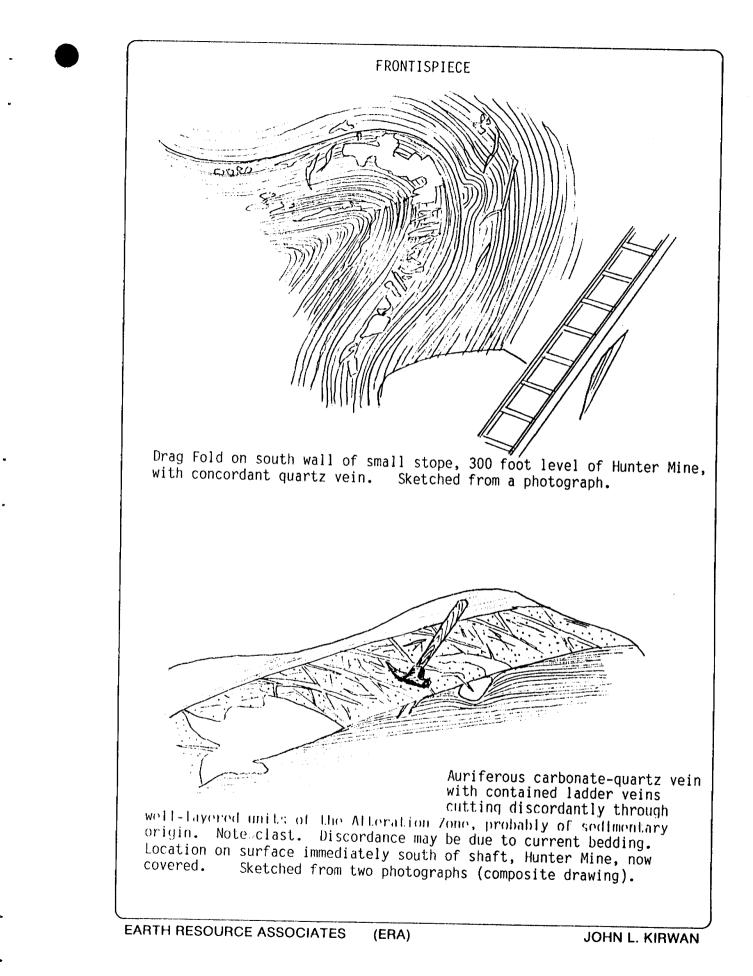
OM88-6-1-139	63.5479
42A06NE0087 63.5479 WHITNEY	Ø10
WABIGOON RESO	URCES LIMITED
THE HUNT WHITNEY TOWNS	
GENERAL	SUMMARY
by	·
John L. BS MSc PhD	
Earth Resource Associates	
P.O.Box 2150, Timmins, Ontario, P41 705 235-2777	N 7X8 December 20, 198
P.O.Box 985, Centre Harbor NH USA 0 603 253-6107)3226
EARTH RESOURCE ASSOCIATES (ER/	A) JOHN L. KIRWA

SUMMARY

i


Integration of all available drilling information from the Hunter Mine indicates the presence of 8 (possibly 9) gold-bearing guartz yein systems along a strike length of 1675 feet contained within a 300 foot thick zone of sheared sedimentary and volcanic rock. These vein systems appear to be conformable with the rock, and are deformed into a syncline whose axis passes very close to, but westward from, the mine workings. The gold-bearing zones bottom out at a depth of about 600 feet near the shaft area but at a greater depth northward owing to a northward plunge of about 20° to the syncline. Other gold values are contained within dikes of quartz feldspar porphyry and albitite which may extend to depth below the deepest levels of the mine. A lower value of 0.01 ounces of gold to the ton, approximately one-tenth the value of 2 commercially successful mining operations in the area (Pamour at 0.08 and Dome at 0.126) has been used to define the term "gold-bearing". Average goldbearing intersections in past diamond drilling of various veins has ranged from 3 feet to 5.93 feet; an overall average for all intersections being 4.77 feet.

One of the vein systems, here called the Main Vein, was traced by diamond drilling in 1986 and found to have an average grade across 5 feet of 0.238 ounces of gold per ton for a strike length of 1450 feet, within which a 950 foot zone averages 0.3556 ounces per ton. It is now realized that 2 of the drill holes in fact obtained their intersections from a different, parallel, vein. This reduces the average grade of the 1450 foot zone to 0.2264 and of the 950 foot length to 0.3198 ounces per ton but at the same time transfers these intersections to the other vein.

By calculating a gross average of all intersections in these 8 veins (81 intersections in all) without regard to intersected length, an average of 0.137 ounces of gold to the ton results. By multiplying the various lengths of the veins (between 400 and 1450 feet) by their respected indicated dip lengths (between 400 and 800 feet) times their respective thicknesses (3 to 5.93 feet) and using a dividing factor of 12, some 1.644 million tons results. This is not to say that this amount of material at any particular grade is mineable at a profit from the Hunter Mine, but it does indicate the order of magnitude of the goldbearing material present. This figure may be increased by extensions in the strike, dip, or thickness parameters, or decreased by discontinuities in the veins.

Enrichment of the veins is related to drag folding in the containing rocks, this enrichment being to 0.29 and 0.61 ounces of gold to the ton as indicated in previous mining activities, and to the 0.7 ounces per ton range as indicated in the 1986 drilling. It is recommended that, in addition to the exploration program already in progress on the Main Vein at the Hunter Mine, considerable work be done in locating enrichment of the veins in the drag folds for the purpose of locating mineable ore shoots of reasonably high grade. The current exploration program should be extended to include the other indicated veins in addition to the Main Vein. This should entail little increase in the alreadybudgeted expenditure of approximately \$3,000,000 to bring the program to the point of making a production decision.

EARTH RESOURCE ASSOCIATES (ER

Ø10C

CONTENTS

INTRODUCTION1
GEOLOGY3
MINERALIZATION5
CONCLUSIONS18
RECOMMENDATIONS19
DECLARATION20

TABLES

TABLE 1-UPPER MAIN VEIN....11 TABLE 2-MAIN VEIN.....11 TABLE 3-LOWER MAIN VEIN....12 TABLE 4: EAST VEIN.....12 TABLE 5: MIDDLE VEIN.....13 TABLE 6: EAST MIDDLE VEIN..13 TABLE 7:DEEP VEIN.....13 TABLE 8: EAST DEEP VEIN....14 TABLE 9: UNASSIGNED VALUES..15 TABLE 10: AVERAGES.....15

FIGURES

FIGURE 1:SECTION 10,000.....6 FIGURE 2:SECTION 10,500.....7 ILLUSTRATIONS DERIVED FROM PHOTOGRAPHS......FRONTISPIECE ii

APPENDIX

SECTIONS: 9000, 9250, 9450, 9850, 10,000, 10,050, 10,100, 10,150, 10,200, 10,250, 10,300,10,350, 10,400, 10,450, 10,500, 10,550, 10,600, 10,650, 10,700,10,950, 11,150, 11,500.

EARTH RESOURCE ASSOCIATES (ERA)

GENERAL SUMMARY

by

John L. Kirwan

INTRODUCTION

The Hunter Mine, situated on the east shore of Porcupine Lake in northern Ontario, was discovered on November 6, 1907 by Gore Bruce, a prospector who had been grubstaked by Toronto lawyer H.F.Hunter early in the same year. The discovery predated that by Jack Wilson on the adjoining ground to the west in 1909 which became the Dome Mine and which resulted in the development of the Porcupine Mining camp, now centered on the city of Timmins, a few miles to the west. The Hunter Mine saw a brief period of gold production between 1938 and 1940 during which period some 10,821 tons of rock were milled and 1,369 ounces of gold and 86 ounces of silver were recovered, for an average grade of gold of 0.1265 ounces to the ton, which is remarkably close to the 0.13 obtained from the neighbouring Dome Mine. These grades, however, were uneconomic in the 1930's, and the Hunter Mine at no time was self-supp-

EARTH RESOURCE ASSOCIATES (ERA)

orting. Although estimated grades in the stoped areas of the mine were 0.61 in the first level stope and 0.29 in the second level stope, the operators diluted these grades by milling development rock which graded in the 0.08 range. No mining activities took place below 300 feet below surface, though the incline shaft goes down to beyond 700 feet.

In 1983, Wabigoon Resources Limited, of Toronto, acquired the property and conducted exploration on it, consisting of:

- a. in 1983 surface stripping and sampling,
- b. in 1984, geophysical surveys,
- c. in 1985, a program of 8 drill holes from surface, and 5 from underground, the mine having been dewatered to 300 feet,
- d. in 1986, a program of 19 diamond drill holes from the frozen surface of Porcupine Lake, which resulted in the discovery of a gold-bearing zone below and beyond the mined areas with a strike length of 1450 feet, a width of 5 feet which locally thickened to 9 feet, and a contained grade across these 5 feet of 0.238 ounces of gold to the ton, within which a 950 foot zone containing an average grade of 0.3556 was indicated,
- e. in 1987, surface construction of a headframe, hoist, and related buildings for the purpose of obtaining underground access by drifting to explore and develop the discovery zones of 1986, and
- f. in 1988, the dewatering of the mine to the 400 foot level, and the drilling of 8 of a planned 60 drill holes. For financial reasons this work was suspended in mid-1988.

For a more thorough summary of the work conducted in the 1983-1988 period, as well as the mine's earlier history, the reader is referred to the following reports:

- 1. The Hunter Mine Property, Whitney Township, Ontario: General Account, by John L. Kirwan, March 20, 1987, updated May 18, 1988.
- 2. Hunter Mine, Whitney Township, Ontario, 1988 Drilling Program, Summary of Results, by John L. Kirwan, dated October 28, 1988.

For estimates of mine grade and potential based on data from the 1910-1940 period, the reader is referred to the following report:

3. Wabigoon Soapstone Company Limited Report on the Porcupine Lake Gold Mine Property, by David S. Robertson & Associates (Fred Barnes) dated May 9, 1983.

The property consists of 7 patented mining claims situated in Lots 9 and 10, Concession III, Whitney Township, Porcupine Mining Division, Ontario, and contains approximately 210 acres. As of January, 1988 when the writer searched the titles to this ground, all mining rights were vested in Wabigoon Resources Limited. Titles were clear of encumberances except for Parcel 9738 (Claim 10272) against which a development agreement with the City of Timmins dated March 8, 1984 is recorded, and against which a lien dated November 4, 1987 for \$10,226.50 from J.Logan Kerr Limited of Timmins is also recorded. This claim contains the mine buildings which were erected in accordance with the agreement with the City of Timmins. The writer understands that the lien refers to work performed by Kerrfor a client other than Wabigoon and that therefore it is not Wabigoon's responsibility.

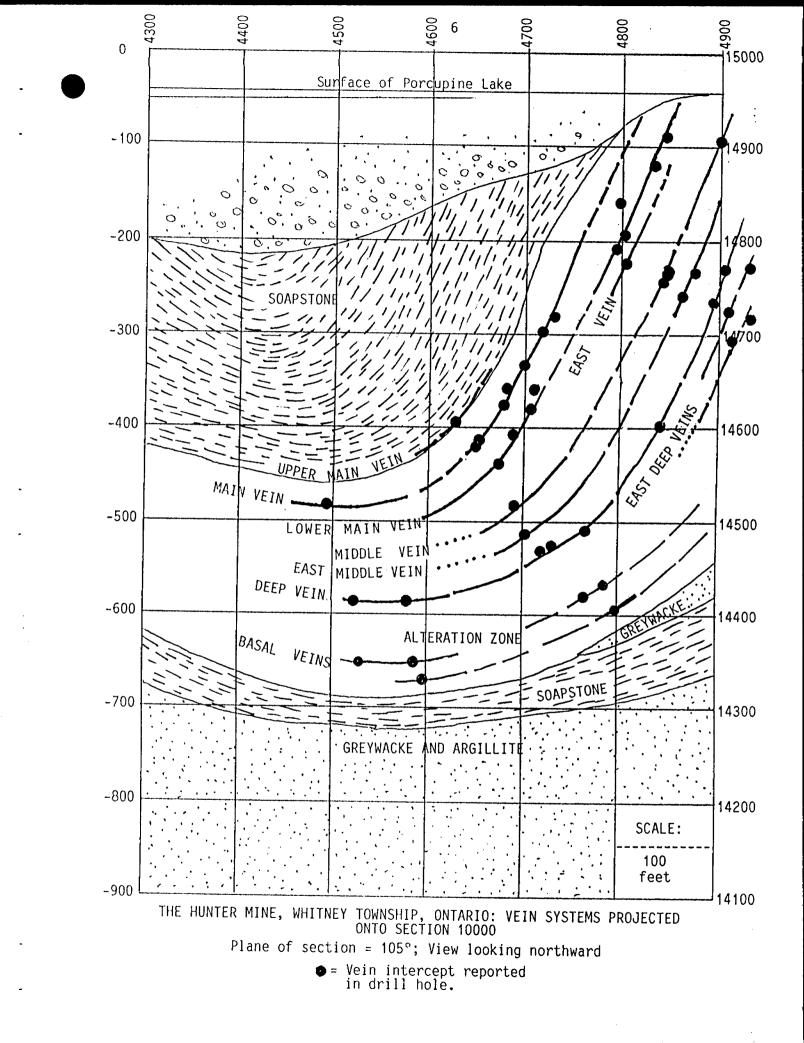
GEOLOGY

The rocks on the property occupy a wedge of ground bordered on the north by the plane of the Destor-Porcupine Fault, which is a regional fault with a northeasterly strike and steep northerly dip, and on the south by the plane of a related, parallel, fault termed the Bob's Lake Fault. North of the Destor-Porcupine Fault.units of the Tisdale Group of rocks, which contain the majority of orebodies in the Timmins area, occur, and south of the Bob's Lake Fault units of the older Deloro Group of rocks, containing notably fewer orebodies, occur. Within the wedge separating the two major faults, and within the Hunter Mine workings, the contact phase of the Deloro and Tisdale rocks exists. This contact phase is marked by the transition, from greywackes and argillites of the Deloro Group, to ultramafic sills and flows of the Tisdale Group, through an approximately 300 foot thick zone of sericitic schists which are derived in part from the greywacke-argillite series, in part from basaltic units near the top of this series, and in part from the ultramafic rocks of the Tisdale Group. This area of transition is collectively termed the Alteration Zone. Nearly all areas of gold mineralization are within this Alteration Zone. Mining activity has been restricted to the Main Vein in the Hunter Mine, which closely follows the contact between the Alteration Zone and the overlying ultramafics of the Tisdale Group.

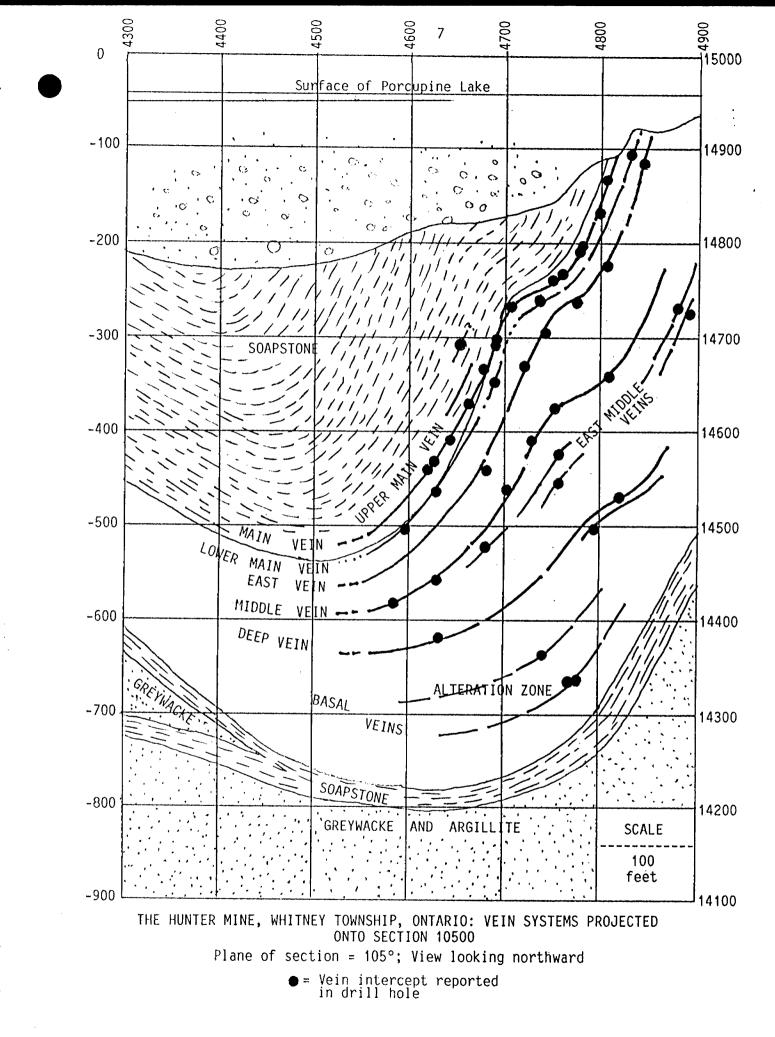
EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

In general, a thin ultramafic sill separates the Alteration Zone from unaltered rocks of the Deloro Group, but this is not always the case and several areas exist where the two rock units are in contact, and other areas exist where the altered rocks extend below this sill, in places separated from the sill by a zone of unaltered greywacke. But in general the Alteration Zone is bounded by ultramafic rock: upwards by the Tisdale Group and downwards by a sill.


Overall, the succession has been deformed into a series of anticlines and synclines. The area immediately under Porcupine Lake wherein the known gold occurrences are found is a syncline with a steep eastern side and a gentle western one. Eastward, a matching anticline is indicated with steep western and gentle eastern sides. These structures pitch northward at angles of up to 20°, possibly greater as the Destor-Porcupine Fault is approached. Geophysical evidence suggests that the Alteration Zone continues around the nose of the pitching anticline to be repeated on the eastern side of the property.

Within the mine area the rocks are cut by dikes and sills of quartz feldspar porphyry, some of which bodies are auriferous or are closely associated with zones of alteration and silicification which are auriferous. It is not certain, however, if the gold-bearing units are conformable with the host rocks or are cross-cutting. Available evidence suggests conformability of the gold-bearing quartz veins but a crosscutting relationship of some of the porphyries. About a dozen quartz vein systems are recognized from the property, at least 8 of which can be described as gold-bearing---that is to say, returning assays over 0.01 ounces of gold to the ton, or about one-tenth the grade that has elsewhere in the Timmins area proved to be economic.¹


A north-northwest trending diabase dike cuts across the property and is exposed on the shoreline north of the mineshaft and at the north end of the first level drift immediately below, but curiously enough not in diamond drill holes which cut below this area.

¹ Published grade for the Pamour Porcupine Mines combined operations is approximately 0.08 ounces per ton, and for Dome Mines, 0.126 ounces per ton in 1987 entirely from underground operations.

EARTH RESOURCE ASSOCIATES (ERA)

.....

.

Early operators of the mine spoke of 4 quartz vein systems:

Number 1 Vein, or discovery vein, which outcrops on the shoreline north of the shaft.

- Number 2 Vein, which forms a broad stockworks along the lot line between Lots 9 and 10 east of the shaft. This vein was blasted away to make room for trailers on the site in 1985 before it could be adequately examined and sampled.
- Number 3 Vein, immediately west of the shaft collar, a ladder vein which was covered up in 1988, and

Number 4 vein, immediately east of the shaft, not seen in the 1983-88 period.

All of these were reported to be gold-bearing, and an area of the Number 2 Vein that was exposed in 1988 during construction of the hoist is said to have contained visible gold.

In 1983 the writer projected all known vein intersections from drilling results from the 1910-1948 period (page 12 of the 1987 report mentioned above) and concluded that there was evidence for at least 6 vein systems on the property. These he numbered 1 to 6, retaining the original numbering system for particular veins.

In 1988, with accurate surface and underground surveying results available, it became possible to plot up available data onto the 24 sections in this report, to add to this information the drilling results from the 1985-88 period, and to examine rock exposures underground at the mine and refine the results accordingly. From this work it was possible to compile the sections in Figures 1 and 2 and to demonstrate that some 11 vein systems can be shown to exist at the Hunter Mine (plus a 12th which is in a piece of "detached" Alteration Zone east of the sections). Nine of these vein systems have yielded gold values in diamond drilling; however, most of these gold values are of very low grade. While the abundance of gold-bearing veins on the property increases the potential tonnage of gold-bearing material accordingly, the low grades indicate that areas of enrichment within each of these veins will have to be sought. The picture that is emerging is one of abundant gold-bearing units within which are possible pay streaks which will have to be defined. One such pay streak may have been the area

EARTH RESOURCE ASSOCIATES (ERA)

on the first and second levels of the mine, which were mined, and which appearsto be the southern part of a zone that was located in the 1986 drilling, most of which is still in place.

To summarize these vein systems (see Figures 1 and 2, pages 6 and 7 above):

Upper Main Vein: This contains only 2 reported intersections. These assayed 0.04 and 0.06 ounces to the ton across 2 and 4 feet respectively, at points 200 feet apart. At present this vein appears too weak and small to explore, except incidently as part of other work.

<u>Main Vein</u>: This has been encountered in drill holes along an 1100 foot strike length, with values ranging from 0.01 to 1.195 ounces to the ton, and with a depth potential in excess of 600 feet. Largely because of the abundance of drill hole intersections, this vein appears to be the most obvious one on the site for potential mining, and it is this vein that justifies the previously recommended exploration program.

Lower Main Vein: This has been traced for the same distance as the Main Vein, with a similar down-dip potential, and contains grades ranging from 0.01 to 0.89 ounces to the ton, but with only about one-third the number of drill hole intersections.

East Vein: This is, like all other veins, parallel with the Main Vein. It has been traced for a distance of about 350 feet and with a similar down-dip potential. Grades have ranged from 0.018 across 3 feet to 0.26 across 2 feet. Only 5 drill holes with assay values have cut this zone.

<u>Middle Vein</u>: This has been cut by 6 drill holes which yielded values ranging from 0.02 across 1 foot to 0.258 across 2½ feet, the zone being traced a distance of 500 feet, with a similar down-dip potential.

East Middle Vein: Cut by 7 drill holes along a strike length of 450 feet and a depth range of about 300 feet, this vein has yielded intersections which range from 0.01 ounces of gold to the ton across 5 feet, to 0.51 across $1\frac{1}{2}$ feet, including a zone which assayed 0.10 across 9 feet.

Deep Vein: This had 7 intersections between 1935 and 1988 which indicate a strike length of some 500 feet, a down dip potential over 600 feet, and values in the range of 0.06 over 3 feet to 0.16 over 10 feet.

EARTH RESOURCE ASSOCIATES (ERA)

The Deep Vein was also penetrated by 8 drill holes from the 1985-1988 series, without encountering obvious gold-bearing material, though assaying was incomplete on the 1986 series of holes.

<u>East Deep Veins</u>: A total of 5 holes have penetrated this zone, but assays exist for only 2 of these: 0.02 ounces of gold across 5 feet and 0.008 across 5 feet. These holes are some 1200 feet apart in strike and about 150 feet apart in down dip position.

Basal Veins: These consist of several vein systems that appear to be common in the 100 or so feet above the lower ultrabasic sheet. Although assayed, only low gold values appear to occur in these units.

<u>Outside Veins</u>: Several drill holes, notably H-1 of 1985, penetrated quartz vein systems, sometimes in localized Alteration Zones, well within the greywacke succession east of the mine area. Assays from these veins were very low, those in H-1 being NIL.

Details of the actual intersections, depths, assay values, and widths are given in the tables which follow, beginning on page 11 below. These values were obtained from drill logs, where available, from mine sections with assay values, and from old plans. Some drill holes, known to have penetrated particular veins, are shown in old maps without assay values or other information, and it is not known if this indicates a lack of data, or a low value in the intersection.

The recognition of particular veins in particular drill holes is not always positive. Once the conformability of the Main Vein was established in the 1988 drilling (Sections 10450, 10500, and 10550), then parallel vein structures must belong to different systems. When considerable distance separates the information, however, the various systems were recognized by being proportioned within the Alteration Zone. This method has its uncertainties in that some vagueness exists as to the position of the contact, which is gradational, between the upper soapstone and the Alteration Zone.

Some intersections from the 1986 drilling belong to a different vein system than originally thought. Even when these intersections are excluded from the 1450 foot length that graded 0.238 opt across 5 feet this grade retained its value over 0.2 for the same length and thickness.

				BLE 1 MAIN VEI	N			
DRILL HOLE	DATE	LEVEL	OzAu/t	WIDTH (FEET)	SECTION	DEPTH (FEET)	NOTES	
S-14 S-10 U-2	1986 1986 1985	Surface Surface -225	0.04 vein 0.06	2 4	10350 10450 10550	400 510 240	<u></u>	
are av urned	Drill Holes 4S, 4H and 127 also penetrated this zone, but no assays are available. Hole U-4 passed through the Upper Main Vein and ret- urned assays from it and several sections above it ranging from 0.0 opt over 20 feet to .05 over 5 feet, the latter being from this vein TABLE 2 MAIN VEIN							
DRILL HOLE	DATE	LEVEL	OzAu/t	WIDTH (FEET)	SECTION	DEPTH (FEET)	NOTES	
S-19 S-12 S-11 118 122 117 U-3 U-5 208 2 214 306 2 S-14 15 4 S-9 S-10 103 111 U-13 129 U-8 U-9 105 110 104 101 U-2 S-16 S-18	1986 1986 1986 1938 1938 1938 1938 1938 1938 1940 1938 1910 1938 1910 1938 1910 1938 1938 1938 1938 1938 1938 1938 1938	Surface Surface Surface -225 -225 -225 -225 -225 -225 -300 -225 -300 -225 Surface Surface Surface Surface Surface Surface Surface -225 -225 -225 -225 -225 -225 -225 -22		$7.2 \\ 1.5 \\ 1 \\ 12 \\ 20 \\ 10 \\ 5 \\ 0.66 \\ 3 \\ 10 \\ 4 \\ 2.3 \\ 4.3 \\ 5 \\ 2.7 \\ 10 \\ 2 \\ 1.4 \\ 2.75 \\ 5 \\ 3.3 \\ 9 \\ 10.4 \\$	9850 10050 10050 10050 10050 10050 10050 10050 10050 10050 10100 10100 10200 10350 10400 10450 10450 10450 10500 10500 10500 10500 10550 10550 10550 10550 10600 10750 10950	$\begin{array}{c} 150\\ 480\\ 420\\ 360\\ 335\\ 320\\ 305\\ 300\\ 220\\ 280\\ 400\\ 230\\ 400\\ 230\\ 400\\ 50\\ 160\\ 440\\ 550\\ 240\\ 260\\ 305\\ 380\\ 430\\ 480\\ 275\\ 260\\ 215\\ 235\\ 420\\ 330\\ 425\\ \end{array}$	Down Dip	

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

Drill holes 207, 2(1935), 216, 218, 133, 16, 18, 103, 115, and 108 passed through the Main Vein, but no information is available as to whether assay values were obtained.

TABLE 3

LOWER MAIN VEIN

DRILL HOLE	DATE	LEVEL	OzAu/t	WIDTH (FEET)	SECTION	DEPTH (FEET)	NOTES
S-19 125 U-3 U-5 2 304 U-8 U-9 U-13 S-13 S-10 128 103 S-16 S-18 S-11	1986 1938 1985 1985 1910 1938 1988 1988 1988 1986 1986 1938 1938 1986 1986 1986	Surface -225 -225 Surface -400 -225 -225 -225 Surface Surface Surface Surface Surface Surface	0.01 0.36 0.01 0.01 0.89 0.58 0.045 0.021 0.028 0.012 0.017 0.10 0.4 0.01 0.012 0.013	4.5 5 1.5 2.5 9 10 3.8 6.3 4.3 2.9 1 4 7.5 2.5 9	9850 10050 10050 10050 10300 10500 10500 10500 10500 10500 10500 10500 10500 10500 10500 10950	425 340 370 260 200 380 470 505 330 460 530 300 260 345 460 430	Down Dip
Hole info	s 106 an rmation	d 111 of 1 is availat	1938 also ble regar	passed ding ass	through say value	this zo s or in	ne, but no tersections,
			TABLE	4			
			EAST V	'EIN			
DRILL HOLE	DATE	LEVEL	OzAu/t	WIDTH (FEET)	SECTION	DEPTH (FEET)	NOTES
6H 3H 4 U-9 U-13 S-15 S-11	1935 1935 1910 1988 1988 1986 1986	-225 -225 Surface -225 -225 Surface Surface	0.26 0.05 vein vein 0.018 0.034 0.01	2 3 3 9 3	10250 10450 10450 10500 10500 10500 10600 10050	225 225 110 540 480 460 440	No Assay Data

Hole 3 of 1914, from -225 feet of the mine appears to have passed through this zone, but no assay or other information is now available.

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

			MIDDLE	VEIN			
DRILL HOLE	DATE	LEVEL	OzAu∕t	WIDTH (FEET)	SECTION	DEPTH (FEET)	NOTES
S-19 125	1986 1938	Surface -225	0.01 0.04	4.5	9850 10,000	425	
	1914	-225	0.04	20 5	10,000	225 230	
S-12	1986	Surface	0.01	4.5	10,050	540	
7H 301(?)	1935 1938	-225 -400	0.02 vg	1	10,000 10,100	240 400 N	lo accav
S-14	1986	Surface	0.258	2.5	10,350	400 r 470	lo assay
S-13	1986	Surface	0.01	5	10,250	510	
128	1938 	-225	0.05	5	10,500	350	
Ho go	les U-8 ld assa	, U-9, and ys.	U-13 cut	this zo	one but re	eturned	only lo
			TABLE				
		E/	ST MIDDLE	E VEINS			
DRILL HOLE	DATE	LEVEL	OzAu/t	WIDTH (FEET)	SECTION	DEPTH (FEET)	
2 1H	1914 1935	-225 -225	0.10	9	10,100 10,100	230	No. Do
2	1911?	-225	0.51	1.5	10,100	270	No Da
S-20	1986	Surface	0.124	2.2	10,150	510	
S-14 S-9	1986 1986	Surface Surface	0.039	1.7	10,350	520	
S-10	1986	Surface	0.01 0.005	5 5	10,450 10,450	525 620	
U-2	1985	-225	0.027	5.5	10,550	275	
S-16 S-18	1986 1986	Surface	0.02	4.5	10,750	430	
	1900	Surface	0.015	3.7	10,950	525	
			TABL	E 7			
			DEEP	VEIN			
DRILL HOLE	DATE	LEVEL	OzAu/t	WIDTH (FEET)	SECTIO	N DEPT (FEET	
	1938	-600	0.14	2	10,050		Down d
504	1988	-225	0.199 0.16	0.8	10,050		
U-7	1020		U. 10	10	10,050	410	
	1938 1935	-225 -225			10.200	270	
U-7 113			0.06 0.132 0.028	3 1.1 2.2	10,200 10,500 10,500	625	

EARTH RESOURCE ASSOCIATES (ERA)

The Deep vein was also penetrated by drill holes 117, U-9, S-9, S-10, S-11, S-12, S-13, S-14, S-15, and S-16. No information survives for the 1938 drill hole 117, and holes S-9, S-15 and S-16 returned values of "trace" over the relevant sections. S-10 returned a value of 0.005 OzAu/t for 5 feet, S-11 0.005 for 2 feet, and S-13 0.007 for 11½ feet. S-12 returned a value of 0.01 OzAu/t over 4.5 feet beginning at 515 feet, but there is uncertainty if this is the right zone: near the expected location at 550 feet there is a gap in the results. Hole S-14 returned a value of 0.05 OzAu/t for 1.7 feet beginning at 602.3 feet which may be from this Deep Vein.

TABLE 8 EAST DEEP VEIN

DRILL HOLE	DATE	LEVEL	OzAu/t	WIDTH (FEET)	SECTION	DEPTH (FEET)	NOTES
6H	1935	-225	0.02	5	10200	290	
S-24	1986	Surface	0.008	5	9000	410	
H-6	1985	Surface	0.013	13	10050	300	

Drill holes 2 (1914) and 1H of 1935 also penetrated this vein, as did most of the holes from the 1985-88 drilling, without yielding significant results.

The assays summarized above in Tables 1 through 8 constitute an attempt to extract, from all available drilling information, some indication of the economic potential of the Hunter Mine. Some of the early information is vague, incomplete, contradictory, or non-existent, and allowances must be made for this fact. Some information is not included owing to uncertainties about correlation of veins or locations of holes. For example, surface drill holes 1 through 5 (undated but not the 1910 series) show values in Hole No. 2 of 0.518 over 1.5 feet at a depth of 30 feet, in Hole No. 4 of 2.51 OzAu/t over 4.95 feet at surface, and in Hole No. 5 of 0.199 OzAu/t over 5 feet at a depth of 25 feet. Drill hole 3 of 1948 from surface returned a value of 0.18 OzAu/t from an area just to the south of the shaft, across 2.4 feet, possibly from the Middle

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

Vein. These are summarized in Table 9 below. TABLE 9 UNASSIGNED INTERSECTIONS DRILL DEPTH WIDTH DATE LEVEL OzAu/t SECTION NOTES HOLE (FEET) (FEET) 2 1928? Surface 0.518 1.5 30 Unknown 4 1928? 4.95 00 Surface 2.51 Unknown 5 1928? Surface 0.199 5 Unknown 25 3 1948 2.4 90 Surface 9950± Middle Vein? 0.18

In all, the above 9 tables contain 81 gold intersections in the "interesting" class--that is to say, intersections that indicate that the particular vein may be classed as "gold-bearing". Many of the intersections in themselves are of such a low grade that they would not encourage mining operations in the vein they represent without further work to enhance that vein's potential. Nevertheless, the following Table 10 is compiled using all of the above intersections, including the low ones, so as to indicate something of the average values the drill holes detected in the various veins and at the Hunter Mine in general:

TABLE 10

AVERAGE VALUES	OF GOLD INTERSE 1910-19	ECTIONS, HUNTER MIN 988	-
VEIN SYSTEM	NUMBER OF INTERSECTIONS	AVERAGE GOLD OzAu/t	AVERAGE THICKNESS FEET
Upper Middle Vein Main Vein Lower Main Vein East Vein Middle Vein East Middle Vein Deep Vein East Deep Vein Unassigned	n 2 28 16 5 8 9 6 3 4	0.05 0.18 0.157 0.07 0.07 0.09 0.12 0.01 0.85	3.00 5.40 4.75 4.00 5.93 4.23 3.18 7.67 3.46
Number Weighted Average:	81	0.137	4.77

EARTH RESOURCE ASSOCIATES (ERA)

It must be emphasized that the above numbers only indicate the averages taken from drill hole intersections over the years, that the veins themselves may yield different averages in actual mining operations, that there are enormous gaps in the information, particularly far from the Main Vein where drill holes did not reach or where the fan effect produced large intervals between drill hole intersections, and that some "blanks" in the information, including some drill holes where particular veins were not detected or reported, have been ignored. Nevertheless, it is interesting to note that the gross average grade as given above of 0.137 ounces of gold to the ton, including as it does many low and unexciting values, approximates the average production grade from the Dome Mine, Hunter's next door neighbour to the west.

Such is not to imply that the Hunter could make a profit with a similar grade as Dome's, for that mine's high tonnage, high efficiency operation puts it in a different class of operation. But it is probable that zones or ore shoots exist within the various veins at the Hunter whose average grades are high enough to make these zones profitable. Such has already been indicated in past operations, where the average grades of the stope areas were 0.29 and 0.61 ounces of gold. And such has been indicated in the 1985-1988 drilling, where intersections in the 0.2 to 0.7 class are recorded. Available evidence indicates that the higher grade zones are related to drag-folds, one of which was the principal area of mining operations in the 1938-1940 period. The definition of this drag-fold, the delineation of related structures, and the discovery of additional ones are thought to be the necessary steps that will be needed to develop a reasonably large tonnage and good grade of ore deposit on the site.

Persistency of the vein systems, both along strike and down dip, indicates that reasonably high tonnages might be expected during the life of the mine, even if operations are limited to about 600 feet below surface. There is some indication that gold mineralization extends below this depth: assays on the 700 foot level, and reported gold mineralization in an albitite dike on the 600 foot level. This latter indication may be a "tip of the iceberg" occurrence in a network of albitite sheets extending to depth, a possibility that warrants further exploration.

EARTH RESOURCE ASSOCIATES (ERA)

An attempt may be made to estimate potential tonnage of goldbearing vein systems at the Hunter Mine by taking the strike and dip lengths indicated above on pages 9 and 10, increased somewhat to include reasonable extensions, and multiplying these by their respective widths taken from Table 10 above. Again, one must bear in mind the low grade of some of the intersections, the wide spacing of the information, the degree of extrapolation involved, the presence of "blanks" in the data, and uncertainties in the geological setting. The following results:

TABL	E'	11
------	----	----

TONNAGE ESTIMATES OF GOLD-BEARING MATERIAL

VEIN	LENGTH (FEET)	WIDTH (FEET)	THICKNESS (FEET)	VOLUME (CU.FEET)	
Upper Main Vein Main Vein Lower Main Vein East Vein Middle Vein East Middle Vein Deep Vein East Deep Vein	400 1450 1450 600 800 800 800 1200	400 600 600 600 600 400 800 300	3 5.4 4.74 4 5.93 4.23 3.18 7.67	480,000 4,698,000 4,123,800 1,440,000 2,846,400 1,353,600 2,035,200 2,761,200	
TOTAL VOLUME, CUBI TONNAGE		19,738,200 1,644,850			

How much of this tonnage is real, and how much may be eventually mined at a profit, remains unknown at the present. In some mines that have a long history of production from which the distribution of gold is known with some degree of confidence, independent of drilling results, it is often possible to mine areas immediately, and at a profit, even though drilling information suggests sub-profitable material to be present. The Hunter is not such a mine, and until it is, each vein or vein system will have to be drilled off, sampled, and carefully appraised before it can be mined with any degree of confidence of economic success. The 1985-1988 drilling results, coupled with the 1938-1940 mining data, suggests that at least one zone exists at the Hunter which is potentially mineable at the present time. It is during the exploration and devel-

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

opment of this zone, along the lines already recommended in the report by Kirwan of 1987 that other vein systems than the Main Vein can be investigated most efficiently. However, some important preliminary work can be done at the present time, using material already in hand.

CONCLUSIONS

- 1. All known gold-bearing vein structures at the Hunter Mine are confined to a 300 foot thick zone that is conformable with a synclinal structure at the edge of, and below, the waters of Porcupine Lake. The conformable nature of the gold-bearing zones suggests that they may be duplicated or repeated in the anticlinal structure a few hundred feet to the east.
- 2. Gold values are known or reported from porphyry and albitite dikes which may be expected to continue to depth below the known gold values in the mine workings. This environment remains unexplored.
- 3. At least 10 vein structures are indicated by drilling, 8 of which are gold-bearing. One of these, the Main Vein, has been traced a distance of 1450 feet, along which length an average gold content across 5 feet in excess of 0.2 ounces to the ton was indicated in recent drilling. Within this zone a 950 foot length is shown in the same drilling results in which an average grade above 0.3 ounces of gold to the ton across 5 feet was indicated.
- 4. If a simple arithmetic average is made of all 81 gold assays from all drilling results from the 8 gold-bearing vein systems, including low values down to 0.01 ounces to the ton, a figure of 0.137 ounces of gold to the ton results. Some "blanks" are not included in this value.
- 5. If a simple arithmetic average is made of the widths of the above assay values, a figure of 4.77 feet results.
- 6. If the geologically indicated strike and dip lengths of the 8 vein systems are multiplied by their average widths, a figure of over 1.6 million tons of possible gold-bearing material results.
- 7. The highest grade gold-bearing material recorded during mining operations in the 1938-1940 period was within the upper limb of a prominent drag-fold in the succession. Here grades in 2 stoped areas have been estimated to have been 0.29 and 0.61 ounces of gold to the ton. Recent drilling, northward from and below this area, indicates grades in the 0.7 ounce class for material still in place. It is concluded that considerably richer material than the mine average of 0.137 mentioned above is to be found in the drag-folded portions of the mine. Identification, definition, and extension of drag-folds will therefore become a high priority target in future exploration of the deposits.
- 8. Exploration of the porphyry and albitite sheets within and below the mine workings will also become a priority.

EARTH RESOURCE ASSOCIATES (ERA)

9. Deep drilling, to test for repetition at depth below the Hunter Mine, of mineralization known to exist on ground to the south, should also be done.

RECOMMENDATIONS

- 1. As a means of searching for drag-folds within the drilled-off areas of the Hunter Mine, all available drill core should be reexamined for structural indications of such folds. Core angles should be plotted on sheets at a scale of 20 feet to the inch and correlated. All available information should be plotted on sections, like the sections in this report, at scales of 1 inch to 20, 40 and 100 feet, the latter as an up-date to the mine model. All this work can take place using material in hand. The mass of papers, assay sheets, mine manager's and consultant's reports for the Hunter Mine should be sifted through as part of this work. A time estimate of about 4 months for one geologist and a draftsman is estimated.
- 2. The diamond drilling program already begun from the first level of the mine should be continued along the already-indicated parameters, but each hole extended to cut all other known gold-bearing veins as indicated in this report.
- 3. Nothing in this report down-grades the excellent indications of gold mineralization in the 1986 drilling or the recommendations to proceed with underground definition and bulk sampling of this material by drifting, drilling, and raising from the 400 or 450 foot level of the mine. This work should proceed with the completion of the few remaining buildings on the surface, the commissioning of the hoist, and the rehabilitation of the shaft to its bottom.
- 4. All previously recommended underground work, notably sampling, drilling, mapping and bulk testing of material in place in all levels of the mine should be implemented.

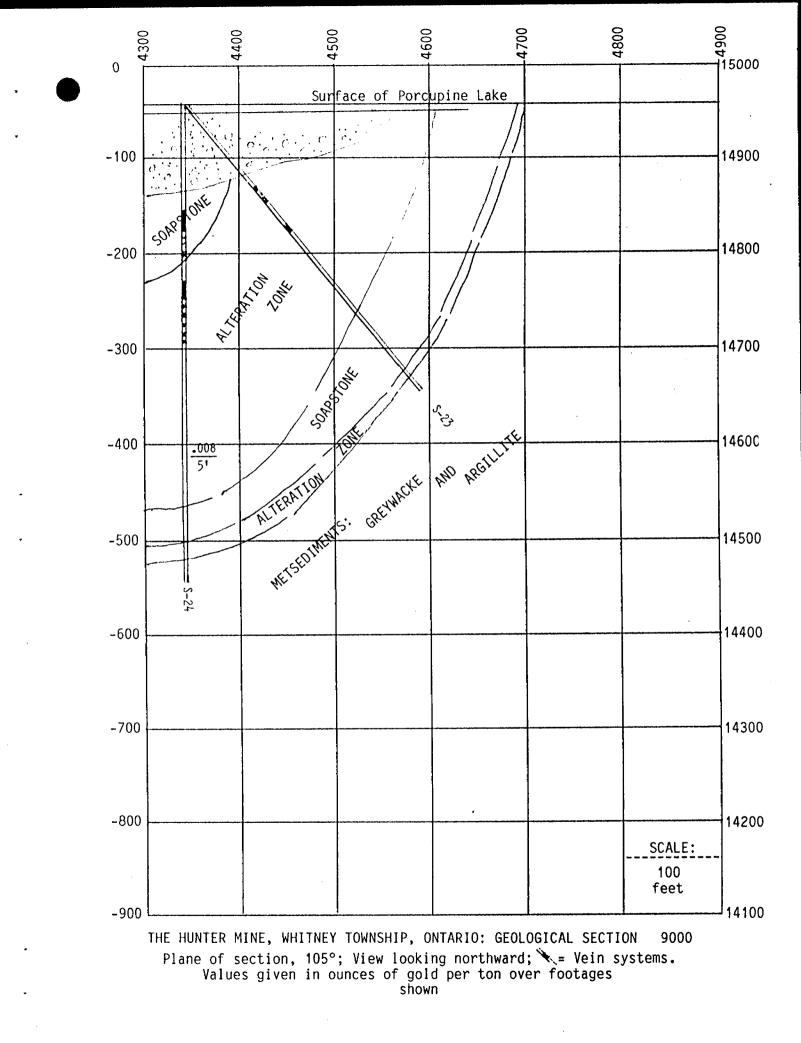
No significant increases in previously estimated budgets, timeframe, or personnel, are suggested. An increase of about 10% might be reasonable to account for inflation of costs from the date of the recommendations to the present.

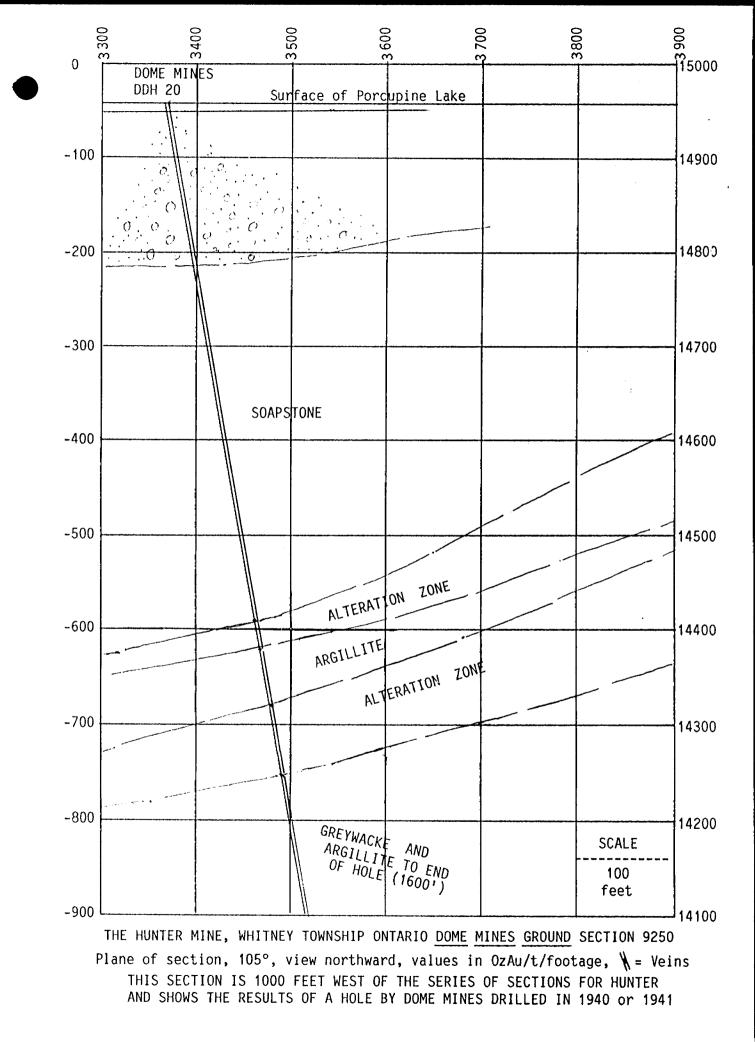
At Timmins, Ontario

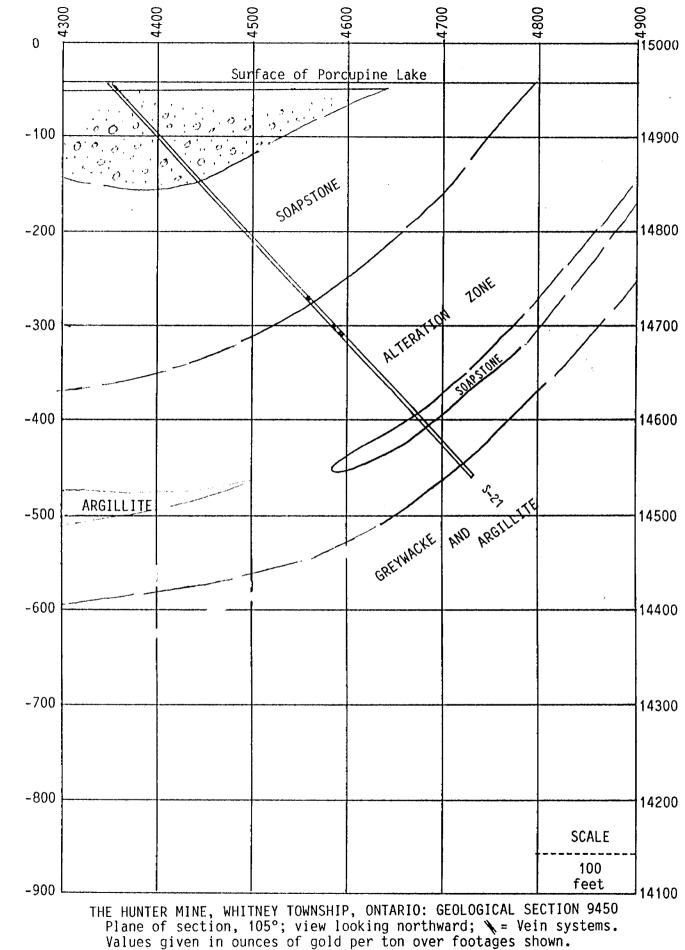
EARTH RESOURCE ASSOCIATES (ERA)

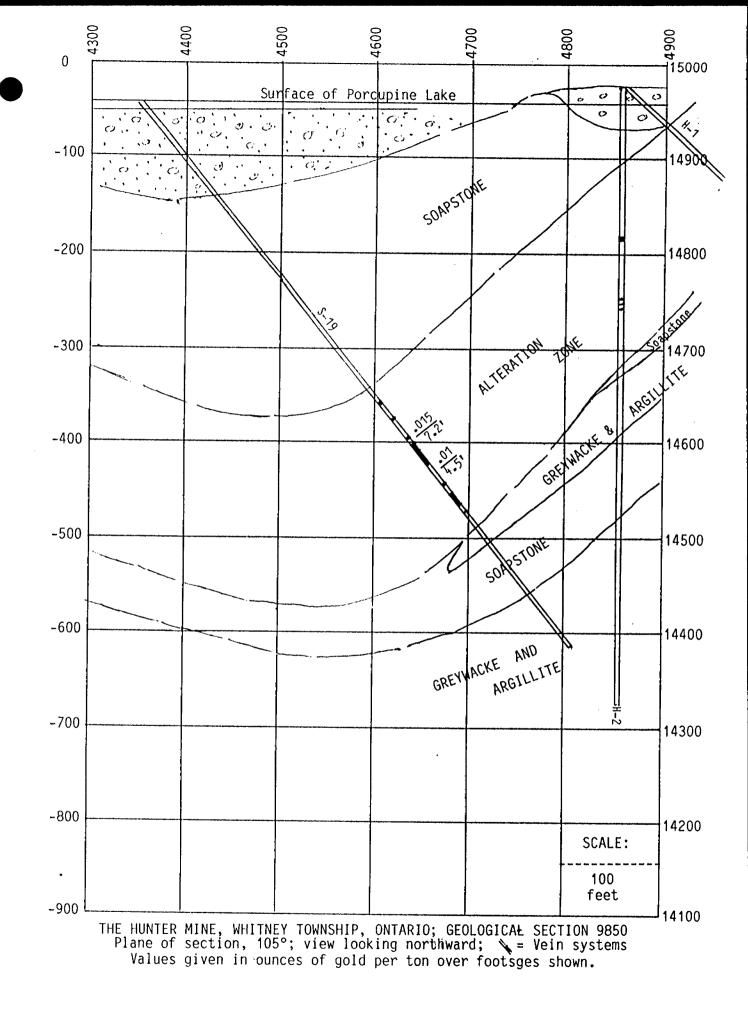
DECLARATION

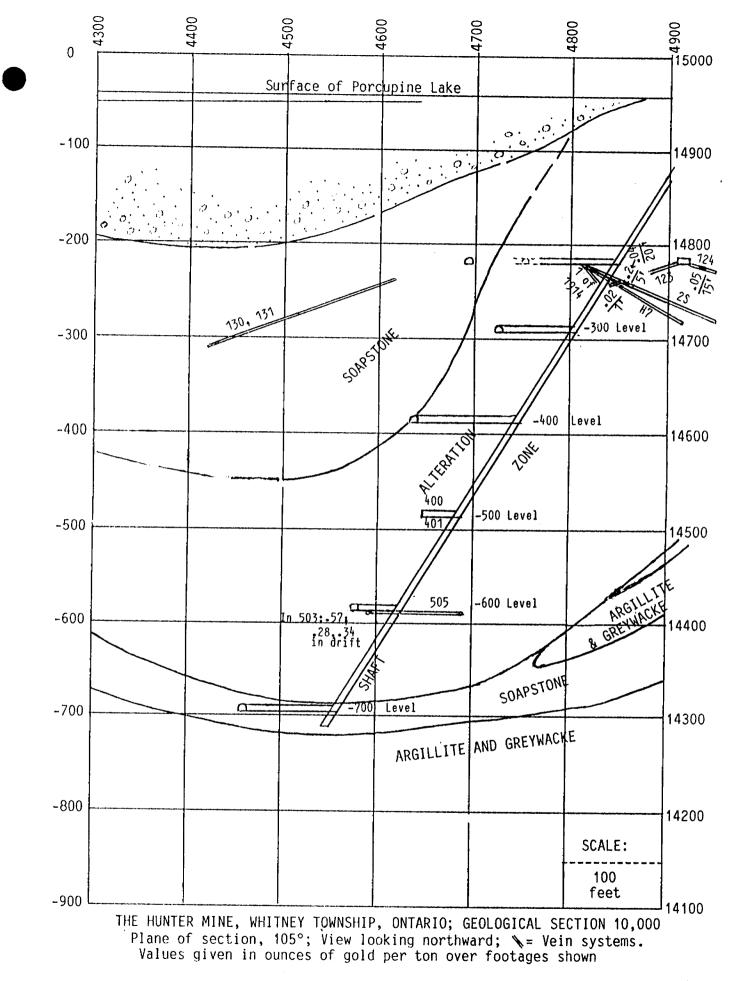
I, John Laurence Kirwan of the Town of Centre Harbor, State of New Hampshire, United States of America, and of the City of Timmins, Province of Ontario, Canada, state:

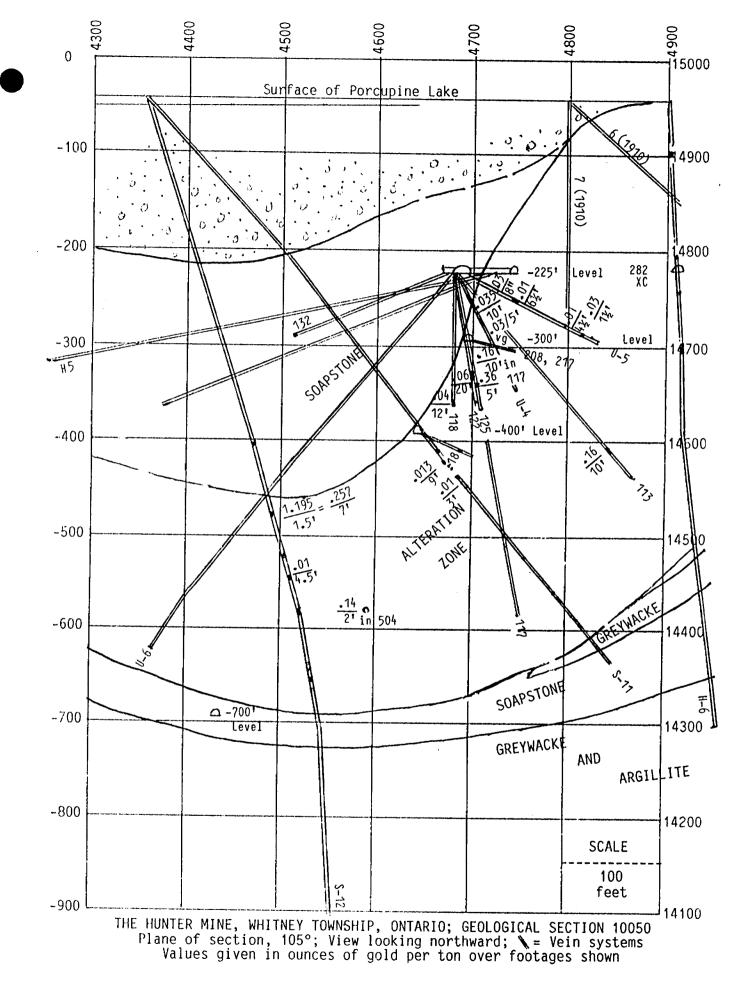

- 1. That I am a practising consulting geologist with offices at 1111 Government Rd., South Porcupine, P.O.Box 2150, Timmins, Ontario, P4N 7X8 and at Knockdoe, Old Meredith Road, P.O.Box 985, Centre Harbor, NH, 03226.
- 2. That I am President and Principal Consultant of John L. Kirwan and Associates Limited (Earth Resource Associates) which was incorporated in the Province of Ontario in 1976.
- 3. That I have practised my profession as Geologist contunuously since 1961 and as Consulting Geologist continuously since 1972.
- 4. That I am the holder of a Bachelor of Science degree in Geology and Mathematics from Carleton University and of Master of Science and Doctor of Philosophy degrees, both in Geology, from the University of London in England.
- 5. That I am a registered Professional Engineer in the Province of Ontario and in the State of New Hampshire, and that my licence to practise in either jurisdiction is not, and never has been, in a state of suspension or revocation.
- 6. That I am a Life Fellow of the Geological Association of Canada and of the Royal Geographical Society of England and have been elected an Associate, Fellow, or Life Fellow of other scientific or professional societies in Canada, the USA, Ireland, England and Brazil.
- 7. That the material presented in this report is accurate and that I have direct knowledge of this material; that I have examined all of the data myself, or supervised other competent professionals in their work with this material; and that the conclusions and recommendations reached in this report are my own and have not been derived through the influence of other parties, including the management of Wabigoon Resources Limited.
- 8. That I do not now have, and do not anticipate receiving any direct or indirect financial or propriorty interest in the property under discussion. However, my wife, Victoria Helen Hanson is the registered holder of 5000 common shares of Wabigoon Resources Limited as of this date, October 28, 1988.

