

all mataratic stany

> of the

Warny Panap Prowertios
of
BGRRIO KESOERCFS CAMADA ITD.
(all ritne ad Ano Blocks)
by
R.S. Mruluton

$310-55$ Yage St.
(nas:o natario

Satrber, 1978

$$
\begin{aligned}
& \text { Conies: Remario Romarees - IORBMO (1) } \\
& \text { Brambo Romares - beSCoN (1) } \\
& \text { Ontario Diviッion al Minus (2) } \\
& \text { R. All!rston } \\
& \text { (1) }
\end{aligned}
$$

$010 c$

```
    Ojwmix
Pupurt by D.C. Fimsar 'li|hat Survey of South Porcupine Aroa, Ontario,
    Smbubar 25, 1977. D. 78.
    MPS
```



```
\because:+.lini &'= 'mile
```



```
M,\cdotsisulvity
    1" : 'f mile
```


 1: ! ! ! : ! !

 this at: und thry surart.

[^0]0

...nes wi the 1 hat bilus uver bach bluck give 15.69 miles uver the allerston claims			
15.4, milics : 40/21 -10s - 29.9 days per clm per parameter			
C: $\because \because$	"...... Pumbraits	Dighem FY Survey Cruits	Allowable Credits Rumainiag
	9.9	29.9	15.5
P. $6107 /$	-9.9	99.9	15.5
P. Andic	-9.9	29.9	15.5
P. 6 \%n79	9.9	29.9	15.5
P. 490080	89.9	29.9	15.5
	-9.9	29.9	15.5
P. 40082	8.9	29.9	15.5
P. 4.10083	29.9	29.9	15.5
P. 429098	29.9	29.9	15.5
P. 4,21085	29.9	29.9	15.5
P. 4000986	29.9	29.9	40
P. 4200987	29.9	29.9	40
P. 443580	29.9	29.9	15.5
P. 443581	29.9	29.9	15.5

P. $: 153$
P. 1.154
P. y^{1155}
P. $:=5$
P. 14157
P. $\because 153$
P. \%ocos
P. $I_{1}, 2006$
P. 1/1,5907
P. 41,108
P. 1,3,3353
P. 1,63359
P. 1,33360
P. 1,33361-
P. 1,93352
P. 193353
P. 103364
P. 193355
P. 1,50682
P. 193683
P. 1.33375
P. 1,33376
P. 1,3317
P. 493318
P. 193379
P. 1.33380
P. 1, 3331
P. 1033,22
P. HGSt
P. : 515
P. 13366
P. 103567
P. $1,33,68$
P. 135569
P. :133,
P. $!35 / 1$

Total: 61 claims 47. 451 ine ni
-

 aport by l.C. Frame (1977).

Conluane

wimbry mave a mide to base metal or precious metal deposits within wr :rallel to the frem fur...ation horizons. Aajor folds within sonth central
witay an an on fran fre airborne data.
Euncectinly summicted,

$$
\begin{aligned}
& \text { R.S. Midalleton } \\
& \text { Roplorat on Kanager, Canada. }
\end{aligned}
$$

R:/ 1 j
DIGHA SIREEYOFsNOI PDCCLIIE AREA, OTTRRIOFOR
COHMNO LIMITED
BY
DIGHFA LIMTED

Toronto: Ontario
Seprepzer 26, 1977
D. C. Fraser

President

$$
S U M M A R Y
$$

A blomm ${ }^{\text {IT }}$ airborne electromagnetic/resistivity/

 magnetic survey of 254 line-miles was flown for Coninco IAmitwd in fugust 1977, in the South Porcupine area of Ontario. A considerable number of conductors were dotcotod, sone of which were recognizable only on those chmancs which have goological noise stripped off. Several discrete targets were identified.

Figure $1 . \quad$ The survey area.

