this unit is marked by a chloritic fracture at 45 degrees to the core axis.	6293	61.25	62.61	1.36	.32	S	S	S	10
62.61 63.95	3B: QUARTZ-SERICITE-CARBONATE SCHIST Well banded at 30 degrees to the core axis. Similar to previous section except that there is no chlorite.	6294	62.61	63.95	5 1.34	2.66	S-I	S	S	5

so Minerals	Canada - Robele JV (Ont 88)			Hol Pag	le: T-: je:	39 9				
interval (m)	Description	Sample No.	Inte (m		Length (m)	Au (g/t)	A SIL	LTERAT E SER ^{<}	CARB	\$ PY
	Pyrite is present in amounts up to 5% as part of the bands and also as fracture fillings that are sub-parallel to the core axis. Lower contact gradational, upper contact marked by a 15 cm zone of banding parallel quartz tourmaline pyrite stringers.									
63.95 65.00) 2G: SILICIFIED PORPHYRY (QUARTZ &/OR FELDSPAR)									
	Possible a dyke, but due to the intense silicification, only a few shadowy phenocrysts are visible. Massive, with a few pyritic fractures, but pyrite is also disseminated in the dyke in minor amounts.	6295	63.95	65.00	1.05	5.22	S-I	M	S	5
55.00 71.02	2 3C: INTENSE SILICA-CARBONATE PLOODING Very hard, colour is medium to dark purple with minor variations. Pyrite is present in varying amounts throughout this unit. Not magnetic, locally massive to weakly foliated. Very intense silicification in this	6298	66.85	68.25	1.40	.19	I	N	S	3-5
	unit. 65.00 66.14 Purple, massive, very hard, pyrite is disseminated evenly throughout.	6296	65.00	66.14	1.14	. 44	I	M	S	2-3
	66.14 66.85 Light grey purple, numerous random fractures filled with pyrite, which is also disseminated throughout the section. Also, 2 cm quartz vein with massive pyrite.	6297	66.14	66.85	.71	.18	I	H	S	7
	68.25 68.95 Weakly magnetic in red section at top. Very well banded below this, colour is greyish purple. Below this there is a 3 cm banded quartz	6299	68.25	68.95	.70	.11	I	S	S	3
	tourmaline pyrite veinlet. 68.95 69.58 Contains a relatively unsilicified inclusion of red hematitic alteration wiht 2% euhedral	6300	68.95	69.58	.63	.01	S-I	S	S	2
	magnetite, 1% pyrite. 69.58 71.02 Variable section, generally purple with several light orange sections with pyrite in fractures sub-parallel to the core axis	6301	69.58	71.02	1.44	.03	I	H	M	3-5

ţ

1

(m)	DescriptionDescription	Sample No.	Inte (#	rval)	Length (m)	Au (g/t)	LTERATIO SER	N CARB	\$ PY
(m)	•	No. 6302 6303 6304 6305		71.82 72.23 72.75 74.15	(m) .80 .41 .52 1.40				\$ PY
	are at 60 degrees to the core axis. 72.23 72.75. Orange red colour, 14 disseminated euhedral magnetite grains. Several patches and poorly formed veins of guartz pyrite. These are vispy in nature but are very pyritic (up to 35% py). By volume, these make up about 5% of the rock. 72.75 74.15. Typical red hematitic alteration, with the magnetite here alighed parallel to foliation which is at 10 to 20 degrees to the core axis. Minor pyrite, moderate sericite in the matrix. 74.15 75.28. Wispy guartz pyrite veinlets and patches become evident again in this section. Here they make up nearly 10% of the rock by volume. Where the contacts are more or less regular, they are oriented at an average of 40 to 50 degrees to the core axis, but this is highly variable. 75.28 End Of Hole.								

Esso Mineral	s Canada - Robele JV (Ont	88)			le: T-4 ge:	0				
<u> </u>										
Core size: Drilled by:	BQ	Azimuth: Dip:	180 -85	Grid: Purpose: Claim:		Au zon	e			
Started: Pinished:	Feb. 13/88 Feb. 14/88	Depth Az 64.40	Dip -84.0	Northing: Basting:	2+70N					a fair
Logged by: Date logged: System:	J. MacPherson Feb. 22/88			Blevation Length:		£1. €	J.	Mout	al.	***
JYSICE.				1001yuu	01.1	VE	V			
Interval (m)	Descripti	on	- Sample No.	Interval (m)	Length (m)		SIL	LTERATION SER	CARB	\$ P3
.00 21.	33 OVERBURDEN									
21.33 23.	46 3A: RED MAGNETITE-BEARI QUARTZ-FELDSPAR PORPHYR Foliated at 0 to 45 core axis. Angles to generally increasing of the section. 1% eu grains set in a fine g orange red matrix. magnetite replacemen fracture fillings alo 1% late quartz carbo 30 degrees to the c section of purple q flooding is present part of this section pyrite as poorly (probably mag replace in thin siliceous f degrees to the core axi 22.23 22.60 Quartz carbo	Y degrees to th the core axi towards the en hedral magnetit rained siliceou 2% pyrite a ts and thi ng with quartz nate veining a ore axis. 50 c uartz carbonat in the centra . It contains 5 formed cube ments) and als ractures at 4 s.	s 6309 d e s s n t t e 1 3 s o 5	21.33 22.23 22.60 23.46 22.23 22.60	.86	.04 .03	₩-S	M-S M-S	M-S M-S	2 2
23.46 27.	03 21: FOLIATED QUARTI (FE PORPHYRY (+/- FUCHSITE) Very well foliated at to the core axis. B alternating sericite carbonate. Minor tour sub-parallel to the	20 to 30 degree ands consist o and quart maline stringer	f Z S							

rounded quartz and feldspar phenocrysts are present. The feldspars are quite large and may

~

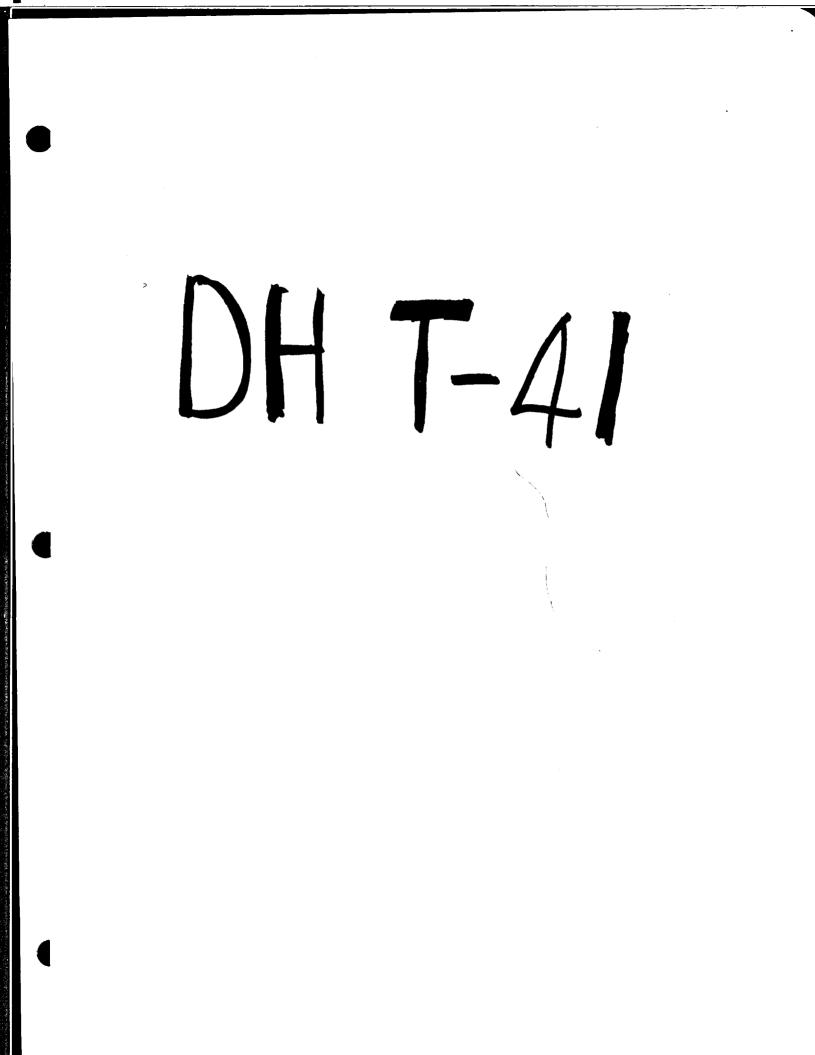
Interval (m)	Description	Sample No.	Inter (m)			Au (g/t)	A SIL	LTERATION SER	CARB	\$ PY
	reach diameters of 1.5 cm. The foliation appears to flow around these remnant feldspars. They make up less than 2% of the rock. This unit may also be called coarse-grained hematitic porphyry. Colour is greyish brown with several zones of purple quartz carbonate flooding which contains significantly higher pyrite. The quartz carbonate flooding areas may host up to 7% very fine disseminated pyrite while the foliated dyke may carry less than 1% pyrite. Samples of the flood areas have been split out of the foliated dyke. The foliated dyke also contains 1% fuchsitic streaks which are often oriented sub-parallel to the foliation. 23.46 24.75 Section contains 30 cm of pyritic quartz carbonate flooding. 24.75 25.75 Well foliated dyke, foliation becomes less prominent towards the lower contact. 25.75 27.03 Weakly foliated, numerous discontinuous pyritic stringers sub-parallel to the core axis.	6311	23.46 24.75 25.75	25.75	1.00	.41 .16 .05	S M S	S	S H-S S	3-5 1 1-2
27.03 28.1	8 2H: COARSE-GRAINED (HEMATITIC) PORPHYRY 5% Large subhedral feldspar grains, hematized. The matrix of this highly altered dyke is dark grey brown with local greenish tinges. Trace fuchsitic streaks. Humerous sericitic fractures sub-parallel to the core axis. This unit is fairly massive with weakly foliated contacts. 1 to 2% pyrite overall.	6313	27.03	28.18	1.15	.01	1	5 S	S	1-2
28.18 29.0	7 2I: FOLIATED QUART2 (FELDSPAR) PORPHYRY (+/- FUCHSITE) May be a border phase of the coarse hematitic dyke above. Numerous sericitic stringers with trace pyrite at 0 to 15 degrees to the core axis.	6314	28.18	29.07	1 .89	.01	K-	S M-S	M-S	TR

29.07 29.56 3C: INTENSE SILICA-CARBONATE PLOODING

so Minerals	Canada - Robele JV (Ont 88)				le: T· ge:	·40 3				
cerval (m)	Description	Sample No.		cerval (m)	Leng in		SIL	ALTBRATION SBR	CARB	\$ PI
	Dark purplish brown, masive, vry hard. 5% pyrite as fine disseminations and also with sericite in thin fractures sub-parallel to the core axis.	6315	29.07	29.56	. 49	.01	S-I	S	S	5
29.56 30.80	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-PELDSPAR PORPHYRY Typical orange red colour. 2% euhedral magnetite grains. Massive with 5% late quartz ankerite stringers randomly cutting the core. 1 1cm ankerite pyrite veinlet sub-parallel to the core axis at 30.30 meters. This veinlet contains 40% coarse cubic pyrite. 29.56 30.80 Almost all the pyrite for this section is in the quartz ankerite veinlet described above.	6316	29.56	30.80	1.24	.01	M-S	X-S	M-S	1-2
30.80 32.65	3C: INTENSE SILICA-CARBONATE FLOODING Dark purple, weakly foliated sub-parallel to the core axis. Hard, moderately magnetic although there are no magnetite grains visible. 1% pyrite from 30.80 to 31.75 meters. 5% pyrite from 31.75 to 32.65 meters. The pyrite in this latter section is part of the quartz carbonate flood zone which is light brown in colour and is cut by a series of thin quartz ankerite pyrite veinlets oriented sub-parallel to the core axis. This veining makes up 10% of the rock by volume. 31.75 32.65 Core axis parallel quartz ankerite pyrite veinlets.			31.75			I	S S	S	1 5-7
	3A: RED MAGNETITE-BEARING ARENITE OR QUART2-FELDSPAR PORPHYRY Typical orange red colour, 2% disseminated euhedral magnetite, trace pyrite, mainly in 1 quartz ankerite stringer sub-parallel to the core axis.	6319	32.65	33.27	.62	.01	N-S	M-S	M-S	TR-1
	3C: INTENSE SILICA-CARBONATE FLOODING Section is actually interbedded red	6320	33.27	35.10	1.83	.01	S	S	S	1

incerval	Description	Sample	Int	erval	Length	Au	λ	LTERATIO	N	
(11)	۹	No.	(1	m)	(=)	(g/t)	SIL	SER	CARB	\$ P
	hematitic alteration and purple quartz carbonate flooding. Banding is sub-parallel to the core axis and consists of alternating orange red bands with 1 to 2% magnetite and purple material with trace euhedra1 magnetite. 1% pyrite overall, but pyrite content is increasing down the hole.									
5.10 39.50	3C: INTENSE SILICA-CARBONATE FLOODING Highly variable section but generally massive, medium to dark purple, very hard, locally very weakly magnetic. Pyrite content variable from 2 to 10% over short intervals.									
	35.10 35.71 Section is weakly foliated at 20 to 30 degrees to the core axis. Pyrite is disseminated evenly throughout.	6321	35.10	35.71	.61	.03	S	S	S	1-2
	35.71 37.00 Most pyritic section. Pyrite occurs in quartz veinlets oriented sub-parallel to the core axis. Intense alteration is splotchy brown and purple.	6322	35.71	37.00	1.29	.93	I	S	S	5-7
	37.00 37.87 Well foliated at 25 degrees to the core axis. Pyrite is disseminated evenly throughout this section.	6323	37.00	37.87	.87	1.23	I	S	S	3
	37.87 38.32 Light brown colour. Massive. Pyrite occurs massive in fractures, sometimes with chlorite.	6324	37.87	38.32	.45	.64	I	S	S	5-7
	38.32 39.50 Some remnant red hematitic alteration present with 1% euhedral magnetite. Last 20 cm is light orange with several light grey wispy quartz veinlets with 10% pyrite in these veinlets.	6325	38.32	39.50	1.18	3.13	\$-I	S	S	2-3
	3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY Typical orange red colour, massive, with 2% fine disseminated euhedral magnetite grains. Pyrite locally partically replaces magnetite and also occrs as masses with quartz. Total pyrite content 1 to 2%.	6326	39.50	40.90	1.40	.30	M-S	M-S	M-S	1-2