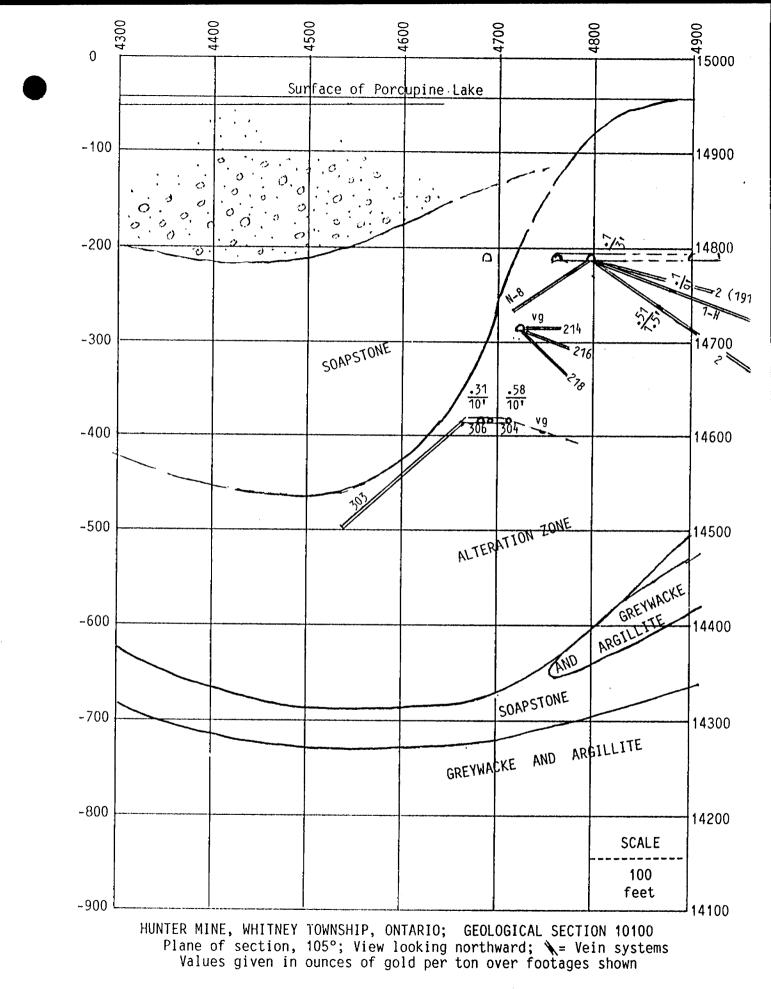

John W Kirwan

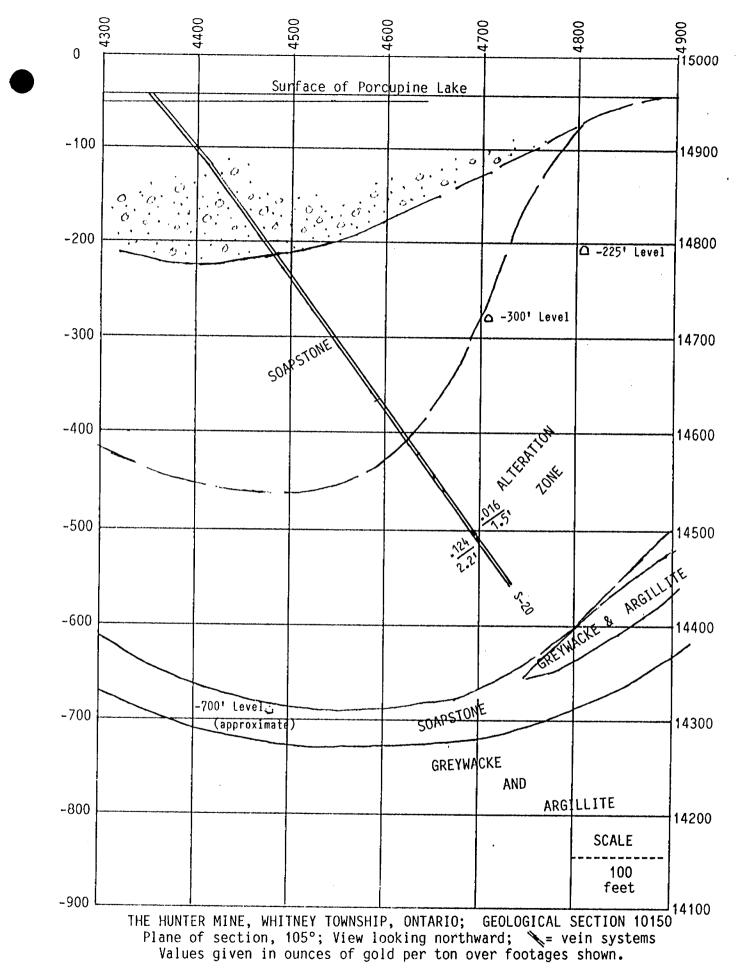

APPENDIX

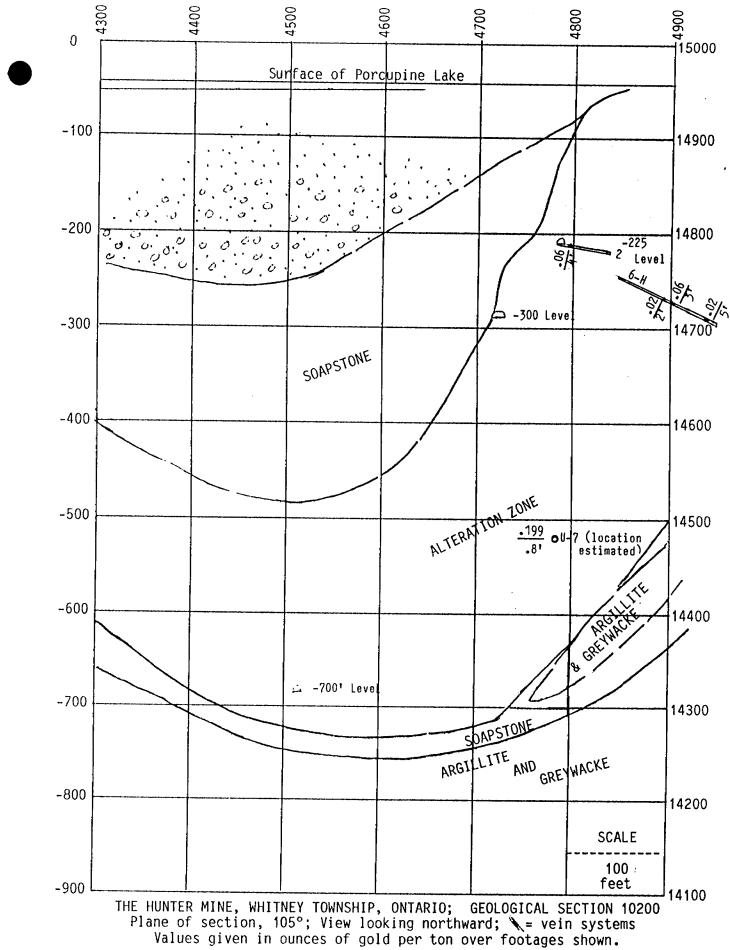

DIAMOND DRILL HOLE SECTIONS FOR ALL KNOWN DRILL HOLES, 1910-1988, HUNTER MINE, ONTARIO


5-27 \$25,526 WABIGOON RESOURCES HUNTER MINE PROPERTY ALTERATION CLAIM 14052 --SECTION 11500 WHITNEY TOWNSHIP ONTARIO H8 -5000F SKETCH MAP S22 b 0F DRILL HOLES ZONE -SECTION 11150 FROM S18 P THE SURFACE OF CLAIM HR1009 PORCUPINE LAKE -SECTION 10950 S169 WINTER SECTION 10800 S15 0 SECTION 10750 1986 -SECTION 10700 SECTION 10650 S9, S10 Q SECTION 10600 SECTION 10550 S14 Q SECTION 10500 SECTION 10450 SECTION 10400 S130 SECTION 10350 SECTION 10300 S20 O SECTION 10250 S17 0 3900/ S11, S120 SECTION 10200 ECTION 10150 ECTION 10100 H5 H6 - SECTION 10050 -SECTION 10000 \$19 a 5 H4 ANC, ANC TALC HЗ -SECTION 9850 S21 0. ϕ_{1} ---SECTION 9450 CLAIM 10272 --SECTION 9250 S23, S24 Δ -SECTION 9000 ^{4500/} CLAIM 10451 / J.L.Kirwan April 10, 1986 INDEX MAP OF DIAMOND DRILL SECTIONS Modified, September 4, 1986 APPENDED IN THIS REPORT December 8, 1988

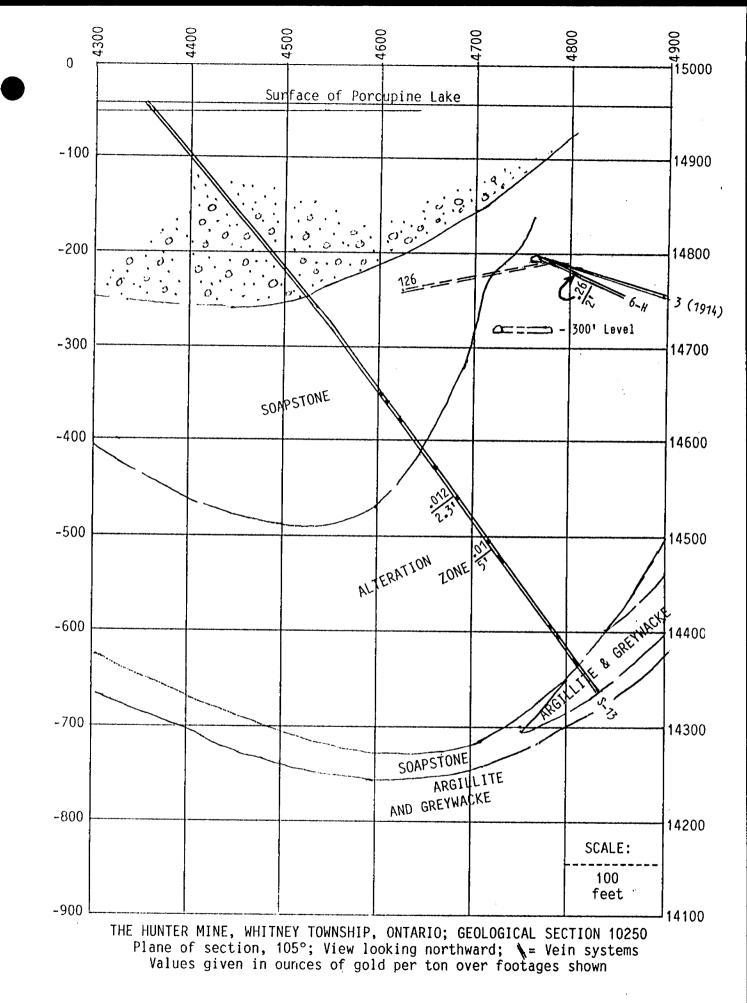


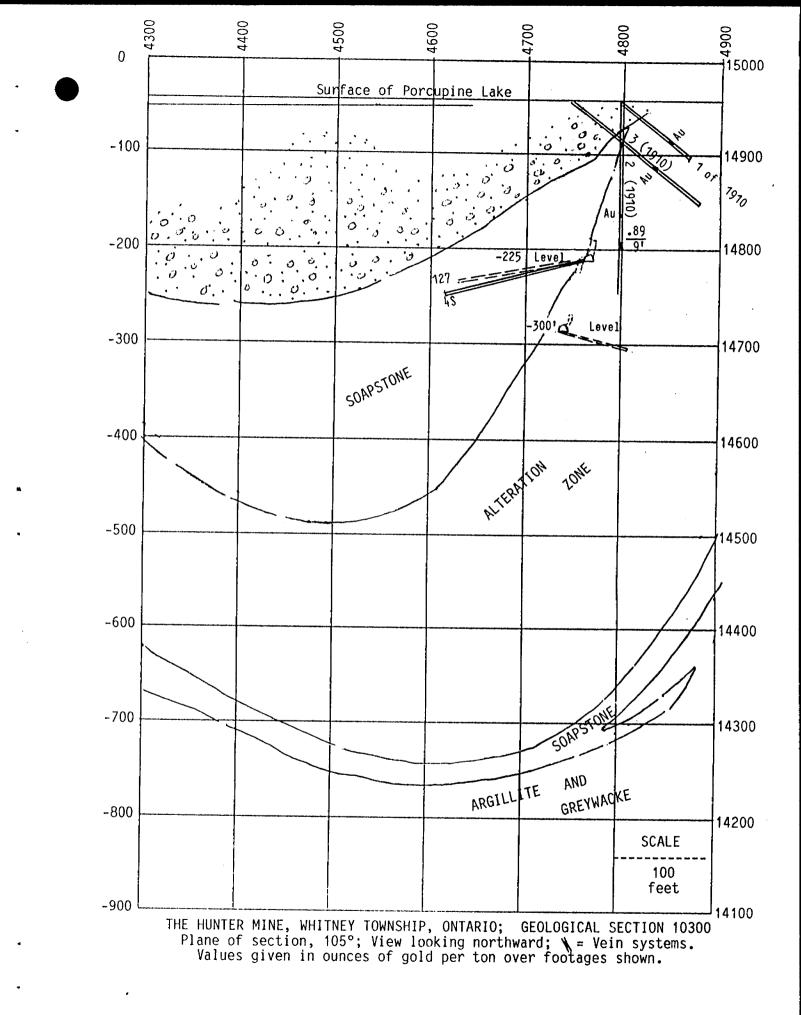


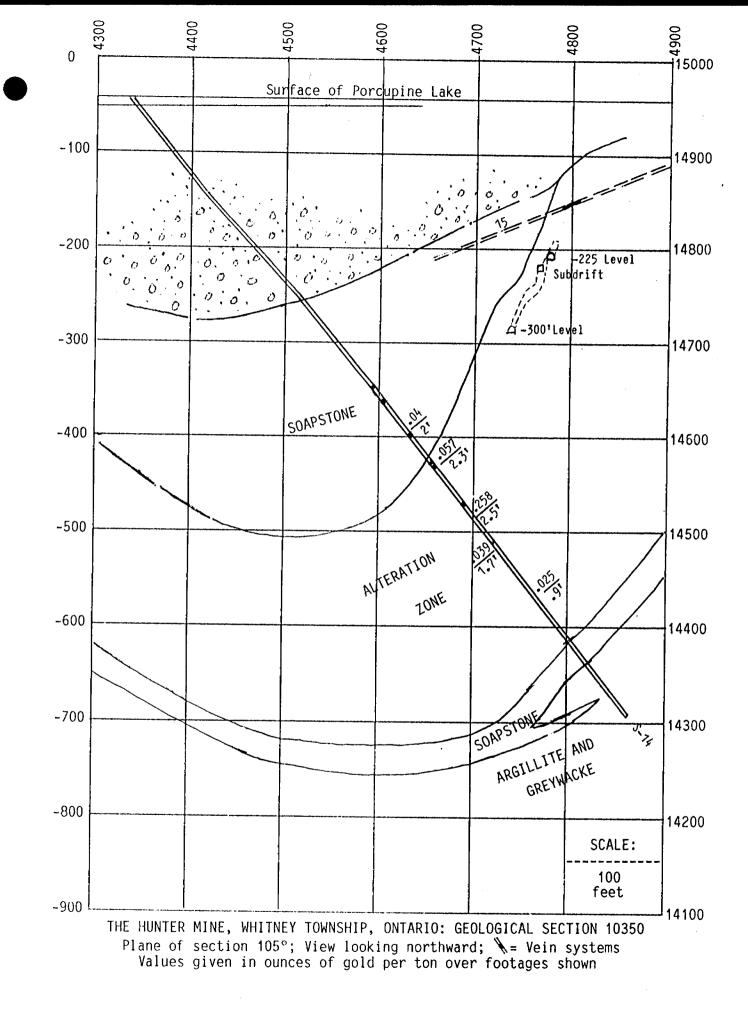

•

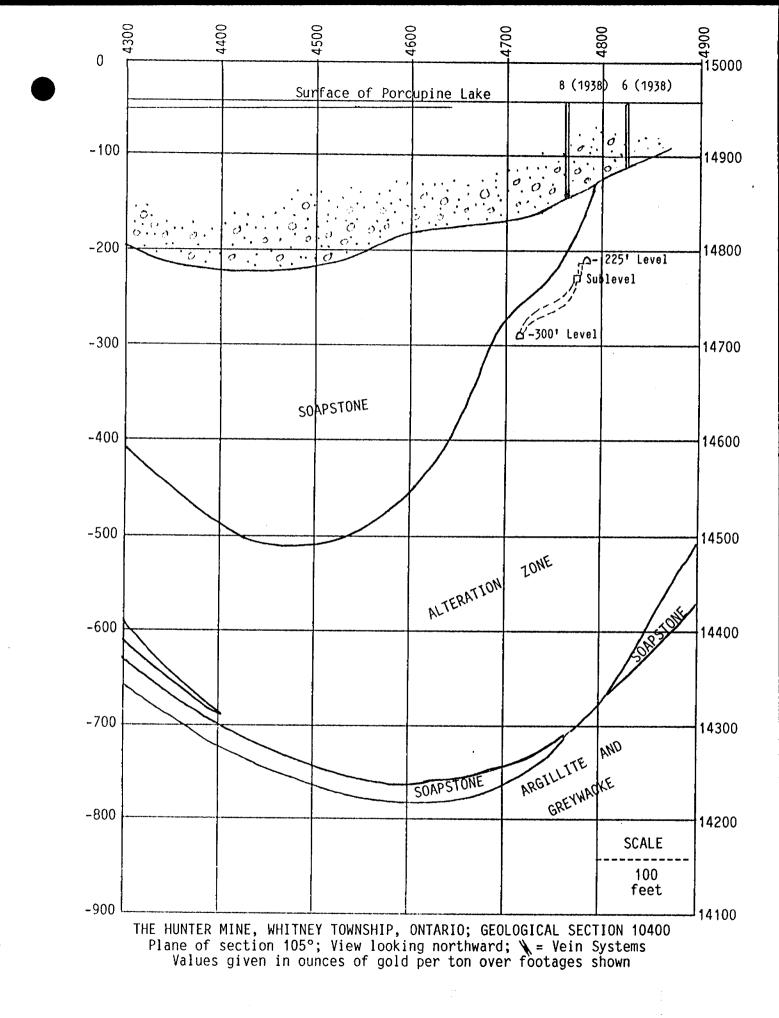


•

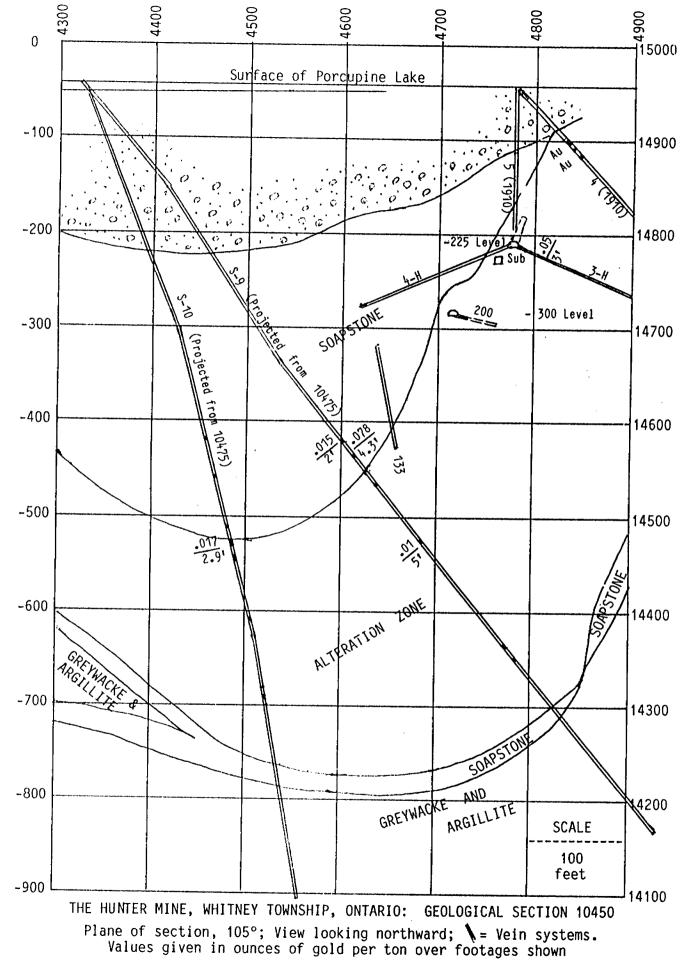

-

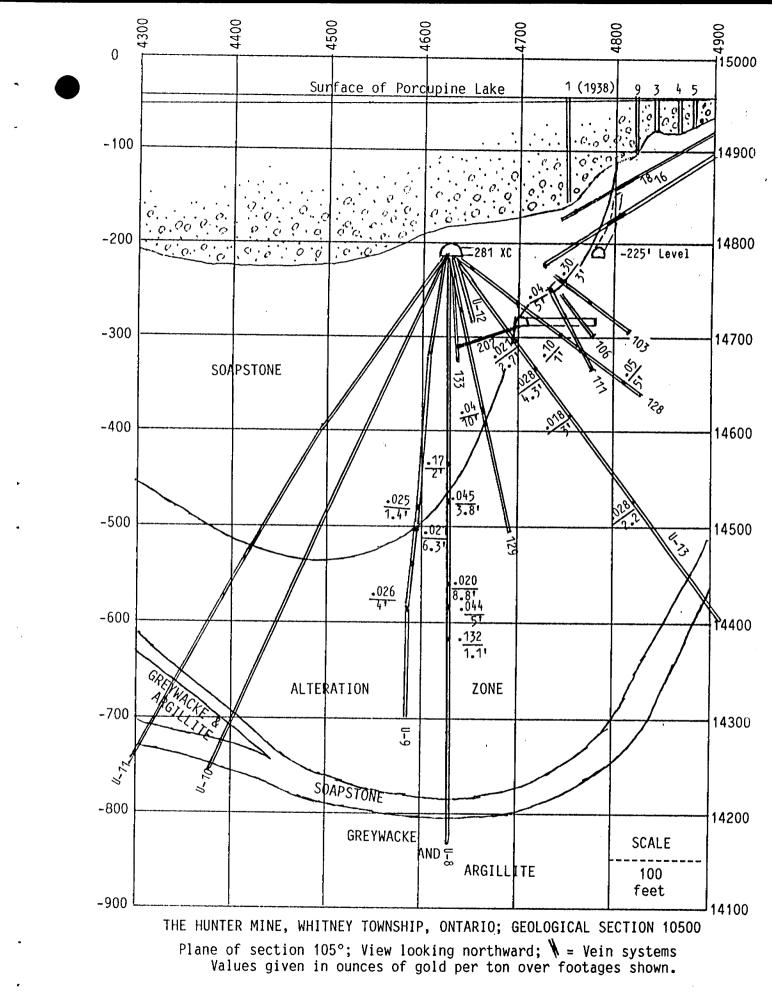


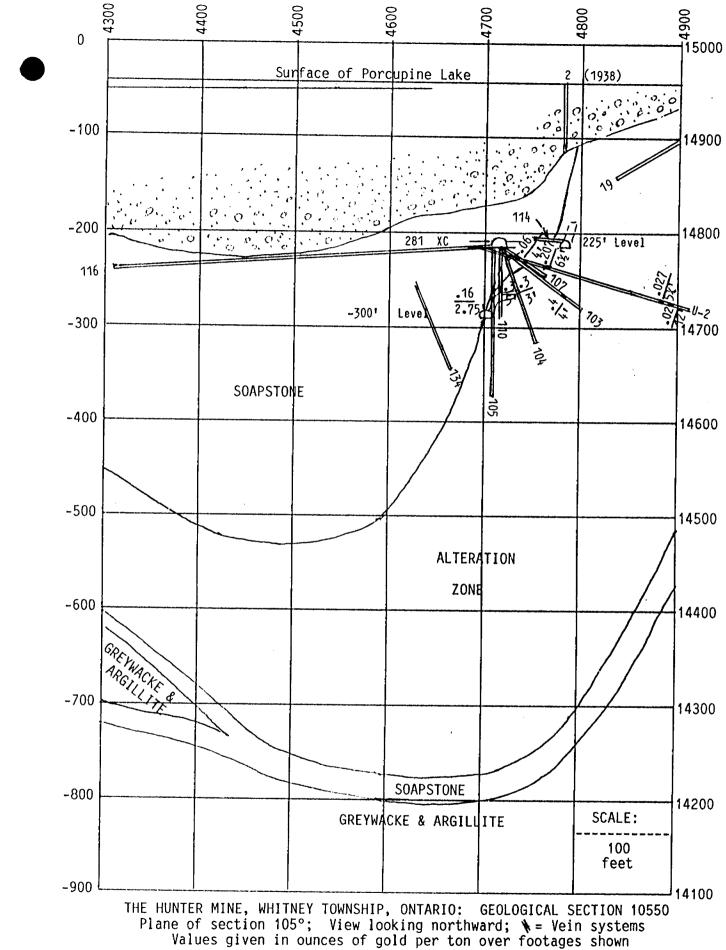


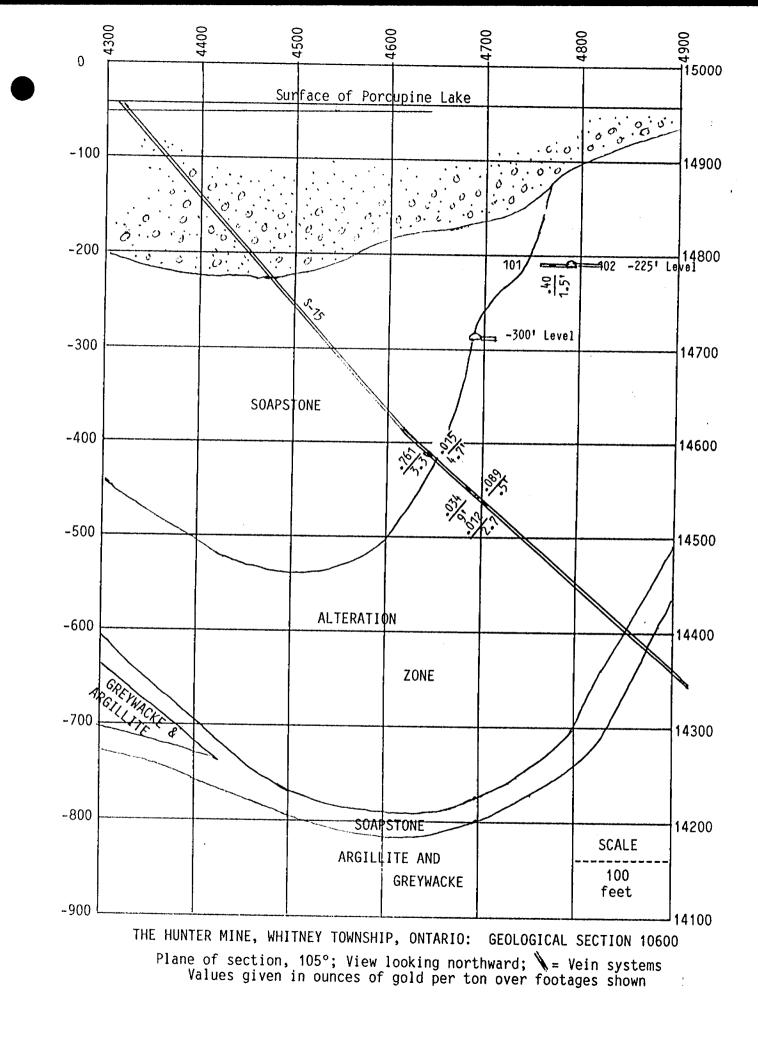

_

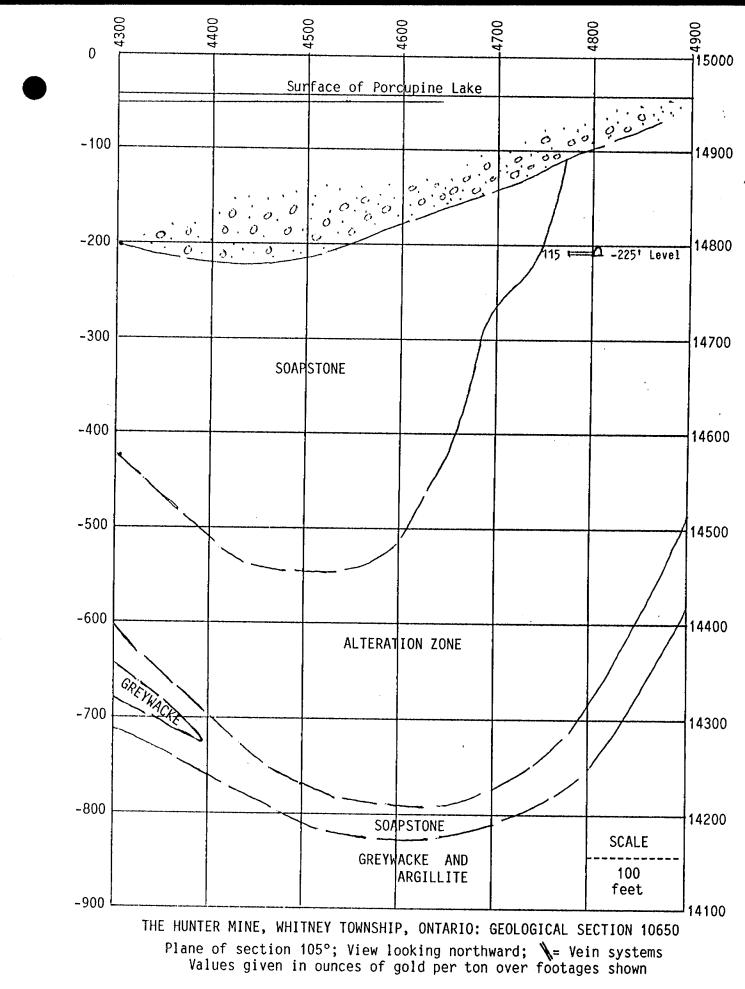
iouldyes sh

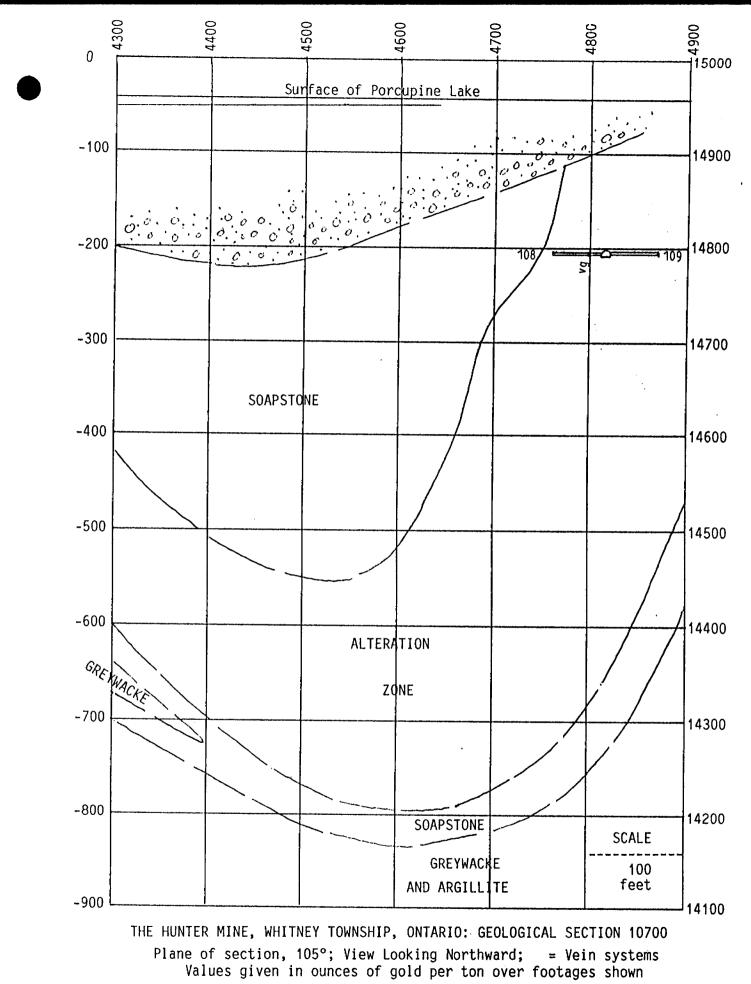




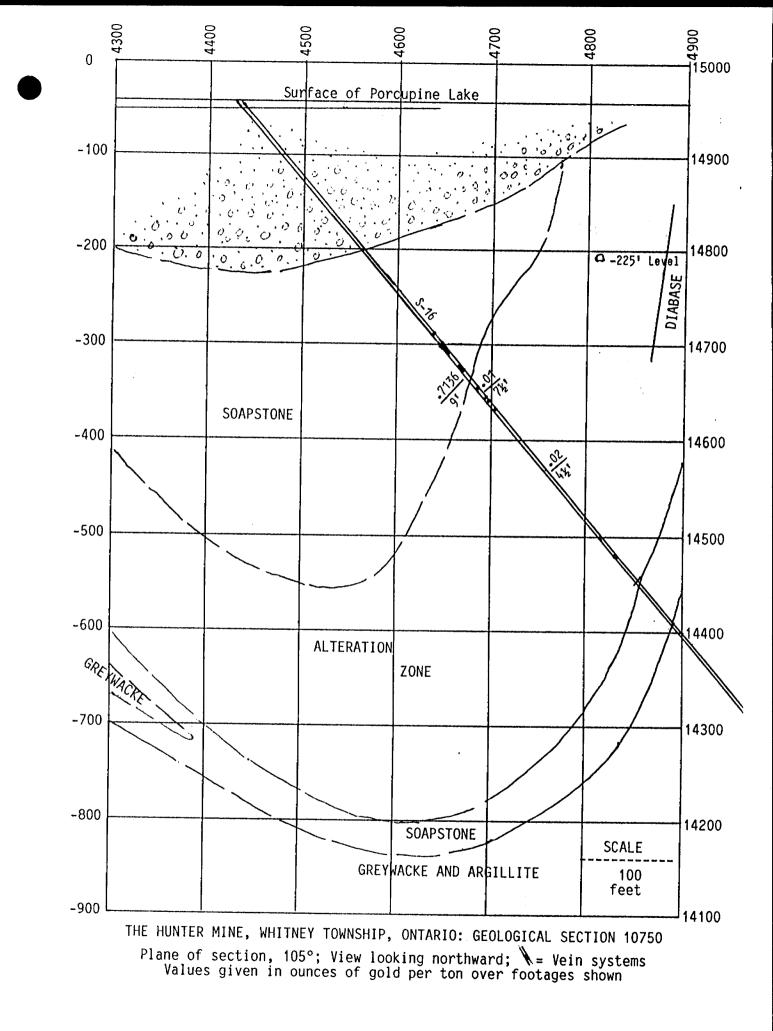

ł

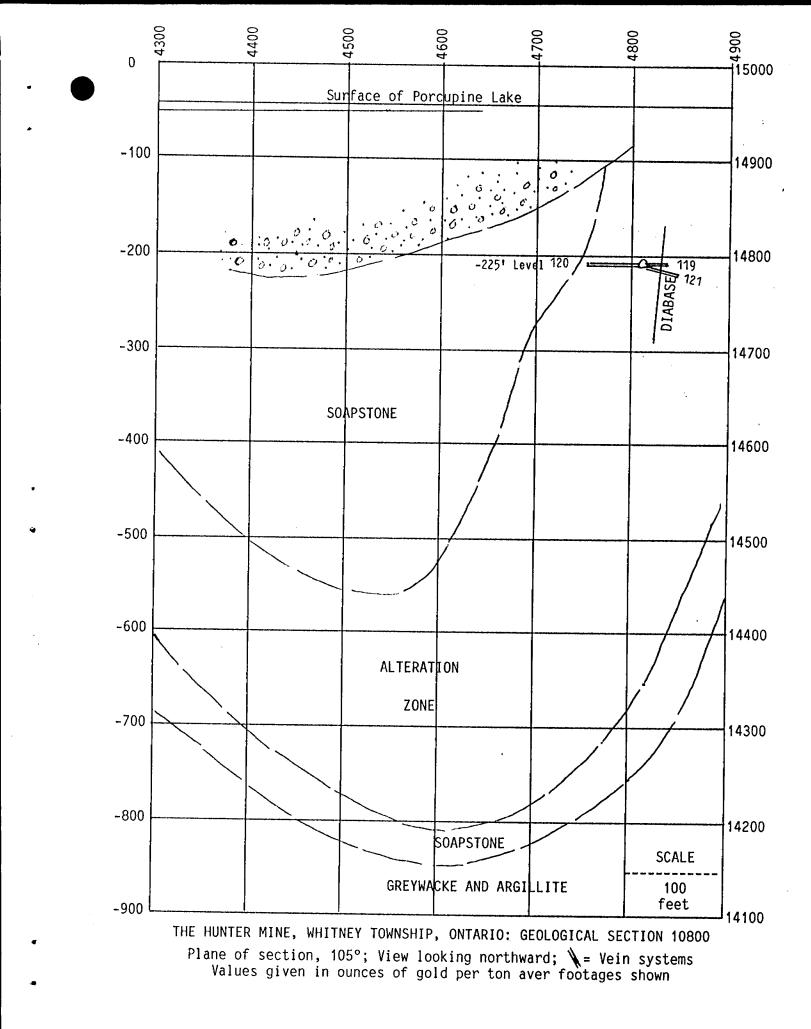


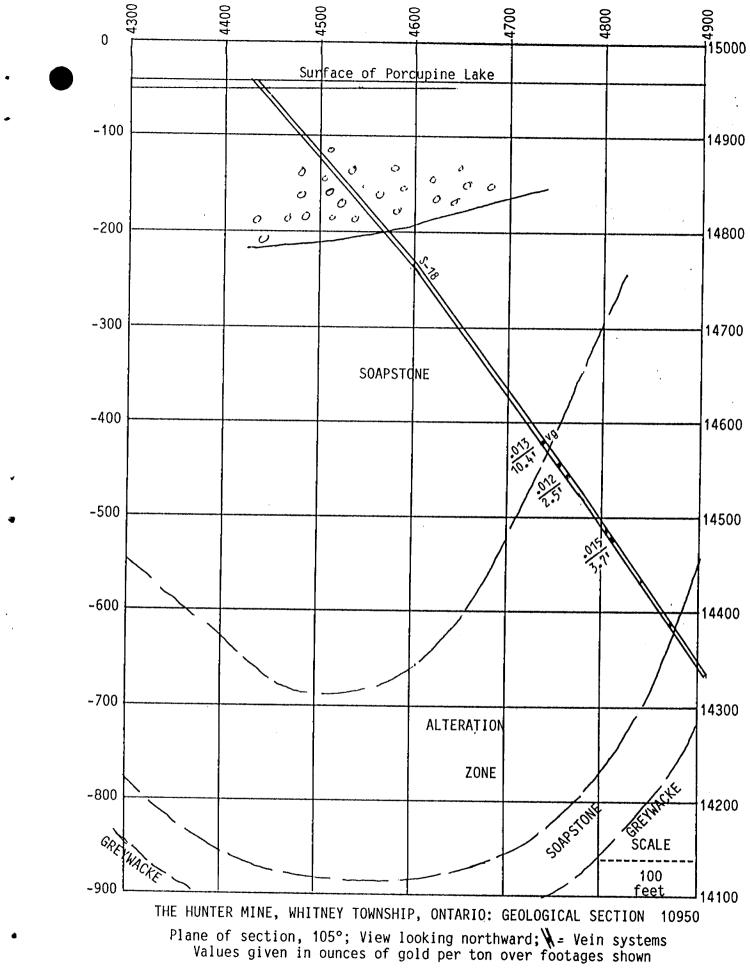


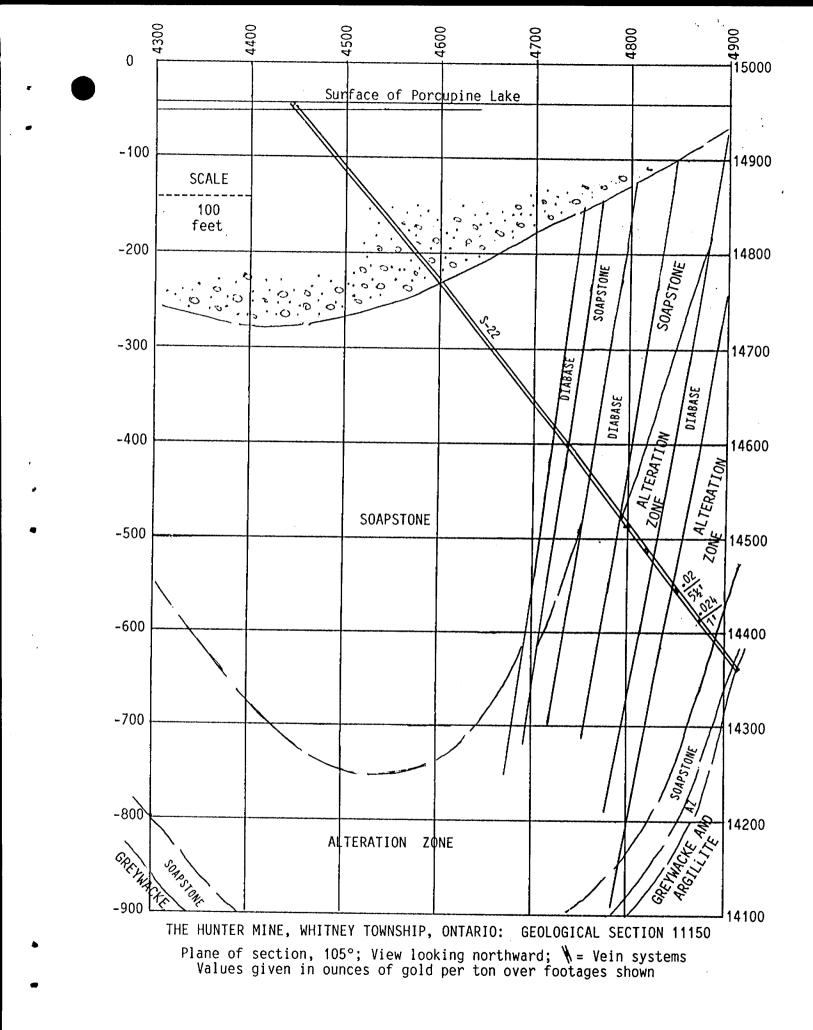

.

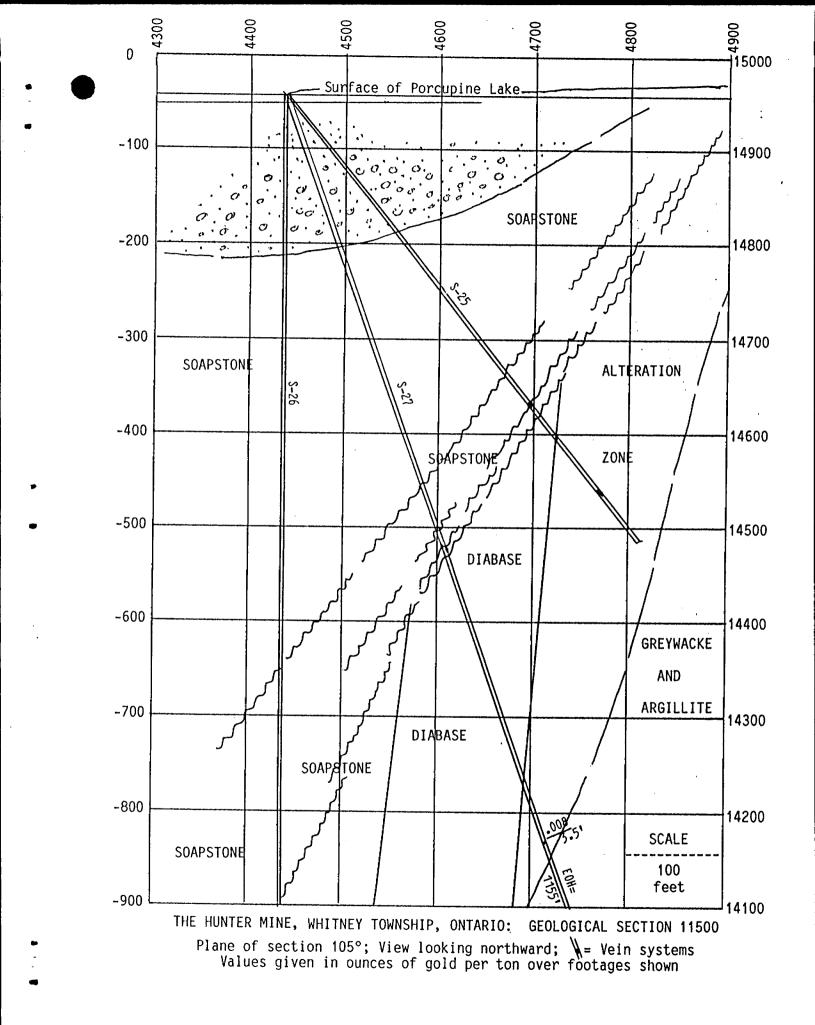
;








.



.

020

HUNTER MINE

WHITNEY TOWNSHIP, ONTARIO

1988 DRILLING PROGRAM

SUMMARY OF RESULTS

by

John L.Kirwan BS MSc PhD PE PEng

Earth Resource Associates, 1111 Government Road, Porcupine, Ontario.

PO Box 2150, TIMMINS, Ontario, P4N 7X8 705 235-2777

October 28, 1988

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

SUMMARY

Of a projected 60 drill holes from underground and surface at the Hunter Mine, some 7 were drilled to completion in 1988, an 8th one being lost due to poor rock conditions. Work was suspended pending refinancing of the project in March, 1988. The drilling was designed to define the extent and grade, and therefore the tonnage, of part of a gold-bearing zone of rock beneath the mine workings some 1450 feet long and 5 feet thick which graded 0.238 ounces of gold to the ton. The drilling was also designed to investigate several geological parameters as an aid in extending the gold-bearing zones and determine mining methods.

With such a small proportion of the projected drilling completed it is premature to draw final conclusions about the distribution of gold in the mine. However, combining the present data with previous information, the following may be said:

- 1. Gold is associated with silicified zones about the contacts of dikes of quartz feldspar porphyry, with a well-developed drag-fold in the case of the Main Vein, and with a body of Albitite, which has yet to be explored in detail, at and below the -600 foot level of the mine.
- 2. All values are confined within a 300 foot thick Alteration Zone of sericitic schists which occupies the east limb and bottom of a syncline which pitches northward at progressively steepening angles from about -8° near the mine shaft to over 20° some 500 feet to the north.
- 3. Current drilling combined with previous work has traced the Main Vein through a down-dip distance of about 400 feet to intersect the 1450 foot zone a little north of half way along its length.
- 4. Other gold-bearing zones include the Albitite area mentioned above, which is at the -600 foot level; a 500 foot long zone encountered in drilling between 1935 and 1988 eastward from, and below the Main Drift on the first level of the mine; and several "stray" indicators of gold mineralization encountered in earlier drilling.

Recommendations are made to complete the drilling program already begun but extend it slightly to trace gold-bearing veins other than the Main Vein, to explore the Albitite area on the -600 foot level, to open an old pit and drill several holes on the east side of the property so as to locate vein structures reported or indicated there, to conduct a series of test holes from underground to trace the Main Vein and the veins mentioned in 4. above, and to construct underground drifts and crosscuts so as to follow, drill off, and bulk sample the Main Vein and other goldbearing units as a preliminaryto making a production decision on the Hunter Mine.

The presence of additional veins over and above those previously thought to exist on the site, and the possible depth extent of mineralization near the Albitite area, both suggest tonnage possibilities at the Hunter Mine that are greater than previously thought.

For a further discussion of these points the reader is directed to the Summary and Recommendations on pages 21 and 22 below.

JOHN L. KIRWAN

42A06NE0087 63.5479 WHITNEY

020C

CONTENTS

ILLUSTRATIONS

FIGURE 1:Current Drilling in Relation to 1986 Drilling6
FIGURE 2: Underground Plan7
FIGURE 3: Geological Section 100508
FIGURE 4: Geological Section 105159
FIGURE 5: Longitudinal Section10
FIGURE 6: 1938-1940 Drilling17
APPENDIX: Drill Logs for Holes U-6 Through U-13, 8 pages after24

This report consists of 23 numbered pages, plus 2 numbered i and ii forming Summary and Contents pages, plus a Title page dated October 28, 1988.

The Appendix consists of an introductory page numbered 24, plus 8 pages of diamond drill logs.

JOHN L. KIRWAN

HUNTER MINE PROPERTY, WHITNEY TOWNSHIP, ONTARIO, 1988 DRILLING PROGRAM

SUMMARY OF RESULTS

by

John L. Kirwan

INTRODUCTION

The Hunter Mine, discovered in November, 1907 on the east shore of Porcupine Lake, Timmins, had a brief period of production between 1935 and 1940, during which some 10,000 tons of gold-bearing ore was processed in a small mill on the site. The property lay dormant from 1940 to 1983, in which year it was acquired by Wabigoon Resources Ltd. of Toronto, who conducted both surface and underground exploration programs between that date and the present. In 1986 a series of drill holes was put down from the frozen surface of Porcupine Lake so as to test for gold-bearing mineralization below -300 feet (the lowest level that had been mined) and both northward and southward from the mine workings--ie. to test for mineralization not previously known. This 1986 drilling indicated that gold-bearing mineralization exists below

EARTH RESOURCE ASSOCIATES (ERA)

the mine workings and beyond them northward and southward, and indicated that this mineralization extends to at least the -400 foot level and has a strike length of 1450 feet, along which a calculated average uncut grade of 0.238 ounces of gold to the ton across a mining width of 5 feet is indicated, within which a 950 foot zone averages 0.3556 ounces, also calculated across 5 feet, though occasionally this thickness is greater.

In a report dated March 20, 1987, the writer recommended further exploration work so as to define this zone more accurately for the purposes of developing a viable mine on the site. The recommended work was to consist of surface diamond drilling and underground exploration activities including the driving of drifts and crosscuts, diamond drilling, and bulk sampling. This work was designed to define the extent and shape of the gold-bearing zones, to test their grades and thicknesses, and to calculate tonnages, as a preparation for active mining of the deposit. A budget of \$2,500,000, plus an additional \$1,500,000 to bring the deposit to production phase, was estimated.

In late 1987 approximately \$1,500,000 was raised for work on the Hunter Mine, much of which was spent constructing surface buildings, building a headframe, obtaining power and a hoist, and dewatering and restoring the shaft to -300 feet. A beginning was made on the recommended drilling program for the purpose of defining an orebody for the proposed mining: of some 60 drill holes recommended, 7 were completed, an 8th being lost in soft rock. So abruptly did the flow of cash cease that splitting and assaying of most of the drill core was not accomplished until late October, 1988, the drilling operations having been suspended in March.

The purpose of this report is to summarize the results of the 1988 drilling, now that the assay results, drill logs, and sections are available. It is emphasized, however, that only a small fraction of the holes necessary to outline the gold-bearing units has been completed, and that any conclusions as to tonnage, grade, persistency, or shape of the zones are very premature when considered for mining purposes. Some important geological data has resulted from the 1988 work, however.

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

THE 1988 DRILLING

OBJECTIVES

The recommended diamond drilling on the Hunter site over a period of perhaps 1½ years, beginning in mid-1987, was as follows:

- 1. From the Frozen Surface of Porcupine Lake, 5 diamond drill holes for a total length of 5000 feet for the purpose of defining northward from its discovery area a structural syncline which appeared to govern the distribution of the gold-bearing units.
- 2. From Several Locations on the Property, a further 5000 feet of drilling for the purpose of,

a. testing for eastward repetition of the gold-bearing units, andb. testing for deep gold mineralization below the mine workings.

- 3. From 2 Crosscuts, Numbers 281 and 283, from the Mine Workings, a total of at least 50 drill holes fanned out to intersect the vein systems below the -300 foot level so as to:
 - a. test for continuity of the mineralization,
 - b. determine if the gold is in one unit or several,
 - c. obtain sufficient intersections so that the results could be used to calculate potential tonnage and grade of the mineralization,
 - d. establish a relationship between rock units, structure, alteration, vein systems, and mineralization, and
 - e. try to locate indications of mineralization at greater depths in and below the mine workings than previously indicated.
- 4. From a New Drift to be Driven Underneath the Main Vein in the Mine: several fans of drill holes, put out on a systematic basis, for the purpose of defining ore, mining widths and locations, and grade.
- 5. From Existing Drifts in the Mine, a series of test holes to follow gold-bearing zones where they disappear into drift walls and below the level.

Of the above, item 3c. became the most important in the short term in that it could yield results which would add considerable confidence in the interpretation of previous work and might yield preliminary tonnage figures from which mining plans could be made. Surface drills were unavailable in late 1987-early 1988, a fact which prevented items 1. and 2. above being performed. Provincial law required an operating hoist for work below -100 metres, a fact which prevented item 4. above, which was scheduled for -450 feet, to be performed. Underground mapping, which took place in 1988 was unavailable earlier, a fact which prevented item 5. from taking place, since geological maps of the vein systems would have been required. It was, however, found possible to perform part of item 1. by deepening holes that were put down from the -281 crosscut, and at a cheaper cost than would have resulted from drilling from the frozen surface of the lake. Drilling from the 2 crosscuts, 281 and 283, as indicated in 3. above, became the only path open in early 1988, and a 50 hole program was begun as a result, 24 holes from 283XC and 26 from 281.

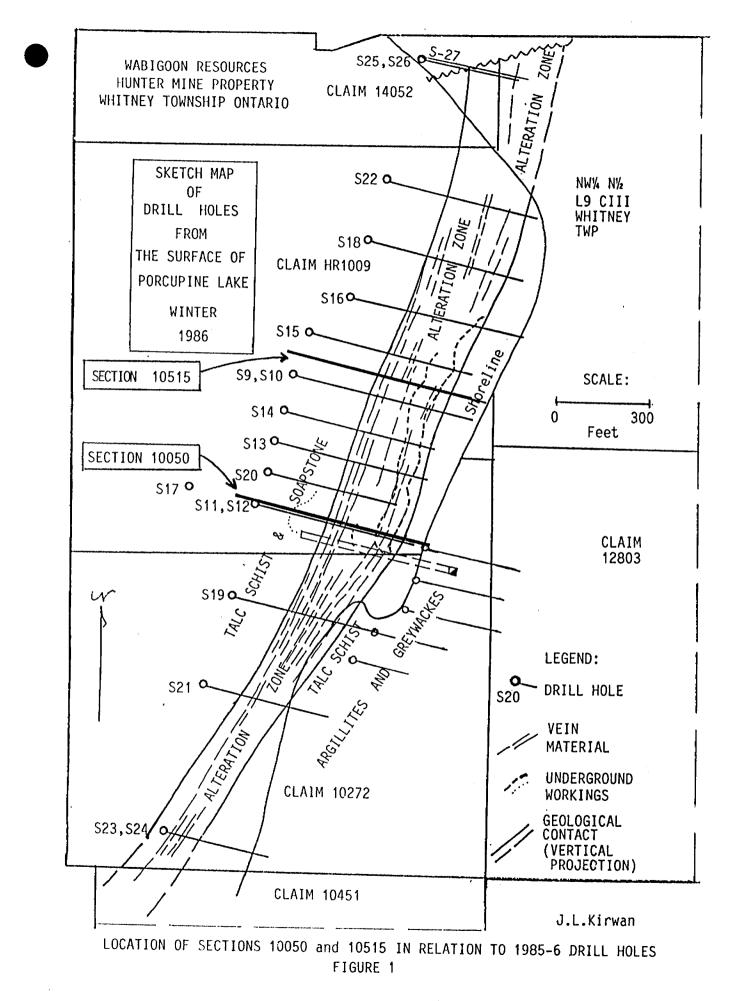
While a drill setup was being constructed in 281 XC, two diamond drill holes were put down from 283 XC, U-6 and U-7. Both of these holes were drilled as parts of the 24 hole program scheduled for this setup, but one of them was drilled into the schistosity to experimentally determine the behavior of the drills in this difficult and unpredictable environment. Hole U-6 was drilled at an azimuth of 285° and U-7 was drilled perpendicular to this at 105°.

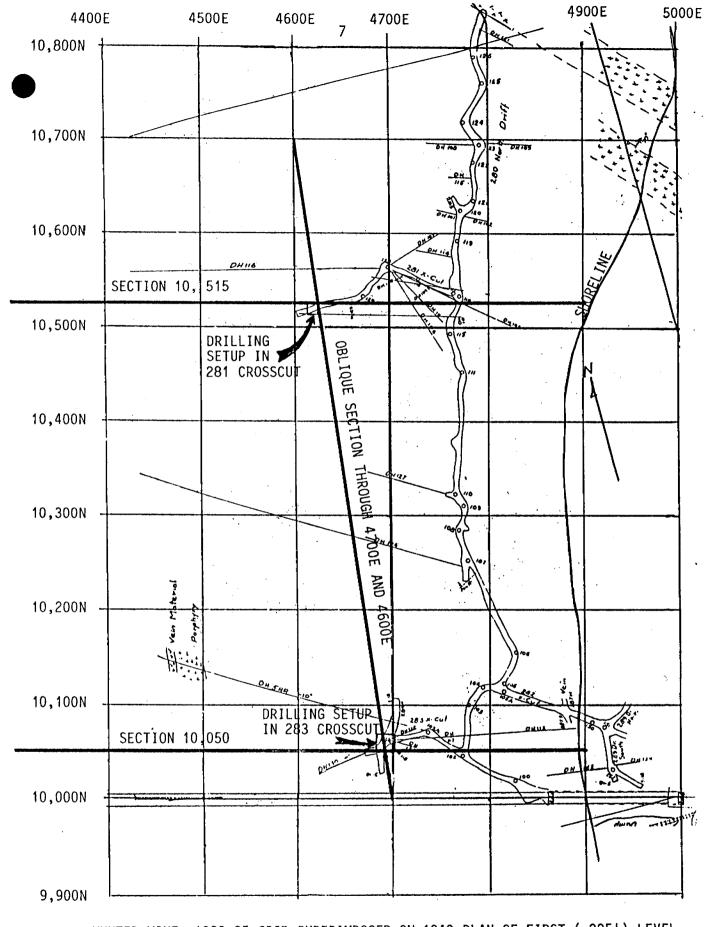
After the completion of holes U-6 and U-7 the drill was moved to 281XC for the first fence of holes: a fan along azimuth 105-285° totalling 8 holes, of which 6 proved to be feasible without further preparation work. These initial holes in 281 crosscut were planned to fall between two important drill holes put down in 1986: Hole S-9 in which an intersection of 0.078 Ounces of gold per ton across 4.3 feet was intersected in a plane about 50 feet southward from Hole U-8, and Hole S-15 in which an intersection of 0.761 across 3.3 feet was intersected about 50 feet to the north. This area is also below the main stope of the first level of the mine where grades of 0.61 were reported. Following the completion of this first fence, a second fence was planned to intersect in the vicinity of the intersection in surface hole S-16, which was 0.7169 across 9½ feet. Extensions to 3 of the drill holes from 281XC also helped define the overall syncline in this area and thereby accomplish much of the objective mentioned under item 1. above.

EARTH RESOURCE ASSOCIATES (ERA)

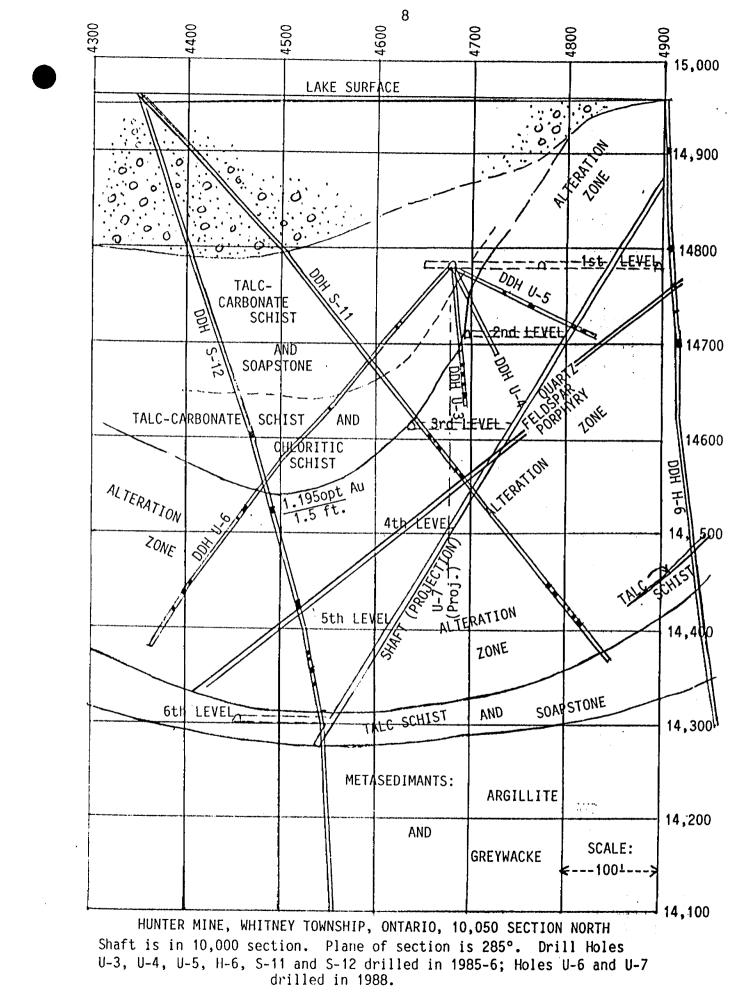
RESULTS

Figures 3 and 4 below (pages 8 and 9) are cross sections through crosscuts 283 and 281 respectively showing the results of drill holes U-6, U-8, U-9, U-10, U-11, U-12, and U-13 of 1988 in relation to earlier drilling, notably holes U-1 to U-5 of 1985 and S-9, S-10, S-11, S-12 and S-15 of 1986 and H-6 of 1985. Figure 5 (page 10) shows the results of hole U-7 in longitudinal section. The locations of Figures 3, 4, and 5 are shown on Figure 2 below (page 7) in relation to the first (-225 foot) level of the Hunter Mine, and the locations of Figures 3 and 4 are shown in relation to the 1985-86 drilling on Figure 1, page 6 below.


Drill Hole U-6 was put down along plane 105-286° westward at an inclination of -45° so as to intersect the path of surface drill hole S-12 near where it located vein material which assayed 1.195 OzAu/t across 1.5 feet. Although vein material was located in approximately the same location in U-6, no values in gold of interest were encountered, a fact which indicates either the erratic nature of the gold mineralization, or the possibility that a different vein was encountered and the sought-for vein dips more or less parallel with the drill hole. The following weak intersections were obtained from this hole:


From 227-232 feet, 5 feet of 0.01 Au, 267-272 feet, 5 feet of 0.014 Au, and 502-507 feet, 5 feet of 0.012 Au.

These values are of the same order of magnitude as intersections obtained in holes U-3 and U-5 from the same drilling setup, but in a different direction, suggesting that wide areas separate good gold intersections. However, this is also the same area where values are reported from drill holes in the 1938-1940 period that included 0.33 opt over 5', 0.58 over 10', 0.31 over 10', 0.24 over 15', 0.14 over 2', and 0.57 and 0.18 over unspecified lengths, so the area certainly warrants investigation, possibly by further drilling or, considering its proximity to the shaft area, by crosscutting and bulk sampling. Above, at the -300 foot level of the mine, a 205 foot long zone occurs in the main drift of the mine which averages 0.20 opt across 2 feet where erratic assay values from channel samples illustrate that many drill holes can pierce the zone with only meagre assay values.


EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

HUNTER MINE: 1983-85 GRID SUPERIMPOSED ON 1940 PLAN OF FIRST (-225') LEVEL SHOWING LOCATIONS OF 1988 DRILLING SETUPS AND CROSS SECTIONS

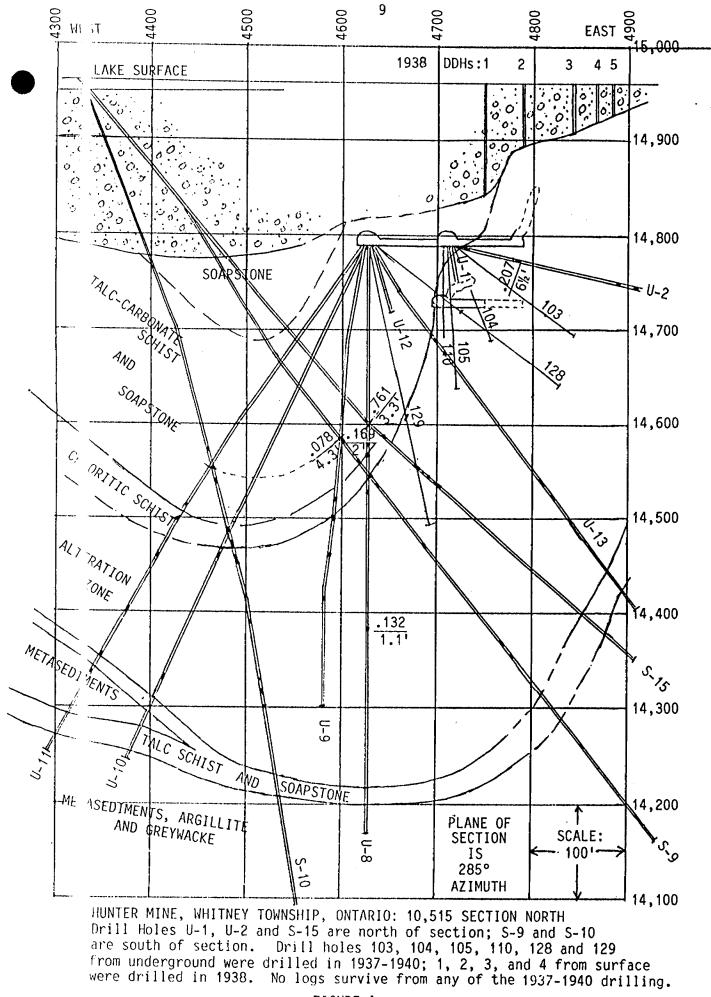
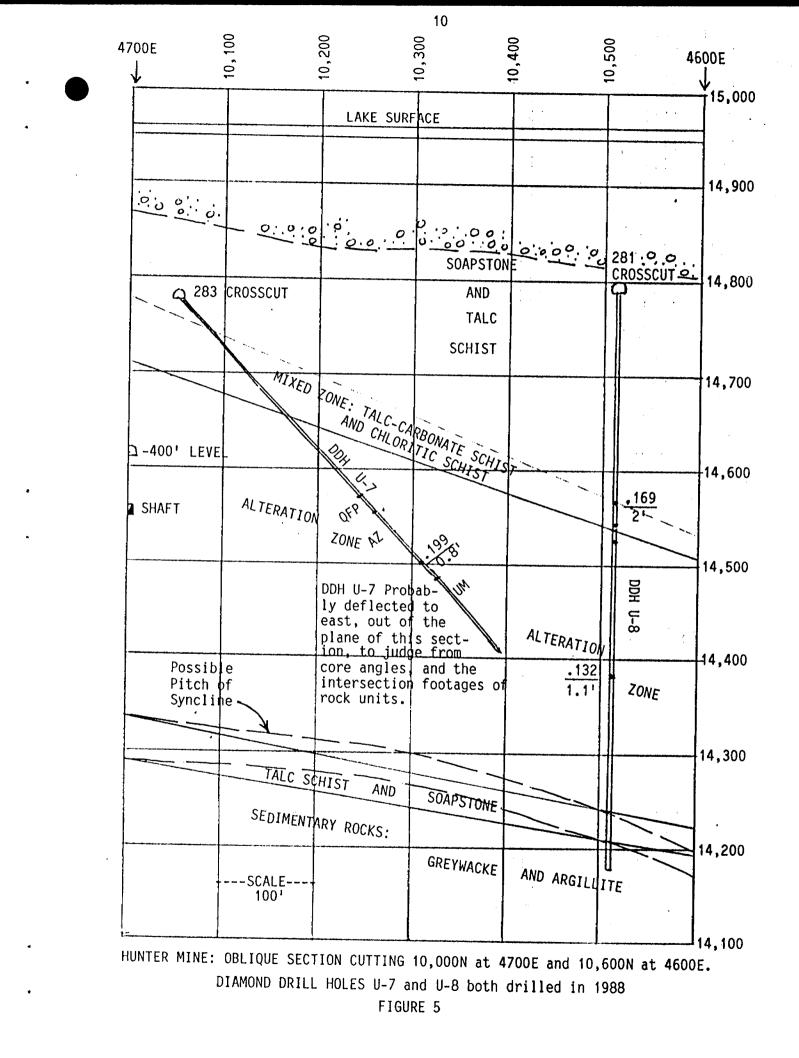



FIGURE 4

<u>Drill Hole U-7</u> was drilled from the same setup as U-6, only northward at 015°, parallel with the schistosity, but at an inclination of -50° to intersect the gold-bearing horizon at about 300 feet. Even with the flattening out of the schistosity as the hole would have encountered as it progressed downwards into the trough of the syncline, the core angles should not have been greater than 40°, if the plunge of the syncline is considered, yet this core angle approached perpendicularity towards the end of the hole, and encountered the ultramafic lower unit much earlier than expected. This indicates that the hole turned considerably eastwards into the schistosity, though the angle of inclination remained close enough to -50° to be acceptable. Future drilling parallel with the schistosity will have to take into account this turning of the hole. Three weak, and one very short strong intersections, were obtained in Hole U-7:

The first 3 values probably represent 3 of the gold-bearing veins in the mine, including the Main Vein, which here has only low values, but the fourth intersection, narrow though it is, may represent the lower zone indicated in hole U-8, a previously unknown gold-bearing unit which future drilling operations should be planned to explore.

Drill Hole U-8 was the first hole put down from the 281 crosscut, some 500 feet north of holes U-6 and U-7, and was put down vertically for 617 feet to pass through the entire geological section into the sedimentary rocks below it. Gold values from this hole were as follows:

> From 202-205 feet, 0.019 OzAu/t across 3 feet, 208-210 feet, 0.169 OzAu/t across 2 feet, 218.3-221.1 feet, 0.013 OzAu/t across 1.8 feet, 257.5-261.3 feet, 0.045 OzAu/t across 3.8 feet, 278.6-280.2 feet, 0.021 OzAu/t across 1.6 feet, 345-353.8 feet, 0.020 OzAu/t across 8.8 feet,

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

From 353.8-360 feet, 0.013 OzAu/t across 6.2 feet, 360-365 feet, 0.044 OzAu/t across 5 feet, and 406.7-407.8 feet, 0.132 OzAu/t across 1.1 feet.

The intersection from 345 to 365 feet represents a 20 foot section with an average value of 0.0238 ounces of gold per ton. This section, though low in grade, is thought to be of considerable interest because of its thickness and possible correlation with the deeper intersection in hole U-7. Another possible correlation is the 1.1 foot intersection in U-8 of 0.132 opt, an intersection that occurred at a depth of 625 feet below surface, the deepest gold intersection so far in the Hunter Mine, and a hitherto unknown zone.

<u>Hole U-9</u> was drilled westward from the same location as U-8 at an angle of -80° (though it steepened to almost vertical) and for a length of 490 feet, insufficient to reach the lower ultrabasic unit, though it did pass the level of the 20 foot zone in hole U-8 without encountering any gold mineralization at this level, possibly indicating that the dip of this zone is steep enough to pass below the end of the hole. Assays from U-9 include three weak gold-bearing zones:

From 269.2-270.6 feet, 0.025 OzAu/t across 1.4 feet, 288.7-295 feet, 0.021 OzAu/t across 6.3 feet, and 324.4-328.4 feet, 0.026 OzAu/t across 4.0 feet

The steepening of hole U-9, without the steepening of the adjoining hole U-10, resulted in a wide space between these holes that remains unsampled by drilling.

<u>Hole U-10</u> was drilled from the same setup as U-8 and U-9, westward at an angle of -65° and for a length of 602 feet, to pierce the lower ultrabasic units. Several vein systems were encountered, but no assays above 0.007 OzAu/t were returned. The hole passed within 50 feet of surface hole S-10 which also intersected several quartz vein systems but returned values that did not exceed 0.005 opt, except for a 2.9 foot section assaying 0.017 from 501.2-505 feet discovered in 1988 resampling

EARTH RESOURCE ASSOCIATES (ERA)

of this old hole.

Hole U-11 was drilled westward from the same setup as U-8 to U-10, at an inclination of -55° for a length of 632 feet, to pierce the lower ultrabasic unit and the underlying sediments. Although several quartz vein, breccia, and porphyry sections were encountered, no assays over 0.006 opt were returned. Again, as in U-10, the hole passed by the path of surface hole U-10, which also returned very low assay values in gold.

<u>Hole U-12</u> was drilled eastward from the previous 4 holes, and was designed to pass through the unit which assayed so highly in hole S-15, and was also encountered in S-9 and U-8. Owing to difficulty encountered in the soft soapstone unit at the beginning of the hole, it had to be abandoned at 73½ feet, well before reaching any areas of interest. Two samples taken from the hole assayed 0.001 opt (ie. Trace gold). The absence of any data from the area of where hole U-12 would have gone if it had been successful leaves a fairly large gap between the path of U-8 and U-13. This gap is only partly filled by S-9 and S-15 of 1986.

Hole U-13 was drilled eastward from the same setup as the previous 5 holes, at an angle of -60° for a length of 471 feet and pierced the lower ultrabasic unit and the underlying sedimentary rocks. Several quartz vein systems, breccia zones, and one quartz feldspar porphyry dike were encountered in the hole, which passed about 50 feet below the stope area on the second level of the mine, and the following gold-bearing zones were located:

> From 110.7-113.4 feet 0.021 OzAu/t for 2.7 feet, 141.7-146 feet 0.028 OzAu/t for 4.3 feet, 203-206 feet 0.018 OzAu/t for 3 feet, and 328.1-330.3 feet 0.028 OzAu/t for 2.2 feet.

The first of these probably represents the zone mined in both the first and second levels of the mine.

An attempt was made to drill a further hole at -30° eastward from the same setup as hole U-13, to pass closer to the stoped areas, but this proved to be too difficult for the drillers to handle.

EARTH RESOURCE ASSOCIATES (ERA)

ECONOMIC SIGNIFICANCE

Holes U-6, U-7

These drill holes represent only 2 of a proposed 24 drill hole program from the 283 crosscut, and as such are insufficient in number to be used for any conclusions about the gold mineralization: its grade, its distribution, its potential mineability, and certainly not its tonnage, though the operators of the mine in 1940 reported that from the drilling at that time from the 283 and 281 crosscuts it was possible to predict a total of 160,000 tons of mineable material. It would be better at the present time to complete the proposed drilling, and to do further sampling and drilling from lower levels of the mine, before reaching any conclusions about the character of the mineralization as indicated in this part of the mine.