A DiGum survey of 254 line-miles was flown with a 400foot line-spacing for Cominco Limited on August 9th, 1977, in the South porcupine arca of Ontario (Figure l). The Alonette II jet helicopter $C-G N Q X$ flew with an average airspeed of 60 mph and EM bird height of 110 feet. Ancillary equipment consisted of a Geometrics 803 magnetometer with its bird at an average height of 160 feet, a Sperry radio altimeter, cuocam sequence camera, 60 hz monitor, Barringer 8 -channel hot pen analog recorder, and a Geometrics G-704 digital data acquisition system with a Cipher 70 7-track 200-bpi magnetic tape recorder. The analog equipment recorded six chanels of EM data at approximately 900 hz and one of magnetics and radio altitude. The digital equipment recorded the fid deta with a sensitivity of 0.2 ppm/bit and the magnetic ficld to an accuracy of one gamma.

The nppendix provides details on the data channels, their respective noise levels, and the data reduction procedure. The quoted noise levels are generally valid for wind speeds up to 20 mph . Higher winds may cause the system to be grounded because excessive bird swinging produces control difficulties in piloting the helicopter. The swinging results from the 50 square feet of area which is presented by the bird to broadside gusts. The DIGHEM system nevertheless can be flown under wind conditions that seriously degrade other AEM systems.

DICHEM electromagnetic responses fall into two general classes, discrete and broad. The discrete class consists of sharp well defined anomalies from discrete conductors such as sulfide lenses and steeply dipping sheets of graphite and sulfides. The broad class consists of wide anomalics from conductors having a large horizontal surface such asflatly dipping graphite or sulfide sheets, saline watersaturated sedimentary formations, conductive overburden and rock, and goothemal zones. A vertical conductive slab with a width of 200 m would straddle these two classes.

The verifal sheet (half plane) model is the most conmon model used for the analysis of discrete conductors. All anomalies plotted on the clectromagnetic map are interpreted according to this model. The following section entitled Discrete conductor analysis describes this model in detail, including the effect of using it on anomalies caused by broad conductors such as conductive overburden.

The conductive earth (half space) model is the most suitable model for broad conductors. Resistivity contour maps result from the use of this model. Resistivity contour maps should be prepared when the EM responses predominantly are of the broad class. A later section entitled Resistivity mapping describes the method further, including the effect of using it on anomalies caused by discrete conductors such as sulfide bodics.

The $E M$ anomalics appearing on the electromagnetic map are interpreted by computer to give the conductance (i.e., conductivity-thickness product) in mhos of a vertical sheet model. DIGHEM anomalies are divided into six grades of conductance, as shown in Table I. The conductance in mhos is the reciprocal of resistance in ohms.

> Table I. EM Anomaly Grades

Fmomaly Crade	Mho Range
6	$\geqslant 100$
5	$50-99$
4	$20-49$
3	$10-19$
2	$5-99$
1	

The mho value is a geological parameter because it is a characteristic of the conductor alone; it generally is independent of frecuency, and of flying height or depth of burial apart from the averaging over a greater portion of the conductor as height increases.* Small anomalies from deeply buried strong conductors are not confused with small anomalies from shallow weak conductors because the former will have larger mho values. ;

[^1]Conductive overburden generally produces broad EM responses which are not plotted on the EM maps. However, patchy conductive overburden can yield discrete-like anomalies with a conductance grade (cf. Table I) of 1 , or even of 2 for highly conducting clays. The anomaly shapes from the multiple coils often allow surface conductors to be recognized, and these are indicated by the letter S on the map. The remaining grade 1 and 2 anomalies could be weak bedrock conductors. The higher grades indicate increasingly higher conductances. Examples: DICmem's New Insco copper discovery (Noranda, Quebec) yiclued a gracie 4 anomaly, as did the neighbouring copper-zinc Magusi River ore body; Mattabi (copper-zinc, Sturgeon Lake, Ontario) and Whistle (nickel, Sudbury, ontario) gave grade 5; and DIGHEM's Montcaln nickel-copper discovery (Timunins, Ontario) yiclded a grade 6 anomaly. Graphite and sulfides can span all grades but, in any particular survey area, field work may show that the different grades indicate different types of conductors.

Strong conductors (i.e., grades 5 and 6) are charactcristic of massive sulfides or graphite. Moderate conductors (grades 3 and 4) typically reflect sulfides of a less massive character or graphite, while weak bedrock conductors (grades 1 and 2) can signify poorly connected graphite or heavily disseminated sulfides. Grade 1 conductors may not respond to ground $E M$ equipment using frequencies less than 2000 hz .

