DRILLING COSTS / SEWELL PROJECT

S98-1 (Sewell West)claim#1212616 DRILLING(329.9m) Mobiliaztion Orientation(acid tests) Engineering 5 days at \$300/day Milleage(.35/km) Gas Assays	Total	16041.00 3547.50 200.00 1500.00 301.35 121.56 <u>389.48</u> \$22100.89
S98-2(Sewell West)Claim#1212615 Drilling(321.6m) Orientation Engineering 4 days at 300/day Milleage(.35/km) Gas Assays	2 . 1 909 Total	18159.60 300.00 1200.00 411.55 52.00 <u>205.32</u> \$20328.47
S98-3 (Sewell East)Claim#1128955 Drilling(271:3m) Orientation Mobilization Engineering 3 days at 300/day Assays Gas Milleage	Total	13118.75 200.00 1287.50 900.00 387.90 36.00 <u>300.00</u> \$16230.15
S98-4 (Sewell East)Claim#1128955 Drilling(168.1m) Orientation Engineering(3 days @ 300/ day) Assays Milleage Gas S98-5 (Sewell East)Claim#1128955 Drilling(431.4) Orientation Engineering(4 days @ 300 / day) Assays Milleage Gas Demob	RECEIVE DEC 0 7 1998 GEGASCIENCE ASSESSI OFFICE	7507.50 150.00 900.00 361.16 125.00 73.99 MENT 9117.65 19719.00 350.00 1200.00 685.00 150.00 121.60 1400.00
	Total	\$23625.60

42A05SW2002 2.19092

010

To: EAST WEST RESOURCE CORP.

~*

Page Number : 1-A Total Pages : 1 Certificate Date: 23-MAR-98 Invoice No. : 19814401 P.O. Number : Account : NMZ

Analytical Chemists * Geochemists * Registered Assayers North Vancouver V7J 2C1 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1

Project : SEWELL Comments: ATTN: B.MIDDLETON FAX: M.MacISAAC

											CE	RTIFI	CATE	OF A	NALY	(SIS	<u> </u>	\9814	401		
SAMPLE	PR CO	ep De	Ag ppm	A1 %	ybu Ya	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
697183 697184 697185 697186 697281	205 205 205 205 205	226 226 226 226 226 226	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.6	2.49 2.43 2.11 1.74 1.72	2 4 < 2 < 2 < 2	90 < 10 60 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.52 0.94 0.49 0.63 2.08	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	40 48 46 26 92	783 944 726 661 34	44 83 75 23 908	3.44 3.77 3.60 2.60 6.27	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1	0.44 0.04 0.21 0.12 0.13	< 10 < 10 < 10 < 10 < 10 < 10	3.73 4.29 3.53 2.95 1.17	300 325 275 245 310	< 1 < 1 < 1 < 1 < 1 < 1
697282 697283 697284 697285 697285	205 205 205 205 205 205	226 226 226 226 226 226	0.8 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.89 1.44 1.92 2.25 1.56	< 2 < 2 < 2 12 < 2	20 10 130 10 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	2.14 2.43 1.71 1.91 0.67	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	256 25 32 76 19	41 38 33 1510 373	1970 244 201 184 13	10.35 3.51 5.35 4.83 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.11 0.57 0.06 0.52	10 10 < 10 < 10 < 10	1.21 1.16 1.74 5.51 2.22	355 315 305 545 280	1 1 < 1 < 1 < 1 < 1
697287 697288 697289 697290 697291	205 205 205 205 205	226 226 226 226 226 226	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.01 2.50 2.71 2.60 1.48	2 < 2 2 2 6	90 150 150 140 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.93 1.03 0.62 0.49 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	39 33 65 68 108	1205 694 780 933 884	13 77 102 221 582	3.75 3.29 3.65 3.66 5.38	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.70 0.85 1.20 1.22 0.08	< 10 < 10 < 10 < 10 < 10 < 10	5.02 3.57 3.94 3.99 8.65	520 300 265 245 525	< 1 < 1 3 1 < 1
697292 697293 697294 697295 697295 697296	205 205 205 205 205	226 226 226 226 226 226	0.2 0.2 0.4 0.6 0.4	1.44 1.23 1.67 1.75 4.18	6 < 2 2 2 6	10 10 < 10 < 10 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.76 0.44 0.45 0.88 2.66	< 0.5 < 0.5 < 0.5 0.5 < 0.5	88 87 119 110 30	876 666 1090 1090 80	174 273 492 395 407	5.77 5.31 4.84 5.10 8.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.08 0.02 0.03 1.06	< 10 < 10 < 10 < 10 < 10 20	9.20 9.42 9.30 9.46 2.64	675 650 475 525 715	< 1 < 1 < 1 < 1 < 1 2
					<u></u> , ,.																

Г

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EAST WEST RESOURCE CORP.

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1

Page Number :1-B Total Pages :1 Certificate Date: 23-MAR-98 Invoice No. :19814401 P.O. Number : NMZ Account

Project : SEWELL

Comments: ATTN: B.MIDDLETON FAX: M.MacISAAC

CERTIFICATE OF ANALYSIS

A9814401

.

-

trach Finalls

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EAST WEST RESOURCE CORP.

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1

Page Number :1-A Total Pages :2 Certificate Date: 17-MAR-98 Invoice No. :19814176 P.O. Number : Account NMZ

Project : SEWELL Comments: ATTN: B.MIDDLETON FAX: M.MacISAAC

CERTIFICATE OF ANALYSIS

A9814176

~*

SAMPLE	PREP CODE	Au ppb AFS	Pt ppb AFS	Pd ppb AFS	yd yd	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm
697187 697188 697189 697190 697191	205 220 205 220 205 220 205 220 205 220	6 < 2 6 < 2 6 < 2 5 < 2 5 < 2 6 < 4	<pre>< 5 10 < 5 < 5 5</pre>	< 2 18 12 < 2 20	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.83 1.33 2.18 1.85 1.87	< 2 2 14 4 < 2	60 < 10 100 < 10 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.51 0.35 1.23 1.35 0.66	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	73 80 53 68 62	858 1030 1140 1425 1090	76 221 18 12 191	5.63 5.64 3.93 5.25 4.15	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.23 0.04 0.54 0.02 0.32	< 10 < 10 < 10 < 10 < 10
697192 697193 697194 697195 697195	205 220 205 220 205 220 205 220 205 220 205 220	6 < 2 6 < 2 6 < 2 6 < 2 6 < 4 6 < 4 8	<pre>< 5 15 5 150 395</pre>	12 40 26 1710 900	< 0.2 < 0.2 < 0.2 < 0.2 0.4 0.2	1.40 1.28 1.22 0.79 2.25	2 < 2 < 2 < 2 < 2 < 2 < 2	20 40 50 30 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.36 0.25 0.25 0.91 1.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	78 95 82 382 136	950 727 616 49 401	44 83 117 597 947	5.73 5.66 5.47 10.50 5.87	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.14 0.25 0.09 0.77	< 10 < 10 < 10 < 10 < 10 < 10
697197 697198 697199 697200 697251	205 22 205 22 205 22 205 22 205 22	6 < 2 6 < 2 6 < 2 6 < 2 6 < 2 6 < 2	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.83 1.14 1.39 1.36 5.04	< 2 < 2 < 2 < 2 < 2 < 2 < 2	50 30 40 30 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.38 1.91 2.01 2.20 0.44	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	20 11 17 17 50	67 54 67 43 328	18 4 12 23 14	5.70 3.18 2.85 3.29 6.73	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.19 0.11 0.19 0.15 0.12	< 10 < 10 < 10 < 10 < 10 < 10
697252 697253 697254 697255 697256	205 22 205 22 205 22 205 22 205 22 205 22	6 < 2 6 20 6 30 6 < 2 6 < 2	<pre>< 5 < 5 15 < 5 < 5 < 5</pre>	< 2 4 6 < 2 < 2	< 0.2 0.6 1.2 < 0.2 < 0.2	4.71 1.92 2.02 2.22 2.27	2 < 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.27 0.65 1.04 3.27 2.66	< 0.5 < 0.5 1.0 < 0.5 < 0.5	51 79 77 50 46	940 1580 1525 1555 1575	1 939 1400 41 19	5.42 3.66 3.40 5.38 5.31	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10
697257 697258 697259 697260 697261	205 22 205 22 205 22 205 22 205 22 205 22	6 < 2 6 < 2 6 < 2 6 < 2 6 < 2 6 < 2	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.00 1.92 2.43 2.54 3.02	2 < 2 < 2 < 2 < 2 2	< 10 < 10 50 110 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	2.33 3.32 3.09 1.78 2.88	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	45 46 51 43 47	1230 1390 1020 347 1105	98 32 74 118 74	4.26 4.96 5.19 4.77 5.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	<pre> 0.01 0.01 0.53 0.94 0.70 </pre>	< 10 < 10 < 10 10 < 10
697262 697263 697264 697265 697265	205 22 205 22 205 22 205 22 205 22 205 22	6 < 2 6 < 2 6 < 2 6 < 2 6 < 2 6 26	<pre>< 5 < 5 < 5 10 < 5</pre>	< 2 < 2 < 2 10 < 2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	2.17 3.01 3.65 3.32 3.71	< 2 < 2 < 2 < 2 < 2 < 2 < 2	10 40 180 360 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.39 1.96 3.75 3.66 6.85	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	37 41 44 48 36	1110 1150 437 231 204	57 40 99 81 104	3.92 4.35 5.54 6.81 7.57	< 10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.16 0.69 0.91 0.17	< 10 < 10 10 < 10 < 10
697267 697268 697269 697270 697271	205 22 205 22 205 22 205 22 205 22 205 22	6 < 2 6 < 2 6 < 2 6 < 2 6 < 2 6 < 2	<pre>< 5 5 5 < 5 < 5 < 5</pre>	< 2 10 4 6 < 2	0.2 0.2 0.2 0.6 0.6	3.84 4.50 4.77 4.94 4.83	< 2 < 2 12 10 < 2	60 30 10 30 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6.37 5.86 5.89 6.40 9.31	< 0.5 < 0.5 < 0.5 2.0 1.5	37 43 49 70 65	161 272 294 779 743	119 69 55 97 192	8.04 9.67 9.34 9.50 8.97	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.21 0.12 0.02 0.06 0.04	< 10 < 10 < 10 < 10 < 10 < 10
697272 697273 697274 697275 697276	205 22 205 22 205 22 205 22 205 22 205 22	6 < 2 6 < 2 6 < 2 6 < 2 6 < 2 6 < 2	<pre>< 5 < 5 < 5 5 10</pre>	4 < 2 < 2 12 34	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	5.31 3.26 2.09 1.70 1.70	2 < 2 4 < 2 < 2 < 2	< 10 < 10 10 60 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6.36 0.41 1.46 0.70 0.78	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	61 61 73 72	684 1560 1455 986 1110	84 4 5 1 1	9.53 3.48 3.72 5.11 5.15	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.02 0.06 0.30 0.11	< 10 < 10 < 10 < 10 < 10 < 10

tank Bielle " CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EAST WEST RESOURCE CORP.