Bsso Ninerals (Canada - Robele JV (Ont 88)				le: T- ge:	40 5				
interval (m)	Description	Sample No.	Inte (m		-		AL SIL	TBRATIO SBR	N CARB	\$ PY
40.90 44.20	4A: QUARTZ-CARBONATE VEIN White quartz ankerite vein with light pink tinge locally. Upper contact is at 50 degrees to the core axis, lower contact is irregular. Vein contains numerous inclusions and stringers of tourmaline which hosts wispy pyrite along with sericite. From 41.80 to 42.05 meters the vein contains large very sericitic wallrock inclusions, often rimmed with tourmaline.		40.90 42.50				I I	M N	K H	TR-1 TR-1
44.20 45.00	3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY Light orange red, strong foliation at 50 degrees to the core axis decreases away from the contact with the quartz vein. 1% subhedral magnetite grains, 1% pyrite, usually in fractures with chlorite.	6329	44.20	45.00	.80	.86	K-S	N-S	N-S	1
45.00 48.50	3C: INTENSE SILICA-CARBONATE FLOODING Massive to locally weakly foliated at 20 to 30 degrees to the core axis. Colour varies from deep purle to light grey brown. Local splotchy silicification is present. Pyrite content generally 2% or less. Section is cut by 2% late chloritic fractures, with or without pyrite.	6220	15 00	46 00	1 00	2 10	T	ų	ų	2
	45.00 46.00 Poliated at 60 degrees to the core axis at the upper contact. Massive after 10 cm. Pyrite occurs finely disseminated as well as in thin chloritic fractures.	6330	45.00	46.00	1.00	3.10	I	M	H	2
	46.00 47.00 Light greyish brown, pyrite is disseminated throughout.	6331	46.00	47.00	1.00	. 39	I	M-S	Н	2-3
	47.00 48.00 Purple colour is dominant, pyrite is disseminated evenly throughout.	6332	47.00	48.00	1.00	.45	I	S	S	1-2
	48.00 48.50 Purple colour fades to orange red by the end of the section and euhedral magnetite reappears as well. 1 to 2% pyrite in fractures.	6333	48.00	48.50	.50	. 31	S-I	N-5	M-S	1-2


48.50 52.73 3A: RED MAGNETITE-BEARING ARENITE OR

erval (m)	Description	Sample			Length			TERATION		-
(94)		No.	[1	n)	(11)	(g/t)	SIL	SER	CARB	\$ I
	QUARTZ-FELDSPAR PORPHYRY Orange red colour with minor variations. 1% subhedral magnetite grains, disseminated evenly throughout. Massive to very weakly foliated at 20 degrees to the core axis. Towards the end of the section there is an increase in the number of chloritic fractures to an average of 5 to 10% of the rock by volume. These are generally oriented sub-parallel to the core axis but may occur at other orientations as well. Last 40 cm is	6334	48.50	50.00	1.50	.01	¥−S	N-S	N-S	1
	strongly quartz flooded and the colour is purple. 50.00 51.50 3 to 5% chloritic fractures 51.50 52.73 Increase in quartz carbonate flooding and % of chloritic fractures.				1.50 1.23		S S-I	H-S S	5 S	1-2 2-3
73 55.50	3C: INTENSE SILICA-CARBONATE FLOODING Differs from other sections of quartz carbonate flooding. The purple colour is absent to very minor with the dominant colour being ligh greyish yellow with local green tinges. Also the unit is cut by 15% quartz chlorite stringers which offset the earlier features by 10 to 20 cm. This can be seen in a narrow quartz pyrite veinlet at 53.60 meters, which is offset 10 cm down the hole. These chloritic fractures may have partially remobilized the quartz pyrite material as well.	6340	54.59	55.50	.91	.03	Ι	S	S	2
·	52.73 53.45 Light reddish purple. Weakly foliated sub-parallel to the core axis.	6337	52.73	53.45	.72	.11	S	S	5	TR
	53.45 54.08 Section contains 4 cm quartz pyrite veinlet offset by later quartz chlorite veinlet.	6338	53.45	54.08	.63	.06	I	S	S	3
	54.08 54.59 Pyrite occurs disseminated throughout and also in early quartz carbonate veinlets and in the late quartz chlorite veinlets as vell.	6339	54.08	54.59	.51	.02	I	S	S	2-3

55.50 64.40 3A: RED MAGNETITE-BEARING ARENITE OR QUARTI-FELDSPAR PORPHYRY -

ť

						22				
Interval (m)	Description	Sample No.	Inte (1	rval 1)	Length (m)	$\frac{Au}{W/t}$	A Sil	LTERATIO SER	N CARB	\$ P1
	Variable shades of orange red, less	6345	60.30	61.80	1.50	.02	N-S	N-S	N-S	1
	chloritic fractures than previous	6346	61.80	63.30	1.50	1.11	M-S	M-S	N-S	1
	section. Massive to very weakly	6347	63.30	64.40	1.10	.41	S - M	S-M	S-M	1
	foliated sub-parallel to the core									
	axis. 3 to 5% late chloritic fractures									
	sub-parallel to the core axis. 1 to 2%					•				
	subhedral magnetite. Locally									
	partially replaced by pyrite. Pyrite also found disseminated in quartz									
	ankerite stringers.									
	Last 2 meters shows slight increase in									
	the number of chloritic fractures									
	sub-parallel to the core axis,									
	resulting in some minor broken core.									
	64.40 Bnd Of Hole.									
	55.50 56.60 Light yellowish red	6341	55.50	56.60	1.10	.01	S	S	S	2-3
	matrix. Magnetite altered to pyrite									
	and red hematite. 2% wispy wtz veinlets			.						
	56.60 58.10 1% late chloritic fractures			58.10			M-S	M-S	M-S	1-2
	58.10 58.83 5 cm quartz ankerite	6343	58.10	58.83	.73	5.94	I	S	S	3-5
	veinlets have brecciated the orange									
	wallrock. Pyrite occurs in the veinlet as fine disseminations.									
	58.83 60.30 Typical red hematitic	6344	58.83	60.30	1.47	.03	M-S	N-S	N-S	1
	alteration.	4411	****3	38130	****					*

Core size: Drilled by:	BQ Longyear Drilling Co.	Azimuth: Dip:		0 -90	Grid: Purpose: Claim:	Detail Grid 3B test Au zone 956079	
Started: Finished:	Feb. 14/88 Feb. 15/88	Depth 60.05	Àz	Dip -85.0	Northing: Basting:	2+80N 35+80B	
Logged by: Date logged:	J. MacPherson Feb. 22/88				Blevation:		J. Man Riberrow
Syste n:					Length:	62.22m	1
Interval	Descript	ion		Sample	Interval	Length Au	ALTERATION

No.

(1)

(m)

.00 21.42 OVERBURDEN

21.42 29.62 3B: QUARTZ-SERICITE-CARBONATE SCHIST

pyrite veinlets.

May contain up to 5% chlorite as part of the bands. Very well banded essentially parallel to the core axis, although locally the angles may increase to 20 degrees to the core axis. Bands are thin, usually less than 1 cm thick, and are composed of carbonate, sericite or quartz chlorite. Ninor tourmaline may be present as a border phase to very subtle quartz carbonate pyrite which usually intrude veinlets parallel to banding. These veins may be up to 5 cm wide in true width and may carry up to 20% fine disseminated pyrite. They nost often occur in clusters over a 1 to 2 meter core length. Outside of these veins, the pyrite content of the quartz carbonate sericite schist is 1%. The pyrite occurs disseminated as cubes. A weak crenulation cleavage is present at 70 to 90 degrees to the core axis and often kinks the bands of the quartz carbonate sericite schist. 21.42 22.70 Colour changes from dark green to light green and the rock becomes more massive below 22.5 meters. 22.70 24.05 Section contains a 40 cm section of thin quartz carbonate

Length	Au	A	LTERATI	DN
(m)	(g/t)	SIL	SER	CARB

\$ PY

WS 21.42 22.70 1.28 n/a M M-S H TR-1 6348 22.70 24.05 1.35 2.22 S 3 M-S M-S

 $\overline{}$

~	=									
Interval (m)	Description	Sample No.		rval 1)	Length (m)		AL Sil	TERATIO SER	N CARB	\$ PY
	24.05 28.80 Locally chloritic with accompanying colour change to dark green.	NS	24.05	28.80	4.75	n/a	M	M-S	H	TR-1
	28.80 29.62 10 cm wispy quartz veinlet sub-parallel to the core axis near the top of this section.	6349	28.80	29.62	.82	.02	H	N-S	M-S	1-2
29.62 30.18	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-PELDSPAR PORPHYRY									
	Well foliated sub-parallel to the core axis. Strongly sericitic. Colour is typical light orange red, with 1% subhedral magnetite grains. Locally the magnetite is replaced by pyrite and/or hematite.	6350	29.62	30.18	.56	.03	H-S	S	S	2
30.18 30.84	3B: QUART2-SERICITE-CARBONATE SCHIST Thinly banded, less chloritic than previous section. Several very thin wispy quartz carbonate veinlets with fine pyrite as bands within these veinlets. Again these veinlets often have thin border fractures filled with tourmaline. Colour is medium greenish grey.	6351	30.18	30.84	.66	.04	K	S	₩-S	2-3
30.84 31.98	4A: QUARTZ-CARBONATE VBIN Zone of late quartz ankerite veining. The veins are 5 to 20 wide and make up about 30% of the core length. They have very sericitic wallrock which may contain 1 to 2% fine disseminated pyrite.	6352	30.84	31.98	1.14	.18	S	S-I	S	1-2
31.98 33.07	3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Very thinly banded from 0 to 30 degrees to the core axis. 1 to 2% fine grained subhedral magnetite is evenly disseminated throughout this unit. Pyrite occurs as magnetite replacements and also in thin guartz ankerite tourmaline stringers sub-parallel to the strong banding. Contacts are sharp with guartz veins.	6353	31.98	33.07	1.09	4.21	¥	K	H	1

interval (m)	Description	Sample No.	Inte (m	rval 1)	Length (m)	A u (g/t)	AI Sil	TERATIO SER	N CARB	\$ PY
33.07 33.90	21: FOLIATED QUARTZ (FELDSPAR) PORPHYRY (+/- FUCHSITE) Pyritic banding parallel veinlets are wider and more frequent. These sections are light greyish green and again are usually bordered by thin tourmaline fractures. Average angle of banding to the core axis is 20 degrees. Remnant quartz and feldspar phenocrysts are visible in the more massive sections of this unit, suggesting that it may have been originally a porphyry dyke. Contacts are indistinct due to the intensity of alteration.	6354	33.07	33.90	.83	1.71	S	S	S	3-5
33.90 35.86	3D: QUARTZ CHLORITE CARBONATE SCHIST Quite sericitic as well, but chlorite appears to dominate. Well banded sub-parallel to the core axis. In the intervals from 34.50 to 35.05 meters there is another 10 cm quartz carbonate pyrite veinlet with tourmaline borders. This veinlet contains at least 5% banded and disseminated pyrite.	6356	33.90 34.50 35.05	35.05	.55	.75 .38 .06	K S K	M~S S M-S	M S M	1-2 5 1-2
35.86 37.10	21: FOLIATED QUARTI (FBLDSPAR) PORPHYRY (+/- FUCHSITE) Similar to previous highly altered and foliated porphyry dyke. Quartz tourmaline fracture fillings at both contacts. Average pyrite content for this section is 7%. Pyrite occurs mainly disseminated but also in minor amounts in several thin quartz ankerite stringers sub-parallel to the banding.	6358	35.86	37.10	1.24	1.63	S	S	S	7
37.10 38.75	3D: QUARTZ CHLORITE CARBONATE SCHIST Dark green, hard, with 2% disseminated cubic pyrite. Well banded sub-parallel to the core axis.	6359	37.10	38.75	1.65	.19	M-S	M	M-S	2

38.75 49.51 3B: QUARTZ-SERICITE-CARBONATE SCHIST

Bsso Minerals Canada - Robele JV (Ont 88)				Hole: T-41 Page: 6							
•	Interval (m)	Description	Sample No.	Inte (m		Length (m)	Au (g/t)	AL SIL	TERATIO SER	CARB	\$ PY
	55.80 56.20	3B: QUARTI-SERICITE-CARBOWATE SCHIST Grey, well banded at 45 degrees to the core axis. 10% banded pyrite in this section.	6381	55.80	56.20	.40	1.73	S	S	S	10
	56.20 60.04	3C: INTENSE SILICA-CARBOHATE FLOODING Banded to 57.40 meters. Below this point the core is massive, greyish purple and very hard. 1 to 2%	6384	58.80	60.04	1.24	.17	I	И	S	1-2
		disseminated pyrite. 56.20 57.40 Well banded, becoming massive towards the end of this section. 30 cm of rusty core indicates possible fault zone.	6382	56.20	57.40	1.20	.58	S	K	K	2-3
		57.40 58.80 Massive quartz carbonate flooding. Pyrite is disseminated evenly throughout.	6383	57.40	58.80	1.40	.02	I	M	S	1-2
	60.04 62.22	2 3A: RED MAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY Typical orange red colour, well foliated at 10 to 20 degrees to the core axis. 2% subhedral pyrite aligned parallel to the foliation. Pyrite replacements of magnetite are rare. At 62.15 meters there is 5 cm of quartz with 10% pyrite in the quartz. 62.22 End Of Hole.		60.04					M-S	N-S	1
		61.00 62.22 Section contains 5 cm of quartz pyrite.	6386	61.00	62.22	1.22	.01	N-S	N-S	M-S	1-2