The wrosance of sphalerite or gangue can result in ore deposits having woak to moderate conductances. As an crample, the three million ton lead-zinc deposit of Restigouche rining Corporation near Bathurst, New Brunswick, yielded a well defined grade 1 conductor. The 10 percent by volume of shhalerite occurs as a coating around the fine grained massive pyrite, thereby inhibiting electrical conduction.

On the electromagnetic map, the actual mho value and a letter are plotted beside the EM grade symbol. The letter is the anomaly identifier. The horizontal rows of dots, beside each anomaly symbol, indicate the anomaly amplitude of the ifight record. The vertical column of dots gives the ostimated depth. In areas where anomalies are crowded, the idutiriers, dots and mho values may be obliterated. The EM grade symbols, however, will always be discernible, and the obliterated information can be obtained from the anomaly listing appended to this report.
rhe purpose of indicating the anomaly amplitude by dots is to provide an estimate of the reliability of the conductance calculation. Thus, a conductance value obtained from a large ppm anomaly (3 or 4 dots) will be accurate whereas one obtained from a small ppm anomaly (no dots) could be inaccurate.

The absonce of amplitude dots indicates that the anomaly rron the standard (coaxial maximum-coupled) coil is 5 pin or less on both the inphase and quadrature channels. such small immalies could reflect a weak conductor at the surface, or a stronger conductor at depth. The mho value and depth ostinate will illustrate which of these possibilitios best fits the recorded data. The depth estimate, howver, can be erroneous. The anomaly from a near-surface conductor, which exists only to one side of a flight line, will yield a large depth estimate because the computer asmmes that the conductor occurs directly boneath the flight line.

Flight line deviations occasiorally yield cases where two anomalies, having similar mho values but dramatically difforent dopth estimates, occur close together on the same conductor. Such examples illustrate the reliability of the conductance measurement while showing that the depth estimate can be unreliable. There are a number of factors which can produce an error in the depth estimate, including the averaging of topographic variations by the altimeter, overlying conductive overburden, and the location and attitude of the conductor relative to the flight line. Conductor location and attitude can provide an erroneous depth estimate because the stronger part of the conductor may be deeper or to one side of the flight line, or because it has a shallow dip.

A further interpretation is presented on the EM nap by means of the line-to-line correlation of anomalies. This movides conductor axes which may define the geological structure over portions of the survey area.

The majority of massive sulfide ore deposits have strike lengths of a few hundred to a few thousand feet. Conseguently, it is important to recognize short conductors wich may oxist in close proximity to long conductive bands. The high resolution of the DIGHEM system, and the lino-to-line correlation given on the EM map, are especially important for a proper strike length evaluation.

DIUHEM electromagnetic maps are dosiyned to provide a correct inpression of conductor quality by means of the conductance grade symbols. The symbols can stand alone with geology when planning a followup program. The actual mho values are plotted for those who wish quantitative data. The anomaly ppm and depth are indicated by inconspicuous dots which should not distract from the conductor patterns, while being helpful to those who wish this information. The nap provides an interpretation of conductors in terms of length, strike dircction, conductance and depth. The accuracy is comparable to an interpretation from a ground EM survey having the same line spacing. ;

An EM anomaly list attached to each survey report provides a tabulation of anomalics in ppm , and in mhos and estimated doth for the vertical sheet model. The anomalies are 1 isted from top to bottom of the map for each line.

The EM anomaly list also shows the conductance in mhos and the depth for a thin horizontal sheet (whole plane) nodel, but only the vertical sheet parameters appear on the m map. The horizontal sheet model is suitable for a flatly dipping thin bedrock conductor such as a sulfide sheet huving a thiciness less than 50 feet. The list also shows the resistivity and depth for a conductive earth (half space) modol, which is suitable for thicker slabs such as thick conductive overburden. In the EM anomaly list, a depth value of zero for the conductive carth model, in an arca of thick cover, warns that the anomaly may be caused by conductive overburden. Since discrete bodies nornally are the targets of EM surveys, local base (or zero) levels are used to compute anomaly amplitudes rather than true zero levels. The use of local base levels may distort the horizontal shcet and conductive carth parameters. True zero levels, however, are used for resistivity mapping, discussed below.