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1

Page Number : 1-B Total Pages : 2 Certificate Date: 17-MAR-98 Invoice No. : 19814176 P.O. Number , NMZ Account

Project : SEWELL Comments: ATTN: B.MIDDLETON FAX: M.MacISAAC

~*

											CEI	RTIFI	CATE	OF A	NALY	'SIS		981417	6
SAMPLE	PRE	IP DE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ррт	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
697187	205	226	7.08	530	< 1	0.04	723	220	< 2	< 2	6	8	0.05	< 10	< 10	44	< 10	34	
697188	205	226	8.63	465	< 1	0.02	796	100	< 2	< 2	5	3	0.01	< 10	< 10	43	< 10	22	
697189	205	226	6.57	500	< 1	0.02	548	120	< 2	< 2	6	17	0.05	< 10	< 10	46	< 10	32	
697190	205	226	8.95	565	< 1	0.01	873	80	2	< 2	8	16	0.02	< 10	< 10	49	< 10	32	
69/191	205	226	6.76	450	< 1	0.03	/43	120		< 2	•	y	0.03	< 10	< 10	43	< 10	<u> </u>	
697192	205	226	8.97	540	< 1	0.03	985	70	< 2	< 2	4	4	0.02	< 10	< 10	32	< 10	20	
697193	205	226	9.31	685	< 1	0.03	1130	70	< 2	< 2	4	4	0.02	< 10	< 10	26	< 10	20	
69/194	205	226	9.63	675	< 1	0.03	1050	90	< 2	< 2	4	5	0.02	< 10	< 10	24	< 10	16	
697195	205	226	0.11	322	- 1	0.11	10000	210	10		5	12	0.01	× 10	< 10	40 50	< 10	49	
037130	405	440	4./4	355	<u> </u>	0.14	4090	A10				13	0.07	<u> </u>	<u> </u>		< 10 		
697197	205	226	1.75	320	< 1	0.26	113	330	< 2	< 2	7	22	0.07	< 10	< 10	49	< 10	36	
697198	205	226	1.01	270	< 1	0.18	45	340	< 2	< 2	4	21	0.09	< 10	< 10	34	< 10	30	
697199	205	226	1.01	255	< 1	0.15	69	340	< 2	< 2	3	12	0.12	< 10	< 10	45	< 10	38	
697200	205	226	1.38	340	< 1	0.17	62	320	< 2	< 2	6	18	0.13	< 10	< 10	43	< 10	70	
697251	205	226	5.06	900	< 1	0.01	108	420	2	< 2	6	10	0.14	< 10	< 10	108	< 10	90	
697252	205	226	5.95	620	< 1	0.01	302	140	< 2	< 2	3	2	0.05	< 10	< 10	63	< 10	72	
697253	205	226	3.76	270	< 1	< 0.01	659	80	< 2	< 2	3	6	0.01	< 10	< 10	59	< 10	52	
697254	205	226	3.66	315	< 1	0.02	661	90	10	< 2	3	9	0.01	< 10	< 10	51	< 10	136	
697255	205	226	5.15	1075	< 1	< 0.01	391	60	< 2	< 2	12	65	0.01	< 10	< 10	66	< 10	40	
097230	405	440	5.31	1010	< 1	< 0.01	346	70	4	< 1	13	69	0.01	< 10	< 10	67	< 10	30	
697257	205	226	4.05	645	< 1	< 0.01	310	110	< 2	< 2	7	33 -	< 0.01	< 10	< 10	60	< 10	22	
697258	205	226	4.70	1115	< 1	< 0.01	358	60	< 2	< 2	12	74	< 0.01	< 10	< 10	67	< 10	20	
697260	205	220	4.40	115	< 1	< 0.01	311	270	< 2	< 2	9	/1	0.10	< 10	< 10	90	< 10	34	
697261	205	226	3.43	44U 790		< 0.02	202	250	. 1		-	50	0.12	< 10	< 10	99	< 10	40	
		AA 0		/60		<u> </u>		A 50		· · ·			0.14	<u> </u>	<u> </u>		~ 10	40	
697262	205	226	3.72	720	< 1	0.01	234	140	2	< 2	9	35	0.03	< 10	< 10	57	< 10	36	
697263	205	226	4.01	540	< 1	0.01	215	190	< 2	< 2	5	36	0.07	< 10	< 10	57	< 10	46	
69/264	205	226	3.82	820	1	0.02	168	560	< 2	< 2	11	91	0.12	< 10	< 10	84	< 10	62	
697266	205	220	2.13	935	45	0.07	100	200	< 2	< 2	18	69	0.19	< 10	< 10	133	< 10	78	
	405	440	4.39	1465	340	0.04	100	360	1	< 4	29	58	0.14	< 10	< 10	229	< 10	148	
697267	205	226	2.51	1500	9	0.01	76	330	< 2	< 2	32	60	0.10	< 10	< 10	255	< 10	100	
697268	205	226	1.98	1670	< 1	0.01	140	170	< 2	< 2	35	49	0.04	< 10	< 10	177	< 10	120	
69/269	205	226	2.23	1430	< 1	0.01	126	220	< 2	< 2	39	33	0.04	< 10	< 10	210	< 10	208	
697271	205	226	2.85	1510	< 1	< 0.01	202	1.60	5	< 2	30	44	0.08	< 10	< 10	180	< 10	500	
		440	4.91	1/30		. 0.01	1/0	T90	<u>∡</u>	< 4 	41	5/	0.13	< 10	< 10	1/8	< TO	404	
697272	205	226	3.14	1440	4	< 0.01	245	210	6	< 2	31	28	0.13	< 10	< 10	193	< 10	256	
697273	205	226	6.35	285	< 1	< 0.01	894	90	2	< 2	1	7	0.03	< 10	< 10	27	< 10	26	
697274	205	226	7.59	395	< 1	0.01	893	60	< 2	< 2	4	14	0.01	< 10	< 10	32	< 10	18	
69/2/5	205	226	10.80	465	< 1	0.03	1200	70	< 2	< 2	6	11	0.03	< 10	< 10	39	< 10	18	
031410	405	440	10.65	405	< 1	0.03	1135	60	< 1	< 2	1	11	0.03	< 10	< 10	41	< 10	24	
L			L								,,								

and Biells CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: EAST WEST RESOURCE CORP.

~*

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1 Page Number :2-A Total Pages :2 Certificate Date: 17-MAR-98 Invoice No. :19814176 P.O. Number : Account :NMZ

A9814176

Project : SEWELL Comments: ATTN: B.MIDDLETON FAX: M.MacISAAC

CERTIFICATE OF ANALYSIS

PREP Au ppb Pt ppb Pd ppb λg **A1** λs Ba Be Bİ Ca Cđ Co Cr Cu Fe Ga Ħg ĸ La SAMPLE CODE AFS AFS AFS × % % % ppm DDM ppm ppm ppm ppm ppm ррд ppm DDI ppm ppm 697277 205 226 0.08 < 2 < 5 14 < 0.2 1.93 10 < 0.5 < 2 1.08 < 0.5 56 919 49 3.53 < 10 < 1 < 10 < 2 697278 205 226 20 3.71 < 2 18 < 0.2 2.08 < 2 10 < 0.5 < 2 10.70 < 0.5 19 592 3 < 10 < 1 0.12 < 10 697279 205 226 16 < 5 < 2 0.2 2.11 < 2 70 < 0.5 < 2 1.37 < 0.5 32 56 905 5.15 < 10 < 1 0.34 < 10 697280 205 226 2 < 10 < 4 1.0 2.11 4 40 < 0.5 < 2 2.24 1.5 151 45 1060 9.07 < 10 < 1 0.18 < 10

CERTIFICATION Hank Bielle

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EAST WEST RESOURCE CORP.

201 - 960 RICHARDS ST. VANCOUVER. BC V6B 3C1

Page Number : 1-A Total Pages : 1 Certificate Date: 02-APR-98 Invoice No. : 19815081 P.O. Number Account NMZ

Project : SEWELL

Comments: ATTN: BOB MIDDLETON FAX: M. MacISAAC

~*

											CE	RTIF	CATE	OF A	NAL	YSIS	/	4981 5	081		
SAMPLE	PRI	ep	Au ppb	Ag	A1	As	Ba	Be	Bi	Ca	Cđ	Co	Cr	Cu	Fe	Ga	Hg	R	La	Mg	Mn
	CO	De	FA+AA	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm
SAMPLE	205	DE	FA+AA	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm
697297		226	< 5	< 0.2	1.55	< 2	80	< 0.5	< 2	1.64	< 0.5	27	87	217	3.76	< 10	< 1	0.32	< 10	1.42	320
697298		226	< 5	0.2	1.99	2	10	< 0.5	< 2	1.00	< 0.5	51	1405	7	4.01	< 10	< 1	0.09	< 10	6.94	300
																			-		

CERTIFICATION: 1 Stant Frank Sen

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EAST WEST RESOURCE CORP.

