

42A05SE0157 25 DENTON

010

TOWNSHIP: DENTON

REPORT No.: 25

WORK PERFORMED BY: HOLLINGER ARGUS LIMITED

CLAIM NO.	HOLE NO.	Footage	Date	Νοτε
P 568503	1-2-82	288.0	May/82	(1)
	1-2-82	250.0	May/82	(1)
		538'		

NOTES: (1) #168-82

Denton Twp. CARSCALLEN TWP. M.267 SRO res ter Fublic Line: Jowsey L. 4M. 3 M 2M. 1373415 58241 - 582402 583402 583442 583447 583448 Mononey D 525383 24384 18643 8751 5253331 ΘY P 17404 583416 583413 583404 583401 583454 583450 583447 58344 525 338 \$34-9 URFACE & NINING RIGHTS WITHDRAWN FROM STAKING V.21583417 WSET PROVIS834121583435 SET PROVIS834121583435 SET PROVIS834121583435 10740 525384 583451 **(P)** 8775 17405 RESERVE SURFA Ð 15253351525336 1583406 583396583422553445 11153 11152 58:4:558:418 58: 525385 @} C1 1978 1583399 17406 683429 583424 583419 583410 583410 58340 58340 7 forthe analy, 5M. 802 622807 22808 583399 583397 10 29313 mar.c. 624124 470 (909) 470907 470908 568436 5684 88971 31377 583420 583407 19657 70941 14709 12 14 583430 19656 622809:624125 624130! 567637 5343 471919 470918 470914 470915 1 84 622811 624119 624126 1624131 158 183422 58342 501295 [501151 583431 29317 0 568488 583408 24121 ℗ 470916 470917 470918-19732 501294 1973 500439 583432 Denton L. 8 580100 580099 580098 016116 4 M 505495 545493 568489 83433 58: 424 615435 124122 624123 1537774 \$ 568490 515847 624128 6201 226 \$49 5.0 584540 О 584680 584521 584520 594507 3845 58:380 ທ 568978 568505 3344 52334 N 565498 14:279:58452: 584:19 584:19 58458 58458 Σ 8: : : // 83346 -69507 569507 - Frida 1635-*3256 5 747 1553548 652347 TWP. 584678 584 22 584118 5843095 44 53 - Chab232 46047 583248 583353 5830 583246 وباردوا مما 154705 582 24 692251 5833.54 5823 3 M.: 583356 594697 584504 594517 584510 584593 581/24: 1CS Ca 59 - C. 2 58.33/0 5:359 - C. 2 5 583249 583350 583251 158225 158.23.21 1. 1. 2. 1 m. 111

PLAN OF . D.D.M. DE-1-1.821 DE-1-2.82

DE 1-1- 82		DE 1 - 2 - 82	
LENGTH	228'	LENGTH	250'
Top	- S0°	Dip	- 90°
Ne	242°	P.Z	N/P
Din of Cond	é 1.44" BP	Dim of Cone	1.44" 130
START	MAY STEZ	START	MAY 7/5:
FINISM	MAY 7/82	FINISH	MAY 10/82
Con	ARNEROR BROOK	cy Binn Lto	
	TIMAMINE	ONT	

Location: L3680mW/1020mS	DIAMOND DRILL REPORT	HOLE NO. DE-1-1-82	l.
Core Size: BQ	PROPERTY : DENTON #1-80 GROUP		•
Azimuth: 2420	Township : Denton Township	Commenced : May 5, 1982	
Elevation: Surface	Location of Collar from #3 Post of P.568503	Finished : May 7, 1982	
Dip: -50° @ Collar; -50° @ 200'	N 120m E 190m	Contractor: Bradley Bros.	