ALTERATION

Sample Interval Length Au

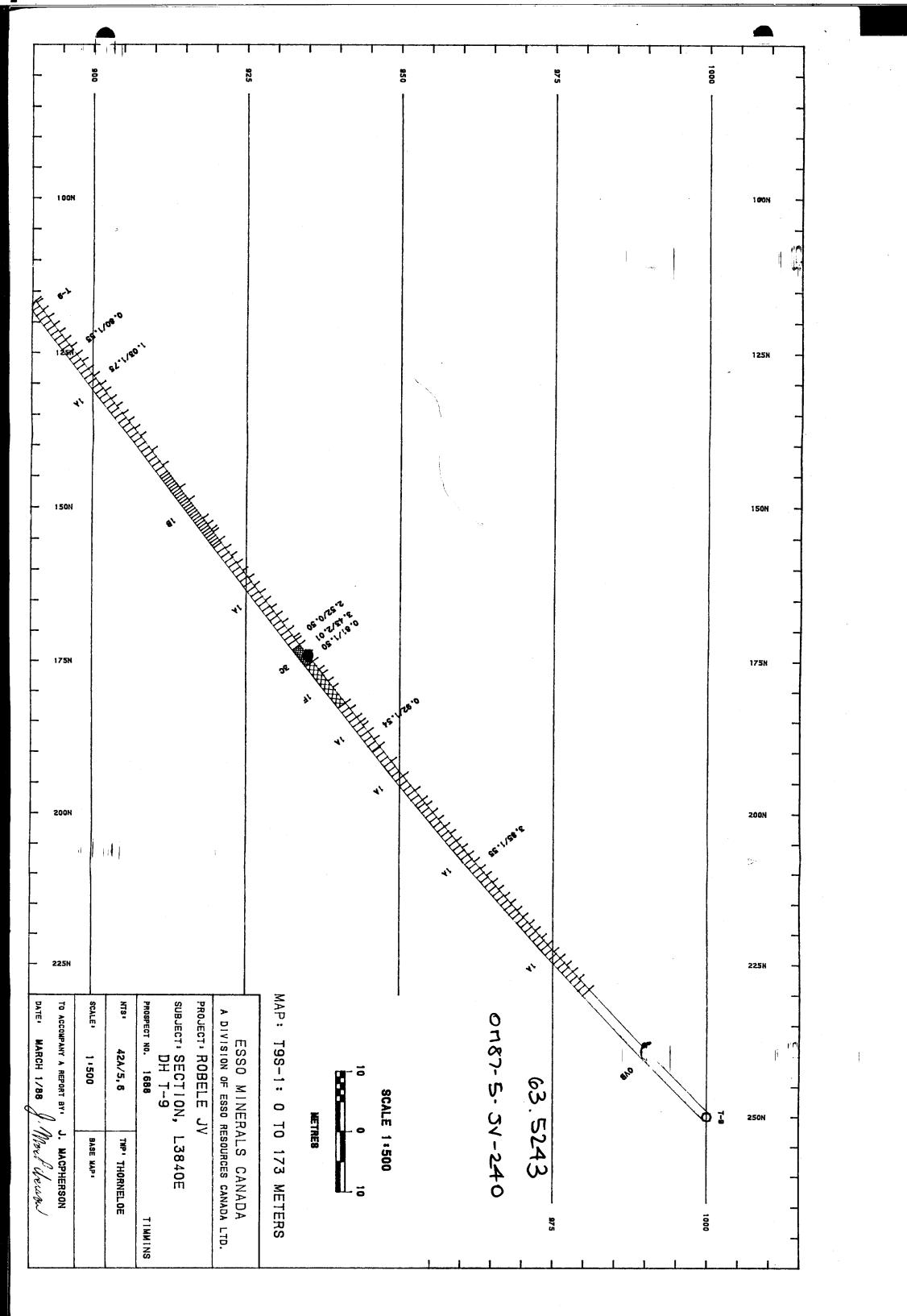
-----Description-----...cerval (m)

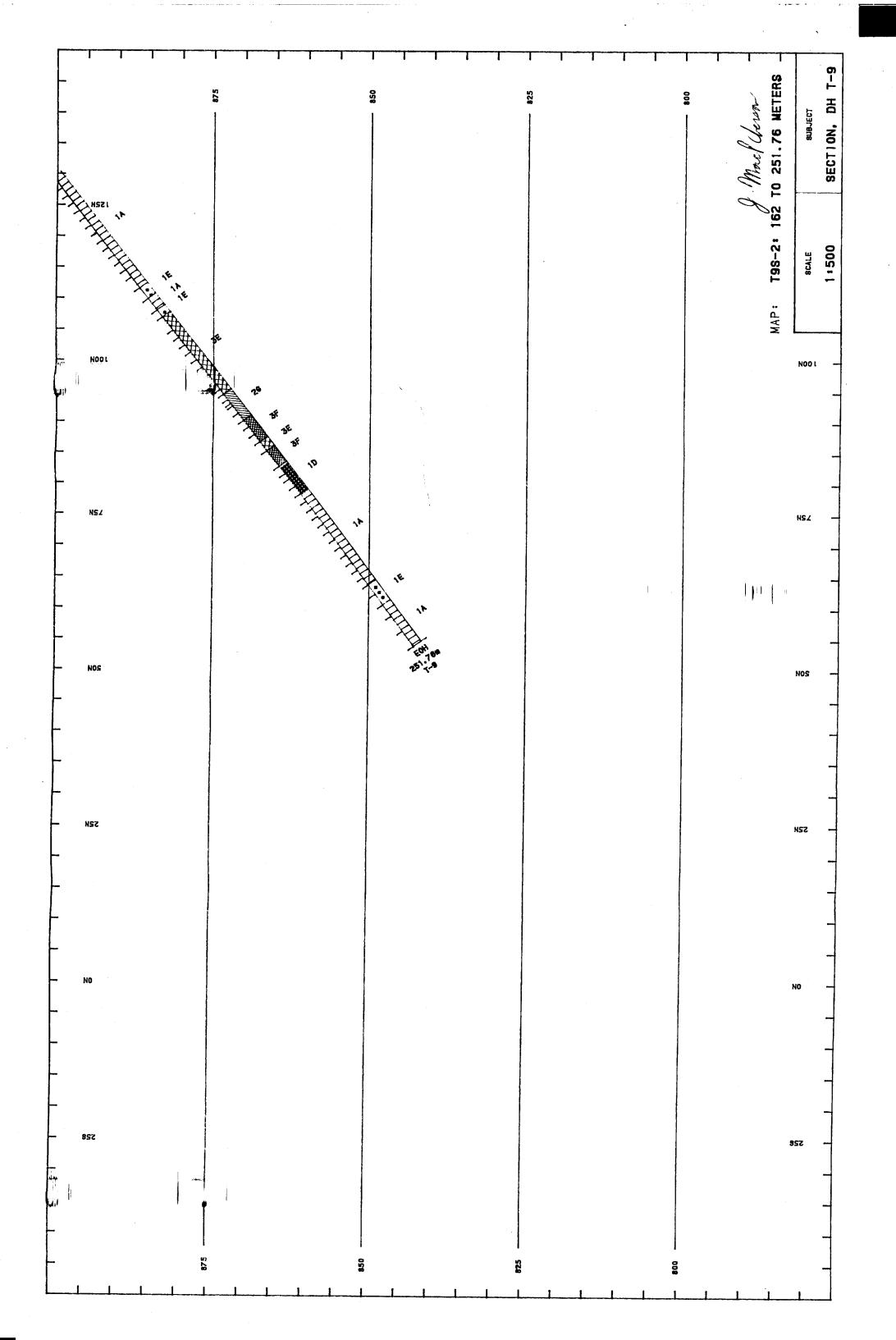
> This unit is termed a guartz carbonate sericite schist but may be a very highly altered porphyry dyke, as there locations within the unit where are to be remnant appears there the banded phenocrysts. However, nature of the unit indicates that whatever the original rock was, it has been so highly altered as to be unrecognizable. To 40.65 meters, the rock is medium grey and consists of alternating bands of guartz carbonate and sericite with pyrite also in bands disseminated. Total pyrite and content for this section is 2 to 3% with local amounts to 5% over 50 cm. From 40.65 to 42.40 meters the rock remains banded, but sericite is the dominant mineral, forming much thicker In these sericitic bands, bands. pyrite occurs mantled by quartz. These may originally have been phenocrysts possibly magnetite grains. The ΟĽ pyrite content of this section is 7 It occurs disseminated to 10%. replacing phenocrysts or magnetite and also semi-massive in quartz carbonate veinlets parallel to banding. Below 42.40 meters the rock regains the banded grey colour and the pyrite content drops to 2 to 3%. 39.25 39.75 2 cm quartz tourmaline veinlet with 10% disseminated pyrite very pyritic wallrock. Nore and disseminated pyrite in the wallrock now 39.75 40.20 Disseminated coarse and fine pyrite in the matrix of this unit.

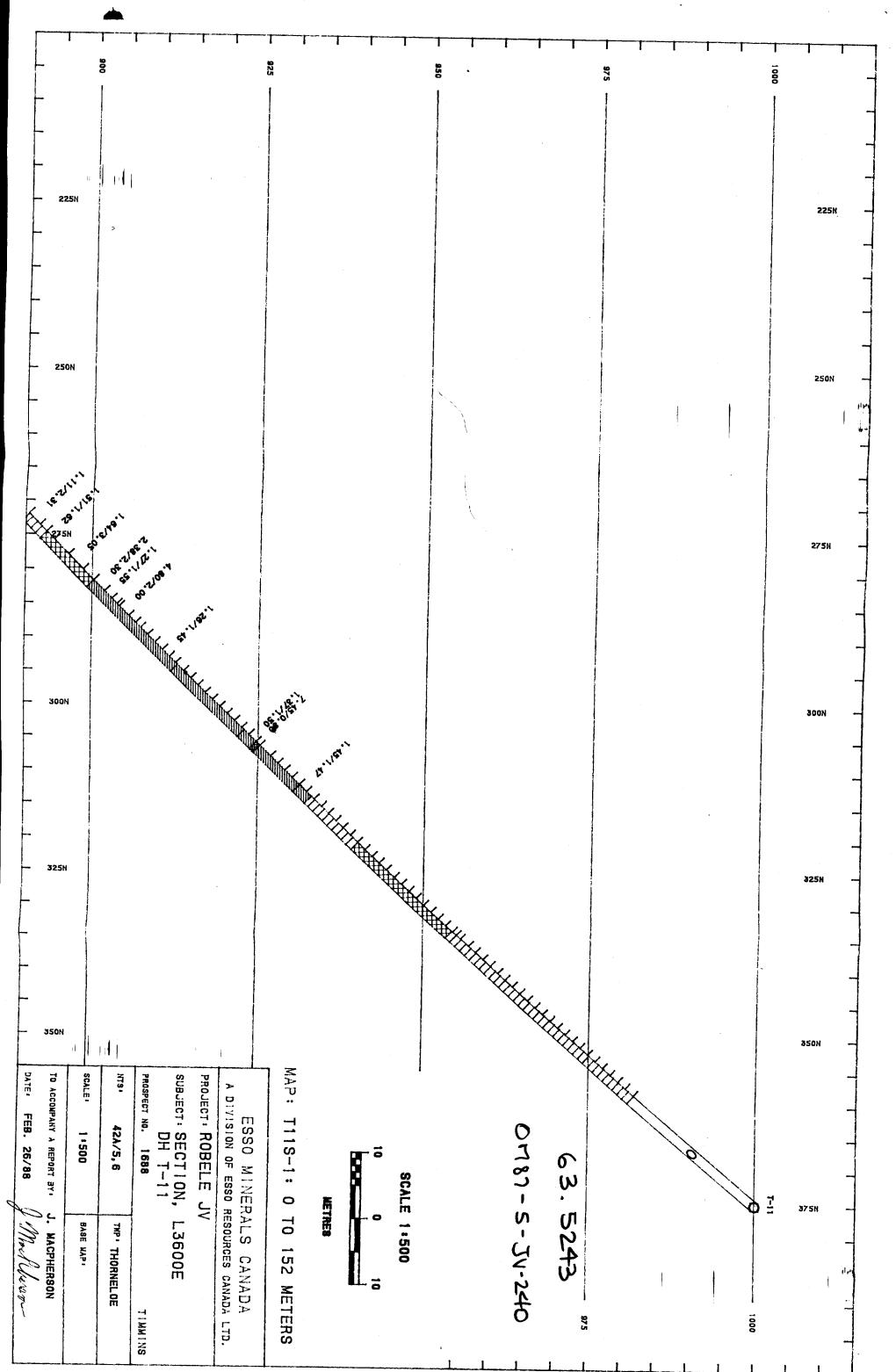
40.20 40.65 2 quartz tourmaline stringers parallel to the core axis. 40.65 41.00 Contact with sericite rich portion of the guartz carbonate sericite schist. Several clots of semi-massive pyrite present.

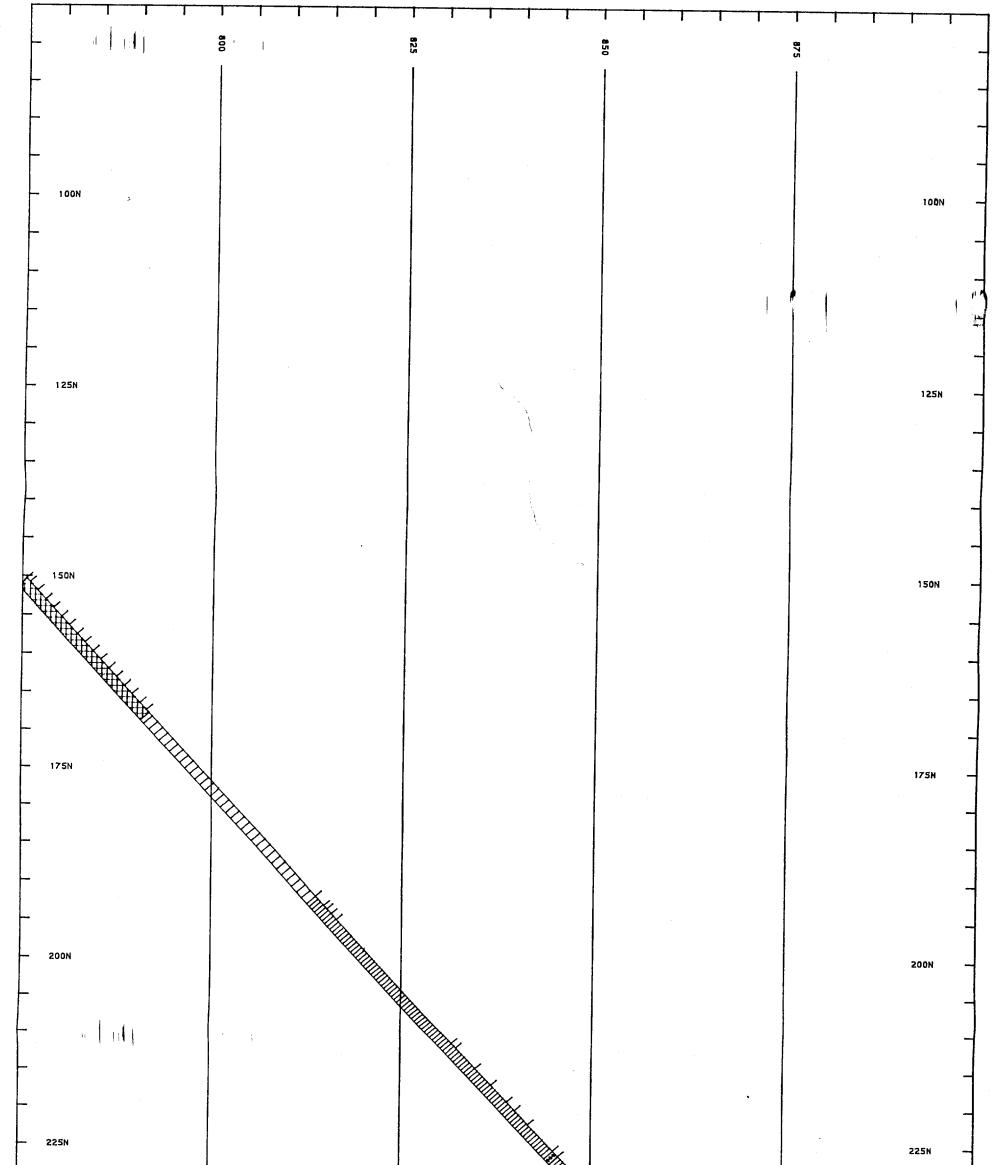
41.00 41.50 Banded pyrite is sub-parallel to the core axis and runs for 10 to 15 cm down the core before cutting out.