One of the problems in determining the character--or even the existence--of gold mineralization in this environment, is the extremely erratic nature of the distribution of the gold. A common rule of thumb in the Timmins area is that 3 out of 5 drill holes that pierce a mineable zone will be "blanks"--with no significant gold values obtained in assay, yet the zone may prove to be highly economic, with a grade overall in the quarter ounce class. Some geologists accept 7 "blanks" in 10 holes, and some will proceed to mine a zone in which only poor values were obtained in assay, knowing that in most cases the zone will prove to be economic, or if not will be redeemed by another zone that will prove to be spectacularly so. For these reasons, assigning grade based on a few drill holes is a very hazardous business.

Even channel samples through a gold-bearing zone, taken for example every 3 feet, can yield a false impression as to the gold content, though this method is obviously statistically superior to drill holes every 100, or even every 25, feet. The only dependable method of establishing grade in a gold mine of the Hunter type is to actually mine, by bulk sampling or test mining, an area of interest. However, the <u>existence</u> of a goldbearing zone can be established by drilling, and in a mine like the Hunter, where bulk sampling in the form of actual mining has taken place, a great

EARTH RESOURCE ASSOCIATES (

degree of confidence can be obtained from a few drill holes, as indeed was obtained from the 1986 drilling.

Holes U-8, U-9, U-10, U-11, U-12, U-13

Of these holes, drilled below the stoped area of the mine and in an area of good gold values obtained in surface drilling, a considerable number of good gold intersections was expected. Except for the values in U-8, few good intersections were obtained. It is premature to reach many conclusions about the distribution of gold values in the area, pending completion of the 26 holes scheduled from this area, but taking available information from the plane of the drilling only (see Figure 3, page 8), the following gold indicators exist, working from the top of Figure 3 downwards:

- Stoped area of first level of mine: 0.61 OzAu/t across 6 feet, for a distance of 60 feet down dip.
- 2. Drill hole U-2 of 1985 below first level, 0.206 across 6½ feet, for a represented distance down dip of a further 60 feet. This material is still in place.

3. Stope above second level: 0.29 OzAu/t across about 6 feet represented in earlier drilling by: DDH 103: 0.40 across 4 feet, DDH 104: 0.30 across 3 feet, DDH 105: 0.16 across 2.75 ft., DDH 110: 0.30 across 5 feet, and DDH 128: 0.10 across 1 foot, This represents a further down-dip extension of about 60 feet.

4. Area below the second level: DDH 129: 0.04 across 10 feet, DDH U-13: 0.028 across 4.3 feet, DDH S-15: 0.761 across 3.3 feet, DDH U-8: 0.129 across 2 feet, and DDH S-9: 0.078 across 4.3 feet. This represents a distance down-dip below the second level of about 200 feet or, to allow projection beyond U-9, 220 feet.

The down-dip continuity of the ore-zone represented in the plane of the 281 crosscut appears to be approximately 400 feet, about 100 feet of which are presently mined out, though these mined out areas are small. Areas northward from the plane of Figure 3 are virtually untouched, except for the very small stope on the second level. It is northward that the excellent intersections in holes S-15 and S-16 were obtained in 1986.

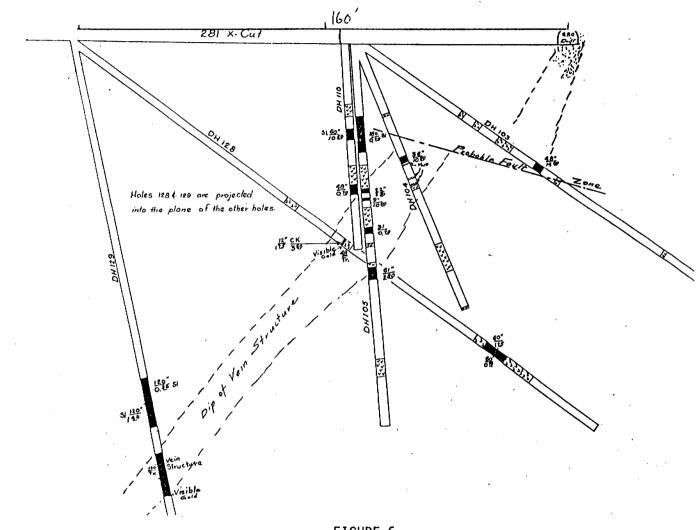

For these reasons the drilling from the 1988 program from the 281 crosscut is thought to be very encouraging, though only 6 (actually 5 as one was incomplete) of the scheduled 26 holes were drilled. The extension of the program to intersect other values in the area, especially northward from 281 XC should prove extremely interesting.

Figure 6, page 17 below shows a summary of the drilling from 281 crosscut in the 1938-1940 period. It is given to illustrate the very complex nature of the geology and the gold values obtained by drilling in the vicinity of the ore zone at the Hunter Mine and the need for a great deal of drilling of a particularly controlled or regular type to adequately elucidate the geological and economic environment. It is in this area that the aborted hole U-12 was attempted and an attempted hole U-14 was not drilled--thus leaving gaps in our information in this very important and complex area.

GEOLOGICAL RESULTS

It is felt that a thorough understanding of the geological environment, particularly with relation to the gold mineralization, is every bit as important as obtaining good assays in drill holes, for it adds a degree of predictability to the question of distribution of the ore. The total geological environment of the mineralization is sought: its position within the depositional succession; its relationship with any intrusive bodies, faults, unconformities, lithological units or stratigraphic horizons; the distribution, nature, and control of alteration, metamorphism, shearing, and vein structures; and the question of structural control of the mineralization, whether strata-bound, or cross-cutting to the stratigraphy, whether localized in faults, unconformities, or drag-folds, whether restricted to a particular rock unit or found in several, whether pervasive or discrete, whether persistent or erratic, or (having reached a conclusion about the distribution of mineralization) whether it might not be found in an unsuspected environment.

In 1988, Roberta Bald of Tamarack Geological and Prospecting Services, of Timmins, was engaged to log the drill holes and map the

FIGURE 6

HUNTER MINE, WHITNEY TOWNSHIP, ONTARIO

Cross-section along 281 Crosscut, 1st Level of the Mine, to show Projections of drill holes put down in the 1937-40 period. Photoreproduced from Mine Records

underground workings as well as reexamine the older (1985-6) drill core and attack the question of total geological environment of the mineralization at the Hunter Mine. Although hardly enough time was available to reach many definite conclusions---and certainly not enough data--she was able to submit a report dated September 19th, 1988 in which some observations on the subject were made. These data are here combined with my own observations to at least touch on the several questions of the environment of mineralization.

Structural Setting. Known mineralization at the Hunter Mine occurs on the east flank of a north-south trending syncline which underlies the east part of Porcupine Lake and whose form is clearly shown on the sections shown in Figures 3 and 4 above. This syncline pitches towards the north, the floor of it dropping about 90 feet in the 465 feet between the 2 sections. This pitch itself appears to be curved in that drag folds, visible in the shaft area (notably on the second level of the mine) are at a much gentler pitch, suggesting a steepening of the pitch to the north: less than 10° at the Station, and more than 20° some 500 feet to the north. This implies progressive steepening of the syncline, and probably of the contained mineralization, northward towards the plane of the Destor Porcupine Fault, or one of its branches*, which crosses the north side of the property. This steepening may have been produced by drag from this fault and would be expected to approach the vertical as the fault plane is approached. Such steepening occurs on the south boundary of the property where rocks of the Deloro Group are dragged against a similar fault. Implications are that the gold mineralization may likewise steepen, and its strike change to parallel the fault, a situation that will very much affect drilling programs, and eventually, mining.

* The Destor-Porcupine Fault has long been considered to occur along the north shore of Porcupine Lake and a second, parallel, branch fault identified by the writer and called the Bob's Lake Fault, is thought to occur south of the lake. Recent mapping by Darwin Piroshco of the Ontario Geological Survey has reclassified these faults, the Destor-Porcupine now occupying the Bob's Lake Fault location, and the "old" Destor Porcupine being renamed the Dome Fault. If true, this places the Hunter Mine north of the Destor Porcupine Fault.

EARTH RESOURCE ASSOCIATES (ERA)

JOHN L. KIRWAN

A matching anticline, eastward from the syncline, with a steep west limb and gentle east limb, may contain a repetition of the gold mineralization, if this mineralization is strata-bound.

Within the syncline, a well-developed roll, or drag-fold, is present, as seen on Figures 3 and 4. On Figure 4 this roll is identified by the ore-zone itself, which dips from nearly vertical in the first level stope, rolling to nearly horizontal in the stopes below this level, to again become steeply-dipping below the second level of the mine. It is possible that gold mineralization is directly associated with this drag-fold and indeed with a whole series of drag-folds in the mine, whose careful definition will be necessary before mining operations or tonnage calculations can be made. A spectacular rock face on the south wall of the small stope above the second level shows the rolling nature of this drag-fold and of the quartz veins within it.

<u>Stratigraphy</u>. The syncline is made up of a core of soapstone and talc and talc-carbonate schist which gives way through a zone of transition in which chloritic and sericitic phases are to be found to a thick unit termed the Alteration Zone which is made up of sericitic schists with abundant quartz and/or chlorite. The Alteration Zone terminates downwards against one or more intrusive sheets of soapstone and gives way below this unit to argillites and greywackes, some of which show a degree of transition towards the mineralogy of the Alteration Zone--ie.suggest that that zone may be derived from it by retrograde metamorphism

One phase within the Alteration Zone, a chloritic schist, was mapped by Arden Brooks, one of the geologists on the site in 1986, as possibly of basaltic origin and to test this hypothesis a single whole rock chemical analysis was conducted on a sample from the unit. This showed so many similarities with average basalts from the Timmins area (notably in Al₂O₃, SiO₂, MgO, TiO₂ and other oxides) that it is concluded that this rock is in fact derived from rocks of basaltic composition.

The bulk of the Alteration Zone, made up of light colored sericitic schists is sufficiently chemically similar in oxide makeup to the metasediments, and dissimilar to the overlying ultrabasic rocks, that it is concluded that it is derived from these metasedimentary units,

EARTH RESOURCE ASSOCIATES (ERA)

as indeed visual evidence suggests. Bald has mentioned that the presence of fuchsitic mica, whose composition was confirmed chemically by Kirwan in 1986, suggests that part of the Alteration Zone has ultramafic affinities One of the whole rock analyses taken from this zone near its top has low enough Al_20_3 and $Si0_2$ and high enough MgO to suggest that this is correct The conclusion is that the Alteration Zone was derived from ultramafic rock in its upper parts, from sedimentary rocks generally, and from rocks of basaltic composition where highly chloritic. Thus the unit, being pervasive between the two soapstone laters in the succession and present regardless of original rock-type, appears to owe its origin to its location rather than to any original lithology. Its upper contact appears to be gradational, its point on the map being the result of the current geologist's standards rather than being due to any clear-cut line. The contact area, however, is important in that the Main Vein at the mine occurs close to the contact and its location may be due to chemical or structural conditions near that contact.

<u>Porphyries</u>. There is evidence that the gold in the mine is associated with silicified zones on the hanging walls of sheets of quartz feldspar porphyry which are transgressive to the layered rocks. Some of the porphyries were mistakenly identified as quartz veins or chert. If the gold values are clearly transgressive to the overall structure, as seems to be indicated by the porphyries, then it is probable that the various intersections in drill holes may represent several veins rather than one or two. If so, the number of gold-bearing zones will be larger than at first thought and the resulting tonnage of gold-bearing material correspondingly larger.

Felsic intrusive bodies in the mine have been reported by the previous operators, notably a body of Albitite at the -600 foot level of the mine in which 2 samples taken in May, 1940 are reported to have assayed 0.28 and 0.34 ounces of gold per ton. Albitite may prove to be an important exploration target at the Hunter Mine, and the occurence at the -600 level could be the "tip of the iceberg", if the same association of gold with albitite occurs here as is reported at the DeSantis Mine west of Timmins, where the albitite is said to be the principal exploration target by the present operators.

EARTH RESOURCE ASSOCIATES (ERA)

SUMMARY

The 1988 drilling program, though representing only about 10% of the program recommended for defining ore, has added considerably to the understanding of the mine.

- Gold values are associated with silicified zones on the hanging walls of quartz feldspar porphyry sheets which may cut across the rock succession. They are also associated with a body of albitite which occurs on the -600 foot level of the mine and which, though discovered in 1940 may be a "new" environment if considered from the viewpoint of at least one other deposit in the Timmins area.
- 2. The possibly cross-cutting nature of the vein structures implies that a large tonnage deposit could exist at the Hunter Mine.
- 3. The known gold-bearing rocks are confined to a 300foot thick layer of sericitic schist termed the Alteration Zone which has been deformed into a structural syncline which pitches northward in the vicinity of the shaft at something under 10°, about 500 feet northward from the shaft at something over 20°, and northward from that possibly at a greater angle, perhaps to parallel the Destor Porcupine Fault at -70° as this fault is approached. The steepening of dip northward may have important implications regarding the mineability of the ore and the possible tonnage, both of which may be enhanced.
- 4. The Main Vein is associated with a prominent drag fold in the succession. This drag-fold and other probable ones parallel with it will help govern future exploration programs.
- 5. Several different gold-bearing zones are present in the Hunter Mine, all of which warrant further work:
 - a. the Main Vein, which has been traced in drill hole a distance of 1450 feet along strike and which appears to have a down-dip extent in excess of 400 feet in the vicinity of section 10500 of the mine.
 - b. a lower zone beneath this which appears to have a strike length of several hundred feet and is represented by the following drill intersections:

In Hollinger Drill Hole 1H: i. 0.18 over 13 feet (1935) ii. In Hollinger Drill Hole 6H: 0.26 over 2 feet (1935) iii. In Hollinger Drill Hole 2S: 0.51 over 1.5 feet (1935) 0.2 over 5 feet (1935) iv. In Hollinger Drill Hole 5S: (this may be a lower, parallel, zone) ۷. In Wabigoon Drill Hole U-7: 0.199 over 0.8 feet (1988) In Wabigoon Drill Hole U-8: 0.132 over 1.2 feet (1988) vi. the above represents a strike length of over 500 feet. c. the Albitite Zone at -600 feet containing reported assays of 0.28 and 0.34 OzAu/t over unspecified thicknesses. All of these gold-bearing zones require additional work, as will be indicated below under Recommendations.

6. Potential exists for repetition of the gold-bearing zones which are in the east limb of a structural syncline in the matching limb of the matching anticline, whose existence has been indicated by geoph ical surveys in 1985. Indeed, the presence of a large pit in that area seems to verify the reported discovery of quartz vein material in that area by the earlier operators.	ys-
RECOMMENDATIONS	
1. The already-begun 50-hole drilling program from underground should be continued as soon as possible for the purpose of defining grade and tonnage in the Main Vein of the mine, but the drill holes exte ded so as to test the lower gold-bearing unit mentioned in item 5b. above. All available results should be plotted on a mine model as soon as possible, before and during this work so as to guide and co trol it.	
 Surface diamond drilling, and cleaning out the old pit, should take place to test for continuation of the zones to the east side of the property. 	
3. Mine dewatering should continue and drifting begun to explore the Main Vein for mining purposes, as recommended in previous reports. work should take into account the possibility of exploring the Albi Zone on the -600 foot level and tapping sections of the Main Vein f the purpose of obtaining bulk samples. This sampling work will of necessity be governed by the drilling, either that from 1. above or by test holes from the recommended drifting near the vein.	tite or
4. A program of test drilling should be undertaken from the new drift(and the old, the latter to follow the gold-bearing zone or zones mentioned in 5b. above and to trace the Main Vein where it disappea into the mine wall on the second level	
The above work is designed to advance the exploration and develo	p-
ment of the Hunter Mine to the stage of bulk sampling, immediately bef	ore
that of active mining, at which time a production decision can be made	•
Respectfully submitted,	
John	g
At Timmins, Ontario, October 28, 1988	, ! :
EARTH RESOURCE ASSOCIATES (ERA) JOHN L. KIRWA	N

DECLARATION

I, John Laurence Kirwan of the Town of Centre Harbor, State of New Hampshire, United States of America, and of the City of Timmins, Province of Ontario, Canada, state:

- That I am a practising consulting geologist with offices at 1111 Government Rd., South Porcupine, P.O.Box 2150, Timmins, Ontario, P4N 7X8 and at Knockdoe, Old Meredith Road, P.O.Box 985, Centre Harbor, NH, 03226.
- That I am President and Principal Consultant of John L. Kirwan and Associates Limited (Earth Resource Associates) which was incorporated in the Province of Ontario in 1976.
- 3. That I have practised my profession as Geologist contunuously since 1961 and as Consulting Geologist continuously since 1972.
- 4. That I am the holder of a Bachelor of Science degree in Geology and Mathematics from Carleton University and of Master of Science and Doctor of Philosophy degrees, both in Geology, from the University of London in England.
- 5. That I am a registered Professional Engineer in the Province of Ontario and in the State of New Hampshire, and that my licence to practise in either jurisdiction is not, and never has been, in a state of suspension or revocation.
- 6. That I am a Life Fellow of the Geological Association of Canada and of the Royal Geographical Society of England and have been elected an Associate, Fellow, or Life Fellow of other scientific or professional societies in Canada, the USA, Ireland, England and Brazil.
- 7. That the material presented in this report is accurate and that I have direct knowledge of this material; that I have examined all of the data myself, or supervised other competent professionals in their work with this material; and that the conclusions and recommendations reached in this report are my own and have not been derived through the influence of other parties, including the management of Wabigoon Resources Limited.
- 8. That I do not now have, and do not anticipate receiving any direct or indirect financial or propriorty interest in the property under discussion. However, my wife, Victoria Helen Hanson is the registered holder of 5000 common shares of Wabigoon Resources Limited as of this date, October 28, 1988.

John Wirwan

JOHN L. KIRWAN

APPENDIX

Summary versions, with assay values, are appended of diamond drill logs for holes U-6, U-7, U-8, U-9, U-10, U-11, U-12, and U-13.

Regarding the assays, a particularly thorough program of sampling and assaying was applied to these drill holes, involving 695 sections of split core (involving 694 assays, the missing assay being a 2½ foot section from the top of a porphyry dike in hole U-10). An additional 15 samples were taken for whole rock analysis, plus 35 grab samples from surface and underground, plus a further 310 samples from the 1985-86 drilling. The latter yielded only low values in gold, except for the 2.9 foot section in Hole S-10 beginning at 501.2 feet which assayed 0.017 OzAu/t and extends a weak zone from 505-510 feet which assayed 0.025 in 1986.

Additional analytical work is now in progress involving the missing sample from hole U-10, check assays of important intersections in the present drilling by another laboratory, and some additional whole rock analyses. When the badly deteriorated rejects from the 1985-86 work can be sorted, check assays using alternate laboratories will be made from the more important intersections.

(ERA)

	EarthResourceAssociatesPROPERTYHUP.O. BOX 2150, TIMMINS. ONTARIO, P4N 7X8 CANADAHOLE NUMBER	INTER MINI U-6	•)
	DIAMOND DRILL LOG GRID REFERENCE Sec TOWNSHIP WHI			
	SUMMARY LOG AZIMUTH 105			
Df	100'=-44½'; 150 & 200'=-47° RILLING COMPANY Morrissette FOREMAN Lafontain DIP TESTS: 450'=-54½'; 500'=-5		00'=48%	2
C(DRE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.Bald DA	TE Fet	5, 19	88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
0-2'		FOOTAGE	OzAu∕t	
	MAFIC METAVOLCANIC (BASALT?) INT.DIKE? CHECK; Lower Contact at 20° to ca 5 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST (ULTRAMAFIC?) Schistosity at 71'=25°; 79'=35° to ca			
	UFP VIKES at /9.2-79.5: 81.2-83.1: cp. pv 197 0 to 199 5	227-232	0.01	
312.5-369.	ALTERATION ZONE (SERICITE CARBONATE QUARTZ SCHIST); Lower Contact at 15° to core axis			
369.2-389.5	QFP Dikes at 331.9 to 335.5; 345.4 to 346.5'	267-272	0.014	
389.5-396.9		502-507	0.012	··· ··· ···
	CHLORITE-CARDONATE (QUARTZ) SCHIST	702-307	0.012	
400.5-508.5				
	QFP DIKES 409.7 to 412.1'			
	QV Zones: 432.5 to 433.5; 442-446.5; 468.2-469.1			
	BX Zone 494.4-EOH			
508.5'	END OF HOLE			
	APONE LOC depined from the Community of the Pitch and the			
	ABOVE LOG derived from the Summary Lcg prepared by Roberta Bald, with assays and core angle information added by John Kirwan, October 24,1988.			
	ENTIRE length of hole split and assayed; all values were reported under 0.008 opt	/		• • • • •
	except as given above.			

-

4

.

PAGE 1

.

PAGE 1 Earth Resource Associates PROPERTY HUNTER MINE P.O. BOX 2150. TIMMINS. ONTARIO, P4N 7X8 CANADA HOLE NUMBER U-7 DIAMOND DRILL LOG GRID REFERENCE Section 10050 283 Crosscut W TOWNSHIP WHITNEY CLAIM 1006 SUMMARY LOG AZIMUTH 015° DIP ANGLE -50 50'=44°; 100'=50°; 150'=47 ; 200'=46°; 250'=46° DRILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS: 300'=49%°; 350'=45%°; 400'=53°; 450'=48%°; AQ CORE STORED AT: MINESITE LOGGED BY R. BALD 487'=56° CORE SIZE DATE Feb. 8, 1988 FOOTAGE SAMPLE DESCRIPTION OF CORE ASSAYS NUMBER 0-16.9' TALC-CHLORITE-QUARTZ-CARBONATE SCHIST, foliation at 45° to core axis Footage DzAu/t 16.9-29.2 QUARTZ PORPHYRY DIKE, upper contact at 90°, lower at 40° to ca 29.2-64.5 TALC-CHLORITE-QUARTZ-CARBONATE SCHIST 43-48 0.029 64.5-79 QUARTZ PORPHYRY DIKE 79-227.5 TALC-CHLORITE-QUARTZ-CARBONATE SCHIST 332-337 0.012 227.5-233.8 QUARTZ PORPHYRY DIKE (?) 233.8-266.3 TALC-CHLORITE-QUARTZ-CARBONATE SCHIST; Foliation (at242') is 30° to core axis 347-352 0.011 265.3-277.5 CHLORITE SCHIST 277.5-306.8 QUARTZ FELDSPAR PORPHYRY DIKE 337.2-378 0.199 306.8-317.7 ALTERATION ZONE ? (CHLORITE SCHIST) Foliation at 312' = 70° to core axis. 317.7-320.7 FELSIC DIKE? OR SILICIFIED ZONE? OR BRECCIA ZONE 320.7-324.5 ALTERATION ZONE? (CHLORITE SCHIST) 324.5-397.8 ALTERATION ZONE (SERICITE-QUARTZ-CARBONATE-CHLORITE Schist) Foliation at 80° to core axis TALC-CHLORITE-QUARTZ-CARBONATE SCHIST (ULTRAMAFIC?) Layering at 80-90° to core axis. 397.8-487 OV zones 412.6-413.7; 415.5-416.5; 432.4-433.9. 487' END OF HOLE ABOVE LOG derived from Summary Log prepared by Roberta Bald, with assay values and core angles added by John Kirwan, October 24, 1989. Entire length of drill hole was split and assayed; all values reported were below 0.009 oz au/t, except those noted above.

.

•

			PAGE	1	
SUMMARY LOG TOWNSHIP WHITEKEY CLAIM 1009 SUMMARY LOG 10019:001:001:001:001:001:001:001:001:00				INE	
TOWNSHIP WHITNEY CLAIM 1009 AZIMUTH 105° DIP ANGLE 90° 100°=90°: 150-88°: 200, 250-89°: 300-89°: DRILLING COMPANY MORISSETTE FOREMAN LafontainaDIP TESTS: S0°=30%: 400-82°: 450-89°: 300-89°: CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.Bald DATE Feb. 15, 1988 CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.Bald SAMPLE Feb. 15, 1988 CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.Bald SAMPLE Feb. 15, 1988 OOTAGE SAMPLE ASSAYS OOTAGE DESCRIPTION OF CORE NUMMER ASSAYS ASSANCE Footage OZAU/t ATLC-CHLORITE-QUARTZ-CARBONATE SCHISTI, Schistosity at 40'=40°; 57'=15°; 62'=90°; 71'=75° 202-205 0.019 MILENG COMERTS UNERCOMENTE SCHISTI, Schistosity at 40'=40°; 57'=15°; 62'=90°; 71'=75° 202-205 0.019 MILENG COMARTS SCHISTI, Schistosity at 40'=40°; 57'=15°; 62'=90°; 71'=75° 202-205 0.019 MILENCOMENTE-QUARTZ CARBONATE SCHISTI, Schistosity at 40'=40°; 10°; 100° colspan="2">Contact at 80° to ca 20.5-271 20.6-202 </td <td></td> <td>DIAMOND DRILL LOG GRID REFERENCE SE</td> <td>ection 105</td> <td>15 281 C</td> <td>rosscu</td>		DIAMOND DRILL LOG GRID REFERENCE SE	ection 105	15 281 C	rosscu
AZIMUTH 105° DIP ANGLE 30° SUMMARY LOG AZIMUTH 105° DIP ANGLE 30° DRILLING COMPANY MORRISSETTE FOREMAN LafontainsDIP TESTS: 550'=89°; 300-82°; 430-82°; 430-82°; 430-82°; 450-82°; 500					
100*90*150=88*: 100-89*: 300-88*: 300-88*: 300-88*: 300-88*: 300-88*: 300-88*: 300-88*: 300-88*: 300-88*: 300-88*: 500-86*: 500-80*: 500-86*: 500-80*:				-	
DRILLING COMPANY MORRISSETTE FOREMAN Lafontaine ^{DIP} TESTS: 350°+39%; 400-82°; 450-84°; 500-81°; CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.Bald DATE Feb. 15, 1988 TOTAGE DESCRIPTION OF CORE SAMPLE ASSAYS 0-4' CASING DESCRIPTION OF CORE SAMPLE ASSAYS 171.3-90.7 INTERMEDIATE DIRE? LOWER contact at 50° to ca; Silicified 71.3-71.8; 77.7-79; 80.5-89.9 & 81.5-81,7 90.7-210.2 TALC-CHLORITE-QUARTZ-CARBONATE SCHIST; Schistosity at 40°+40°; 57°+15°; 62°+90°; 71°+75° Silicified Zones; 179-184.4; 201-202; 208-208.2; 10.2-218] 3 QUARTZ FELDSPAR PORPHYEY DIKE, Brecciated locally. 218.3-221.0.013 218.3-250.6 TALC-CHLORITE-QUARTZ CARBONATE SCHIST; QP Porphyry; 255-265.7 Breccia Zones; 261.3-262.2; 281.2-281.8; 273.6-280.2 274.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; OF Porphyry; 255-265.7 Breccia Zones; 261.3-262.2; 281.2-281.8; 273.6-280.2 274.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; OF Porphyry 255-265.7 Breccia Zones; 261.3-262.2; 281.2-281.8; 273.6-280.2 274.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; OF Porphyry 255-265.7 Breccia Zones; 261.3-262.2; 281.2-281.8; 273.6-280.2 274.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; OF Porphyry 455-486; QV: 477.5-479.8 485.2-646.6 406.7-407.8 0.020 617 End of Hole ABOVE LOG Gerived from the Summary Log of Roberta Bald, with assays and core angles added by John Kirwan, October 24, 1988. CORE Mas Split and assaved from 52-90° to ca 406.7-407.8 0.132 406.7-407.8 0.132 407.7-407		SUMMARY LOG 100'=90°: 150=88°: 20)0, 250=89	°: 300=8	- 80.
CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.Bald DATE Feb. 15, 1988 POOTAGE DESCRIPTION OF CORE SAMPLE NUMBER ASSAYS 0-4' CASING DESCRIPTION OF CORE SAMPLE NUMBER ASSAYS 0-4' CASING DESCRIPTION OF CORE Footage 027.1/1 1.3-90.7 INTERMEDIATE DIKE? Lower contact at 50° to ca; Silicified 71.3-71.8; 77.2-79; 60.5-69.9 & 81.5-81.7 202-205 0.019 1.3-90.7 INTERMEDIATE DIKE? Lower contact at 50° to ca; Silicified 71.3-71.8; 77.2-79; 60.5-69.9 & 81.5-81.7 202-205 0.169 20.7-210.2 TALC-CHORITE-QUARTZ-CARBONATE SCHIST; Foliation 417-474' = 85-90° 27.5-261.3 0.416 210.2-218 QUARTZ FELDSAR PORPHAVEY DIKE, BRECiated Docaly. 218.3-221.0 0.130 210.2-217.3 ALTE-CHLORITE-QUARTZ CARBONATE SCHIST Forphyry: 265-265.7 27.5-261.3 0.045 210.2-274.9 ATBENTION 206 (SERICITIC AND/OR CHLORITIC SCHIST); Foliation 417-474' = 85-90° 27.5-261.3 0.045 221.5-31.2 AGLILITE AND CREYNARE CURRTZ SCHIST: OF Porphyry: 265-265.7 278.6-280.2 0.021	Df	RILLING COMPANY MORPISSETTE FOREMAN Infortaina DIP TESTS 350'=89%; 400=82	2°: 450=84	°; 500=8	1°;
COTTAGE DESCRIPTION OF CORE SAMPLE ASSAYS 0-4' CASING Footage Description OF CORE NUMBER ASSAYS 4-71.3 TALC-CHLORITE-QUARTZ-CARBONATE SCHIST; Schistosity at 40'=40°; 57'=15°; 62'=90°; 71'=75° 202-205 0.019 1'1.3-90.7 INTERMEDIATE DIKE? Lower contact at 50° to ca; Silicified 71.3-71.8; 77.7-79; 80.5-89.9.8 815-81.7 202-205 0.169 0'7-210.2 INTERMEDIATE OURCE CARBONATE SOHIST. Foliation: at 20'=0°; Lower contact at 80° to ca. 208-210 0.169 0'7-210.2 INTECREQUARTZ CARBONATE SOHIST. Foliation: at 20'=0°; Lower contact at 80° to ca. 208-210 0.169 210.2-218 QUARTZ FELDSPAR PORPHYEY DIKE, Breeciated locally. 218.3-221.0 0.013 210.2-218.3 QUARTZ FELDSPAR PORPHYEY DIKE, Breeciated locally. 218.3-221.0 0.013 216.3-200.2 216.2-21.0 216.3-262.2 27.5-261.3 0.045 23.3-250.5 DESCRIPTIC - QUARTZ CARBONATE SCHIST Porphyry: 265-265.7 278.6-280.2 0.021 23.4-581.2 ARGILLITE ADDRECHARBONATE-QUARTZ SCHIST; OF Porphyry 485.5-486; QV: 477.5-479.8 345-353.8 0.020 23.1-581.2 ARGILLITE MO GREYN	CC) <u>=86</u> °		
0-41 CASING NUMBER ASSATS 4-71.3 TALC-CHLORITE-QUARTZ-CARBONATE SCHIST; Schistosity at 40'=40°; 57'=15°; 62'=90°; 71'=75° 202-205 0.019 71.3-80.7 INTERMEDIATE DIKE? Lower contact at 50° to ca; Silicified 71.3-71.8; 77.7-79; 80.5-89, 9 & 81.5-81, 7 202-205 0.019 07-210.2 TALC-GLORITE-QUARTZ-CARBONATE SOHST. Solitation: 18 (2!=0°; 102'=0°; Lower contact at 80° to ca. 208-210 0.169 210.2-2218 QUARTZ FELDSPAR PORPHTEY DIKE, Brecclated locally. 218.3-221.1 0.013 213.3-250.5 TALC-CHURITE-QUARTZ-CARBONATE SCHIST Foliation: 417-474' = 85-90° 257.5-261.2 0.045 250.6-274.9 ATEMATION ZOME (SERICITIC AND/OR CHLORITIC SCHIST); Foliation 417-474' = 85-90° 257.5-261.2 0.045 251.10112 - 0UARTZ CARBONATE-QUARTZ SCHIST; OF Porphyry: 265-260.2 278.6-280.2 0.021 278.6-280.2 0.021 274.9-523.1 TALC-CHURITE-CARBONATE-QUARTZ SCHIST; OF Porphyry: 265-2465; 7 BR-6-280.2 0.020 278.6-280.2 0.021 274.9-523.1 TALC-CHURITE-CARBONATE-QUARTZ SCHIST; OF Porphyry: 265-246; QV: 477.5-479.8 253.6-360 0.033 364-533.8 0.020 281.2-264.6		MALSITE LEGGLE D' R.Balu		. 15, 19	88
4-71.3 TALC-CHLORITE-QUARTZ-CARBONATE SCHIST; Schistosity at 40'=40°; 57'=15°; 62'=90°; 71'=75° 202-205 0.019 71.3=90.7 INTERMEDIATE DIKE? Lower contact at 50° to ca; Silicified 71.3-71.8; 77.7-79; 80.5-89.9 & 81.5-81.7 208-210 0.169 30.7-210.2 TALC-OLQRITE-QUARTZ-CARBONATE SCHIST. Foliation: at 92'=60°; 102'=0°; 102'=0°; Lower contact at 80° to ca. 208-210 0.169 311cified Zones: 179-184.4; 201-202; 208-208.2. 218.3-221.1 0.013 10.2-218.3 QUARTZ FELDSPAR PORPHYEY DIKE, Brecciated locally. 218.3-221.1 0.013 218.3-250.6 TALC-CHLORITE-QUARTZ CARBONATE SCHIST 218.3-221.1 0.013 30.6-274.9 ATEMATIN XOME (SERICITIC AND/OR CHLORITIC SCHIST): Foliation 417-474' = 85-90° 257.5-261.3 0.045 30.6-274.9 ATEMATIN XOME (SERICITIC AND/OR CHLORITIC SCHIST): Foliation 417-474' = 85-90° 257.5-261.3 0.045 311cified Zones: 261.3-262.2; 281.2-281.8; 278.6-280.2 278.6-280.2 278.6-280.2 0.221 321-591.2 ABGILLITE AND GREWACKE Foliation at 85-90° to core axis 345-353.8 0.020 321-591.2 ABGILLITE AND GREYWACKE: Bedding at 85-90° to ca 350-365 0.044 617 End of Hole 406.7-407.8 0.132			NUMBER		YS
71.3-90.7 INTERMEDIATE DIKE? Lower contact at 50° to ca; Silicified 71.3-71.8; 70.7-79; 80.5-89.8 & 81.5-81, 7 30.7-210.2 TALC-GLQRITE-QUARTZ-CARGATE SCHIST. Foliation: at 92°=60°; 102°=0°; Lower contact at 80° to ca. 208-210 0.169 30.7-210.2 Silicified Zones: 179-184.4; 201-202; 208-208.2. 218.3-221.1 0.013 210.2-213.3 QUARTZ FELDSPAR PORPHYEY DIKE, Brecciated locally. 218.3-221.1 0.013 213.3-250.6 TALC-CHLORITE-QUARTZ CARBONATE SCHIST 271.5-261.3 0.045 5111cified Zones: 261.3-262.2; 281.2-281.8; 278.6-280.2 275.5-261.3 0.045 5111cified Zones: 261.3-262.2; 281.2-281.8; 278.6-280.2 276.6-280.2 0.021 274.5-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; OF Porphyry 285.5-486; QV: 477.5-479.8 245-353.8 0.020 281.2-804.2 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; Foliation, 80-85° to ca. 363-3650 0.013 104.6-617 ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca 360-365 0.044 617 End of Hole 406.7-407.6 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 360-365 0.044 617 End of Hole 406.7-407.6 0.132 ABOVE					
30.7-20.2 IALC-ALUMIL-CARBANE Schift. Foliation: at 22"=50"; 102"=0"; Lower contact at 80" to ca. 208-210 0.169 Silicified Zones: 179-184.4; 201-20; 208-208.2. 210.2-218 210.2-221.3 0.045 257.5-261.3 0.045 257.5-261.3 0.045 227.5-261.3 0.045 227.5-261.3 0.021 227.5-261.3 0.021 227.5-261.3 0.021 227.5-261.3 0.021 227.5-261.3 0.021 227.5-261.3 0.021 227.5-261.3 0.021 227.5-261.3 0.021 227.5-261.		INTERMEDIATE DIKE? Lowon contact at 50% to and Silicified 74.0 Transmission and an and silicified 74.0 Transmission and silicified 7	202-205	0.019	
S111CITIEd Zones: 179-184.4; 201-202; 208-208.2. 218.3-221.1 0.013 218.3-221.3 QUARTZ FELDSPAR PORPHYEY DIKE, Brecciated locally. 218.3-221.1 0.013 218.3-225.6 TALC-CHLORITE-QUARTZ CARBONATE SCHIST 218.3-221.1 0.013 200.6-474.9 ALTEMATION ZONE (SERICITIC AND/OR CHLORITIC SCHIST); Foliation 417-474' = 85-90° 257.5-261.3 0.045 S111cified Zone: 406.7-407.8; QF Porphyry: 265-265.7 278.6-280.2 0.021 74.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; QF Porphyry: 485.5-486; QV: 477.5-479.8 245253.8 0.020 231.581.2 ANGILLITE AND GREYWACKE Foliation at 85-90° to core axis 345353.8 0.020 231.581.2 ANGILLITE-CARBONATE-QUARTZ SCHIST: Foliation, 80-85° to ca. 353.8-360 0.013 04.6-617 ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca 360-365 0.044 617 End of Hole 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 360-365 0.044 added by John Kirwan, October 24, 1988. 200 200 CORE was split and assayed from 62-95'; 175 to 526'; and 610-617'; all assay values 200 were reported below 0.007 opt Au, except those given above. 200 added by John Kirwan, October 24, 1988. 200 200 added by John Kirw		TALC-CH ORITE-CHARTZ-CAPRONATE SCUTST EDitation: at COL-509: 1021-09: Loura contest. t. 000.			
10.2-2183 QUARTZ FELDSPAR PORPHVEY DIKE, Brecciated locally. 218.3-221.1 0.013 218.3-250.6 TALC-CHLORITE-QUARTZ CARBONATE SCHIST 257.5-261.3 0.045 250.6-474.9 ATEMATION ZONE (SERICITIC AND/OR CHLORITIC SCHIST); Foliation 417-474' = 85-90° 257.5-261.3 0.045 311cified Zone: 406.7-407.8; QF Porphyry: 265-265.7 278.6-280.2 0.021 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; QF Porphyry 485.5-486; QV: 477.5-479.8 45.2-33.8 0.020 23.1-581.2 AGELLITE AND GREYWACKE Foliation at 85-90° to cre axis 345-253.8 0.020 23.1-581.2 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; Foliation, 80-85° to ca. 363.8-360 0.013 04.6-617 ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca 360-365 0.004 617 End of Hole 405.7-407.8 405.7-407.8 405.7-407.8 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 405.7-407.8 0.132 ABOVE LOG derived from 62-95'; 175 to 526'; and 610-617'; all assay values 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8 405.7-407.8<		Silicified Zones: 179-184.4: 201-202: 208-208 2	208-210	0.169	
112.3-250.6 TALC-CHLORITE-QUARTZ CARBONATE SCHIST Platention 2004 (SERICITIC AND/OR CHLORITIC SCHIST); Foliation 417-474' = 85-90° 257.5-261.3 0.045 Silicified Zone: 406.7-407.8; OF Porphyry: 265-265.7 278.6-280.2 0.021 I74.9-253.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; QF Porphyry 485.5-486; QV: 477.5-479.8 278.6-280.2 0.021 174.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; QF Porphyry 485.5-486; QV: 477.5-479.8 345-353.8 0.020 174.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; OF Porphyry 485.5-486; QV: 477.5-479.8 345-353.8 0.020 183.2-604.6 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; Foliation, 80-85° to ca. 353.8-360 0.013 104.6-617 ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca 360-365 0.044 617 End of Hole 406.7-407.5 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 360-365 0.034 added by John Kirwan, October 24, 1988. 104 104 104 104 104 Source 104 104 104 104 104 105 CORE was split and assayed from 62-95'; 175 to 536'; and 610-617'; all assay values 104 104 104 <td>210.2-218</td> <td>3 QUARTZ FELDSPAR PORPHYEY DIKE, Brecciated locally.</td> <td>218 3-221</td> <td>1 0 012</td> <td></td>	210.2-218	3 QUARTZ FELDSPAR PORPHYEY DIKE, Brecciated locally.	218 3-221	1 0 012	
250.6-474.9 ALTERATION ZONE (SERICITIC AND/OR CHLORITIC SCHIST); Foliation 417-474' = 85-90° 257.5-261.3 0.045 SILICIFIEd Zone: 406.7-407.8; 0F Porphyry: 265-265.7 278.6-280.2 278.6-280.2 0.021 174.9-523.1 Breccia Zones: 261.3-262.2; 281.2-281.8; 278.6-280.2 278.6-280.2 278.6-280.2 0.021 174.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; 0F Porphyry 485.5-486; 0V: 477.5-479.8 345-353.8 0.020 174.1-CHLORITE-CARBONATE-QUARTZ SCHIST: Foliation, 80-85° to ca. 353.8-360 0.013 181.2-604.6 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST: Foliation, 80-85° to ca. 350.8-360 0.013 181.2-604.6 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST: Foliation, 80-85° to ca. 360-365 0.044 617 End of Hole 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles added by John Kirwan, October 24, 1988. 0 CORE was split and assayed from 62-95'; 175 to 536'; and 610-617'; all assay values 0 0 0 were reported below 0.007 opt Au, except those given above. 0 0 0 0 0 0 0 0 0 0 0 0 0	218.3-250.6	TALC-CHLORITE-QUARTZ CARBONATE SCHIST	210.0-221.	1 0.015	
SITICITED ZONE: 405.7-407.8; OF Porphyry: 265-265.7 Breccia Zones: 261.3-262.2; 281.2-281.8; 278.6-280.2 278.6-280.2 0.021 174.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; OF Porphyry 485.5-486; QV: 477.5-479.8 345-353.8 0.020 23.1-581.2 ARGILLITE AND GREYWACKE Foliation at 85-90° to core axis 345-353.8 0.020 381.2-604.6 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; Foliation, 80-85° to ca. 360-365 0.013 381.2-604.6 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; Foliation, 80-85° to ca. 360-365 0.024 617 End of Hole 360-365 0.044 617 End of Hole 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 360-365 0.044 added by John Kirwan, October 24, 1988. 98. 98. 98. CORE was split and assayed from 62-95'; 175 to 536'; and 610-617'; all assay values 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98. 98.<	250.6-474.9	ALTERATION ZONE (SERICITIC AND/OR CHLORITIC SCHIST): Foliation 417-474' = 85-90°	267 5 261 3	0.045	
174.9-523.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; QF Porphyry 485.5-486; QV: 477.5-479.8 International content of the state o		Silicified Zone: 406.7-407.8; QF Porphyry: 265-265.7		U.U.U.	
174.9-23.1 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; QF Porphyry 485.5-486; QV: 477.5-479.8 345-353.8 0.020 223.1-581.2 ARGILLITE AND GREYWACKE Foliation at 85-90° to core axis 345-353.8 0.020 881.2-604.5 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST: Foliation, 80-85° to ca. 353.8-360 0.013 104.6-617 ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca 360-365 0.044 617 End of Hole 360-365 0.044 617 End of Hole 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 360-7407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 360 360 added by John Kirwan, October 24, 1988. 361 361 361 CORE was split and assayed from 62-95'; 175 to 536'; and 610-617'; all assay values 361 361 Solution 361 361 361 361 Solution 361 361 361 361 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 361 361 Solution 362 362 361 361 A			278.6-280.2	0.021	
x81.2-604.5 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST: Foliation. 80-85° to ca. 353.8-360 0.013 x04.5-617 ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca 360-365 0.044 617 End of Hole 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 406.7-407.8 0.132 CORE was split and assayed from 62-95'; 175 to 536'; and 610-617'; all assay values 5 5 were reported below 0.007 opt Au, except those given above. 5 5 5 ABOVE LOG derived from the second thread to the second to the second thread to the second		TALC-CHLORITE-CARBONATE-QUARTZ SCHIST; QF Porphyry 485.5-486; QV: 477.5-479.8			
004.6-617 ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca 360-365 0.044 617 End of Hole 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 406.7-407.8 0.132 added by John Kirwan, October 24, 1988.		ARGILLI IE AND GREYWACKE Foliation at 85-90° to core axis			
617 End of Hole 406.7-407.8 0.132 ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 406.7-407.8 0.132 added by John Kirwan, October 24, 1988.		ADCILLATE AND ODEWLACKED ALL SCHIST: Foliation, 80-85° to ca.	and the second sec	· · · · · · · · · · · · · · · · · · ·	
ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles 406.7-407.8 0.132 added by John Kirwan, October 24, 1988.		ARGILLITE AND GREYWACKE: Bedding at 85-90° to ca	360-365	0.044	
ABOVE LOG derived from the Summary Log of Roberta Bald, with assays and core angles			100 7 107		
added by John Kirwan, October 24, 1988. CORE was split and assayed from 62-95'; 175 to 536'; and 610-617'; all assay values were reported below 0.007 opt Au, except those given above.		ABOVE LOG derived from the Summary Log of Roberta Bald with assaus and some angles	406./-40/.8	0.132	
CORE was split and assayed from 62-95'; 175 to 536'; and 610-617'; all assay values		added by John Kirwan, October 24, 1988.			
were reported below 0.007 opt Au, except those given above.					
		were reported below 0.007 opt Au, except those given above.			
PAP 855	······				
PAP 855					
PAP 8451					
PAP 8451					
PAP 8451					
			I	l	PAP 8451

•

.

١

.

+

PAGE 1

.

.

		PAGE	•	•
	P.O. BOX 2150, TIMMINS, UNTARIO, P4N 7X8 CANADA HOLE NUMBER	HUNTER MIN	E	
	DIAMOND DRILL LOG GRID REFERENCE 105	515 Section	n; 281 (Crosscut
	IOWNSHIP W	HITNEY C	LAIM	1009
	SUMMARY LOG AZIMUTH 28			
	RILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS: 250'=80.5°; 300'=84° DRE SIZE AQ CORE STORED AT: MINESITE LOGGED BY 450=88°; 490=85% R. BALD C	°: 350'=869	· 1001.	72120.
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	1	AYS
0-41	CASING TALC-CHLORITE-CARBONATE-QUARTZ SCHIST (SOAPSTONE); Variable foliation 0-90° to core axis	Footage	OzAu/t	
105.3-117.7	TALC-CHLORITE-CARBONATE-OUARTZ SCHIST Lower contact at 40° to core axis	269.2-270.0	0.025	
120.6-162	6 INTERMEDIATE DIKE?: Silicified Breccia (?) Zone: 149.8-152.8 TALC-CHLORITE-CARBONATE-QUARTZ SCHIST: Core angles about 20° to ca.	288.7-295	0.021	
171.2-190.7	INTERMEDIATE DIKE: Lower contact at 20° to core axis.	324.4-328.4	0.026	
190.7-215.5	Silicified Breccia Zones: 174.4-175; 179.6-180; 184.5-185.7. TALC-CHLORITE-CAREONATE-QUARTZ SCHIST; Lower contact at 35° to ca.			
215.5-225.5	INTERMEDIATE PORPHYRITIC(?) DIKE: Lower contact at 35° to ca.			
231.1-233.2	TALC-CARBONATE-CHLORITE-QUARTZ SCHIST- Lower contact at 40° to ca PORPHYRY DIKE or SILICIFIED BRECCIA ZONE (?)			
233.2-270.6	TALC-CARBONATE-CHLORITE-QUARTZ SCHIST: Breccia? Zone, 258-259.2; Foliation abt. 80° to c			
270.6-278.6	QUARTZ FELDSPAR PORPHYRY DIKE, Lower contact at 70° to ca	a		
278.6-287.4	TALC-CARBONATE-CHLORITE-QUARTZ SCHIST			
287.4-490	ALTERATION ZONE (ANKERITE-TALC-QUARTZ SCHIST) Foliation at 90° to ca (at 418', 437')	· · · · · · · · · · · · · · · · · · ·		
	QV: 287.4-287.8; 289.7-290.5; QV Zones: 287.8-288.7; 407.5-408.9; 409.2-410.8, and 416.7-418.6			
490	End of Hole			
	ABOVE LOG derived from the Summary Log prepared by Roberta Bald, with assays			
	and core angles, and some minor corrections, added by John Kirwan, Oct. 24, 198	8		
	CORE split and assayed from 61.5-62.5'; 103.9-199', and 215.5-490'. All sections assayed below 0.008 ounces gold per ton, except those given above.			
<u> </u>		1		

2 . . .

4

.

6

.

0-4 CASING NUMBER ASSAYS 4-338.7 TALC SCHIST (SOAPSTONE) Layering sub-parallel with ca, steepens with depth to 85° at 300' Footage 02Au/t QV: 333.8-334.8; QV Zones: 331-332.5; 333.7. Lower contact 50° to ca Image: Contact 50° to ca 38.7-353 CHORITE SCHIST Chorite SCHIST Image: Contact 50° to ca Image: Contact 50° to ca 53-496.2 ALTERATION ZONE (CHLORITE AND/OR SERICITE SCHIST). Foliation, 80-90° to core axis Image: Contact 50° to ca 96.2-511 TALC SCHIST. QV Zones: 499-501.4; 505-506.5 Image: Contact at 70° to ca. Image: Contact at 80° to ca 34-539.2 TALC SCHIST, Foliation 80-90° to ca Image: Contact at 80° to ca. Image: Contact at 80° to ca. 39.2-542.5 INTERMEDIATE DIKE? Lower contact at 80° to ca. Image: Contact at 80° to ca. Image: Contact at 80° to ca.	• • •				• •	
PO BOX 2150. TIMMINS ONTARIO. P4N 7X8 CANADA DIAMOND DRILL LOG SUMMARY LOG SUMMARY LOG SUMMARY LOG SUMMARY LOG SUMMARY LOG SUMMARY LOG DRILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS. 250'=300'=53*; 150'=654*; 400'=63*; CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY SOU=648*; 500'=63*; 100'=64*; 450'=67k*; CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY SOU=648*; 500'=63*; 100'=64*; 450'=67k*; CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY SOU=648*; 500'=63*; 100'=64*; 450'=67k*; CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY SOU=648*; 500'=63*; 100'=64*; 450'=67k*; CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY SOU=648*; 500'=63*; 100'=64*; 450'=67k*; CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY SOU=648*; 500'=63* FOOTAGE DESCRIPTION OF CORE SAMPLE ASSAYS POTAGE QY: 333,8-334.8; QY ZONES: 331-332.5; 333.3-333.7, LOWER contact 50° to ca 4-338.7 TALE SCHIST (SOAPSTONE) Layering sub-parallel with ca, steepens with depth to 85* at 300' QY: 335,4-337.1; Breccia Zones: 358,1-360; 367-370.9; 413,2-415,5 & 420,6-435,6 QY: 364,4-397.1; Breccia Zones: 358,1-360; 367-370.9; 413,2-415,5 & 420,6-435,6 34-539.2 TALC SCHIST, QY ZONES: 319-S01 co.a 32.5431 TALC SCHIST, OV ZONES: 399-501 co.a 33.1-530,8 METASEDIRMINTS (GREYMACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sodienetary layering at 85*00' to core axis; 502 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, october 24, 1988. Core was split and assayed from 134 to 149' and from 240,5-544.5'; all reported assay values were below 0.0080 CZAU/t. No assay value available for sample (-0.61510				PAGE	1	
PO BOX 2150. TIMMINS. ONTARIO. P4N 7X8 CANADA DIAMOND DRILL LOG SUMMARY LOG SUMM		Earth Resource Associates PROPERTY	(HINTED M		
DIAMOND DRILL LOG GRID REFERENCE Section 10515, 281 Crosscu TOWNSHIP WHITNEY CLAIM 1009 AZIMUTH 285° DIP ANGE651° SUMMARY LOG SUMMARY LOG DRILLING COMPANY MORRISSETTE FORTAGE S01°=63°; 1001°=59%; 1501°=65%; 200°=638° CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY S01°=64%; 5501°=67%; 5501						•
TOWNSHIP WHITNEY CLAIM 1009 AZIMUTH 285° DIP ANGLE .651° DRILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS: 250'=300'=63°; 350'=648°; 400'=64°; 450'=67%° CORE STORED AT: MINESITE LOGGED BY 500'=648°; 550'=648°; 400'=648°; 450'=65%° CORE STORED AT: MINESITE LOGGED BY 500'=648°; 550'=648°; 400'=648°; 550'=648°; 560°			- 50		15 004	0
SUMMARY LOG AZIMUTH 285° DIP ANGLE651° DRILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS .250°=300°=64%; 400°=64%; 450°=67%° CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY m.58114 DOTAGE FOOTAGE DESCRIPTION OF CORE SAMPLE ASSAYS 0-4 CASING DESCRIPTION OF CORE SAMPLE ASSAYS 0-4 CASING VI: 333.8-334.8; QV ZONES: 331-332.5; 333.3-333.7. Lower contact 50° to ca SAMPLE 4-338.7 TALC SCHIST (SOAPSTONE) Layering sub-parallel with ca, steepens with depth to 85° at 300' OV: 333.8-334.8; QV ZONES: 331-332.5; 333.3-333.7. Lower contact 50° to ca SAMPLE 38.7-353 CHORITE SOHIST GOTAGE ZONES: 499-501.4; 505-506.5 SAMPLE SAMPLE 11-534 QUARTZ FELOSPAR PORPHARY DIKE. Dy, por care cp. Lower contact at 70° to ca. SAMPLE 32-5452.5 TALC SCHIST, Foliation 80-90° to core axis; some local silicification. SAMPLE SAMPLE 32-5452.5 TALC SCHIST, Foliation 80-90° to core axis; some local silicification. SAMPLE SAMPLE 32-5452.5 TALC SCHIST, Foliation 80-90° to core axis; some local silicification. SAMPLE SAMPLE 32-5452.5 TALC						
DRILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS: 250'=300'=65%; 150'=66%; 200=63%° CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY DOTAGE FOOTAGE DESCRIPTION OF CORE SAMPLE ASSAYS 0-4 CASING Footage SAMPLE ASSAYS 0-4 CASING Footage SAMPLE ASSAYS 0-4 CASING Footage DESCRIPTION OF CORE NUMBER ASSAYS 0-4 CASING Footage DESCRIPTION OF CORE NUMBER ASSAYS 0-4 CASING Footage DZAU/L ASSAYS 0-4 CASING Footage DZAU/L ASSAYS 0-4 CASING Footage DZAU/L ASSAYS 0-338.7 TALC SCHIST (SOAPSTONE) Layering sub-parallel with ca, steepens with depth to 85° at 300' DOC a SAMPLE 38.733 CHARTE SCHIST Footage DZAU/L ASSAYS 0/01 336.4-397.1; Brecta Zones: 338.1-360; 367-370.9; 413,2-415,5 & 420,5-435,6 Intersteps Zones: 499-501.4; 505-506,5 Intersteps Zones: 499-501.4; 505-506,5 Intersteps Zoneseccccccccccccccccccccccccccccccccccc					-	
DRILLING COMMANY MORRISSETE FOREMAN Lafontaine DIP TESTS. 250'=300'=63°; 350'=64%; 400'=64%; 450'=67% CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY SO'=67%, 500'=63%; 500'=67%; 500'=64%; 550'=67%, 500'=67%; 500'=67		AZIMOTI	28	5° DIP A	NGLE _	65 ±°
CORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY 500°=64%°; 550°=67%°; 600°=63%° FGOTAGE DESCRIPTION OF CORE SAMPLE ASSAYS 0-4 CASING Footage SAMPLE ASSAYS 4-338.7 TALC SCHIST (SDAPSTONE) Layering sub-parallel with ca, steepens with depth to 85° at 300° Footage 02Au/t 0-4 CASING Footage Footage 02Au/t 0-4 CASING Footage 02Au/t -338.7 TALC SCHIST (SDAPSTONE) Layering sub-parallel with ca, steepens with depth to 85° at 300° Footage 02Au/t -338.7333 CHARTE SOHIST QUIS 333.8-334.8; QV Zones: 331-332.5; 333.3-333.7. Lower contact 50° to ca	וח	50'=53°; 100'=59 RILLING COMPANY MORRISSETTE EODEMAN LAFORTAIN DID TECTO 2501-3001-639; 25	%°;	150'=66½°;	200=63	10 21 6710
FOOTAGE DESCRIPTION OF CORE SAMPLE NUMBER ASSAYS 0-4 CASING Footage OZAU/t Footage OZAU/t Footage OZAU/t		1000000000000000000000000000000000000	67%°	+12 400 =	=04°; 45 10	0'=0/2°
FOOTAGE DESCRIPTION OF CORE SAMPLE NUMBER ASSAYS 0-4 CASING Footage 02Au/t Footage 02Au/t Image: Control of the standard standa		URE SIZE AQ CORE STORED AT: MINESTIE LOGGED BY R.Baid	D	ATE Feb.	22, 198	8
0-4 CASING Footage OZAU/t 4-338.7 TALC SCHIST (SOAPSTONE) Layering sub-parallel with ca, steepens with depth to 85° at 300' OV OV 0V: 333.8-334.8; QV Zones: 331-332.5; 333.3-333.7. Lower contact 50° to ca OV 53-496.2 ALTERATION ZONE (CHLORITE AND/OR SERICITE SCHIST). Foliation, 80-90° to core axis OV OV 0V: 396.4-397.1; Breccia Zones: 358.1-360; 367-370.9; 413.2-415.5 & 420.6-435.6 OV OV 54-2511 TALC SCHIST. QV Zones: 499-501.4; 505-506.5 III III Footage OV 34-539.2 TALC SCHIST, Foliation 80-90° to ca OV OV OV OV 34-539.2 INEDXEDIARE DIMER DIME: py, po, rare cp. Lower contact at 70° to ca. IIII IIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	FOOTAGE				1	
4-338.7 TALC SCHIST (SOAPSTONE) Layering sub-parallel with ca, steepens with depth to 85° at 300' Footage 02Au/t 0V: 333.8-334.8; 0V Zones: 331-332.5; 333.3-333.7. Lower contact 50° to ca 90' 38.7-353 CHLORITE SCHIST 0V: 395.4-397.1; Breccia Zones: 358.1-360; 367-370.9; 413.2-415.5 & 420.6-435.6 96.2-511 TALC SCHIST. QV Zones: 499-501.4; 505-506.5 11-534 QUARTZ FELOSPAR PORPHYRY DIKE. py, po, rare Cp. Lower contact at 70° to ca. 34-539.2 TALC SCHIST, Foliation 80-90° to ca 32-542.5 INTERVENTED UKE? Lower contact at 80° to ca. 22-543.1 TALC SCHIST (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; 32-542.5 Schementary layering at 85-90° to core axis; some local silicification. 50.8-502 BLACK ARGILLITE, layering at 85° to core axis; 502 ELACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ASOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OzAu/t. No assay value available for sample C-0510 Sample C-0510	0.1			NUMBER	A55/	415
38.7-353 CHLORIE SCHIST 38.7-353 CHLORIE SCHIST 33.7-353 CHLORIE SCHIST 34.7-353 CHLORIE SCHIST 0Y: 396.4-397.1; Breccia Zones: 358.1-360; 367-370.9; 413.2-415.5 & 420.6-435.6 0Y: 396.4-397.1; Breccia Zones: 358.1-360; 367-370.9; 413.2-415.5 & 420.6-435.6 62.2-511 TALC SCHIST. QV Zones: 499-501.4; 505-506.5 11-534 QUARTZ FELDSPAR PORPHYRY DIKE. py, po, rare cp. Lower contact at 70° to ca. 34-539.2 TALC SCHIST, Foliation 80-90° to ca 39.2-542.5 INTEMEDIATE DIKE? Lower contact at 80° to ca. 22.5-543.1 TALC SCHIST 31.1-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 560.2 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 0ZAU/t. No assay value available for sample C-0510				Footage	OzAu/t	
30.7-333 CHARIE SCHISI 33-496.2 ALTERATION ZONE (CHLORITE AND/OR SERICITE SCHIST). Foliation, 80-90° to core axis 0V: 396.4-397.1; Breccia Zones: 358.1-360; 367-370.9; 413.2-415.5 & 420.6-435.6 36.2-511 TALC SCHIST. QV Zones: 499-501.4; 505-506.5 11-534 QUARTZ FELDSPAR PORPHYRY DIKE. py, po, rare cp. Lower contact at 70° to ca. 34-539.2 TALC SCHIST, Foliation 80-90° to ca 39.2-542.5 INTEMEDIATE DIKE? Lower contact at 80° to ca. 25-553.1 TALC SCHIST 31-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sci.8-596 TALC SCHIST, Foliation at 80-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 560.2 BLACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OzAu/t. No assay value available for sample C-0510 </td <td>4-330.7</td> <td>ALC SCHIST (SUAPSIONE) Layering sub-parallel with ca. steepens with depth to 85° at 3</td> <td>00</td> <td></td> <td></td> <td></td>	4-330.7	ALC SCHIST (SUAPSIONE) Layering sub-parallel with ca. steepens with depth to 85° at 3	00			
53-496.2 ALTERATION ZONE (CHLORITE AND/OR SERICITE SCHIST). Foliation, 80-90° to core axis QV: 396.4-397.1; Breccia Zones: 358.1-360; 367-370.9; 413.2-415.5 & 420.6-435.6 96.2-511 TALC SCHIST. QV Zones: 499-501.4; 505-506.5 11-534 QUARTZ FELDSPAR PORPHYRY DIKE. py, po, rare cp. Lower contact at 70° to ca. 34-539.2 TALC SCHIST. Foliation 80-90° to ca 92.2-542.5 INTEMEDIATE DIKE? Lower contact at 80° to ca. 12.5-543.1 TALC SCHIST 13.1-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; 50.8-596 TALC SCHIST, Foliation at 80-90° to core axis; some local silicification. 50.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 502 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OzAu/t. No assay value available for sample C-0510	338.7-353	CH ORITE SCHIST				
QV: 396.4-397.1; Breccia Zones: 358.1-360; 367-370.9; 413.2-415.5 & 420.6-435.6 26.2-511 TALC SCHIST. QV Zones: 499-501.4; 505-506.5 11-534 QUARTZ FELDSPAR PORPHYRY DIKE. py, po, rare cp. Lower contact at 70° to ca. 34-539.2 TALC SCHIST. Foliation 80-90° to ca 39.2-542.5 IMEMEMDIATE DIKE? Lower contact at 80° to ca. 22.5-43.1 TALC SCHIST 31-550.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 5602 BLACK ARGILLITE, layering at 85° to core axis. 5602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported Assay values were below 0.008 0zAu/t.	353-496.2					
50.2-511 TALC SCHISI. QV Zones: 499-501.4; 505-506.5 11-534 QUARTZ FELDSPAR PORPHYRY DIKE. py, po, rare cp. Lower contact at 70° to ca. 34-539.2 TALC SCHIST, Foliation 80-90° to ca 39.2-542.5 INTEMEDIATE DIKE? Lower contact at 80° to ca. 22.5-543.1 TALC SCHIST 33.1-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 96-602 BLACK ARGILLITE, layering at 85° to core axis. 96-602 BLACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OZAU/t. No assay value available for sample C-0510 Sample C-0510		0V: 396.4-397.1: Breccia Zones: 358.1-360. 367-370 0. 412 2.415 5 4.420 5 425	<u> </u>			
11-534 QUARTZ FELDSPAR PORPHYRY DIKE. py. po, rare cp. Lower contact at 70° to ca. 34-539.2 TALC SCHIST, Foliation 80-90° to ca 39.2-542.5 INTEMEDIATE DIKE? Lower contact at 80° to ca. 32.5-543.1 TALC SCHIST 33.1-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 96-602 BLACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 0zAu/t. No assay value available for sample C-0510	496.2-511	TALC SCHIST. OV Zones: 499-501.4: 505-506.5	0			
34-339.2 TACU Schist, Foliation 80-90° to ca 39.2-542.5 IMERADIATE DIKE? Lower contact at 80° to ca. 42.5-543.1 TALC SCHIST 43.1-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 96-502 BLACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OzAu/t. No assay value available for sample C-0510	511-534	QUARTZ FELDSPAR PORPHYRY DIKE. DV. DO. rare CD. Lower contact at 70° to ca				
42.5-543.1 TALC SCHIST 13.1-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 96-602 BLACK ARGILLITE, layering at 85° to core axis. 96-602 End of Hole 602 End of Hole 602 End of Hole 603 Of Hole 604 Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported 605 Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported 605 Assay values were below 0.008 0zAu/t. No assay value available for sample C-0510	534-539.2	TALC SCHIST, Foliation 80-90° to ca				
42.5-543.1 TALC SCHIST 43.1-560.8 METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic; Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 96-602 BLACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OzAu/t. No assay value available for sample C-0510	539.2-542.5	INTERMEDIATE DIKE? Lower contact at 80° to ca.		•		
Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 96-602 BLACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 0zAu/t. No assay value available for sample C-0510	542.5-543.1	TALC SCHIST		1		
Sedimentary layering at 85-90° to core axis; some local silicification. 560.8-596 TALC SCHIST, Foliation at 80-90° to core axis. 96-602 BLACK ARGILLITE, layering at 85° to core axis. 602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 0zAu/t. No assay value available for sample C-0510	543.1-560.8	METASEDIMENTS (GREYWACKE AND ARGILLITE): Locally talcose, argillite is graphitic:				
ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of Image: State of the summary Log of Roberta Bald and the Preliminary Log of ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of Image: State of the summary Log of Roberta Bald and the Preliminary Log of ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of Image: State of the summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added Image: State of the summary Log of Roberta Bald and the Preliminary Log of Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported Image: State of the sum		Secondentary layering at 85-90° to core axis: some local silicification				
602 End of Hole ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 0zAu/t. No assay value available for sample C-0510		TALL SUMIST, FOLIATION AT 80-90° TO COPE AXIS.				
ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John Kirwan, with core angles and assay information, and minor corrections, added by John Kirwan, October 24, 1988.		End of the lo				
Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported Assay values were below 0.008 OzAu/t. No assay value available for sample C-0510						
Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported Assay values were below 0.008 OzAu/t. No assay value available for sample C-0510		ABOVE LOG derived from the Summary Log of Poberts Bald and the Dealderingers Log of				
by John Kirwan, October 24, 1988. Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OzAu/t. No assay value available for sample C-0510		John Kirwan, with core angles and assay information, and minor corrections added				
Core was split and assayed from 134 to 149' and from 240.5-544.5'; all reported assay values were below 0.008 OzAu/t. No assay value available for sample C-0510		by John Kirwan, October 24, 1988.				
assay values were below 0.008 OzAu/t. No assay value available for sample C-0510						
assay values were below 0.008 OzAu/t. No assay value available for sample C-0510		Core was split and assayed from 134 to 149' and from 240.5-544.5': all reported	·····			
from 511-513.5'.		assay values were below 0.008 OzAu/t. No assay value available for sample C-0510				
		from 511-513.5'.		·		
	1					

2 i •

÷ ,

		PAGE	1
	Earth Resource Associates PROPERTY	UNTER MIN	IE 🔴
	P.O. BOX 2150. TIMMINS. ONTARIO. P4N 7X8 CANADA HOLE NUMBER	U-11	•
	DIAMOND DRILL LOG GRID REFERENCE Sect	ion 10515	, 281 Crosscut
	TOWNSHIP		
	SUMMARY LOG AZIMUTH 285	DIP A	NGLE -55°
D	RILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS: 100'=200'=55½°; 300'		
		=58%°; 40 A500'=56%	0'=60°;
	ORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.Bald D.	ATE M	arch 11, 1988
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0-4"	CASING	Footage	D
4-385.2	TALC SCHIST (SOAPSTONE); Variable schistosity, 0-90°; 30° at 40'; 60° at 208'	rootage	DZAU/L
	chiorice schist (Maric Metavolcanic Flow and/or lapilli tuff or Mafic Dike)		
	at 292-295.4: 262.5-286.9: 356-358 9 and 350 6-395 2		
	QV Zones: 257.4-257.7; 261.9-262.5; 349.1-350.8; 351-355.3; 367.8-369.6; 382.4-385.2. OF Porphyry dike: 297.8-298.3:		
	QF Porphyry dike: 297.8-298.3; Schistosity & Layering: Generally Breccia Zones: 373.1-375.3; 375.8-376.7. about 80° around 370'		
385.2-481.2	ALTERATION ZONE: Layering generally 80-90° to ca. Breccia Zone: 430.6-431.4;		
	VY ZONES: 450-451: 451-2-451-8: 452 1-452 7: 452-452 0: AFE E AFE 0: ATO O ADO C		
481.2-495.1	PARTY PETAYULUANIL FLUW (?) (CHIURITE SCHIST) Journ contract DOG to some outs		
496.1-510.8	METUVIIUN LUNE (JEKIUIIE-UUAKI/-CARBONAIE-CHIORITIC SCHIST) Duogoda 7000 7 640 4		
1 21040-21147	YUNNIA FELUJYAK YUKYHIKY DIKEW LOWAY (Ontact at 80_869 to op		
537.7-540.0	TALC SCHIST. Q-C-V Zones: 516.5-518.2; 519.2-521.3; 530.4-531.9.		
540.0-558.8	QUARIZ FELDSPAR PORPHYRY DIKE: Lower contact 90° to ca. TALC SCHIST: Layering generally at 80° to core axis.		
	INTERMEDIATE DIKE? 543.7-553.3; Silicified Zones 543.8-545.5; 549.4-550.7; 550.9-553.3		
558.8-588.3	GREYWACKE with MINOR ARGILLITE	·	
588.3-616	TALC SCHIST (SOAPSTONE): Schistogity at 90° to core avis		
616-632	ARGILLITE WITH MINOR GREYWACKE: Contorted (tops both uphole and downhole from 623-620)		
	Average layering at 70° to core axis.		
632	End of Hole.		
	ABOVE LOG derived from the Summary Log of Roberta Bald and the Preliminary Log of John		
	Kirwan, with minor corrections, assay information, and core angles added by John Kirwan,		
	UCTODER 24, 1988. Core solit and assayed from 257 2501, 207 0 200 2, 240 200, 040		
	564; 569.1-569.5; and 628.7-631.3. All assay values were below 0.007 ounces gold per ton.		

e 5 🔸

6 14 5

					PAGE	1	
	Earth Resource Associates P.O. BOX 2150, TIMMINS, ONTARIO, P4N 7X8 CANADA		PROPERTY		UNTER MIN		
	DIAMOND DRILL LOG	G	HOLE NUMBER RID REFERENCE		U-12	5 281	Crossout
	DIAMOND DHILL LUG	с. С	TOWNSHIP				1009
	SUMMARY LOG		AZIMUTH				~75°
DF	RILLING COMPANY MORRISSETTE FOREMAN Lafonta	inedip tests:					
C(ORE SIZE AQ CORE STORED AT: MINESITE	LOGGED BY	R.BALD	DA	TE MAR	CH 17,	1988
FOOTAGE	DESCRIPTION OF CORE				SAMPLE NUMBER	ASS	SAYS
0-4	CASING				Footage	OzAu/1	8
4-70	TALC SCHIST (SOAPSTONE): Schistosity at 65-70'=0° to co PORPHYRY? or BRECCIA ZONE at 37-38.5'	ore axis					
70-73.5	INTERMEDIATE DIKE		,		66 70	0.004	
73.5	End of Hole		· · · · · · · · · · · · · · · · · · ·		65-70 70-73.5	0.001	
	ABOVE LOG derived from the Summary Log prepared by	· Pobonta Pald	th				
	and assay information added by John Kirwan. Octobe	er 17. 1988. All	material				
	split and assayed shown above (2 samples).						
	Hole abandoned at 73.5' due to wedging before reac	hing tanget and					
		aning target area				·····	
		· · · · · · · · · · · · · · · · · · ·					
		·····					
			<u> </u>				
			alter				
							PAP 8451

🔹 👘 👗

t ir t	
--------	--

•

	EarthResourceAssociatesPROPERTYHP.O. BOX 2150. TIMMINS. ONTARIO, P4N 7X8 CANADAHOLE NUMBER	IUNTER MIN U-13	E 🔴)
	DIAMOND DRILL LOG TOWNSHIP WH AZIMUTH 10	ITNEY C	LAIM 1	009
D C	RILLING COMPANY MORRISSETTE FOREMAN Lafontaine DIP TESTS: 100'=54°; 200'=54. ORE SIZE AQ CORE STORED AT: MINESITE LOGGED BY R.BALD D/	5°; 300'= ATE Ma r		
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	YS
0-6 6- 104.5		Footage	OzAu/t	
104.5-386.6	INTERMEDIATE DIKE?: 43.3-45.6; 49.8-53.4; 56.7-64.1 (Contacts of first 2: 45 & 50°) Silicified Zone: 61.5-62.1	110.7-113.4	0.021	
	-170; 179.6-180; 187.7-188.7; 198.2-199.2; (latter with cp); 211.1-212.3; 286-286.2; 293.2-293.3; 303.2-310; 318.7-320.1' QV Zones: 113.2-113.4; 119.8-120.1; 213.1-213.3; 275.3-275.8; 277.1-278.7; 290.3-200.0	141_7-146	0.028	
386.6-40.9.4	291.5-292.7; 304.7-305.5; 306.6-312.7; 313.5-314.7; 316.6-320.5; 323-328.1; 330.3-332.9; 333.7-334.3; 354.6-354.9 CARBONATE-TALC-QUARTZ SCHIST (ULTRAMAFIC?) OV: 391 3-391 5		0.018	
409.4-410 410-415.4 416.4-417.6	QUARIZ FELDSPAR PORPHYRY DIKE, Upper contact at 50° to core axis. CARBONATE-TALC-QUARTZ SCHIST (ULTRAMAFIC?) QV Zone: 410-411.2 METASEDIMENTS (?): Finely banded arg[1][te: layering at 75-80%; lower Contact at 750	328.1-330.3	0.028	
447.2-448.2	inco Schisi, Lower contact at 60° to Ca			
455.2-471				
	ABOVE LOG derived from the Summary Log prepared by Roberta Bald with additions of core angle and assay data by John Kirwan, October 17, 1988.			
	Sections of the drill hole that were split and assayed were: 60-62.11 and 105.7-4141; All reported assay values were below 0.009 Oz Au/t except those shown above.			