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1 Page Number :1-B Total Pages :1 Certificate Date: 02-APR-98 Invoice No. :19815081 P.O. Number : Account :NMZ

Project : SEWELL Comments: ATTN: BOB MIDDLETON FAX: M. MacISAAC

~*

											CE	RTIFI	CATE	OF A	NALY	SIS	A9815081	
SAMPLE	PRE COE	IP DE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm		
697297 697298	205	226 226	<pre></pre>	0.19 0.04	362 749	540 140	<pre></pre>	<pre> < 2 < 2 < 2 </pre>	9 6	14 9	0.10 0.03	<pre></pre>	< 10 < 10	75 44	< 10 < 10	40 24		
l																		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EAST WEST RESOURCE CORP.

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1

Project : SEWELL Comments: ATTN: B.MIDDLETON FAX: M.MacISAAC

~*

Page Number : 1 Total Pages : 1 Certificate Date: 28-MAR-98 Invoice No. : 19815067 P.O. Number : Account : NMZ

					CERTIFIC	ATE OF A	NALYSIS	A98	15067	
SAMPLE	PREP CODE	Ni %								
697196	244	0.62								
								-	i i	
			ļ							
				:						
]
									1-1	٨
						,	CERTIFICATIO	N: Sar	LEIN	9.00

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver V7J 2C1 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EAST WEST RESOURCE CORP.

201 - 960 RICHARDS ST. VANCOUVER, BC V6B 3C1

Project : SEWELL Comments: ATTN: BOB MIDDLETON FAX: MIKE MacISAAC

~*

CERTIFICATION:

Page Number : 1 Total Pages : 1 Certificate Date: 28-MAR-98 Invoice No. P.O. Number :19815066 :NMZ Account

			CER	TIFICATE OF ANALYS	S A9815066	
SAMPLE	PREP CODE	Ni %				
697173 697174 697175 697176 697177	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.41 0.51 0.37 0.44 1.19				
						A D

	0		0									
SAMPLE #	*											
SAMPLE #	HOLE#	FROM	то	WIDTH	Sample Description							
697151	S98-1	79.2	80.2	1	Qtz stringes, tr py, mod chi							
697152	2 S98-1	80.2	81.2	1	Chlorite. qtz stringers, local ankerite, tr py							
697153	S98-1	81.2	82.2	1	Mod-str chl-bio, tr py,qtz stringers							
697154	S98-1	92.7	93.7	1	2-3% py, chl alt. 2-4% qtz stringers							
697155	5 S98-1	93.7	94.7	1	3-4% po, 1% py, str chlorite alt, mafic							
697156	S98-1	94.7	95.7	1	mafic, str chlorite, 1-3% po-py, tr cpy with qtz stringers							
697157	S98-1	95.7	96.7	1	Mafic, str chlorite, 1-3% po-py							
697158	S98-1	96.7	97.5	0.8	tr-1% py-po disseminated							
697159	S98-1	97.5	98.5	1	7-10% po, 1% py, tr cpy, 5-10% garnets, strong chlorite							
697160	S98-1	98.5	99.5	1	Str chlorite, tr-1% py-po, mafic							
697161	S98-1	99.5	100.5	1	Str sil, gtz stringers, weak calcite							
697162	S98-1	100.5	101.5	1	6% po along fractures, 1% cpy, str sil							
697163	S98-1	101.5	102.5	1	6% po, 15 cpy, str sil-carb							
697164	S98-1	102.5	103.5	1	4-6% po, str sil, mod chlorite, mod carb							
697165	S98-1	103.5	104.5	1	2-4% po, str chl, mafic							
697166	S98-1	104.5	105.5	1	Argillite, 5% po, 1% pv, atz stringers							
697167	S98-1	239.1	240.1	1	Argillite, 4-6% pg, 2-3% py, graphite gtz stringers							
697168	S98-1	240.1	241.1	1	Argillite, 4-5% po, 1-2% pv, mod chl alt, gtz stringers							
697169	S98-1	241.1	242.1	1	Argillite tr-1% disseminated pyrite							
697170	S98-2	185	186	1	Araillite tr ny, str sil							
697171	598-2	186	187	1	Araillite tr ny str sil							
607172	S98-2	187	188	1	arcillite tr ovrite along fractures sil							
R07172	598-3	173 45	174 35		fine orained nabbro 2.4% no. tr chy							
R07174	598-3	174 25	175 25	0.9	fine grained gabbro, 2-7/9 po, ti cpy							
607175	590-3	174.33	476.35		Cabbra 2 5% pp. black chlorite alega fractures							
697175	590-3	175.35	170.35		Cabbro, 3-5% pc, black chlorite along fractures							
607177	509-3	177.35	177.0	0.55	Beridetite semi massive no ny brassisted 2% onv							
607179	609.3	217.1	219	0.00	Grapitized gabbre 2% any 4.7% peoil mag							
697170	590-3	217.1	210		Grapitized gabbro, 3% cpy,4-7% posit, mag							
69/1/9	590-3	210	219		Granitized gabbio, 1-3% po, if cpy, cill all.							
69/100	290-3	218	220		Granitized Gabbio, 1-3% cpy, ti-1% cpy, si							
09/101	290-3	220	221		granized Gabbro, 3-5% po, tr cpy, chi, si							
69/182	598-3	240	245.3	0.3	Ultramatic, nornbiendite, 1-2% cpy, 1-3% py, mag, tr po							
69/183	248-3	109.45	170.45		Layered Gabbro, 1-2% po, rg-mg							
69/184	598-3	170.45	171.45	1	Layered gabbro, 1% po							
69/185	598-3	1/1.45	1/2.45	1	Gabbro, rg, 1% po							
69/186	598-3	1/2.45	1/3.45	1	Gabbro, 1% po, rg-mg							
697187	598-4	17.8	18.8	1	ultramatic, 2-3% py, tr po, magnetite along tractures							
697188	S98-4	18.8	19.8	1	ultramatic, 3% mag, 1% py-po,tr cpy							
697189	S98-4	19.8	20.8	1	Ultramatic, 2-3% mag, tr po							
697190	S98-4	20.8	21.8	1	Ultramafic, 2-4% maf, tr po, black chlorite							
697191	S98-4	21.8	22.8	1	Ultramafic, tr py-po, 2-3% mag along fractures							
697192	S98-4	22.8	23.8	1	Ultramafic, 1-3% mag, tr po-py							
697193	S98-4	23.8	24.8	1	Ultramaifc, 1-3% mag, tr py-po							
697194	S98-4	24.8	25.8	1	Ultramafic, tr py-po, mag							
697195	S98-4	61.48	61.6	0.12	Peridotite, semo-massive py-po, 1% cpy, brecciated							
697196	S98-4	61.6	62.35	0.75	Mineralized ultramafic, 2-7% stringer po, chlorite, 1% cpy							
697197	S98-4	62.35	63.35	1	Ultramafic, hornblendite, 1% po							
6971 98	S98-4	63.35	64.35	1	Ultramafic, hornblendite, 1% po							
697199	S98-4	64.35	65.35	1	Ultramafic, hornb, 1% po							
697200	S98-4	65.35	66.35	1	Ultramafic, homblendite, 1% po							
697251	S98-5	14.2	15.2	1	ultramafic, 1% py, 2-3% magnetite, feldspar phyric gabbro?							
697252	S98-5	15.2	16.2	1	Ultramafic, 1% py, 1% mag, black chlorite							
697253	S98-5	16.2	17.2	1	Ultramafic, 1-2% py, mag, black chlorite							
697254	S98-5	17.2	18.2	1	Ultramafic, 1% py, mag, black chlorie							
697255	S98-5	18.2	19.2	1	Ultramafic, 2% py-po, serpentinte, chlorite, mag							
697256	S98-5	19.2	20.2	1	Ultramafic, tr diss py, chl, 1-2% mag							
697257	S98-5	20.2	21.2	1	Ultramafic, tr py, chl, mag							
697258	S98-5	21.2	22.2	1	Ultramafic, tr py, mag, chl							
697259	S98-5	22.2	23.2	1	Ultramafic, tr py, mag, chl							
697260	S98-5	23.2	24.2	1	Ultramafic, tr py, mag, chl							
697261	S98-5	24.2	25.2	1	Ultramafic, tr py, chl							
697262	S98-5	25.2	26.2	1	Ultramafic, tr py, black chlorite,2% mag							
697263	S98-5	26.2	27.2	1	Sheared ultramafic, green chlorite, gtz veinlets							
697264	S98-5	27.2	28.2	1	Sheared mafic-ultramafic, 1-2% py-po. atz flooding. bio							
697265	S98-5	28.2	29.2	1	Same asabove							
697266	S98-5	61.8	62.8		prittle frac, ultramafic1-3% py-po, otz-calcite filling, chl							
697267	S98-5	62.8	63.8		Same as above							
697268	S98-5	63.8	64.8	1	Same as above							
697269	S98-5	64.8	65.8	1	Same as above							
697270	S98-5	65.8	66.8	1	Same as above							

SEWELL ASSAYS

697271	S98-5	66.8	67.8	1	Same as above
697272	S98-5	67.8	68.8	1	Same as above
697273	S98-5	68.8	69.8	1	Same as above
697274	S98-5	69.8	70.8	1	same as above
697275	S98-5	70.8	71.8	1	Ultramafic, serpentine, blk chl, mag
697276	S98-5	71.8	72.8	1	Same as above
697277	S98-5	72.8	73.8	1	Same as above
697278	S98-5	108.5	109.4	0.9	green carb alt. zone, brecciated, sil
697279	S98-5	258.25	259.2	0.95	Peridotite breccia, 1% py-po
697280	S98-5	268	269	1	Hornblendite, 1-4% finely disseminated po, 1% py, tr cpy
697281	S98-5	269	270	1	Hornblendite, 2-4% po, 1-2% py,, tr cpy
697282	S98-5	270	270.43	0.43	same as above
697283	S98-5	281	282	1	Hornblendite, tr-2% py along fractures, tr cpy
697284	S98-5	282	283.2	1.2	Same as above
697285	S98-5	290.5	291.5	1	Ultramafic, tr-1% py-po, bluish
697286	S98-5	291.5	292.5	1	Same as above
697287	S98-5	292.5	293.5	1	Same as above
697288	S98-5	293.5	294.5	1	Ultramafic, tr-1% py-po, bluish, biotite clots
697289	S98-5	294.5	295.5	1	Ultramafic, 2-3% po, 1-2% py, bluish, bio clots
697290	S98-5	295.5	296.25	0.75	Same as above, chi
697291	S98-5	. 326	327	1	Ultramafic, 2-4% po, 1% py, tr shiny silvery mineral, chl
697292	S98-5	327	328	1	Ultramafic, 2-4% po, 1% py, shiny silvery mineral
697293	S98-5	328	329.25	1.25	Same as above
697294	S98-5	343.5	344.5	1	fine grained ultramafic, 1-3% py-po, bluish
697295	S98-5	344.5	345.8	1.3	Same as above
697296	S98-5	384	385.1	1.1	Silicified, 1-3% py, 1% po, tr cpy, chl alt.
697297	S98-3	177.9	178.4	0.5	Gabbro, tr-1% po, stringers of chlorite
697298	S98-4	60.83	61.48	0.65	Granitized gabbro, tr-1% py-po

.