Resistivity mapping
Areas of widespread conductivity have been encountered while surveying for base metals. In such areas, anomalies
can be generated by decreases of only 20 feet in survey altitude, as well as by increases in conductivity. The typical flight record in conductive areas is characterized by inplase and quadrature channels which are continuously active; local peaks reflect cither increases in conductivity of the earth or decreases in survey altitude. For such conductive areas, apparent resistivity contour maps can aid the interpretation of the airbcrne data. The advantage of the contour maps is that anomalies caused by altitude changes are considerably reduced, and the contours reflect mainly those anomalies caused by conductivity changes. In areas of widespread conductivity, many anomalies on the EM map nay be caused by altitude variations. The majority of those "anomalies" are flagged by S or S ? (see map legend). A more qumtitative approach is to prepare a resistivity contome map. Such a map improves the interpreter's ability to differentiate between conductive trends in the bedrock and those patterns typical of conductive overburden. Discrete conductors will appear as narrow lows on the contour map and broad conductors will appear as wide lows.

Conductive overburden diminishes the ability of an EM systen to effectively explore the bedrock. For cxample, the lower the resistivity of the cover, the more active the EM channels, and the less the likelihood of recognizing that a particular anomaly might be caused by a bedrock conductor. As a general rule of thumb, the effectiveness of the DIGHEM system for base metal
exploration is given in Table II.

Table II. Influence of Conductive Cover On Base Metal Surveys.

Resistivity	Exploration effectiveness at 900 hz
>300 ohm-m	excellent
100 to 300	good
30 to 100	moderate
<30	poor

Auparont resistivity maps should be constructed When the aploration effectivenss (able II) is moderate to poor, because the contour patterns can be helpful in differentiating between bedrock and overburden conductors. Wide resistivity lows may be caused by broad (e.g., flatly dipping) bodrock conductors or by conductive overburden. The two can only be differentiated on the basis of the resistivity contour patterns coupled with knowledge of the geology. For example, a wide east-west resistivity low might suggest the existence of a bedrock conductor in an area of flatly dipping stratigraphy which strikes eastwest, whereas it would be suspect if the geological strike was north-south.
$x-t y p e$ olectromannetic responses
DIGHEM ${ }^{I I}$ raps contain x-type $E M$ responses in addition to EM anomalies. In x-type response is below the noise threshold of 2 prm, and reflects one of the following: a weak conductor near the surfice, a strong conductor at depth (e.g., 300 to 400 feet helow nurace), or noise. Those responses that have the appearunce of valid bedrock anomalies on the flight profiles are mentioned in the report. The others should not be followed up unless ineir locations are of considerable geological interest.

The thickness prometer
DiGum I can provide an indication of the thickness of a steoply diping conductor. The ratio of the anomaly amplitude of chamel $24 /$ chanel 22 generally increases as the apparent thichness incruases, i.e., the thicknoss in the horizontal plane. This thickness is equal to the conductor width if the conductor dips at 90 degrees and strikes at right angles to the flight line. 'his report refurs to a conductor as thin when the thickness is likely to be less than 3 m , and thick when in excess of 15 m . 'ihick conductors can be high priority targets because most massive sulfide ore bodies are thick, whereas non-economic bedrock conductors are usually thin. An estimate of thickness cannot be obtained when the strike of the conductor is subparallel to the flight line, when the conductor has a shallow dip, or when the anomaly amplitudes are small.

Reduction of conductive overburden response The DIGHEM ${ }^{I I}$ system yields four channels which generally
are froe of the response of conductive overburden. These are the inhase differences channel 33, the quadrature djfferences chmmel 34 , and the two anomaly recognition functions of chamels 35 and 36 . Channels 35 and 36 are used to trigger the conductance channel 37 which identifies discrete conductors.

Discrete conductors usually occur in the bedrock, such as sulfidus or graphite, rather than in the overburden, such as conductive clay. Only discrete conductors are plotted on the EM map. Broad (i.e., non-discrete) conductors are not plotted on this mep, bat are identified by lows on the resistivity contour map.