From	То	DESCRIPTION	From	То	Width	•	Description of Sample
0	2'	Overburden.					
2'	86'	Andesite Tuff	2'	5'	3'		A ₂ T ankeritic diss.cubic Py (<1%)
		- in places bleached and very close to					
		dacite tuff.	5	9	4		A ₂ T ankeritic diss.cubic Py (<1%)
	-	- pale greenish grey to medium dark grey					one small (~1") q.v.
		in colour.	9	10	1		ApT + qv tuffaceous not crenulated
		- fine grained.					$qv \approx 3$ " wide, schistosity is at 759 to C A some diss qubic
		- schistosity varies from 620-750 from the					Py (~1%).
		core axis.	10	15	5		A ₂ T minor crenulations; a few CO ₃
		- in places laminated with carbonate and					laminae (<5%), minor diss.py
		tightly crenulated.	15	17	2		Ar minor crepulations + dtz
		- carbonate is slightly ankeritic throughout					vein (<2"); diss.cubic Py (<1%)
		and effervesces in dilute HCL.	17	21	4		 And minor crenulations = 20 gubes
		- non magnetic.					of Py O_3 laminae (<2%).
		- non conductive	21	22	7		 Art + atz carb wain: some appu-
		- intermittently cut by quartz-carbonate					 lations; 3" qv + chlorite
		stringers (±3")	22	22	7		 diss.cubic Py (<18).
	<u>.</u>	- minor amount of disseminated pyrite			<u> </u>		 A_2T , darker grey colour, 1 small qv. (<1 "), 38 cubes of Py,
		throughout often in the form of small	22				 not crehulated.
		$(\pm 2mm)$ cubes.	25				 Carbonate laminae, slightly ankeritic.
		- @ 4.8' slightly ankeritic.			_		

DIAMOND DRILL REPORT

Hole No.

· . ·

DE-1-1-82

•

[.]2.

PROPERTY

.

•

.

Denton #1-80 Group

Township__ Denton Township

From	То	DESCRIPTION	From	То	Widt			 		Description of Sample
		- @ 9' glassy qtz vein (=3"), some chlorite.			-	• ·	_			
_		- @ 10'schistosity is at 75° to C.A.	27'	28'	1 7 '					
· ·	İ	- 10.1' is start of minor carbonate lamination	27	20						A2T first 2 inches contain
	<u>†</u>	showing crenulations.								
•		-16.7' small guartz vein with minor chlorite								gouge material.
		+ carbonate, no min. OV < 2"	28	30	2	. <u> </u>		_		A ₂ T crenulated 15-20° carbonate
	•				<u> </u>	<u> </u>				material. ankeritic.
	<u> </u>	- pyrite mineralization starts at 17 and	30	35	5					A ₂ T, grey, minor crenulations
		slowly increases to a maximum of 2% @ 22.5								<5% CO3 laminae, ligher green colour at end of sample.
		From 21.5'-30' laminations of carbonate '								minor diss.Py (<1%).
	l !	become thicker and more abundant.	35	40	5				· ·	$A_2T(C_1T)$ lighter green in colour.
<u>.</u>		- @ 21.8' carbonate is orange due to weathering.				1				some small qtz str. with
		- @ 21.9' is a quartz vein with chlorite and	40	45	5	1				ankerite, very iew cremulations
		carbonate.						-		not crenulated. C.A. ≈ 50°
		- from 22'-23' laminations decrease but still	15	50						
		present as is cubic pyrite; schistosity is	45	- 50				-		A ₂ T(C ₁ T?) same as above, some
		approx. 62° to the core axis.	<u> </u>					_	<u> </u>	last 4" dark grey colour.
			50	55	. 5	[A2T dark grey more CO3 laminae
		- @ 22.4' quartz vein (21") with some car-						_		$(\pm 5\%)$ 2 amall av + chl. $(\pm 1\%)$ some fuchsite $(\le 1\%)$.
	<u></u>	bonate + chlorite; one or two specks of	55	60	5					$A_2T(C_1T)$ pale green colour, some
		sulphides.	· .							hematite along micro-fractures, not crenulated, minor diss. Py
		- @ 23° abrupt increase in carbonate lami-								(<18).
		nations and decrease in cubic pyrite.	60	65	5					Art, slightly more massive
		- @ 27.2' band of diss. Py (-5%).					1	1		some hematite + micro faults
		- from 27.7-30' fair amount of fault gouge								(1)3 (全1名)。

DIAMOND DRILL REPORT

· . ·

.