DIAMOND DRILL LOG EAST-WEST RESOURCE CORPORATION

PROPERTY HOLE#: S9 LOCATION CLAIM#: 1: DRILLED B LOGGED B CORE STOP	: SEWELL 8-1 : 1+00W/6+ 212616 8Y: Courte D Y: Michael N RAGE: 7 Hol	50N iamond Drilling MacIsaac Ilinger Iane, Schumacher	STARTED: Feb 16/98 FINISHED: Feb 18/98 DEPTH: 329.9m DIP: -45° AZIM: 360° TEST: ACID CORE SIZE: BQ							
FROM	то [.]	DESCRIPTION								
<u>- </u>	<u>10.</u>									
0.0	36.6	OVERBURDEN								
36.6	46.7	 MAFIC DIKE Unit is dark green medium grained and intensely fractured. Unit has a prominent fabric, possibly an amphibolite with abundant hornblende. Fracturing is commonly associated with hematite along fracture planes. Unit locally contains small zones of quartz-ankerite-calcite alteration(10-20cm) with strong fracturing and commonly associated with feldspar phyric phase of dike. Contact is moderate-strongly brecciated with no orientation possible. Unit has a diabasic texture. Several white quartz veins are present at very low angles to core axis, no mineralization. 38.3 39.5 White quartz vein at low angle to c.a., no pyrite REPS 38.1 Mafic Dike 								
46.7	94.7	ALTERED MAFIC-INTE : Medium grey-green, fine Unit appears to be pervasiv angular to rounded with m abundant quartz sweats and unmineralized and constitu chlorite alteration in associ forms an enveloping rims a several zones of ankerite-p silicification. Unit appears 46.7 52.0 Moderately 54.35 54.8 Strong chlo 61.94 62.1 Quartz-anko 69.6 69.9 Diabase Dil 92.7 94.7 Quartz strin chalcopyrite. Strong chlor Geco. Convoluted bedding REPS 71.6 Brecciated int-mafi	RMEDIATE BRECCIA e-medium grained and fractured near upper contact. vely brecciated. Fragments range from 0.5 to 5cm, sub oderate to strong calcite within matrix. Unit contains d veins at random orientations. Quartz is bluish grey, ites 3-10% of the rock. Unit locally contains moderate ated with calcite and quartz. Chlorite also commonly around more mafic fragments. Unit locally contains yrite zones ranging from 1-20 cm with moderate to be void of all primary features. -strong fractured at contact with mafic dike. rite alteration, strongly brecciated erite-pyrite zone ce gers with 2-10% pyrite-pyrrhotite, upto 1% ite, locally moderately magnetic. Similar to 1.F. at g c volcanic, wholerock							
94.7	106.2	INTERFLOW GRAPHITIC : Aphanitic to fine grained Unit is locally intensely sil upto 20cm. These bands at light grey. Intermixed with and altered pods ranging fr	C ARGILLITE WITH INT. VOLCANIC(po-py) , light grey to dark green and relatively unfractured. icified, possibly albitized with smokey grey bands re aphanitic and sometimes grade from dark grey to a these highly siliceous bands are strongly chloritic om 10cm to30cm. These chloritic zones contain							

locally 2-10% subhedral almandine garnets near or at the contact with the siliceous argillites as well as possibly several subhedral-anhedral cordierite crystals with the garnets locally. Quartz stringers are most commonly found within the siliceous argillites and are smokey grey to bluish in color. Both the argillite and chlorite schist are strongly folded exhibiting a convoluted texture with some intermixing. Mineralization appears to be restricted to the albitized siliceous agillite and locally minor pyrrhotite within the chloritic zones. Mineralization consists of 2-10% stringer to disseminated pyrrhotite and pyrite. Upto 1% chalcopyrite is present with association with pyrrhotite and calcite along fractures. Unit has moderate calcite locally. Both upper and lower contacts are gradational. Strongly silicified zones are strongly carbonated. 97.5 98.5 5-10% garnets, cordierite, mod-str chlorite Foliation's

104.8 50° to c.a. Siliceous bedding

106.2

119.0 UNMINERALIZED INTERBEDDED ARGILLITE & INT. VOLCANIC

: Aphanitic to fine grained, light to medium grey and locally banded. Unit is strongly siliceous and possibly albitized. Locally has darker green chloritic tuffaceous beds upto 15cm. Unit is relatively unfractured and massive. Unit locally has pinhead garnets(trace) within highly siliceous portions. Calcite is locally weak along fractures and locally within groundmass. Lower contact is relatively sharp and weakly brecciated. Unit is non-mineralized and very hard. Unit locally has porpyritic sections of recrystallized \ broken up feldspar. REPS

114.3 Siliceous-albitized argillite. WHOLEROCK

119.0 192.0

SILICIFIED MAFIC-INTERMEDIATE BASALT : Unit is medium to dark grey-green, fine grained and locally moderately

fractured with calcite. Unit exhibits some flow characteristic with portions being porphyritic indicating more the center of the blow. The upper portion of the unit is weakly to moderately brecciated indicating possibly a flow top breccia. Unit becomes more of an amygdaloidal basalt with calcium carbonate vesicles present upto 6mm(rounded). Unit is moderately to strongly silicified and possibly albitized. Unit is very hard similar to that of an intermediate to felsic unit. Abundant calcite stringers along fractures present. Unit contains several interflow argillite sections upto 2-3 feet. No mineralization is present. Silicification becomes less intense past 173m. amygdules are still present. Sharp contact.

124.5 129.6 Porphyritic flow

129.9 130.3 Interbedded argillite

REPS

144.6 Silicified mafic volcanic, fg

192.0

235.65

INTERMEDIATE CRYSTAL TUFF(sil, loc chl)

: Unit is light to medium grey, fine grained and locally weakly banded. Unit is relatively massive and unfractured. Unit ranges from a fine to coarse crystal tuff with clasts ranging from 0.4 to 2cm. Clasts are heterolithic, predominantly clasts of intermediate composition. Some smokey grey clasts are present as well as quartz eyes locally. Unit has a weak fabric, locally becoming moderate with the presence of chlorite and garnet. Unit is very hard and possibly ranges up into the felsic range in silica content. Unit contains weak to moderate calcite alteration locally within groundmass. Unit locally has strong chlorite-garnet zones upto 1m. Unit locally contains darker zones with 5% amygdules. These zones are upto 50cm. Several 10cm white, non-mineralized quartz veins are present. Clasts are weakly to moderately stretched from a 2:1 ratio to 4:1 further down section. Quartz clasts also become more prevalent down section as well as

an increase in biotite within matrix of crystal tuff. Locally crystal tuff grades into a fine lapilli tuff with several large quartz clasts. Crystal tuff is matrix supported and locally clast supported.

224.9 227.7 Moderate chlorite alteration.

Foliation's

230.2 55° to c.a. foliation

REPS

199.0 Garnet-Chlorite altered zone, strong

200.2 Silicified Intermediate volcanic, clear quartz eyes, WHOLEROCK

INTERBEDDED ARGILLITE & INTERMEDIATE VOLCANIC(po-py)

228.8 Lapilli tuff, heterolithic, biotite within matrix

: Unit is medium grey, fine grained and locally moderately fractured Unit is
weakly to moderately banded with 75% of the rock being argillite. Unit is
moderately silicified and locally choritized with sections upto 0.5m.
Mineralization is fairly localized with 3-5% po. 1-3% py and trace cpy locally.
Mineralization is mainly restricted to areas of chlorite alteration. Mineralization
occurs as stringers with associated quartz-carbonate stringers as well. Abundant
hairline fractures of quartz-carbonate is present throughout as well. Bedding
widths range from 0.5 to 5cm with younging upsection?. Both upper and lower
contacts are gradational. Unit is weakly to moderately magnetic.

236.87 237.15 Strong chlorite alteration, 1% cpy, 1% po, qtz-calcite.

239.5 240.7 4-6% pyrrhotite, 2-3% pyrite

241.0 241.15 Strong chlorite alteration, 5% py-po.

243.95 244.2 Strong chlorite alteration, magnetic

Foliation's

241.4 62° to c.a. bedding

247.35 329.9

235.65

247.35

HORNBLENDE PORPHYRY (dalmationite, spotted rock)

: Unit is medium grained, strongly hornblende porphyritic and massive. Unit is dark green, relatively hard and relatively unfractured. Unit locally has zones of moderate shearing with weak to moderate calcite within matrix.