3 11 8 PAGE 1

HUNTER MINE

1

DIAMOND DRILL LOGS U-6 thru U-13

PHOTOCOPIES OF ORIGINALS WITH ASSAYS

(ACTUAL ORIGINALS REMAIN IN POSSESSION OF ROBERTA BALD. IT WAS NECESSARY TO PLOT THE ASSAY VALUES ONTO GOOD PHOTOCOPIES OF THESE ACTUAL ORIGINALS SO THAT THE PHOTOCOPIES HAVE NOW BECOME THE EFFECTIVE "ORIGINALS".)

LOGGED BY ROBERTA BALD, FEB. - MARCH, 1988 ASSAYS ADDED BY JOHN KIRWAN, OCTOBER, 1988

•	່າງ,່າ ງ, າັ່ຼາໜີ ຊື່ອີງ	· • • •		i el
	Earth Resource Associates	PROPERTY A		1 of 6
	P.O. BOX 2150, TIMMINS, ONTARIO, P4N 7X8 CANADA	HOLE NUMBER	uncer /	un
	DIAMOND DRILL LOG	GRID REFERENCE	чю,	
		TOWNSHIP W	ITNEY O	A 16.4
	LENGTH: 508,5'	AZIMUTH	•	
I	DRILLING COMPANY Mornissette FOREMAN	DIP TESTS:		
	CORE SIZE AXT CORE STORED AT: MINE SITE		DATE Feb	. 5/88
FOOTAGE	DESCRIPTION OF CORE		SAMPLE	274224
0-2.0	CASING		NUMBER /	Au SAMP
2.0-32;	2 MAFIC METAVOLCANIC (BASALT?)		· · · · · · · · · · · · · · · · · · ·	
	Fine- to medium - grained, dark grey	massive to locally	2.0-4.4'0	001 00
	loliated (generally at low angle to Con	re Akis): unit consists	4.4 - 10.0 0	001 00
	of very small plagio clace cropials in	chlorite - rich matrix	10.0-12.60	005 00
	generally moderately soft (scratched b	(knife) no practic	12.6'-15.9'0	.001 00
	to HCl. Ideal Fine- to coarse-grained dissemin	hoted ou ountals		
	Unit contains local bleached.	silicified zones	21.0-24.0 0	002 00
	from 2,5 to 2,8; from 4.4' to 5.2'; f	rom 10' to 12.6; from		
		2.6'; from 30.4' to 31.8 :	27.5-29.6	the second s
		work of vendomly	29.6-32.2	2.003 00
	priented threadlike to up to "4" uide	milky white to clear,	K/16 JL, Z C	<u></u>
· · · · · · · · · · · · · · · · · · ·	grey quart veinlets, commonly with,	ulland-salda ting	+	
	and Chard silicified bleached host	rock of engleting		
	on both sides of bein let. locally	pleached some cast	<u> </u>	······
	pyinte as fine- to coarse-grained to	ystals + pleps: locally	\	
	Filicified some has cherty appearance	locally containing		·····
	~ 2= 3% fine-grained disseminated pyrite	from ~ 28.0' to ~ 28.5')	1	
	Lower contact sharp at 28° to	CA: next cinit appear	┨────┤──	
	to cut Basalt unit.	, Tr	<u> </u>	
			 -	
1,2-312,5	CHLORITE - CARBONATE - QUARTZ - TALC	SCHIST		·····
	Intensely banded foliated/schip	tose unit: donk anou-	32.2-37.0 0	.001 010
	black and white bando: schisto at	direction generally		.001 011
	at a low angle to CA but locally!	variable: no reaction	42.0-47.0 0	
<u> </u>	to HCl: carborate-quarts bando are, u	thite and up ton 1/4"	470-52.0 0	

ì

Ð.

PROPERTY: HUNTER MINE HOLE NUMBER: U-6

J

t)

PAGE 2.f6

n

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
32,2'-312,5	CHLORITE-CARBONATE-QUARTZ-TALC SCHIST (CON'T)			ľ.
	wide, locally folded, faulted and preciated; trace disse	57.0-62.0	0.001	015
		62.0-67.0		016
	and up to N/10 more percommence common and	67.0 -72.0	0.001	017
· · ·	locally cross cutting foliation/ schistocity from~75			ļ
	(possibly talc-rich teiplets?); local, rare, narrow			
	121" unde) pipite - rich zones containing about 5-10%			
	first numer and servicitic material grey, sugary			i
	Schipfossity @ 71' is 25° to CA			
	11 1 79' is ~35 ° to CA			<u> </u>
		72, 77,	· · ·	0.0
······		72.0-77.0 77.0-79.2		018
		79.2-81.Z	0.001	019
		81.2'-83.1	0.001	020
		83.1'-87.0	0.001	02
	very soft falce veinlets containing him - to medius -	0.00 1.50	0.001	04
	grained pyrite; the quarty veitte are coarse- grained			
	with greet quarte graine with light golden-yellow	*= ·		
	material Meteren (passibly brecciated ?): quater vein			
	rarely contains chalcopyrite blab and like - mained			
	disseminated pyrite; sharp to gradational contacto;			
	rost rock is very deformed, Z-folded, faulted and			
l	precuated between these quart veins			
	Local milky white quater + minor ankerite & - not reaction			023
		92.0 - 97.0	0.001	024
	host rock; up to ~ /" luide; from ~ 87' to ~245'; ho sul-	17.0-102.0	0.002	025
	phides been generally at ~ 45° to 80° to CA: ~3" Q.V. at~ 1470" 45%. Cherty - 166 King, Khaki coloured, massive, Lin - gramed		0 001	026
	had not floor the stand of the	1070-112.0	0 001	027
		112.0-1170	0.001	029
		1170'-122.0	0.001	
		122.0-127.0	,0.001	030
		127.0-132.0	0001	
	Note: This K2' loss will say the 1 - 2 /	<u>132.0-137.0</u>		032
	NOIE: TWO 161 tags ~1.5° apart in 2 boxes; from	137.0-142.0		033
	172 tog to FOH, should add 1.5 to all tago.	42,0-147.0	0.007	034

PAGE 3.46

63

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG.

η.

Ward Bar

PROPERTY: HUNTER MINE HOLE NUMBER: U-6

n

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
2.2-312.5	TALC- CHLORITE - CARBONATE (QUARTZ) SCHIST (CON'T)			<u> </u>
		147.0-1524	0.001	03
		152.0-157.0	0.004	03
		157.0 - 162,0		03
		162.0'-167.0'	0.003	03
	NOTE: 212 tag at end S/ box 9; then 222 at start	167.0-172.0	0.001	03
	& box 10 -> (bx) corrected by R. Bald	172.0-177.0	0.001	04
		177.0-182.		04
		182.0-187.0		04
		187.0-192.0		04
	From 197.0 to 199.5: Quartz Vein or Quartz Porphyny	192.0-197.0		04
	with massive black tale similar to 79.2 to 19.5 ste upper	197.0-199.5	10001	04
····	contact sharp at ~40° to CA, lower contact sharp at 250 to	199.5-2020		04
	CA / /	202-207	0.001	04
		207-212	0.003	04
		212-217,	0.004	04
		217-222	0.001	05
		222-227		05
		227-232	0.01	05
		232-237	0.001	05
		237'-242'	1000	05
		242-247	0.001	05
		247'-252'	0.001	05
		252-257'	1000	05
		257-262		05
			0.001	05
			0-014	06
		272-277		06
		277-282		06
		282-287	0.001	06
i		287'-292'		06
		292 -297 '	0.006	06
	for 297.5 to 298.3' is a quartz vein at least 1" mide,		0.001	06
	running along core axis.	302'-307'	<u>a.</u>	06
	Lower contact appears to be some what interfin-	307 <i>-31</i> 2,5	0.001	068
	gered, parallel to schistocity of both units at 20° to CA.			PAP

Ŋ

)

PAGE 4 566

.

,

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-6

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
312.5'-369,2	ALTERATION ZONE			
		312.5-317	0.001	069
	isliated /schistose unit: locally with dark black hand	317'-322'	0.001	070
	(tale and/or chlorite) locally revealing deformation	322-327	0.001	071
	of unit, consisting of folding faulting land variable	327-331.9		072
	Schistossity directions (from 000 to ~70° to CA); locally	5-1 00101		-12
	unit has fuch site (?) - which slips parallel to the			
	poliation: local name coarse- mained disseminated			
	pyrite: Pocally cherty - looking material cortains			
	small sound to incarly- shaped quarte crustals.			
	rarely in layers bandled to this totiation			
	direction 0			
	Quarter veins or Quartz Porphyry dikes: from 331,9'	331.9-3355	0.001	073
	to 335.56 and 345.4' to 346.58: Oupper contact inter-	335.5-337'	0.001	074
	fingered with host rock lower contact sharp at ~35° to	337-342'	0.001	075
		342-345.4	0.001	076
	to~ 336.5 then unit becomes similar to TALC-CHLORITE.	345.4'-346.	50.001	077
	CARBONATE (QUARTZ) SCHIST unit except no black bands.	346.5-352	0.001	078
	(bassibly no talt); Oupper contact sharp but somewhat	352'-357'	0.001	079
	itregular, N 45° to CA, Hower contact sharp at 60° toca	357-362	0.003	080
		362'-367'	0.001	081
	change (abrupt).	367-369.2	0.003	082
49.2-389.5	TALC- CHLORITE-CARBONATE (QUARTZ) SCHIST			
		369.2-372	0.001	083
	yones (khaki-light burn coloured bands)	372-377	0.001	084
	Lower contact sharp at 20° to ca, parallel to loliation	377-382	0 001	085
) both units.	382-387'	0.001	086
		387-389.5	0.001	087
9.5-396.91				
	Dark grey with white carbonate crystals (reacto slightly	389.5-376.9	0.001	088
· · · · · · · · · · · · · · · · · · ·				
	carbonale elizable locally along this bands at 20° to			
	core axis: possibly porphysic matic flow? but contacts			
	ayis ())) and a local to call	·		

1

. .

PAP. - 8452

.

.

PROPERTY: HUNTER MINE HOLE NUMBER: 4-6

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	AS	SAYS
x.9-400,5	Similar de 2007 de Carte de Cartes			
	whit is grey beliated, MX:	3969-400.5	0.001	08'
	a few inches. a mainly denoted by a colory			1
	Change.			+
0.5-508.5	ALTERATION ZONE Only 5.5 of core >	المعروب المعتر		
		400,5-407 407 -409.7	0.007	09
		409.7- 412.1	0.001	09
	coloured, cherty looking with cross-cutting milky white	412.1-417 417-422	0.001	09
	ted to bing and winter (ran donly oriented); local precia-			
	at 30° to the axis parallel to fall of a Ditter			
	to core agist no sulphides seen.			
	teesting of fine-grained digge min and adapted	422-427	0 -00)	09
	near 4220			
	along foliation planes (from ~ 429'-~ 454'); within	427-432,5	0.001	09
	his one are local subt veins most all of the			
	tion, consisting of translucent quarter with while follow			
	poro quart or feldspar?); up to 2" unde: main			
	Containing Solice tourned line 2 and to 433,5 (possibly)	432,5-433,5	0.001	09
	time be cornes dark grey from Un 451 to ~458 ust	4 <u>33,5-437</u> 437 - 442	0.001	09 09
	presente marci alter tome 456 the ~45 1.5 1 gray, of the	442-446.3	0.001	100
	5 389.5 to 396.9	446.3-451 451-4561	0.001	<u> 01</u> 102
	from 468. 20 D 419 Steining similar to 432, 5' to 433.5'	456-457.5	0.001	cine
	grained dusting of pyrite in great post speck het icon	457.5-462	0-001	100
	he quark also pilite (<1%, Fr dusting) in host vock		0004	109
		#5-469.2	0.031	106

۲

.

PAP - 8452

PAGE 5 of 6

PAGE 60f6

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-6-

٢

. .

`.

,

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
400.5-508.5		4682-4697	0.011	107
	NOTE: Between Driller's 399' and 412' tags -> only	469.7'-472	0 001	108
		472-477	0.001	109
		477-482	0.001	110
· · · · · · · · · · · · · · · · · · ·	Foliation/schistossity @~ 455.5 = 30' to core april	482-487	0.001	111
	[~ 471' = 45° to core aiking		0.004	112
		492-494.4	0.003	113
	artis @~ 504' = '50° to core artis			
	From 494.4 to EOH: Possible precia zone with local	4944-497	0.003	114
	zones of faliated schistose material; very sericitic -ante-	497-502	0.002	115
	Salad inthe to cal pointable such is the along poliation	502-507	0.012	116
	plance or between fragmente only trace fine- pained	<u>507-508,5</u>	0.001	117
	disseminated pyrite in white			
508.5	EOH			
00,5			·	
		·····		
· · · · · · · · · · · · · · · · · · ·				
		·		
	·			

PAP. - 8452

	1 1	,	
Forth Decension			PAGE 1 $\rightarrow 47$
Earth Resource Assoc P.O. BOX 2150. TIMMINS. ONTARIO		PROPERTY /	HUNTER MINE
DIAMOND DDU LA	O. P4N 7X8 CANADA	HOLE NUMBER	
DIAMOND DRILL LO	G	GRID REFERENCE	
LENGTH = 487.0'		TOWNSHIP 4	HITNEY CLAIM
		AZIMUTH	
DRILLING COMPANY MORRISS ETTE	FOREMAN	DIP TESTS:	
CORE SIZE CORE STORED		0-1	
FOOTAGE		LOUGED BY A: Balla	DATE Feb. 8/88
	DESCRIPTION OF CORE		SAMPLE ASSAYS
0- CASINGENIDEITE- 0- 16.9 TALC-QUARTZ-CARBONA			NUMBER ASSAYS
Dark grey Gin to	TE SCHIST		
he say the birting tan, b	medium-gra	uped sock with wh	10-2 0001 118
tossity directions (f	20m ~ 0° to ~	45° to core avis: hal	$\frac{s-2-6}{6-8}$ 0 005 119
hing - to medic	ed and fault	ed; locally contains	$\frac{6-8}{8-13'} - \frac{0.001}{0.001} - \frac{120}{121}$
looking bands (tan	ained divite	(Rase); local shert	
16.9-29.2' Quarto Veinillar Que		- Steet of core between 2'	/
16.9-29.2 Quarts Vein() or Qua	sta Porphy	Dike(?)	16.9-21' 0.001 123
to addite and	coursed me	ssive, cherty-looking	21-27' 0.001 124
weinlets, possibly to	undaline ?	lacally ald che	27-29.2 0.001 125
by milky white	; upper contact	inegular masked	
Cotre axis (NOTE: ONLY ~19)	i former contac		
	y core served	m 18'+ 28' +ags.)	
29.2-64.5 TALC-QUARTZ-CARBONAT Similar to 0-169	E SCHIST	V	
+ faulted focal trans	": very defor	med banding folded	29.2-33 0 001 /26
vens up to 2" inde ren	erally bang	ally while quart	33-38 0.001 127
	5.1°, from 56.	0' to 56.8' in cluding	38-43 0002 /28
some wispy black of	griants porpil		43-48' 0.029 129 48-53' 0.001 130
Sions(?), from 58.2' to		Chost rock inclu.	53-55 0.003 131
	harp ato abou	T 90° to care and	55'-56' 0.001 /32
mext unit cross cu	Is unit from	~ 29.2'-64.5'	56-56.8 0.001 /33 56.8-58.2 0.001 /34
			582-59.6 0.001 /35
			PAP 8451

1 **1**

.

k g

,	· · ·		4	; 7
		PAC	ж 24	st 1
E	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU	JMBER: L	1-7.	
ſ				-
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
64.5 - 79.0	Quarter Vein? or Quarter Porphyn dike (?)	59.6-64.51	0.001	/36
]	Similar To 16.9 to 29.2 weapt colour varies	64.5-68'	0.00	137
	from light tan to grey to dark grey and locally	69-73	0 001	138
	dark grey material gradually changes colour the	73'-79'	0001	139
	lighter grey > possible silicified gones ?; about			
	2=3% find to coarse - grained, disseminated			
	pipele Throughour (cubes and blebs); at ~ 12, 3			
	schist along one side of core possibly indica-			
	ting the will in talded and trung danalled			
	to cover aris at Othis Doint (?) Lower contact			
	sharp at 40° to cove axis contact some what			
	masked by milky white quarte view in next			
	unit. 1 1			
-0 10075	, CHLORITE			
79.0-227.5		79-83	0.001	140
	Similar to 0'-16.9' with local this veinlets of	83'-88'	0 001	141
	the stand when the st	88'-93' 93'-98'	0 005	142
	cross cutting schistossity	93'-98' 98'-103'	1000	143 144
		103'- 108'	0.001	145
		108-113	0.005	146
		113'- 118'	0 001	147
		118-123	0.001	148
		123-128	0.001	149
		128-133	0.001	150
		133-138	0.001	151
		138-143		152 153
		143-148	0.001	155
		148'-153' 153-158	0.001	154 155
		158-163	0.001	150
		163-168	0.001	157
		168-173	0.001	157 158
		173-178	0.001	159
· · · · · · · · · · · · · · · · · · ·		178-183	0.001	160

PAP .- . 8452

,	, · · · · · · · · · ·	PAG	, ЭЕ Зс	£7
E	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU			
FOOTAGE	CHLORITE DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
79.0-227.5	TALC-QUARTZ-CARBONATE SCHIST (CON'T)	183-188 180-193	0.001	161
	Possible small wedge of feldspar porphyny dite ?)	193-198	0.00/	163
	at ~208.2	198-203 203-208	0.001	164
	% :	208-213 213-218	0.002	166
	Lower contact sharp, but irregular; some cherty-looking	218-223	0.001	168
	fan-bull coloured bands in TALC-Q-& SCHIST unit within 6 inches & contact and within ~1 inch & contact in next	223-227.5	0.001	169
	unit: Possibly carboratized? fire-grained, seems to be		•	
	hard (but could be suce to grain Size & granular Texture)	2		
227.5-233.8	FELDSPAR PORPHYRY DIKE (?) Grey, fine to coarse - grained, massive to slightly			
	faliated felsice to possibly intermediate with			
	from upper contact to about 228.6 (gradational into	······································		
	from 232.6 to lower contact. this non-porphysitic			
	unit is dark grey to buffand grey, foliated at 40-50 to			
	From N228,6' to ~230.9' course-grained to tocally medie	227.5-230.9	0.001	170
	sparked feldspan and locally possibly quarts physic,		<u></u>	
	up to ~ 1/4" long but generally ~ 1/10" long; rarely expedial,			
	in shaped possibly some deformation Actionic rangen shapes,			
	From 230,9' to 232.6'; similar to above weet only. about 5% white pheno asysts (plagio clase?, senerally miller white).	230.9-233.8	0.001	171
	milley white). Hower contact broken but appears sharp; fan		······	
			······································	
	No sulptides seen in coarse- grained part of dike.			
			,	

PAP.- 8452

FOOTAGE DESCRIPTION OF CORE SAMPLE ASSAYS 1338-264.3 TALE-CHLORITE-QUARTZ-CARPONDATE SCHIST DIAGONAL DATE ASSAYS 1338-264.3 TALE-CHLORITE-QUARTZ-CARPONDATE SCHIST DIAGONAL DATESSON OF 172 3" Section with ~2", were coarse - grained to hold with 247-257 173 174 June grained By the cubes and locally tholes develop in the 247-257 174 June grained By the cubes and locally tholes develop in the 247-257 175 June do by the cubes and locally tholes develop in the 247-257 176 Windle to the cubes and locally tholes develop in the 247-257 176 June do cost of core and locally tholes develop in the 247-257 176 June do the cubes and locally tholes develop in the 247-257 176 June do the cubes and local with the the cubes are 257-263 over 176 257-263 over 176 257-263 over 176 257-263 over 176 257-263 over 176 177 178 June contact indicated by lack of tale windle bar 266 176 179 180-15% the for a core and for all of tale windle for the 2001 over 176 179 180-15% the for a core and for all of the windle for an all 176 180-15% the for a for a cube of the for all of the formed for an all 177 180-15% the formation of the formate windlet formed for an all 177 180-15% the for a local for all for all the formate windle for a star 1775 over 177 180-15% the formation of the formation of the 2001 for a star 1775 over 177 180-15% the for a star 176 for all the formation of the 2001 for a star 2775 over 177 180-15% the for a star 1775 over 177 180-15% the for a star 1775 over 177 180-15% the formation of the formation of the 2000 for a star 1775 over 177 180-15% the formation of the formation of the 2000 for a star 1775 over 177 180-15% the formation of the formation of the 2000 for a star 1775 over 177 180-15% the formation of the formation of the 2000 for a star 1775 over 177 180-15% the formation of the formation of the formation of the 2000 for a star 1775 over 181 180-16% the formation of the formation of the formation of the formation of the 2000 for a star 1775 over 181 180-16% the formation of the f	، Е/	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU		GE ⁴	5 7
1338-261.3 TAIL- CHLOCITE - QUARTZ - CARBONDATE SCH15T 338-287.5 0 col 172 Similar to 29.2' 64.5' and 79.0' to 227.5' 215.275' 2016 172 3''''''''''' science in using the 2''''''''''''''''''''''''''''''''''''			SAMPLE	·	AYS
Similar to 29.2/-64.5' and 72.0 to 227.5' price 242 is call 173 3" Section with a 2% where conserved to hall 242.247 and 174 from grained printer cubes and locally trabs, driver and 247.257 and 174 4. A B possible locally associated with the tele wind 247.257 and 176 24. B possible locally associated with the tele wind 247.257 and 176 14. B possible locally associated with the tele wind 247.257 and 177 Tale winders care any telestor of wint; tale 267.261 and 177 17. Tale winders to come any telestor of wint; tale 267.264 and 17. Tale winders to come any telestor of wint; tale 267.264 and 17. Tale winders to come any telestor of wint; tale 267.264 and 17. Tale winders to come any telestor of wint; tale 267.264 and 17. Tale winders to come any telestor of wint; tale 267.264 and 17. Tale winter anticated by lack of tales winders on all to an 17. Tale winter anticated by lack of tales winders on all to an 17. Tale winter anticated by lack of tales of the 177 17. Deak green to dark greened by all to an all to an 17. The first tale of the green all the all the tales of the 17. 17. Deak green to dark greened by all the second to be the 17. 17. The first the first green all the all the second to the 26. 17. The first the first green all the second to were all the 17. 17. The first the first green all the second to were all the 17. 17. The first to all the second to were all the second to the 17. 17. The first to the first green all the second to the second to the 17. 17. The first to all the first green marks are to the 17. 17. Sould the first green from 17. The second to the second to the 27. 17. Sould the first green to the second to the second to the 17. 17. Sould the first green to the second to the second to the 17. 17. Sould the first green to the second to the second to the 17. 17. Sould the first green to the second to the second to the 18. 17. Sould the first green to the second to the second to the 18. 17. Sould the first green to the second to the second to the 18. 17. Sould th	233.8-266,3	TALC- CHLORITE-QUARTZ-CARBONATE SCHIST		0:001	172
2. 2013 Section with ~ 21%, very coarse - sained to hall 24:227 and 174 here grind or white cubes and locally thets discriming 201-225 and 175 here grind or white cubes and locally thets discriming 201-260 and 175 here to an of the cubes and locally thets the termines 257 or 176 111. Joint of the cubes cut faints on of unit: i tale 262-264 or 176 112. Joint of the cubes cut faints on of unit: i tale 262-264 or 177 Tale verifies cubes to cover cut faints on of unit: i tale 262-264 or 177 30° to core anis (at 242). hower contrast indicated by lack of tale verifies on allel to 10. Joint contrast indicated by lack of tale verifies on allel to 10. Joint contrast indicated grey to grey with, about 263-272 0001 179 10. Joint contrast indicated grey to grey with, about 263-272 0001 179 10. Joint contrast indicated grey to grey with, about 263-272 0001 179 10. Joint contrast indicated grey to grey with, about 263-272 0003 180 144" Wide Contrast on the free period the paint of the 272 1725 0003 180 144" Wide Contrast on the free period the paint of the 272 1725 0003 180 144" Wide Contrast on the free period the free of the 272 1725 0003 180 144" Wide Contrast on the free period the free of the 272 1725 0003 180 144" Wide Contrast on the free grey aller for a to 200 179 10. Joint free grey of the grey period the free of the 272 1725 0003 180 144" Wide Contrast indiction of the grey mathing on the 274 3 to 270 1725 0003 180 1715-3068 QUARTZ FEEDSPAR PORPHYRY DIFF Date grey and light grey about 70° grey with the 275-386 0001 181 1925 182 0001 182 1935 204 0001 light grey transfurent in the locally 275-380 0001 181 1945 205 0001 182 1945 205 0001 182 1946 205 0001 182 1946 205 0001 182 1946 205 0001 184 1946 205 0001 184 1947 205 000					
Line greened printe cubes and locally blobs drive mind 207-252 0.001 175 Red & possible locally associated with the take mind 207-252 0.001 176 176 176 mind contents cross cut foliation of unit: take 262-2663 0.001 176 30° to core asis (at 242). Nower contact indicated by lack of take with the 262-2663 0.001 176 200 decrease in guests (at 242). Nower contact indicated by lack of take weights 100-15% while to light greenish grey to grey with, about 263-262 0.001 179 100-15% while to light greenish grey to grey with, about 263-262 0.001 179 100-15% while to light greenish grey to grey with, about 263-262 0.001 179 100-15% while to light greenish grey to grey with, about 263-262 0.001 179 100-15% while to light greenish grey to grey with, about 263-262 0.001 179 100-15% while to light greenish grey to grey with, about 263-272 0.003 180 100-15% while to light greenish grey to with about 263-272 0.003 180 100-15% while to light greenish grey to with about 263-272 0.003 180 100-15% while to light grey about 70° grey white 100 ming machine greenish grey about 70° grey white 100 ming machine greenish grey to weining mach 100 ming machine greenish grey to mind gree to 100 min 100 min green to dark greenish grey to min 100 min 100 min green to dark greenish grey to machine greenish 100 min green to light grey about 70° grey white 100 min green to light grey about 70° grey white 100 min green to light grey to machine greenish green to 100 min 100 min green to light grey to green to 100 min 100 min green to light grey to green to 100 min 100 min green to 100 min spots (lath shaped to green to 100 min 100 min green to 100 min spots (lath shaped to green to 100 min 100 min green to 100 min green to 100 min 100 min green to 100 min spots (lath shaped to green to 100 min 100 min green to 100 min 100 min 100 min gree		211 contine 111 201 10 c	, , ,		174
let. 1 Tale veinlets cross cut foliation of unit; Jak 25, 262 0001 177 Hindles trend 60.55° to cove any let and folia time transformed to 255° to cove any let and folia time transformed to 255° to cove any let and folia time transformed to 255° to cove any let and folia time transformed to 255° to cove any let and folia time transformed to 255° to cove any let and folia time to any let and the angle of			1 7		175
Tale veinlets cross cut faliation of unit; 1 fale 227-266 3001 179 Hindles trend 60:55 to core ayis and faliation trends Bor the core axis (at 2421) hour contact indicated by lack of fale veinlets and decrease in quart t carbonate veinlets parallel to deliation (4.3'2775 CHLORITE SCHIST Dark great to dark greenish grey to grey with about 20.5'272 0001 179 10-15% brute to light grey perallel bands least the start 20.5'272 0001 179 10-15% brute to light grey perallel bands least the start 20.5'272 0001 179 10-15% brute to light grey perallel bands least the start 20.5'272 0003 180 104" wide (carbonate and dreat green to a treat start of the start of t		ted to possibly locally associated with this tale vein-	252'-257'	0.001	176
Hindeto tren d 60-65° to core ayik and falin time trends 30° to core assis (at 242). houser contact indicated by lack of tale veinleto and decrease in quest t carbonate venteto parallel to 10' at 50°. (43' 2775 CHLORITE SCHIST Dark green to dark greenish grey to grey with about 20.5'272' 0001 179 10' 15' or white to light grey parallel bands lower than 52' 775 0003 180 14" wide (carbonate and dimeter) foliation at 80° to core assis local green with almost no veining nack 10' 15' or white to light grey allowed or was a solution 10' 15' or white to high grey allowed to grey with a bout 20.5' or or 10'			257'-262	0.001	177
30° to core avis (at 2421). Lower contact indicated by lack of falls weights 2000 and decrease in quart & carbonate vehilits panallel to 101 at ion. 46.3°2775 CHLORITE SCHIST Dark green to dark greenish grey to grey with about 2005220 0001 179 10-15% while to light grey parallel backs less than 220-7775 0003 /80 14" wide (carbonate and finite) paration of the 80° to core area; local green with almost movering nack here to way file-grained, dark green, matsive; migring in deduces from 2743 to loguer contact here to bury file-grained, dark green, matsive; migring in deduces from 2743 to loguer contact here to bury file-grained, dark green, matsive; migring in deduces from 2743 to loguer contact here to bury file green to but appears to be ~ 90° to core axis, possibly masked by weining. 2000 181 100 to To Curbate spots (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-283 0:00) 182 plagioclase angles (lash shaped to equart to met 200-285 0:00) 182 plagioclase angles (lash shaped to equart to met 200-285 0:00) 182 plagioclase angles (lash shaped to equart to angle 286-287 0:00) 182 plagioclase angles (lash shaped to equart to angle 286-288 0:00) 182 plagioclase angles (lash shaped to equart to angle 200-285			262-266.3	0.001	178
Lower contact indicated by lack of falc veinlets and decrease in guest & carbonate vehicles panollel to foliation Weinigen to dark greenish grey to grey with about 2003/2012 0.001 179 10-15% while to light free penallel bands less than 22-7775 0.003 180 14" wide (carbonate and from) falsations at 80° to (ore apoin local porces with almost no veining rack here is light green 1274.3 to loguer contract received built while to light grey parallel bands less that received built and file green with almost no veining rack here is local porces with almost no veining rack here is local porces with almost no veining rack here is present of the green of the green of the set received built while to light grey about 70% grey white there contact indisting to but appears to be ~ 90. 177.5'365 QUARTZ FELDSPAR PORPHYRY DIFE Dark green and light grey transfucent with locally 2785-286 0.001 181 up to 710 Guilits spots (lath shaped to equant to meat 280-283 0.001 182 plagic lace greated) 182 183 184 185 hallen dight grey transfucent with locally 2785-286 0.001 181 184 185 hall of the grey transfucent with locally 2785-286 0.001 181 185 hall of the grey transfucent with locally 2785-286 0.001 182 184 185 hall of the grey transfucent with locally 2785-286 0.001 182 186 and grey while of grey transfucent with locally 2785-286 0.001 182 185 hall of the grey transfucent with locally 2785-286 0.001 182 186 and grey while of grey transfucent with locally 278-287 0.001 182 hall of the fragment of grey transfucent with locally 278-288 0.001 182 hall of the fragment of grey transfucent for the grey of the set of 184 hall of the fragment of grey transfucent for 285-287 0.001 182 hall of the fragment of grey transfucent for 285-288 0.001 184 hall of the fragment of grey transfucent for 285-288 0.001 184 hall of the fragment for the for the grey of the grey of the for the f					
md decrease in quarte + carbonate vehicles parallel to feliation quarte + carbonate vehicles parallel to 1.2.2.277.5 CHLORITE SCHIST Dark green to dark greenish grey to grey with about 26.3.272 0.001 179 10-15% white to light grey parallel parded less than 32-277.5 0.003 /80 14" wide (carbonate and from) foliation otwore of the (ore aking i local gones with almost no veining nack here to user free greened dark green, measures i reining includes from 1274.3 to logier on Tact nock to be 1/1 - while I light grey, about 70% grey-white its name indistinct but appears to be ~ 90. 40 core akis, possibly masked by weining 107.63065 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfucent with locally 3775-286 0.001 /81 up to 70 Contact Soft Clark shaped to equart to mall 286-285' 0.001 /82 plagic lase grey to all of the process to be ~ 90. 10.2.3005 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey white all grey transfucent with locally 3775-286 0.001 /81 up to 70 Contact of light shaped to equart to mall 286-285' 0.001 /82 plagic lase grey to all of the process to dark 286-285' 0.001 /82 plagic lase grey to dark present of the shaped to equart to mall 286-285' 0.001 /84 plagic fragments of process to dark 287-287 0.001 /84 house fragments of the process of the shaped to equart to mall 286-285' 0.001 /84 house fragments of the process of the shaped					
deliation 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
463-2775 CHLORITE SCHIST Dark green to dark greenish grey to grey with, about 263272 0001 179 10-15% white to light grey perallel bands less than 276-2775 0003 180 14" "wide (carbonate and Low"), foliation of the 80° to Core axis; local nones with almost no veining nock here is very file-grained, dark green matrices; neining in cadees from 12743 to former contact neining in contact indicitact but appears to be noo. 10 contact indictinact but appears to be noo. 110 units of the formation of the staged to equant to mat 280-283 ocol 181 up to "To contact lock shaped to equant to mat 280-283 ocol 182 plagical are matal. 10 Dark gray that of a cours in fractures between 281-287 ocol 184 former fraction of accurs in fractures between 281-287 ocol 184 former and only oriented breacta ted i dark 287-289 ocol 186 ho cal grant to carbonate mining within dife 386-289 ocol 186 No sulphilder deen; lower contact mation in fractures 382-289 ocol 188 No sulphilder deen; lower contact mation in fractures 182-289 ocol 189 No sulphilder deen; lower contact mation in fractures 286-289 ocol 189 No sulphilder deen; lower contact mation in fractures 286-289 ocol 189 No sulphilder deen; lower contact mation in fractures 286-289 ocol 189 No sulphilder deen; lower contact mation in fractures 286-289 ocol 189 No sulphilder deen; lower contact mation in fractures 286-289 ocol 189 No sulphilder deen; lowe					
Dark green to dark greenish grey to grey with, about 20,3272 0001 179 10-15% white to light frey perallel bands lease than 20,277,50003 180 14" wide (carborate and theme), faliation otros of 80° to core aking local nones with almost no veining nack here is way five-grained dark green massive; reining in codress from 274,3 to lower contact reining in codress from 200,000 list with a period light grey has been to be 200 to core axis, possibly masked by weining. 277,53065 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfucent in the locally 277,5-386 0001 181 plagioclase instals. Dark grey brate of period in fractures between 286-283 0001 182 plagioclase instals. Dark grey brate of period in fractures between 286-283 0001 182 plating in hard possibly tour maline?; fractures 287-292 0001 183 hating in hard possibly tour maline?; fractures 287-292 0001 183 hating in hard possibly tour maline?; fractures 287-292 0001 184 hosulphided seen; lower contact indicting within dike 30'-304 0001 189 Nosulphided seen; lower contact indicting in the 30'-304 0001 189		Achan v C			
Dark green to dark greenish grey to grey in the abort 20/32/2 0001 179 10-15% white to light frey perallel bands lease than 32/37/2 0001 180 14" wide (carborate and theme), foliation of 80° to core aking local pones with almost no veining rack here is way five-grained dark green matsive; reining in to absent from 274.3 to lower contact reining in to absent from 274.4 to preserve to be ~ 90° to core axis, possibly masked by weining. 177.53065 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfucent in the locally 3775-386 0001 181 up to 70 white spots (lath shaped to equant to meet 285-288' 0001 183 Plagioclase install) Dark grey that all poccurs in fractures between 286-289 0001 182 plagioclase instally are transfucent to dark 289-283 0001 183 plagioclase instally for pressibly to reacting between 286-289 0001 184 hating in hard possibly to make breeciated i dark 289-289 0001 184 hating in hard possibly to make is fractures between 286-289 0001 184 hating in hard possibly to making within dike 392-395 0001 183 No subblided seen; lower contact indicting within dike 30-304 0001 189 No subblided seen; lower contact indicting in the 30-304 0001 189	266.3-277.5	CHLORITE SCHIST			
10-15% white to light free penalled bands lease than 220-2775 0003 180 14" wide (carbonato and drawn) falsation of 80° to 10°C axis local pones with almost no verning nock here is very file-grand dank green matsive; here is very file-grand by the pone of a ct here is possibly masked by very white to core axis, possibly masked by very matsive; 177.5-3068 QUARTZ FELDSPAR PORPHYRY DIFF Dank grey and light grey transfucent with locally 2775-280 0001 181 with for the state of the shaped to equal to mat 280-283' 0001 182 Plagic class matsion of fracture, between 286'-288' 0001 182 plagic class matsion of cruip in fracture, between 286'-288' 0001 182 place fragments a wist looks braceia to dank 289'-282' 0001 184 haten adomy origined process in fracture, between 286'-288' 0001 184 haten adomy origined within dike 289'-282' 0001 186 haten adomy origined or wing within dike 289'-282' 0001 186 hoselphiller seen; lower contact indisting within dike 289'-282' 0001 186 Nosulphiller seen; lower contact indisting of the contact of 0001 186				0.001	170
14" wide (carbonate and during) foliation of 80° 40 (ore apion local pones with almost no veining nock here to very file-grained dark green matrices; veining in career from 274,3' to lower contact; pock to bull - white dight grey about 70% grey-white weining. Lower contact indistinct but appears to be ~ 90° to core axis, possibly masked by veining. 277.5-3065 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfucent in the locally 2775-380 0001 181 up to 70° Carbinst Spots (lath shaped to equant to met 280-283' 0001 182 plasioclase motals). Dark grey Winter of greys in fractures between 286-289' 0001 182 to care axis, possibly matrices in fractures between 286-289' 0001 182 plasioclase motals). Dark grey Winter of greys in fractures between 286-289' 0001 185 hour donly prieted greys and looks by fractures of arks 287-286' 0001 184 to care any fractures between 286-289' 0001 185 hour a donly prieted greys and matrices of arks 287-286' 0001 185 hour donly prieted greys and fractures between 286-289' 0001 185 hour donly prieted greys for matrices of arks 287-298' 0001 185 hour donly prieted greys for matrices of arks 287-298' 0001 185 hour donly prieted greys for matrices of arks 287-298' 0001 185 hour donly prieted greys for matrices of a carks 287-298' 0001 185 hour donly prieted greys for matrices of a carks 287-298' 0001 185 hour donly prieted greys for matrices of a carks 287-298' 0001 185 hour a donly prieted greys for matrix of a carks 287-298' 0001 185 hour a donly prieted greys for matrix of a carks 287-298' 0001 185 hour a donly prieted greys for matrix of a carks 398-301' 0001 185 hour a donly prieted greys for any fractures of a carks 287-298' 0001 185 hour a donly prieted greys for any for any for a carks 398-301' 0001 185 hour a donly prieted greys for any					
Core axis; local gones with almost no veining nock here is very five-grained dark green, massiver; weining in dealess from 1274,3' to lower on tact nock to buff- white I light grey; about 70% grey-white Neining. Lower contact indistinct but appears to be ~ 90° to core axis, possibly masked by veining. 177,5'3068 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfucent in the locally 2775'-286' 0 001 181 up to 'To white Stots (lath shaped to equant to mat 280'-283' 0 001 182 plagic clase install) Dark grey that appears to be wast 280'-283' 0 001 182 plagic fragment - white looks breeciated; dark 287'-282' 0 001 184 to core avis possibly to facture to the store of the second for th		Will will be and a start of the second secon	212-2175	2000	180
here is henry file-grained, dark green, marshiver; Meining in Ceases from 1274.3' to lower contact; Nock to biff- white I light grey, about 70% grey-white Weining. Hower contact indistinct but appears to be ~ 90. to core axis, possibly masked by weining. 177.5'3068 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfurcent in the locally 2775-286 0001 181 up to To Currie Spots (lash shaped to equant to mat 280'-283' 0001 182 plagioclase montals. Dark grey transfurcent in the locally 2775-286 0001 181 up to To Currie Spots (lash shaped to equant to mat 280'-283' 0001 182 plagioclase montals. Dark grey transfurcent is for care 286'-287' 0001 184 filsic fragments in fractures between 286'-287' 0001 184 fusic fragments in unit looks because to ank 289'-292' 0001 185 me hand donly mielted surmaline i fractures 286'-288' 0001 186 hocal quart to contact mining within dike 289'-298' 0001 188 Nosulphides seen; lower contact gradistingt. Nosulphides seen; lower contact gradistingt. Nosulphides seen; lower contact gradistingt. Nosulphides seen; lower contact gradistingt. Nosulphides seen; lower contact gradistingt.		i i i i i i i i i i i i i i i i i i i			
Lower contact indistinct but appears to be ~ 90. to core axis, passibly masked by weining. 177.5-3068 QUARTZ FELDSPAR PORPHYRY DIFF Dak grey and light grey transfucent in the locally 2775-386 0001 181 up to 70 white spots (lath shaped to equant to mat 280-283' 0.001 182 plagioclase mostals). Dark grey what is a possibly to fractures between 286-289' 0.001 184 filsic fraguents > unit looks breeciated; dark 289'-282' 0.001 185 hatenal is hard possibly tour maline?; fractures 29'-295' 0.001 185 matenal is hard possibly tour maline?; fractures 29'-295' 0.001 186 Accal quart & carbonate mining within dike 218'-396' 0.001 189 No sulphides seen; lower contact indistinct. 30'-304' 0.001 189		here is very line-grained dark, orlen ma time i		<u> </u>	
Lower contact indistinct but appears to be ~ 90. to core axis, passibly masked by weining. 277.5-3068 QUARTZ FELDSPAR PORPHYRY DIFF Dak grey and light grey transfucent inthe locally 2775-386 0 001 181 up to 70 white spots (lath shaped to equant to mat 280-283' 0.001 182 plagioclase mostals). Dark grey what is a possibly to fractures between 286-289' 0.001 183 Glaic fraguents > unit looks breeciated; dark 289-292' 0.001 185 hatenal is hard possibly tour maline?; pactures 292-295' 0.001 185 matenal is hard possibly tour maline?; pactures 292-295' 0.001 186 Accol quart & carbonate mining within dike 218-398' 0.001 189 No sulphides seen; lower contact indistinct. 301-304' 0.001 189		veining in dealer how 2743 to lower to Tast			
Lower contact indistinct but appears to be ~ 90. to core axis, passibly masked by weining. 277.5-3068 QUARTZ FELDSPAR PORPHYRY DIFF Dak grey and light grey transfucent inthe locally 277.5-386 0 001 181 up to "To white spots (lath shaped to equant to mat 280-283' 0.001 182 plagioclase mostals). Dark grey of atural occurs in fractures between 286-289' 0.001 183 Dark grey of atural occurs in fractures between 286-289' 0.001 184 filsic fragments > unit looks breeciated; dark 289'-292' 0.001 185 material is hard possibly tour maline?; pactures 212-295' 0.001 186 material is hard possibly tour maline?; pactures 212-295' 0.001 186 Material is hard possibly tour maline?; pactures 212-295' 0.001 187 hocal quart # carbonate mining within dike 218'-301' 0.001 189 No sulphides seen; lower contact indistinct. 301-304' 0.001 189		sock to bull - white & light men, about 70% and white			
to core axis, possibly masked by veining. 177.5-3068 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfucent in the locally 277.5-280 0001 181 up to 70 white spots (lath shaped to equant to mat 280-283' 0.001 182 plagioclase upstale). Dark grey of inter al occurs in fractures, between 286'-287' 0.001 183 filsic fragments - unit looks breeciated; dark 289'-292' 0.001 185 hatenal is hard possibly tour maline?; pactures 286'-287' 0.001 185 hatenal is hard possibly tour maline?; pactures 282'-295' 0.001 186 are non donly oriented up on thin dike 289'-301' 0.001 187 hocal quarts to carbonate mining within dike 289'-301' 0.001 188 No sulphides seen; lower contact indistinct. 301'-304' 0.001 189		wining.			
to core axis, possibly masked by veining. 177.5-3068 QUARTZ FELDSPAR PORPHYRY DIFF Dark grey and light grey transfucent in the locally 277.5-280 0001 181 up to 70 white spots (lath shaped to equant to mat 280-283' 0.001 182 plagioclase upstale). Dark grey of inter al occurs in fractures, between 286'-287' 0.001 183 filsic fragments - unit looks breeciated; dark 289'-292' 0.001 185 hatenal is hard possibly tour maline?; pactures 286'-287' 0.001 185 hatenal is hard possibly tour maline?; pactures 286'-298' 0.001 186 are non donly oriented up in fractures of arks 289'-292' 0.001 186 Acal quarts to contact indistinct. No sulphides seen; lower contact indistinct. 30'-304' 0.001 189		tower contact indistinct but appears to be ~ 90.			
177.5-3068 QUARTZ FELDSPAR PORPHYRY DIFE Dark grey and light grey transfucent in the lo cally 3775-280 0 001 181 up to 70 Twhite Spots (lath shaped to equant to mat 280-283' 0.001 182 plagioclase upstalo). Dark grey of atural occurs in fractures between 286-289' 0.001 183 filsic fragments > mit looks breeciated; dark 289-292' 0.001 185 haterial is hard possibly tour maline?; fractures 292-295' 0.001 185 material is hard possibly tour maline?; fractures 292-295' 0.001 186 are van donly oriented 295-298' 0.001 187 hocal quart & carbonate mining within dike 298-301' 0.001 188 No sulphides seen; lower contact indistinct. 301-304' 0.001 189					
Dark grey and light grey transfucent in the locally 2775-280 0001 181 up to 70 Junite spots (lath shaped to equant to mat 280-283' 0:001 182 plagioclase metalo). 283'-286' 0:001 183 Dark grey Waterial occurs in fractures between 286'-289' 0:001 184 filoic fragments - unit looks breeciated; dark 289'-292' 0:001 185 material is hard possibly four maline?; fractures 292'-292' 0:001 185 material is hard possibly four maline?; fractures 292'-295' 0:001 186 are van domly oriented areining within dike 299'-301' 0:001 187 hocal quart & carbonato meining within dike 299'-301' 0:001 188 No sulphides seen; lower contact indistinct. 301'-304' 0:001 189					
up to 10 white spots (lath shaped to equant to mat 280'-283' 0.00) 182 plagioclase mostale) 283'-286' 0.001 183 Dark grey & attend a pocurs in fractures between 286'-289' 0.001 184 filsic fragments - mit looks brecciated; dark 289'-292' 0.001 185 praterial is hard possibly tour maline?; practures 292'-295' 0.001 185 are van donly oriented 295-298' 0.001 186 hocal quarts = carbonate mining within dike 299'-301' 0.001 189 No sulphides seen; lower contact indistinct. 301'-304' 0.001 189	277.5-306.8	QUARTZ FELDSPAR PORPHYRY DIFE			
up to 10 Current Sports (lath shaped to equant to mat 280'-283' 0.001 182 plagioclase upstale) 283'-286' 0.001 183 Dark grey bratinal occurs in fractures between 286'-289' 0.001 184 filsic fragments - unit 100 ks brecciated ; dark 289'-292' 0.001 185 praterial is hard possibly four maline?; fractures 292'-292' 0.001 185 are randomly oriented - 295-298' 0.001 187 hocal quarts + carbonate mining within dike 296'-298' 0.001 188 No sulphides seen; lower contact judiotinct. 301'-304' 0.001 189		Dark grey and light grey transfucent with locally	2775-280	0 001	181
plagioclase instalo). Dark grey Viatural occurs in fractures between 285'-286' 0:001 183 felsic fragments - unit 100ks brecciated; dark 289'-292' 0:001 185 haterial is hard possibly four maline?; pactures 292'-295' 0:001 186 me van domly oriented Local quart = carbonate mining within dike 299'-301' 0:001 188 No sulphides seen; lower contact indistinct. 301-304' 0:001 189		up to 10 white spots (lath shaped to equant to mot			
Local quarts = mint looks breeciated; dank 289-292' 0.001 184 haterial is hard possibly four maline?; fractures 292-292' 0.001 185 ne randomly oriented Local quarts = carbonate mining within dike 298-301' 0.001 189 No sulphides seen; lower contact indistinct. 30/-304' 0.001 189		plagioclase apotalo)			
filoic tragicants > unit looks brecciated; dank 289-292' 0.001 185 national is hard possibly tour maline?; pactures 292-295' 0.001 186 are van donly oriented 295-298' 0.001 187 Local quarts ± carbonate meining within dike 298-301' 0.001 188 No sulphidese seen; lower contact indistinct. 301-304' 0.001 189		Dark grey Vatural occurs in fractures between			
Anatinal is hald possibly four maline?; fractures 292-295' 0:001 186 ne van donly oriented Local quart ± carbonate mining within dike 298-301' 0:001 187 No sulphides seen; lower contact indistinct. 301-304' 0:001 189	•	this traghents - mit looks brecciated; dark			
Accal quarts ± carbonate seining within dike 295-298' 0.001 187 No sulphides seen; lower contact indistinct. 30/-304' 0.001 189		hatenal is hald possibly for making? hacting			186
No sulphides seen; lower contact indistinct. 30/-304' 0.001 189	k	are handonly oriented			
No sulphides seen, lower contact indistinct. 301-304 0:001 189		Local quark & carbonate wining within dike			188
		to the superior of the superio			
					190

1 1

Т

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-7 -

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SATS
306.8-317.7	ALTERATION ZONE ? - CHLORITE SCHIST?	306.8-312		191
	phomogeneous material, possibly locally silicified	312-317.7	0.001	192
	and altered; massive to schiptose; fine- to coarse- grained; from mafic, dark greenish grey to dark	ļ		
	I TO TANK TO TAKE			
	massive material i facilità anti-			+
	unit, up to " 14" uide sha done lut arise tedi line			+
	fine to medium grained pyrite. Lower contact sharp at 80. to core axis slightly		··	<u> </u>
	Lower contact sharp at ~ Bo. to core axis slightly			
	ingular parallel to soliation of this unit			
	Foliation at 312 is 70° to core airs			L
317.7-3207'	FELSIC DIKE? OR SILICIFIED ZONE ?			
	brey to dank grey to locally family chenter- In his	317.7-320.7	4 401	193
	Plane chained biererator but in the the		0.001	175
	appek to be zoned with dark centers & pales /			
	seen			
	Lower contact preciated		•	
<u>320,7-324,5</u>	ALTERATION ZONE ? - CHLORITE SCHIST?	320.7 - 324.5		194
	Similar to 306,8'- 317,7'	520.7 - 524.4	_0.00]	174
	Lower contact gradational over ~ 6"			
324.5-3978	SERICITE - QUARTZ-CARRING - QUILLA			
<u> </u>	SERICITE - QUARTZ-CARBONATE - CHLORITE SCHIST (ALTERATIONZ.) Fine-grained grey to light green to Khaki Schist with	324.5-327	0002	195
	tocal busht green talants, blong at inthe	327-332		196
	local bright green tolown along foliation planed	332-337 337-342	0.012	197
	I carborate veinter, generally parallel to allation		0.001 0.012	198 199
	locat parches of fine grained disseminated autit	7 . 7	0.011	200
	the desicate achiet host rack but only for eles	352-357	0.006	201
	and how the how appoint wide	357-362	0.006	202
	trom 277, 2' to Brow have the stand		0.001	203
	therety looking material contribution the 2010 1.	367-372	0.001	204
	an introde purity of all in the state of the state to more the		0.006	205
· · ·	sharp and parallel to foliation of host rock (~ 80° to core asis)	<u>01772-3/8</u>	<u>0.147 </u>	206 PAP 8452
۰.				

.

4

PAGE 5 of 7

.

, 				
FOOTAGE	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE N DESCRIPTION OF CORE	UMBER: SAMPLE NUMBER		SSAYS
324.5-397.8	SERICITE-QUARTZ-CARBONATE-CHLORITE SCHIST (CON'T		/	
	Foliation at 337' = 65 to core and	382-387	0.005	
	$11 11 356 = 80^{\circ} to 11 11$	387-392		208
	$\frac{11}{11} \frac{11}{367} = 80 \cdot t_3 \frac{11}{11} \frac{11}{11}$	392-3978	0.001	210
	11 11 377 = 80 10 11 11	J/K		$-\frac{1}{2}$
	11 387' = 80° to 11 11		+	
	, Lower contact denoted by very gradual change in	1		
	colour from Khoki- light gleen to greenish crey and	1		+
<u> </u>	the appearance & crosk - cutting this tale with lets / local	1	1	
	works like material between these tale very lit	1	1	
	has den drag folded AT the wincets			
	1) () & Bohatin of rock.		1	
397.8'-487			1	
511.8-701	TALC- CHLORITE - QUARTZ-CARBONATE SCHIST			
	Similar to 233.8 - 266.3 except colour is dark	397.8-402	0.001	211
	chapt to plenish grey and told wind to and to the	402-407'	0-004	212
	greenich ciey (moled & plueish - plack);	407-410	0.001	213
	From 410.0 to ~413.7: very dark grey schist: with	410.0-4126		214
	grach ver some from 412. E to 413. I with silicified	412.6-413.7	0.001	215
	task they post rock between veins brownish to trans-			+
	incent grey quark veins 5/2" lide, randomly orien-			1.
	ted no subplides seen.			1
	From 413.7 on wards, unit is very rich in light	4137-415.5	0.001	216
	and senerally unlets < 14" under and generally			1010
	some to the foliation 1000 to come ages but Somewhat	-		1
Ł	variable), up to a 80 of grey veinleto,			
	12.6 to 413.7' some wein & home 415.5 to 416.5 signi lan to	415,5-416.5	0.001	217
	the the party running and let of long	ا بر کہ رو	0.001	218
		422-427	0.001	219
	Mant as ant merely make to light grey transfer-	427-432.4	0.001	220
	The second	432.4-433.9	0.001	221
	and have present ney nost rolle inclusions.	433.9-437	0.001	222
	ut foliation (~80° to for all'all and cross-	437-442	0.001	223
	White and the store and	44z-447'		224
	and I hale unit in the 11 to light and inleto from 436.8 to	447-452		225
	and of hole; unit is buff to light greenish to tam coloured from	452-457		226
				P A P - 845

, F		PA	_{GE} 74	57
FOOTAGE	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU DESCRIPTION OF CORE	JMBER: C SAMPLE NUMBER		O AYS
397.8-487	TALC- CHLORITE - QUARTZ - CARBONATE SCHIST (CON'T) 436.8 to ~460, possibly carbonatized, with very little black talcose material. From ~460 to EOH, unit becomes dark grey-black	457-462 462-467 467-472' 472-477'	0.001 0.001 0.001 0.001	227 228 229 230
	Anot cos s'on a la l	477'-482' 482-487'	0.001	231 232
	Min containing ~ 2% tan - light grey host rolle inclusions, contacts are sharp at ~ 180° to 90° to core axis no sulphides seen but senerally < 12" under generally parallel to foliotion schestossity at ~ 90° to core taxis but locally variable.	-		
487.01	EOH			

		PAGE 1 of 9
Earth Resource Associates P.O. BOX 2150, TIMMINS, ONTARIO, P4N 7X8 CANADA	PROPERTY HOLE NUMBER	
DIAMOND DRILL LOG	GRID REFERENCE	
LENGTH = 617'	TOWNSHIP	CLAIM
LU06/17 - 6//	AZIMUTH	DIP ANGLE -90

T

1

DRILLING COMPANY MORRISSETTE FOREMANRIA fortine DIP TESTS:

CORE SIZE AQ CORE STORED AT:

LOGGED BY R. BALD DATE FEBRUARY 15/88

FOOTAGE	DESCRIPTION OF CORE	SAMPLE		SAYS
0'-4'	CASING			
+ - 71.3	TALC-CHLORITE-QUARTZ-CARBONATE SCHIST		· .	-
	Dark grey, soft, deformed unit. F to MX with 5% to 25%		1	
	milky white to grupp - Khake Coloured carbonate weenlets			
	generally < "110" hide best up to ~ 1" uide randomly			
	oriented (mainly parallel to foliation / schiptossity			
	which is very vahiable); some folding & faulting of	<u> </u>	<u> .</u>	
	-+ · · · · · · · · · · · · · · · · · · ·	<u> </u>		
	Print 1 A start of the start of	······		
	oriented, up to a 2" true thickness () " uemo, randowly	<u> </u>		
	Very broken soft core from 4' to ~22' with I'wash on			
	22 tag (only 6's actual core perween 15 and 22 tag)			1
	Schiotossity at 40° = 40° to care agis			
	at 57 = 15 to core aking			
	$\frac{at \ 62' = 90^{\circ} \ to \ cone \ apic}{71' = 75^{\circ} \ to \ cone \ apic}$			_
			<u> </u>	
	From ~ 45 to 71.3 ; local very thin cross cutting tale	1-1-1-1		
	Lever contact appears to have been sharp but "	620-670	1	233
	ground,	67.0-11.3	0.001	234
/			· · · · · · · · · · · · · · · · · · ·	
.3-907	INTERMEDIATE DIKE ?			
	Grey, foliated, medium-grained, moderately	71.3-71.8	0.001.	235
		71.8-75.0	0.001	236
	typical of previous unit's possible small («"lio" dia-	75.0'-77.7'	0.001	237
	weter) secure tallized (?) feldspar (?) ober o curroto; lo cal		L	P A P .