3.

Township Denton Township

Denton #1-80 Group

PROPERTY_

From	То	DESCRIPTION	From	То	Width					Description of Sample
		material, chloritic and carbonated.				1 .				
		From 30'-35' very thin laminae of car-								
		bonate, and only minor crenulations.	<u> 65 ' </u>	70'	5'		<u> </u>			A ₂ T, same as section from
		From 35'-49.5' core becomes much lighter			<u> </u>	· · · · · · · · · · · · · · · · · · ·				60°-65°, 1ess W3.
· · ·			70	75	5	ļ				A_2T , same as section from
	<u>-</u>	green colour, remains tuffaceous with minor								65'-70'.
		carbonate.	75	80	5					A ₂ T, same as section from
		- @ 39' quartz stringers with pale green								60'-65', lightly crenulated.
		material, ankeritic, some CO ₃ in qtz.	80	85	5			-		$A_2T(C_1T?)$ tuffaceous, not
		- @ 43' schistosity is at 58° to the core axis.								crenulaced; pale grey green
_		- @ 47.6' carbonate laminae display minor						1	· · ·	fractures; minor dtz str. (41%).
		hematite staining.	05	96			•			
		From 49 51-541 gore is deriver group select		00	<u> </u>					A2T + Contact with K; one qtz
•		carbonate stringers and swarts stuin		·····						ultramafic is black and mottled
		ruch more comments and quartz stringers			<u> </u>			_	·	with white carbonate.
		much more common, colour change is gradational								
		- @ 49.9-51' minor diss. Py (<1%).	86	90 ·	4			.		$K + A_2T$ - the ultramafic contains
		- @ 53.9' schistosity is at 70 ⁰ to the core axis								≈25%003 discordant to schis-
		- @ 54' some fuchsite along qtz-CO3 stringer.	•			.				with funor CO3 Jaminae concord-
		From 54'-86' core is similar to section							+	70° to core axis; 1 gv \approx 2" wide
		from 35'-49.5'						+		with chlorite + CO ₃ .
		Some of the small stringers have hematite						+		
		along them i.e. 0.571	. 90	95	2	<u> </u>			<u> </u>	K, 40% CO3 str. discordant
		a 6 6 El aphiatogitu in haturan 250 (20						<u> </u>		dark grey in colour.
		the court is between 350-400 to					····	<u> </u>		
		the core axis.								

	_	DIA)	MUND	DRILL	REPO:	KI.			. He	ole No	• J	DE-1-1-82	4:
	P	ROPERTYDenton #1-80 Group		•		•		· •				•	
	T	Cownship Denton Township											
			•										
From	То	DESCRIPTION	From	То	Width	2	<u> </u>					Descrip	tion of Sample
	<u> </u>	Lower contact darker grey + quartz					1						
<u> </u>	<u> </u>	stringer, gradational increase in CO3.	95'	100'	5'	1	1	1			· ·	K. same as se	ction from 90'-95'
· · · ·	 +								-			slightly 1	ess CO ₃ ≈ 35%.
86'	115'	Ultramafic.	100	105	5	1						K, same as se	ction from 90'-95'
•		Dark grey to black in colour; heavily car-			1			1				CO3 15 511	gntly more con-
		bonated and inundated with carbonate stringers.	105	110	5	1	1		1			K camp as ab	Sumsusity.
<u> </u>		Carbonate effervesces in dilute hydro-				†	1		+			gouge mate	rial.
		chloric acid.	110	115	5	1	1					K. black in o	olour. less 003;
		Moderate to strongly magnetic, greasy to			1	+		+	+			CO3 is in	thin stringers;
	1	the touch; disseminated cubic pyrite through-			1	†			+	++		<u> </u>	congly magnetic.
		out (-1%); fine grained, carbonate stringers,	115	120	5	1	1	+		+		Fine grained (chilled margins of a
		more irregular than in laminated section			1		+		+	++		diabase dy	ke; iractured, med.
		above; carbonate is not ankeritic.			†		•			+		magnetic.	. only weakly
		- @ 94' schistosity is at 75 ⁰ to core axis.	1		1				+	++		i	
		- @ 88' there is a qtz vein ≈ 2 ", some chlorite		•	<u> </u>		1	• .		++			
		+ CO ₃ .					+	+		++		· 	
		From 92'-94' disseminated cubic pyrite (±1%).	· ·						+	++			
		- @ 102' schistosity is at 87° to core axis.	1				1	1	+	┼───┼		······	
		- @ 107' schistosity is at 60° to core axis.					1	† <u>.</u>		 -		······································	
		Lower contact sharp, but at 115.5' there						+	+	 -	+		
		is a 2-inch band of ultramafic; therefore,	1						<u> </u>	 -			
		some interfingering at the contact.	1				†		<u> </u>	<u>├</u>			
	, and a state of the				<u>{</u> {				<u></u>				