286.1 290.0 Moderate shearing, calcite within matrix, weak silicification

300.5 302.4 Moderate shearing, calcite- within matrix, weak silcification

- REPS
- 110.5 Hornblende Porphyry

329.9 EOH

DIAMOND DRILL LOG EAST-WEST RESOURCE CORPORATION

PROPERTY: SEWELL HOLE#: S98-2 LOCATION: 4+00E/6+75N CLAIM#: 1212615 DRILLED BY: Courte Diamond Drilling LOGGED BY: Michael MacIsaac CORE STORAGE: 7 Hollinger lane, Schumacher			STARTED: Feb 18/98 FINISHED: Feb 22/98 DEPTH: 321.6m DIP: -45° AZIM: 360° TEST: ACID CORE SIZE: BQ
FROM:	<u>TO:</u>	DESCRIPTION	
0.0	50.1	OVERBURDEN	
50.1	91.1	FOLIATED MAFIC VOL : Fine to medium grained, foliated. Unit is relatively foliation planes and abund Banding is only present lo approaching intermediate quartz-calcite stringers. U is basically nil. Core angle little or no foliation with a Foliation's 62.5 23° to c.a. Foliat REPS 65m mafic volcanic.	CANIC (weak chlorite / biotite) , medium to dark green and moderately to strongly unaltered except for the presence of biotite along dant quartz-calcite veinlets locally along fractures. cally. Unit becomes slightly more silcified sin sections in composition. Chlorite is only present locally with init is moderately blocky and fractured. Mineralization es are low ranging from 20-35°. Unit locally exhibits definite decrease in silicification.
91.1	183.1	INTERBEDDED GREYW : Medium to dark grey, fir is strong and blocky. Unit 3cm. Bands range from a l rich. Locally unit is mode silicified as well as carbon quartz-calcite veinlets. Lo clasts. Locally unit is inter calcite alteration. Locally Unit is relatively unaltered portions and minor garnets 104.2 108.0 Fracture 126.4 128.2 Diabase of 130.3 131.4 2-4% Qu 132.0 133.1 Silicified 153.0 157.0 Fault Zon 165.6 168.1 Patchy ch 180.45 181.65 Diabase of Foliation's 110.2 35° to c.a. lami	ACKE / MAFIC VOLCANIC ne grained and moderately fractured. Fracturing locally is moderately laminated locally ranging from 0.5 to light grey siliceous to darker green-brown more biotite rately chloritic with minor pyrrhotite. Unit is locally ated both within the matrix and along fractures as cally unit appears tuffaceous with possibly lapilli sized nsely fractured with 75% core recovery and strong convoluted bedding is present possibly due to folding. except for spotty pyrrhotite associated with chlorite s. Several diabase dikes are present. zone dike artz Eyes ne, 70% core recovery, chlorite hlorite alteration. Dike, chilled margins, magnetic nations
183.1	194.5	ARGILLITE : Fine grained. light grey t	to dark grey-green and well laminated. Unit is

moderately-strongly fractured with abundant quartz-calcite stringers along fractures. Laminations range from light grey very siliceous bands to darker grey-

		green bands with moderate to strong chlorite alteration. Band widths range from 0.2 to 15cm and core angles are quite variable ranging from 35-65°. Unit is locally moderately altered with chlorite. Unit is weakly mineralized with tr-1% pyrite and locally trace chalcopyrite as well as locally weakly magnetic. Folliations 188.8 65° to c.a. laminations
194.5	218.0	 SHEARED GREYWACKE (chl) Medium to dark lime green, fine grained and strongly foliated to sheared. Unit is moderately to strongly clay altered as well as strongly chlorite altered. Strong folding is present as well as local kink banding. All primary features are completely obliterated except for most upper portion of unit where weak bedding is present. Core angles are quite variable ranging from 26-60° to c.a. Several possible lamprophyre dikes are present with possible glaucophane at contacts(bluish). Lower contact is very sharp and broken. Weak carbonate(calcite) within matrix and along fractures. 199.75 199.92 Lamprophyre dike 200.12 201.03 Lamprophyre dike Foliation's 218.0 47° to c.a. Lower contact.
218.0		 FOLIATED GREYWACKE : Fine grained, medium grey-green and weakly to moderately fractured. Unit is well foliated with local kink banding. Abundant calcite stringers are present (2-30mm) with local brecciation within veins with various orientations. Unit is weakly laminated locally. Unit is strongly folded with complete reversals of core angles within 40cm. Foliation's intensity increase down section towards contact with gabbro. Unit is locally weakly mineralized with 1-2% pyrite along fractures with associated chlorite alteration. Locally pervasive carbonate alteration is present upto 1m. 233.8 234.3 Moderate to strong chlorite, 2-3% pyrite 239.7 246.4 Sheared greywacke, result of proximity to gabbro 247.6 249.7 1-2% cubic pyrite Foliation's 234.5 45° to c.a. foliation's
249.7	279.9	GABBRO : Coarse grained, dark grey-green and weakly foliated. Unit is weakly fractured with minor calcite along fractures. Unit locally becomes finer grained where foliation's becomes more pervasive as does hornblende. Towards bottom of unit hornblende porphyroblasts occur making up 10-15% of the rock. Unit locally contains mafic xenoliths upto 20cm. Minor quartz stringers are present. Upper contact is fairly irregular dipping approx 45° to c.a. Lower contact is more gradational becoming more fine grained with hornblende porphyroblasts. Unit is relatively unmineralized.
279.0	321.6	MAFIC FLOW(unaltered) : Medium to dark grey-green, fine grained (locally medium grained) and weakly to moderately fractured. Unit is locally medium grained, possibly a coarser grained portion of the mafic flow. Unit is relatively massive and weakly- moderately foliated locally. Abundant small quartz veinlets are present at random orientations. Unit is relatively unmineralized except for several locations of pyrrhotite-pyrite mineralization as well as tr-1% chalcopyrite and trace sphalerite locally. Unit is locally weakly feldspar phyric.

285.5 285.75 10-15% po, 1% py, 1-2% cpy, tr sphalerite, quartz and strong chlorite alteration., semi-massive stringers.
288.3 288.74 Stringer pyrrhotite, 10-15% po, 1% cpy, silicified, moderate chlorite. 1% garnets, tr sphalerite Foliation's
284.4 37° to c.a. Foliation REPS
285.5 285.75 Mineralized zone as above
288.3 288 75 Mineralized zone as above.

321.6 EOH

,

DIAMOND DRILL LOG EAST-WEST RESOURCE CORPORATION

PROPERTY HOLE#: S9 LOCATION CLAIM#: 1 DRILLED H LOGGED E CORE STO	7: SEWELL 98-3 9: 0+50N/5+ 128955 3Y: Courte E 3Y: Michael RAGE: 7-Ho	50E Diamond Drilling MacIsaac Ollinger Iane, Schumacher	STARTED: Feb 23/98 FINISHED: Feb 25/98 DEPTH: 271.3m DIP: -45° AZIM: 90° TEST: ACID CORE SIZE: BQ	
FROM:	<u>TO:</u>	DESCRIPTION		
0.0	17.7	OVERBURDEN		
17.7	104.75	 GRAPHITIC LAYERED GABBRO (graphite) Medium- coarse grained, dark green to black. Unit is strongly fractured wis strong graphite and locally calcite along fractures. Unit is weakly to moderat layered with variations in composition and grainsize. Unit goes from a fine-medium grained dark green to black to medium-dark green-grey and medium coarse grained. Variations in composition and grain size is fairly gradual. The pyrite is present locally along fractures. Main constituents is include hornble and feldspar. Black chlorite as well as serpentine locally is present along fractures. Locally a diabasic texture is present. Small granitic leucocratic dilare present locally upto 15cm. 17.7 29.7 Strongly fractured with strong graphite. 50.3 68.6 Moderately fractured, locally moderate graphite-black chlorite 84.3 84.5 Strong graphite zone, sheared, possible fault, strong carbonate 84.5 85.4 Quartz vein, smokey-grey with gabbroic xenoliths. Biotite clowithin quartz. 102.9 104.75 Coarse grained gabbro, sil, 1-2% py Foliation's 84.3m 80° to c.a. Fault contact. Samples 		
104.75	141.7	CHLORITIC-GRAPHITIC : Fine to medium grained, ultramafic appearance Un soft, bluish color and weal metamorphism. Moderate strong emerald green serve throughout along hairline to locally. Upper contact is r sheared. Small granitic di An intensely silicified aph fractured. Unit is weakly to fractures. 111.7 112.45 Felsic a silicification in country roo 129.9 132.2 Strong-in strongly fractured at rando Foliation's	C ULTRAMAFIC(chl-graphite, loc. sil.soapstone) bluish-grey-green and weakly fractured. Unit has an it locally appears talcose along fractures, moderately c carbonate. Unit is locally weakly silicified due to to strong graphite is present locally with associated entine and black chlorite. Black chlorite is present randomly orientated fractures as a netted texture noderately sheared and lower contact is sharp and non- kes are present locally with associated silicification. anitic felsic dike is present and weakly to moderately mineralized with only trace pyrite locally along phanitic dike, intensely silicified, associated ck. netnese black chlorite-serpentine-graphite alteration, om orientations subparallel to 70 degrees.	

,

104.75m	75°	to c.a.	Upper contact
111.7m	65°	to c.a.	Upper contact with dike
141.7m	30°	to c.a.	Lower contact
Samples			
110.6m	ultra	mafic, th	in section, wholerock
131.6m	rep	serpen	tine-chlorite-graphite alteration
112 0		Estate	an

112.0m rep Felsic dike

141.7

167.7

177.35

LAYERED GABBRO

: Medium-coarse grained, dark green with a bluish tinge. Unit is moderately massive and locally weakly to moderately fractured. Unit appears layered ranging from a finer grained to coarse grained hornblende rich portion. Unit is relatively unaltered with minor epidote along fractures in fine grained portion. Upper contact is at a relatively shallow angle 30 degrees. Unit locally has small coarser grained potassic sections with the presence of potassium feldspar. Unit locally contains hematite along fractures as well as weak to moderate chlorite along fractures locally.

REPS

155.5m Coarse grained gabbro

167.7

FINE GRAINED GABBRO / BASALT : Medium-dark green, fine-medium grained and relatively massive. Unit is moderately mineralized with 2-5% po and trace cpy. Mineralization occurs both along fractures with chlorite-quartz-carbonate with the majority of the chalcopyrite occurring in this mode of mineralization. Pyrrhotite also occurs as splashes(2-3mm) throughout the unit with minor chalcopyrite. Unit locally has weak carb-chlorite alteration along fractures with associated po-cpy mineralization. Abundant small granitic dikes are present with associated silicification. Mineralization increases towards lower contact. 173.1 173.45 Granitic dike

173.1 173.45 Granitic dike

167.7m 60° to c.a. Upper contact

1	25	1 ^		\mathbf{n}
	 		, ,	•••
			, ,	- 7

MINERALIZED BRECCIATED PERIDOTITE(10-15%Po,1-2%Py, 3% Cpy) : Dark green to black, fine grained and weakly fractured. Unit is intensely brecciated with rounded clasts upto 3cm of both possibly perdotitic material as well as more hornblende basaltic material. Unit is strongly mineralized with 10-15% pinkish pyrrhotite within matrix as massive accumulations. 3-4% chalcopyrite is also present both associated with pyrrhotite as well as disseminated with perdotitic clasts. 3-4% pyrite is also present within matrix with associated chalcopyrite. Unit locally contains stringers of chlorite(5-7mm) with associated pyrrhotite and chalcopyrite. Unit hornblende rich locally with little feldspars. Unit is strongly magnetic.