PROPERTY: HUNTER MINEHOLE NUMBER: 4-8

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
71.3-90.7	INTERMEDIATE DIKE?	1	1	
	sones of quarts beining as this milky white net-	77.7-79.0	0001	238
	bork of verylets cross-cutting foliation FT	79.0-80,5		239
	host rock host rock is silicified and bleached	80.5 -81.7'	0.001	240
		B1.7'-87.0'		241
		87.6-90.7'	0.001	242
	occur along the quart venlets; most intense			<u> </u>
	gones of silicification occar from 71.3 to 71.8; from			
	17.7 to 19.0; from 80.5 to 80.9 and from 81.5 to 81.7			
	Foliation of unit is generally constant at 150-55°			ļ
	line contract clairs at the lite		•	
	anti alle ha all of the time of the			
	ormand to parallel to fouguons in both units.			
707-210.2	TALC-CHLORITE - QUARTZ- CARBONATE SCHIST			
	Similar to 45' to 71.3'	90.7-95.0	0.001	243
	1.5" wide band of tan- bull coloured, hard charter	10.7- 15.0		<u> 275</u>
	looking material adjacent to upper contact ; blead			
	ched zone? or mabsive fire-grained carbonate some?	·		
	sharp contacto 0			
	Foliation at 92'= 60° to core apis			
	at 102'= 0° to core ayis			
	2' grind marked at 117' tag			
	Milky white, feldspan? or quarter and translucent			
i	greats with from 122.8 to 123.2, generally parallel to folia.			
	tion of host norche at ~40° to core also part locally cross			
	cutting vein appears to be barren of sulphides; true			
		1750-179.0	-	244
	From 179.0 to ~184.4 ; unit locally in possibly serici-			245
	he share is and and and a field field with randouly or an-			
		188.0-173.0		247
ľ			0.001	248
	the second find the second	198.0 - 2010		249
	quarts viens up to ~1/2" cutting hand the first	2010-202.0	0.002	2500
	quan round up to ~75 cutting hard, khake - tan	202,0'-205.0	0.014	251

PAGE 2 . 7 9

· ,⁄		PAG	GE 3 6	79
E	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NU		~	<u> </u>
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
90.7-210.2	TALC-CHLORITE-QUARTZ-CARBONATE SCHIST (CON'T)	205.0-208.0	0.007	252
	silicified hostrock; Similar short zone from			
	208.0' to 208.2'. Host rock again takes on Khaki tinge (possibly			
	indicating sericite) from 202 to 210.2'			
	tower contact ~ 80 to core axis, parallel to foliation			
	in schist and appears to be interfingering			
	for about 1"			
	V	208.0-210.2		253
10.2 -218.3		210.2-213.0	1	254
(*)	this siliceous sone : about 80% brownish triged to coarse-	213.0-218.3	0.007	2537
	grained quarts vero?) " with no visible pheno cupto		· · · ·	
	to similar material with milky white plagio-			
	clase? crystals and possibly local translucent quarte			
	phenoments, locally preciated with dark brown that			
	material in between angular fragments; locally			
. 4	containing up to 2-3% very fine to coarse-grained	<u></u>	·	
	Fractures: about 20% cross cutting milby			
	it to to transfur cont around guests weinlets Day donald			
	oriented up to ~ 2" wide. "			
	former contact ground (along with ~ 2" of core			
	on either side & contact -> only small wedges of		L	
	redrilled core left).		 	
10 2 261	TALC- CHLORITE - QUARTZ-CARBONATE SCHIST		 	
18.5-220.0		218,3-221.1	0.412	256
				257
· · · ·	Khaki tinge (possible sericite?) gradually becoming	223-228'	0.002	258
	darker	228-233	0.001	259
	From 220.4' to 221.1' fine-grained, grey to fan	233-238		260
	cherty-looking unit with black very thin lenses of	238-240		261
·····		240-245		262
		245-250.6	0.001	263
	" cross-cutting fold veinlets decreasing downhole, nore	<u>'</u>	L	P 4 P - R4

PAGE 4 58 9

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-8

OOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	1YS
18.3-250.6	TALC- CHLORITE - QUARTZ- CARBONATE SCHIST (CON'T)			
	seen in next unit			<u> </u>
	Lower contact locally sharp but partially masked			
	by carbonate for the state of the state of the state			
	core apps, produce to proceeding and the			
	unito 1	•		
0.6-4749	ALTERATION ZONE			
$\overline{(\mathfrak{R})}$	Unit is a mixture, ElDsericitic Chake to green colou-		0-00	264
	And manufacture to the the the the the	253-257.5	0.001	265
	Marthe School Marthe Welling Towards	2575-261.3	0.045	266
	section Sandpoolly cross - cutting melky white to	261.3-265	0.003	26
	translucent quality veinlets, also local possibile			
	preciated zone, secure actual former that is the			
	25/15 from 261. 5 to 205.0 moure			
	from dollas to abara and bigging all gill is children the cris	-	•	
	1275.0 to 276.5; from 260,1 to 516,10, methoday a cale poss.			l
	Fuchsite (275.5) and cross-cutting winter 2) dark green - dark grey, fine-			ļ
	argined chloritic + quart + carbonate schist Macally			ļ
	appears silicified light grey "fragmants" cut bit	ļ		
	local milky white of translicent quarts veins I carbonate	 		ļ
	(light grey - hilky white); chlori tic Schist from 257.5, to		 	<u> </u>
	261.3; from 265.7' to 275.0' with a grey section from			<u> </u>
	272.7' to 275.0'; from 276.5' to 278.6'; and from 280.2 to	265-267'	0.001	268
	1200.1	267-272.7		26
<u> </u>	from 265' to 265.7, dark grey to brown with light	272- 75	1	27
	arei to milky white to cally unter the for upper.	275-278.6	· · · · · · · · · · · · · · · · · · ·	27
· · · · · · · · · · · · · · · · · · ·	consorades, reamand the second of the second s			
	and sharp it company in regular! lower contact			<u> </u>
	abarro but somewhat obsured by quarte verning, at 30		<u> </u>	<u> </u>
	to the all (X) +) possible guard vern, or firm	278.67200		27:
······································	smohun dike? consisting & coarsol grained grey to	280.2-283		27
·····	the All can't quest with prescipted appearance with	283-288	0.00	27
	dark brown thard moterial (tourmaline?) in between	289-293	0.005	27 PAP

		•	,
	ΡΔ	GE 5	of9
EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE N		-	
// ·····		1-8	
FOOTAGE DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
250.6-4749 ALTERATION ZONE (CONIT)	293-298	0.001	276
"fragments"; rare trace pyrite in between frag-	- 298-303	0.003	271
- monto upper contact appears to be sharp but is	303-308	0.001	278
- masked by quarts verning lover contact Shar	8		
- Mte schiet; quert veix from 278.6 to 280.2	•		
Mte schiet, were from 278.6 40 280.2'	·]		
unit becomes less schistose from ~ 285 onward	/		
with a propable increase in ankerite and a decrease		·	
m sericite.			
Possible tournaline as ~110" diameter squant	<u>`</u>		
and from 310,6° to 311 (ch. + 5-107 diand; at 303'			
From 316.9' to ~ 336.4': (blaritic 2min but in the	308-313	0.003	279
more reining (errant + Carbonate) there marining	313-316.9'	0.001	280
chloritic sections also have possible in previous	316.9'-322	0.001	281
rich veinlets and/or hogenents: also tagge	322-327	10000	<u>282</u> 283
dine to medium-grained disseminated purite	(222-22/4	0.003	284
- Throughout Alteration none loliation direct	-	0.001	207
tion appears fairly constants at about 50° to			
core and except from ~317.5 to ~320° where it is			
where and the core angles are as low as	_		
the care and the last of the second states and the second	ļ.,		
list the strice	- 336.4 - 340		285
the mensely schistose, with local possible	340-345		286
60% quart + carbonate willets parallel to schipto.	345-350	0.014	287
	353.8-360		289
host vock (k.g. at 340'); also possible tournaline	360'- 365'		290
	365-370'		291
hand, < "10" unde).	370-375'		292
From 353.8" onward: mixture of very schistore	375-380	0-061	293
Seriatic and anteritic schist, locally with fine Kink folds: also local sections (daneselly local	380-385'		294
A A A A A A A A A A A A A A A A A A A	385-3901		295
	390'-395'		296
manne grant provide manenalities in host	395-400	0.001	277

PAGE 6 0 9

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: U-8

ı.

+

· •

.

•

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
250.6-474.9	ALTERATION ZONE (CONIT)	400'-405	0.001	298
	rock between parallel quarte veinlets; local more	·		
	massive deformed possibly preciated sections.			
	Achistossity generally at ~ 70" to come ales		1	
	except for a few short sections with smaller			1
	angles (up to ~20" to core aftis): local possible fuchsite			
	sporta in quarty-carbonate winlets and within		 	İ
	Hostrock		1	
	From ~375 to ~416, unit is cross cut by			
	~ 5% milley while to translucent quart I carbonate			
	veinlets up to ~ 3" uide, containing disseminated			
	py <17.	405-4067	0.001	299
(¥)	Intensely silicified zone (about 75%. quatte	406.7-407.8	0.132	300
		407.8-41Z	0.001	301
		412-417		307
	to the end of unit	417-422'	0.001	30:
	Unit gradually changes from Khaki-greenich	422-427	0.001	304
		427-432		305
	Lower contact sharp, parallel to foliation atubs		0.001	
		437-442	0.001	<u> </u>
		442-447'	0.001	308
	a pleached nones (more since grathed init	447-452	0.001	308
	11" and the state of the state of the	452-457'	0.001	3/0
		457-462	0 001	311
		462-467	0.001	<u> </u>
		467-471.1		313
		4-71.1-474.9	0.003	315
		<u>, 117.</u>]		
4.9-523.11	TALC- CHLORITE - CARBONATE - QUARTZ SCHIST			
	Similar to 45 to 71.3' except with a that i coloured			
	tinge (possibly due to ankenite)			
	Local tale filled cross cutting veinlets, filled			
		1749-477.5		315
	10 1 20 11 11 120 01			315
	Coarse-grained containing ~ 20 % host north, in-rel	478.9-481.2		3/7
	sions; no sulphides seen upper contact sharp at	1/01 101.2	0.001	311

E	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU		3e / 1-8	<u>б</u> .
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
4749-523.1	TALC-CHLORITE-CARBONATE-QUARTZ SCHIST (CON'T)			
	20° to core agis but irregular; lower contact irregui-			
·	lar			
- CAR		481.2-482.2		3/8
		482.2-485.5	0.001	319
	cut by ~ 30% quarts weinlets, rand only oriented,			
				{
	v Ba to core ages, parallel To foliation of host rock.			
<u>S</u>		485.5-486.1	0.001	3200
♥				321
······································	vein: upper costact some what intolefingered at?			
	80° to core artis: lower contact at 55° to core artis			
	parallel to talcose schist host rock.			
	From ~486.1' to lower contact, unit becomes	491 - 496	0.001	322
	dark grey - black (talc - chlorite) with about 60-75 %	496'- 501'	1000	323
		501-506	0001	324-
		506'-510,3'	0.001	325
	parallel to Schiptossity (generably ~90 to core apis			
	but locally variable & deformed forded	to the state		201
		510,3-512,1		326
		512.1-517.0		327
	Starten tooping at an internet of the starten of th	517 - 523.1	0.002	328
	contacts parallel to foliation at about 75° to 85° to			
	core alis			
- •	Lower contact ground			
	- Donney Correspondences			
523.1-581.2	ARGILLITE AND GREY WACKE			/
		523.1-5255	0.0d	329
	khake to grey coloured unit with ~. 1-2.10 quarts ±			
	carbonate winlets soft		· · ·	
	From 525.5' to 528:6' unit contains ~ 40 - 50% think	525,5-530.4	0.001	330
	light grey carbonate veinlets parallel to pliation (at			
1	29no- Stol In core cities), lower contact valgue			

· · · · · ·

• •

--- ---

Ð

PAGE 7 569

PROPERTY: HUNTER MINE HOLE NUMBER: U-8

PAGE 8 899

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
523,1-581.2	ARGILLITE AND GREY WACKE (CON'T)	I I I I I I I I I I I I I I I I I I I		<u>г</u> .
	From 330.4 to 331.1 about 20 h pure bick	530.4-531.1	0.001	331
				1221
	near 531.1, parallel to foliation at ~ 90°	[
	to core ages, within very fine grained, dark			
· · · · · · · · · · · · · · · · · · ·	grey angilite moderatal soft.			
· ·	From 531.11' to "I'monotonous sequence	531.1-536	0.001	332
-	they print xlanea, dark stey, moderately hard			
	tagellites, with have meditim - gained greywacke			
	beap ragmento of quarts, feldspan al rarely			
	rock flagmento cand be seen in agillite			
	Fossible graded bedding in greinvacke, bel a 2"			
	a portante propose suphole			
	From 545.5 to lower contact local zones with			
	up to 20% thin milky white carbonate veinlets			
	Change and the core apro			
	planes near 562 graphite along foliation			
	Fran F20 5/ / /			
	de la comesta de la la comesta de comes			
ř	bly dark grey to black + possibly contains gra-			
	Salar			
	la casi pizza trat			<u>.</u>
	e - quarts vaning is also evident.			
81.2-604.6	TALC- CHLORITE-CARBONATE-QUARTZ SCHIST.			
,		·		
	arbonate + agrants versilets parallel to white			
	arbonate + quarts veinlets parallel to foliation at 80 to 85° to core app, mildium -grained			
	Unit become dark green, possibly indications			
	higher chlorite content, from 593.6' 40 601.6	<u> </u>		
	C + 1 +			
	reaches to be a final fi			
	naterial at ~ 604.7 " pyra hotele rich	200-604.6	0.001	333

	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NU	PAC JMBER: 6	3e 9 (-8	89	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	AMPLE ASSAY		
604.6-617	ARGILLITE AND GRAYWACKE				
	Dark grey fine-grained (argillite) to medium	604.6-610	0.001	334	
	grained (ground che) with foliation bedding (parallel)	610-615	0 001	335	
		615-617	0.001	336	
	Local bleached sections inthing angellite				
	From 613 to EOH, unit becomes they black				
	and county and ange amount of				
	Core is very blocky from ~ 614' to EOH.				
			· · · · · · · · · · · · · · · · · · ·		
617'	EOH				
			· · · · · · · · · · · · · · · · · · ·		
			<u> </u>		
			_,		
				<u>.</u>	
	•				
		·····			
			··		
^		<u>.</u>	•,		
			·· ·		

GE		DECODIDE				SAMPLE	
C	ORE SIZE AQ	CORE STORED AT:	LOG	GED BY R.B	oald	DATE Feb. 19/83	
	RILLING COMPANY	MORRISSETTE FOREM	AN Lafontaine DIP	TESTS:			
	LENGTH	1:490.0 FEET @	300-84° @ 3 400'-78.5° @	50'-86 '450'-88"	AZIMUTH	DIP ANGLE -80	•
	1 - ALC -	1100	-86° @250'	-80.5	TOWNSHIP	CLAIM	
	DIAMOND	DRILL LOG @100	-80,5° @150'	- 8515 GRID F	REFERENCE	• •	
	P.O. BOX 2150), TIMMINS, ONTARIO, P4N 7X8	CANADA	HOL	E NUMBER	u-9 🔍	
•	Earth Re	source Associates		·	PROPERTY	HUNTER MINE	
· · ·	• • • • • • • • • • • • • • • • • • •		у Г			PAGE 1' of	

D'-4' CASING	DESCRIPTION OF CORE SAMPLE ASSAY	FOOTAGE
1'-1053' TALC - CHELORITE - CARBON PITE - QUARTZ SCHIST (SOAPSTONE) Grind Z' at 6' fag. Wach 4' at 22' fag. Grind 3' at 32' fag. Grind 3' at 32' fag. Crind 3' at 32' fag. Dark gray - black wells soft, falc schiat: local crum. bly sectifies wooldan wells soft, falc schiat: local crum. bly sectifies wooldan wells soft, falc schiat: local crum. Dark gray - black wells soft, falc schiat: local crum. bly sectifies wooldan wells soft. falc schiat: local crum. Dark gray - black wells soft. falc schiat: local crum. Dark gray falcation of wells wells to constant the schiat of the schieft. Generally parallel to faliation of unit but facally Wass cruthing; falcation is well wariable from 0° to 90° and loome falcing fis seen in Core: from witz' orward, locally black falce weinlets cross criting I diation 0 host rock, variable directions. 0 silicified gone, grey, cheet, looking from 62.0' to 62.2' 61.5'62.5' 0.001 33 Ouested grant win from 103.9' to 105.1' 99.9-103.9' 001 33 milky white guilty with croom calgues for forme for forme for forme for forme for forme forme forme forme for forme for forme forme forme forme for forme forme forme forme f		0'-4'
Grind 2' at 6' tag. What 3' at 16' tag. What 3' at 32' tag. Crind 3' at 32' tag. Dark gray - black welly soft, tale schiet; local crum. bly sections weakes away; trace MX disseminated pointe: variable amount of carbonate to quarts vein lets, generally gradlel to faliation of unit Obert locally traces crutting; faliation in New variable film. 0° to 90° and Dome falcing is seen in core form. 1° to 90° and Dome falcing is seen in core form. 1° to 90° and Dome falcing is seen in core form. 1° to 90° and Dome falcing in seen in core form. 1° to 90° and Dome falcing in seen in core form. 1° to 90° and Dome falcing in seen in core form. 1° to 90° and Dome falcing in seen in core form. 1° to 90° and Dome falcing in seen in core form. 1° to 90° and Dome falcing in seen in core form. 1° to 90° and Dome falcing in seen in core form. 1° to 90° and Dome falcing from 62.0' to 62.2' 41.5'625 0.001 33 Ouarts and consomets will form 103.9' to 105.1' 199.9.083° 0.001 33 0.000 and consomets will form for 103.9' to 105.1' 199.9.083° 0.001 33 0.000 and consomets will form for some form of the s' crace grained, 1033' 1053 0.001 33 0.000 and consomets will all to not form for s' crace grained, 1033' 1053 0.001 33 core about 80° tol core outs, no sulphides deen. 1° tous contact indictinet "" 1° to maxime malicity of the ne diate (?) dike?, leddly 107-112' 0.001 34 4° maxime malicity white guarts weine from like from like from like 10' 10' 12' 0.001 34 areas and by milty white from weinets from like from lik	ALPETTO LAPTZ SCHIST (SODSTALLS)	4'-105.3'
What 3' at 16 the Wash 4' at 22' the Grind 3' at 32' the Dark new - black welly soft, tale schiet; local cum- bly sections washes tweet; trace MX disseminated plante variable amount of carbonate to quarts vein lets; generally probled to falition of unit but locally twees cutting; foliation in vely variable from 0° to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 90° and loone folding to seen in Core for 10' to 10' to 10' to 10' 10' to 10' 10' 10' 10' 10' 10' 10' 10' 10' 10'	GOTTINE QUINTE SCITOT (SOMPSTONE)	
Wash 4' at 22' + 8g. Erind 3' at 32' + 8g. Dark gray - black well soft, tale schiet; local crum. bly sections washes burst; trace MX dissemirated plante: variable amount of carbonate + quarts veinlets generally parallel to foliation ST unit Obst locally Erosa crutting; dechat m in New variable from 0° to 90° and Dome folding dis seen in core from 10° to 90° and Dome folding dis seen in core from 10° to 90° and loome folding dis seen in core from 10° to 90° and loome folding dis seen in core from 10° to 90° and loome folding dis seen in core from 10° to 90° and loome folding dis seen in core from 10° to 90° and loome folding dis seen in core from 10° to 90° and loome folding dis seen in core from 10° to 90° and control to looking from 62.0' to 62.2' 61.5'625 0.001 33 Ouests and controlly shall your from 103.9' to 105 / 99.9-0001 KM including quarts with mean coloring from 62.0' to 65.2' 61.5'625 0.001 33 core about 80° 40 core and from 103.9' to 105 / 99.9-0001 KM milky while quarts with mean coloring carbonate patches? 10° 1100 for and controlor from 103.9' to 105 / 99.9-0001 33 core about 80° 40 core and your part to 104.3' coarse grained, 1039'100 30.001 33 core about 80° 40 core and your part to 100° from 103.9' to 105.1' 99.90001 33 core about 80° 40 core and your part of 100° 100° 100° 100° 100° 100° 100° 100		
Grind 3' at 32' the Dark grey - black well soft, tale schiet; local crum- bly sections, washes away; trace MX disseminated printe: variable amount of carbonate & quarts vain (etc.) generally perallel to foliation 57 unit Uput locally twose cutting; foliation in very variable from ~ 42' oward, locally black folic winkles cross cutting location of nost rolek variable directions. 0 sill cifled zone, grey, chart from 62.0' to b2.2' (1.5'625' 0.001' 33 Quarts and conformation in 103.9' to 105 1' 99.9-103.9' ocor 103.9' to 100.0' to 100.	ha.	
Dark grey - black, vely soft, talc schiet; local crum- by sections washes away; trace MX dissemirated printe: variable, amount of carbonate & quarts veinlets, generally probled to faliation of unit but locally "Cross crutting; faliation is vely variable from ~ 42' oward, locally black falls weinlets cross cutting for and some falling is seen in core for ~ 42' oward, locally black falls weinlets cross cutting for and some falling for seen in core for ~ 42' oward, locally black falls weinlets cross cutting for and carbonate rick wariable directions. Silicified zone, grey, cherty looking from 62.0' to 62.2' 61.5'625' 0.001 33 Quarts and carbonate rick gone for 103.9' to 105.1' 99.9-103.9' oool Kom including quart win from 103.9' to 105.1' 99.9-103.9' oool 33 contracting gravity with aream caloured carbonate patches for about 80° for area, no sulphides seen, for about 80° for core area, no sulphides seen, for about 80° for area of the second carbonate for for about 80° for area of the second carbonate for a for a for a for a for a sulphides seen, for about 80° for area of the forme diate? A located 105.3'.67' o.001 33 contract indistinct 53-1177 INTERMEDIATE DIKE? Dark grey to light grey, moderately, hard for ated 105.3'.67' o.001 34 to massive matrix with an advance of the forme for a forme with 112' o.001 34 aureales of Silver fraction light of the forme diate? A located 105.3'.67' o.001 34 aureales of Silver fraction light of the forme diate? located for which 112'-1177' o.001 34 aureales of Silver fraction light of the forme of the forme which 112'-1177' o.001 34		
by sections woodes hwalf; trace MX disseminated pointe variable amount of carbonate ± quarts vein lets, generally parallel to faither of unit but locally tracks cutting; foliation is very variable from 0° to 90° and bone folding is seen in core for ~42' oward, locally black falls weinelets cross cutting lotiation 0 host rock, variable directions. 0 silicified rome, grey, cherty looking from 62.0' to 62.2' 41.5'625 0.001 33 Ouests and conformer rich good from 103.9' to 105.1' 99.9-103.9' 0001 Kott in cluding grant win from 103.9' to 105.1' 99.9-103.9' 0001 Kott including grant win from 103.9' to 105.1' 99.9-103.9' 0001 Kott including grant win from 103.9' to 105.1' 99.9-103.9' 0001 Kott including grant win from coloured carbonate patches; contact modelinct S3-117.7 WTER MEDIATE DIKE? Dark grey to light grey, moderately have for 105.3'/07 0.001 33 to wassive maticipate with interme coloured carbonate for 105.3'/07 0.001 34 to wassive maticipate with me and ata 2) dike 7, locally 105.3'/07 0.001 34 arreales by silver from later 2) dike 7, locally 107.112' 0.001 34 arreales by silver from later 2) dike 7, locally 107.112' 0.001 34 arreales by silver from later 2) dike 7, locally 107.112' 0.001 34		
plante variable amount of carbonate + quarts veinlets, presally parallel to falition 57 unit but locally Crosse cutting; faliation is very variable from 0° to 90° and loome falling is seen in core from ~42' owned, locally black tale veinlets cross cutting lociation of nost rolek variable directions. 0 silicited zone, grey cherts looking from 62.0' to 62.2' 61.5'625 0.001 33 Ouarts and carbonate rick zone flom 103.9' to 105 1' 99.9-103.9 0.001 kow including quart vin from 103.9' to 105 1' 99.9-103.9 0.001 33 milky white quarts with cream caloured carbonate patches; core about 80° to core axis, no sulphides seen. four contact indistinct 53'-117.7' INTERMEDIATE DIKE ? Darke grey to light grey moderately have diated 105.3'/07 0.001 32 to massive maticility in the mediate ?? dike ? locally (07'-1/2' 0.001 34 aureales. 6) Silicification leyter of up to 1 Werk 1/2'-117.7' 0.001 34	A character of the second seco	
admenally parallel to foliation 57 unit but locally twoss cutting; foliation is vely variable from 0° to 90° and loome folding is seen in core from ~42' owned, locally black fals veinlets cross cutting foliation (1) host rolek, variable directions. 0 Silicitled yone, grey, cheit, looking from 62.0' to 62.2' 61.5-625 0.001 33 Quarto and carbonate rick some flom 103.9' to 105.1' 97.9-103.9 0.001 Kow including great win from 103.9' to 104.3' crasse-greined, 103.9' 0.001 33 wilky white great win from coloured carbonate patches? 10 Silicitled not only in from log will be seen. 10 South 80° to Core and you algorides seen. 10 South 80° to Core and you and the seen. 10 Silicitle DIKE? 10 Dark grey to light grey moderately have foliated 105.3'10' 0.001 32 10 massive malicitly in the mediate? dike?, locally 107-112' 0.001 32 10 massive malicitly white great winder for the foliated 105.3'10' 0.001 32 10 massive malicitly in the mediate? dike?, locally 107-112' 0.001 34 aureoles. 5 Silicit fration leyter of up to 1 Wich 112'-117.7 0.001 34		
Gross cutting; foliation is very variable from D° to 90° and borne folding is seen in Core from ~42' onward, locally black fole veinlets cross cutting foliation of nort rolek, variable directions. Silicified zone, grey, cherty looking from 62.0' to 62.2' 61.5-62.5 0.001 33 Quarto and carbonake rich zone from 103.9' to 105 1' 99.9-103.9' 0.001 Koy in clading quart win from 103.9' to 105 1' 99.9-103.9' 0.001 33 milky white great with cream colored carbonate patches; control about 80° fol core axis, no sulphiles seen; Lower contact indistinct Si ² -117.7' INTERMEDIATE DIKE? Dark grey to light grey moderately hand foliated 105.3'107 0.001 34 to massive malicing white great warts with a formediate? dike? locally 107-1/2 0.001 34 cores and by milky white great warts with rescale formation 103.9' 10 105.3'107 0.001 34 arreales . 5) Silverfication leyter of up to 1 Which 112'-117.7' 0.001 34		
0° to 90° and loome folding is seen in core firm ~42' onward, locally black falc veinlets cross cutting foliation of nost rolk, variable directions. Silicified zone, grey, cherty looking from 62.0' to 62.2' 61.5-62.5 0.001 33 Quasto and control rolks none from 103.9' to 105 1' 99.9-103.9 0.001 Kott including guarty vin from 103.9' to 104.3' coarse- grained, 103.9' 1053 0.001 33 milky white guarty with cream coloured carbonate patches? Lower contact indistinct Siling to contact indistinct Siling the grey to light grey moderately hand foliated 105.3'/07 0.001 33 to massive matic? Ho in the diate?? Coally 107-1/2' 0.001 34 down matic grey to light grey moderately hand foliated 105.3'/07 0.001 33 to massive matic? Ho in the diate?? Coally 107-1/2' 0.001 34 aureoles. 6 Siling fraction leyter of up to 1 Wich 1/2-1/17' 0.001 34	And in Allowing the rocarry	
~ 42' onward, locally black falc veinlets cross cutting foliation () host rock, variable directions. Silicified zone, grey, cherty looking from 62.0' to 62.2' 61.5'625 0.001 33 Quarts and carbonate rich zone flom 103.9' to 105.1' 99.9-103.9 0.001 Kott including guarts win from 103.9' to 104.3' coarse-grained, 103.9' 105.3' 0.001 33 milky white guarts with mean coloured carbonate patches; about 80° to) core axis, no sulphides seen; Lower contact indistinct 53-117.7' INTERMEDIATE DIKE? Dark grey to light grey, moderately, have for faited 105.3'/07 0.001 33 to massive malici? Yo intermediate? dike?, locally 107-1/2 0.001 34 arreales. of Silverfication leyter dup to 1 Which 112'-117.7' 0.001 34		
Joliation () host rolck, variable directions. Silicified zone, grey, chert, looking from 62.0' to 62.2' 61.5-62.5 0.001 33 Quarts and carbonate rich zone from 103.9' to 105.1' 99.9-103.9 0.001 Kott including grant vin from 103.9' to 104.3', crarse-grained, 103.9'-1053 0.001 33 milky white grants with a com coloured carbonate patches. contracted to avris, no sulphides seen. Lower contact indistinct S3-117.7' INTERMEDIATE DIKE? Dark grey to light grey moderately hard foliated 105.3-10' 0.001 33 to massive matic? to intermediate? dike?, locally 107-1/2' 0.001 34 corps art by milky white grant wine diate? dike?, locally 107-1/2' 0.001 34 aureoles. of Silicification kyter drup to 1 inch for local		
I silicified yone, grey, cherty looking from 62.0' to 62.2' 61.5-625 0.001 33 Quarts and carbonate rich some from 103.9' to 105.1' 99.9-103.9 0.001 Kott including quarts with mean 103.9' to 104.3', cranse-grained, 103.9'-105.3 0.001 33 nilky white graits with mean colorued carbonate patches? contracts so for axis, no sulphides seen. 6.3'-117.7' INTERMEDIATE DIKE? Dark grey to light grey moderately haved for a foliated 105.3'10' 0.001 32 40 massive matic?? 40 massive matic?? 40 massive matic??	variable directions	
(ulask and carbonate rich some from 103.9' to 105 1' 99.9-103.9 0.001 Kott including quart win from 103.9' to 104.3', coarse-grained, 103.9'-1053 0.001 33 roi 1Ky white quarts with near colorued carbonate patches: controbolit 80° fol core axis, no sulphides seen. Lower contact indistinct 53'-117.7 INTERMEDIATE DIKE ? Dark grey to light grey, moderately har, d foliated 105.3'107 0.001 33 to massive malici? to intermediate ?? locally 107-112' 0.001 34 cross cut by milker white quart, weinlets from which 112'-117.7' 0.001 34 aureoles. of Silver fraction leyter of up to 1 Wich focal		· · ·
Milling quart view from 103.90 to 104.3' coarse-grained, 1039-1053 0.001 33 milky white quarts with near colorned carbonate patches: contrabolit 80° for core axis, no sulphides seen, hower contact indistinct S3-117.7' INTERMEDIATE DIKE? Dark grey to light grey moderately hand foliated 105.3'107 0.001 33 to massive matici (7) to intermediate (?) dike ?, locally 107'-1/2' 0.001 34 cross at by milky white quarts weinlets from which 1/2'-1/7.7' 0.001 34 aureoles. of Silici fication leyter of up to 1 Wich; local		
nilky white quarts with near colorued carbonate patches! control bolt 80° for core axis, no sulphides seen, Lower contact indistinct Sid-117.7 INTERMEDIATE DIKE? Dark grey to light grey moderately have doubted 105.3'107 0.001 33 to massive malic(7) to intermediate(?) dike? locally 107'-1/2' 0.001 34 cross out by milky white quarts viewlets from which 1/2'-1/7.7' 0.001 34 aureales. of Silver fration leyter dup to 1 which 1/2'-1/7.7' 0.001 34	103.96 to 104.3' CAREAR String 1029-46- 001 23	10
1014 abolt 80° for Core ages, no sulphides seen, Lower contact indistinct S3'-117.7' INTERMEDIATE DIKE? Dark grey to light grey, moderately, have dolated 105.3'-107 0.001 33 to massive mafiel? to intermediate? dike?, locally 107'-1/2' 0.001 34 cross out by milky white quark veinlets from which 1/2'-1/17.7' 0.001 34 aureoles. of Silverfration kyterd up to 1 inch ford	- colom Coloured carbonate on tehon	
Lower contact indistinct S3'-117.7' INTERMEDIATE DIKE? Dark grey to light grey, moderately have dolated 105.3'-107 0.001 33 to massive mafiel? to intermediate? dike? locally 107'-1/2' 0.001 34 cross out by milky white quark veinlets from which 1/2'-1/7.7' 0.001 34 aureoles. of Silverfication kytered up to 1 inch focal	no sulphides den	contr
53'-117.7' INTERMEDIATE DIKE? Dark grey to light grey moderately have doliated 105.3'-107' 0.001 33 to massive mafiel? to intermediate? dike?, locally 107'-1/2' 0.001 34 cross at by milky white quart weinlets from which 1/2'-1/7.7' 0.001 34 aureoles. of Silver fration leyter dup to 1 which 1/2'-1/7.7' 0.001 34	stinct	· · ·
Dark grey to light grey moderately haved foliated 105.3-107 0.001 33 to massive mafiel? to intermediate? dike? locally 107-112' 0.001 34 cross out by milkey white quark veinlets from which 112'-117.7' 0.001 34 aureoles. of Silverfication kyter of up to 1 which 102'-117.7' 0.001 34		
Dark grey to light grey moderately haved foliated 105.3-107 0.001 33 to massive mafiel? to intermediate? dike? locally 107-112' 0.001 34 cross out by milkey white quark veinlets from which 112'-117.7' 0.001 34 aureoles. of Silverfication kyter of up to 1 which 102'-117.7' 0.001 34		53-117.71
to massive matic? to intermediate?) dike? locally 107-1/2' 0.001 34 cross at by milky white quark weinlets from which 1/2'-1/77' 0.001 34 aureoles. of silverfication lyter dup to 1 ilch local	I grey moderately have a faliated 105.3-107 and 32	
arreales of silver fration extend up to 1 ilch local "	in the state of th	
uncloses of siblification lextend up to I ilch local	hite anarte mainlets from which 112'- 1177' and 34	6
	tion lytend up to I ilch ford	l_
	· 0	

PROPERTY: HUNTER HINE HOLE NUMBER: 4-9

10.5.2 11.1 MTEMPEDIATE DIES 10.6.2 11.1 MTEMPEDIATE DIEST 10.6 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12	FOOTAGE	DESCRIPTION OF CORE	SAMPLE		SSAYS
(adder "vine ? (looks like continuous otring of H"'s. in gennal the philip of the series of the ser	105.3-117.	1/NTERMEDIATE DIKE?		<u> </u>	
except locally pressibly you he did y, must be sendent in the second from the second of the second o		Tadder" we an 2 (look a 1/1		_	
CHECK Locally (pressibly of alded), my deformed from 10'to 12' (10'to 12') (10'to core and parallel 5' delation / schedossil, of next will (dike to maasing 2' Thice - CHI OLITZ - CARBON ATE - QUARTE SCHIST Similar to 4' - 105.3 with will first frey to tam 177-1201' THIC - CHI OLITZ SCHEDON ATE - QUARTE SCHIST Similar to 4' - 105.3 with list frey to tam 177-1201' THIC - CHI OLITZ SCHEDON ATE - QUARTE SCHEST Similar to 4' - 105.3 with list frey to tam 177-1201' THIC - CHI OLITZ SCHEDON ATE - QUARTE SCHEST Similar to 5' to 0' to 0		The sound of the sound of the	·		
Lower contact sharp at 70° to core apis, parallel 16 doiotron / schictossit, of next with (dike to massin) allia field here, 107'-2011' TALC-CHI. ORITE-CARBON ATE- QUARTE, SCHIST Similar to 4' - 105.3 with light free to tam. 107'-2011' TALC-CHI. ORITE - CARBON ATE- QUARTE, SCHIST Similar to 4' - 105.3 with light free to tam. 107'-2011' TALC-CHI. ORITE - CARBON ATE- QUARTE, SCHIST Similar to 105.3 for 117.7' Following band within to '' of formation of 100 or 1342 Medil (Jolded To Sulphides) Seend Lower calculation of 105.7' Following allow with a core apis, at 134', 30° 123-128' or 134' Policities at 132' is 30° to core apis, at 134', 30° 123-128' or 134' to core any of 148' 30' to core apis, at 153', 45° to core 126-133' or 134' 149.8 to 152.8' kolth F-MX disseminated and shinger 143' 148' or 134' Alle of 128.1' also with patches of dark green allowing 187'/143' or 134' 149.8 to 152.8' kolth F-MX disseminated and shinger 143'/148' or 135'/ 149.8 to 152.8' kolth patches of dark green allowing 184'/148' or 135'/ 149.8 to 152.8' kolth patches of dark green allowing 184'/148' or 135'/ 150'/150' or 135'/ 1626'/150' or 135'/ 171.4' TALC-CHLORITE - CARBONATE - OUARTZ SCHIST 1626'/150' or 135'/ 171.4' to 175'.7' 171.4' to 175'.7' 17		Well tocally (passibly Wal I d)			
17. Loliation / schictbossit of right unit (dille to maarine alliain ad heney / / alle to maarine 17. Loci TALC - CHI. OPITE - CARBON ATE - QUARTE SCHIST Similar to 4' - 105.3 mith light Sure to tam 117 1006 0.001 342 med (falled) no Sulphided Scene (mith for the form) 117 1006 0.001 342 med (falled) no Sulphided Scene (mith form) (mithed) (≤		
17. Loliation / schictbossit of right unit (dille to maarine alliain ad heney / / alle to maarine 17. Loci TALC - CHI. OPITE - CARBON ATE - QUARTE SCHIST Similar to 4' - 105.3 mith light Sure to tam 117 1006 0.001 342 med (falled) no Sulphided Scene (mith for the form) 117 1006 0.001 342 med (falled) no Sulphided Scene (mith form) (mithed) (tower contact sharp at 70° to come and			
allicitied half allicitied half 177-1201/ TALC-CHIORITE-CARBONATE-QUARTE SCH15T Similar to 4'-105.3 with light Surg to tam 1177-1206 0:001 342 Churty contains band within 6" SB Earlier 1177-1206 0:001 342 med (falled) mo sulphided Searlier houser calters how to one aprice at 134 30° 123-128 0:001 343 Dobb 122 107 123 100 11 7.7 Folicitier at 132' is 30° to one aprice at 134' 30° 123-128' 0:001 343 40 Low and to 105.3' to 11 7.7 Folicitier at 132' is 30° to one aprice at 134' 30° 123-128' 0:001 345 40 Low and a 148' 30° to one are gives at 153' 145° to care 126-133' 0:001 345 149.8' to 152.8' With F-MX BOSSTOLE brecein from 138'14' 0:001 347 by provide also with patches of dark green chlorife 148' 0:001 349 Helewight is also with patches of dark green chlorife 148' 143' 0:001 349 149.8' to 152.8' With F-MX Juselminoted and stringer 143'143' 0:001 349 helewight is also with patches of dark green chlorife 148' 143' 0:001 352 164'1712' TALC-CHEORITE - CARBONATE - QUARTZ SCH15T Similar to 4'-105.3' to 112.7' Mathematica for and for the following follow 143'1987' 10:001 352 134'1987' 10:001 352 134'1987' 10:001 352 134'1987' 10:001 352 134'1987' 10:001 352 134'1987' 10:001 355 131'19' to 175' form 178'6' to 180' form 185'4' to 185' 152.8' form 175'173' 0:001 355 171'4' to 175' form 178'6' to 180' form 185'4' to 185' 152.8' form 175'173' 0:001 355 171'4' to 175' form 178'6' to 180' form 185'4' to 185'152.8' form 175'173' 0:001 355		To delication /schictossit a suit in parallel			
17.1-1201' TALC - CHI ORITE - CARBON ATE - QUARTE SCHIST Similar to 4' - 105,3 mith light grey to tam 11.7.1-1206 0.001 342 Med (pelded) no sulphided Scent, defor Lower catent ~ 40° to Core apis, 20.6-1626 INTER MEDIATE DIRE Similar to 105,3 to 117,7 Feliation at 132' is 30° to core apis, at 134' 30° 123-128' 0.001 343 to core apis, at 153' 148', 30° to core apis, at 153' 145° to core 128-133' 0.001 345 Silicified 700 mith possible biccica from 128-133' 0.001 345 149, 8' to 52.8' dish F-MX discliminated and shinger 143'-188' 0.001 345 If your contact found of the apic of dark green chlorife 148' 0.001 345 149, 8' to 52.8' dish F-MX discliminated and shinger 143'-188' 0.001 345 If your contact found of the apic of dark green chlorife 148'-183' 0.001 352 20.6'1112' TALC- CHLORITE - CARBONATE - QUARTZ SCHIST Isonilar to 4' - 105.3' to 117.7' Isonilar to 105		pilliafied here 10 massiv	·/	_	
Similar to 4'- 105.3 with light suy to tar. 1177-1206 0.001 342 chuster toolking band within to "0" East to car alfor hould ladded no sulphided Seen. Louder entres to 100 ages. 20.6-121 INTER MEDIATE DIFF. 20.6-123' cool 32' to 117.7' Folicition at 132' is 30° to care apis, at 134' 30° 123-128' cool 343 to care and; at 148' 30° do care apis; at 153' 145° to care 128-138' cool 344 40' 149.8' to 152.8' with F-Mx disseminated and shinger 143' 148' cool 347 149.8' to 152.8' with F-Mx disseminated and shinger 143' 148' acol 347 171 Lize aprile; also with patches of dark green about 148' 148' cool 348 172 Diver contact ground for a fark green about 148' 148' cool 347 172 Lize aprile; also nith patches of dark green about 148' 148' acol 348 172 Lize and to 160.3' to 172.5' 174 Lize and to 4'-105.3' 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Lize angles ~ 20° to core apis, some faulting 188' 111.2' 0001 352 174 Similar to 1'-105.3' 174 Similar to 1'-105.3' 174 Similar to 100' 123' to 1127' Similar to 100' 1053' to 1127' 174 to 175' from 179.6' to 180' from 1854' to 1855' from 115-179' 0001 356					
Churter 40 4 - 105.3 with light frey to tarn 1171-1206 0.001 342 med (laded no Sulphides Seen). Lower catact ~ 40° to core apis. 20.6-1621 / NTER MEDIATE DIKE Similar to 105.3 to 117.7 Foliation at 132' is 30° to core apis. at 134' 30° 122-128 0.001 343 to core aps; at 148, 30° to core apis. at 134' 30° 122-128 0.001 345 149.8 to 152.8 with F-MK dissemination for 138' 45° to core 128-133' 0.001 345 149.8 to 152.8 with F-MK dissemination for 138' 188' 0.001 347 between is also with patches of dark green chloring 138' 188' 0.001 347 between is also with patches of dark green chloring 148' 180° 184' 149.8 to 152.8 with F-MK dissemination green chloring 148' 188' 0.001 347 between is also with patches of dark green chloring 148' 188' 0.001 347 186' 182' 0.001 352 1000000 (186' 1712' 0.001 357) 100000 (186' 1712' 0.001 357) 126'11/12' TALE- CHLORITE - CARBONATE - QUARTZ SCH15T Similar to 4' - 105.3' Core angles ~ 20° to core agis, some faulting folling 126'11/12' TALE- CHLORITE - DIKE Similar to 10' 105'3' to 1177' Similar to 105'3' to 1177'	17.7-120,6	TALC-CHIORITE-CARBONIATE- QUARTE OUME			
Checking toollang band within (" Of Contract (1000) 11/17-1206 0.001 342 med (laded no Sulphided Seent. Lower (1000) 11/17-1206 0.001 342 Lower (altest ~ Ho to core apro. Lower (1000) 1000) 1000) 1000) 20.16/121 NTER MED 19 THE DIFFE DIFFE 12000) 12100) 12400) 20.16/121 NTER MED 19 THE DIFFE 10000) 10000) 10000) 343 20.16/121 not appendix to 100000 30° to core apping at 1344, 30° 128-138 0000) 344 40 core apping at 148/300 to core apping at 153/450° to core 128-138 0000) 344 149.8 to field none with possible breacia from 138-148 0000) 344 149.8 to field none with possible breacia from 138-148 0000) 344 149.8 to field none with patches of dark give at 145/48 0001 345 149.8 to located from 1850 fark give at 145/48 0001 345 149.8 to located from 1850 fark give at 20000 350 350 350 149.8 to located from 1850 fark give at 20000 352 350 351	· · · · · · · · · · · · · · · · · · ·	1 - 31 m (a) + 0 + - 105 - 11 - 11 - 11 - 11 - 11 - 11 - 1			
med (folded) no Sulphided Seen, contract, defor houler actact ~ 40° 40 and apps, 20,6/62, INTER MEDIATYS PILE Similar to 105,3' to 117.7' Foliation at 132' is 30° to core apis, at 134', 30° 123-128' evol 344 Provide any at 148', 30° to core apis, at 153' 145° to core 126-133' 0.001 345 Miss Silicified none with possible breccia from 138'143' evol 346 149.8' to 528' with F-Mx disseminated and shinger 143' 143' evol 344 Provide the post of all of the patches of dark green allocite 149'1498' evol 344 between the nith circle from 138'143' evol 355 106'1112' TALC- CHLORITE - CARBONATE - QUARTZ SCH15T Similar to 4'-105.3' Core angles ~ 20° to core apis, none faulting, folling 136'1712' 0.001 352 136'1712' 1712' 0.001 353 136'1712' 1712' 0.001 353 136'1712' 0.001 353 136'1712' 0.001 353 136'1712' 105'3' to 117.7' Similar to 10'05'3' to 117.7'		chech tooleman hand with 140 paget tom	117.7'-120.1	0.001	342
Lower contact 2 105.3' to 117.7' 20.6'12.2. INTER MEDIATE DIRF Similar to 105.3' to 117.7' Foliation at 132' is 30' to core aris, at 134' 30' 123-128' even 345 to core aris, at 148', 30' to core aris, at 153' 145' to core 126-133' 0.001 345 Aris Silicified Done with possible breecia from 126-133' 0.001 345 149.8' to 52.8' Wath F-MX disseminated and stringer 13'-143' 0.001 347 Inter posti, also with possible breecia from 136'-143' 0.001 347 Inter posti, also with patches of dark green chlorite 148'-148' 0.001 347 Inter Contact ground 140 partners of dark green chlorite 148'-148' 0.001 345 1628'-152.8' core aris, some failer the 148'-148' 0.001 352 1628'-153' 0.001 352 1628'-153' 0.001 355 1628'-153' 0.001 355 1628'-152.8' form 135' to 117.7' Similar to 4'-105.3' Core angles ~ 20' to core aris, some faulting, folling 108'-1712' 0.001 354 126'-1712' 0.001 355 171.4' to 175' from 179.6' to 180' from 185'4' to 195.7' 171.4' to 175' from 179.6' to 180' from 185'4' to 195.7'		and the shirt of contact dame	-		
20.6%2.6 INTER MEDIATE DIRF Similar to 105.3' to 117.7' Foliation at 132' is 30' to core arises at 134' 30' 123-123' oool 343 Ho core ares at 148', 30' to core arises at 153' 145° to core 126-133' oool 344 RKis Silicified rome with possible breecia from 138'-143' oool 345 149.8 to 152.8 with patches of dark green chlorede 143'-148' acol 347 Inver contact ground fragments 1628-158' oool 352 206'1712' TALC- CHLORIVE - CARBONATE - QUARTZ SCH15T 1026'1712' Core and to to core arise some faulting folling 1626'1712' 0001 355' 1026'1712' oool 353' to 117.7' Similar to t'- 105.3' 1026'1712' MYTERMEDIATE DIRF 124'170' JOS' to 117.7' Silicified breccia green dimilar to 149.9'-152.8' from 175'-179' ordel 356					
Similar to, 105.3' to 117.7' Foliation at 132' is 30° to core 0,400, at 134' 30° 123-128' 0.001 343 to core and; at 148' 30° to core apis; at 153' 45° to core 123' 123' 0.001 344 Wis Silicified 70re with possible breccia from 138'-143' 0.001 345 149.8' to 152.8' Bath F-Mx dissible breccia from 138'-143' 0.001 345 149.8' to 152.8' Bath F-Mx dissible breccia from 138'-143' 0.001 345 Lee product also with patches of dark green chlorite 148' 143' 0.001 348 between the Aili cied fragments 100' 149.8' 50.8' 0.001 345 between contact ground 128'-128' 0.001 355 100' 174LC- CHLORITE - CARBONDIE - QUARTZ SCHUST Similar to 4'-105.3' Core angles ~ 20° to core and some faulting, folling 128'-171.2' 0.001 3554 124'-1957 INTERMEDIATE DIKE 126'-171.7' Similar to 10' 10'.5' from 185'+1' to 195'-152.8' from 175'-179' 0.001 355 171.4' to 175' from 179.6' to 180' ; from 185'+1' to 195'-152.8' from 175'-179' 0.001 356 171.4' to 175' from 179.6' to 180' ; from 185'+1' to 195'-152.8' from 175'-179' 0.001 356 171.4' to 175' from 179.6' to 180' ; from 185'+1' to 195'-152.8' from 175'-179' 0.001 356 171.4' to 175' from 179.6' to 180' ; from 185'+1' to 195'-152.8' from 175'-179' 0.001 356 171.4' to 175' from 179.6' to 180' ; from 185'+1' to 195'-152.8' from 175'-179' 0.001 356 171.4' to 175' from 179.6' to 180' ; from 185'+1' to 195'-152.8' from 175'-179' 0.001 356 171.4' to 175' from 179.6' to 180' ; from 185'+1' to 195'' from 175'' 179' 0.001 356					
Similar to 105,3' to 117.7' Foliation at 132' is 30' to core apis at 134', 30' 123-128' even 344 to core ans; at 148', 30' to core apis; at 153' 145' to core 128-133' 0.001 345 Silicified none with possible breacia from 138'-143' even 346 149.8' to 152.8' with F-MX' disalminated and shinger 148' even 347 hu prili ; also with patches of dark green aborte 148-198' even 348 between the Alli cied fragments green aborte 149.5's even 349 lower contact ground 528-153' for 001 355 166'1712' TALC- CHL ORITE - CARBONATE - QUARTZ SCH15T 1626' 68' 0001 355 Core angles ~ 20' to core apis, some faulting folling 128-1712' MTERMEDIATE DIKE Similar to 1'-105.3' to 117.7' Similar to 105:3' to 117.7' Silicified breacia ament finilar to 149.9'-152.8' from 155' 179' over 356	20.6-162.6	INTERMEDIATE DIKE			
Foliation at 132' is 30° to core apis, at 134' 30° 125-128' 0001 343 to core aps; at 148', 30° to core apis; at 153' 145° to core 128-133' 0001 345 24' is 128-133' 0001 345 149.8' to 152.8' with F-MX disseminated and shinger 143' 148' 0001 346 149.8' to 152.8' with patches of dark green chlorite 148' 198' 0001 348 between the pilicial patches of dark green chlorite 148' 198' 0001 348 149.8' to 152.8' with patches of dark green chlorite 148' 198' 0001 348 between the pilicial patches of dark green chlorite 148' 198' 0001 348 149.8' to 152.8' with is also not patches of dark green chlorite 148' 198' 0001 348 between the pilicial patches of dark green chlorite 148' 198' 0001 350 148-1528' 182.6' 0001 350 148-1528' 0001 355 100' 171' TALC- CHLORIVE - CARBONOTE - QUARTZ SCHHST Core angles n 20° to core apis some faulting folling 168' 171.2' 0001 354' 168' 171.2' 0001 354' 168' 171.2' 0001 354' 126' 171.2' 175' 0001 355' 126' 171.4' to 175' from 179.6' to 180'; from 185:4' to 185'' to 195'' 152.8' from 175'-179' 0001 356'		Similar to 105,3' to 112 1	·	1	
40 cone app; at 148', 30' to une app; at 153' 45° to 128' 50° 123-128' 0.001 344 PX is 126-133' 0.001 345 149.8' to 52.8' Bith F-MX disseminated and stringer 138' 143' 0.001 347 h 149.8' to 52.8' Bith F-MX disseminated and stringer 143' 48' 0.001 347 h 149.8' to 52.8' and F-MX disseminated and stringer 143' 48' 0.001 347 h 149.8' to 52.8' and F-MX disseminated and stringer 143' 48' 0.001 347 h 149.8' to 52.8' and F-MX disseminated and stringer 143' 48' 0.001 349 h 149.8' to 52.8' and 50 mith patchess of dark green chlorite 148' 149.8' 0.001 349 1000000 contact ground 152.8' 0.001 350 100000000000000000000000000000000000		Foliation at 132' in 30' la	120.6-123	0-001	343
04/15 128-133' 0.001 345 149.8' 152.8' 137-138' 0.001 345 149.8' 152.8' 1344 F-MX disselminated 138-143' 0.001 347 149.8' 152.8' 1344 F-MX disselminated 138-143' 0.001 347 142.pmili 2 also 144 patches of dark green 138-143' 0.001 347 142.pmili 2 also 144 patches of dark green 1498'-188' 0.001 347 142.pmili 2 also 144 patches of dark green 1498'-188' 0.001 348 10 10 1498'-188' 0.001 350 150 1498'-188' 0.001 350 10 10 10 10 135' 135' 150' 150' 152.8' 135' 126'1712' 174C- CHLORIVE CARBONATE - QUARTZ SCHHST 162.6'168' 0.001 353 126'1712' TALC- CHLORIVE - CARBONATE - QUARTZ SCHHST <		to come ashe ' at 1401 300 in come and at 134. 30°	123-128		
Silicified rome with possible breacia from 133-138 0.001 346 149.8' to 152.8' Bith F-Mx disseminated and shinger-143'148' 0.001 347 here product also with patchess of bark green chlorite 146-149.8' 0.001 348 between the Aili cied fragments, 1498-152.8' 0.001 355 100000 contact ground 1498-152.8' 1000 355 126-171.2' TALC- CHLORITE - CARBONATE - QUARTZ SCHUST 1626'168' 0.001 352 1626'171.2' TALC- CHLORITE - CARBONATE - QUARTZ SCHUST 1626'168' 0.001 352 1626'171.2' TALC- CHLORITE - CARBONATE - QUARTZ SCHUST 1626'168' 0.001 352 1626'171.2' TALC- CHLORITE - CARBONATE - QUARTZ SCHUST 1626'168' 0.001 355 1626'171.2' Ore angles ~ 20° to core aris some faulting folling 1626'171.2' 0.001 354 124'1907 INTERMEDIATE DIKE Similar to 1053' to 117.7' Silicified, breccia gones finilar to 149.9'-152.8' from 175-179' 0.001 355 171.4' to 175' from 179.6' to 180'; from 185.4' to 195.7'		axis to cone yos; at 153, 450 to come			
149.8 to 152.8 sith F-MX disseminated and stringer 138-143' 0.001 347 like prote is also with patchess of dark green chlorite 148-148' 0.001 348 between the Aili cied fragments. 1498-1528 0.004 349 1498-1528 0.004 349 1498-1528 0.004 350 1498-1528 0.004 350 1498-1528 0.001 352 1686-1712' TALC- CHLORITE - CARBONATE - QUARTZ SCHIST Similar to 4'-105.3' Core angles ~ 20° to core arise some faulting folling 1686-1712' MTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified, breccia some faulting folling 171.4' to 175' from 179.6' to 180'; from 185.4' to 195.7' o.001 355		Sincified some und breacher have		d	
Life prilie is also with patchess of dark green chlorifee 143'-148' a.coi 348 between the sile cied fragments		149. B to 152 B Oil E- My Disoloce Bleccia from	138-143	1	
between the sili cied prograts of tark green chlorite 149-149.8 0 004 349 Lower contact ground 1498-1528 0 001 350 1528-158 0 004 351 158-152.6 0 001 352 158-152.6 0 001 352 158-152.6 0 001 353 158-152.6 0 001 353 158-152.6 0 001 353 162.6-158 0 001 353 162.6-158 0 001 354 10.2-1967 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified, breccia grees similar to 149.8'-152.8' from 175-179' 0 001 356	•	tare many and and and and and and	143'-148'		
Lower contact ground 1498-1528 • 001 350 158-158 0004 351 158-158 0001 352 158-158 0001 352 158-158 0001 352 158-158 0001 352 158-158 0001 352 158-158 0001 352 162.6-168 0001 353 168-171.2 0001 354 168-171.2 0001 354 124-1967 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified breccia zones similar to 149.9'-152.8' from 15'-179' 0001 355 171.4' to 175' from 179.6' to 180'; from 185:4' to 195.7'		and and and and and all all all all all all all all all al			
16-171.2' TALC- CHLORITE - CARBONATE - QUARTZ SCHIST 51 milar to 4'- 105.3' Core angles ~ 20° to core apis, some faulting, folling 163'-171.2' 0.001 353 163'-171.2' 0.001 354 124-1907 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Similar to 105.3' to 117.7' Silicified breccia zones Similar to 149.8'-152.8' from 175'-179' 0.001 355 171.4' to 175'; from 179.6' to 180'; from 185.4' to 195.7'		Lower contact gray depression			
166-1712' TALC- CHLORITE - CARBONATE - QUARTZ SCHIST Similar to 4'-105.3' Core angles ~ 20° to core apis some faulting folding Ind cross catting black tale meinlets 1.2-190.7 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified breecia zones similar to 149.8'-152.8' from 175'-179' 0:001 355 171.4' to 175'' from 179.6' to 180'; from 185.4' to 195.7'		and a course of course of the			
16-11/2' TALC- CHLORITE - CARBONDTE - QUARTZ SCHHST Similar to 4'- 105.3' Core angles ~ 20° to core apis some faulting, folling and cross catting black tale winlets 12-1927 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified breecia gones similar to 149.8'- 152.8' from 175-179' 0.001 355 171.4' to 175'; from 179.6' to 180'; from 185:4' to 195.7'			158-162.11	a.001	
Core angles ~ 20° to core afic, some faulting, folding ind crosse catting black tale winlets 1.2-1907 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified, breccia goves similar to 149.9'-152.8' from 175'-179' 0:001 355 171.4' to 175'; from 179.6' to 180'; from 185.4' to 195.7'	2.6-171.2	TALC- CHLARITE - CARBONIATE DUA COTTO			1000
Core angles ~ 20° to core aris some faulting folding Ind cross catting black tale neinlets 1.2-1907 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified breecia gones similar to 149.9'- 152.8' from 175-179' 0:001 355 171.4' to 175'; from 179.6' to 180'; from 185.4' to 195.7'		Similar to 4'- 105 2'	167 6-168	0.001	252
Ind cross catting black tale winlets 1.2-1907 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified breecia gover similar to 149.9'- 152.8' from 175'-175' 0:001 355 171.4' to 175'; from 179.6' to 180'; from 185.4' to 195.7'			168-1717'		355
12-1927 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified breccia zones Similar to 149.9'- 152.8' from 175'-179' 0:001 355 171.4' to 175'; from 179.6' to 180'; from 185.4' to 195.7'			100_111.2	0.001	354
12-1907 INTERMEDIATE DIKE Similar to 105.3' to 117.7' Silicified, breccia zones Similar to 149.9'- 152.8' from 171.2'-175' 0:001 355 171.4' to 175'; from 179.6' to 180'; from 185.4' the 195.7'		ming stack tale neinleta 1 10			<u>├</u> ┨
Similar to 105.3' to 117.7' Silicified breccia zones Similar to 149.9'- 152.8' from 171.2'-175' 0:001 355 171.4' to 175': from 179.6' to 180': from 185.4' to 195.7' from 175'-179' 0:001 356	1.2-1907				
Silicified breccia gones similar to 149.9'- 152.8' from 171.2'-175' 0:001 355 171.4' to 175'; from 179.6' to 180'; from 185.4' the 195.7' from 175'-179' 0:001 356		Similar to 1052' 1 1177			
1111.7 70 115, from 179.6' to 180'; from 185.41 the 195 71 and 175-179 0.001 356		Silicified bassis	171 0/-10-1		
10 100 , from 185.41 th 195 71					
				100.0	357

PAP.- 8452

PAGE 20f

EA	RTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU	PA JMBER: 2	, GE 3 1-9-	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE	T	SAYS
71.2-1907	INTERMEDIATE DIKE (CONIT)	NUMBER		
	to schioto soit and the solit to core ages parallel	184-185.7	0.001	358
	to schlotossity of talc shist and parallel to folia-	185,7'-190.7		359
	Hower contact chan at 20° 1	·	ļ	
	to schistossiti, of tale schist and parallel	<u> </u>		
	Intermediate dike - small go focuation	·		
19. 0	Locally dike contains ~ 20 20 white spots equant		<u> </u>	
	feldspar?) and some and rate (
	and hope (and onale i)			
90,7-215.5	TALC-CHLORITE-CARBONATE-QUARTZ SCHIST		·	
	Schiller 70 41-105,3	190.7-199'	0.001	360
	Schistossity very variable: from ~ 0° to ~ 80°			+
	nost- within the and minor faulting with			
P	write along Achiefossite plane			<u> </u>
	At 194 Lag: 2/2' grind marked by drillers but			
o	nly about 7'0 8) core between 184 tag and 194' tag			
	lower contact sharp at 35° to code and parallel to			
U				
5-225.5 /1	NTERMEDIATE PORPHYRITIC (?) DIKE			
	Similar to 171,2' to 190,7': locally unit contains white;	USE-JUZE	a.001	361
	and equant to clongated parallel to falicitized diverse	17.5-222.8	0.001	362
d	istingt near N 211	22,8-225.5	0-001	363
	Silicified billing and and tong			
	pto ~ 2" will at 21/05' and the only one zone			
	ated by and chalcopyrite, also some sulphills in			
h	ost nock within 14" of silicified boundary.			
co	so cutting tale veinlets in next unit.			
	Patolies & FX disseminated and in			
C o	re, up to N 2%			· · ·
				<u> </u>

PAP - 8452

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOI	P. LE NUMBER:	, age 4 U-9	58
FOOTAGE DESCRIPTION OF CORE	SAMPLE		SAYS
2255-23,1 TALC - CARBONATE - CHLORITE - QUARTZ SCHIST. light mauve	225.5-229	10.001	364
Similar to 42 to 105,3° but with tant coloured	EX. 229-231.1		365
chesty looking bands "containing up to 3% FMX dis	rse-		
minated pyrete; bands are alternating with the	la		
rich schiett: variable core angles from O	· +0		
~ 50 to core ayes, some folding + fallting seen i	asso		
cialed with cross - cutting tale veinlets			
tower contact sharp marked by slicken sid	led		
talc, at 40° to core dipo		_	
721/-220 DODDIVAL NULLE (31 00 ELLALE EL DODE			
231,1-233,2 PORPHYRY DIKE (?) OR SILICIFIED BRECCIA ZONE			
I an to dark grey massive to deformed sch	is - 231.1-233.2	0.001	366
tose mit, containing black, hard, possibly tournal	ine		_
- ana farmer of tx alosemerated pipet	7;		
	to	_	_
Lower Dontect ground handlowly oriented.			
233.2-270.6 TALC - CARBONATE - CHLORITE -QUARTZ SCHIST			·
Sincelan de H7' to 105 3' Like have		/	
and bet a second state of the second state	233.2-239	0.001	367
about 90° to core allo, from 233, 2' to ~239'	239-244	0 001	368
		0.001	369
Carbonate Conterite 3) and line Buc to dais 1076 - 60	0 % 249-254	0-001	370
pods i smit is very delanged with mentels an	a 254-258	0.001	371
tossit dolding and fourthing seen in the	chis-258-259.6	0.001	372
Cutting that weinletty at a fair to const	7		
plack spite soft, poss. tale arustale locally unit			
takes on a slight khaki tinge	••	<u> </u>	
From 259 10 259 21 + + (1) + 1 +			
about Bo% ankerite (?) and quarts veinlets and fragmen	7-2	 	+
Aleast chapter to complete the total		 	
top pertion 'quarte avin lato and libre			
to braunish-dan; no sulphides seen guy mansu	cont	<u> </u>	<u> </u>
hocal tan, calburged FX chapting his section	and and		272
	259.6-2608 259.6-2608		373
provide to fold	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.001	374 PAP - 845

	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE N	UMBER:	age 5 U-9	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE		SAYS
<u>33.2-270.6</u>	TALC- CARBONATE - CHLORITE - QUARTZ SCHIST	264-269.2		375
	possible tournaline ?) from 259.6' to 259.9' and	269.2-270.	40.005	37
	from 260.3' to 260.8; foliation at about BO to		<u> </u>	
	core ages in both sections parallel to sharp		1	
	contacts and parallel to schlatossite of talcschiet	1	1	
	host rock rich in		1	
	Unit becomes very ankerite veinlets from ~ 267.5'	1	1	1
······································	to 269.8° but still has recognizable cross cutting talc			
	veinlets (unit is tan coloured with black the veinlets	,		1
	with a prownish - light very quart vein from 269.2 to 269.4	1	1	1
	contacts about 80° to core avin; no sulphides seen.]		
······	t uner contact bleached within 12" of contact: sharp			
	at 45° to core ages parallel to cross- cutting tale		1	1
	A A A A A A A A A A A A A A A A A A A		1	
	next unit.			1
1.6-2701	QUARTZ FELDSPAR PORPHYRY DIKE (?)		0.001	-
. 210.0		270.6-274	0.025	37
	aligned to the first the mark great to take	274 -278.6	0.001	37
	variable in Tertury dike hard, silicified,			1
	the type to a solution becoming had solve			
	with recognizable feldspair and quarts phenocysto			
	towards lower contact: local Ochlorite (?) 5 pots			
	we will faracted to fourtion, light grey sugary quart	-		
	along margins (bossible, thread like the the black rebbos			
Ĭ	Pata 2) (possible threadlike tournaline vein-			
	blebs and winper place the pyrite local pyrite			
	Lower contact sharp bt 70° 1 planes			1
	it at in a former all's some			
F	unal Trequear, with trace Fx pipite near contact.			
6-2874	TALC-CARBONATE-CHLORITE-QUARTZ SCHIST			
	SUBALLOS VIS MOL A AFOLI A L'UNIT			1
		278.6'-284'	0.001	37
	The to the who with cross cutting to a in the	294-797.4	0.001	38
	ALAN N IN I WILLIAM I I I I I I I I I I I I I I I I I I	201 20111		
(200 ~ 10% milly white to translucent quarte vans			

PAGE 6 0 f

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-9"

		·		
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	AS	SAYS
287.4-	ANKERITE - TALC - QUARTZ SCHIST (ALTERATION ZONE?)	287.4-298.7	10001	381
- Mon	187.4-"3 right grey, chaotic unit with folded light grey-	288.7 -290.5	0039	382
		290.5-295		383
· · · · ·	allo containing light	295-300		384
	grey to translucent to milky white quarts veinlots usual-	300-305	0001	385
	Stort the to She the there of the the the the scheros	ļ		<u> </u>
	h Ilinger in the state of the course matching		ļ	
	La hat the the second course of the second course		ļ	
· · · · · · · · · · · · · · · · · · ·	The second production of the core and		 	
	a to the		<u> </u>	
	a fa the and a side and a side of the contraction			
	and a lange it for the good to be and			
	her from 287.8 to 288.7 unit contains about 35%-			<u> </u>
······································	45% quart veinleto similar to 287.4' to 287.8' but			
	only up to 1/2" wide.			
	From 289.7' to ~ 290.5: transfucent to milky white		<u> </u>	<u> </u>
	quarty vein, containing about 10% host rock wellesions			
	bacally with possible fournalino? Crystal 2: inco V			
	contacto jui gua			<u></u>
	From 301 to N355; Similar, to 42 to 105.3 but locally.	305-310	0 001	386
	unit has tan-khaki finge (bleached ?); mit have	310-315	0 001	387
	same texture and structure as tale schist with	315-320'	0.001	388
	local cross cutting talc verifiets	320-3244	0.001	389
	From 324, 1 To ~ 328,4 : chlorite - carbonate - quarte	324.4-328.4	0.026	390
		328.4'-331'	00·001	391
	ting with carbonate + quart bands, locally fine kink	331-336'	0.003	392
	ladding; trace FCX plite; from 324.5' to 3/24.9' finely	336'-341'	0 405	393
		341'-346'	0001	394
	alternating banda DOFX cherter looking tan-gray mate-		0.001	395
	TIVE GUARES CAMPACIAN AND A SUBMER AND A SUB	351-356	0.001	396
	or dark quart ? Black green FX-aphanitic Soft	356'-360.4	0.001	397
	and a find the state of the the that			
	to core ages in the chloritic / cherty thint are ~70-80°			
			'	

PAP. - 8452

E	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU	JMBER: <i>l</i>	_{GE} 7 1-9	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	AS	SAYS
87.4'-	ANKERITE - TALC-QUARTZ SCHIST (ALT. ZONE?) (CONT	D		
r	Apple green spots in quarts veinlet at 3.36.9			
	tion / schistossity at ~ 90° to core and here alle			
	schistose more sericitien (the kinds becomes very		_	
	man and man colour m creases)		┼────	
L	Light gray, cherty -looking zone from 351.2 to 351.3		}	
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	From 360.4' to 364.3': chlorite rich schist simi-	36.4-3643	0.007	398
	las to Jat to J28, t with possible splicitied precisited	364.3-369	0.007	399
	yone from 360.7' to 361.3"	369-371	0 001	400
	le.g. at 365.5' at ~ 370' etc.)	371-376	0 201	401
		376-381	0.012	40:
	Ex the true CV a har more than the too have a con Falling	381-386'	0.001	40:
	i dusting and a Working pretain at	<u>386'-391'</u> 791 - 2011	0.001	404
		<u>391-396</u> 396-400	0001	405
	becally faint traces of crass-cutting tale vein-	<u> </u>	1000	100
	lets (Kirk Wolded; e.g. bt~ 378); also to cal small			<u> </u>
	place folding local dark grey very soft talc bands			
	(2 no mal) parallel To banking.			
	from ~ 364' to 391'			
	1 (1a to another the to a to be to b	101-11-1		ļ
	reinlots and and in all the print of friance as	400-403 403-406	0.001	407
		406-407,5	0.001	408
	VIANTA WED DONE HOM 4075' TO HOD O'	11 - 11 - 1	0.001	410
N IV	southit single quark ven 10% host sock inclusions			411
	m otherwork to Wight greenest sugary ferting d	40.8-413	0.001	412
	Had Had 21 d 110 00 408.6 Trace Her pyrite	1 1 A	0.001	413
	4075 to the go have the to the the the the the the the the the	H6.7'-418'	0.001	414
	This went when the went went we the	48-421	0.001	415
	lask prown loosibly tournd line - with and	<u>+21'-424'</u>	0.001	416
6	riented quarty veins	100 1100/	0.003	417
	From UHI M' I ILIE / 10 + 1	127-428	0.007	<u>.418</u> 419

1d

•

• •		,	0	. 1
F	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEROLE NU	PA	GE 8	
	THE RECEIPTED DIAMOND DRILL LUG. PROPERTY: HUNTER 19, NAOLE NU	JMBER: C	イーフ	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE	ASS	SAYS
87.4-490'	ALTERATION ZONE	NUMBER		
	to light angen My magnet	11710 1/201		1110
	3" frue width quarts weight to the all to	431.2-432	0.001	419
,	Achistossiti, at ~ 90° to core allo	434-420	0.001	420
	From 427 to 427.8; FX, dark grey to bull-licht	438-443	0.00+	42
	greenest none with pylite as MX disservinations	443-448	,0.001	42
	From 431.2' to 431.6'; about 075' - Pickt Sauce day	448-456,3	0.001	424
	hicent quarts as irregular, wein get grey trans-	456.3-458	0.001	42
	Local rare for colourd FX - aplanitic chest	458-463	0.001	420
	looking banda less than I" uside	463-468	0.004	4.2
	Prom 437.1' to 437.2' ! " wide they width i po allat	473-470	<u>0.001</u> 0.004	42
	to schiptossity at 90° to core apis) with there a dike	478-483	0.004	430
	to visio mandine hand provible tournaline parallel	483-1188	0 004	43
[and possible tour	488-490'	0.001	43
	Production of the start of the			
	Solar 15 the art in the second s			
	apib). and form in direction ~ 90 to core			
	Possible FX black tourmaline (?) as very small			
	rystals generally along schistossity planes.			
	Hher I 5% FMX pyrite disse his a Ted to stringer-like			
	En 10741 + Con 403.6 40 4-85.8.	4	·	
	1 1 to the the the the second of the	<u> </u>		
	schicitic intrijel (bott nock 12) Latt weather			
	ant anona ve ~ 40-50% no substicked seen the 75% Quart			
10.0	END OF HOLE		·	

	Earth Resource Associates P.O. BOX 2150. TIMMINS. ONTARIO. P4N 7X8 CANADA DIAMOND DRILL LOG ACID TESTS = @ 50' - 63° GRID REFERENCE DIAMOND DRILL LOG @ 100' - 59.5° @ 150' - 66.5° TOWNSHIP @ 200' - 63.5° @ 250' - 63° AZIMUTH @ 300' - 63 ° @ 350' - 64.5° AZIMUTH @ 300' - 64 ° @ 450' -67.5° @ 550' - 64.5° @ 55 RILLING COMPANY MORRISSETTE FOREMAN R. Lafontain DIP TESTS: See above	INTER		
D C	@ 300 - 63 ° @ 350 -64.5° AZIMUTH @ 400 - 64 ° @ 450 -67.5 ° @ 500 -64.5° @ 55 RILLING COMPANY MORRISSETTE FOREMAN R. LafontaineDIP TESTS: see above ORE SIZE AQ CORE STORED AT: LOGGED BY R. Bald D	DIP A 50 - 67.5 ATE Feb	NGLE - ° C60 ruari	-65 0'-63. 12 /82
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
	CASING TALC SCHIST (SOAPSTONE) Black with white streaks/veinlets; very soft, can scratch core with a finger nail; white, streaks lare conformate t			
	silvery-greanist tale (very soft) with possible minor quarts whistose but very deformed folded toral micro raulting with black tale along faulto; trace, leral CX pipite cubes, disserving to throughout host			
	nock or within corborate - quarts vernlets; local light grey-tan sugary, chesty-looking somes or Bands; local 90° to 70° Ho core afis: From ~ 136,1' to 147.0'; FX black has d. tourne a line.	34 - 136.1 36.1-139	0 •061 0 •061	433 434
	cryptals and cryptal aggregates, needle-like to dots locally associated with milky white carbonate vein- lets, parallel to schiptossity/foliation of whit, at about 0° to 15° to core aging	139-144 144-147 147-149	0.001 0.001 0.001	435 436 437
	From 218.6' to ~ 240.5': chlorite-rich zone, not as soft as tale schist, dark greenish grey, with only about 10% greants = carbonate vernlets; including a zone containing about 5 to 10% dark green hard platy amphibole cryptals from 219.3' to 227.7, cryptals are randomly			
•	ordented and occur in patches or nones within this interval; this chloritic unit also costains local trace M to CX pipite as disseminated crystals, locally, unit is foliated but random direction (from 0° to about 80° to core agis); upper & lower contact irregular.			