UIAMUNU DRILL REPORT

•

•

¢

.

•		• • • • • • • • • • • • • • • • • • •	VIAMUNU	UXILL	REPU:			• · ·	Hc	le N	.	DE-1-1-82 5.	
	I	ROPERTY Denton #1-80 Group	_			•			•	•			
	7	Township Denton Township										•	
From	То	DESCRIPTION	From	То	Width		<u>.</u>		-		-		
115'	130'	Chilled Margin of a Diabase Dyke										Description of Samp	1e
***********		- dark grev in colour.									· · ·		
	1	- fine grained.				<u> </u>							
	1	- slightly magnetic (less magnetic than			1						_		
•		ultramafic).											
	1	- somewhat fractured throughout.											
	1												
130'	288'	Matachewan Diabase Dyke											
	1	- medium to coarse grained, dark grey in											
		colour, grading to light grey.					1		· ·				
	1	- moderately magnetic, still not as magnet	ic										
	1	as the ultramafic @ 112'.								<u> </u>			<u> </u>
•		- areas of local bleaching @ 134' and @ 16	3'.						· ·			· · · · · · · · · · · · · · · · · · ·	
			:										
				·							+		
		END OF HOLE @ 288' in medium grained					<u> </u>		1				
		diabase dyke.	•										·····
									<u> </u>			•	
	1	John Mousta		••••••••••••••••••••••••••••••••••••••							<u> </u>		
difference of	1					· · ·							
					<u> </u> ↓								
· • • • • • • • • • • • • • • • • • • •	1									<u></u>			
	4				·						<u> _</u>		

Location: L3680mW/1020mS	DIAMOND DRILL REPORT	HOLE NO. DE-1-2-82	1.
Core Size: BQ	PROPERTY : DENTON #1-80 GROUP		_
Azimuth: Vertical	Township : Denton Township	Commenced: May 7, 1982	
Elevation: Surface	Location of Collar from #3 Post of P.568503	Finished : May 10, 1982	
Dip: -90° @ Collar; @ 200'-84.5°	N 120m E 190m	Contractor: Bradley Bros.	

•

4 -

•

From	То	DESCRIPTION	From	То	Width		Description of Sample
0	2'	Overburden.	9'	11'			Lost Core.
			20.5	25			lost Core.
	250'	Andesite Tuff		1			······································
		- the colour varies from light grey to dark	5'	· 9'	4'		Art grey in colour, one 4" gtz
		green (highly chloritic).					veinlet with chlorite, some
		- fine grained.	25	26	7,		
		- numerous quartz and carbonate stringers		<u> </u>	╎──╧──╎───		A2T, Chioritic, 1" of dtz plus minor carbonate, some diss.Py
		are present throughout, often concurrent					laminae as well.
		to the bedding in the upper part of the	26	27	7		D-T with 5" other contensity
		unit, but much less so between 115'-142',					plus chlorite, somewhat crenu-
		160'-194' - these sections approach	35	26	7		lated with one cube of Pyrite.
		chlorite carbonate schist.		- 30	<u>+</u>		A ₂ T chloritic, schistose; some disseminated pyrite (=1%).
		- the core is non-magnetic with one notable	36	37	1		Aor with corbonate lamines = 2"
		exception, the section from 49' to 52'					section contains up to 5% dis-
		which is strongly magnetic; at 50' up to	37	10			seminated pyrite.
		4% cubic magnetite has been observed.		40			A2T chloritic, with some diss.Py
		- most of the core effervesces strongly when	48	50	2		Apr with magnetite (#28) + fault
		hydrochloric acid is applied; the sections					gouge.
		which only react weakly are from 105'-130'.	50	55	5		And minor carbonate laminage norm
		159'-217', and 232'-250'.					diss.py ±1%, magnetite in first
		- the core is moderately ankeritic, and					<u>2' (±2%) assayed for Au, Ag, Ni</u> (pom).
		strongly ankeritic from 105'-130'. 158'-	65	66		· · · · · · · · · · · · · · · · · · ·	
		217', 232'-250'.		00	<u>_</u>		A2T, less chloritic, 30% gtz carb.