Foliation's

177.35 75° to c.a. upper contact REPS 177.45m Polished thin section

177.9

190.7

FINE GRAINED GABBRO / BASALT

: Dark green to black, fine grained and weakly to moderately fractured. Unit is very hard and relatively massive. Unit has a fine diabasic texture. Unit is weakly mineralized locally with tr-1% pyrite-pyrrhotite along fractures. Several small hornblende rich zones are present with 2-3% pyrite-pyrrhotite locally. Unit locally has weak chlorite along fractures as well as minor quartz.

190.7	217.0	 GRANITIZED GABBRO? Medium grey-green and locally light grey, medium to coarse grained and weakly fractured. Unit is very hard with strong silicification. Unit is strongly granitized with strong recrystallization occurring. Unit has weak to moderate hornblende throughout and locally weakly feldspar phyric. Unit has a bluish tinge locally within lighter grey portions. Unit is locally weakly mineralized with 1-3% pyrite-pyrrhotite associated with hornblende rich sections. Trace chalcopyrite is also present. Unit becomes more diabasic towards bottom of unit. 211.2 211.55 2-3% pyrrhotite-pyrite, chlorite REPS 199.5m Wholerock, thin section
217.0	221.85	MINERALIZED GRANITIZED GABBRO(2-7%Po,1-2%py,1-2%cpy) : Light to medium grey-green, fine-medium grained and locally moderately schistose. Unit is strongly granitized with strong to intense silicification as well as what appears to be some migmatization. Unit is locally strongly biotitic with weak to moderate sericite. Both sericite and biotite are associated with strong silicification. Unit is moderately mineralized with 2-7% pyrrhotite, 1-2% pyrite and 1-2% chalcopyrite. Chalcopyrite is locally upto 4%. Pyrrhotite and pyrite and mainly associated with biotite and sericite alteration. Small narrow seams of chlorite(2-3cm) is present with associated Po-Py. Foliation's are quite variable ranging from subparallel to c.a. to 65 degrees. Unit is moderately magnetic. Foliation's 220.7m 65° to c.a. foliation REPS Polished section 219.5m
221.85	225.7	 DIABASE DIKE Medium grained, dark grey and relatively massive. Unit is moderately fractured with black chlorite along fractures. Diabase has a typical salt & pepper texture as well as being strongly magnetic. Both upper and lower contacts are sharp and unbrecciated. Foliation's 221.85 65° to c.a. Upper contact 225.7 35° to c.a. Lower contact
225.7	271.3	 GRANITIZED GABBRO Medium to dark green, medium to coarse grained and relatively unfractured. Unit is strongly to intensely silicified and moderately to strongly granitized. Unit is very hard and exibits locally some convoluted bedding. Migmatization is present. Unit is weakly to moderately magnetic. Biotite alteration is weak locally. Several hornblende rich sections are present with associated chalcopyrite and pyrrhotite. These dark green mafic zones range from 10-30cm. Mineralization is commonly associated with these zones with 1-3% pyrrhotite, 1- 4% chalcopyrite and 1% pyrite. Upper contact with diabase is intensely silicified and weakly brecciated. Unit becomes locally and increasingly mafic at end of unit with an increase in hornblende locally 245.0 245.3 Hornblende zone, 2-4% cpy, 3% py, 1% po Wholerock 228.1 Hornblende mafic section, weakly magnetic REPS 264.3 Hornblende rich
	271.3	ЕОН

DIAMOND DRILL LOG EAST-WEST RESOURCE CORPORATION

,

PROPERTY: SEWELL HOLE#: S98-4 LOCATION: 0+50N/6+40E CLAIM#: 1128955 DRILLED BY: Courte Diamond Drilling LOGGED BY: Michael MacIsaac CORE STORAGE 7 Hollinger lane Schumacher			STARTED: Feb 25/98 FINISHED: Feb 26/98 DEPTH: 168.1m DIP: -45° AZIM: 90° TEST: ACID CORE SIZE: BQ		
FROM:	<u>TO:</u>	DESCRIPTION			
0.0	6.1	OVERBURDEN			
6.1	7.8	BROKEN GROUND, UN	TRA MAFIC MATERIAL, 10% CORE RECOVERY		
7.8	14.7	INTERMIXED ULTRAMAFIC & FELSIC DIKES : Unit has several felsic highly silicious dikes within an ultramafic rock. The felsic dikes are pinkish grey, aphanitic to fine grained and moderately fractured. These dikes have irregular brecciated contacts. Ultramafic rock is a bluish-grey, fine to medium grained and relatively massive. These ultramafic rocks are the same as those in hole#3. They have a strong netted texture with black chlorite along the pervasive anealed fractures. The ultramafic rock has a soapy feel to it. Strong chlorite is present along contacts with felsic dikes. 7.8 9.3 Felsic dike, fractured 12.2 14.6 Felsic dike			
14.7	82.8	ULTRAMAFIC(black chle : Bluish grey to dark bluiss massive. Unit has a strong fractures throughout at ran dark green to a medium to is very strongly magnetic v fractures sub-parallel to c.a Unit is weakly mineralized locally along fractures(2-4 fractures upto 4mm and as present along slip planes c Locally these dikes are fin- locally fractured. Dark gre upto 80cm. These zones a chalcopyrite. Ultramafic u upto 1% chalcopyrite and a pyrrhotite. This mineraliza gabbro silicious unit within contact is moderately grad. 55.7 56.4 Granitic dik 56.76 56.87 Fault, intens 61.48 61.6 Semi-massi granitzed gabbro, minor py 61.6 62.35 Mineralize- chalcopyrite, moderate chl	brite) h green, fine to medium grained and relatively (netted texture with black chlorite along sinous dom orientations. Unit has locall variations from a dark green-blue with more of a soapy feel to it. Unit with magnetite present both within matrix and along a as massive magnetite with associated black chlorite. I with trace disseminated pyrite and pyrrhotite present alcopyrite. A bluish-greenish chlorite is present mm). Green serpentine is present locally along sociated with small fault zones. Graphite is alos ommonly as well as silicious granitic dikes upto 30cm. er grained and very silicious and biotitic. Unit is only een hornblende (hornblendite) sections are present re locally mineralized with tr-1% pyrite and unit has a small zone of semo-massive pyrrhotite with an associated weakly mineralized zone wih 2-3% ation is hosted within a granitized coarse grained an ultramafics. Unit is moderately to very soft. Lower ational. te se brecciation, clay weathering, 2% pyrite, serpentine ve pyrrhotite, 1% cpy, peridotite breccia within yrite. 30-40% Po d ultramafic, 2-5% stringer pyrrhotite, 1% orite		

62.7 69.9 Hornblendite?, dark green, very hornblende rich, 1% po, tr cpy locally

82.8	101.3	GRANITIZED GABBRO : Medium grey-green to dark green, medium to coarse grained and moderately fractured. Unit is strongly silicified with sections of granitic material with biotite. These granitic sections are upto 60cm. Unit is mainly made up of medium grained and green and strongly silicified. This portion is relatively massive. Small portions of coarse grained hornblende rich material. Unit is weakly mineralized with trace pyrite along fractures.
101.3	106.2	DIABASE : Medium grained, medium grained and locally strongly fractured. Unit has a typical salt and pepper texture. Diabase is moderately to strongly magneticand also contains trace disseminated pyrrhotite. Unit contains several emerald green- pinkish vesicles upto 1.5cm. Both upper and lower contacts are sharp and relatively unbrecciated. Folliations
		101.5m 55 to c.a. upper contact
106.2	141.0	GRANITIZED GABBRO : Unit is quite variable with many granitic dikes as well as light and dark green sections. Unit is moderately migmatized and granitized. Many of the granitic dikes are brecciated locally. Unit locally has a strong hornblende component. Unit is fine to medium grained, moderately fractured locally and relatively unmineralized. Unit is very hard and silicified. Lower contact is fairly irregular.
141.0	168.1	 WACKE SECIMENTS(possible altered ultramafic) Unit is light grey with a slight bluish tinge, fine grained to locally aphanitic and relatively massive. Unit appears to be a fine dirty clastic sediment with some weak to moderate bedding locally. Bedding appears to be stongly folded and convoluted. Unit is extremely hard and would appear to be strongly silicified. Biotite content appears to increas towards bottom of the unit. Trace pyrite is presnet in trace amounts along fractures and minor chalcopyrite is present disseminated. Bluish coloration could be a result of alteration from ultramafic as is the silicification. Chlorite clots are present locally. Folliations 152.9m 59° to c.a. bedding
	168 1	FOU
	100.1	LUII