-

PAGE 2048

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG.

T

PROPERTY: HUNTER MINE HOLE NUMBER: 4-10

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAY
4'-338.7'	TALC SCHIST (SOAPSTONE) (CON'T)	~3.5 17, core	<u> </u>	<u> </u>
	From 240.5 to 272.5 " tale schipt load to tai at + 250	2405-245	0.001	438
	quark veriles nondomly oriented, up to N 1/4" wide also			439
	Unit in general is when sale and is a family	250-255	0.001	440
	to quarte divideto in part that also due to silvery falc	255-260'	0.001	441
	throughout host rock; with cross- cutting days Dien-		0.001	442
	stack later vernlets at vational and lead to con huis	265-270	0.001	443
	- 2 grind tag at 250 tag (mobably more like, I foot			
	of missing ground core			1
	From 271.5' to 271.9': milky white cx quart vein	270'-272.5	0.001	444
	Integular and for ground contactor ~ 10% and the same			
	meligions; no sulphides seen.	2'Grinds	0.	
	From ~ 273' onward, unit contains local cherty-losking	272.5-280	0.001	445
	full of ran Dands, generally less than I" wide cont			446
	Harning FMX disservinated pyrite			
	From~ 273' to ~294', black- dark grean cross-cutting			
	11 " - A - il			
	"/10" wide > possibly could cause some ground			
	problems?); 2 Foot grind at 280 tog			
	+ 200 11 at alling guary Carbonate veinlet ~ 1" wide	285-290	0.001	447
t	a wasi	290-295,5	0.001	448
	a child to white all criped a boul	295.5-296.1	1001	449
	The call of the the share a ball in the dia	-		
/	contain a gray the unit tooks alle at might		-	
	2 Dorohung ?? Prenocupio But rang onial, possibly			
	11. The is the internet of the	296.1-300.7		450
	and contains de creasing	3007-301.8	0.001	452
		301.8-305,3	0.001	453
	bealt is to File the containing the			
	light gruy here.			
	Bond containing N Tool chatter This			
	301.5 to 301.8'			
	Dark green, very soft, unit from 305.3' to ~ 305.8'			
5	mtaning chart 10 + + 1 + 10 - 003.0			11 - 1
	- Anna carbonale reinces	305.8-310	0.001	454
		310'-315'	0 100	455

.

.

PAGE 3-F8

•

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U- 10

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
4'-338.7'	TALC SCHIST (SOAPSTONE) (CON'T)	315-320	0.064	456
7 20011	From 331' to 332.5': about 80-70% grey-prouvrish	320-325	0.001	457
<u> </u>	to milley white locally digath wigge Quarts vein-		0.001	458
	1, to? sparallel to schingssite. Athle MCX synite	329-331	0.002	459
	within this zone, quarte Day day locally appear	331-332,5	0.001	460
	to contain small events mustals and some of the	932.5-333.6	0-001	461
	quarte bando mai be por bhury dikes? a similar			
	more from 333.3' to 333.7" but Quart is white			
<u></u>	and sugary fine-grained.			
<u> </u>	From 333.8 to 334.8': irregular, coarse-grained	333.8-3348	0.001	462
	translucent to milky white quarts very with	334.8-338.7	0-001	463
	about 20% dark grey talcose host rock inclusions			
	no subplides seen lower contact sharp at 40 to			;
	core axis cross cutting colication/schiptossity of host			
<u></u>	pock firegular			
	Lower contact sharp at ~50° to core apis,~			
	parallel to talc veincets in talc schiot and to			
	foliation of next unit.			
2207020	CHLORITE SCHIST	338.7 - 343	Q+001	464
220,1- 222	Very FX, dark green moderately solt (not	343-348	0.001	465
		349-3532		466
	trife Jichlowite Mill mattrice with Pacallel	<u>- 10 - 23.4</u>		1-100
	carbonaite, ± quarts veinlets (from thread like			
	to NI" wide): BO cross cutting tale veinlets seens			1
	within first 4 inches of unit it contains about			
•	5% punite as FCX disservingted cubes and			
	stringers parallel to folistion: throughout			
	the Remainder & This unit are patches & FMX			
	Visseminated pipite less than 10%. mit is locally			
	bleached to pale grey-tan colour ?			<u> </u>
· · ·	Foliation is about 80 to 90° to core allo		 	1
	Lower contact very gradational and may be	·		_
	arbitrarily placed up to ~20' or 30' lower down	 		.
	in hole; tock type seems to be the same in next	ļ		
	mit but alteration, is increased	1	1	1

4 1

ASSA Very Similar Ack Tipe (chlorite Schist) to pre- very Similar Ack Tipe (chlorite Schist) to pre- solution of events increasing amount of grant to account events increasing amount of grant to account events of schist of the schist) to pre- solution of events of a schistic field brecciated and with tow coloured to boot gray coloured angular 30-323 and have a schistic metal of and pre- from 358.1' to 360' silicified brecciated and with tow coloured to boot gray coloured angular 30-323 and have a schistic metal of and pre- tagenerite within a generit with metal 313-357 and have dark brown ophanitic metal of wery 317-328 and have a schistic metal of and pre- tagenerite within a generit with metal 313-357 and have dark brown ophanitic metal of wery 317-328 and have dark brown ophanitic metal of wery 317-328 and have dark brown ophanitic metal of wery 318-3287 and have a schistic metal of and pre- form about 368 to 328.97 with breacted the schist 378-377 and and the breact a schist of schist 378-377 and and the breact a schist of schist 378-378 and have a schistic metal of were schist and have a schistic schist a schist a schist and and the breact a schist a schist a schist and and the breact a schist and the chlorite of schist and and the breact a schist schist and and the breact a schist and the schist and schist and the breact a schist schist and and the schist schist schist schist and and the schist schist schist and and schist schist schist schist schist schist schist schist and schist and and and schist	PROTACE DESCRIPTION OF CORE SAMPLE NO. SAMPLE AS FOOTAGE DESCRIPTION OF CORE SAMPLE AND YOR SERVICES CHIST. BEALTS, BEALT Very Similar Ask tipe (chlorite schist) to pre- 3581-360 000 ITALS WELL EXCEPT increasing amount of guart to prom 358.1 to 360': silicified brecciated angular 360-223 000 Magnette unthing a guart schieft of pre- 3581-360 000 Trans well except increasing amount of guart to prom 358.1 to 360': silicified brecciated angular 360-223 000 fragmento unthing a guart schieft of pre- 3581-360 000 Magnette unthing a guart schieft of pre- 358-357 000 Aug fragmento unthing a guart schieft of pre- 358-357 000 Magnette unthing a guart schieft of pre- 358-357 000 Magnette unthing a guart schieft of guy FX parties 358-357 000 Magnette unthing a guart schieft of guy FX parties 358-358 000 Magnette unthing the schieft of guy FX parties 378-358 000 Magnette unthing the schieft of pre- 378-378 000 Magnette schieft of guart schieft of schieft of schieft 377-378 000 Magnette schieft of schieft of schieft of schieft of schieft 377-378 000 Magnette schieft of	
Description of cone DESCRIPTION OF CORE DESCRIPTION OF CORE NUMBER ASSA Very Similar Acker Types (ALDRITE SCHIST) 3323-338 0.001 VITALS UNIT EXPERT in creasing a mount of guart to transfer winning: From 358.1. to 360': Silicified, preciated angular 360-263 0.001 in the calcured in light gray coloured angular 360-263 0.001 ransfer winning: From 358.1. to 360': Silicified, preciated angular 360-263 0.001 abog contains local branch, and particle 37,002,360 0.001 ransfer winning: From 358.1. to 360': Silicified, preciated angular 360-263 0.001 ransfer withing a glast with preciated angular 360-263 0.001 ransfer unthing a glast with a precisited angular 360-263 0.001 ransfer and particle and particle 37,002,000 ransfer and barren a glast with a precisited angular 360-263 0.001 ransfer and barren appanetic meterical (untercons) 368-385,000 rans supplicited seed on users local barren 35,000 rans 361' to 370.9' ust a possible function 328-385,000 parts and barren appanetic meterical (untercons) 328-385,000 all barren appendent to a constant for any for and	Build Record and and the second and	5
COTAGE DESCRIPTION OF CORE SAMPLE ASSA Very Similar Nock Type. (chlorite, Schist) to pressent a nock type. Sadist, 15 pressent a nock type. (chlorite, Schist) to pressent a nock type. Sadist, 15 pressent a nock type. Introduct inclusion: Sadist, 15 pressent a nock type. Sadist, 15 pressent a nock type. Sadist, 15 pressent a nock type. Introduct inclusion: Sadist, 15 pressent a nock type. Sadist, 15 pressent a	FOOTAGE DESCRIPTION OF CORE SERICITE SCH IST MUMBER AS NUMBER AT JEAN ZONE (CHLORITE AND/OR SERICITE SCH IST) 25232-356 0.001 Very Similar Nock type (chlorite Schiet) to pue 2501-360 0.001 insus unit except increasing amount of grant to From 358.1. In 360': Schied on except of grant to from 358.1. In 360': Schied one critical grant to associate nucleoning: From 358.1. In 360': Schied one critical grant to associate nucleoning: Association focul to bolt gray released angular 360-263 0.001 have bolt on a grant with angular 360-263 0.001 have bolt on a grant of the schied one for a grant of the association focul to bolt gray released angular 360-263 0.001 have bolt on a grant of the schied one for an and pather of the schied 360-263 0.001 have bolt on a grant of the schied one for and pather of the schied 360-263 0.001 have bolt deal association method and pather of the schied 360-263 0.001 have bolt deal association method and pather of the schied 360-263 0.001 have bolt deal association method and pather of the schied 350-267 0.001 have bolt deal association method and pather of the schied 350-267 0.001 have bolt deal association method and pather of the schied 350-267 0.001 have bolt deal association of the schied approximation of the schied 350-267 0.002 have bolt deal association of the schied approximation of the schied 350-267 0.002 have bolt on 375.18 on wander i work of cally taken on 372-384 0.002 a light grant of grant to cally due to and contend to fold the schied schied schied of the schied 200 0.002 have bolt on 302.000 followed and contend to fold the schied schied of schied of the 372-387 0.002 a light grant to schied schied of schied of the 372-372 0.002 a light grant of grant to grant the schied for the 372-373 0.002 have bolt on 302.000 followed approximate of the schied of the 372-373 0.002 have bolt on 375.18 on wander the schied for the 372-372 0.002 have bolt on 375.18 on wander the schied of the schied of the 372-372 0.002 have bolt on 375.1000 followed appre	06
ASSA Very Similar Ack Tipe (chlorite Schist) to pre- very Similar Ack Tipe (chlorite Schist) to pre- solution of events increasing amount of grant to account events increasing amount of grant to account events of schist of the schist) to pre- solution of events of a schistic field brecciated and with tow coloured to boot gray coloured angular 30-323 and have a schistic metal of and pre- from 358.1' to 360' silicified brecciated and with tow coloured to boot gray coloured angular 30-323 and have a schistic metal of and pre- tagenerite within a generit with metal 313-357 and have dark brown ophanitic metal of wery 317-328 and have a schistic metal of and pre- tagenerite within a generit with metal 313-357 and have dark brown ophanitic metal of wery 317-328 and have dark brown ophanitic metal of wery 317-328 and have dark brown ophanitic metal of wery 318-3287 and have a schistic metal of and pre- form about 368 to 328.97 with breacted the schist 378-377 and and the breact a schist of schist 378-377 and and the breact a schist of schist 378-378 and have a schistic metal of were schist and have a schistic schist a schist a schist and and the breact a schist a schist a schist and and the breact a schist and the chlorite of schist and and the breact a schist schist and and the breact a schist and the schist and schist and the breact a schist schist and and the schist schist schist schist and and the schist schist schist and and schist schist schist schist schist schist schist schist and schist and and and schist	ASS-4862 ALTERATION ZONE (CHLORITE AND/OR SERICITE SCHIST) BERZING ONE INTERPORT OF CONCINENT SCHIST) TO DUE SCHICT IN CONCENT OF CONCINENT SCHIST) TO DUE SCHICT IN CONCENT OF CONCENTS O	
NUMBER NOV Sery Similar Aock type (chlorite Schift) 5022'188 (0001 New white except increasing amount of quart t (archornate mining): (archornate min	NUMBER Very Similar Asck type (chlorite Schist) 352-358	
Very similar rock type (chlorite schut) to provide 361-366 0.001 visus with except increasing amount of quart to solve 360 0.001 (action at withing a since field, brecciated zone with tax (alaxies to lot give coloured angular 360-363 0.001 have coloured to lot give coloured angular 360-363 0.001 (also (ontains local bandly and particles of yes, 363-367 0.001 have dark brown opparities metrix (metrix (2000) have dark brown opparities metrix (1000) 100 subfides seener): a since and particles of yes, 363-367 no subfides seener): a since and particles of yes, 363-367 100 subfides seener): a since and particles of yes, 363-368 100 subfides seener): a since and particles of yes, 363-368 100 subfides seener): a since and particles of yes, 363-368 100 subfides seener): a since and particles of yes, 363-368 100 subfides seener): a since and particles of yes, 368-378 100 subfides seener): a since and particles of yes, 378-387 100 subfides seener): a since a possible field sind 368 1587 100 subfides seener): a since a possible field sind 378-387 100 subfides of yes, barealia zone (or chloriter) 387-387 100 solver a zone contain the set parts of yes, 378-387 100 solver a zone contain the set parts of yes, and 100 subfides (and yes, they winds to yes) and contain 100 subfides (and yes) to sall of yes and yes 100 solver (and yes) to sall of yes and yes 100 solver (and yes) to sall of yes and yes 100 solver (and yes) to sall of yes and yes 100 solver (and yes) to sall of yes and yes 100 solver (and yes) to sall of yes and yes 100 solver (yes) to sall of yes and yes and yes 100 solver (yes) to sall of yes and yes and yes 100 solver (yes) to sall of yes and yes and yes 100 solver (yes) to sall of yes and yes and yes and yes 100 solver (yes) to sall of yes and yes and yes and yes 100 solver (yes) to sall of yes and yes and yes and yes 100 solver (yes) to sall of yes and yes and yes and yes 100 solver (yes) to sall of yes and yes and yes and yes 100 solver (yes) to sall of y	Very similar rock type (chorite schist) to press 381-360 0.001 vinus with except increasing amount of guart to 381-360 0.001 (action at menary) From 35811 to 3601; silicified presciated gone into the construct of local prescienced angulater 360-383 0.001 (action a local bardy and patches of press 362-363 0.001 (action a local bardy and patches of press 362-363 0.001 (action a local bardy and patches of press 362-363 0.001 (action a local bardy and transfer 362-367 0.001 (action a local bardy and transfer 363-363 0.001 (action a local bardy and transfer 363-367 0.001 (action a local bardy and transfer 363 0.001 (action a local bardy of any 1) barder 364 0.001 (bardy draws and the anart action for a local possible for the sit 377 0.001 (bardy draws and bardy and for a local possible for the sit 377 0.001 (bardy draws and bardy and for a local possible for the sit 377 0.001 (bardy draws and bardy and for a local possible for the sit 377 0.001 (bardy draws and the barder a local possible for the sit 377 0.001 (bardy dreen the constant to cally the site 37 337 0.001 (bardy dreen the local possibly for the site 37 337 0.001 (bardy dreen the local possible for the site of and conting (bardy dreen the local possible for the site of and for the (bardy dreen for beginning of unit onwards (called and of the draw for and for and conting (bardy dreen for beginning of unit onwards (called and 371/1000 beginning of unit onwards (called a	5A 1 5
vious with except increasing amount of quart to plice 301-360 and (arbon atte, winning) From 35.81. the 360' is silicified by celevined angulate 360-363 and fragments within a consister rich matrix (grant 360-363 and have contained to light gray celevined angulate 360-363 and have contained to light gray for an official (understice) 326-363 and have contained to a possible gray for one have contained to a possible gray for and 3263-363 and have contained to be contained to contained the second have contained to be contained to contained the second and have contained to be contained to contained to contained the precede and a second possible for the second and have contained to a contained to contained to contained the precede and contained the celly takes on 372-372 a cost a light gran, tim ge (possibly function) and contained to follotion for beginning of unit onwards in a basent for to 370 years and contained to follotion for beginning of unit onwards in about 80° to 90° to core grads with only a follot on 280 to 90° to core grads with only a follot of aneas of deformation follong to using the second follow for the town includes to the follow for a similaria (second due to a site with beack hand possi by functional (and 371-381 cool (333.8 th 334.8 except with black hand possi by functional (second hose vack inclusions. hose work i	vious with except increasing amount of quart to place \$\$1-360 0.001 (arbonate withing) From 358.1 to 360': silicified brecciated angular 36-283 0.001 framento within a clart with metrix of pure 362-357 0.001 have claured to light glay relowed angular 36-283 0.001 have claure born appendix and patched of very 327-368 one of the second of and patched of very 327-368 0.001 have call born appendix and patched of very 327-368 one subbrides soull a similar of the second 268-355 0.000 have call the soull a similar of the second 268-355 0.000 have call the soull a similar of the second 268-358 0.001 have call the soull a similar of the second 268-358 0.001 have called the soull a similar of the second 268-358 0.001 have called the soull a similar of the second 268-358 0.000 how 367 to 370.9 ust a possible period and patched 378,378 0.001 about the sould be sould a similar of the second 268-358 0.001 his preceive within the bor claid 2000 (or closett) 387-387 0.000 his preceive a new contains there and possible periods 378,378 0.001 a light green things (with bor claid 2000 (or closett) 387-387 0.001 his preceive and contains the sould contain boat from 378.8 means there are periods cited nicht green things (bossibly fuch ofte 7), is 021- local green (attrice the cally core breaked) up into disked into disked of the 90° the core taken with and contain to about 80° to 90° the core taken with and the four local green 8 different taken to the sould the disk to all the sould for the sould with only a local green 381.41 a 397.11 hilly white to translate 381.318 0.001 333.814 334.8 except with black hand possibly four and the horal quart to all the sould and possibly four and the horal quart for assis and possibly four and the sould and the sould horal quart for assis and possibly four and the sould and the sould horal quart for assis and possibly four and the sould and	46
arbon ate menonics in creating a manual of quart 12 (arbon ate minor): (arbon ate minor a construction of the ceitated zone (arbon 358.1. th 360': silicified breceited zone (arbon 358.1. th 360': silicified breceited zone (arbon ate in this a construction of the matrix of power 362-367 even (arbon ate power appendix and patches of periods) are 360-263 even (arbon ate power appendix and patches of periods) are 360-263 even (arbon ate power appendix and patches of periods) are 360-263 even (arbon ate provide a second possible of the secon	action ate menancing amount of guart it (action ate menancing) with term 358.11 + 360': silicified, preciated angular 36-263 0.001 about the a claused to light gray coloured angular 36-263 0.001 about ontains local branch with metrix open 363-265 about the bown a phanitic metrix of your 363-265 hard dark brown aphanitic metrix of your 363-365 hard dark brown aphanitic metrix al (unknown 363-365 than dark brown aphanitic metrix of your 365-365 about to 370.91 with a possible any FX porphy 370-376 about to 370.91 with a possible any FX porphy 370-376 about to 370.91 with a possible any FX porphy 370-376 about the quart nears local horself harded that a the 370-377 0.0001 but form about 368 to 369.91 with precessing the 100 with 370-370 0.000 pots occurs within the brocchia 2016 (or chlorite?) 381-387 0.000 his precisa and contain the precisic 2016 (or chlorite?) 381-387 0.000 a light green tinge (possibly duck alter 3) in 0021 a light green tinge (possibly	46
From 358.1' to 360': silicified brecciated and with two coloured to light grey coloured angular 36-263 or of hagnents within a allowed grey coloured angular 36-263 or of albo contains local bands and patched of wey 367-368 or of hand, dark brown aphanitic material (unknown 368-267 or of hand, dark brown aphanitic material (unknown 368-267 or of hand dark brown aphanitic material (unknown 368-267 or of hand 367 to 370.9' with a possible dragen from 368-368 or han 367 to 370.9' with a possible for hagen 5788 or han about 368' to 368.9' with breecisted hagen 578-378 or of his here on a contain the breecis coal possible for hagen 578-378 or of his here on a contain the breecis a contain from 375.8' or of his here on a contain the breecis of the for her of 382-387 or of a light green the ge possibly fuel of the site of a col local genes (and the breecis of the site of a col local genes (and the breecis of the site of a col local genes (and the contain the contain to cally to be a material local genes (and the contain the contain to cally to be a material local genes (and the contain the contain the contain local genes (and the contain the contain the contain local genes (and the contain the contain the contain to disket " of the start of a contain the contain the contain to disket" for wands is with locally to be a material local genes (and the contain the contain the contain to disket" (a the of for the start of a contain to disket" (a the start of the start of a contain to disket") From 374' on wands (a the start of a contain due to all of the start of start of a contain the start of a contain the start with with the start of a contain (a to 371'388 or of the start with with wey incegular contacts at in lasts 371'388 or of the start with with wey incegular contacts at in lasts 371'388 or of the start with were include on a start of a start 371'388 or of the start with were included on a start of start 371'388 or of the start with were included on a start of start 371'388 or of the start with were included on a sta	From 358.1. to 360': silicified, brecolated zone with two (aloured In light give caloured angular 36-263' 0.00) framento within a general with metrix (gene 36-263' 0.00) have contains local bardy and patches of very 367-368' 0.00) have dank brown appanitic metrial (unknown 368-368' 0.00) have denoted the dank of the second patches of the second 368-368' 0.00) have been about 368' to 368.9' with breachted have 376-370' 0.001 and answ cut by gent wins, local possible fieldsite 376-377' 0.002 pots occurs within, the breaches a new (or chlorite) 392-387' 0.001 a light green the second with locally takes on 372-372' 0.002 a light green the footbury france for putter. From 375's on wards : unit locally takes on 372-372' 0.002 a light green the footbury for all of all of all of all of the breacted footbury footbury (unchalter 2) is all and how diated for the caller with and contain to diated for the second with only and contain to diated for the second with only a footbury of the second footbury for all on all of all of the breacted footbury footbury footbury of all of all of the break of the second footbury footbury of all of all of a about 80° to 90° to core burb with only a footbard of the second footburg of the second and contain to diated for the second footburg for all of all of 371'371' 0.001 a about 80° to 90° to core burb with only a footbard of the second footbard footbard footbard footbard in about 80° to 90° to core footbard with only a footbard of the second footbard footbard footbard is about 80° to 90° to core footbard on the second footbard footbard of the second footbard footbard footbard is about 80° to 90° to core footbard and footbard footbard of the second footbard footbard footbard footbard of the second footbard footbard footbard how footbard footbard footbard footbard footbard how footbar	
with ton coloured to light grey coloured angular 30-263 0.001 fragments within a general wich matrix i pone 362-367 0.001 above contains local bands matrix i pone 362-367 0.001 hard dark brown ophanic matrical (unknown 362-368 0.001 hard frage and 370, 0.001 hard frage of the 368 to 368, 97 with breechtad harden 376-378 0.001 and trass cut by quest wins local possible fichers 377 0.001 become unithed the breectia gark (or chlorite) 382-387 0.001 has been a me contain the as for possible fichers 377 0.001 has been a me contain the as for possible fichers 182-387 0.001 has been a me contain the as for possible fichers 182-387 0.001 has been a me contain the as for possible for the set of the local genes of generate the set of possible for the set of the local genes of generate the contain the set of the set of the hold dister of all of the set of the set of the set of the hold dister of all of the set of the set of the set of the local genes of generate the set of the set of the set of the generate of generate for a set of folging to under local genes of deforming of unit onwards in about 80° to 90° to core and units only a function from beginning of unit onwards in about 80° to 90° to core and units only a function with the set of folging to under generate of generate for set of the set of set of 1371-371 0.000 (a set with we inveged a for a set of 1371-371 0.000 (generate for the set of the set of the set of the set of 1371-371 0.000 (hold dister) the set of the set of the set of the set of 1371-371 0.000 (generate for the set of the set of the set of the set of 1371-371 0.000 (hold dister) the set of the set of the set of the set of 1371-371	with ton (alarred to light grey caloured and that 200-263 0.001 frequents within a glast hick metrix is gone 363-367 0.001 hand, dark brown ophanitic material (unknown 201-368 0.001 hand dark brown ophanitic material (unknown 201-368 0.001 hand dark brown ophanitic material (unknown 201-368 0.001 hand on about 368 to 368.9 with broke provide 370-370 0.001 about the guest reins, local possible fields 377-370 0.001 his breenia are contain trace of provide 377-372 0.002 his breenia are contain trace of provide 377-372 0.002 cife fride green the glast to call to all to all of 2772 0.002 cife fride green the glast to call to all to all to all of 2784 0.002 cife fride green the glast to carbonata windles on 372-372 0.002 cife fride (nather off an ellowide off of 2) is all - local gones of guarts to carbonata viewer and contain to diskat. Form 386.4 to 397.1 (all of 200-200) into diskat. Form 386.4 to 397.1 (all of 200-200) diskat. Form 287.4 to 397.1 (all of 200-200) form 287.4 to 397.4 (all of 200-200) here a guart form 200-200 (all of	
fragmento within a attract rich matrix is gone 200 200- aboo contains local bandes and patches of very 357-368 one hard dark brown ophanitic material (unknown 365-357 one) no substides sensi: a sinilar gone on euror 368-357 one from 367 to 370.9' with a possible que EX parthy 370-3768 one attact by quest 368 to 368.9' with precedent marked 370-378 one attact by quest wins local possible fields 177-381 one possible fields 177-381 one attact by quest wins local possible fields 177-381 one attact by quest wins local possible fields 177-381 one possible fields 177-381 one attact by quest wins local possible fields 177-381 one attact are contain trace Fr purite attact green tinge (possible) fucked to and a light green tinge (possible) fucked to and for about 90 to core put to and contain to diskes ' for allow of 90 to core put for onwards a substitic field of 90 to core put to onwards a substitic field attact for the only a possible of the one of the only a for allow of 90 to core put for only a function for bog marks for one of the only a function with very institution for and contain to diskes ' a about 80° to 90° to core put on the only a function for bog one of the one of the only a function with very institution for and contain to about 80° to 377.' in wards for a start of the one of the only a function with very incertain for and contain to about 80° to 377.' in wards for all one of the one of the one of the only a function with very incertain for and contain to about 80° to 377.' in wards for all one of the one of the one of the one of the one of the for all one of the one of the one of the one of the one of the for all one of the one of the one of the one of the one of the for all one of the back, hard possibly for male at 1837.' 370 one of hogeneous making appear and an one of the one of the one of the one of the hogeneous making and the one of the	Pragmento within a attract with met in operate 36-383 0.001 aboo (ortains local bando) and patches of very 367-368 0.001 head dark brown ophanitic metrical (unknown 369-387 0.001 how supplides seen): a similar grace or europ 369-388 0.001 how 367/ to 370.9' with a possible grue FX portru 3001-3788 0.001 about 368 to 368.9' very breechted headers 3189-389 0.001 add provos cut by gutt reins local possible fields 1817-38 0.001 his breecia and contains local possible fields 1817-387 0.001 a light men contains there for prive 382-387 0.001 a light men tinge (possibly fields) to 281-387 0.001 a light men tinge (possibly fields) to 281-487 0.002 a light men tinge (possibly fields) to 281-487 0.002 a light men tinge (possibly fields) to 281-487 a light men tinge (possibly fields) to 281-487 bound on the second of the second of the second of the second bound of the second of the second of the second of the second bound of the second of the second of the second of the second of the second a light men tinge (possibly fields) to 2814 0.002 a light of guarts to carbon verified parties on 372-384 0.002 a light of the second of	
abo (ontain local bundar and patched Sport 35-357 and 1000 (1000) 357-369 (1000) (1000) 257-369 (1000) (1000) 257-369 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-2569 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (1000) 256-256 (1000) (abo contains local brands and patched of yew 357-368 0.001 hard, dark brown ephanitic natival (unknown 357-368 0.001 no sulphides see 2): a similar pate of curso 3657-368 0.001 how 367 to 370.9 with a possible awy EX porphy-367,568 0.001 and prove the second second possible fields it 377-387 0.001 the prove withing the problem of possible fields it 377-387 0.001 this breecia are contained to a possible fields it 377-387 0.001 this breecia are contained to a possible fields it 377-387 0.001 this breecia are contained to a possible fields it 377-387 0.001 this breecia are contained to a possible fields it 377-387 0.001 this breecia are contained to a possible fields it 377-387 0.001 this breecia are contained to a possible fields it 377-387 0.001 a light green tinge (possibly furchalte?) is call to field a prove the second possible fields on 372-387 0.002 a light green tinge (possibly furchalte?) is call to field on a field of the contained to a possible field area of a prove to a contained to a contained to field in field at a contained to mine and for a base of a prove beginning of unit on wards in about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far about 80° to 90° to core by to unit on wards far	4
no supplied sould a similar pres constraint (unknown 315, 315, 315, 000) no supplied sould a similar pres constraint a constraint of the sould be applied to the a possible grave for physical states and the sould be applied to the possible for the source of the source	no sulphiles seen? a sphanitic material (unknown) 263-268 000 no sulphiles seen? a similar pres occurs 268-368 000 her 367 to 370.9 with a possible guy FX porphy 3703 376 0001 and brack with by quark wins local possible fichsite 377-387 0001 pots accur within the breckia gold (making 1558-377 0001 his precia and contains trace FX purite. 387-387 0001 his precia and contains trace FX purite. 387-387 0001 a light green tinge (possibly purchaste?), in 2010 a light green tinge (possibly fichaste?), in 2011 local gones of guarts to contain with locally takes on 372312 0002 a light green tinge (possibly fichaste?), in 2011 local gones of guarts to carbonate with only a host distant / Schioto Setty; locally core breaked up into distant / Schioto Setty; locally with only a deur local gones of deformation / follows to using a deur local and a 374' on wards. From a 396.4' to 397.1': hilly white to translucent 3844 371.398 0.001 333.8' 4 334.8' except with black hard possibly for malle host with were includent, hard possibly for and the 371.398 0.001 status to a local and a status on the local and host work of the status of the sta	4
no sulphides seen?! a similar gree crusp 1363-358 even from 3677 to 370.9' with a possible quy FX porphy-370; 358 even by from about 368 to 368.9' with precisited harding 3758-379 even ad answer of the grant wins local possible fickstre 377-387 even pots occurs withing the precise que (or chlorite?) 382-387 even this precise a new containent trace FX pyrite. From 375,8' onwards: unit locally takles on 392-387 even a light green tinge bossibly fuch site?), is serie- local genes (grants to carbonite?), is serie- local genes (grants to carbonite?), is serie- local genes (grants to carbonite?), is serie- to follotion / chioto series for all on and containent for about 80° to 90° to core give with only a for about 80° to 90° to core give with only a for a light of the series of all on the only a for about 80° to 90° to core give with only a for about 80° to 90° to core give with only a for a series of deformation folding towards for a series of deformation folding towards is about 80° to 90° to core give with only a for a series of deformation folding towards for a series of deformation folding towards for about 80° to 90° to core give with only a for a series of deformation folding towards for about 80° to 90° to core give with only a for a series of deformation folding towards for a series of deformation for a series of se	no sulphides seed): a similar gove of cursor 368-3681 0001 from 3671 to 370.9 with a possible any FX porphy 3703-3788 0001 and mass cut by quarts veins local possible fullers 377-387 0.001 From about 368 to 368.9 with predictated nations 3758-379 0.001 From about 368 to 368.9 with predictated nations 3758-379 0.001 From about 368 to 368.9 with predictated nations 375-387 0.001 From 375.8 on wards the predict a gove (or chlorite) 387-387 0.001 a light green time trace FX purite. 387-387 0.002 a light green time (possibly furthalt 3) is olding for a predict of the predict of the second of t	4
hon 367 to 310.4 with a possible grue FX porphy-3709 3768 hy hom about 368' to 368.9 (vit) breecisted marine 3758-379 e	han sold to 310.4 with a possible guy. FX porphy 3769 3758 My han about 568 to 368.9 vit) bulcisted harding 5758.379 Spots accur within the breaking grave (or chlorite?) 387-387	4
by from about 368 to 368.9 with breached harding 3/23,8 0.001 and brows cut by quest veins local possible fuchs (137-382 0.001 ports occurs withing the precessa 200k (or chlorite?) 382-387 0.001 this breached 200k (or chlorite?) 382-387 0.001 a light green tinge (possibly fuchs 170?), is 201- cite rich (rather than chlorite rich and contain local zones () quest to cally takes on 372'364 0.003 cite rich (rather than chlorite rich and contain local zones () quest to cally core breaked up into disks for about 80° to 90° to core taylo with only a cite rich and some beginning of writ onwards is about 80° to 90° to core taylo with only a foldation fold other for all only a local zones of deforming of writ onwards is about 80° to 90° to core taylo with only a foldation of the other schirts 55' ty in very re- gular fold of a 374' on wards. From 396.44' to 397.1': Milky white to translucent 3944-5171 0.001 (323.8'th 334.8' except with black, hard possibly for maline 398-403 0.001 (403-408 0.001 () disks () fold quarts rich black, hard possibly for maline 398-403 0.001 () host vack inclusions. host ward inclusions of the solid	hy form about 368 to 368.9 vary) breached have 303-303 0.001 add aross cut by quert veins, local possible fuctority, 378-387 0.001 Pots occurs within the breece a zone (or chlorite?) 397-387 0.001 this breached are contained trace FX pyrite. 327-372 0.001 a light green tinge (possibly fuctorite?) in 287-387 br>it of alter in 1 schisto set to call the rich and contained to fallet in 1 schisto set to sheak the print on wards is about 80° to 90° to core pyle with onwards is about 80° to 90° to core pyle with only a for a state of the state of the only a due to cal zones of deforming of write only a due to a zones of deformation for the only a due to cal zones of deformation for the only a due to a zone of deformation for the state of the only a due to a zone of deformation for the only a due to a zone of deformation for the state of the only a due to a zone of deformation for the state of the only a due to a zone of deformation for the state of the only a due to a zone of deformation for the state of the stat	4
and aross cut by quark wins, local possible technic 158-37 0.002 pots occur withich the preceia 2006 (or chlorite?) 382-387 0.001 this precia new contained trace FX pyrite. 387-382 0.002 a light gren, tinge (possibly ducholte?), is ceri- local gren and analy init locally takes on 322'364 0.003 cite rich (rather If do chlorite rich) and contain local gones of quarks to carbonate veinlete, parallel to pleation / schioto solity; locally core breaks of up into disks: Foliation from beginning of unit onwards local gren 376,4 on wards. Local grent; fible along to the preak of up into disks: Foliation from beginning of unit onwards local grent; fible along folding forwards local grent; fible along folding forwards local grent; fible along schisto set of solid grent a along to a solid core breaks of up into disks: Foliation from beginning of unit onwards local grent; fible along folding forwards beginning of unit; fible along folding forwards grent win with very integral contacts similar to 3211/398 0.001 / 323.8 4 324.8 except with black, hard possibly forwards hocal grent, rich grent which have an inho- hocal grent, rich grent which have an inho- hocal great, rich green which have an inho- hocal great, end	and brows cut by quart views, local possible fields 15.837 800.002 Ports occur within the precess a gover (or chlorite?) 322-387 0.001 this precess are contained trace of pyrite. 387-387 0.001 From 375,8 onwards: unit locally takes on 372-3864 0.002 a light green, tinge (possibly furchastre?) is certi- local gover of guarts to cally core breaks of up to platter of any core core pyrite precision of the precess to about 80° to 90° to core pyrite precess of up for about 80° to 90° to core pyrite only a light green beginning of unit onwards is about 80° to 90° to core pyrite only a fur local gover by the precess of the precess of the precess precess of the precess of the preces of the precess o	4
ports occurs withink the precess zok (or chloriter) 387-387 0.001 this precess are contained trace to pyrite. 387-387 0.001 From 375.8 on wards: unit locally tokes on 372-3864 0.002 a light green, tinge (possibly fuchaite?), is serie- local zones () greats to carbo note vicin leta contained to follotion / Schisto sorty; locally core breaked up into disks? Foliation, from beginning of unit onwards local zones () greats to core by with only a to follotion / Schisto sorty; locally core breaked up into disks? Local zones () greats to core by with only a foliation, from beginning of unit onwards local zones () greats to core by with only a foliation, from beginning of unit only a local zones () deformation / folding towards local with were integrated on the precedent of the sort great a sourt for the sort of schisto sort of the	spots occurs within the breaction 2014. (or chlorite?) 307-301, 0:001 this breaction are contained trace to putte. 287-372 0:001 a light green tinge (possibly fuchoste?), is ceri- local green linge (possibly fuchoste?), is ceri- local green of greats to carbonate wither prich and contain to filettion / Schioto Stity; locally core breaked up into disks): Estimation from beginning of unit onwards is about 80° to 90° to core and with onwards local green of greats to core and unit onwards is about 80° to 90° to core and unit onwards is about 80° to 90° to core and unit onwards beginning of unit; this of a formation / folding towards Beginning of unit; this of a formation / folding towards Start win with very inegalar contacts similar 384-3771 0:001 333.8' to 334.8' except with black, hard possibly formaline 397-1'398 0:001 sich host vack inclusions. hocal guests - rich green which have an inho- 408-483 0:001 hocal guests - rich green which have an inho- 408-483 0:001 site host vack inclusions. hocal guests - rich green which have an inho- 408-483 0:001 site host vack inclusions. hocal guests - rich green which have an inho- 408-483 0:001 hocal guests - rich green which have an inho- 408-483 0:001 hocal guests - rich green which have an inho- 408-483 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guests - rich green which have an inho- 408-485 0:001 hocal guest - rich green which have an inho- 408-485 0:001 hocal guest - rich green which have an inho- 408-485 0:001 hocal guest - rich green which have an inho- 408-485 0:001 hocal guest - rich green which have an inho- 408-485 0:001 hocal guest - rich gr	4
this prescia and contains trace of pyrite. From 375,8' onwards: unit locally takes on 392-387 0.001 a light green, tinge (possibly fuchalte?) is seri- cite rich (rather than chlorite rich) and contains local genes of quarts + carbonate veinleto, parallel to foliation / schisto soit; locally core breaked up modelated Foliation for beginning of unit onwards is about 80° tol 90° to core tails unto only a der local genes of deformation folding towards beginning 0 unit; the isoto ssi ty is using to may re- gular, for 374' on wards. Start win unto very integral contacto similar to 397,1'398 0.001 4 start win unto very integral contacto similar to 397,1'398 0.001 4 is about 80° to 397,1' milly white to translucent 384+377, 0.001 4 prest win unto very integral contacto similar to 397,1'398 0.001 4 start win unto very integral contacto similar to 397,1'398 0.001 4 start win unto very integral contacto similar to 397,1'398 0.001 4 beginning 0 mit very integral contacto similar to 397,1'398 0.001 4 prest win unto very integral contacto similar to 397,1'398 0.001 4 begin to a 396,4' to 397,1' milly white to translucent 38,4'377, 0.001 4 start win unto very integral contacto similar to 397,1'398 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have an into 408-408 0.001 4 becal guarts rich gones which have	this precua are contained trace. For pyrite. (57 chloriter) 322-327 0.001 From 375,8' on wards : unit locally takles on 312-3124 0.002 a light greens tinge (possibly fuchoste?), is seri- cite frich (rather than chloriter rich) and contained local zones of grant t carbonate verifleta, parallel to faction / schisto 551 ty; locally core breaks // up modeliaks is about 80° tol 90° tol core laylo unit onwards is about 80° tol 90° tol core laylo unit only a fuer local more of deformation / folding towards gular for ~ 374' on wards. From ~ 396.4' to 397.1': Milky white to translucent 324.4'371 0.001 333.8' to 334.8' except with black, hard possibly for maline 378-403 0.001 is host vock inclusions. hosal guart - rich zone which have an inho-408-4432 0.001 hosal guart - rich zone which have an inho-408-4432 0.001 hosal to alone appear ance some what 4132.4'55 0.001 hosal to alone of more which have an inho-408-4432 0.001 hosal to alone of an ance some which have an inho-408-4432 0.001 hosal to alone of more some which have an inho-408-4432 0.001 hosal to alone of more some which have an inho-408-4432 0.001 hosal to alone of more some which have an inho-408-4432 0.001 hosal to alone of more some which have an inho-408-4432 0.001 hosal to alone of alone of the for an ance of the for alone of the for alone of the of the for an alone of 0.001 hosal to alone of the for an ance of 0.001 hosal to alone of the for alone of 0.001 hosal to alone of the for alone of 0.001 hosal to 0.001 h	4
From 375,8 on wards : unit locally tokels on 32'364 0.001 a light green, tinge (possibly fuchality) is seri- cite rich (rather than chlorite rich) and contain local zones (guart + carbonato veinleto, panelle to foliation / 3chisto 551 ty; locally core breaks/ up into disks) Foliation from beginning of unit onwards is about 80° to 90° to core byllo with only a level 10 cal zones of deformation / folding towards gulas for 374' on wards From ~396.4' to 397.1': Milky white to translucent 324.4'377.1 0.00) a guart vin with very irregular contacts similar to 397.1'398 0.001 a host vark inclusions, host possibly towards of the folding towards is about 80° to 2000 and schisto 551 ty is very re- gulas fold of 374' on wards for a start vin with very irregular contacts similar to 397.1'398 0.001 a host vark inclusions, host possibly four meline 388.4'377.1 0.001 a host vark inclusions, host possibly four meline 388.4'37.1 0.001 a host vark inclusions, host have an inho-408'4.4'2 p.001 b	From 375,8' onwards: unit locally takles on 372'376,0001 a light green, tinge (possibly such ste?), is seri- cite rich (rather than chlorite rich) and contain local zones () quarts & carbonate veinleta, parallel to foliotion / Schisto soit; s locally core breaked up modishes) Execution from beginning of unit onwards is about 80° tol 90° tol core and unto only a four local zones of deformation / folding towards beginning 0 unit: Advisto 55: ty is very re- gular from ~ 374' on wards. From ~ 396.4' to 3971': Milky white to translicent 384-377 0.001 333.8'h 334.8 except with black, hard possibly four maline 388-437 0.001 is host vack inclusions, hard possibly four maline 388-437 0.001 disch distant of the black, hard possibly four maline 388-403 0.001 disch to set vack inclusions, hard possibly four maline 388-403 0.001 disch to set vack inclusions, hard possibly four maline 388-403 0.001 disch to set vack inclusions, hard possibly four maline 388-403 0.001 disch to set vack inclusions, hard possibly four maline 388-403 0.001 hocal quarts-rich zones which have an inho-408-403 0.001 hocal guarts of a possible form the form of the distant of 0.001 hocal quarts-rich zones which have an inho-408-405 0.001 hocal quarts-rich zones which have an inho-408-405 0.001 hocal guart (not appear ance somewhat 413,2-405 0.001 hocal distante appear ance somewhat 413,2-405 0.001	4
a light green, tinge (possibly fuchalte 3), in seri- cite rich (rather than chlonite rich) and contain local zones () quarts + carbonate venleta parallel to foliation / schioto sorty; locally core breaked up into disks) Foliation from beginning of unit onwards is about 80° to 90° to core taylo with only a beginning of wit; flot atton / folding towards Beginning of wit; flot atton / folding towards gular from 374' on wards. From ~396.4' to 397.1': Milky white to translucent 3864-377.1'398 0.001 4 333.8'h 334.8' except with black, hard possibly fourneline 398.4'so or 1 rich host vack inclusions, Local quart-rich zones which have an inho-408-4132 0.001 4 station of an ance of the series of the se	a light green tinge (possibly fuchalter) in Biz-Sibit 0:002 cite rich (rather If an chlorite rich and contain local zones (guarts + carbonate rich) and contain to felicition / Schioto SSI ty ; locally core breaks // up into disks beginning 8/ unit onwards for about 80° +00 90° +0 core bylo with only a fur local zones 8/ deformation / folding towards beginning 8/ unit; folication / schipto 581 ty do. very 11- guart win with very irregular contacto similar to 3971/398 0:001 333.8'th 334.8' except with black, hard possibly tourmeline 398-403 0:001 hocal quarts - rich zones which have an inho-408 4432 0:001 mogeneous, massive appear ance somewhat 413.2485 0:001 Sidular to a bore cia but "fragments" are podes 4155-408 0:001	4
cite rich (rather It down chlorite rich) and contains local zones of guarts & carbonate veinlets, parallel to foliation / Schioto stity; locally core breaked up into disks: Foliation from beginning of unit onwards is about 80° tol 90° to core and with only a leur local zones of deformation folding towards beginning 0 unit; toliation f schisto 55: ty is. very re- gular from ~ 374' on wards. From ~ 396.4' to 397.1': Milky white to translucent 3864-5771 0.001 (333.8' h 334.8' except with black, hard possibly fourmeline 397-403' 0.001 (host wich inclusions, hocal quarts-rich zones which have an inho-408-432 p.001 (cite rich (rather than chlorite rich) and contain local zones of guarts + carbonate veinleta, parallel +0 foliation / 3 chisto 391 ty 5 locally core breaked up mode disks Foliation from beginning of unit onwards is about 80° tol 90° to core byth with only a fur local zones of deformation folding towards beginning 0 unit; Ali atom f schisto 551 ty is very re- guart from ~374' on wards. Trom ~396.4' to 397.1': Milky white to translucent 3864-3971 0.001 933.8' to 334.8' except with black hard possibly towards in 398-403 0.001 pick host vock inclusions. hocal quarts-rich zones which have an inho-408-403 0.001 sideilar to a love cara but "fragments" are pods 4155-405 0.001	4
local zones of guarts & carbonate veinleta, parallel to foliotion / Schioto serity; locally core breaked up Foliation from beginning of unit onwards is about 80° tol 90° to core and with only a fuer local zones of deformation / folding Folwards Beginning O unit; Altiation / schisto 55: ty is very re- gulas from 374' on wards. From ~396.4' to 397.1': Milky white to translucent 3964-3771 0.00) a guart vin with very irregular contacts similar to 3771'398 0.001 a 933.8'to 334.8' except with black, hard possibly four medine 398-403's 0.001 a rich host vack inclusions. hocal quarts-rich zones which have an inho-408-4432 0.001 a mogeneous massive appear ance some what 443,2-455,0.001 a	local genes of guarts + carbonate veinleta, parelled +o foliotion/schistossity; locally core breaked up into disks: Foliotion from beginning of unit onwards is about 80° tol 90° to core taylo with only a deux local genes of deformation folding towards Beginning 0 with toliotion schistossity in very re- guart win with very irregular contacts similar to 37.1'398 e.001 333.8'h 324.8' eycept with black hard possibly towneding 398-403' o.001 ich host vock inclusions, hocal guarts-rich goves which have an inho-408-4132 p.001 indexed appear ance somewhat Historia to solo on the solo of the sole of the solo	ļ
to toleation / Schisto sorth; locally core breaked up into disks Foliation from beginning of unit onwards is about 80° 401 90° 40 core and with only a feur local zones of deformation / folding towards beginning 0 unit; foliation / schisto 551 y is very re- gular from ~374' on wards. From ~396.4' to 397.1': Milky white to translucent 396.4' 597.1 0.001 4 gular win with very irregular contacto similar to 397.1':398 0.001 4 333.8' 40 334.8' eycept with black, hard possibly four maline 398-403' 0.001 4 rich host vack inclusions, hocal quarty-rich zones which have an inho-408-4132 0.001 4	to folicition / Schisto sorty; locally core breaked up modisks: Folicition from beginning of unit onwards is about 80° tol 90° to core bylo with only a lever local zones of deformation / folding towards Deginning & unit; flotiation / schisto 52; ty is very re- gular from ~374' on wards. From ~396.4' to 397.1': Milky white to translucent 38:4-577 0.001 323.8'to 334.8' except with black, hard possibly towneline 398-403 0.001 hocal quarts-rich zones which have an inho-408-4432 0.001 mogeneous, massive appear ance somewhat 413.2-4155 0.001 Sidvilar to a love cia put "fragments" are pods 4155-426 0.001 1001 - 400 - 415.5' and 420.415.5' and 420.445.6' 0.001	
les about 80 401 40° 40 core built with only a leur local zones of deformation / folding towards Beginning & unit: Holiation / schipto 55, 1 y is very re- gular from ~374' on wards. From ~396.4' to 397.1': Milky white to translucent 3864'-377.1 0.00) a guart vin with very irregular contacto similar to 397.1':398 0.001 a 333.8' 40 334.8' eycept with black, hard possibly tourmeline 398-403' 0.001 a rich host vock inclusions. Local quarts-rich zones which have an inho-408'-443.2 0.001 a mogeneous massive appear ance somewhat 413,2-455 0.001 a	be about 80 tol 90° to core by b with only a Seur local noneo of deformation / folding towards Deginning Q unit; toliation / schipto 55: Ty is very re- gular from ~ 37't' mwards. From ~ 396.4' to 397.1': Milky white to translucent 3864'-3771' 0.00) 333.8' 40 334.8' except with very irregular contacto similar to 3771'-398 0.001 333.8' 40 334.8' except with black, hard possibly four maline 398-403' 0.001 host vock inclusions. Local quarts-rich gores which have an inho-408-413.2 0.001 mogeneous massive appearances somewhat 413.2-405 0.001 situilar to a love cia but "fragments" are podo 4155-4206 0.001 All guarts (not angular); from 413.2' to 415.5' and 4206'4256 0.001	ļ
Les about 80 400 40° 40 core built with only a leur 1° cal zones of deformation / folding towards Deginning 0 unit: Holi ation / schipto 55, 1 y is very re- gular from ~ 374' on wards. From ~ 396.4' to 397.1': Milky white to translucent 3864'-377.1' 0.00) a guart vin with very irregular contacto similar to 397.1'398 0.001 a 333.8' 40 334.8' eycept with black, hard possibly tour meline 398-403' 0.001 a rich host vock inclusions. Local quarts-rich zones which have an inho-408'-443.2 0.001 a mogeneous massive appear ance somewhat 413,2-455 0.001 a	be about 80 tol 90° to core by b with only a feur 1° cal nonea & deformation / folding towards Beginning Quint: Foliation / schipto 55: Ty is very re- galar from ~ 37't' on wards. From ~ 396.4' to 397.1': Milky white to translucent 3864'-3771' 0.00) 333.8' to 334.8' except with very irregalar contacto similar to 3771'-398 0.001 333.8' to 334.8' except with black hard possibly four maline 398-403' 0.001 host vock inclusions. Host vock inclusions. Host of massive appear ance somewhat Historica for 0.001 sideilar to a love cia but "fragments" are podo History 0.001 Decal quarts - rich 2000 which have an inho - 408-413.2 0.001 sideilar to a love cia but "fragments" are podo History 0.001 Decal quarts - rich 2000 which have on inho - 408-413.2 0.001 sideilar to a love cia but "fragments" are podo History 0.001 Decal quarts - rich 2000 which have on the podo History 0.001 Sideilar to a love cia but "fragments" are podo History 0.001 Decal quarts - rich 2000 which have on the podo History 0.001 Sideilar to a love cia but "fragments" are podo History 0.001 Decal quarts - 408 - 405 0.001 Decal quarts - 1000 with 0.0001 Decal quarts - 1000 with 0.0001 Decal quarts - 1000 with 0.0000 which 0.0000 with 0.00000000000000000000000000000000000	ļ
Level 30° 400 40° 40 core bills with only a level 1° cal zones of deformation / folding towards Deginning 0 mit; Holi ation / schipto 55° 4 is. very re- gular from ~ 374' on wards. From ~ 396.4' to 397.1': Milky white to translucent 3864'-377.1' 0.00) 4 guart vin with very irregular contacto similar to 397.1'398 0.001 4 333.8' 40 334.8' except with black, hard possibly tour meline 398-403' 0.001 4 rich host vock inclusions. Local quarts-rich zones which have an inho-408'-443.2 0.001 4 mogeneous massive appear ance somewhat 413.2-455 0.001 4	be about 80 tol 90° to core by the with only a deur local nones of deformation / folding towards Beginning Quint: Folication / schipto 55: ty is very re- galar from ~ 37'4' on wards. From ~ 396.4' to 397.1': Milky white to translucent 3864'-3771'0.00) 333.8' to 334.8' except with very irregular contacts similar to 3771'-398 0.001 333.8' to 334.8' except with black, hard possibly four maline 398-403' 0.001 ich host vock inclusions. Host wards. Host wards a pres which have an inho-408-413.2 0.001 sideilar to a love cia but "fragments" are podo 4155-4206 0.001 Sideilar to a love cia but "fragments" are podo 4155-4206 0.001	
Beginning Q unit; Foliation/schipto 55: 4 is very re- gular from ~374' on wards. From ~396.4' to 397.1': Milky white to translucent 3864-3771 0.001 & guart vin with very irregular contacto similar to 397.1'398 0.001 & 333.8'40 334.8' except with black, hard possibly tour maline 398-403' 0.001 & nich host vock inclusions, hocal quarts-rich zones which have an inho-408-4132 0.001 & mogeneous massive appear ance somewhat 413.2-405 0.001 &	Beginning Quit; Foliation/schistossi ty is very re- galar from 374' on wards. From ~396.4' to 397.1': Milky white to translucent 3864-397.1'0.00) Quart vin with very irregular contacto similar to 397.1'-398 0.001 333.8' & 334.8' eycept with black, hard possibly tour maline 398-403' 0.001 nich host vock inclusions, hocal quarts-rich goves which have an inho-408-413.2 0.001 mogeneous, massive appear ance somewhat 413.2-415.5 0.001 situitar to a bree cia but "fragments" are pods 4155-420.6 0.001	
Beginning & unit: Addiation / schisto 55: 4 is very re- galar from ~ 37'4' on wards. From ~ 396.4' to 397.1': Milky white to translucent 396.4' 397.1 0.00) & guart vin with very irregalar contacto similar to 397.1'398 0.00! & 333.8' Ho 334.8' eycept with black, hard possibly tourmaline 398-403' 0.00! & rich host vock inclusions, hocal quarts-rich zones which have an inho-408-4132 0.00! & hogeneous, nassive, appear ance of some what 413,2-4155 0.00! &	Beginning & Unit; Poliation/schipto 551 4 is very re- girlar from ~374' on wards. From ~396.4' to 397.1': Milky white to translicent 3864-3771 0.00) 2000 2001 233.8' 40 334.8' except with black hard possibly tour meline 398-403' 0.001 333.8' 40 334.8' except with black hard possibly tour meline 398-403' 0.001 rich host vock inclusions, hocal quarty-rich zones which have an inho-408-413.2 0.001 mogeneous massive appearance somewhat 413,2'408 0.001 situitar to a bree cia but "fragments" are pods 4155-406 0.001	ļ
Gillan thom 374' on wards. From ~ 396.4' to 397.1': Milky white to translucent 396.4'-3771 0.00) a guart vin with very irregular contacto similar to 397.1'-398 0.001 4 B33.8' to 334.8' except with black hard possibly tour meline 398-403' 0.001 4 rich host vock inclusions. Host wock inclusions. Host work inclusions. Host wock inclusions	Jichan from 374 on wards. From 396.4' to 397.1': Milky white to translucent 3864-597.1 0.00) guart vin with very irregular contacto similar to 397.1'-398 0.001 333.8' to 334.8' eycept with black, hard possibly tour meline 398-403' 0.001 nich host vock inclusions. Hocal quarts-rich zones which have an inho-408-443.2 0.001 mogeneous massive appearance somewhat 413.2-4155 0.001 situatar to a lovec cia but "fragments" are pods 4155-420.6 0.001 of quarts (not angular); from 413.2' to 415.5' and 4206-425.6 0.001	
Frond ~ 396.4' to 397.1': Milky white to translucent 396.4' 597.1 0.00) a guarty vin with very irregular contacto similar to 397.1'-398 0.001 4 B33.8' to 334.8' except with black hard possibly tour meline 398-403' 0.001 4 rich host vock inclusions, 403-408' 0.001 4 hocal quarts-rich zones which have an inho-408-413.2 0.001 4 mogeneous massive appear ance somewhat 413.2-415.5 0.001 4	From ~ 396.4' to 397.1': Milky white to translucent 396.4' 3771 0.00) guart vin with very irregular contacto similar to 3971'-398 0.00' 333.8' to 334.8' except with black, hard possibly tour meline 398-403' 0.001 rich host vock inclusions, Local quarts-rich zones which have an inho-408-413.2 0.001 mogeneous massive appearance somewhat 413.2'408' 0.001 situilar to a breccia but "fragments" are pods 4155-4256 0.001 of guarts (not angular); from 413,2' to 415.5' and 420.6'425.6' 0.001	
Bust vin with very irregular contacto similar to 397.1'-398 0.001 4 B33.8'40 334.8' except with black, hard possibly four meline 398-403' 0.001 4 nich host vock inclusions, hocal quarts-rich zones which have an inho-408-413.2 0.001 4 mogeneous, massive appear ance of some what 413.2-415.5 0.001 4	Bissible with very irregular contacto similar to 397.1'398 0.001 B33.8' +0 334.8' except with black, hard possibly tour meline 398-403' 0.001 rich host vock inclusions, Local quarts-rich zones which have an inho-408-413.2 0.001 mogeneous massive appearance somewhat 413.2' 4080 0.001 Situilar to a breccia but "fragments" are pods 4155-406 0.001 Situilar to a breccia but "fragments" are pods 4155-406 0.001 Hoge (not angular); from 413,2' to 415.5' and 4206'425.6' 0.001	
nich host vock inclusions, hocal quarts-rich zones which have an inho-408-432 0.001 4 mogeneous, massive appear ance somewhat 413,2-4155 0.001 4	sich host vock inclusions, hocal quarts-rich zones which have an inho-408-4132 0.001 mogeneous massive appear ance somewhat 413,2-4155 0.001 sichilar to a breccia but "fragments" are pods 4155-4206 0.001 of quarts (not angular); from 413,2 to 415.5° and 4206-425.6 0.001	4
hich host vock inclusions, Hocal quarts-rich zones which have an inho-408-413.2 p.001 4 mogeneous massive appearance somewhat 413,2-4155 0.001 4	hich host vack inclusions, Host vack inclusions, Host 403-408 0:001 Hogeneous massive appear ance somewhat Similar to a breccia but "fragments" are pods 4155-4306 0:001 Similar to a breccia but "fragments" are pods 4155-4306 0:001 Similar to a breccia but "fragments" are pods 4155-4306 0:001 Hoge 11 Lon 425 / mgular); from 413,2' to 415.5' and 4206-425.6 0:001	4
mogeneous massive appear ance somewhat 413.2-415.5 0.001	mogeneous massive appearance somewhat 413.2-4155 0.001 similar to a precia but "fragments" are pods 4155-43.5 0.001 of guarts (not angular); from 413,2 to 415.5 and 4206-425.6 0.001	4
signification massive appear ance somewhat 413,2-4155 0.001	side a precia per ance somewhat 413,2-4155 0.001 side a precia but "fragments" are poder 4155-420.6 0.001 of grants (not angula); from 413,2 to 415,5 and 4206-425.6 0.001	46
Signa - 415,2-415,5 0.001 -	Siduilan to a precia but "fragments" are pods 4155-42016 0.001 of quarts (not angulan); from 413,2 to 415,5 and 42016-425.6 0.001	40
The a precia but "Insand The and the	45 0 11 12 425 1 angulan); from 413,2' to 415,5' and 420,6'-425,6 0001	4-8
- 8 9110 15 mot and 0.001 5		46
		4
725.6-4-50.6 0.001	4306-435.6 0.002	48

PAP - 845

PROPERTY: HUNTER MINEHOLE NUMBER: 4-10

PAGE 5078

PAP - 8452

9	ney colour up to 4679' where it takes on a darker seen colour, fairly abrupthy (chlorite rich); dark new colour balternates with light green - tan colour to 479.2' where again unit so the abrupthe	NUMBER 435,6-440, 440.6-444 4444-448 448-452 448-452 452-456	6 0 -001 0 -001 0 -002 0 -002	490 491 492
	ney colour up to 467.9' where it takes on a darker seen colour, fairly abrupthy (chlorite rich); dark new colour "alternates" with light green - tan colour to 479.2' where again unit so the abrupthe	440.6'- 4444 444'- 448' 4448'- 452'	0.001	491
	new colour up to 467.9' where it takes on a darker seen colour, fairly abrupthy (chlorite rich); dark pen colour balternates with light green - tan colour to 479.2' where again whit so the abrupthe	444'-448' 448'-452'	0.002	
	and a second and a she a multiple	448-452	/	1 1 1 4
8	and a second and a she a multiple			49.
	and a second and a she a multiple			49
Ł		456'- 460'		49
14		460'-464'	0.001	49
p	eing similar in texture & st ructure to sericite schiot	464 - 467.9	0.001	49
<u>e</u>	1000 tron ~ +83.2 - 483.3, 484.4' and 486.5' where	4679-471		49
	mit contains about 3% FMX disseminated magne-	472-476'	0.001	499
		476-479.2	0.001	500
	the second of ingenail	479.2-483'	0.001	50
6	to conde and lating to and a source is	483-487.5	0.001	50
	the second of a 10 to core allo	487.5 - 493'	0.001	50
		493-496.2	0.006	50
5				
a	(i) tip of a start and (source by finger nail)			
C	ore takes on a somewhat mottled griedium - general			
a	appearance with variable core angles in stord			
	urispy very schiptose (at ~ 90° to come puis) to the			
&	lark grey material.			
6.2-511 7	TALC SCHIST	496.2-4991		505
	Grey (light to dark) coliated to schiptore to la	499-501.4	0.001	505
	schiet seft (scratched by finger hail); containing about		0.001	507
<u>20</u>		505-506,5	0.001	508
	toucher plance but locally cross-cuttings, local ane	- 1 - 1	0.001	509
	The up to 30% quarte (translucent to tight crey sugary)		<u> </u>	
<u>+</u>	Carbonate veinlato, up to ~2" vide (500 from 499 to 501, 4"			<u> </u>
h	t 501, I, and from 505 to 506, 5 with a n3" lide quart			
	Pin of the following for the following the f			
<u>/</u>	million mark wath houses and these quark houses		¥	
pt-	Lower contact to sharp at 70 ° to come aris parallal			
	Lower contact to sharp at 70 ° to core asis, parallel Achistossity of tale schist unit.]		