DIAMUNU DRILL REPORT

Hole No.

.

~*

· . ·

DE-1-2-82

.

·2.

PROPERTY_

Denton #1-80 Group

•

Township_ Denton Township

. 0	ТО	DESCRIPTION	From	То	Width				Description of Sample
		- the core is non-conductive.			1				
_		- the schistosity varies between 18° and 50°	66'	70'	4'	 		╺┼───┼	 AcT loss chloritic minor
.		from the core axis.							 diss. Py (<1%); some hematite
		- a number of quartz carbonate veins are seen				 			 staining.
		throughout, chlorite is often associated	80	81.5					 A2T chloritic, minor diss.Py (<1%) very thin crenulated
		with the quartz.				 			 laminae of carbonate. Assayed for As (ppm), Au.
		- some tourmaline is visible in a quartz	81.5	82 5		 	·		
		veinlet @ 146'.	01.0	02.5		 			 A ₂ T, chloritic with very thin
		- some sections containing fault gouge material.				 		<u> </u>	 concurrent to laminae (<1%);
		are observed throughout the hole, i.e. 48'	·			 			 to laminae (18). Assayed
		45' and 124'				 		·	 for Au, As (ppm).
		the chloritic content of the second in the	82.5	85	2.5	 			A ₂ T, chloritic, 20% qtz CO ₃
		- the chloritic content of the core is quite				 			stringers, some sericite and some diss. Pyrite (118).
		variable; in fact, some sections are almost						•	Assayed for Au, As (ppm).
		entirely schistose chlorite with carbonate;	85	89	4				 Art, chloritic, 10% atz-003
		i.e. 171' and 185'.		•	·	 	· ·	-	 stringers.
		- one section containing sericite was observed	105	107	2	 · · · · · ·		<u> </u>	 Art, chloritic, one 1" gtz-002
		@ 152.7'.							 veinlet, some diss.cubic Pyri
		- the core has a high carbonate component,	107	110	3	 			 (=2%).
		often interbedded with the tuff forming a				 			 stringers which are often cre
		laminated appearance which commonly shows		•		 •			 ulated, some diss.cubic pyrit
1		tight crenulations; the carbonates also	115	120		 			
1		occur closely associated with the quartz		120		 			 A2T, heavily carbonated, up to 2
		Veinlets as well as unconcurrent stringers				 			 schistosity.

.

•

.

DIAMOND DRILL REPORT

Hole No.

•

DE-1-2-82

3.