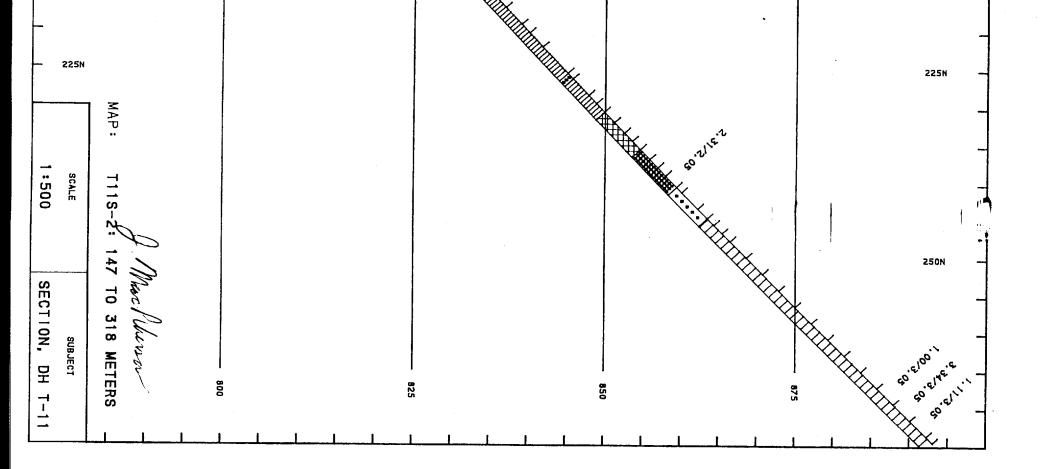
42.40 The most pyritic and 41.50 siliceous of this unit. Numerous thin pyritic bands sub-parallel to the core

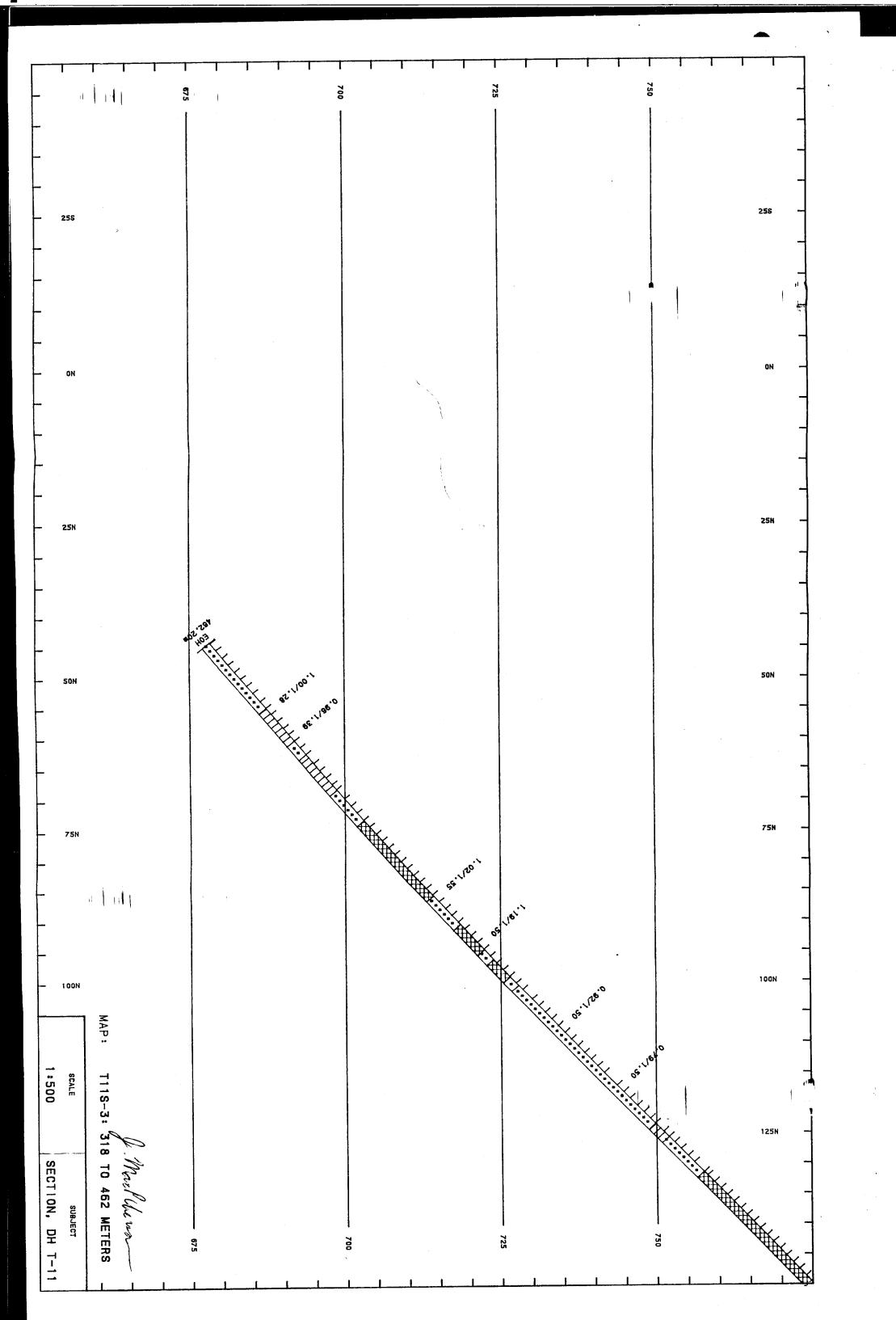

Sampre No.) .vai		(g/t)		SBR	CARB	\$ PY	
6374	38.75 47.85 48.34	48.34	.49		S S S	S S S	S S S	3 5 5-7	
6361	39.25	39.75	.50	4.10	S	S	S	5-7	
6362	39.75	40.20	.45	3.12	S	S	S	3-5	
6363	40.20	40.65	.45	3.34	S	S	S	5	
6364	40.65	41.00	.35	1.72	S	Ι	S	5-7	
6365	41.00	41.50	.50	1.91	S	I	S	5-7	
6366	41.50	42.40	.90	2.03	S-I	I	S	7-10	