Reduction of manetite response

Magnetite produces a form of geolcgical noise on the inphase chamels of all EM systems. Rocks containing as little as 1% magnetite can yield negative inphase aromalies. When magnetite is widely distributed throughout a survey area, the inphase EM channels may continuously rise and fall reflecting variations in the magnetite percentage, flying height, and overburden thickness. This can lead to difficulties in recognizing deeply buried bedrock conductors, particularly if conductive overburden also exists. However, the response of magnetite generally vanishes on the inphase differences channel 33. This feature can be a significant aid in the recognition of conductors which occur in rocks containing accessory magnetite.

Pagnetics

The existence of a magnetic correlation with an EM anomaly is indicated directly on the EM photomosaic. In Fen anomaly with magnetic correlation has a greater likclihood of being produced by sulfides than one that is non-magnetic. However, sulfide ore bodies may be non-inagnetic (e.g., Kidd Creek near Timmins, Ontario) as well as magnetic (e.g., Mattabi).

The magnetometer data are digitally recorded in the aircraif to an accuracy of one gamma. The digital tape is procossed by computer to yield a standard total field magnetic map contoured at 25 gamma intervals. The magnetic data also are treated mathematically to enhance the magnetic response of the near-surface geology, and an enhanced magnetic map is produced with a 100 gamma contour interval. The response of the enhancement operator in the frequency domain is shown in Figure 2.

The enhanced magnetic map bears a resemblance to a ground magnetic map. It therefore simplifies the recognition of trends in the rock strata and the interpretation of geological structure. The contour

Figure 2
Frequency response: of magnetic operator
interval of 100 gamas is suitable for defining the near-surface local geology while de-cmphasizing deepseated regional features.

Tpart from the difforence in the contour interval, the ennanced magnetic map and the standard magnetic map are identical when ragnetic basement rocks underlie several thousand feet of non-magnetic cover. The differcnce betreen the two maps increases with the amount of magnctization of the near-surface geology.

Whe prosence of a ragnetic coincidence with an En anonaly can result because the conductor is magnetic or because a magnetic body occurs in juxtaposition with the conduotor. Tae majority of magnetic conductors repesent sulfides containing pyrrhotite or magnetite. However, graphite and magnetite in close association can provide coinciding EM-magnetic anomalies. The truly magnetic conductors tend to follow closely the contoured magnetic highs. Such coincidence may be more evident on the enhanced magnetic map than on the standard magnetic map because of less disturbance from regional magnetic features. The enhancement, therefore, provides data maps which contribute to the evaluation of $E M$ anomalies.

The DIGHMM map provides an interpretation of conductors, as to their longth, strike direction, depth, and conductance quality or cumuctivity-thichness product in rhos. There romans only to correlate these conductors with the known geology to irowide the next step in the exploration program.

Fhen sthoying the EM map for followup planning, consult the anoaly listings amonded to this report to ensure that none of the coniuctors are overlooked. Conversely, the original map may be printad with topography bured out, leaving only the anomalies which then will be clearly visible.

The survey area was fairly active due to cultural features and to the abundance of bedrock conductors and conductive overbucden. The resistivity over bedrock conductors was as low as 1 olm-m, sharply contrasting with the overburden resistivity of $300 \mathrm{chm}-\mathrm{m}$.

The minap indicates which anomalies are belicved to be caused by cultural and surficial sources. Generally, such anomalics are not comented on below, as the discussions are directed to identifying bedrock conductors.

The field follownp should not completely ignore anomalies interpreted to be of a possible cultural source. If the followup shows that culture does not exist near such an anomaly, then the conductor probably occurs in the bedrock.

Qmomaly 19D
momalios 28C, 36D

Group 8

Group 9

Groups 6,7 These groups reflect huge conductive zones with widths up to 700 feet. The zones are better
defined by the resistivity map than the EM map because of the considerable thicknesses involved. Whe onhanced magnetic map clearly defines the associated magnetic properties of these zones, and :nggests that group 8 is an extension of group 6.
A single-line grade 2 bedrock conductor, with a 20 gama magnetic correlation, occurs on strike with group 5.