1

·E,	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU	PAG JMBER: נ	GE 6 1-10	•;{- 8 ●
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER		SAYS
511-534'	QUARTZ FELDSPAR PORPHYRY DIKE			1
	Light ney, charty looking appanitic matrix with,	511-513.5	<u>.</u>	510
	milky white placioclase crustals up to ~ "10" diana		0.001	511
	ter, othebby tabular to equant enhedral " cuptals, ran-	518-521'	0.001	512
	domly oriented disseminated throughout whit rare	521-524,5	0.007	5/3
	clear quarty phenomysts up to v the diameter equant:	5245-527.5	0.001	514
	about 10-20% plagioclase phenocrypto in unit	527.5-531	0.001	515
	unit is cut by a network of Aandonly oriented	531-534'	0.001	516
	thin veinlets consisting of pyrite, "pyrhotite (as cristed			
	aggregates or them sheets covering flacture surface)			
·····	rarely chalcopyrite crystal aggregates, 4) a hard, black			
·· .	aphenetic material (possibly fournaline,?): (overall			
	surprille amount estimated to be about 2% slong verilete			ļ
	and as discrete, deaseminated crystals), and 5) soft khaki-			
	() i contraction of the contrac	· · · ·		ļ
	Lower contact sharp at 70 to core axis somewhat			
	abripth at contact: contact is parallel to latic tion leching			
	abripthy at contact; contact is parallel to folication /schistos			
34-539.2	TALC SCHIST	534-539.2		517
	Similar to 496.2' to 511.0'; Foliation generally ~85-90	5.54-55/.2	0.001	131
	to core aris			· ·
	hower contact sharp but slightly ground (because			
	of difference in hardness between the units, at ~ 90 to			
·	core asis parallel to schiptossity/foliation of two	·		
	units.			
		/		·
39,2'-542,5				
	Grey to tan, hard fine -grained unit, generally	539.2-542.5	0.001	518
	massive to slightly foliated near margins; commuly			210
1.1	bleached/silicified and cut by randomly oniont. A			
	translucent to glassy quart weinlits & patches. Tocally			
	tan coloured zones look cherter + could possibly be -		1	

:3

E	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER HINEHOLE NU	PAC JMBER: ک	GE 7	5 5 0
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
539.2-542.5	INTERMEDIATE DIKE (CON'T)	HOMBEN		Т
	No sulphides seen.			
	to Isliation / schiptossite of both units	1		
	to foliation / schiptossity of both units	<u> </u>		
542.5-543.1	TALC SCHIST			
	Similar to 496.2 - 511.0	 		+
	Lower contact masked by quark = carbonate	542.5-544.5	0.001	519
	venleto.			
543,1-560,8	METASEDIMENTS			
	Grey-Khaki, MFX grey wacke and FX-aphanitic			
	dark shey-black argillite beds: Joliation, and			
	bedding are parablel at ~90° to core als			
	Econ upper contact to 544.5 unit contains			
	~40% carborate veinlets parallel to foliation, these carbonale veinlets abru other decreases at 5444 51; abru t			
	For the Third and the state of the about			
	Locally unit is bleached to pale grey colour			
	Lower contact interfingered for about			
	but appears to be parallel to schistessite / foliation		,	
	of both units at ~ 185° to core agis. If Juna on			
560.8-596'	TALC SCHIST			
	Very Soft alternations Danda St. i'Rugue			I
	white and dark grey-black tale: cone, here had			
	up noto dista with rounded edges			
	EX to MX lasily scratched by fingerhail:			
	similar to 496.2 to 5/11.0' but more talkose			
•	it is deformed thom ~ 588' to ~ 595'			
	Crobs cutting black, tale, weinlets and see	 -		
	from 595' to tower contact at ~ 85' to cone alli-			
	Lower contact possibly gradational or inter-			
	pryched for ~ a" '	T		
		· · ·	· I	

PAP.- 8452

E		DA	ar C	5) 8
	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER NEHOLE NL	IMBER:	u-10	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	1	SAYS
596-602'	METASEDIMENTS Similar to 543.1'-560.8' but mainly black argillite here (slightly graphitic towards EOH) One 'b" greywacked bed at ~ 597' appears to indicate tops downhole (no other bed suitable for top determination			
	From a 601.5' to EOH; black very thin, cross- cutting veinlets (similar to cross cutting tale vein- lete blit not soft) with alcompanying drag folding (micro) and slicken sides (?) developed along some cleavage planes.			
602'	EOH			
		·		

PAP - 8452

DF	RILLING COMPANY MORRISSETTE FOREMAN R. LafontaineDIP TESTS:	NTER M 11 Cl	AIM GLE - 55 °
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0'-4'	CASING		·
4' - 262.5'	TALC SCHIST (SOAPSTONE) Black to silvery mey very soft (scratched by fingernail)		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	dack to silvery they, very soft (scharched by fingerhall)		
	to core aris) unit mainly consists of tale (black, soapy		·
	variety and silvery-greenish flaky variety); contat-		
	ning less than 5% milky white carbonate veinlets,	·	
	commonly parallel to foliation / Schlop ssily plane;	1	
	lolding Seen; no cross cutting black falc veinlets		
	finitiant seen, me moss curry mach face burgets		
	up to 1/4" diameter, associated with carbonate vin-		
	letor		
	1 1/2 foot grind at 103 tag.		·
	From ~ 144 to ~176 : Bul sections where core breaks	· · · · ·	·
·	up into disks ~ "2" thick (ground by drillers).		· ·
·	I grind at 154 tag		
	3' wash at 163' tag		
	6 inch wash at 180 tag		
	From ~180' unit contains abundant black, cross - cutting		
	talc, veinlets.		
	From 257.4' to 257.7' quarts wein some containing about	257-258	1.001 520
	75% grey to milky white Quart with unspy tale slips		
	between quarty deinleto; mo sulphided seen		
	Schist from 261.9' to Lower contact (Similar to 257.4'-257.7').		
	achist from 261.9' to "Lower contact "Similar to 257.4 - 257.1").	1 J	1 1

۰,

PROPERTY: HUNTER MINE HOLE NUMBER: U-11

PAGE 2 0 - 10

FOOTAGE	DESCRIPTION OF CORE OR MAFIC DIKE?	SAMPLE NUMBER	ASSAYS
262.5-286.9'	CHLORITE SCHIST (MAFIC METAVOLCANIC FLOW AND/OR LAPILLI TUFF?		
	Dark green to dark greenish grey with patches and		
,	vinlets of white to light grey; moderately soft (scrat-		
	ched by knife but not by lingermail); variable texture		
	from "fine-grained missive with about 10% light		
	drey carbondte ± quartz vein Cets and pods to 2) schistose	-	
	alternating matic and deloic bands (finely laminated		
	locally), becally folded: locally (especially near 265),		
	unit contains about 10% black, CX, hard amphibole		
	crystals, disseminated throughout and raildonly		
	orderted; also locally, (especially near 269') unit has	<u> </u>	
	long tal appendance with delicate wippy		
	a light grey FX "mataix" possible matic Tapilli tull?		
·	also some Tichter new- white "fragments" or possible		
	preccia zone?; locally unit is possibly silicified		
	From 6270.6' to ~272: talc - sand in core box, no core possible seam?		
	Lower contact sharp somewhat irregular but		
	about 80°- 90° to core alis; "chlorite schiet" bleached		
	to light grey colour within linch of contact.		
·			
86.9-292	TALC SCHIST (SOAPSTONE)		
	Similar to 180' to 262, 5'; about 50% light grey coloured	·	
· · · · · · · · · · · · · · · · · · ·	"fragments">talc = carbonate = quarts veinlets and patches		
	Lower contact sharp at 30° to core axis; pahallel to	 	
	foliation of next unit but appears to cross cut		
	blight follation 8 talc schist		
20/ 20/11			
12-275,4	CHLORITE SCHIST (?)		
	Similar to 262.5 to 286.9 but no amphibole		
· · · ·	cupitals seen , containing a ~ 12 under hand 640 to	<u> </u>	
	with sharp contacts, tull bed? or precia?		
	with sharp contacts; hill bed? or precia?		
i	Lower contact sharp but irregular	<u> </u>	
·····	and any on in from	<u> </u>	i
		1	PAP

PAGE 3 of 10 PROPERTY: HUNTER MINE HOLE NUMBER: 4-11

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
295.4-~356	TALC SCHIST (SOAPSTONE)			Ţ
	Similar to 286.9' to 292'; local black, soft, cross-			+
	cutting tale veinleto,	297.8-298,3	0.007	521
	Decal zones of light grup toliated silicified			<u>'</u>
	cherty-looking material, severally containing up to			1
	26 FMX pycite as disseminated cristals: these			
	cherty" bands are parallel to schotossite (varia-			1
	ble directions) and are less than I" wide but			
	may be wrider; at 318.5' 320.2' to 320. 5'; 322.3' to			
	Ester at 332.5, hardly take in a cink - fan tinge	3/8-320.5	0.001	522
	From 320.5 to 322' possible grey and milky white	320.5-322	0.001	523
	quarty vern? or silicitied matic Rike? conthings	322-322.9'		524
	tourisaline and green chlorite as in filling along			
	fractures in quarts and about 3-5% FMX diosemina-			
	ted pyrite in patches; also local chlorite - rich			
	schiett ance, harrow (< 1/2" uide) within unit and			
	from former contant to 322,3" (Start of "charty zone)			
	6"grind at 350' tag			
	A E 1970/1 70 3/ 4			
	@ From 297.8' to 298.3': tan- cream coloured foliated			
	quart-feldspar porphysy dike, contacto sharp to			Í
	precented at about 56-70 to core axis, locally integrate	· · · · ·		
	Trace IX pyrite as disseminated cripetals? contacts			
	roughly parallel to foliation of tale schiet			
		6"grinds		
	From 349.1' to 350.8' (including 6" grind?) and 351' to 355.3;			525
	zoneg containing ~ 50% to 70% Carbonate = quarty veinlet			526
		355,3-360	0.001	527
	appearance), with local precia or porphysy somes		··· ·	
	dark brown with white to tan fragments of pheno-			
	crysto?); no sulphides seen.		·	
	la de se trata de la la companya de			
	onlast could be unhale ~ this pering	· · · · · · · · · · · · · · · · · · ·	· · ·	·
	and come or uprove vibinches or so,	· · · · · ·		l
·····				
<u> </u>				-

1

PAP - 8452

PAGE 45/10

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG.

۰ I

PROPERTY: HUNTER HINEHOLE NUMBER: 4-11

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
356'-358.9	CHLORITE SCHIST (MAFIC DIKE OR METAVOLCANIC FLOW?)			
	Similar to 292' to 295.4' but no fragmental looking			
	material			
	Local CX pipite crijotals, less than 1%			
	Local carbonate + gelants knots or eyes developed			
	along threadlike carbonate = quaits reinlets (paral-			
	let to foliation of unit at 70° to core after, locally			
	Lower contact gradational over ~ "14"			·
	Lower contact gradational over ~ 14			
358.9-359.6	TALC SCHIST		·	
2001	Similar to 180' to 262.5' but harder (only slightly			
	scratched by finger nail and has a Khaki coloured			
	tinger 100			
	Lower contact similar to upper contact, grada-			
	tional.			
2-01/385-	CHLORIDE SCHIST,		· · · · · ·	
אושב- מידבר	Similar to ~356' to 358.9 + win			
		360-365	0.001	528
	322' from 367.8' to 369.6' containing trace, amounto	365-367.8		529
		367.8-369.6	0.001	530
	inclusions; you is dark grey to white to medium	3696-373.1	0.001	531
	grey-tan: very sharp contacto at ~ 80° to 70° to			
	Core apio dos from 382.4' to ~385.2' (some in situ			
	precciated material).			
	Alop a breecia and quart-carbonato reining	3731-3753		532
	yone from 373,1' to 375.8' and 375.8' to 376.7' with	37.53-378.9		533
		378:8'-382:4' 382:4'-385:2	0.001	534
~	mento (some could also be fildspan phenocility	385.2-390	0.001	536
	possibly some porphyny dike material included	396-395	0.001	537
	cut by quest + carbonate veinlets looping	395-400	0.00	1538
	Local pale green colour (fuchsite?) from ~380 to 38		0.001	539
	Lower contact arbitrary, vely gradational.	405-410'		540

.

.

.

PROPERTY: HUNTER MINE HOLE NUMBER: U-11

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
85,2-481,2	ALTERATION ZONE		<u> </u>	Т
	Dark grey to light grey to tan- Khaki chlorite, #	· ·		+
	sericite = quarte I carbonate schipt, generally schip	<u>∤</u>		+
	tossity is about To° to 90° to core ains and very			+
	little folding seen (only small scale Kink folds)		<u> </u>	<u>†</u>
	- Ideal pale green sches consisting & possible			+
	apple green inchsite in sericite schlot.			1
	About 50 % to 80 % quart I carbonate veinlet	410-415	0.001	54
·	in the mit, as threadlike parallel veinlets (along	415-420'		54
	Schuberste folder of cross-clatting wider winlet	420-425	0.00!	54
	(up to ~ / inch)	425-430	0.001	54
	Local patches of fine dusting of agrite	430'-431.4	0.001	54
	- beal Cross action, black Soft Hall Deinleto	431.4-435	7	54
	making drag folds in toliation	435-440'	0.001	54
	Decciated silicified one from 430,6' to 431.4'	440'-445'	0.001	54
	similar to 373.11 to 375.3 etc. 0: no sulphides seen	445-450	0.001	54
	Tan-light green that colour from about 448 to 471			
	Local breccia zones with tan-yellow angular looking			
	pragmento ma quarto matrix (e.g. ~449.5')			
	Quarts vein mones consisting of grow, sugary quarts			
	herlets and lenses between tocally urspy sericitic			ļ
	how rock parallel to schistossity generally at about			
	A man and the man many these friand when			
	1. Ol O restally			
	Car Use of the Use of the the the the the the the			
	and have been a second and the second programmer of the second se	450'-451'		55
	the	<u>451-4518</u>	the second se	55
	ich v colo in the state of the	451.8-452.7		55
	and la some		0.001	55
		<u>4539'-455.8'</u>		55
	distant of the second of the	4558-458		55
		<u>458'- 461'</u>	0.001	55
		461-466	0.001	55
		466-471	a.001	55
	En 11-71/ 4/2 TROIL	471'-476'	0.001	55
	programming darter	476'-479.9'	0.003	56 PAP

.

PAGE 5 5 10

OOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	AS	SAYS
85.2-481.		NOMBER	┼───	T
<u> </u>	with dank grey sections from 472. 4' to 472, 6'.			
	Quartivein. some from 479491 Ho 480,6' with	479.9'-481	0.001	56
	milley white to transchilent quart win hom			1
	480.41 to 480.6" trace MX - pipite in host vock.	ļ		
	Lower contact and a time and dillig of t		 	-
	Caller Contraction of Contraction			
	by a change in colored alite best rack, and thete		<u> </u>	
	Detry dude it are very Similar).			
1.2-496.1				+
<u>1.2-7/6.7</u>	MAFIC METAUOLCANIC FLOW (?) (CHLORITE SCHIST)	481-486'	0.001	56
	Toliated at ~ 80° to 90° to the and the	486-491'	2.001	56
	Schist with local kink folds programing to	491-496.11	0.001	56
	cross - cutting chlorite filled being to			
	to cross cutting tale vialets in UM nacks at			+
	about 75-80° to core alis	······································		
	From about 489.5 onward are zones containing			
	Ex disseminated black crystals of magnetite			
	Lower contact appears, to be sharp mining			ļ
	recognized by a colour change Folliation / contact		<u> </u>	<u> </u>
	at 90° to come ayis	·	· · · · · · · · · · · · · · · · · · ·	
1'ELOO				
<u>., - 5/0.8</u>	ALTERATION ZONE (SERICITE-QUARTZ-CARBONATE-CHLORITE SCHIST) Similar to 385.2 - 481.2	496.1-501	0.001	56
		501-506	0.001	56
	Hocally along stringere pralled - to faliation the	506'-510.8'	0.002	56
4	and focal Opossible formaline as FX diagoning			┨────
	dack crystake. (rare.)			
	Local breccia zones in sericite schist: e.g. from	·		
	19,1 TO STO. I which chlorite Schist, breccia hone is			
[6	reformed + failted but some fragments look like glass			

	ADTH RECONDER ACCOCULTED DIAMOND DDILL LOO DDODEDTH 1/44 TE & A. JE HE HE		GE 7	\$ 10
FOOTAGE	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NU DESCRIPTION OF CORE	JMBER: L SAMPLE NUMBER	· · · · · · · · · · · · · · · · · · ·	SAYS
496./L5b.8	ALTERATION ZONE (CONIT) Shards, therefore it may be a hypaloclastice?			
	Lower contact sharp, parallel to schistossity 57 atteration zone at ~ 85 to core agis			
510.8-511.7		510.8'-511.7	0.001	568
	FX possible QFP with quants and possible stref- ched recuptablized milky white delapan cuptabi	210.0 311.7		
	locally cortains 21% blobs of chalcopyrite & pyrite disseminated throughout and local purite asso-	-		
	transficent quant stein lets up to 1/2" wide but senerally threadlife massive to lociated ~90° to core			
	adis (stretching of "phenocrypts") 1 Lower contact storp at ~ 80° to 85° to core			
511.7'-5377	TALC SCHIST			
		5/1.7-5/6.2 +JAMPLE→	0.001	569 570
	lease parallel to schistossity plane ; schistossity general- ly about 80° to core agis but local fautting and monor	<u>518.2-521.3</u> 521.3-526.5	0.001	571
	lets to cally (e.g. at upper contact; at 526', but rare).	526.5-530.4' 530.4'-5319	0.001 0.001	573
	mount of quarts + carbonate veining which is most intense in othese intervals; from 545.5 to 518.2, from	5319-5377	0.00)	575
	519.2' to 521.3' and from 530.4' to 531.9', with these quat- carbonate gones containing about 50% reciping.			
	From ~ 526,5, unit is dark grey with local black, talc-rich lenses or bands payallel to the schisto 55ity; unit becomes potter downhole (barely Scratched by firgernail)		;	
	Hower contact irregular but roughly at 50° to core wis (schistossity of talcochist bends to 50° form ~85° right at contact)			

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER HINEHOLE NUMBER: U-H

.

PAGE 8 0 \$ 10

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
537.7-540.6	QUARTZ FELDSPAR PORPHYRY DIKE Pale pink siliceous material consisting of about 10%	537.7-546	0.001	576
	milky white small (< 1/10" diameter) tabular to equant			
	looping pinkish matrix; also have quart phenocrysto			
	-1/10" diameter, the porphypy is cut by randomly orien-			
	hand tournaline (amorphous, no needle crystals seen);" locally, pyrite occurs as a thin coatting on the			
	tournaling veinlets (or fractures?) about 11% black four			
	maline veinlets		·····	
	core and.			
<i>'40.0'-54</i> 3.7'	TALC SCHIST slightly			
· · · · · · · · · · · · · · · · · · ·		548′-543.7′	0.001	577
	Lower contect sharp at 60 ° to come aris, parallel			
	to schistossity of talc schist (~90° up to ~ 6'll from contact where it bends to contact)			
43.7-5533	INTERMEDIATE DIKE ? , blipched- ,	543.7-545.5		578
	zones), fine-grained, to mottled poolsible dike? of inter-	<u>545,5'-549,4'</u> 549,4'-553,3	0.001	579 580
	He at upper contact and about 14" at lover contact			
	Local silicified zones with bleached host rock	· · · · · · · · · · · · · · · · · · ·		
	milky white carbonate veinlets in a net pattern			
	Fur analy oriented, but seem to be connected; from			
	ve chlonite similar to upper & lower contacts, from 550.9 to lower contact including at milky white Quart			

			,	,
ň			ge 9 0	CID
F	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE N	PAG		TI
	TERMINE HOUSE ADDRIED DANOIND DAILE LOG. PROPERTY: HUN TER MINE HOLE NU	JMBER: L	1-11	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE	ASS	SAYS
553.3-558.8	TALC SCHIST	NUMBER		,,,,,,
	State 1 5/1	Const et a		-
	Cross cutting tale veinlets at about 556, generally	553.3'-558.8	0.001	581
	at about 50° to come ages cross cutting schistossily			
	Senerally at 80 to core aris'			
		1		
	hower contact appears sharp but is partially			
	masked by aquarty Wein			
5500-0000	METASEDIMENTS	L		
200,8-2003		558,8-562	1000	582
	and ill'a had it and it and the second the	562.564	0.002	K143
	light aren adallar to to an the the the the the the to the solution			
	to lecally cross cutting lotio to hedding			
	peal pyrchotite and for pyrite blebs diaseni-			
	nated or from 569.1' to 569.5 about 90% fragments?	569,1-569.5	0.007	583
······································	of syste with pyr hotite between; rarely chalcopy-			203
	rite also occurs as FX blebs.			
	From ~ 587 to lower contact, unit contains			
	cross cutting veinlets of chlorite? forms drag folds			
	within ~ I" by realized and indistinct : Can be located			
·····	dimente participation alternate melase-			i
	1) contact (scattered by line tale within ~ 2-3"			
	0			
88.3-616.0	TALC SCHIST (SOAPSTONE)			
	Dask grey to black, very soft, soapy feeling unit.			
·	consisting & aller nating FX, massive fals has dar With			
	2)19x grege talcose banta 3) light grounish - silvery			
	an Danas, Mr. possibut taxed inthe quarter I carbona-			
	the one heares up into drate in This unit. () 55° to core ains			
	to cal cross cutting black tale veinlets, schistossity			
	is generally at about 90° to core allo			
	Lower contact sharp at 90° to core agin,			
	The second secon			

- 9457

.

,

PROPERTY: HUNTER MINE HOLE NUMBER: 4-11

FOOTAGE	DESCRIPTION OF CORE	SAMPLE	ASS	SAYS
616,0-632.0	METASEDIMENTS	NUMBER		
	SULL EFOD FOD			<u> </u>
		ļ	·	<u> </u>
	beds less them I" wide		L	
	Enclosed			
	down hale that the provide the provide the			
	how N/2/1 / 27/ 1/2 10 - bas then			
	Then from ~627' to ~ 629' His to face uphole			
	in several places the star 201 to Holded			
	1 to 1- applain a out it applain ;			
	1. a contraction advanted			
	white age both the and milly	628.7 - 630.1	0.001	584
	1 20 1 to 67.11	630.1-631.3	0.001	585
	Main the locally the allen has a yellow			
	Min a fint ster along a contact.			
	Minor faulting is seen near 629'			
	at ~ 629.5' Sight Staphitic your occu (e.g.			
	6" grind at 600' tag.			
632.0	EOH 2			
<u> </u>				
		<u></u>		
			<u> </u>	
l			<u> </u>	
			Ĺ	

,

1

PAGE 10 5 10

	PAGE 1	of 2
Earth Resource Associates PROPERTY HUN P.O. BOX 2150, TIMMINS, ONTARIO, P4N 7X8 CANADA HOLE NUMBER U- DIAMOND DRILL LOG GRID REFERENCE	NTER M	•
LENGTH = 73.5 feet, hole abandoned. TOWNSHIP AZIMUTH	CL/ DIP AN(AIM GLE -75°?
DRILLING COMPANY MORRISSETTE FOREMANR. La fontain DIP TESTS: NONE CORE SIZE A Q CORE STORED AT: SITE LOGGED BY R. BALD DA	TE Mar	ch 17/88
FOOTAGE DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
SEE NEXT PAGE FOR BEGINNING		
OF LOG.		
·		

PAGE 2 of 2

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUN TER HINEHOLE NUMBER: 4-12

1 .

SAMPLE FOOTAGE DESCRIPTION OF CORE ASSAYS NUMBER CASING 61- V 4-70' SOAPSTONE TAIC SCHIC dark can histossit h' wa EL 65-701 586 0.001 indistine 70-73.5 INTERM ATE ED. a S Lini 70-73.5 0.001 587 : 73.5 Eo PAP.- 8452

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	Earth Resource Associates PROPERTY HU P.O. BOX 2150, TIMMINS, ONTARIO, P4N 7X8 CANADA HOLE NUMBER U	NTER	1 of II MINE
	DIAMOND DRILL LOG @ 100 -54° GRID REFERENCE		
	$LENGTH = 471 \text{ feet.} \qquad \begin{array}{c} @200' - 54.5 \\ @300' - 540 \\ @400' - 55.5 \\ \end{array} \text{ AZIMUTH}$	C DIP AI	LAIM NGLE -60°
ç	DRILLING COMPANY MORRISSET TE FOREMAN R. Lafontain DIP TESTS: CORE SIZE A Q CORE STORED AT: SITE LOGGED BY R. Bald DI	ATE Mar	ch 21/88
FOOTAG	E DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
	SEENEXT PAGE FOR BEGINNING		
	OF LOG		
L			

.

.

.

PAP 8451

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: 4-13

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS	s
0'-6'	CASING	HOMBEN		
6'- 43,3'	TALC SCHICE (COOPERIE)			
6 - 70,0				
·····		·		
	I all in the setter			
	local quarts I carbonate I silvery light green tale			
,	Ninlets and pods and also some black Ex maning	·		
	tale bands/ weinlets parallel to schiptoseite. 1 14			
	cross cutting black falc veinlets.			
····	H' Wash at 11' tag			
	1.6' wash at 20' Fag.			<u></u>
	quarts veining at 45° to core agis parallel to			
·····	schistopsity of tale schist; next unit is silicitied within			
	~3" 1) contact 0			
43.3-45.6	INTERMEDIATE DIKE?		<u> </u>	
· · · · · · · · · · · · · · · · · · ·	Dark to medium area massing to produce the			
	foligted, harder than tale schiet (slight, scratched			
	hammen); containing local light presto the hand			
	survived zones (not scritched build it is in the			
· ·	sore commonly carry up to ~2% FX disceminated			
	dillas about 15 1 - 20% silicified material in this			
	hower contact masked by quarts wining and			
	tale veining ??			
45.6'-49.8'				
	Similar to 6-43.3 with local grey to slightly many			
	herry looping bands generally prallel -to Schippeseity			·····
	in this case, somewhat deformed)			
·····	to schiptoset of the at 50 % to core aris puallel			
	to schistossity of tale schiot & to core aris prallel next unit, which is silicified within 1/2008 contact			
	in a march to march Equistion 12 of Contact		- <u> </u>	
			· 1	

· · · ·

PAGE 2 of 11

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: 4-13

, ,

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	AYS
49.8-53.4	INTERMEDIATE DIKE? Similar to 43,3'- 45,6': foliation variable, from			
	v 75 to ~40° to core allo			
	intermediate dike silicified within 2" D contact.			
3.4-56.1	TALC SCHIST (SOAPSTONE) Similar to 6'-43.3' with 1" under churter - looking			
·	band at upper contact, containing traced FX put;			
	common falle veinlets cross cutting schiptossity			
	but randomly oriented unit here is deformed			
	dark green tale veinlet but next unit is Sharp			
	at 70' to come aging silicitied within ~ 1" A			
	contact.			
6.7-64.1				
·	a possible grey - milley white ~ 1.5" wide anarta vein?			
	at ~ 61' and an intensely silicified hone, containing	60.41.5		
		61.5-62,1'	0.001	588
	Lower contact~ 40° to core axis, very dark grey			
	within 1" of contact, parallel to schistossity of next			
1 1 11				
+1-~104.5	TALC SCHIST (SOAPSTONE) Similar to 6' - 43.3'; some folding at ~ 78';			
	local cherty looking bands with FX pyrite as dissemina-			
	the crystals or along schistossite bedding planes.			
	from 90.2, to 90.8 and 93.2 to ~94.7 moderately soft mot			
	Scratched by fingernail), and contain only ~ 5% Quarter & Carboat			

ş

	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NU	JMBER: U	- 13	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
4.1'_~104.5'	TALC SCHIST (SOAPSTONE)			1
·	veinlets; also colour is lighter than dark grey-black			
·····				
45-386.6	ALTERATION ZONE			
	Similar to talc schist but peconeing increasingly khaki coloured			+
	Tan coloured, cherty-looking band from 105.7 to 105.8	1057-10/4		58
	containing <1% FX disseminated pyrite: Similar cherty-	106.4-110.7	0.001	59
	cooking FX band from 106.1 to 106.4" containing ~ 2°1. FX			+
	asseminated pyrete and trace chalcopyrite; cherty			
	tion & host rock at about 200 parallel to folia-			
	Basic and the core was			
	to 117.6' and 132.8' to 133.7': these condict of 119.1' to 115.2'. 117.5'	1107 - 113,4	0.021	59
	toking to white to light grey cherty looking for any the	<u>1134'-1149'</u>	0.001	59
	angellar to rounded randomly oriented to lecally	1149-11751	0.001	59
	slightly stretched at about 70° to 80° to core build	120.1-124.0	0.001	59
	unit is hard (locally scratched by Enife) silicified	124.0'-127.11	0.001	59
	a light great toronight to which the the the functions in the second weining;	127.1'-129.8	0.001	59
	might grey = milty white cherty - looking randondy	129.8-132.8	0.006	59
	"1/4" inde and yourses tess that I under Senerally	<u>/32,8-/33,7'</u>	0.001	59
1	white to translucent of an theirs the will be will be	1337-1360	0.001	60
	nate crystals along bein margins wing while MX Carbo	-136.0-139.9'	0.003	60
	out generally about 1/2" wide (from 113.2 to 113.4" is	1 <u>39.9 - /41.7'</u> 141.7 - 146.0	8.001 0.028	60
¢	light grey - brownich cherty - looking quarts vein):	146.0-151.0	0.004	60
	ocally in the precia zondo, host rolate in Shark	151.0-156.0		60
	(chlorite) also tocally fragmento appear	56.5-157.3		60
	to be somed swith reaction roms: locally precia	157.3-162.0	0.003	60
	hille white and the there of your the	1620-166.0	0.001	60
	Schiet in up of all it is the raining of the	660-169.6		60
l	17.6 to 119.2' and 119.6' to 119.8'	69.6-172.7	0.02	610
	Local light grey- bull coloured possibly Carbon			
	12ed ?) yones: por 119.20 to 119.6' 127.1' to 128.1' 128.9'to			
	29.8 jalob local possibly siticified bleached some sabo			<u> </u>

PAGE 5.FI

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-13

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
104.5-386.6	ALTERATION. ZONE (CON'T)			
	From 119.8' to 120.1' I tam to light grey to milky white			
	quarte vein zone with about 10% brown host work			
	Inductions.			
	Local silicified-bleached and carbonatized - bleached			
	sections, commonly massive to slightly foliated,			
	Also local dark grey to brown thank quarts?			
	veinlets randomly oriented locally associated with,			
ma	précia pones			
	Frond 139.9' to 141.7' Breccia yone similar to 10.7'			
	to 113.2', etc.; also very narrow breach anes at 145'.			
	146.1', 155.5', 161', 162.5', 163.7'; 169.6' to 178' containing			
	EMX pyrite along foliation planes.			·
	CX pyrite in chlorite rich band near 142'			·
	Local FX-MX disseminated pyrite from ~ 142' on-			
	Wards,			
	Near 146' or 147' are chlorite rich bands with		·	
<i>.</i> .	the Tate of the second of the			
	and grada			
			·	
	uff bands?? or alteration effect ??			
	mall fragments? near 149.7' possible matic tuto?			
	Bleached-tan yore from 151.3 to 151.5 with~17.			
	-X disseminated pyrite.			
	Dark grey darrow (~ 1/4") quarty veinlets at 135.1'			
·	153, 155.1', 155.5 (mean briccia), June 10.1			
	Silicified yone from 157.0' to 157.3'			
	Kink folding (minor) near 162		•	
	Silicified (white), preciated zone near 165.5		; ·	
	with 2% M'x pipite in between "fragments"			
	From 172.7 to 179.8 ; chlorite will Neale ande	172.7-177.0	4:001	611
i post	with local precia zones	177.6-179.8	0.001	61
	Breccia sones ; from 179.6 to 180.1' at 181.6' at 1047 for	179.8-184.7		61
	87.7 to 188.7 at 192. 10 at 195.4. from 198.2' to 199.2' (1)		0.002	614
	trace chalcopyrite? and strongly silicified brown is section from 199.2-1915			
		101.1 -108.1	0 005	6/

•

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-13

OOTAGE DESCRIPTION OF CORE		1-13	
DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
45-386.6 ALTERATION ZONE (CON'T)			1
beached zones) containing up to ~ 34 EMY	+		
planea gones containing up to ~ 3% FMX disserving	188.7- AI	0.005	616
and price anong crosscutting veinleto	191-193.1'		617
at 192.7' at 193.1 at 197.'	193.1-196'		618
From N196 Starge and inter the	196'-198.2'		61
anots will be the first of thating then	198.2-199.6	0.001	62
within sepiritic boost with a furnishe i possibly			62
- unit to main us SERICIPE OUDDED	203-206		62
	206-211.1	the second s	62
at ~206' is 45' its and	211.1-212.3		62
from ~ 00° to 40° to come alle	212,3-213.3		62
Sericite schist is folded (kink) bocally i at 2020	213,3-216.4	0.001	62
a foreign bull of the lot of the following t	216.4-219.3	0.006	62
sata) 0 () () () () () () () () () (the second se	62
1 server and are very parour (1/4")	<u>223-226'</u> 226-229'		62
aark brown hard vein of Barallah and the	/		63
- Carlos Tosar U.	201-251	0.001	63
Possible tournaline associated with bright yellow			
formation process and by milky white quarter + back		+	
Dissi a mae at x13,1 to			· · · · · ·
Provide alle to cover appo			
of tournaline at 214.4			
- Finely laminated (possible tuff?) cherty - looking			
to light grey bands, delicately land and dark grey to fam			
Ener Weller in a location			
tan coloured chester looking and massive, uniformely			
the entire unit contains local CR-MX pyrite blebs and			
- aggregation - 216' onwards, schistossite in only alight			
From ~ 216' onwards, schistossit, in only a light			
Mariable, generally about 80° to 90° to cone sightly	···		

PAP - 8452

PAGE 6 0 / 11

PROPERTY: HUNTER MINEHOLE NUMBER: 4-13 EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG.

1

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
104.5-386.6	ALTERATION ZONE (CONIT)			
	Local dark grey sones within, light green - fuch-	231-236	0.001	632
ļ	site ?) rich sericite schist most of these dark	236-240.5	0.001	633
	grey sones, appear finely laminated with alterna-	2405-244'	1.001	634
	ting quarto and chake coloured scricetic bands and carbo-	244-248.3	0.002	635
	nate bando some frey sones from ~231 to ~240.5	248.3-251	0.001	636
	from 242' to 244', from ~ 248's to 254" and 255,5' to 257'	251-254	0.001	637
	At ~257 to ~258 are local cross-cutting micro	254-257	0.005	638
	faults (drag. folds) similar to cross-cutting tale	257-260:4	0.001	639
······	Deinlets in fale Schist.	ļ,		
	From ~ 260.4' to ~ 266.5': mainly massive, MX	260.4-2620		640
		2620-266.5	1002	641
	ted crystale possibly tournaline?), very small,	266.5-270	0.002	642
		270'-272'	0.001	643
	the stand of the second of the stand of the second of the	272-275,3	0.001	644
	colour lith black-blue spots	275.3-275.8	L	645
	Between 272' and 280' tagk i 10 feet. of core (not	275.8-277.1	0.001	646
	B feet)	277.1'-2787 2787-281'	1	647
		281-285	0.001	649
•	cutling quarts veinlets (grey to milky white); from 275.3		0.001	650
		290.3-292.7	0.001	651
	Dark prown, hard precia with tan to yellow	2927-296.9	0.001	652
	Fragments, irregular shaped yone from 286,0 to 286,2.			
	also from 293. 21 to 293. 31	297.3-300'	0.001	653
•	From 303, 2' to ~310.0' : Breccia? with local	300 - 303.2	0.001	654
	apple green "fragments" massive, cut by quart	303.2-301.7	0.001	655
·	neinlets, almost parallel to core aris alerante	304.7-308	0.001	656
	Vein some from 304.7 to 305.5; 306.6' to 312.7' local	308-310'	0.001	657
		310'-312.7'	0.001	658
		3127-3147		659
	marging (almost 6" of solid quarty + catbonate from 307.5"	314.7-318.7	0.901	660
	to 30 8" then possible ground core ? for about 4" the	3187-320,1	0.003	661
i	another 3 of Doud quary - carbonate)	320.1-323	0.001	662
		823-325		663
	to sit. 1; from 316.6 to 020.5 including a preceia zone from	325-328.1	0.001	664 PAP-84

•

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG.

PAGE 8 0/ 11 PROPERTY: HUNTER MINE HOLE NUMBER: 4-13

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
~104.5-386.6 AL-	TERATION ZONE (CON'T)	NOMBEN		
5/8.		328.1-330.3	0.028	665
fra fra		330,3-332,9	0.001	666
50		3329 - 334,3		667
- gree	+ 25° a +	3343-338.5	0.001	668
1/</td <td>" under at David 2355 51 dans and gray areiners</td> <td><u>338,5-340,4</u></td> <td>_0.001</td> <td>669</td>	" under at David 2355 51 dans and gray areiners	<u>338,5-340,4</u>	_0.001	669
4	220 2/ 222 OP/ 1/ W	340 4'-341.3		670
1 dia	33371 / 271/ 1 gun that a solit and	341.3 - 343.5		671
F F F		3 <u>43.5-<i>3</i>44.</u> 1	0.001	672
han		344,1-348	0.401	673
and	the baco internet the second second	348-350	0-001	674
aln	most along come alling comming the margines, recomming	<u>350'-355</u>	0.001	675
340	4' + 24V/2' · 31/2 c' + 31/1 1'	355-360'	0.001	676
FX	and the state of t		0.001	677
	8.2.2.1 + 3.1 - 2/	- / - /		678
			0.002	679
con		375-380	0.001	680
- gre	y quarts - carbonate randomly oriented veinlets:	580-284.1	0.003	681
alos	Inakrower bands) mear, 370.5'			
	Quarts vein at 369.7' to 369.8' milky white trans-			
lus	cent; similar vein near 376'			· · · · · · · · · · · · · · · · · · ·
	Kink folding near 375'			
	Black to dark brown veins?) of hard material	384.1'-384.8	0.004	682
(po		384.8-386.6		683
inth	light grey carbonate between dark "fragments"			000
acci	the time the procentar locally bitures-			
ting	a man land 304 1/1 adul of 1			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mathen).			
	Foliation/schistossity is regular at ~90° to core ages			
₁	hower contact possibly preupied by EV			
- love	ecia? or mylanite? with local greath eyes			
	a the fragmental - looking matrix. (breceia ?)			· · · · · · · · · · · · · · · · · · ·
	m 206.0 to 386.6', both contacts are fairly	•		
sha	ap at ~ 70 to core and, cut off Hale Seinlets			·
· · · · · · · · · · · · · · · · · · ·	next unit, and cross cuts schistossite & rest unit slightly			

2 1

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG.

4

PAGE 9 7 11 PROPERTY: HUNTER MINE HOLE NUMBER: 4-13

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	SAYS
386.6′-409.4	CARBONATE - TALC-QUARTZ SCHIST (ULTRAMAFIC?)			1
	- Light grey to light greenish arey to that is consisting	386.6-390	0.001	684
		390'-391.6'		685
	and lenses, spagely parallel to each other of			
	schiotossity planer (Achistossity is variable from			
	~ 70 to rarely 0° to core and, locally folded, etc)			
• <u> </u>	Carbonate bande occur between talc-kick host 3			
	hock generally FX to MX containing local blebs			
	pinte; unit is cross cut by randowly orien-			
<u> </u>	ted milky white - translucent to light greenish quarty			
	veinlets a veins ( up to ~ 3" true width, from 391. 3"	<u> </u>		
· · · · ·	to 391.6'); unit is soft, slightly scratched by fingennail			
		3916'- 395		681
	hower contact sharp at 50° to core agis, inter-	395 - 400'	0.001	68-
	fingered with next unit for ~ 1/2"	400'-405	0.001	68
09.4-410		405-409,4	0.001	68
	Vary sili cours Bight and the set	4094-410	0.001	690
	~15% milky white wery the and in a lang	 		
	mustales in a cheater like the first delaspan			+
	containing mill black Ex cuit of a catility that is			
	locally clongated paralle of land office to comaline:			+
	the fill of the second of the along			
•	pinkish feldspar + glassy quartz vinlets. trace FX			· <u> </u>
	disseminated pyrite, gang and and the fr			<u> </u>
	Lower contact ground, probably masked by			
	quarty veining in next unit; near contact. Eleck			+
	cryptals are aligned barallelito possible contact.			<u> </u>
	at 65° to come after			
				<u> </u>
10-416,4'	CARBONATE-TALC-QUARTZ SCHIST (ULTRAMAFIC ?)			1
	Similar to 386.6' - 409.4'	410-411.2	0.001	691
	what ven zone from upper contact to 411.2, milke	411.2'-414'	0.001	692
	while to manalucent quarts with host vock in cousions			
	Amount of carbonate lenses/podes decrease to		•	

EARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: U-13

PAGE 10 00 11

SAMPLE ASSAYS DESCRIPTION OF CORE FOOTAGE NUMBER 410'-416.4' C-T-D SCHIST UM? CON IT ~ 50% · loca ടറ Sch C-F 6 416 4- 417.61 METASEDIM E alighton alar in ma Dara 58 417.6-447.2 TALC SCHIST an unth IT A contact sharp at 60° 40 to schistossite taleschiot 447.2-448.2 han DIKE INTERMEDIATE in 1 90 to core S mas 10 PAP. - 8452

## 8

E.	ARTH RESOURCE ASSOCIATES: DIAMOND DRILL LOG. PROPERTY: HUNTER HINE HOLE NU	PA JMBER: {	GE ) 1 1/ 1/ 1-13
FOOTAGE	DESCRIPTION OF CORE	SAMPLE	ASSAYS
448.2'-455.2	Lower contact possibly gradational? or Core out of place? with Chlorite - with	NUMBER	
4555-471'	from 455.2. 0 to ~455.5' METASEDIMENTS Similar to 416.4 to 417.6' Banding/foliation at ~75.80 to come aging Local fint folding		
	Less than "10" wide. Trace FMX disseminated pyrite Local goves of carbonate beining and/or replacement? General grey to slightly khaki colour.		
£7/ *	EOH		

PAP.- 8452



030

# **REPORT ON**

# DIAMOND DRILLING AND UNDERGROUND MAPPING PROGRAM

HUNTER MINE PROJECT

WHITNEY TOWNSHIP

PORCUPINE, ONTARIO

FOR

## WABIGOON RESOURCES LIMITED

BY

ROBERTA C. BALD, M.Sc., F.G.A.C. TAMARACK GEOLOGICAL AND PROSPECTING SERVICES LTD. SEPTEMBER 19TH, 1988 TIMMINS, ONTARIO

#### INTRODUCTION

From February 1st to April 6th, 1988, a program of diamond drilling and mapping was performed underground at the Hunter Mine, Porcupine, Ontario. The Hunter Mine is located on the east side of Porcupine Lake, in Whitney Township, District of Cochrane, in the Porcupine Mining Division.

The drilling program consisted of a total of eight holes, designated as U-6 to U-13, for a total of 3,881 feet. A total of 691 samples were marked on the core and 246 of these samples have been assayed. 55 samples were sent in for assay in July, thus leaving a total of 390 samples to be both split and assayed. The drilling was done on the first level of the mine, approximately 225 feet vertically below surface and about 280 feet down the inclined shaft. Drill holes U-6 and U-7 were collared near the end of the 283 cross-cut, at the junction of the 284N and 284S subdrifts, and totalled 995.5 feet. The remaining 6 drill holes, U-8 to U-13, were collared at the end of the 281 cross-cut, for a total of 2,885.5 feet.

The shaft was pumped out to slightly below the third level. All three levels were geologically mapped on a preliminary basis only, due to time constraints. However, the mapping allowed a general geological picture of the mine to be interpreted and presented in this report. It appears that the main gold-bearing zone at the Hunter Mine is associated in part with a felsic intrusive unit, locally a recognizable quartz feldspar porphyry. However, preliminary conclusions indicate the gold appears to be related to abundant quartz veining associated with the felsic intrusive rocks. The exact relationship between the felsic intrusive rocks, the quartz veining and the gold has yet to be determined. On all three levels, the drifts appear to have been driven on what appears to be a locally altered and silicified felsic intrusive dike or thin sill (possibly quartz feldspar porphyry). This unit appears to lie conformably within an intensely deformed and altered sequence of chloritic to sericitic schists, locally containing possible fuchsite spots and common parallel quartz veining. The origin and nature of this unit is difficult to determine because of its intense alteration and deformation. It lies between talcose ultramafic material of probable volcanic origin on the hanging wall and a sequence of metasedimentary rocks, consisting of greywacke and locally graphitic argillite, on the foot wall. Therefore, it appears that the chloritic and sericitic schists, called the alteration zone in the present program, are close to the contact between Deloro Group and Tisdale Group rocks. PROPERTY DESCRIPTION, LOCATION AND ACCESS

The Hunter Mine Property consists of 7 contiguous patented claims held by Wabigoon Resources Limited, 111 Elizabeth Street, Toronto, Ontario. Portions of the westernmost claims are covered by Porcupine Lake. The claim group is within the town of Porcupine which is within the city limits of Timmins. The claims are situated in Concession III, Lots 9 and 10, Whitney Township and are numbered as follows: 14052, HR 1009, 10451, P.7592, P.12803 and an unnumbered claim in the NW 1/4 of the N 1/2 of Lot 9, also described as Land Parcel 3984 (Kirwin, 1987).

The claim group straddles the east shore of Porcupine Lake. The mine site is located near the boundary between claim HR 1009 and 10272, near the Lot line. From Timmins, it can be reached by travelling about 12 kilometers east along Highway 101 to the town of Porcupine, and turning south onto Haileybury Crescent, then turning west onto the first unmarked gravel road, locally called Lover's Lane, which goes right past the mine gate. PROPERTY GEOLOGY

The Hunter mine property lies close to the Porcupine-Destor Fault Zone. Pyke (1982) situated the fault zone just north of Porcupine Lake but more recent mapping, still in progress, places it south of the Hunter property, passing through the extreme south part of Porcupine Lake (Open File Map 89, Geology of Whitney Township, Porochco).

The outcrops in the general vicinity of the property have been described by Pyke as steatized, massive, polysutured, serpentinized peridotitic komatiite flows, based on texture in outcrop and lithogeochemistry. Porochco also mapped them as komatiitic metavolcanics, specifically Mg-Fe carbonate-quartz-chloritetalc schist. In addition, the author observed a small patch of spinifex texture on the lakeshore outcrop on the point just southwest of the Hunter shaft. This exposure may have been missed in the past since it appears to be exposed this year because of dry weather conditions. The outcrops on Deadman's Point, near the cemetary are clearly polysutured. Therefore, it appears that the alteration zone is probably within komatiitic metavolcanic flows and may in fact be altered and sheared komatiitic volcanic material of the Tisdale Group.

The presence of the metasedimentary sequence, interlayered with talc schist (ultramafic rocks), in the foot wall at the Hunter property may indicate that the easterly trending band of metasediments shown on the east side of a northerly trending fault on Pyke's map, just east of the Hunter property, may actually continue past the fault and possibly be folded so now the strike of the metasediments is roughly 015 AZ, possibly by rotation/drag folding along the Porcupine-Destor Fault Zone.

The 015 AZ structure in the Hunter Mine property may be a fault splay, off the Porcupine-Destor Fault Zone which is about 040 AZ in the area. Breccia

(

zones show evidence of predating the shearing in the Alteration Zone because of the abrupt termination of some of the quartz veins contained within the unit.

From all the data observed to the present, it appears that gold at the Hunter Mine is closely associated with the following: 1) narrow cross-cutting brownish quartz veinlets, possibly containing fine, disseminated tourmaline, and commonly carrying very fine-grained visible gold; where seen, these veinlets appear to be randomly oriented and are found within the Alteration Zone, closely associated locally with silicified porphyry and breccia units; 2) silicified zones within pyrite-bearing sericite-ankerite schists of the Alteration Zone unit, locally carrying fuchsite; 3) low, anomalous gold values were also obtained from a white, tourmaline-bearing quartz vein sampled along the wall of the 280N drift.

### TALC SCHIST/SOAPSTONE

Possible rock type: Deformed ultramafic volcanic flows.

Colour: Dark grey to black with white blobs and stringers on fresh surface; dark grey on weathered surface.

Hardness: Very soft (scratched by fingernail); common washed out and/or ground sections; local weathered out and/or orange-rusty weathered sections (possibly iron/magnesium carbonate).

Structure: Soapstone is locally brecciated to massive whereas talc schist is foliated to schistose with very variable directions (from 0° to 90° to core axis) and locally folded and faulted.

Veining: Local quartz and/or carbonate and/or silvery light green talc veinlets and pods and local black, massive talc veinlets; veinlets vary from cross cutting to parallel to foliation/schistosity direction.

Sulphides: Trace fine- to medium-grained pyrite.

Comments: The talc schist unit occurs structurally above and below the alteration zone as a sort of envelope, but it appears to be interfingered with the metasedimentary unit and conformable in the foot wall; the soapstone unit occurs structurally above the talc schist unit and may represent a fault zone; Locally present are grey to slightly mauve, cherty looking bands generally parallel to the schistosity and commonly containing fine-grained disseminated pyrite, these bands are possible fine-grained carbonate or felsic intrusive material (aplite?) or interflow chemical sediment; rare white varioles were seen in the soapstone unit.

Distinguishing features: 1) Hardness (scratched by fingernail); and 2) Crosscutting, narrow (less than 1/4 inch) black tale veinlets in the tale schist only 3) Dark grey blueish colour.

## INTERMEDIATE DIKE (?)

Colour: Dark to medium grey

Hardness: Medium hard (slightly scratched by hammer)

Structure: Massive to moderately foliated

Veining: Very thin, threadlike veinlets (carbonate? or quartz?) with surrounding bleached and silicified halos; veinlets locally form "ladder" pattern (i.e. looks like a string of H's); silicified material is light grey to white, very hard (not scratched by knife); silicified zones commonly carry up to 2% fine- to medium-grained, disseminated pyrite; amount of silicified material varies from about 15% to over 75% between different dikes.

Comments: Uncertain what the nature of this unit is, i.e. whether it is a dike or intermediate flow; seen only within the talc schist unit underground and in drill core; not observed on surface; from drill sections, these units appear to be unconformable to the general stratigraphy

Distinguishing features: 1) Bleached silicified zones and ladder veins; 2) grey colour; 3) Harder than talc schist

#### ALTERATION ZONE

Possible rock type: Sheared mafic and/or ultramafic volcanic flow (now a sericite and/or chlorite carbonate schist)

Colour: Light green to khaki to green, generally layered (looks striped) Hardness: Locally very schistose and soft but variable

Structure: Schistose with only local kinking; very regular, parallel schistosity

Veining: Local zones of quartz and/or carbonate (commonly ankerite) veining occurring in various forms: 1) as narrow (less than inch), brownish, cherty looking quartz veins generally randomly oriented and locally containing finegrained visible gold; 2) along schistosity planes, locally containing finegrained disseminated pyrite and occasionally assaying anomalous in gold (generally gold is not visible); 3) white coarse-grained quartz veins with some carbonate and local tourmaline, rarely anomalous in gold (not visible).

Sulphides: Local fine- to medium-grained disseminated pyrite

Comments: This zone probably represents sheared, altered mafic to ultramafic volcanic flows; most of the gold-bearing sections were contained within this unit with one exception (it was located within the talc schist unit); although this unit is thick and quartz veining was locally seen throughout, there seems to be a concentration of gold-bearing zones close to the hanging wall contact of this unit (i.e. within about 80 feet of the contact with the soapstone-talc schist unit, probably what was previously called the "Main Vein") Distinguishing features: 1) Structure (regular, well defined schistosity) 2) Local khaki to light green colour (probably due to sericite); 3) Variable

appearance and composition.

#### BRECCIA ZONES

Possible rock type: Volcanic or tectonic (intrusion) breccia Colour: Variable, from white to black to dark green Hardness: Variable, from soft to hard depending on the type of "fragment" Structure: Chaotic mixture of "fragments", veining, lenses and matrix, within a generally well defined zone with sharp contacts which are in general conformable to the schistosity of the enclosing schist.

Veining: Abundant quartz and quartz-feldspar veins and lenses, commonly appear to end abruptly at the breccia zone contacts; locally thin (less than 1/2 inch) brownish (possibly due to fine-grained disseminated tourmaline?) quartz veinlets rarely containing fine-grained disseminated gold.

Sulphides: Fine- to medium-grained pyrite

Comments: The nature of this unit and its relationship to the gold-bearing porphyry/quartz vein (Main Vein) is uncertain; drifting was done along a breccia zone on the third level of the mine; several breccia zones of variable thickness were recognized in the 1988 drilling, and may be lensoid since they do not seem to correlate between holes; there is also a porphyry component in this unit occurring as fragments or dikes.

Distinguishing features: 1) Buff coloured angular fragments in a dark brown, hard, aphanitic matrix; 2) quartz veins which are truncated by the well defined contacts of the breccia unit; 3) general chaotic, deformed appearance.

## QUARTZ FELDSPAR PORPHYRY

Colour: White to light grey to pinkish with brownish tinge (especially evident underground) on fresh or broken surfaces; grey to milky white on weathered surface

Hardness: Hard (not scratched by knife)

Structure: Locally 15% Plagioclase and/or quartz phyric; variable amount and size of phenocrysts in a generally fine-grained, cherty-looking light grey matrix.

Veining: Randomly oriented pinkish feldspar and glassy to brownish smokey quartz veinlets.

Sulphides: Trace fine-grained disseminated pyrite

Comments: Matrix locally contains about 2% black, fine-grained tourmaline(?) crystals; contacts appear generally conformable to schistosity of country rock but in detail and perhaps only locally, contact is irregular (seen on power stripped area along shore) and apparently chopped up by faults normal to the contacts; the dikes locally appear to pinch out along strike, possibly due to primary, lensoid shape or the result of deformation.

Distinguishing features: 1) Local sugary textured siliceous appearance (probably recrystallized) causing this unit to commonly be mistaken for a quartz vein; 2) plagioclase and/or quartz phenocrysts, locally with vague outlines (possibly recrystallized); 3) Light colour

## METASEDIMENTS (not seen on surface)

Colour: Argillite is black and greywacke is dark to medium grey to locally slightly khaki coloured

Hardness: Hard but slightly scratched by knife

Structure: Alternating beds of argillite and greywacke, locally kink folded

Veining: Local zones of carbonate veining; locally bleached

Sulphides: Trace fine- to medium-grained disseminated pyrite

Comments: Some bedding planes in argillite may be slightly graphitic; argillite is very fine-grained whereas greywacke is fine- to medium-grained; locally graded bedding clearly indicated top directions (variable)

Distinguishing features: 1) Sharply defined and regular bedding; 2) Colour (alternating black and grey)

#### CONCLUSIONS AND RECOMMENDATIONS

1- The remaining 390 samples from the underground drilling program should be assayed for gold.

2- The 1"=20' diamond drill sections should be finished and the new assays should be added. A similar section for drill holes U-6 and U-7 should also be drawn.

3- The underground mapping program revealed the drifts followed a felsic dikelike or sill-like body of possible quartz feldspar porphyry, contained within a series of chloritic to sericitic schists, called "alteration zone" during this work program. The felsic intrusive rocks are locally silicified and cut by quartz veining. On the hanging wall, the alteration zone is in contact with talcose, ultramafic material. A number of other quartz and/or feldspar porphyry dikes or sills were also observed. Breccia zones were located in the foot wall alteration zone. The first level ends about 10 feet from the contact between the alteration zone and a diabase dike.

4- More detailed mapping of the underground workings, including the stopes where possible, along with extensive sampling should be done to establish the exact location and nature of the gold-bearing zones.

5- A compilation of all previous work with various confidence levels indicated, should be done. This should include all previous geological and assay information from mapping and diamond drilling underground and on surface.

6- After the above work is done, there might be enough information to outline a drill program which could eventually lead to an estimate of mineable reserves. This program should consist of underground test holes and diamond drilling along with surface drilling.

Roberta Gold

BUDGET

Phase 1: Completion of previous diamond drill program Splitting 390 samples at about 40 samples/day, at \$150.00/day \$1,500.00 Assays, 445 samples at about \$15.00/sample \$6,675.00 Completing and updating drill sections, about 3 days at \$250.00/day \$750.00 Subtota1 = \$8,925.00Phase 2: Completing underground mapping and sampling (this does not include the cost of dewatering the shaft nor its maintenance afterwards) Detailed mapping of three first levels, about 15 days at \$250.00/day \$3,750.00 Sampling of levels and stopes, about 50 man days at \$150.00/day \$7,500.00 Assays, about 2,000 at \$15.00/sample \$30,000.00 Subtotal = \$41,250.00

Phase 3: Compilation

 Compilation of all remaining data, about 15 days at \$250.00/day
 \$3,750.00

 Drafting, about 10 days at \$100.00/day
 \$1,000.00

 Subtotal = \$4,750.00

Phase 4: Diamond drill program planning Planning and organizing drill program, about 10 days at \$250.00/day \$2,500.00

TOTAL OF FOUR PHASES = \$57,425.00 10% CONTINGENCY = \$5,742.50 TOTAL = \$63,167.50 ESTIMATED COST OF DEWATERING SHAFT AND MAINTENANCE FOR 15 DAYS = \$30,000.00

THEREFORE TOTAL COST ABOUT \$95,000.00

Respectcfully submitted September 19th, 1988

Roberta Bald

Roberta C. Bald, M.Sc., F.G.A.C.

#### CERTIFICATE

I, Roberta Bald, of the City of Timmins in the District of Cochrane, hereby certify:

- 1) That I reside at 301 Crawford Street, South Porcupine, Ontario.
- 2) That I received an Honours B.Sc. in Geology from Laurentian University in 1975 and a M.Sc. in Earth Sciences from the University of Manitoba in 1981.
- 3) That I have practised my profession as geologist since graduation.
- 4) That this report was written by me based on underground mapping at the Hunter Mine and diamond drill supervision from February 1st to April 6th, 1988, on relogging several surface diamond drill holes drilled in 1985 and 1986 between July 11 and August 17, 1988, and on various reports and maps of the area.
- 5) That I do not have any interest, either directly or indirectly, in the claims described in this report.
- 6) That I am a Fellow of the Geological Association of Canada.

Dated at Timmins, Ontario, this 19th day of September, 1988

Roberta Bald

Roberta Bald, M.Sc., F.G.A.C. Tamarack Geological and Prospecting Services Ltd.

// DI	SUMMARY LOG PROPERTY HO HOLE NUMBER 4 DIAMOND DRILL LOG (50'-45° (100'-44.5° GRID REFERENCE 10 ENGTH = 508.5' TOWNSHIPWHI A 350'-41° (200'-47° TOWNSHIPWHI (200'-47° (200'-47°) TOWNSHIPWHI (200'-47° (200'-48°) TOWNSHIPWHI (200'-48°) TOWNSHI	INTER	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0-21	CASING		
2-32.2	MAFIC METAVOLCANIC (EASALTR) & INTRUCE ANALY		
20.04-20.5	TAIC-CHLORITE - CAROCIDI.TE-QUARTZ SCHIST (ULTRAMAFIC?) QFF Dikes: 79.2'-79.5; B1.2'-B3.1'; CP, FY; 197.0' to 199.5'		
3125-369.2	ALTERATION ZONE (SERICITE-CAREONATE-QUARTZ SCHIST) QFP Diku: 331.9' to 335.5'; 345.4' to 346.5'		
369.2-389.5	TALC-CHLORITE-CARBONATE (QUARTZ) SCHIST		
389.5-396.9	MAFIC DYKE (?)		
3969-400.5	CHLORITE-CARBONATE QUARTZ) SCHIST		
4005-508.5	ALTERATION ZONE QFP Dikes: 409.7' to 412.1' QVZones: 432.5' to 433.5': 442.5' to 446.5'; 468.2' to 469.1' BX Zone: 494.4' to EOH		
508.5'	EOH		

•

1	PROPERTY Ho PROPERTY Ho HOLE NUMBER L DIAMOND DRILL LOG $\swarrow$ 100 TESTS = $\textcircled{OSO} - 45^{\circ}$ $\textcircled{OSO} - 47^{\circ}$ GRID REFERENCE $\textcircled{OSO} - 47^{\circ}$ GRID REFERENCE $\textcircled{OSO} - 47^{\circ}$ GRID REFERENCE $\textcircled{OSO} - 47^{\circ}$ GRID REFERENCE $\textcircled{OSO} - 47^{\circ}$ GRID REFERENCE TOWNSHIP THE $\textcircled{OSO} - 485^{\circ}$ $\textcircled{OSO} - 41^{\circ}$ $\textcircled{OSO} - 465^{\circ}$ $\textcircled{OSO} - 545^{\circ}$ $\textcircled{OSO} - 59^{\circ}$ $\textcircled{OSO} - 545^{\circ}$ $\textcircled{OSO} - 59^{\circ}$ $\textcircled{OSO} - 545^{\circ}$ $\textcircled{OSO} - 59^{\circ}$ $\textcircled{OSO} - 517^{\circ} - 56^{\circ}$	CLAIM
	RILLING COMPANY Mornissette FOREMAN DIP TESTS: ORE SIZE AQ CORE STORED AT: MINE SITE LOGGED BY MERICA D.	ATE Feb. 5/28
FOOTAGE	DESCRIPTION OF CORE	SAMPLE ASSAYS
0-2.0'	CASING	NUMBER AU 03/ SAMPLET
		2.0' - 4.4'  0.001  0.01  0.01  0.01  0.01  0.01  0.002  0.002  0.002  0.021  0.024  0.002  0.002  0.002  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.001  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.005  0.0
32.21-312.5	CHLORITE - CARBONATE - QUARTZ - TALC SCHIST Interscly banded faliated/schistose unit; darkgrig- black and white bando; schistoaty direction give ally at a low angle to CA but locally variable; no reaction to HCl; carborate - quart, bando are white and up ton 14"	37.0 - 42.0 0.001 011 42.0 - 47.0 0.001 012

.

PAGE 2.f6

1 )

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-6

.

.

-

لد اذ

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASS	AYS
52.2-312,5	CHLORITE - CARECNATE - GIFF Z-TALC SCHIST (OUT)			
	wide locally folded faulted a d'orecanated; trace disse	57.0-62.0	0.001	014
		62.0-67.0		
	bards up to ~ Tio " linde, be coming more common and	17.0 -72.0	0.001	01
	Cossibly to a - rich tein (etc 2)			
	1. 7" day marcu			ļ
	1			
	fine grained dimenic ated pipite in a grey, Sugary			
	Schipto'ssity (2071 '10~25° to CA			
		12.0-77.0	C,001	0
		77.0-79.2'	C.001	0
	and a contract to the termine the termine the termine the termine the termine termine the termine term	81.2'-83.1		0
	very soft tale veinlets containing fine to medium	83.1 -87.0	0.00	0
	and run of the construction of the			
	with greet quearts with light golden - yellow	·····		
	To be Witten of high and the second s			
	A de la traine de			
	disservirated pyrite: starp to gradational contacts;			
	host rock is away deformed Z-folded, faulted and			
	preciated between these guart veins			
	Local milky white quater + minor ankerite ? - not reaction	870-970	0.001	02
	to HCL) veins generally cross-cutting schiptossite &	92.0'-97.0	0.001	02
	host rock; up to ~ 1" linde: from ~ 27' to rats' has suit-	970-1020'	0.002	0
1.0.6 (	phides seen gene ally at ~ 45° to 80° to CA. 3" Of at 1470" 445'	102.0-1070	0.001	02
SSIBLE IS	Cherty-168 King, Khaki coloured, massive, fine- grained	107.0-112.0	0,001	0:
ROUKIT		112.0-117.0		0
		1170-122.0		02
		122.0-127.0	10.001	03
		127.0-132.0	0.001	0:
		132.0-137.0	0.002	03
	NOICINO 161 tage vis apart in a boyes from	137.0-142.0	10.001	0
	172 tog to EOH, should add 1.5 to all tags	142.0-147.0	100-11	03

.

.

			4	· · ·
		PAC	a∈ 3∘	+6
	DIAMOND DRILL LOG. PROPERTY: HUNTER HINE HOLE NL			
FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSA	AYS
32.2-312.5	TALC- CHLORITE - CARBONATE (QUARTZ) SCHIST (CON'T)			
		147.0-152.	0.001	035
		152.0'-157.0		
		157.0 - 162.0		037
		162.0'-167.0		
	NOTE: 212 409 of end to bey 9: then 222 at start	167.0-172.0	0.001	039
	NOTE: 212 tog of end ber 9; then 222 at stat	172.0-177.0	0.001	040
		177.0-182		
		182.0-187.0		042
		187.0-192.0	0.004	
	From 197.0 to 199.5: Quartz Vein or Quartz Forphyme	192.0-197.0		044
	with maderice black tale similar to 79.2. to 19.5 de upon	1970-1985	6.001	045
	contact sharp at ~40° to CA. Jower contact sharp at 25° th	199.5-2020	10.002	046
		202-207'		047
		207-212	C. CC3	048
		212-217	0.004	049
		217-222	0.001	050
		222'-227'		
		<u>227-232</u>	0.001	
		232-237'	· · · · · · · · · · · · · · · · · · ·	053
		237'-242'		054
		242-247'		055
		247-252		056
		252-257		057
		257-262		058
		262-2671		059
		267-272		060
		272-277		061
		277-282		062
		282-287		063
		297'-292'		064
	Quart veins similar to ~87 to ~245 from~285 to~310'. for 297.5' to 298.3' is a quart vein at least 1" wide	292-297		065
		297 <i>'-3</i> 02' 302'-307'		066
		307-312.5	,	067
	gered parallel to schistocity of ooth units at 20° to CA.	<u>507-312.5</u>		068
	The second grow and a 20 to CA.			F = P = 845

PAGE 4 of 6

٠

1

,

.