DIAMOND DRILL LOG EAST-WEST RESOURCE CORPORATION

PROPERTY: SEWELL HOLE#: S98-5 LOCATION: 0+50N/4+25E CLAIM#: 1128955 DRILLED BY: Courte Diamond Drilling LOGGED BY: Michael MacIsaac CORE STORAGE: Thollinger lane, Schumacher			STARTED: Feb 26/98 FINISHED: Feb 28/98 DEPTH: 431.4m DIP: -45° AZIM: 90° TEST: ACID CORE SIZE: BQ
FROM:	<u>TO:</u>	DESCRIPTION	
0.0	14.2	OVERBURDEN	
14.2	29.2	ULTRAMAFIC(tr py) : Bluish-grey, fine to med ranges from a coarse grain more mafic layer. Unit is Mineralization consists ma disseminated. Chalcopyrit seam of semi-massive sulf increase in silicification, cl Quartz content also increase blue clay material as well a locally along fractures. Se REPS	ium grained, moderately fractured and very soft. Unit ed possibly feldspar phyric layer to a more bluish-grey strongly magnetic with 2-3% magnetite. ains of tr-2% pyrite along fractures and locally te and pyrrhotite are present in one location as a 1cm ides. Unit has a strong soapy texture and feel with an hloritization and shearing towards the bottom contact. ses at lower contact. Fractures often contains light as black chlorite locally. Very weak calcite is present repentine is present locally with pyrite along fractures.
29.2	61.8	GRANITIZED MAFIC-UI : Light grey to medium bli weakly fractured. Unit is I siliceous locally. Abundar brecciated with some quart dikes as does quartz veinin exibiting strong folding. U chlorite. Folding could be sheared, weakly sericitic an siliceous felsic dike is pres contacts with moderate chl 29.8 30.9 Rhyolitic sc 56.8 58.3 Felsic reddi brecciation within wallrock Foliation's 32m 60° to c.a. schiste REPS 42.7m Wholerock, silici	LTRAMAFIC uish-grey-green, fine grained to aphanitic and locally highly variable texturally and extremely hard and nt granitic dikes are present. Unit is locally strongly tz filling. Brecciation commonly occurs along granitic g. Weak to moderate banding is present(1-3cm) and Jnit is relatively unmineralized and contains only local caused by granitic dikes. Upper contact is moderate nd strongly silicified. A reddish aphanitic highly ent with associated strong to intense brecciation at orite alteration. chistose material sh highly silicified dike. Strong associated c and chlorite alteration. ocity fied mafic-ultramafic?
61.8	69.02	BRITTLE FRACTURED I : Dark green to black, fine intense brittle fracturing wi comprises 20% of the rock moderate associated brecci alteration. Mineralization quartz calcite and along fra	ULTRAMAFIC grained and strongly schistose. Unit has strong to ith quartz-calcite cavity filling. Quartz-calcite at random orientations and widths with some ation. Unit is very soft with moderate chlorite consists mainly of 1-3% pyrrhotite-pyrite within actures as well as minor chalcopyrite. Graphite and

,

minor serpentine is present locally along fracture planes. Upper contact is sharp and lower contact is very irregular and broken up. Black chlorite is common along fracture planes with pyrite smeared along the face. Foliation's

61.6m 31° to c.a. upper contact

GRANITIZED ULTRAMAFIC

69.02 121.2

: Light grey to dark greenish-grey-blue, fine to medium grained and weakly to moderately fractured. Unit is quite variable ranging from a light-medium grey, silicified granitized portion with abundant granitic feldspathic dikes with associated potassic alteration long fractures to a darker green-blue-black unsilicified unltramafic. The unsilicified untramafic unit is very soft, contains abundant black chlorite?, abundant serpentine possibly due to breakdown of olivines as well as possible chromite?(greyish). Black chlorite form as clots upto 3cm. Ultramafic has a soapy texture with occasional talc along fractures. Granitized portions are strongly silicified, abundant grainitic dikes with moderate potassic alteration locally. Serpentine is also common among silicified portions along fractures. Brittle fracturing is moderate with quartz-calcite fracture filling. Fibrous serpentine is present is several locations. Crystals are elongated upto 1cm and black-emerald green in color and soapy to feel

69.02 74.5 Moderate to strong serpentine alteration, well fractured, possible chromite.

108.5 109.4 Green carb alteration.

121.2

228.8

ULTRAMAFIC(layered?)

: Unit is a dark bluish-grey, medium to coarse grained and relatively massive. Unit ranges from a dark blue ultramafic to a mesocratic gabbroic unit and more coarse grained with a higher feldspar content. Unit is moderately layered ranging from a mesocratic gabbro to an ultramafic. Ultramafic portion is very strongly magnetic with 2-3% disseminated magnetite and the gabbroic section ranging from non-magnetic to weakly magnetic. Serpentine is present locally along fractures and as fibrous clots within the ultramafic portion. Unit is locally strongly fractured with 70% core recovery. Several zones of felsic diking and intense silicification are present. Graphite is also common along fracture planes usually associated with the ultramafics. Hornblende clots are also very common. Relatively no pyrite or pyrrhotite is present. Unit is weakly carbonatized with calcite. Very fine brownish mineral is present within gabbroic portion, possibly chromite??. Fractures are present locally sub-parallel to c.a. with 2-3mm magnetite stringers with quartz. Unit has a pervasive netted texture with black chlorite locally.

128.7 130.4 Felsic dike with 30% smokey grey-blue quartz

144.2 144.6 Felsic dike

155.0 155.3 Cumulate texture, coarse greenish mineral(feldspar).

160.8 161.7 Strong fracture zone, graphite, serpentine

167.8 171.4 Strong-intense fracture zone, minor graphite, serpentine

215.3 214.7 Granitic dike

217.0 219.5 Strongly silcified zone, biotite, weak sericite

REPS

137.5 Ultramafic, thin section, wholerock and rep

155.0 Gabbro, thin section, wholerock, rep

207.3 Ultramafic, thin section, wholerock, strongly magnetic

228.8 284.7

7 GRANITIZED SILICIFIED GABBRO

: Medium grey to dark grey-green, medium to coarse grained and weakly to moderately fractured. Unit is strongly silicified ranging from light grey, coarse grained granitic sections to a darker grey-green and more medium grained as well as more mafic content(amphibole). Unit locally has very dark green hornblende rich sections with no feldspar content and ranges upto 3m in length. These zones are upto3m in width and contain trace to 4% fine pyrite and pyrrhotite along fractures and disseminated. Unit is relatively unmagnetic except for the hornblende rich sections with pyrrhotite. Unit texturally is quite variable with the granitzation occurring as well as very hard through most of the unit. 258.0 259.3 Peridotite breccia, 3cm sized clasts, strong hornblende, 1% pypo, moderately magnetic

268.0 270.43 Hornblendite, 2-6% po, 1-2% pyrite, tr-1% cpy, finely disseminated and along fractures, weakly to moderately magnetic. 281.0 283.2 Hornblendite with some intermixed granitized gabbro, tr-2% py-po, tr cpy along fractures.

284.1 285.7 Mafic dike, 1% po

284.7

299.8

359.9

ULTRAMAFIC (bluish)

: Fine to medium grained, bluish grey and very soft. Unit has a strong bluish tinge as well a locally moderate clay alteration. Unit moderately fractured locally usual associated with small mafic dikes upto 20cm. These dikes are strongly biotitic and usually contain 1-2% po. Unit is locally granitized with abundant quartz-calcite veinlets locally at random orientations. Unit is locally weakly mineralized with 1-3% pyrrhotite, 1% pyrite and trace chalcopyrite locally as splashes of sulfides. A 2m highly siliceous dike is present with 1-2% pinhead garnets.

288.75 288.4 Sheared mafic dike, 30° to c.a.

288.05 288.2 Mafic dike, 1% po, 50 ° to c.a.

294.5 296.25 Weakly mineralized, 1-3% splashes of po, 1-2% py, trace fine chalcopyrite, weak chlorite alteration

297.8 299.75 Felsic highly siliceous aphanitic dike, 1-2% pinhead garnets, sharp contact @ 43° to c.a.

Folliations

284.7 60° to c.a. upper contact

299.8

ULTRAMAFIC (netted)

: Dark green with a slight bluish tinge, medium to locally coarse grained and has a strong netted texture. Unit is very soft and relatively unfractured. Netted texture is present with black chlorite within matrix as sinuous ribbonlike accumulation as well as moderate accumulations along fractures throughout. Broken feldspar phenocrysts are present with chlorite filling voids within broken up porphyroblasts. Ultramafic is moderately to strongly magnetic. Relatively no calcite present along fracture planes of within matrix. Mineralization is weak with only trace pyrite present except for several zones of 2-3% splashes of po over widths of 4m. Serpentine is present locally along fractures with black chlorite. Locally unit is granitized with strong silicification. Unit becomes finer grained towards the bottom contact with a decrease in the netted texture. Unit also becomes strongly granitized towards the bottom contact as well as strong quartz flooding locally. Strong chlorite and sericite clots are present within quartz flooding as well as granitic sections upto 2m in width.

Granitized fractured section with moderate brecciation, local 303.9 301.6 serpentine along fractures with local moderate biotite alteration.

Granitzed ultramafic 320.3 325.9

326.0 329.25 Mineralized ultramafic, 2-4% splashes of pyrrhotite-pyrite throughout. Pyrite and pyrrhotite are intergrown together. Also a fine shiny more yellowish mineral present within pyrrhotite, possibly millerite or pentlandite??.

343.5 345.8 Fine grained mineralized ultramafic, bluish, 1-3% po-py

350.6	359.9	Granitized quartz flooded zone, no mineralization, chlorit	te-
biotite c	lots with	in quartz.	
Foliatio	n's		
359.9m	43° te	c.a. lower contact	

359.9 383.1 PORPHYRITIC QUARTZ DIORITE / GRANITIZED GABBRO

: Unit is very coarse grained, ranges from a feldspar porphyritic medium green to a silicified dark greenish grey. Unit ranges from a quartz diorite to a granitized gabbro. Dioritic unit is relatively unaltered with a strong porphyritic texture with some zonation occurring within occassional plajioclase feldspar. Minor alkali feldspar is present locally. Unit is moderately quartz rich with upto 10% quartz making it a quartz diorite. Diotite unit leucocratic to melanocratic with pyroxenes making up the mafic portion. Unit exibits a weak fabric as well as weak compositional banding. Unit grades into a melanocratic granitized gabbro with a moderate to strong fabric. Hornblende is the primary mafic mineral within the gabbro locally becoming porphyroblastic. Unit is relatively weakly mineralized with only trace pyrrhotite present locally. Abundant xenoliths of greywacke are present locally. Unit becomes finer grained towards the bottom contact and locally brecciated with calcite within matrix. Fabric also becomes strong towrds the bottom contact with an increase in chlorite. Abundant greywacke xenoliths. 371.9 375.0

384.0 385.1 Silcified zone, moderate chlorite, 1-2% po, tr cpy, tr py Folliations

384.3 29° to c.a. folliation

383.1 400.85

GREYWACKE SEDIMENTS (bio, hb)

: Medium grey to dark green-grey, fine to medium grained and locally moderately banded. Sediment are very hard. Unit is locally well laminated ranging from light grey bandsto medium grey-brown more biotite bands. Band widths range anywhere from 1-5cm. Strong zones of hornblende are present with 1-2% pyrrhotite as well as chlorite. These hornblende zones are upto 3m in width and are usually medium grained. Unit exibits strong folding on the decimeter scale with S folds. Core angles are quite variable ranging from 10-60° to c.a.