These single-line grade 1 conductors may have their computed mo valucs degraded by conductive ovorburden. fhey may reflect a widening of the huge conductive zone of group 7 . There is a possibility, however, that they are isolated from this zone. They appear to have a weak magnetic correlation.
A short strong conductor exists with a 150 gamma magnetic correlation. The EM responses on the south end (lines 11 and 12) are subtle. Both conductance and thickness increase to the north. Lines 9, 13 and 14 converge on a conductor having a grade 2 conductance. It occurs in an area of intense electromagnetic activity and is largely masked by neighbouring strong conductive and magnetitic EM responses. Its apparently isolated nature suggests that it may be an intoresting target.

Group 10

Group 11 A 700-foot long non-magnetic grade 1 conductor is isolated from other conductive responses, and so could be an interesting target.

Anomaly 15F A single-line near-surface non-magnetic conductor is indicated by a sharp quadrature response on the standard coil-pair. There is a possibility that it could reflect an unusual sferic pulse or a discarded geophysical wire.

Group 12

Group 13

Group 14
One or more conductors strike parallel to
the flight lines, making resolution impossible. The conductors are only visible on the whaletail inphase chamel 24 and on the resistivity channel 40. The resistivity map shows the general conductive trend.

A 350 gama correlation exists with a grade 1 conductor which has a length of 1200 feet. The conductor is poorly defined because of geological noise, and its conductance may be larger than the computed value.
Two short conductors on lines 22 and 24 may exist, hidden in geologic noise. Magnetic correlations of 100 to 450 gammas occur with these questionable conductors.
The single-line grade 6 anomaly 24 E exists only on the whaletail coil-pair. It correlates with a 10 gamma magnetic high. There is a suggestion that it extends northeastward to the x-type response on line 25. This x-type response also exists only
on the whaletail coil-pair, and is only 1 ppm in amplitude. The followup of the conductor may prove difficult, as it could represent a blind body at a depth in excess of 300 feet. This group consists of three x-type responses which strike parallel to the magnetics. They could reflect a conductor at a depth in excess of 300 feet.

A moderately wide conductive zone extends for over one mile before it runs off the map sheet. It occurs on the southeast flank of \dot{a} magnetic high.

Anomaly 48 C This single-line grade 2 conductor might be caused by conductive overburden. It has a magnetic correlation of 150 gammas, with a somewhat thumb-print-shaped pattern on the enhanced magnetic map.

Group! 20 Two x-type responses could reflect a moderately strong non-ingnetic conductor at a depth greater than 300 feet.

Anomaly 55D fr ort nonmagnetic grade 3 conductor yielded a strong anomaly on the whaletail coil-pair and a weak response on the standard coil-pair. This Applies that the system flew subparallel to the strike of the conductor. The magnetic map shows a diabase dike-like feature with such a strike within 1000 feet of the EM anomaly. The anomaly certainly should be followed up if previous wort has not explained its source.

Anomaly 58 C An x-type response on an adjacent line correlates with this nonmagnetic grade 1 anomaly. The conductor may have a stronger conductance than indicated on the map.

Toronto, Ontario
September 30th, 1977
/ls
Four maps accompany this report:
Electronagnetics
Resistivity
Magnetics
Enhanced magnetics
Respectfully submitted,

D. C. Fraser President
;
$\because \quad \because$
1 map sheet
1 map sheet
1 map sheet
1 map sheet

Group 3

Anomaly lame A non-magnetic single-line grade 1 anomaly reflects a weak near-surface conductor. There is a possibility that the anomaly is caused by a local pocket of conductive overburden, although the resistivity does not support this. The resistivity gradient shows that the EM anomaly occurs at a point where overburden thickness increases rapidly.
Groups 4,5 Group 4 outlines a non-magnetic conductor, with conductance grades of 2 to 4 , which has a length of one mile. It runs along the northwest flank of a magnetic high. Groúp 5 runs along the southeast flank of the same magnetic high, reflecting a generally non-magnetic conductor of grades 1 to 6 .

$$
\Lambda P P E N D I X
$$

```
GHE FI,GHT RECORD AND PATH RECOVERY
```

The flight record is a roll of chart paper containing the Geopysical wotiles. The profiles were generated by computer at a scale identical to the goophysical maps. The flight record contains up to 16 channels of information, as follows:

Channel		Scale	
Number	Paraneter	units/mm	Noise
20	manetics	10 gamma	2 gama
21	ali itude	10 feet	5 fect
22	stundurd* coil-pair inphase	1 ppm	1-2 PP?
23	standard coil-pair quadrature	1 ppm	1-2 pp:
24	whaletail ${ }^{\text {che }}$ coil-pair inphase	1 ppm	1-2 pm
25	Whatetal coil-pair quadrature	1 ppm	1-2 Pa
28	anbient noise monitor (standard receiver)	1 ppm	0 FB
29	ambent notse monitor (whalctail receiver)	1 ppm	0 Prem
31	sans function inphase***	1 ppm	1-2 ppir
32	sums function quadrature***	1 ppm	1-2 ppr
33	differences function inphase	1 ppm	1-2 Pr
34	differences function quadrature	1 ppm	1-2 ppris
35	first momaly recognition function	1 ppm	1-2 PL^{2}
36	second anonaly recognition function	1 ppm	$1-2 \mathrm{PPr}$
37	conductance	1 mho	
40	10g resistivity	. 03 decade	
* consial			
\therefore A hurizontal coplanar			
: Ecate	ly mot plotted		

The \log resistivity scale of 0.03 decade/mm means that the xesistivity changes by an order of magnetude in 33 mm . The resistivities at $0,33,67$ and 100 mm up from the bottom of the chart are respectively $1,10,100$ and 1000 ohm-m. '.

The fiducial marks on the flight record represent points on the ground which were recognized by the aircraft navigator. Continuous fhotographic coverage allowed accurate photo-path recovery locations for the fiducials, which were then plotted on the grophysical maps to provide the track of the aircraft.

The fiducial locations on both the flight records and flight path mas were cxamined by a computer for unusual helicoptor sped changes. Such changes often denote an error in flight path recovery. The resulting flight path locations therefore reflect a more stringent checking than is provided by standurd fight path recovery techniques.

The following brief description of DIGHEM il illustrates the information content of the various profiles.
'ine blgum ${ }^{1 I}$ systen has two transmitter coils which are mounted at right angles to each other. Both coils transmit at approxirately 900 hz . Thus, the system provides two completely independent surveys at one pass. In addition, the flight chart profilos (gomerated by computer) include an inphase channel and a quadrature channel which cssentially are free of the response of conductive overburden. Also, the EM channels may indicate whether the conductor is thin (e.g., less than 3 m), or has a substantial width (c.g., greater than 15 m). Further, the EM channels include a channel of resistivity and another of conductance. A minimum of 10 EM channels are provided. The DIGHEM ${ }^{\text {II }}$ system therefore gives. information in one pass which cannot be obtained by any other airborne or ground EM technique.

Figure 3 shows a DICHEMI flight profile over the massive pyrnotite ore body in Eontcalm Township, ontario. It will serve to icientify the various channels.

The two upper channels (numbered 20 and 21) are respectively the magnetics and the radio altitude. Channels 22 and 23 are respectively the inphase and quadrature of the coaxial coil-pair, which is tommed the standard coil-pair. This coil-pair is equivalent to the standard coil-pair of all inphase-quadrature airborne EM systems. Channels 24 and 25 are the inphase and quadrature of the additional coplanar coil-pair which is termed the whaletail coil-pair.

Chancls 31 and 32 are inphase and quadrature sums functions of the standard and whaletail chanels; they provide a condensed vicw of the four basic channels 22 to 25 . The sums channels normally are not plotted.

Channels 33 and 34 are inphase and quadrature differences functions of the standard and whalctail channels. The differences channels are almost frce from the response of conductive overburden. Channel 37 is the conductance. The conductance channel essentially is an atomatic anomaly picker calibrated in conductance units of mhos; it is triggered by the anomaly recognition functions shown as channels 35 and 36 .