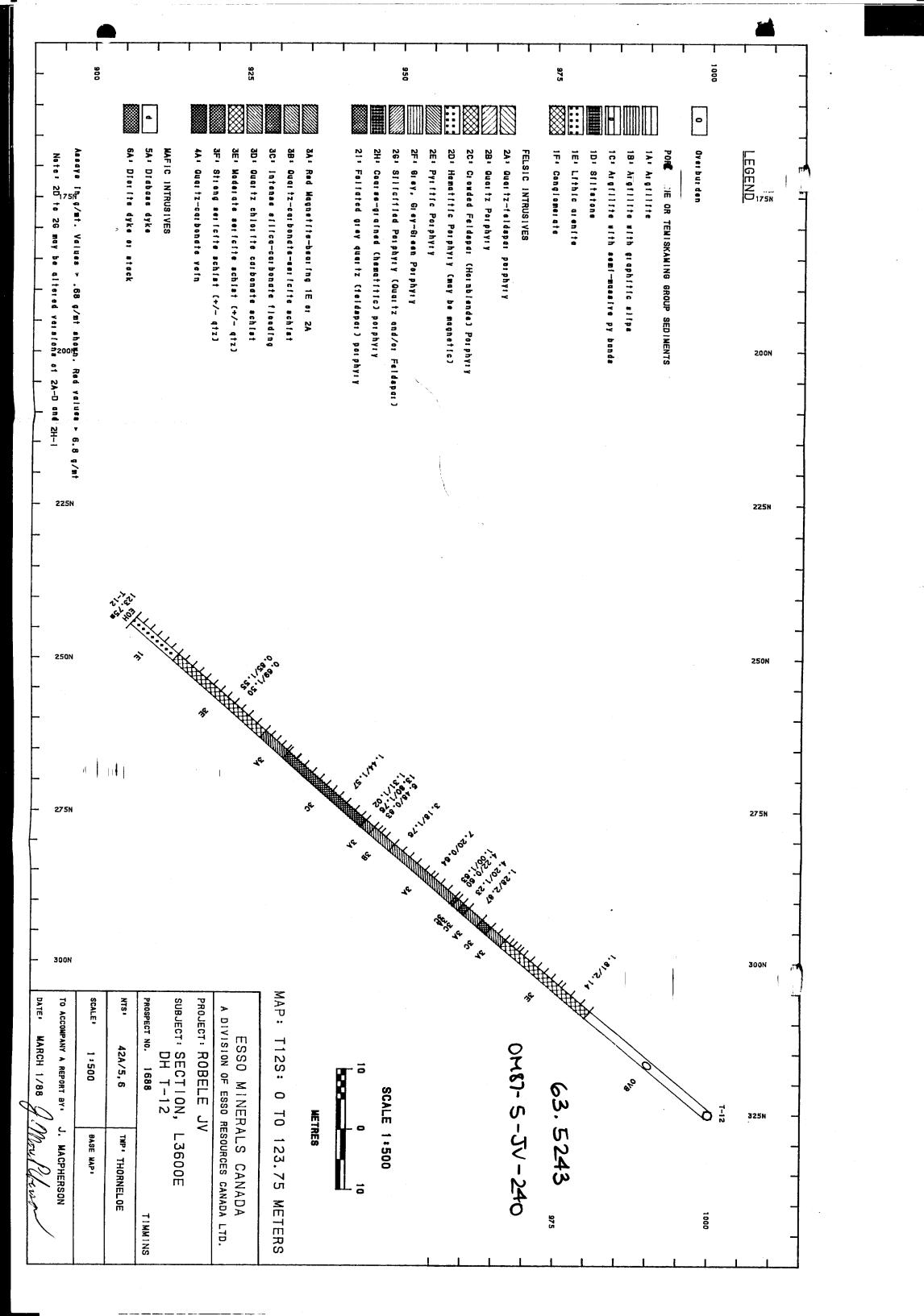

-

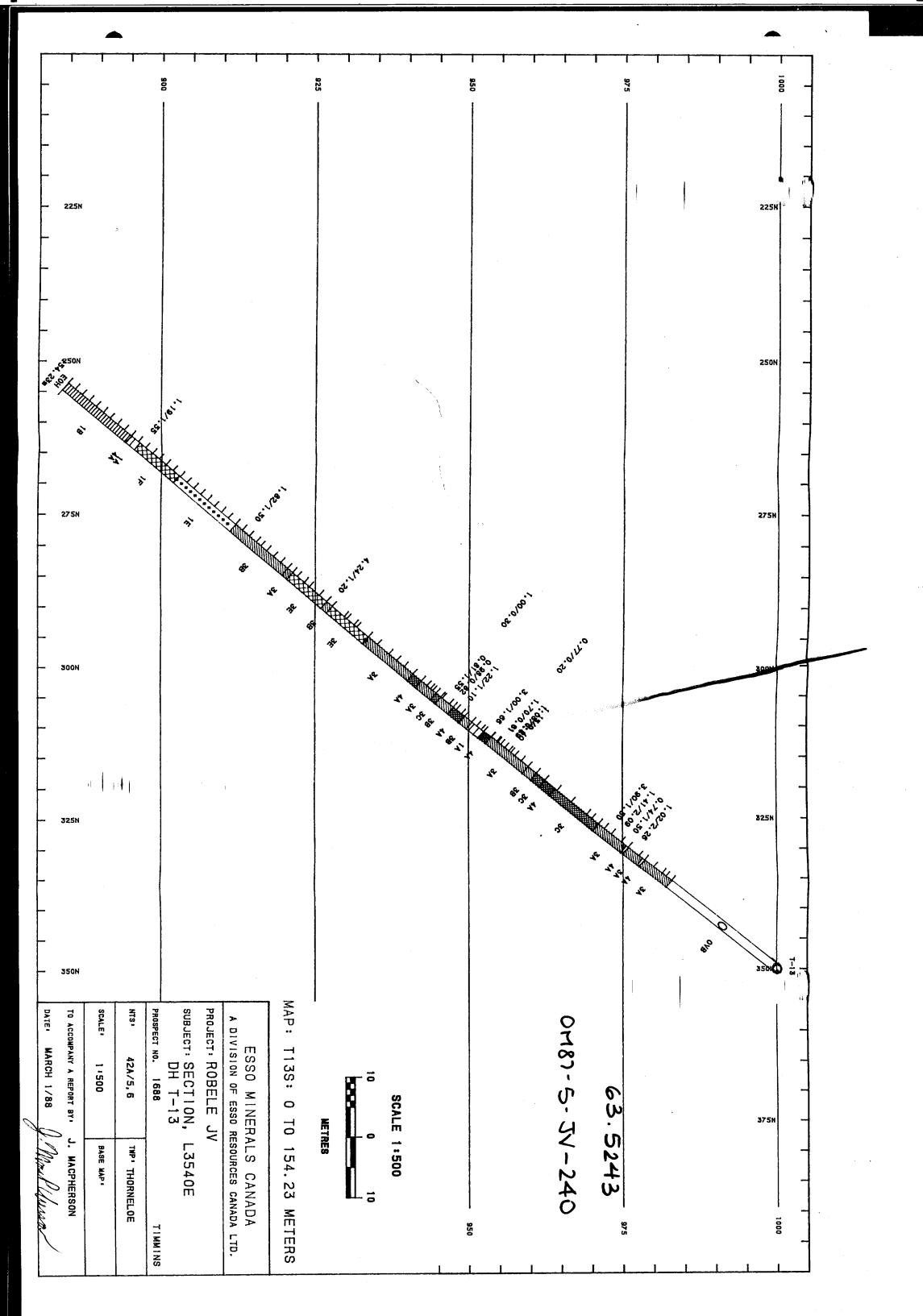

-

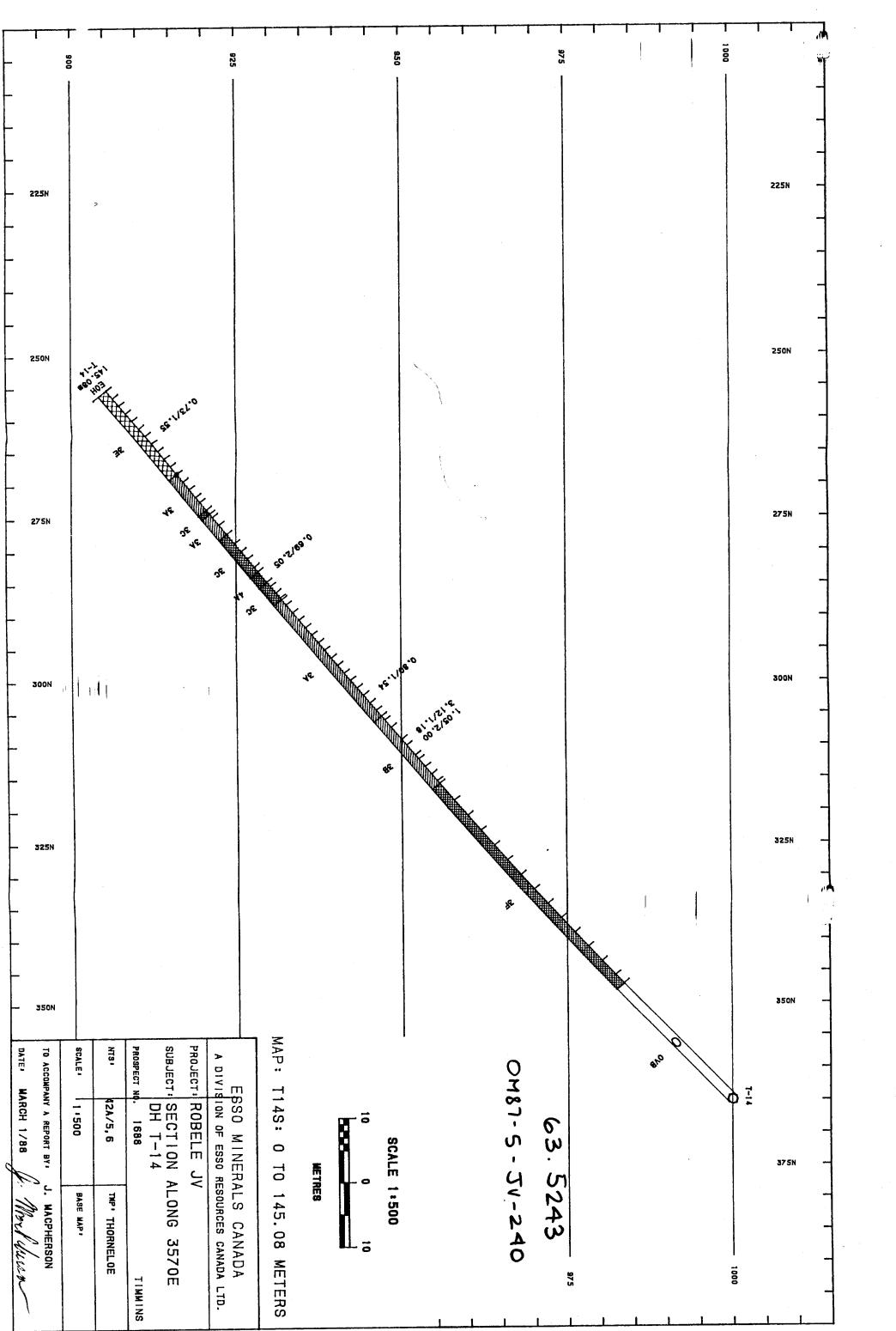

_

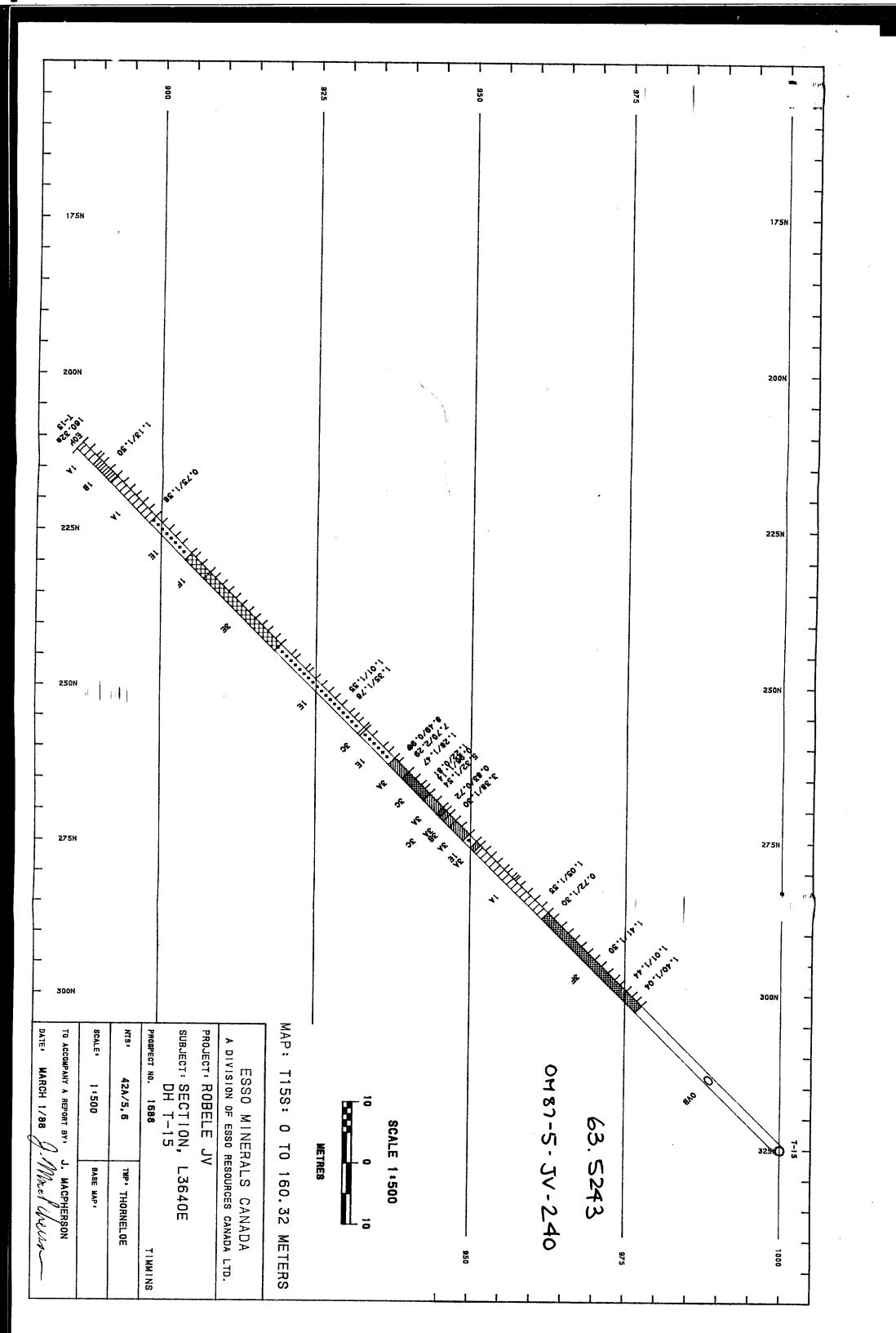

	=									
.aterval (m)	Description	Sample No.	Inte (∎	rval 1)	Length (m)	Au (g/t)	AI Sil	SBR SBR	N CARB	\$ PY
	axis as well as disseminated as cubes. 42.40 43.15 Well banded grey quartz carbonate sericite schist. 1 cm tourmaline stringer at lower contact.	6367	42.40	43.15	.75	1.60	S-I	S	S	10
	43.15 44.15 Massive. May be a highly	6368	43.15	44.15	1.00	.24	S-I	N-S	M-S	3-5
	altered porphyry dyke. 44.15 45.33 15 20 very fine disseminated pyrite for first 0.90 meters. Rest of section contains 3 to 5% fine disseminated pyrite.	6369	44.15	45.33	1.18	. 29	S-I	S	S	10
	45.33 46.16 Well banded quartz carbonate sericite schist, light grey. Locally the pyrite content is high enough to partially obscure the banding	6370	45.33	46.16	.83	.72	S-I	S	S	7-10
	46.16 46.66 Sericitic bands dominate bere.	6371	46.16	46.66	.50	.86	S	I	S	5
	46.66 47.24 Banded sub-parallel to the core axis. Local massive pyrite bands 1 to 2 cm wide down the core axis. True width of bands is probably less than 1 cm.	6372	46.66	47.24	.58	.36	S	S	S	5
	47.24 47.85 A little more sericitic, local bands of grey banded quartz carbonate sericite schist carry up to 20% fine disseminated pyrite over 10 cm	6373	47.24	47.85	.61	.30	S	S	S	5-7
	48.85 49.51 A few chloritic stringers.	6376	48.85	49.51	.66	.45	S	S	S	3-5
49.51 51.22	3A: RED NAGNETITE-BEARING ARENITE OR QUARTZ-FELDSPAR PORPHYRY									
	Typical light orange red colour interbedded with dark grey very pyritic bands. Pyrite content for the section is 7 to 10%. Bands are sub-parallel to the core axis. Last 30 cm is weakly banded at 30 degrees to the core axis and contains 1 to 2% fine disseminated euhedral magnetite.	6377	49.51	51.22	1.71	. 10	S	S	S	7-10
51.22 55.80	2I: POLIATED QUARTZ (FELDSPAR) PORPHYRY (+/- PUCHSITE) Light greenish grey, highly	6378	51.22	52.72	1,50	.16	K	S	S	1
	sericitized, moderately silicified. Banded, but not nearly as intensely as the previous quartz carbonate sericite schist. Bands are light orange but are not magnetic. Pyrite content is 1 to 2% throughout the section.	6379	52.72 54.20	54.20	1.48	.58	H H	S S	SS	1