Folliations

391m 31° to c.a. laminations

400.85

404.3

431.4

DIABASE

: Medium grained, medium gto dark grey and relatively massive. Diabase is simaler to diabase in hole S98-3. Unit is relatively unfractured and has the typical salt and pepper texture. Both upper and lower contacts are sharp and non-brecciated. Locally green chlorite is present along fractures. trace pyrite is present locally.

Folliations

400.8535° to c.a.upper contact404.365° to c.a.lower contact

404.3

GREYWACKE SEDIMENTS

: Light to medium grey-green, fine grained and locally aphantic and relatively massive. Unit is very hard and locally moderately banded. Small biotite clots are present throughout. Moderate hornblende is common at the upper part of the unit. Silicifications appears to increase downsection as well as the appearance to bleaching. Unit has abundant healed fractures that display minor offsets. Abundant quartz veinlets are present at random orientations. Unit is only locally weakly mineralized with pyrite and pyrrhotite along fractures in several locations. Folliations 410.0 55° to c.a. laminations

431.4 EOH

,

.

,

🕅 Ontario	Ministry of Northern Development and Minee	Declari Perform Mining Act	ation of Ass med on Mini , Subsection 65(2)	essme ng La and ec(2)	ent Work nd , n.s.o. 1990	Transacti W9X Assessmi	an Number (affice use) (() 883 ant Files Research Imaging
42A055W2002 2.19092 Instructions: - For - Pier 1. Recorded holds	Sewell work performed on Cr ase type or print in ink	900 rown Land	rity of subsec d to review th ning Records s before record 1 9 0	tions 65(2 e assosar r, Ministi ding a (9 2	t) and 66(3) of the nent work and of y f Hindwice OFFIC REC starm, use 16 A.M. ? [\$] 9 [10]]	Mining A prespond w Decomposition E SUDBU E I V Cm 024199 /m 024199	Act. Under section 8 of the rith the mining land holder ROMOMINES, 6th Floor URY ED 6 RM. 3141316
Name CROSS K	AKE MINER	445	LTD.		ilent Number	2250	62
Address ~ 210 - 800	WEST PEN	DEP	STRFFT	1	elephone Numbe	688-	5448
VANCOUV	ER BRITISH	Cou	m RIAV6	C206	ax Number 604 -	688-	5443
Name					lient Number	000	<u> </u>
Addrees					elephone Numbe	M	
<u></u>			<u></u>		ax Number		
2. Type of work p	performed: Check (~) and rep	ort on only ON	E of the	following gr	oups for (this declaration.
assays and wo	ork under section 18 (re	igs)	trenching	and ass	ociated assa	ys	Behabilitation
Work Type				ĺ		Office	Use

DIAMOND DRILLING

	/	Work Claimed 7 74 601
Dates Work Performed From /6 02 Day Month	98 To 28 02 98 Year Day Month Year	NTS Reference
Global Positioning System Data (il available)	Township/Area SEN'ELL	Mining Division T.M. Pour
	M or G-Plan Number	Resident Geologist District
Please remember to: - obtain a we	ork permit from the Ministry of Natural	Resources as required:

provide proper notice to surface rights holders before starting work;
complete and attach a Statement of Costs, form 0212;
provide a map showing contiguous mining lands that are linked for assigning work;
include two copies of your technical report.

Commodity

Total \$ Value of

94/01

:

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name	Telephone Number
M. MACISSAC	807-473-5152
Address D PTC	Fax Number
412 ERINDALE St., THUNDER DAY, ONT. 424	807-473-5248
Name	Telephone Number
DANIEL PATRIE	105-844-2113
Address	Fax Number
BOX 45 MASSEY UNTARIO YOP IPO	705-844-2057
Name	Telephone Number
Address	Fax Number FILLEIVLU
	DEC 07 1003
4. Certification by Recorded Holder or Agent	GEOSCIENCE ASSESSMENT
	OFFICE

DANIEL TRIE , do hereby certify that I have personal knowledge of the facts set ١, . (Print Nam forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and, to the best of my knowledge, the annexed report is true.

Signature of Recorded Hold	er or, Agent	March	1/99	Date Nov. 30/98
Agent's Address	N -	Pan IPA	Telephone Number	Fax Number

work wa mining k column	s done on other eligible and, show in this he location number	Units. For other mining land, list hectores.	performed on this claim or other mining lend	sing or work spplied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
Indicated	f on the claim map.				· W9860	.00883
•9	TB 7827	16 ha	\$26, 825	N/A	\$24,000	\$2,825
•9	1234587	12	0	\$24,000	0	0
•g	1234568	.2	\$ 8, 892	\$ 4,000	0	\$4,892
1	1212616	08	\$ 22.603.30	\$ 6,400.00	1 6,203.30	· · · · · · · · · · · · · · · · · · ·
2	1212615	16	21.092.40	12.800.00	8,282.40	
3	1128955	16	50,915.50	12.800.00	32,314.30	\$ 5,801.20
4	1128956	08		6.400.00		
5	1198721	12		9600.00		
6	1198722	16		12 800.00		
7	1203939	03		2.400.00	2.19	092
8	1212617	16		12, 800.00		
9	1212618	12		9.600.00		-
10	122 9931	04		3,200.00		•
11				,,		· ·
12						
13						
14						
15						
		Column Totals	894,60120	\$ 88,800.50	\$ 56,800.00	5,801.20

DANIEL F. PATRIE , d	hereby certify that the above work credits are eligible under
----------------------	---

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Flocorded Holder or Agent Authorized in Writing	Dale
	11 20/60
	NOV. 30178

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (~) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or

GEOSCIENCE ASSESSMENT 218191101112111211211213141516 Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Stamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
	Approved for Recording by Mining Rec	order (Signature)
0241 (02/96)	L	

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Transaction Number (office use)

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the Information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

		2.1	9092
Work Type	Units of Work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilo- metres of grid line, number of samples, etc.	Cost Per Unit	Total Cost
Diamond DRILLING-578-1	329,9 metres	67.00 m	\$ 22,103.30
Diamond DRILLING-598-2	321.6 metres	64.00 / m	20, 582, 40
Diamond DRILLING 598-3	271.3 metres	60.00/m	16,278.00
Diamond DRILLING 598-4	168.1 metres	55.°°/m	9,245.50
Diamond DRILLING 598-5	434.4 metres	55.00/m	23,892.00
REPORT			2,500,00
Associated Costs (e.g. supplies,	mobilization and demobilization).		
ام ۲	ROVINCIAL RECORDING		
	DEC - 7 1998 P.M. 19 10(1))12 1 2 3 4 5 5		
Transpo	ortation Costs		
Food ar	nd Lodging Costs		
	Total Value o	f Assessment Work	# 94,601.20

Calculations of Filing Discounts:

Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work.
 If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK X 0.50 = Total 5 value of worked claime	TOTAL VALUE OF ASSESSMENT WORK	× 0.50 =	Total \$ value of worked claimed.
--	--------------------------------	----------	-----------------------------------

Note:

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a
request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the
Minister may reject all or part of the assessment work subinitied CIVED

DEC	C	7	

I, DANIEL F. PATRIE, do hereby certify, that the amounts shown are as accurate as may

reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on

the accompanying Declaration of Work form as $\frac{A_{GENT}}{(recorded holder, agent, or state company position with signing authority)}$ I am authorized

to make this certification.

Signature	Date
Onla	Nov. 30/98

.

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

February 19, 1999

CROSS LAKE MINERALS LTD. 210-800 WEST PENDER ST. VANCOUVER, B.C. V6C-2V6 Geoscience Assessment Office

933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Dear Sir or Madam:

Submission Number: 2.19092

 Subject: Transaction Number(s):
 W9860.00883
 Deemed Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Steve Beneteau by e-mail at steve.beneteau@ndm.gov.on.ca or by telephone at (705) 670-5855.

Yours sincerely,

- Ha

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 13395 Copy for: Assessment Library

Transaction First Claim Approval Date Number Number Township(s) / Area(s) Status Approval Date W9860.00883 1212616 SEWELL Deemed Approval February 10, 1999 Setion: 1212616 SEWELL Deemed Approval February 10, 1999 Setion: 16 Drilling PDRILL Ecorded Approval February 10, 1999 Correspondence to: 16 Drilling PDRILL Ecorded Holder(s) and/or Agent(s): Resident Geologist Daniel Patrie MASSEY, ONTARIO, CANADA Assessment Files Library COSS LAKE MINERALS LTD.
W9860.00883 1212616 SEWELL Deemed Approval February 10, 1999 Settion: 16 Drilling PDRILL February 10, 1999 Correspondence to: February 10, 1999 Resident Geologist MassEY, ONTARIO, CANADA South Porcupine, ON February Assessment Files Library CROSS LAKE MINERALS LTD.
Section: 16 Drilling PDRILL 16 Drilling PDRILL 16 Drilling PDRILL Correspondence to: Recorded Holder(s) and/or Agent(s): Correspondence to: Daniel Patrie Resident Geologist Daniel Patrie South Porcupine, ON MASSEY, ONTARIO, CANADA Assessment Files Library CROSS LAKE MINERALS LTD.
Correspondence to: Recorded Holder(s) and/or Agent(s): Resident Geologist Daniel Patrie South Porcupine, ON MASSEY, ONTARIO, CANADA Assessment Files Library CROSS LAKE MINERALS LTD.
Resident Geologist Daniel Patrie South Porcupine, ON MASSEY, ONTARIO, CANADA Assessment Files Library CROSS LAKE MINERALS LTD.
Assessment Files Library CROSS LAKE MINERALS LTD.
Sudbury, ON VANCOUVER, B.C.

Work Report Assessment Results

_ _ ...

i i

-300		ULTRAMAFIC. netted textu	PORPHYRITIC QUARTZ DIORITE / GRANITIZED GABBRD S GREYWACKE, bio, hb / DIABASE / GREYWACKE, sil 431.40 m. SSB-5	-300
-400				-400
-500				-500

....