PROPERTY_ Denton #1-80 Group

/

•

Township___ Denton Township

٠

To	DESCRIPTION	From	То	Widt	h				Description of Sample
	of carbonate. The carbonate content is	1251	1 201						
	estimated to be as much as 40% in some sections	125	130	5					A2T grey in colour inundated wi
1	i a from 1801 to 1851								(133) (2 large cubes $\approx 4mm$).
	1.e. 110m 180 10 185 .			<u> </u>	· ·				Assayed for Au, NI (ppm).
<u> </u>		140	142	2	_				A ₂ T, dark grey in colour, 10% g carb. strs + chlorite, 2 patch
	Mineralization:								of brownish red alteration mineral (sericite?), diss.Pv(<
	- disseminated pyrite sometimes in the form	142	145	3					AoT + thin crenulated carbonate
1	of small cubes up to 2mm in size have been								laminae & I small qtz veinlet.
	observed throughout the core.	145	147	2			<u></u>		A ₂ T + 1 qtz vein + tourmaline
	- overall the percentage of disseminated .	155	160	5					stringers.
	pyrite is less than 1%, but local concen-		_ <u></u>		1				very fine diss. Py throughout
	trations of 1 or 2 inches contain up to 5%								as well as the odd small cube
	(i.e. @ 36').	175	180	5	+				A2T could be carb.chlorite schi
	- cubic magnetite mineralization was observed								to the bedding + non concurrent
	between 49.5' and 52' (<38)								A couple of cubes of Py (<1%).
l	- at 82 feet, a stringer with arsenonyrite was	_205	210	5				_	A2T heavily carbonated, little of
	at oz iect, a stinger with dischopylice was		•			_			no diss.Py. Assayed for Au, N: (ppm).
	observed paralleling a stringer with disseminated	235	240	5	•				A ₂ T well laminated with 2 qtz
	pyrite; over 2", the percentage of arseno-								veins totalling 8" in width,
	pyrite ≈1%.	248	250	2					ApT well laminated with 1 gtz
									veinlet containing no sulphide
	· ·								last 2 inches of core has up t 3% cubic pyrite.
	END OF HOLE @ 250'	190	195	5				┥━──┤╼	
	1 1 M		175				_		A21 heavily carbonated, dissemi-
1	yohe May			*	1				
		To DESCRIPTION of carbonate. The carbonate content is estimated to be as much as 40% in some sections i.e. from 180' to 185'.	To DESCRIPTION From of carbonate. The carbonate content is 125' estimated to be as much as 40% in some sections 125' i.e. from 180' to 185'. 140 Mineralization: 140 - disseminated pyrite sometimes in the form 142 of small cubes up to 2mm in size have been 145 - overall the percentage of disseminated 155 pyrite is less than 1%, but local concen- 145 (i.e. @ 36'). 175 - cubic magnetite mineralization was observed 175 - at 82 feet, a stringer with arsenopyrite was 205 observed paralleling a stringer with disseminated 235 pyrite; over 2", the percentage of arseno- 248	ToDESCRIPTIONFromToof carbonate. The carbonate content is125'130'estimated to be as much as 40% in some sections125'130'i.e. from 180' to 185'.140142Mineralization:140142of small cubes up to 2mm in size have been142145observed throughout the core.145147- overall the percentage of disseminated155160pyrite is less than 1%, but local concention145147(i.e. @ 36').175180- cubic magnetite mineralization was observed205210- at 82 feet, a stringer with arsenopyrite was235240pyrite; over 2", the percentage of arsenotion235240pyrite ≈1%.248250190END OF HOLE @ 250'190195Mathematical and the second and the	ToDESCRIPTIONFromToWidtherof carbonate. The carbonate content is125'130'5'estimated to be as much as 40% in some sections125'130'5'i.e. from 180' to 185'.1401422Mineralization:1401422	To DESCRIPTION From To Width of carbonate. The carbonate content is 125' 130' 5' estimated to be as much as 40% in some sections	To DESCRIPTION From To Width of carbonate. The carbonate content is 125' 130' 5' estimated to be as much as 40% in some sections 1 1 1 i.e. from 180' to 185'. 1 1 1 1 Mineralization: 1 1 1 1 1 - disseminated pyrite sometimes in the form 142 145 3 1 of small cubes up to 2mm in size have been 1 1 1 1 1 - overall the percentage of disseminated 155 160 5 1 1 - overall the percentage of disseminated 155 160 5 1 1 - cubic magnetite mineralization was observed 1	To DESCRIPTION From To Width of carbonate. The carbonate content is 125' 130' 5'	To DESCRIPTION From To Width Image: state of the stat