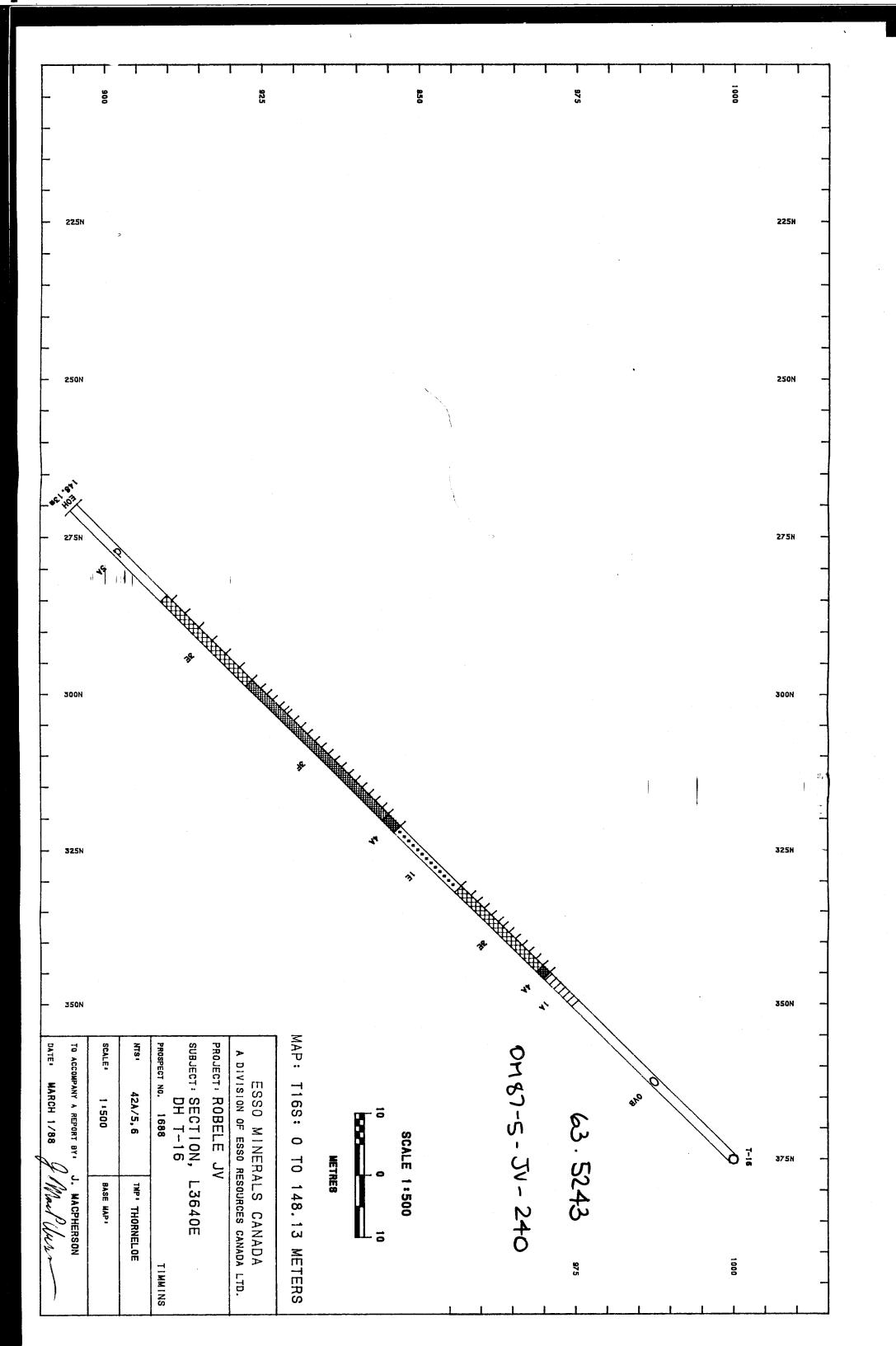


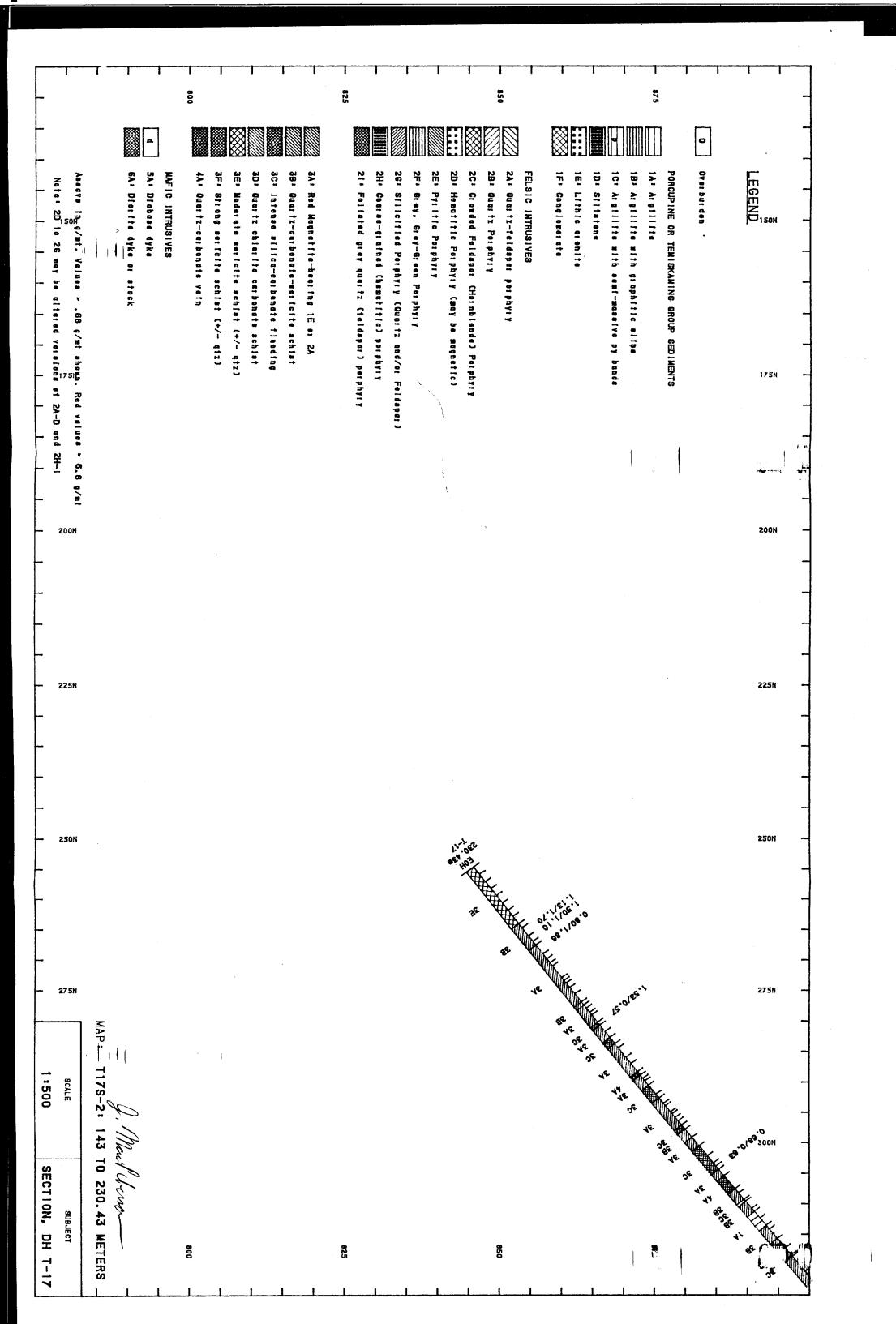


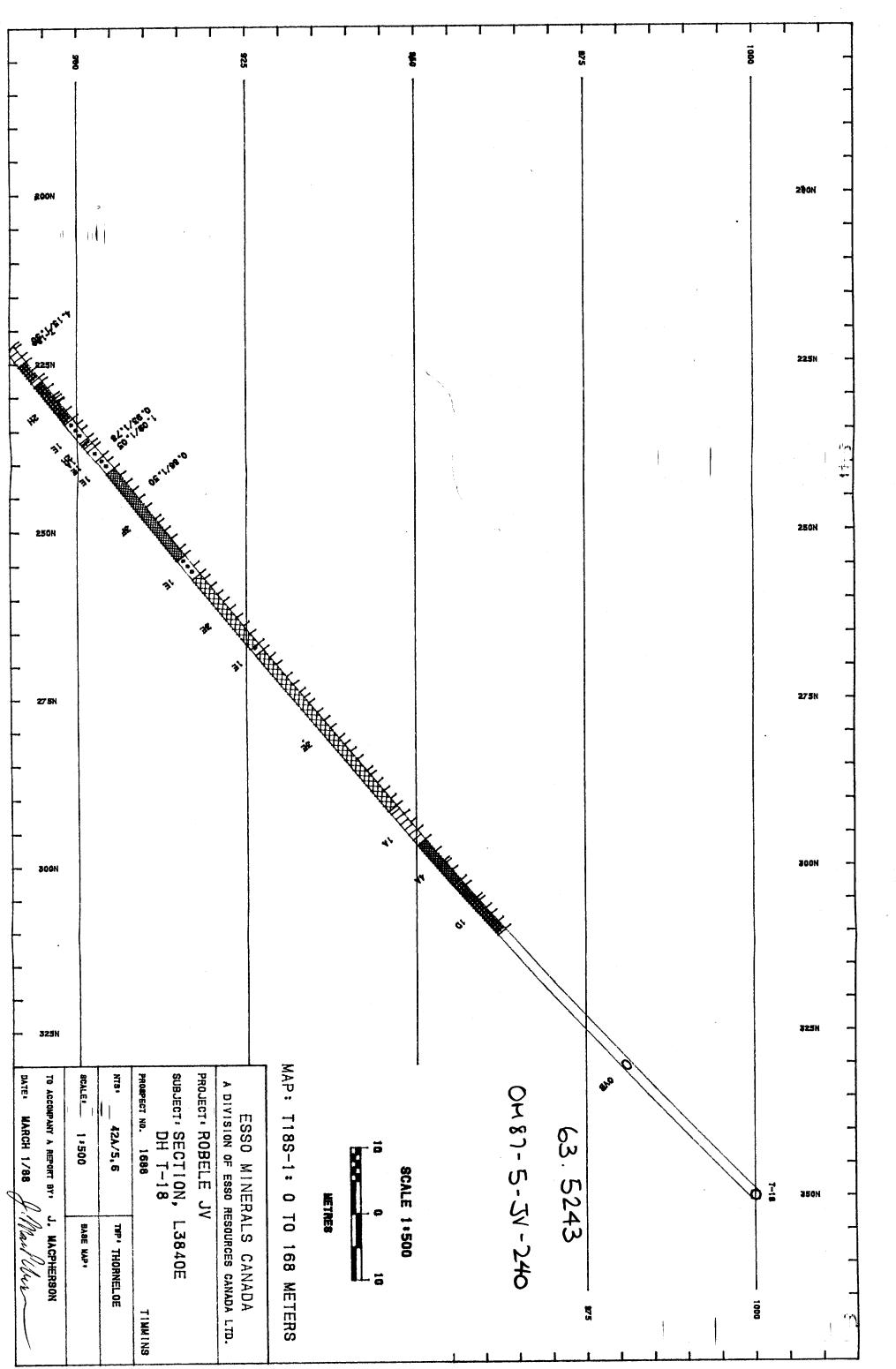


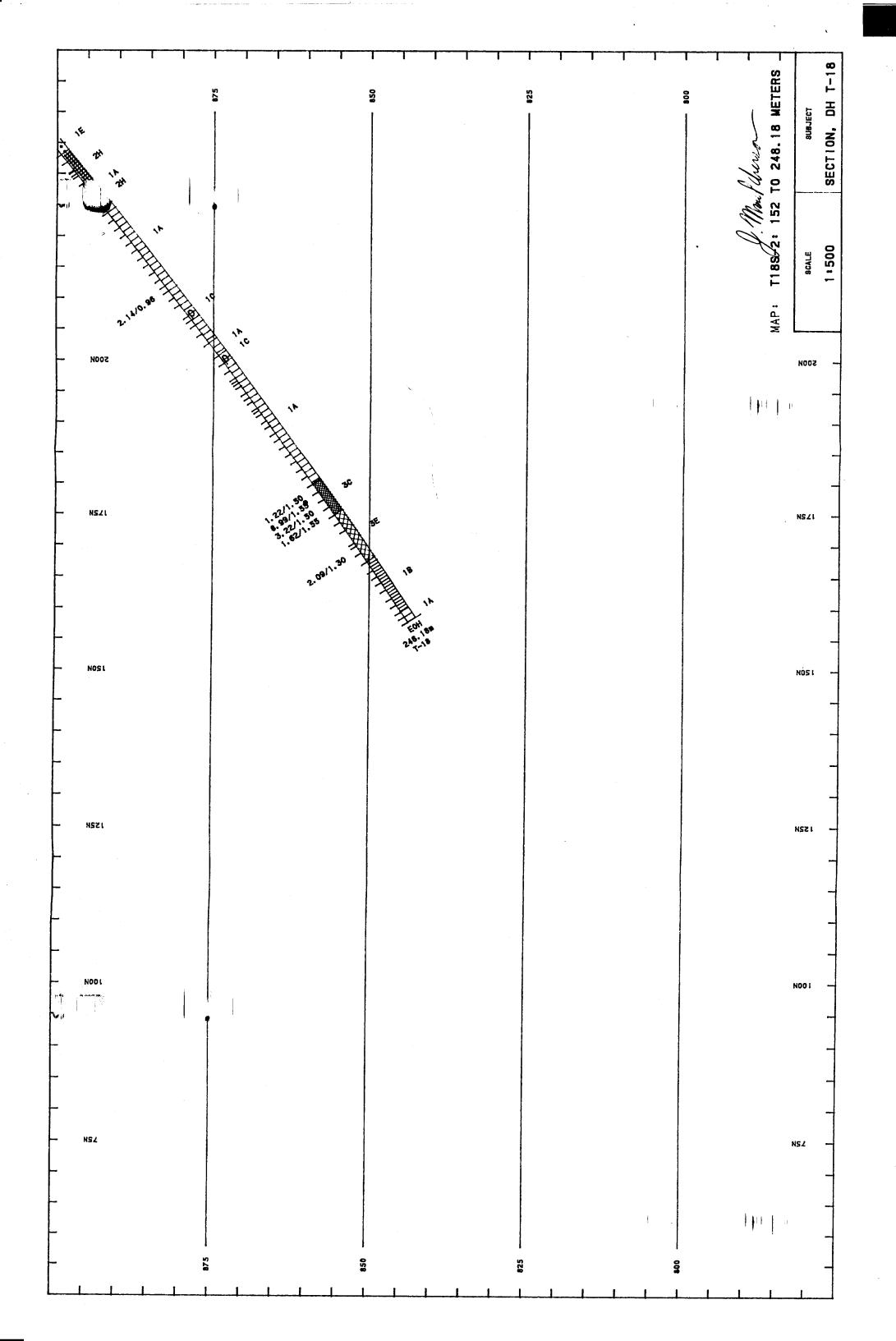


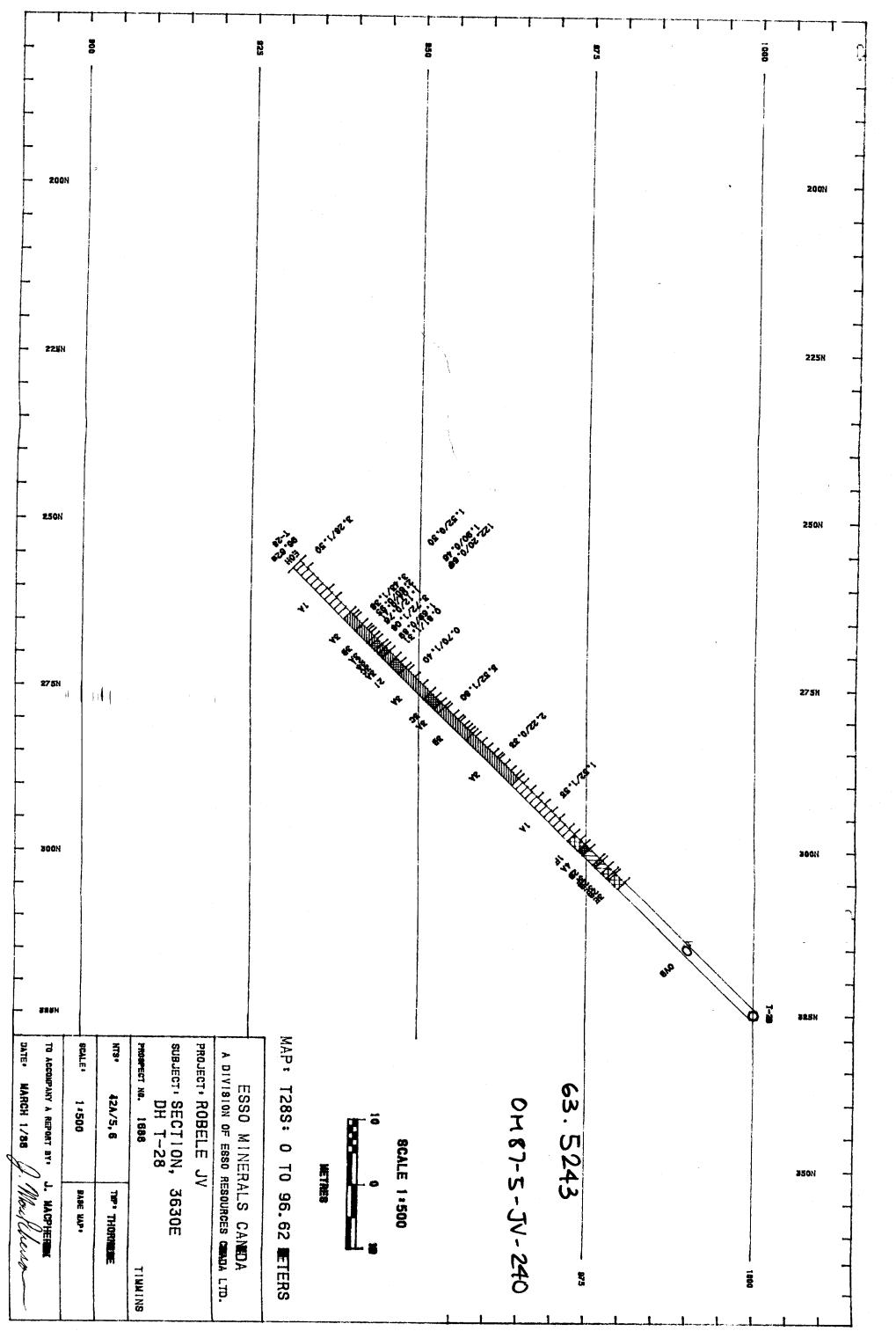