Channel 40 is the resistivity, which is derived from the whaletail channels 24 and 25 . The resistivity channel 40 yiclds data which can be contoured, and so the DIGHEM ${ }^{I I}$ system yields a resistivity contour map in addition to an electromagnetic map, a magnetic contour map, and an enhanced magnetic contour map. The

Figure 4 meocnts the DIGHEM ${ }^{I I}$ results for a line flown pracondicularly to the Montcalm ore body. Channel 20 shows the 175 yama magnetic anomaly caused by the massive pyrrhotite doposit. For the 19 chmels, the following points are of interest:

1. On channels 22-25 and 3l-34, the ore body essentially yiclds only an inphase response. The quadrature response is almost completely caused by conductive overburden (which also gives a small inphase response). The hachures show the k response from the overburden. The overburden rosunse vanishes on the differences EM channels, as can be soen by comparing the quadrature channels 25 and 34 . fhis is an important point to note because DIGHEM ${ }^{\text {II }}$ is the wily wistem which provides an inphase chanel and a quadrature chanel which are essentially free of conductive overburden response.
2. The whalctail anonaly of channel 24 has a single peak. fhis shows that the conductor has a substantial width. If the width had been under 3 m , the conductor would have produced a weak n-shaped anomaly on channel 24.
3. The ore body yields a resistivity of 5 ohm-m in a background of about 200 ohm-m (cf. channel 40). A dipole-dipole ground resistivity survey with an a-spacing of 50 m showed a similar background, but the ore body gave a low of only 53 ohm-m

* Cdn. Inst. Ming., Bull., April 1974.
because of the averaging effect inherent in the ground Lechnicue.

4. The ore body has a conductance of 330 mhos according to its EM response on this particular flight line. The conductance channel 37 saturates at 100 mhos, and so the deposit is indicated by a 100 -mho spike.

Figure 3 illustrates the DIGHEM ${ }^{\text {II }}$ results for a line flown subperallel to the ore body. The ore body anomaly is small on the standard coil-pair (channel 22) but shows up strongly on the whatetail coil-pair (chanel 24).

ESTINATED DEPTH : AY RE UPIPELIABLE BECNUSE THE STROMGER PART of the cnnouctor bay re deeprr or to ore side of the flight LIAE, OR because of a Shallow dip or overeurden efffets.

| $\begin{gathered} \text { Trangren } \\ \text { COIL } \end{gathered}$ | $\begin{gathered} \text { COPLABARR } \\ \text { COIL. } \end{gathered}$ | | $\begin{aligned} & \text { VERTICAL } \\ & \text { CIKE } \end{aligned}$ | | HORIZCHTAL SHEET | $\begin{gathered} \text { COHCUCTIVE } \\ \text { EARTH } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | COIL

COIL.
LIME $\&$ RFAL GIAD REAL GIJAD - CDNC DEPTH* COHD DEPTH ANOMAY PPM PPM PRM PPM • MHOS FEET • FEET

- Life, or grcause of a shallon dip or overburden effects. -
- Trimorat COIL

COPLAR:AR
COIL

VERTICAL • HORIZONTAL CIKE - SHEET

- CIKE
concurtive FARTH

LINE \& REAL OUAO REAL GUAD - COHD DEPTH* COHO DEPTH RESIS SEPTH ANOMALY PP: PP:Y PPRA PPM • PHOS FEET - MHOS FEET OHI-N FEET

* Estimatfo depth may rf unrflivble recause the stronger part.

* ESTI!! ted depth *ay ff urirfliable recause the stronger part. OF THE COHDUCTOR UAY AF CFEPFR OR TO OAE SIDE OF THF ELTGHT. LIME, OR RECALISE OF A SHALLOW DIP OR OVERBUROEN EFFECTS.

STrunnan
copldinn
VERTICAL • hORIZOITAL
CIKE • SHEET
cominctive
COIL COIL
EARTH
LII \& PEAL DUAI RFAL CHAD - COND DEPTH* COHD DEPTH RESIS DEPTH

estimated ofpth : ay pf umblitele pecalse the stronger part. of the comouctin gay be deepfr or to die side of the flight e Lide, or brcmuse of a shallon oip or overburden effects. -

$0 \cup 0177$
* estivateo mepth *ay rf umbrlinele becalje the stromger part -
- of the comouctor fay de deepfr or to dne side of the flight
- line, dr eecause of a shallow dif or ouerburden effects.

DIGHEM SURVEY

[^2]

[^0]:

[^1]: * This statement is an approximation. DIGHEM, with its short coil separation, tends to yield larger and more accurate mho values than airborne systems having a larger coil separation.

[^2]: RESISTIVITY