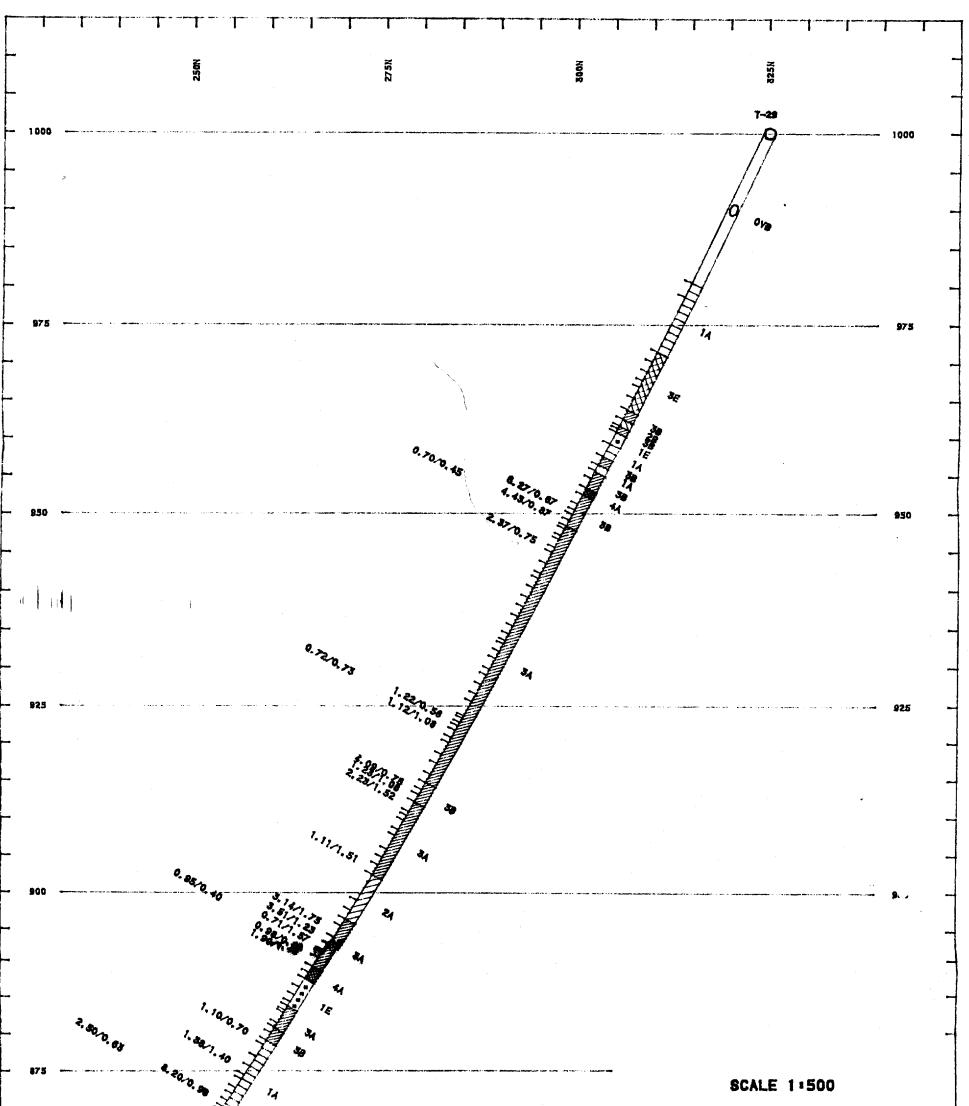




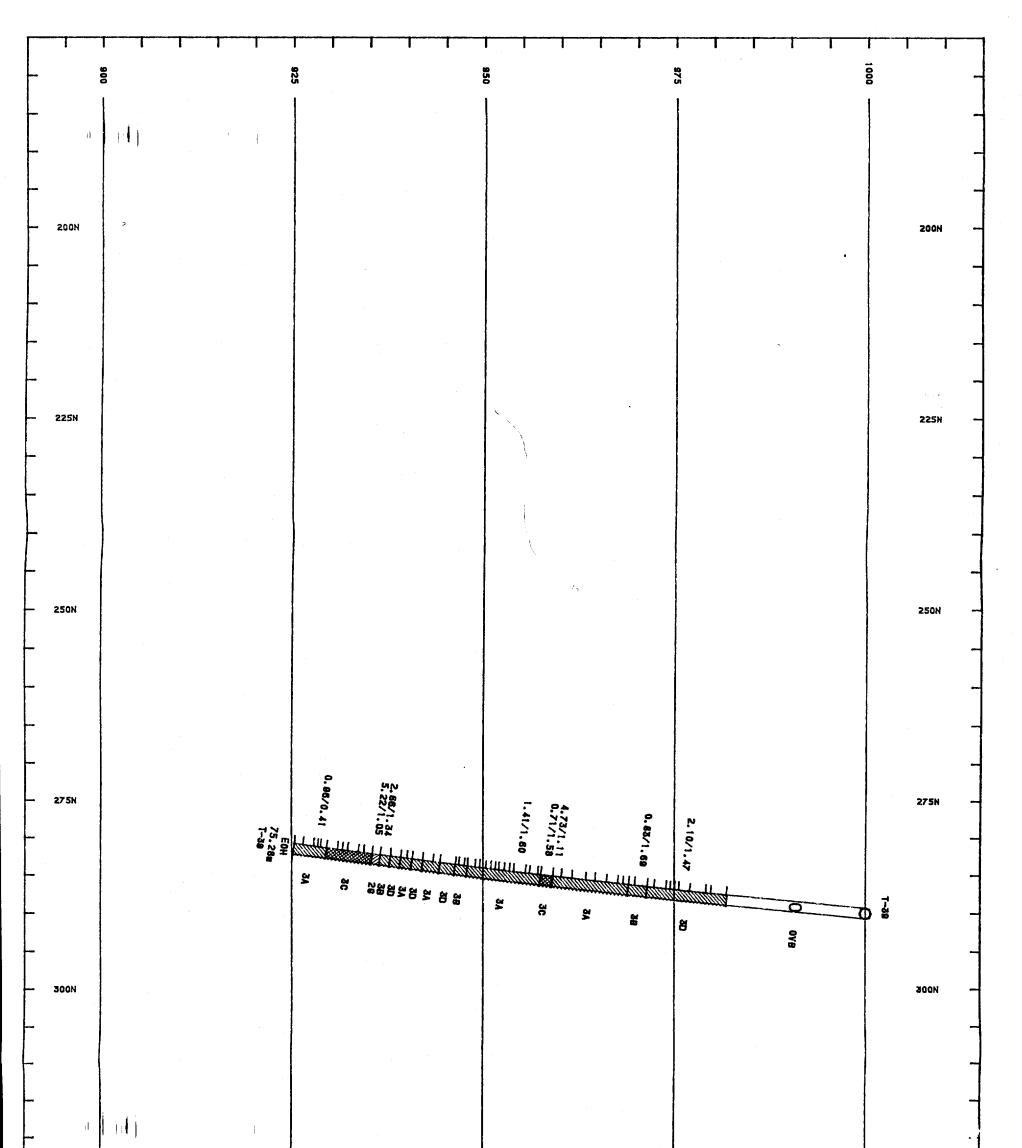


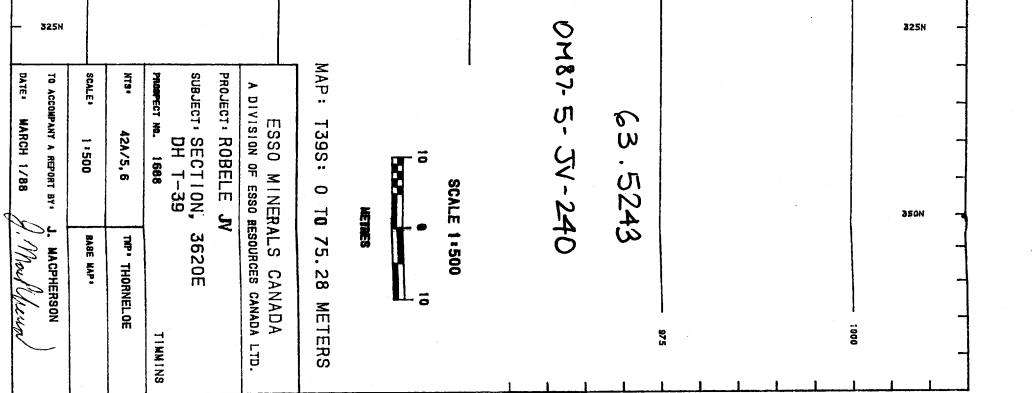


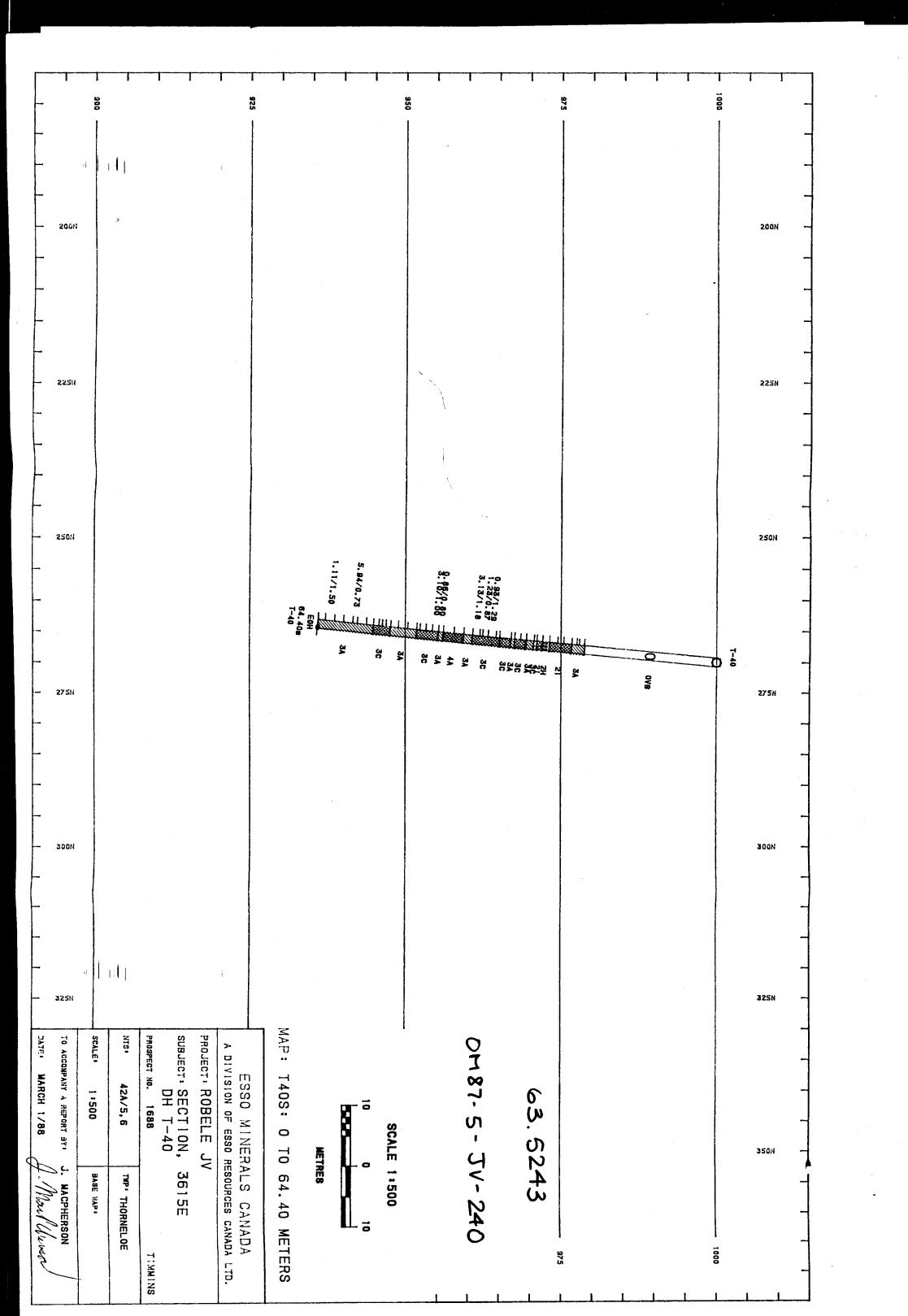


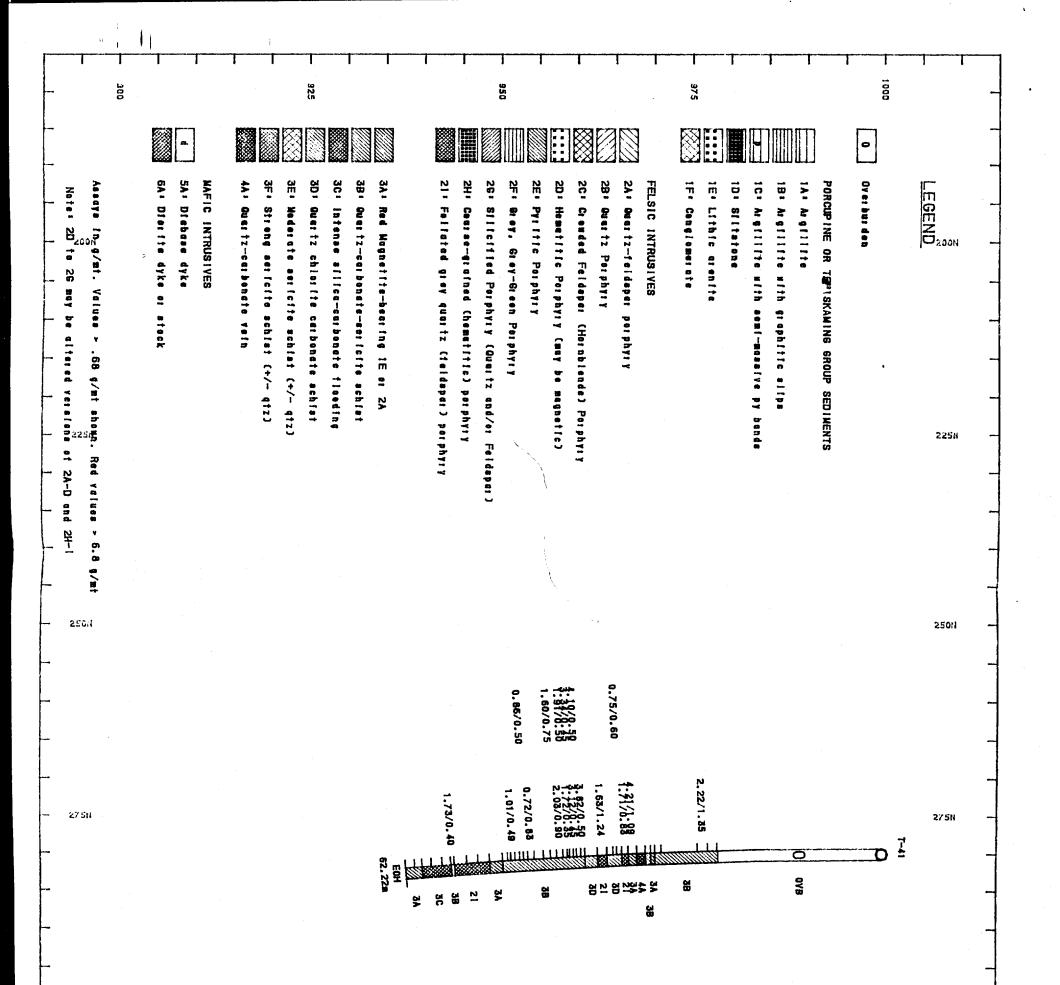


.


•




÷.,


	140 - 14 140 - 14 140 - 14		
-		0487	METRES MAP: T29S: 0 TO 148.74 METERS
	tinnen fra til til til som	n (1997) en	A DIVISION OF ESSO RESOURCES CANADA LTD.
Γ			W PROJECT · ROBELE JV
		С <	SUBJECT: SECTION, 3630E DH T-29 PROSPECT NO. 1688 TINMINS NT8: 42A/5,8 TMP' THORNELOE
F			PROSPECT NO. 1688 TIMMINS
-		1 4	NT8 42A/5,8 TMP' THORNELOE
825	Security a security of the second		BCALE 1:500 BAGE MAP.
-	1990 1997 1997	52 52 1 1 1 1 1 1	TO ACCOMPANY A REPORT BY. J. MAOPHERSON DATE: MARCH 1/68 A. Macfikerson

•

300N

3000

a [1]]

#63.5243

900

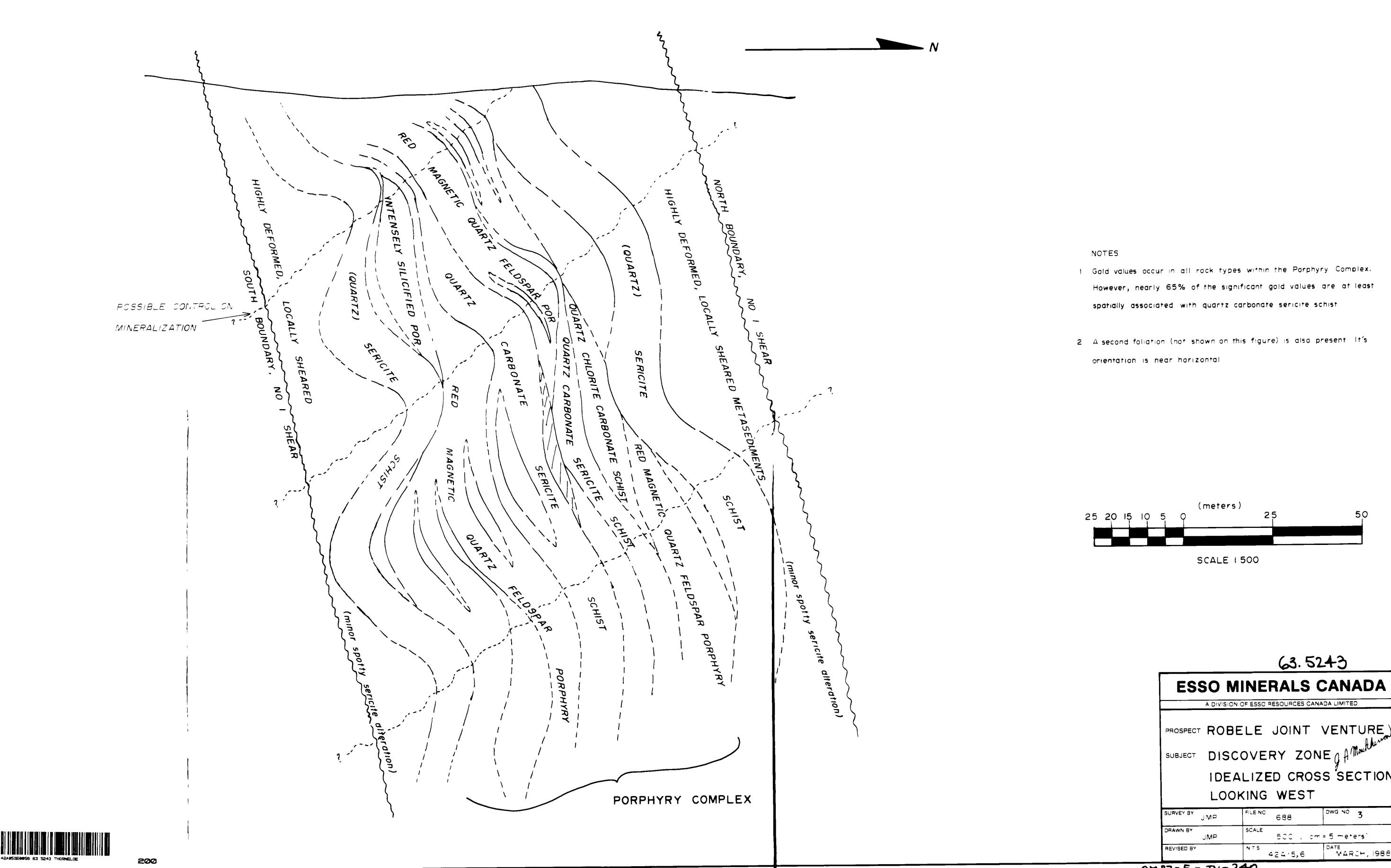
(1)

0M 87-5-JV-240

. .

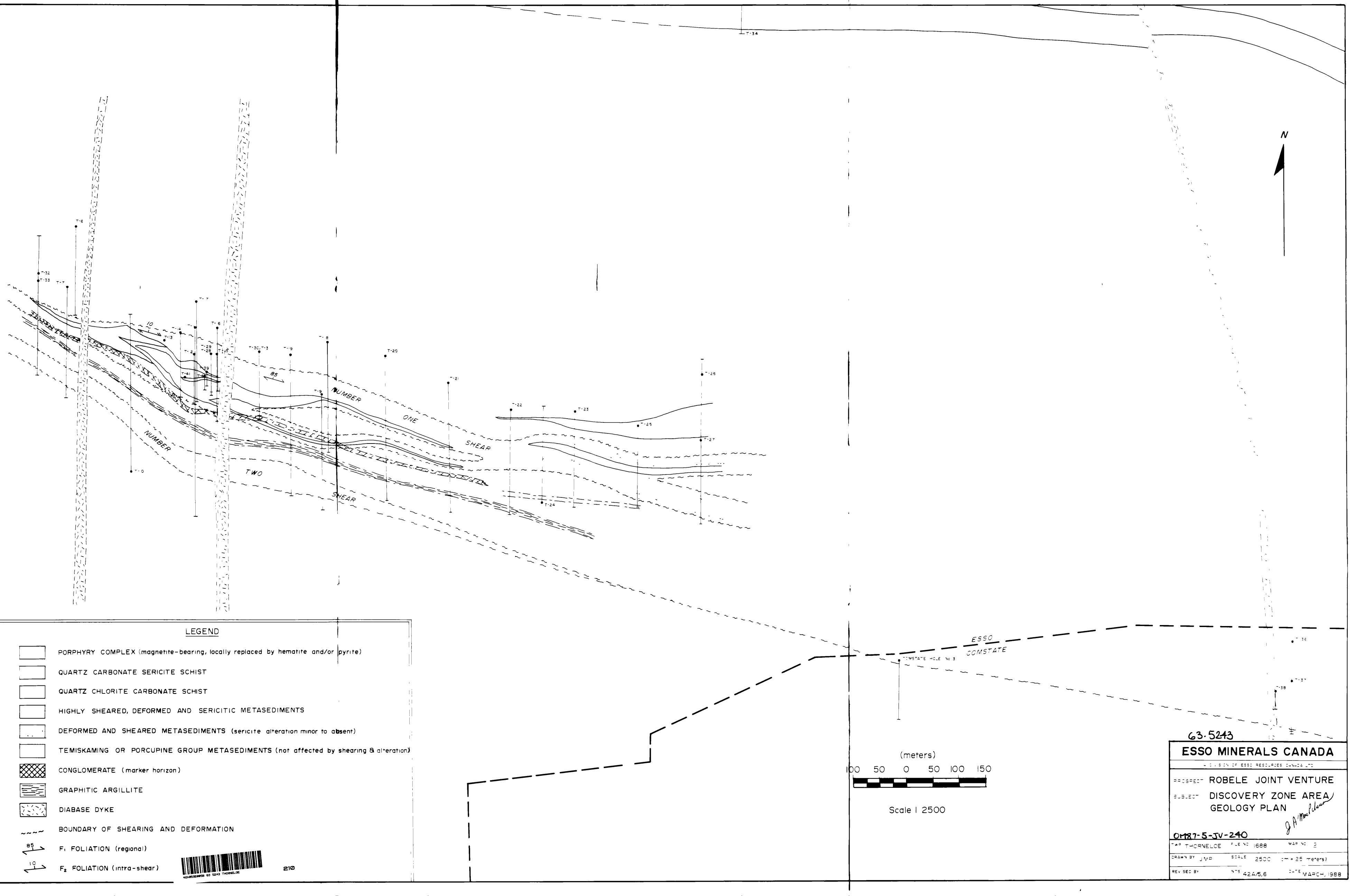
THIS SUBMITTAL CONSISTED OF VARIOUS REPORTS, SOME OF WHICH HAVE BEEN CULLED FROM THIS FILE. THE CULLED MATERIAL HAD BEEN PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED IN THESE SERIES):

(1) diamond drilling logs ->	see Toronto diamond drilling
holes # T-7	file # 29 Thorneloe Twp.
* T-10	R.O.W. # 14/87.
by: J. Mac Pharson Nov 86	
(2) diamond drilling logs ->	sec Toronto diamond
holes #7-19	drilling file #31
T-21 to 27 inclusive	Thorneloe Twp.
by: J. MacPherson Oct-Dec/87	
(3) diamond drilling log	see Toronto diamond
hole # 7-20	drilling file #30
by: J Mac Pherson Oct /87	Thorneloc TP.
0	R.D.W. # 318/87
	· · · · · · · · · · · · · · · · · · ·

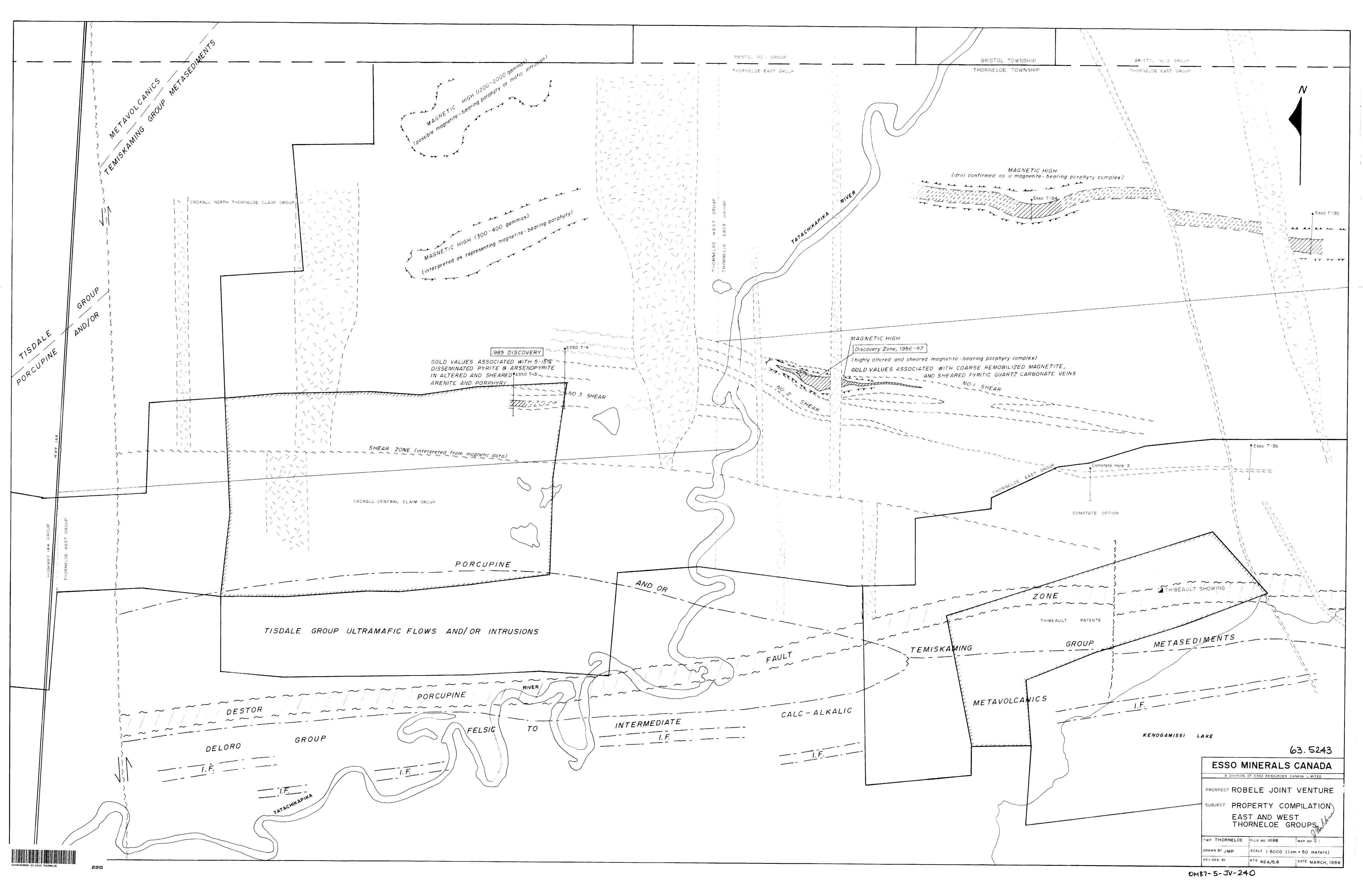

P.T.O.

#63.5243

0M 87 - 5- JV-240


THIS SUBMITTAL CONSISTED OF VARIOUS REPORTS. SOME OF WHICH HAVE BEEN CULLED FROM THIS FILE. THE CULLED MATERIAL HAD BEEN PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED IN THESE SERIES):

(4) diamond drilling logs	-> se Toronto diamond
T-30	drilling file #34
T-31	Thorne loc
by: J. MacPherson Oct-De	cc/87 R.O.W. #W8906.402
(5) diamond drilling log	> sec Toronto diamond
T-32	drilling file #32
by: J. MacPherson D	ulsi Thorraloc
J	R.O. W. # W8806, 179
(6) diamond drilling logs	-> see Toronto diamond
T-33 to 38	drilling file #33
by: J. Mac Pherson	Thorneloc
Jan-Feb/88	R.O.W. #W8806.181
•	



	63.5243							
ESSO MINERALS CANADA								
A DIVISION OF ESSO RESOURCES CANADA LIMITED								
PROSPECT ROBELE JOINT VENTURE								
SUBJECT DISC	SUBJECT DISCOVERY ZONE A Mouldurant							
IDEALIZED CROSS SECTION								
SURVEY BY	FILE NC 688	DWG NO 3						
DRAWN BY JMP	SCALE 500 . cm	-= 5 ~e*ers`						
REVISED BY	NTS 424/5,6	DATE MARCH, 1988						
87-5-JV-240								

0187-5-JV-240