DIAMOND DRILL LOG. PROPERTY: HUNTER HINE HOLE NUMBER: 4-6

FOOTAGE DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
312.5'-369.2' ALTERATION ZONE		
Buff to light grey to light green, locally cherty -	100 Kirg 312.5-317	069
ististed/schistose unit; locally with dark bla	ck. Bands 317'-322'	070
(tale and/or chlorite) locally revealing defer		071
a unit, lowing & heiding land ting land van	10.6 Le 327-331.91	072
echistossity difections (from 100° to 20° to CA	): Incally	
writ has buch = 142 (?) - isch slips Ka alle to	- Har /	
	ated	
pyrite: locally cherty looking naterial conta	L-r.m.	
small sound to incarlandy- staped quarter	creptals.	
rankly in layers carallel to the latia	the man	
direction ? !		
Quarte veins or Quarta Porphyny dikes: from	331.9 331.9-335,5	0,201 073
to 335.56 and 345.4' to 346.50; Oupper Conta		074
	+~35 ++ B37-342'	075
bore all's with chinty - looking bull altered mate	1/1 342-345.4'	076
to~ 336.5' then unit becomes stailar to TALC	- CHLORITE 345.4'-346.5	
CARBONATE (QUARTZ) SCHIST unit except no black		078
(bossibly no tale); @ upper contact stap but so	mewf at 352-357'	079
itregular ~ 45° to CA. Hower contact sharp at 6	0° TOCA 357-362	080
I ower contact sharp at 15° to CA, denoted	54 colour 362'-367'	081
change (abrupt)	/ 367-369.2	082
		· .
369.2-389.5 TALC- CHLORITE - CARBONATE (QUARTZ) SCHIST		
Similar to 32.2' to 312, 5'; with local sericite.	- rich 369.2-372	083
nones (khaki-light brown coloured bands)	372-377	084
Lower contact sharp at 20° to ca, parallel to	Laliation 377-382'	085
a) toth unito	0 382-3871	086
	387-389.5	087
389.5-396.9 MAFIC DYKE (?)		
To HCL); fine-grained granular, with Khaki- brown	Rtightin 389.5-3%9	088
To HCC): Fine-grained granular, with Khati- brown carbonate cligatelo legrally alors thin ba do a	- palanded	
carbonate clipatolo lycally alors this ba do a	T 20° to	
corr avis; possibly prophytic matic flour? but c	tr Lack	
Starpagainst counting pock Louter contect at 20°	to core	
ayis. To get a contract of the second s		

PAGE 5 0 7 6

.

1

.

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-6

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASS	AYS
8.9-400,5	CHLORITE - CARBONATE (QUARTZ) SCHIST			
		396.9-400.5		089
	muit is any deliated MX:			
	Lower contact somewhat gradational over			
	a few includes a mainly denoted by a coloring			
	Vescae.			- <del></del>
0.5-508.5	ALTERATION ZONE Only 5.5' of core >	400,5-407	0.007	090
	Similar to 312.5'- 369.2'.		0.001	091
	Errown Quarts wein Bre Quarts Portuguy dike ?) from	409.7-412.1	0.001	092
	409.7' to 412.1' similar to 331.9'-335.5' but Terrin- bull	4121-417'	0.001	093
	counced dante looking with any - withing villey will to	417-422	0.001	074
	To shew grante winter ( and only a, in tal 1 local precia-			
	ted lotterne anec within vein - were for to it sharp			
	at 30° to tote axis, parallel to delight on St hast rock.			
	ower contact ~ 250 to core agio, no inlyshides seen.			
	Locally unit is pericite-rich with local fine	422-427	0.001	095
	tusting to fine-grained disseminated pyrites (c.g.			
	near 4220	,		
		427-432,Ś	0,001	096
	along foliation A (area ( fin 3429'-~454'); within			
	this one are is cal sup to veins with allel to folia-	•		
	tion, condicting of transfurctul quanti with vanlky			
	while grains in wessible bands Operatlef to vein walls			
	(pour anal or felderine?) up to d'unde; main	···· /		
	Containing Solic touting find Danah my 2442 5' to 44165	432,5-433,5		097
	11	433,5-437	0.001	098
		437 - 442	0.001	099
		442-446.3	0.001	100
	to 389.5 to 396.9	446.3-451		101
	Zone & quant usining similar to 432.5' to 433.5'	451-456 456-457.5	0.001	102
	from 468.2' to 469.2' up to 60% quarts; locally fine-	456-4-37.5	0.001	101
	a citat de la cita	457.5-462	0.001	104
		462 - 465	omu	105
	locally from ~ 465' to 468:2.	465-468.2	0.021	106
,		7-0-7-60.2		PAP - 6

PAGE 6076

¥ ь

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-6

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
400.5-508.5		4682 -4697	the second s	107
	NOTE: Between Driller's 399' and 412' tago -> only 12 feet of core. (not corrected in 100)	<u>467,7'-472</u> 472-477'	0.001	108 109
		477-482	0.001	110
	Foliation / = chistossit, a ~ 455.5 = 30° to core age	482-487	0.001	111
		<u>487'-492'</u> 492'-494.4'		112
	@~ 494' = from 35° - 70° to come	<u> 712 - 919.9</u>	0, 00 =	<u> //~</u>
	ayis @~ 504' = '50° to core ayis			
	From 494.4 to EOH: Possible buencia zone with local	494.4-497	0.003	114
	acres of icliand / schoolese material: very schicitic - ank	497-502		115
	Sutac with local provible find the along felicition	502'-507'	0.012	116
	planes or between fragmente only trace, fine-grained	<u>507 -508,5</u>	0.001	117
508.5	V 0			· · · · · · · · · · · · · · · · · · ·
208.5	EOH			·
•				

٠

•

•	SUMMARY LOG	PAGE	· · · ·
. L    D C	PROPERTY #4 HOLE NUMBER U DIAMOND DRILL LOG (50'-44° (150'-50° GRID REFERENCE 10) ENGTH = 487.0' (150'-47° (1200'-46° TOWNSHIP WHI (1250-46° (1200'-49.5° TOWNSHIP WHI (1250'-455° (1400'-53° AZIMUTH (1450'-48.5° (1487'-56° AZIMUTH G 450'-48.5° (1487'-56° AZIMUTH G 450'-48.5° (1487'-56° AZIMUTH ORE SIZE AQ CORE STORED AT: SITE LOGGED BY R. BALD D	NTER M -7 050N ITNEY CI	LAIM 1009 IGLE - 50°
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0-16.9'	TALC- CHLORITE - QUARTZ- CAREONATE SCHIST		
169-29.2'	QUARTZ PORPHYRY DIKE		
29.2-64.5	TALC-CHLORITE - QUARTZ-CAREONATE SCHIST		
	QUARTZ PORPHYRY DIKE		
	TALC- CHLORITE - QUARTZ-CAREONATE SCHIST		
	FELDSPAR PORPHYRY DIKE ?)		
233.8-266.3	TALC-CHLORITE-QUARTZ-CAPEONATE SCHIST		
266.3-2775	CHLORITE SCHIST		
277.5-306.8	QUARTZ FELDSPAR PORPHYRY DIKE		
306.8-317.7	ALTERATION ZONE ? (CHLORITE SCHIST)		
317.7-320.7	FELSIC DIKE? OR SILICIFIED ZONE? OR BRECCIA ZONE		
320.7 - 324.5	ALTERATION ZONE ? (CHLORITE ECHIST)		
324.5-397.8	ALTERATION ZONE (SERICITE - QUARTZ - CARBONATE - CHLORITE SCHIST		
397.8-487	TALC-CHLORITE -QUARTZ-CAREONATE SCHIST (ULTRAMAFIC?)		
487	QVZones: 412.6' to 413.7'; 415.5' to 416.5'; 432,4' to 433.9' EOH		FAP 845.

	• • • •			
		PAGE	1.47	7
	PROPERTY Hu		MINE	
	HOLE NUMBER U	-7		
	DIAMOND DRILL LOG @ 100 - 500 - 47 GRID REFERENCE			
	(4.200 -46° (a.250 -46° TOWNSHIP WH	TNEYO		
L	ENGTH = 48/.0 (# 300' -49.5' (# 350' -45.5')			0
	15 SAMPLES (2400-53" (2450-46, S AZIMUTH	DIP A	NGLE -	50
	C 707 76			
	ORE SIZE CORE STORED AT: LOGGED BY K. Bald D.	ATE Feb	. 8/88	g
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	YS
0-	CASINGEHLORITE-	NUMBER	<u></u>	
	TALC-QUARTZ-CARGONATE SCHIST	·····		
	Dark grey, fire to medium - grained rock with whit	1 21		1.15
	to light between the bir due "h" wind sock with she	<u></u>	0.001	118
	tossity directions (from ~ 0° to ~ 45° to come avis locally	6'-8'	0.005	117
	very deformed and filded and lay (tid' lacally contin	0-0	0.004	120 121
	line - to medium - grained durite (save) : logo lat	-13'-16.9'		121
	losking bands (ten colour) lote only 3 feet store batures 21	-13-10.1	0.001	
	and 6 togs).			
16.9-29.2	Quarte Veinelor Quarte Porchend Dike?)	16.9-21'	0.001	123
	Light brown - tan coloured massing cherty - looking	21-27'	0.001	124
	To prohibly perphyritic delaic unit: < 1%. black	27'-29,2'	0.001	125
	verteto, possibly townaline? locally rare.			
	dessemiliated printers upper contact inequelar masked			
	by milky white grant former contact sharp at ~ 50° to			
	Corre axis! (NOTE: ONLY ~19 fait of core between 18'+ 28" + 28" + 29.			
30-1 145	CHLORITE 0			
×7.x - 67. J	TALC-QUARTZ-CARBONATE SCHIST			
	Similar to 0'- 16.9' very deformed banding folded		0.001	126
	+ faulted; local translucent guy to rilky white quart	33'-38'	0.001	127
<b>  </b>		38'-43'	0.002	128
}ł	1) July and the second se	43-48	0.029	129
			0.001	130
	A di Footini in the state of the state		0.003	/3/
		55'-56'		132
	t to cere and	<u>56'-56,8'</u> 56.8'-58,21		/31
		58,2-59,6		134
				PAP 8451

PAGE 2017

٠

4

.

DIAMOND DRILL LOG. PROPERTY: HUNTER MARE HOLE NUMBER: 4-7

HS-780 Quart Ven Bar Der Der Perping die (2) Samilar to 16.9 to 29.2 [use of celeur parice 45:68] acc2 from light tam to gring to daile original locally (6-73° Croce) I dark grey motorial gradually Gardyac colorists 73-79° (bes) Lister gring to solve the referred strike 2: a bent 2:33 ford - the coarse - grained disastering at a private the reverse of a local strike 2: a bent 2:33 ford - the coarse - grained disastering at a private the reverse of a local strike 2: a bent 2:33 ford - the coarse - grained disastering at a private the reverse of a local strike 2: a bent 2:34 ford - the coarse of a local strike 2: a bent 2:35 ford - the coarse of a local strike at a private the reverse of a local strike at a to be a 2:35 ford a local of the coarse of a local strike at a 2:35 ford of the grad strike at a strike at a strike at a 2:35 ford a strike at a strike at a strike at a strike at a 2:37 ford a strike at a strike at a strike at a strike at a 2:37 ford a strike at a strike at a strike at a strike at a 2:37 ford a strike at a strike at a strike at a strike at a 2:37 ford a strike at a 2:37 ford a strike at a s	FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	4YS
Similar to 16.9 to 29.2 1 without colours praine 45:68 0.002 from light tax to guy to balk gradually balges colourth (8-73 0.001 listic grey metarial gradually balges colourth (73-79' 0.001 listic grey + possible with discontrated	64.5 - 79.0		59.6-64.5	0.001	/36
Udark grey moterially gradually balger calcustre 73-79' 0.001 lister any + possible site of grie 2; about 2:3's first - the conner - grained direction in a ted pyrite the sugger of tal conner sted active a suredge of tal conner termined active and the conner termined active one and the site in indice- the trip of the conner termined be conserved at the Ocinet (2)' house contact share at 40° to core are contact some what marked by nilley with gradue to the site in indice- indiced by nilley with the second some what respective at 40° to core are contact some what respective at 40° to core are some of a termined respective at 40° to core are are at at respective and the source of a termine at the source of a termined respective at 40° to core are are at a termined at the source of the source of a termined at the source of th		Similar to 16.9 to 29.2 weat colour varies			137
Lichte grift & possible cilicitied doite ?: about 2:3% find the complete gained diese in a to 2.5' print the render of tale-quart - Carporate achieve along one aiden & core possible indice- ting the used of tale-quart - Carporate achieve at the Coint of the core allel black along at 40° to core and the second to a to masked by nilky white quart will a rend to a to in the core along the core along the second to the core of the core along to the second to the core of the core along to the second to the core of the core along to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second		from light tan to grey to dark grey and locally	68-73	0.001	138
lichte geby + possible cilicitied dorie ?: about 2:23% find - to coarec - gaired diese minated cynthe the rough of coalec - gaired diese minated printe the rough of tale-quarti-largerett achiet along one aide & core possible indice- ting the used of fall - quarti-largerett achiet along one aide & core possible indice- ting the used of the Coine possible indice- to core when at this Coint (2): Lower contact share at 40° to core and fall of the contact masked by nilky white quarter with a fall of the chief it of the Coint of the contact some what is also at 40° to core and contact some what is also at 40° to core and the possible of the contact masked by nilky white quarter with a fall of the possible of the contact is also at 40° to core and the possible of the contact masked by nilky white gainet with a second some what is also at 40° to core and the possible of the possible of the core and the contact of 0'-16.9' with local this weinhits of 83-88' p.001 black tale, generally almost 70° to core and also 2000 is also 0.001 113-118' 0.		dark grey material gradually changes colourtto	73'-79'	0.001	139
Precision a surday of tal comments for the second start along one pide of come passible indice- ting the week in faithed and there yearsheld in the second start of the second start (2): Lower contact is the second start in the second start in the second start in the second start is th					
Precision a surday of tal comments for the second start along one pide of come passible indice- ting the week in faithed and there yearsheld in the second start of the second start (2): Lower contact is the second start in the second start in the second start in the second start is th		2=3% find - to coarce - grained disseminated			
lachist along one side of core possible indica- ting the wilk is failed and there you alked to core after at this scient (2): Lower contact sharp at 40° to core after for some what masked by rilky white side to the some what init. 9100/2075 TALC QUARTZ - CAREONATE SCHIST. 79.0'2075 TALC QUARTZ - CAREONATE SCHIST. Similar to 0'-16.9' unthe local this weinflets of 83-88' 0.001 black tale, generally almost 70° to core after 88'-93' 0.001 13'-18' 18'-18'-18'-18'-18'-18'-18'-18'-18		pyrite throughout (cubic and blebs); at ~72.5			
ting the wife is halfied and thema decalled b) core after at this Deint (2); Lower contact sharp at 40° to core after contact some what masked by miley white guest with in mercenters of 85-88' or or init. 790-2275 TALC QUARTZ - CAREONATE SCHIST, 79-83' COC. Similar to 0'-16.9' with local this meinlets of 85-88' or or black tale, generally almost to 'to core after 88-73' 0.005 (33-188' 0.001 113'-118' 1		preciply a hedge of talc-quart- Earborate			
to cover after at this scint (2); Lower contact Eharp at 40° to core after contact some what masked by riley with gubits with in right in the file result of a solution of the file of the file result of the file of the file of the file of the file file of the file	····· · · · · · · · · · · · · · · · ·	schiet along one side of done possible indica-			
Sharp at 40° to care axic contact some what masked by milky white grant will a mental init. renter 179.0-227.5 TALC - QUARTZ - CAREONATE SCHIST. Similar to 0'-16.9' with local this weinlets of 85'-88' 0.001 black tale, generally almost 70' to core axis 88'-93' 0.005 more cutting achietossity. 18'-108' 0.001 18'-118' 0.001 113'-118' 0.001 113'-123' 0.001 123'-128' 0.001		ing the weik is folded and trung perallel			
masked by nikey white gritte with in market         init         init <t< td=""><td></td><td>to cover agine at This point (?); Lower contact</td><td></td><td></td><td></td></t<>		to cover agine at This point (?); Lower contact			
unit. , CHLORITE , CHLORITE 79.0-227.5TALC-QUARTZ-CAREONATE SCHIST. Similar to O'-16.9' with local thin weinlits of 63-88' 0.001 black tale, generally almost 70. to core agin 88-93' 0.005 Cross cutting ochistossity. 98'-98' 0.001 103'-108' 0.001 118'-118' 0.001 118'-123' 0.001 118'-123' 0.001 118'-123' 0.001 118'-123' 0.001 123'-128' 128' 0.001 123'-128' 0.001 123'-128' 0.001 1		sharp at 40° to core axis contact some what			
, CHLORITE 79.0-2275 TALC-QUARTZ-CAREONATE SCHIST, Similar to 0'-16.9' with local thin weinlits of 83-88' 0.001 black tale, generally alm ost 70 to core affin 88-73' 0.005 Croos cutting achistossity, 98'-103' 0.001 108'-113' 0.003 113'-118' 0.001 118'-123' 0.001 123'-128' 0.001 123'-1					
79.0'227.5 TALC-QUARTZ-CAREONATE SCHIST. Similar to O'- 16.9' with local thin weinlits of 83-88' 0.001 black tale, generally almost 70 to core and 88-93' 0.005 more cutting achietossity. 98'-103' 0.001 103'-108' 0.001 103'-108' 0.001 113'-118' 0.001 123'-128' 0.001 123		unit.			
Similar to 0'-16,9' with local thin weinlets of 83-88' 0.001 black tale, generally almest 70 to core ayis 88-93' 0.005 Croce cutting achistossity. 103'-108' 0.001 103'-108' 0.001 113'-118' 0.001 113'-118' 0.001 123'-128' 0.001 123'-128' 0.001 123'-128' 0.001 123'-128' 0.001 123'-128' 0.001 123'-143' 0.001 123'-143' 0.001 123'-143' 0.001	-0.10070	CHLORITE			
black tale, generally almest 70° to core apic 88-93' 0.005 2000 cutting achistossity 93'-98' 0.001 98'-103' 0.001 108'-113' 0.003 113'-118' 0.001 118'-123' 0.001 123'-128' 0.001 128'-133' 0.001 138'-143' 0.001 138'-143' 0.001 143'-148' 0.001 143'-148' 0.001	79.0-221.3			1	140
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		Similar To U = 16,9 unth local Then weinlets of			141
$ \begin{array}{c}                                     $		black tile, generally almost 70 to core april		1	142
		roos culture achierossity			143
				1	144
$   \begin{array}{c}     1 3'-1 8' & 0.001 \\     1 8'-123' & 0.001 \\     123'-128' & 0.001 \\     128'-133' & 0.001 \\     133'-138' & 0.001 \\     138'-143' & 0.001 \\     138'-143' & 0.001 \\     143'-148' & 0.001 \\     143'-148' & 0.001 \\     143'-148' & 0.001 \\     143'-148' & 0.001 \\     144'-153' & 0.001 \\   \end{array} $			1 1		145
$   \begin{array}{c}                                     $			here in the		
$\begin{array}{c}  23'- 26'  0.00  \\  28'- 33'  0.00  \\  33'- 38'  0.00  \\  38'- 43'  0.00  \\  43'- 48'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- 53'  0.00  \\  44'- $					147
$   \begin{array}{c}     128'-133' & 0.001 \\     133'-138' & 0.001 \\     138'-143' & 0.001 \\     143'-148' & 0.001 \\     143'-148' & 0.001 \\     144'-153' & 0.001 \end{array} $			······································		148
133-138' 0.001 138'-143' 0.001 143'-148' 0.001 143'-148' 0.001					149
138-143 0.001 143'-148 0.001 149'-153' 0.001					150
143-148 0.001					151
140-152 12 001				1	153
$   \begin{array}{c}                                     $			140-182'	0 001	154
158-163 0.001 158-163 0.001 168-173 0.001 173-178 0.001 173-178 0.001			153-100	0.001	155
1/3'-1/68' 0.001 1/2'-1/68' 0.001 1/2'-173' 0.001 1/73'-178' 0.001			150-112	0.001	156
/63-768 07037 /68-773' 0.001 /73-178' 0.001			1/2'- 1/0'	0.00	157
/73-178 0.001			162-172	0.001	159
			172-170	0.001	158 159
170-102 0.001			170-192	0.001	160

page 3 of 7

HAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-7

FOOTAGE	GHLORITE DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
79.0-227.5	TALC-QUARTZ-CAREONATE SCHIST (CON'T)	183-188'	0,001	161
		188-193'	0.001	162
	Possible small wedge of feldspar porphyny dite ??)	193-198	0.001	163
	at ~208.2	198-203	0,001	164
		203-208	0.001	165
		208-213	0.002	166
		212-218	0.001	167
	Lower contact sharp, b. + incgular; some che Tlook	9,218-223	6,001	163
	tan- truff coloured bands i TALC-Q-ESCHIST unit in think	223-227.5	0.001	169
	inches & contact and within ~1 inch of contaction next			
	unit: Possibly carboratized? fire-maired Seems to be	·		
	bard (but could be due to grain size & granulantertune)		<b>.</b>	
227.5-233.8				
12/13-200,8			<b> </b>	
	foliated felsic, to possibly intermediate in the		<b> </b>	
	from 232,6 to lower contact. this non-porphymitic			
	funct is dark grey to builland crey, foliated at 40-50 to			
<b>~~</b>		0_		
	From ~228.6' to ~230.9' coause - grained to torally media	e. 	0.001	170
	suired leldspar and locally cossibly quarte physics			110
	about 50% ptens cupits ( milke white to trans bucent	······································		
	up to ~1/4" lorg but generally ~ 1/10" long; rarely enterdial			
	lath standed but more commonly cought and oval			
	in shape presiden some deformation / tectonic taugen shapes			
	From 230,9 to 232,6; similar to above except only	230,9-233.8	0.001	171
	about 5% white phenocysts (plagio classe?, cenerally			
	miller white). 1 0 0			
	forer contact braken but apprears sharp fan			
	cherty-troking bands with ~ 3" 58 next with			
	millen white). Hower contact braken but appiars sharp tan chert - Tokica banda with ~ 3" 52 next with No sulptides sice in coarse grained part of dike			

.

.

•

PAP - 845

•	, , , , , , , , , , , , , , , , , , ,		•	
		PAG	GE + 6	(7
<u></u>	DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NI			
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
233.8-266.3		233.8'-237.5	0.001	172
	Similar to 29.2'-64.5' and 79.0' to 227.5'	237.5-242	0,001	173
	3" section with ~ 2%, very connect - stained to locally	242-247	0,001	174
	fice- grained quite cubes and locally tabs, dimenival	247-252	0.001	175
	ed to possibly locally anocioted if the tale wir-	252'-257'	0,001	176
	let 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	257-262	0.001	177
-	Tale windets crow cut feliation & unit; yale	262-266,3	0.001	178
	vialeto tread 60-65° to come ay is and follo time the			
	30° to core avis (at 242').			
	hower contact indicated by lack of take veighte	l		
	and decilare to quart & carbor atte velocte war alles to			
	deliotion 0			
266.3-217.5	CHLORITE SCHIST			
		266.3-272		179
	10-15% white to light gray por alled bands lease than	272'-277.5	0.003	180
	14" wide (carborate and drate), foliation at ~80° to			
	core apis; local sones with almost no veining, nock			
	here to very file-grained, dark green matrice;			
	maring in acases from 274.3 to lower contact	ļ		
	rock to buff - whate + ugl + gray, about 70% grey-white			
	dining.			
	tower contact industricit but apprais to be ~ 90.			
	to core axis, possibly masked by meining.	[		
277.5-306.8	QUARTZ FELDSPAR PORPHYRY DIFF			
×17,5-500,8				
	1 2 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	277.5-280		181
		280-283	0.001	182
		283-286'	0.001	183
		286-289		184
	ante ante		0.001	185
	and handomly priceted	292-295	0.001	186
		295-298	0.001	187
	Desulphidas sean; lower contact andistinct.		0.001	188
		301-304	0.001	- <u>137</u> - 25
	Lower contact ~ 40° to corraxis, subparallel to 50° foliation of hey + wit	R04-206.8	0.001	P4P - 84

PAGE 5 of 7

.

.

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-7

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
306.8-317.7	ALTERATION ZONE ? - CHLORITE SCHIST?	306.8-312	0,001	191
	Inhomogeneous material possibly becally silicified	312-317.7	0.001	192
	and altered; reassive to schistose; fine- to course-		<b></b>	
	grained; from matic, dark meaning grey to dark			
	trainive naterial' date grey, hard passibly shilicified			;
	wit, up to "14" wide, randonly origented. local			
	line to redium - grained pyritle. Lower contact sharp at 80. to core axis slightly			
	Incentar parallel to Saliation of this with			
	Foliation at 312 to 70° to core appo	<u> </u>		
317.7-3207'	FELSIC DIKE? OR SILICIFIED ZONE ?			
		317.7-320.7	0 001	193
	Ame-grained baccouted texture "tage anto" Tocally		01001	
	appear to be round with dark certerby paler			
	riche (possible blocking effect); No subplides	<b> </b>		
	See lower contact kneepidted			
3207-324.5	ALTERATION ZONE ? - CHLORITE SCHIST? Similar to 306.8- 317.7'	320.7-324.4	0.001	194
	Similar to 306.8'- 317.7'		0.00	
	Lower contact gradational over n6"			
324.5-397.8	SERICITE - QUARTZ- CARBONATE - CHLORITE SCHIST (ALTERATIONZ)	· · · · · · · · · · · · · · · · · · ·		101
	Fire- grained grey to light green to Ktaki Schiot with	324,5-327 327-332	0.002	195
	local busht green tolar along foliation plane		0.012	197
· · · · · · · · · · · · · · · · · · ·	(prosubly suchsite): local the cont to gree sunt	337-342		198
	I carborate ver leto, generally parallel to follation:	342-347	0.012	199
	local patches of fine gained disc minated pyrite	347-352	0.011	200
	with quart wein let (up to 2" unde) any faily	352'-357		201
	Core breaks up in to "coins" locally	357-362		202
	From 377.2' to 378:0: be which grey fine grain d	362-367' 367-372		200
	chety looking material cost ining up to 3% hive to weture	372-377.2		205
L	anaited purity as dieses instants of along stragers, contact			206
, Ko	sharp and parabul to falighter of host rock (280° to care any			PAP - 845

• •

•	•	۰	-
	DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUM		× -
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
324.5-397.8	SERICITE- QUARTZ-CARBONATE-CHLORITE SCHIST (CAN'T)3	78-382	207
		32-387'	208
		87-392'	20
		92-397.8	210
	<u> </u>		
	$1.387 = 80^{\circ} + 0^{\circ} 11^{\circ}$		
	hower contact directed by very gradual chance in		
	colory from Kyret light glen to areansh grey and		
	the appearance & crosk - cutting this tale weit lets (build		
	looks like meterial between these tale mindets		
	have been drag folded to the windlets ,		
	0 0 Mak to hatter of rect		
17.8-487	TALC- CHLORITE - GUARTZ-CARBONATE SCHIST		
	Sincilar ve 233.8 - 266.3 Adapt colored is day to 39	7.8-402	211
-	Klake to greenich grey and tale windets are dark to	2-407	21
	green not trey (moled & dueich - black): 40	7-4101	21:
	From 410,0 to ~413.7": area dank grey schist: with the	0.0-412.6	214
	grant war are from 412.6 to 413.7 with silicified 41.	26-413.7	213
	dark grey hast rock between veins; brownish to trans-		
<u></u>	luccont grey quart veirs \$ 12" hide, par donly orien-		
	ted no supplies seen		
		3.7-415.5	216
	grey possible and conte ? reinicto < 14" uide and consully		
	palallel to the foliation (~ 80° to core axis, but somewithat		
	variable), up to " 60 to grey icin leto,		
	Autor vein zoner 415.5 to 416.5 signilar to 415	5,5-416,5	21
		6.5-422	218
		2-427	21
		27-432.4	22
	The state of the s	2.4'-433.9	22
	1 - Catter 1 - 17	3.9-437	22:
		37-442	22 3
		2-447	220
		7-452	625
<del></del>	and by hole; whit is buff to light green ich to tam coloured from 45	52'- 457	1220

PAGE 7 6 7

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-7

.

.

.

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
397.8-487	TALC-CHLORITE-QUARTZ-CARECIDETE SCHIST (CIN'T) 436.8 to ~460', possibly carborotazed, with very little blacke talcose material. fine to medium-grained From ~460' to EOH, whit becomes darke grey-black to dark gueenish - grey with very soft talcole Actions canallel to Indiania - Galoo tom ~ 467' unit contains up to ~30% milky white to transluces to guarte t carbon ate minilto up to ~4" wide (from VARIAD To 481.8' coarse-grained milky white first relate Mein containing ~ 2% to - light grey first relate inclusions, conto do ac starp of ~180° to 90° to core axis, no Sulphice with to mile 120° to 90° to core		ASSAYS 227 228 229 230 231 231 232
487.0'	EOH		

	SUMMARY LOG	PAGE	·	2
D	PROPERTY HL HOLE NUMBER HOLE N	INTER 1-8 515, TNEY C DIPAN	Min (G LAIM / NGLE -	E EOLOGY GRID J 209 90°
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	AYS
0'- 4'	CASING	INTER AL		#
4-71.3	TALC-CH-DRITE - QUARTZ-CAREDNATE SCHIST			
71.3-70.7				
	INTERMEDIATE DIRE? Silicified Zones: 71.3' to 71.8; 77.7' to 79.0; 80.5' to 80.9 ad 81.5' to 81.7'			
90.7-210.2	TALC- CHLORITE - QUARTZ - CHRBONA TE SCHIST Silicified Zones: 179.0' to 184.4'; 201.0' to 202.0'; Breccia Zones: 182.0' to 183.9'; 208.0' to 208.2'			
210.2 - 218.3	QUARTZ FELDSPAR PORPHYRY DIKE Brecciated locally			
218.3-250.1	TALC-CHLORITE- QUARTZ- CARBONATE SCHIST			
250.6-474.9	ALTERATION ZONE (SERICITIC AND/OR CHLORITIC SCHIST)			
	ALTERATION ZONE (SERICITIC AND/OR CHLORITIC SCHIST) Breccia Zones: 261.3' to 262.2', 281.2' to 281.8'276.6'280. 265 to 265.7':~280.6' to 283':~286.5' to '290.0': 314.7' to 316.9': 382.1' Silicified Zone : 406.7' to 407.8 (brownish Q.V.)	40 38 406.7-407.8	/ .8 0.132	300
<u>474,9-523,1'</u>	QV: 477.5' to 478.9'			
	QEForphyry: 485.5 to 486.1			
52:1-581.2	ARGINLITE AND GREYMACKE	·		

FAP 8451

SUMMARY LOG PROPERTY: HUNTERMINEHOLE NUMBER: U-8

.

PAGE 2012

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASS	AYS
581.2'-6046	TALC-CHLORITE-CARBONITE-QUART SHIST.			
604.6-617	APSILLITE AND GREY WACKE			
617'	EOH			

.

•

	DIAMOND DRILL LOG #100'-90 GISO'-88 GRID REFERENCE LENGTH=617' GISO'-88' GISO'-89° TOWNSHIP 103 SAMPLES GISO'-81° GISO'-89° GISO'-89° AZIMUTH ESCO'-61° GISSO'-69° GISO'-69° GISO'-69° GISO'-69° GISO'-61° GISO'-69° GISO'-69° GISO'-69° GISO'-66° GISO'-66°	UNTER 1-8		D
	DIAMOND DRILL LOG $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90}$ $(100)^{-90$	UNTER 1-8	MINE	
	ILLING COMPANY MORKISSETTE FOREMAND ( 1) THE FORE		NGLE -90	0°
T	RE SIZE AQ CORE STORED AT: LOGGED BY R. CALD D	ATE <i>FEÊ</i> ,	RUARY 1	15/8
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAY	´S
<u> </u>	UT3ING			
4 - 71.3	TALC-CHLORITE- ANARTZ- CHREDINATE SCHIST		<b></b>	
	Dark grey, soft, deformed unit: F to MX with 5% to 75%	<u> </u>		
/*	relky white to surish - Kraki colouped some to the set		<b>+</b>	
	scretally < 110 " hide with up to all side san down by			
[Ē	mented ( wai to produce to delighter / schierostite, &		<b> </b>	
	chick to scar veldele), some tolding a familie			
K	ortains trace that EMY think filding) thit			
	Raid local district FMX Fynte crystals 1-1			
0	riented, up to dal" true thickness " " " and only	· · · · · · · · · · · · · · · · · · ·	l	
	Very broken soft care from 4' to ~ 22' wild "I'went"			
,	22' tag (only off of actual core tet ween 15' and 22' tag			
	Ellistossite 4 40' = 40' to care ania			<u></u>
	at 57 = 15° to core ani			<del></del>
	at 62' = 90° to is a apic			<u></u>
	71' = 75° to core axis			*
	From ~ 45 to 71.3': local very thin Cass cutting tale			
	kinlets, black, very 50.4.	62.0-67.0'	23	33
	house contact appears to have been sharp but	67.0-71.3'	23	
				<u> </u>
1.3-90.7 /	NTERMEDIATE DIKE ?			
	Grey delisted and and the	and much		
	oft water i C without Carton To + prot initiat	<u>71.3'-71.8</u> 71.8'-75,0'	0.001 23	
	ipical of premieros unit's secrific a sillette "de	75.0'-77.7	0.001 23 0.001 23	
<u>_</u>	otten) receive to The A (2) fillet in (2) al and to al	12.0 - 1 / 1	0.001 23	<u> </u>

•	•		1	۰,
			GE 2	• + `
	DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NU	JMBER:	U-8	
OOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
1.3- 10.7	INTERMEDIATE DIKE?			Γ
	somes of quark vering as this milky white net-	77.7-79.0	0.001	238
	work of veryleta crowd-article foliation of	79.0-80,5		23
	host rock nost rock is silichfied and bleached	80.5 -81.7	0.001	24
	within ~ 12 " of questio veinleto (Host rock be corner	81.7'-87.0'		24
	light grey); locally, black for a line (?) + F-CX puite	87.6-90.7'		24
<u></u>	cacine along the quant accineto, most interse			
	fores of a lice to cate or craine from 71.3' to 71.8', from			
···	77.7 to 79.0; from 80.5 to 80.9 and from 81.5' to 81.7'	[		
	Folial on at must is remailly constant at 50-55°			
· · · · · · · · · · · · · · · · · · ·	to core apple			
	Lower cortact sharp at 50° to core and			
	dike appeared to be chilled within ~ 2" el contract.			
	contact is carallel to falisting in full with			
7-210.2				
1.1-210.2				
		90.7-95.0		24
	1.5 under band of tan-buff coloured, hard cherty			
	100king realerial agacent to uppen contact : blead			
	ched some i or mabure fine-grained carborate some?			
	Storf contents			
	Folioti of 92'= 60° to core allo			
	at 102 = 0 to cone apio			
	- 2 grind marked at 117' tag			
	Milkig white feldspan? or quick ind translucent			
	quarte vien from 122.8' to 123.2' generally perallel to folio.	·		
	thon it has track at ~ 40° to care ayin soft locally cross			
	cutting vein apprand to be berren & sulphites; true			
		175.0-179.0		24
	From 179.0' to ~184.4' : unit locally in possibly series-			24
	I de la company and	184.4 - 188.0		24
		188.0-193.0		24
	Boal dight buy pling trass similar allight			24
	and the second second second second	198.0 - 201.0		24
	from dor. of to dow. O with transhipent to gey randon by oricle	201.0 - 202.0		25
		202,0'-205.0'		55

PAGE 3 6/9

.

,

DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: 4-8

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSA	AYS
90.7-210.2	TALC-CHLORITE-QUARTZ-CARBONATE SCHIST (CON'T)	205.0-208.0	0.007	252
	silicified hostrock; similar short zone from			
	208.0 40 208.21			
	Host rock again takes in Khaki tinge (pessibly			
	indicating scritite) from 202 to 210.2'			
	Lower contact ~ 80 to core axis, parallel to foliation			
	in schipt and appears to be interfingering			
	for about 1"			
	<i>V</i>	208, 5-210, 2		
210.2-218.3	QUARTZ VEIN AND/OR QUARTZ FELDSPAR PORPHYRY ZONE			
	this siliccours grain size and appraiation in	213.0-218.3	0.002	255
	grained quarte very?) " that we were a contraction the ged to course			
	grained quarte verol?)" Think are unerble phonologyste			
	Ho similar material with milky white aldoir-			
	class - cuptal and pressilly local Hrandluce + Hut			
	stancingto, locally brecciated ust dark brown had			
	material in between angular fragments; locally			
	containing up to 2-3% volu line to coarse - grained			
. >	syrite as disseminated cubes i blebs of along			
-	fractures; about 20% cross cutting milby			
	white to translucent siey quarts veir leto, randorshy			
	oriented, up to ~ 2" unde. 10			
	hower tastact give d (along with ~ 2" of core			
	on either side & contact -> only small wedges si	ļ		
	redrilled core left)			
210 01 25 1				
x18.3-250.6	TALC-CHLORITE - QUARTZ-CAREONATE SCHIST	····		
	Similar to 45' to 71.3'	218,3-221.1		
	From upper Contact to ~ 240', unit has slight			257
	khaki tinge (powiece sericite?) gradually becomedag			
	darber 1	228-233		
	From 220.4' to 221.1' Fine grained, grey to tan	233-238	0.001	260
	talc? for a faliation direction 1270° to Cristian	238-240	0.001	261
		240-245		
		245-250,6	0.00/	265
L	E cross-cutting fale wir let decreasing down to legra	1	<u> </u>	FAP - 8452

5

1

DIAMOND DRILL LOG. PROPERTY: HUNTER MALE HOLE NUMBER: 4-8

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
218.3-250.6	TALC- CHLORITE - QUARTZ- CARBONATE SCHIST (CON'T)			
	seen in next unit			
	Lower contact locally sharp but partially masked			
	by carbonate-quarte verilets; contact at 30-35 to			
	dore apps, parallel to foliation / schipto ssite SI both			
	unito // //			
00 11 11-10				
250.6-474.9	ALTERATION ZONE			
	Unit is a mixture of Decricitic, Khaki to green com-			
		253-257.5		
		2575-261.3		
	section Sandreally chose - cutting milky white to	261.3-265	0.003	267
<u></u>	prescriated nones: Scricitic Actint nor car from 250.6' to			
				·
	from 261.03 to ~262.2 alon provibly silicified; from 275.0 to 276.5; from 280.7 to 316.9' , including a breccia			
	ted zone for 'about 3" on sither side 281,5": local poss.	ř		
	Fuchsite (275.5) and cross-cutting winlet 2) dark green - dark aper hing-			
	grained, chloritic + quart, + carbonate schist Il' cally			
	appears pilicified light grey "fragments" out but			
	local milky white to transfincent quarts wing I carbonate			
	(light new-hilker white): chlorific schipt from 257.5, to			
<u></u>	261.3: from 265.7' to 275.0' with a new section from			
	272.7" to 275.0': fim 276.5' to 278.6': and from 280.2' to			
·····	280.7' 3) passible feldspar porphyry	265-273.4	0.001	268
	from 265 to 265.7, dark grey to brown with light	VOI	>	269-
	grey to milky white locally enhedral plagioclase	273.4-275	0.001	270
	Arystals, randonly oriented, hip to ~ 1/4" long upper	275-278.6	0.005	271
	contact sharp at 45° to core afis, parallel to foliation			ļ
	of to contract in the lower of the the			
····	to code axis 4) possible quarte veining, at 30			
		278,6-280.2	0.021	
· · · · · · · · · · · · · · · · · · ·		280.2 - 283		
	dark bimin, hard noterial (fourmaline?) in between	283'-288' 289'-293'	0.001	
	dark bimin, that a naterial (fourmaline?) in between	×08 × ×75	0.005	PAP - 84

ĸ.

PAGE 4 5/ 9

		AGE 5	of
	DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER:	· · ·	
DOTAGE	DESCRIPTION OF CORE · SAMPLE		SAYS
0.6-474.9 AL	TERATION ZONE (CON'T) 293-29	10001	27
"fre	amento": rase trace purite in Estimen frag- 298-30	3 0.003	
m	no upper contact appeals to be abas but is and - in	1 0.001	27
m	asked by quarte verning; lower contact sharp		
at	~35° to fort and prathet to latintian in chile		
MA	e schipt quest win from 278.6 th 280.2		
	Broken core for N256' to 257'		-
	Unit becomes less schistose from ~ 285 sound		
wit			
m	Scritite		+
	Possible tour aline as ~ "110" diameter isua t		┼──
CAL	stals? or crystal aggisgates ? black hand; at 303'		+
an	hon 310,6" to 311 / lake + 5-10 17 Aires in the 200	10002	
	From 316.9' to ~ 336.4' i chlaritic and hat in H 212-34	0.003	
ma	Alliping (and the the the the the the put with pis-so	10.001	28
Chi	milie section and i ca por alle than previous 316.9-32	2 0.001	29
mic	Minleto and the local pessible formaline = 322-32	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	28
	- The and the programments also made To cal 327-33	<u> </u>	28
	To measure grained disseminated pyril 332-336	¥	20
	Appland a fairly in the to at all the factor		<u> </u>
	and alloot 1 - will all allong of to		<u> </u>
	ichle d there ~ STIN to szo where of 6		
~10	I have and the core angles are as low as		<u> </u>
	From ~ 336,4' to 353.8 : unit become desici- 2214-31		
lie	-10m 10 336, 4 to 333, 8 unit becomes ser a - 336.4-30	0,001	_
	the set action with local possible 340-34	3 0.003	1
60	Le quarte + Tarbor ate wind to perallel to schinto- 26'-30	<u>²</u>	28
	in a server is provided to a server is provided to a server is a s		28
			29
			29
- ric ha	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·]	29
	5/0-5/3		29
			29
	The second secon		29
	A A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		29
	emirated fine grained purite generally in host 395-40	;'	<u>96</u>
	semirated fine grained pyrite generally in host 395-40	10.001	29

<b>3</b>				19
na 1997 - Santa Santa 1997 - Santa Santa 1997 - Santa	DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NU	PAC JMBER: L	Ge 6 4 1-8	
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
250.6-474.9	ALTERATION ZONE (CONIT)	400'-405	0.001	298
	rock between parallel smart winlets; local more			
	massive, deformed possibly becciated sections;			
	Achierto ssitul generally at ~ 70° to core afic			
	except for a fluit stort sections with smalle			
	angles ( sip to ~20" to core axis); local possible fuchsite			
	spota in quarty-carborate win lets and within			
	Host rock	ļ		
	~5% milley white to transfire to guart to carbon			
	New loto white to translancent quarte & carbonate			
	and the same and and the area	1100 11		
	py	405-4067		299
	veins(?) from 406.7' to 407.8' no supplicity deal	406.7-407.8		300
	Foliation at 417' is 85-90° to core acis (same	407.8-412		301
	to the end of unit!	4/2-417	0,001	302
	Unit gradually changes from khaki-greenich	417'-422' 422'-427'	0,001	303
	colours to sper from 471. 1' to laws contract	427-432	0,001	304
	Lower contact sharp, parallel to Soliation stubs	432-437	0,001	305 306
		437-442	0.001	305
	some and next unit of possible linggined dikes	447-447'	0.001	308
	a pleached nones (massive sine gratmed with	447-457	0.001	309
	~1" containing ~ 5% line - to coalse - grained	152-457	0.001	310
-	disceminated pyrite	457-462	0,001	311
		462-467	0,001	317
		467 - 471.1	0.001	313
		471.1-474.9	0.003	314
inter a				
474.9-323.17	TALC- CHLORITE - CARBONATE - QUARTZ SCHIST			
	Similar to 45 to 71.3 except with a khaki coloured			
	tinge (possibly due to ankerite)			
	Local tale filled cross cutting veinlets, filled			
	with graphite at 475.5 only	4749 477.5		
	Quarts vein from 477-5' to 478.9'; milky white,	477.5-478.9	0.001	316
	Coarse-grained, containing ~ 20 % hest rock inclu-	478.9-401.2	0.001	3/7
L	sions; no sulphides seen; upper contact starpat			PAP - 84

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-8

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASS	AYS
4749-523.1	TALC- CHLORITE- CARBONATE-QUARTZ SCHIST (CON'T			·
	20° to core agis but irregular ! lower contact irregu-			
*	lar (			
	From 481,2' to 482,2' hard dark grey possibly	481.2-482.2	0.001	3/8
	internediale - selec dike or silicified nore?	482.2-485.5	0.001	319
	Cut by ~ 30% quarts veinlets hard only oriented,			
	trace pyrite, breaky within cross citting quart			
	veinlet, upper and lover contacto sharp at			
	By to core and parallel To lokation of host			
	rock	<b> </b>		
	From 485.5' to 486.1': pinkich to translucent	485.5-486.1	0.001	320
·····	possible quarte deldopar proping dike of anot	486.1-491	0.001	321
	wein upper contact some what intol fingered) at			
	Bo to core artis; lower contact at 55° to core artis			
		10, 10,		<u> </u>
	d have the second s	491 - 496	0.001	
		496-501		
		506'-5/0,2	0.001	325
	but locally variable & deformed folded)			
		510.3-512.1	0.00/	221
	grey dike? similar to 481.2' to 482.3' with lo cal brec-			
	kitted looking sections possible small tourmaline			
	cripitala beally disseninated; no sulphicles seen:	5// = 525,1	VIUL	028
-	contacts parallel to foliation at about 75° to 85° to			
	core aris.			<u></u>
	Lower contact ground			
<u>523,1-581.2</u>	ARGILLITE AND GREY WACKE			
	From 523.1' to 525.5' fine - to medium - mained	523,1-5255	0.001	329
	chake to grey coloured whit with ~ 1-2% swart t			
	Carbonald meinleta soft	,		
	From 525.5' to 528.6' unit contains, ~ 40 - 50% thin	525,5-530.4	0.001	330
	the fit grey carborate vinlets parallel to pliation (at			
	170-25 to core aris), lover contact valgue			
				PAP - 84

÷.,

.

PAP - 8452

PAGE 7 569

DIAMOND DRILL LOG. PROPERTY: HUNTER HINE HOLE NUMBER: U-8 SAMPLE NUMBER FOOTAGE DESCRIPTION OF CORE . ASSAYS 523,1-581.2' ARGILL WACKE CON 530.4-54.1 0.001 331 rich inde ac 531.1-536 0.001 332 0 a -9-~~~ 562 lowe. Con T comes 00581 aron 0 581.2-604.6 TALC- CHLORITE-CARBON - black mi al N 80 dirate an olars attor a sver と ich 600-604.6 0.001 333 material 604.

FAP. - 8452

PAGE 8 029

, '(

DIAMOND DRILL LOG. PROPERTY HUNTER MINEHOLE NUMBER: U-8

Dark gru finz grained (angilit) in medicum (oki ilis 0.00) 334 grained (gru finz grained (angilit)) in medicum (oki ilis 0.00) 335 ht 90 + 50 ESS is core allo i acal to carbod sections within an grunt (is is in 0.00) 336 from (graphise from carbo second an another of 1 graphise from carbo second section (is in 0.00) 1 graphise from carbo second section (is in 0.00) 1 (graphise from carbo second section (is in 0.00) 1 (graphise from carbo second section (is in 0.00) 1 (graphise from carbo second (is in 0.00) 1 (graphise from carbo second section (is in 0.00) 1 (graphise from carbo second second second second second (is in 0.00) 1 (graphise from carbo second	FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASS	4YS
grained (July Leter with, fail to pledding (paralle (in the 000) 335 1 4 90: 50 885 to core, appendix in this and interest of the open of	604.6-617				
grand (griendeley with) foliation bedding (pealle (16:415 0.00/ 335 ht 40 'to UBS' to cone appendiation and intermediate from 613 to EOH, unit be comes diens block and locally can be come a main amount of graphites from core and amount of 10 Core is they blocky. From ~ 614' to EOH.			6046-610	0,001	334
kt 70 to UBS to cole allo U local bleached sictions within an gillite From b (13' to EOH unit be comes during block and locally can scrape small amount of P Core is very blocky. From ~ 614' to EOH.			610-615'	0,001	335
From ~ 613' to EOH , unit bi comes dury black and locally can scrape small amount of protocole is itery blocky. From ~ 614' to EOH.		at 10 to 851 to cone apro	615-617	0.001	336
And locally and scrape small amount of graphite. If on core for is they blocky. from ~ 614' to E0H.	·	and the second and the second and the second s			
Image: If on core.         Image: Image					
/ Core is ilery blocky_ from ~ 6/4' to E0/4.					
		Con is any proced from ~ 6/4 to E017.			
	617'	FOH			
	<b>~</b>				
	·····				
				<u> </u>	

PAGE 9 8 9

<b>ا</b> م		PAGE	1.42
9 D	DIAMOND DRILL LOG @ 50', -76'       @ 100'-80.5       GRID REFERENCE 105         ENGTH = 490 feet       @ 250'-80.5       @ 200'-86'       GRID REFERENCE 105         ENGTH = 490 feet       @ 250'-80.5       @ 300'-84'       TOWNSHIP WHI         17 SAMPLES       @ 450'-88'       @ 400'-78.5       AZIMUTH285         RILLING COMPANY MORRISS ETTE       FOREMAN R.LAFON-DIP TESTS:       AALD DA         ORE SIZE AQ       CORE STORED AT: SITE       LOGGED BY R. BALD DA	NTER 9 515, TNEY C 72 DIP A	MINE (GEOLO GRID CLAIM 1009 NGLE -80°
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0'-4'	CASING		
4'-105.3'	TALC-CHLORITE-CARBONATE-QUARTZ-SCHIST (SOAPSTONE)		
105.3-117.7	INTERMEDIATE DIKE ?		
117.7-120.6	TALC-CHLORITE - CARBONATE - QUARTZ SCHIST		
120.6'-167.6'	INTERMEDIATE DIKE? Silicified, Breccia(?) Zone: 149.8 to 152.8		
162.6-171.2	TALC-CHLORITE-CARBONATE-QUARTZ SCHIST		
171.2'-190,7'	INTERMEDIATE DIKE Silicified, Breccia Zones; 171.4 to 175; 179.6' to 180; 185.4 to 185.7'		
190.7'-215.5	TALC-CHLORITE-CARBONATE-QUARTZ SCHIST		
215.5-225.5			
2255-231.1	TALC- CARBONATE - CHLORITE-QUARTZ SCHIST		
231.1-233.2	PORPHYRY DIKE ? OR SILICIFIED BRECCIA ZONE ?		
233.2-270.6	TALC-CARBONATE-CHLORITE-QUARTZ SCHIST Breccia ? Zone: 258' to 259.2'		
			PAP - 8451

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-9

FOOTAGE	DESCRIPTION OF CORE	SAMPLE	ASS	ays Sampl
	QUARTZ FELDSPAR PORPHYRY DIKE?	INTERVA	03/Hon	#
278.6-2874	TALC-CARBONATE-CHLORITE-QUARTZ SCHIST			
287.4'-496	ALTERATION ZONE (ANKERITE - TALC-QUARTZ SCHIST) QV: 287.4' to 287.8'			
	QVZones: 287.8' to 288.7'; 407.5' to 408.9'; 409.2' to 410.8' QV: 289.7' to 290.5'	288.7-290.5	0029	30/
	QVZone: 416.7 to 418.6	#00,1- <u>21</u> 0,3	0.057	-281
490'	OVZone: 4/6.7 to 4/8.6 Breccia Zones: 360.7 to 361.4" near 390 (core mixed during EOH			
	Spring).			
		·		
		······		

•••••• •

PAP - 8452

	PROPERTY H HOLE NUMBER U DIAMOND DRILL LOG @ 100 - 80.50 @ 150'-85.50 GRID REFERENCE 200'-86° @ 250'-86° GRID REFERENCE LENGTH: 490.0 FEET @ 400'-86° @ 350'-86° TOWNSHIP 97 SAMPLES RILLING COMPANY MORRISSETTE FOREMAN LO for taine DIP TESTS: DRE SIZE AQ CORE STORED AT: LOGGED BY R. Bald D.	UNTER -9 CI DIP AN	-AIM IGLE —80
FOOTAGE	DESCRIPTION OF CORE	SAMPLE	ASSAYS
0'-4'		NUMBER	ASSA13
	CASING		
<u>4'-105.3'</u>	TALC - CHLORITE - CARBONATE - QUARTZ SCHIST (SOAPSTONE)	11	
	Grind Z' at 6' tag		
	Wash 3' at 16' tag		
	Wash 4' at 22' tag		
	Frind 3' at 32' tag		
	Dark grey - black were soft, tale schiet: local crum-		
	bly sections waster away: trace MX disservinated		
	parite variable anount of carbonate + quarts wir lets		
	adverally parallel to taliation Si with the the		
	cross cutting: poliation is very therickle the		
	0° to 90° and some lalding the seen in Card that		
	~42' onward locally black tales quicklet and		
	I distion & host walk wat is all discoting		
	fonation & hold rock, variable directions.	the start	
ł		61.5-62.5	33*
	Quarte and carborate rich some from 103.9' to 105.1'		
	including quarte ber 103.9 to 104.3', coarse - grained,	1039-105.3	338
cont	about 80° for core axis, no sulphides seen.		
	about 80° tol core agis, no sulphides seen,		
	Lower contact indistinct	ļļ.	
hal und	HIPPOLITY DIVISION	ļ	
11/11-6160	INTERMEDIATE DIKE ?	<b>_</b>	
	Dank grey to light grey moderately have faliated	105.3-107	339
	to massive matic? to intermedicite ?) dike?, locally	107-112	34
	cross at by milky white quart, winkets for herich	112'-117.7'	34
	arreales of Silverfication leytend up to I wich local		
1	fing- to coarse-gained pyrite along veirlets; possibly		
······································	$\frac{1}{1}$		1

•			<u>~</u>	,
2 2 2	DIAMOND DRILL LOG. PROPERTY: HANTER HINE HOLE N	PAG	GE 2.	<b>B</b> B
FOOTAGE	DESCRIPTION OF CORE .	SAMPLE	r	SAYS
105.3-117.7	INTERMEDIATE DIKE?			T
	"ladder veine? (looks like continuous string of H"'s.			
	in general, the poliation of this unit is constant	1		1
	west locally passibly Halded, very deformed from	1		1
	~ 110' to 112' / 1 0 0 11 1 0 0			1
· · · · · · · · · · · · · · · · · · ·	, Lower contact sharp at 70° to core agis, parallel			
· · · · · · · · · · · · · · · · · · ·	To foliation / schistossite of must wint ( dike is mansive			
	silicified tal,			
1221 1241	The City of Contract of			ļ
117.7-120.6	TALC-CHEORITE-CARBONATE-QUARTE SCHIST Similar to 4'- 105.3 with fight form to take	ļ		<b> </b>
	all the life has been and the second se	117.7-120.6		342
	med folded, no sulphides seen contact defor-	1	····-	<b>_</b>
······	Lower contact ~ 40° to core asis,			
	$\frac{1}{2} \frac{1}{2} \frac{1}$			
120.6-162.6	INTERMEDIATE PIKE		·	
	Similar to 105,3' to 117.7	120.6-123		343
	Foliation at 132' is 30° to core apis. at 134, 30°	123-128		344
	to core ans; at 148, 30° to core apis; at 153' 45° to core	128-133'		345
	OX is	133-138'		346
	Sincified some with possible baccia from	138-143'		347
	149. B to 152. B with F-MX diaser inated and shinger	143'-148'		348
	the proved also with patches of dark green chlore	148-149.8		349
	between the sili cied pregnents.	149.8 - 152.8		350
	Lower contact flound J		0.004	the second s
		158-162.6	0.001	352
162.6-171.2	TALC- CHLORITE - CARBONATE - QUARTZ SCHIST	4011401	0.001	252
	Similar to 4'- 105.3'	162.6-168 168-171.2	0.001	303
	Core angles ~ 20° to core apis, nome faulting, felling	160-111.2	0.001	334
	and cross catting black tale nighting			†
				<u> </u>
171.24/90.7	INTERMEDIATE DIKE			<b> </b>
	Simila to 105.3' to 117.7'	171.2'-175	0.001	355
	Silicified breccia gover similar to 149.8'- 152.8' from	175 - 179	0.001	356
	171.4' to 175'; from 179.6' to 180'; from 185.4' to 185.7'	179-184		357

.•

71.2-1907 INTERMEDIATE DIKE (CON'T) NUMBER ASSATS HO SCHLOTOSSITY & Take Shiot and parallel to golio - 1957-1907 HOWER contact starp at 20° to core also parallel HOWER contact starp at 20° to core also for the formation of the formation of the solid starp Hower contact starp at also is the core also for the formation of the formation of the solid starp at 100 to the solid starp at 35° to col parallel to the solid starp at 35° to col parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also parallel to the solid starp at 35° to col also to 100, 200 to the solid starp	•		. (	>18
FOOTAGE DESCRIPTION OF CORE . SAMPLE ASSA'S T12-1907 INTERMEDIATE DIRE (CON'T) Upper contact starp at 30° to core appo portfol 184/1957 35 to schetossite of tale shiet and parallel to follow 1957 35 trion D intermediate dre for and parallel to follow 1957 1907 the schetossite of the shiet and parallel to follow 1957 1907 to schetossite of the shiet and parallel to follow 1957 1907 to schetossite of the shiet and parallel to follow 1957 1907 to schetossite of the shiet and parallel to follow 1957 1907 to schetossite of the shiet and parallel to follow 1957 1907 to schetossite of the shiet and parallel to follow 1957 1907 Intermediate dre 0 Intermediate dre 10 I	estation Alternational	DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUL		
Mappen contact slarp at 30° to core appo puelled 184/1857 355 to solidote spire & tale shiet and parallel to fole-1857-1867 from D internedicate dife. To solidote spire of the shiet and parallel to fole-1857-1867 to solidote site of the shiet and parallel to fole-1867-1867 to solidote site of the shiet and parallel to fole-1867-1867 to solidote site of the shiet and parallel to fole the of internedicted dife of the shiet and parallel to solidote site of the shiet and parallel to fole the of internedicted dife of the shiet and parallel to solidote site or tains a 20 % while spots for the fold (1000 parallel to the folicities parallel to folicoties the fold (1000 parallel to the folicities parallel to folicoties to the fold (1000 parallel to the folicities parallel to folicoties to the fold (1000 parallel to the folicities parallel to folicoties to the folicoties to fol	FOOTAGE	DESCRIPTION OF CORE	SAMPLE	
to schleto sort, & tale ' shiot and parallel to form (1921) from a intermediate dree Hower context sharp at 20° to corre away puelled a schiertossit, a tale altrict and parallel to foreating intermediate dree a schiertossit, a tale altrict and parallel for foreating i intermediate dree a schiertossit, a tale altrict and parallel for foreating i breakly dike contains a 20% while spots fore to a (fieldspar, 2) and orme and soft (carbornate?) 207-2055 TALC-CHLORITE - CARBONATE - QUARTZ SCHIST similar to the '-105.2' Schiertossite way variable: from ~ 0° to ~ Bo' ' to dree altre to and and soft (carbornate?) Schiertossite way variable: from ~ 0° to ~ Bo' ' to alter dide and runce and soft (carbornate?) Schiertossite way variable: from ~ 0° to ~ Bo' ' to alter dide and mire of fuelting with altree altree of the soft of the soft of the dide puert altree soft part of the foreat only about 70° fore bittures lift foreat of the to a bout contact sharp at 35° to cortains while altree to a built schiertossite foreat ' to altree to bits to both units built altree to block of the altree of the soft of the s	171.2-190.7			
to school 23, 1, 0, tale." Shiet and parallel to folio 185, 1907 tion R interpolate drive to school 25, 20 to le shiet and parallel to folio 185, 1907 10 interpolate drive and parallel to foliation 11 interpolate drive and parallel to foliation 12 interpolate drive and parallel to foliation 13 interpolate drive and parallel to foliation 14 school 20 and 20 in the foliation; some also find 14 school 20 and 20 in the foliation; some also find 14 school 20 and 20 in and soft (carbonate 7) 15 interpolate and 20 in some also for (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and 20 in a and soft (carbonate 7) 16 interpolate and and soft (carbonate 7) 16 interpolate and and and soft (carbonate 7) 16 interpolate and a and soft (carbonate 7) 16 interpolate and a and soft (carbonate 7) 16 interpolate and a and and the and the arbonate for and for a soft 16 interpolate and a and and and the arbonate for and for a soft 16 interpolate and a and and and and the arbonate for a soft 16 interpolate and a soft a soft and		participation of the participa	184-185.7	358
10 ver contect charp at 20° to come also farellel 10 schertossite of the schert and parallel for Heliation 11 internedikt dire mall 12 locally dike contains ~ 207. while spote (or the formation) 13 locally dike contains ~ 207. while spote (or the formation) 14 source date direction is some above hard 14 locally dike contains ~ 207. while spote (or the formation) 15 locally dike contains ~ 207. while spote (or the formation) 15 locally dike contains ~ 207. while spote (or the formation) 15 locally dike contains ~ 207. while spote formation (formation) 15 local difference of the formation of the formati		To schlotossity & tale shiot and parallel to blig-	185.7-190.7	359
to schietessite of the schiet and parelled for fieldation of intermedicity dike of intermedicity dike 1 locally dike contains a 20 in which spots 10mm t in to directified parallel to the foliotion; and the bard (deldapar ?) and some and soft (carbonat?) 907-2055 TALC-CHLORITE - CAR BONATE - OUARTZ SCHIST similar to 4'-105,3' Schietessite unit variable: from ~ 0° to ~ 80° to core affect for and some and minor Including with core affect for a for a for a for a for a for printer along schietessite, planets; heal for affect only along schietessite, planets; heal for MCX only about 700 for bitter 184 to gain of 194 to g foliators in 190 on bitter 184 to gain of 194 to g foliator foliators for a for a for a for a for foliator foliators for a for a for a for a for a for a for foliator foliator foliator of the and the affect of the foliation of the foliator of all affect of the and the foliator of the foliator for a for foliator foliator foliator of the affect of the affect of the foliator foliator of the affect of the affect of the foliator of the foliator of the foliator of the affect of the foliator of the foliator of the affect of the				
1 inte medikte dike in former for the part of the former in the former i				
I to cally dike contains ~ 20% white spots form t to stretched consider to the folication: some abilities (feldepar ?) and some and soft (carbonate?) 87:255 TALC-CHLORITE - CARBONATE - DUARTZ SCHIST on to 55 of one (M07-199') Similar to t'- 105; 2 Schistossite ruggi variable: from ~ 0° to ~ Bo' 5. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable: from ~ 0° to ~ Bo' 1. Schistossite ruggi variable for the ruggi r		to schotossilly tale schot and parallel to poliation		
* to shretched consiled to the foliotion: some one one to had (fildepar. ?) and some and soft (conternate?) 807-2055 TALC-CHLORITE - CARBONATE - QUARTZ SCHIST MITHES of tote 107-199' Similar to 4'-105.3' Schichossita may variable : from ~ 0° to ~ 80° to one by: feldino and micror Investing with Cross-cuttion Warle Jule virialities: Incal have Micx print along deligosity planets: Incal have Micx print along deligosity for marked by drillers but only about 7005 con bitumen 184' tag and 194' tag faliation /schiotossity both units: 55-2055 INTERMEDIATE PORPHYRITIC (?) DIFE finilar to 1712' to 1907' locally unit contains while 205' 2028 360 Maxie agrant to congoted parellel to faliation direct 205'2028 360 distinct near notice loss them 100" long; these are 205'205' 360 Silicified beccin nones are reare only one yone up to ~ 2" will at 21605' containing ~24. FMX fiasemi- mated py and chalcoprinte, also some substands in have contact shalp at 35° to cone arise rease cutting falle wire to marked and the substands in have contact shalp at 35° to cone arise and day and chalcoprinte, also some arise arise rease cutting falle wire to marked some day in the substands in Pathets D B FX discound are to day in the substand arise.				
(Jeldspan ?) and some and soft (carbonate?) (Jeldspan ?) and some and soft (carbonate?) 307-2055 TALC-CHLORITE - CARBONATE - QUARTZ SCHIST ontossift and 1907-199' Schintossitu var variable : from ~ 0° to ~ 80° Schintossitu var variable : from ~ 0° to ~ 80° (1007-199' 36° Schintossitu var variable : from ~ 0° to ~ 80° (1007-199' 36° to core afic : Jeldine and mir of Jaulting with Cross-cutline black tale our netters; it cal have MCX punit along achieves Bone 1° At 194' Lag : 212' gridd marked by drillers but only about 7000 core bitwee 184' tag and 194' tag Jower contact sharp at 35° to core and personal to foliation / schiotossity both units. 55'-2055 INTERMEDIATE PORPHYRITIC (?) DIKE Similar to 1712' to 190,7': locally unit contains white 205-2058 have against to elong att (persold) to griation direc- Sincified bileccia and rate are role, only one insection with at 2000 for a fact and role and role in the some 55'-2055 (NTERMEDIATE PORPHYRITIC (?) DIKE Sincified bileccia and role are role only insection with at 2000 for a fact and role are role only one insection with at 2000 for a fact and role of the some in the some Sincified bileccia and role of for a fact of the some in the solution with at 2000 for a fact of and role of the solution of the solution with at 2000 for a fact of the solution of the solution of the solution with at 2000 for a fact of the solution of the solution of the solution with a prover contact shalp at 35° to conder are solution hower contact shalp at 35° to conder are of the solution Lower contact shalp at 35° to conder are of the solution Lower contact shalp at 35° to conder are of the solution Cress withing falle with the solution of the tring of the solution of the sol	<u></u>			
207-2055 TALC-CHLORITE - CARBONATE - QUARTZ SCHIST ONCLOSS of the 1907/1991 36 Similar to 4'-105.3' Schicolossity very variable: from ~ 0° to ~ B0' to core after: folding and minor Including with Cress-cuttured blacks tale with all to; local part MCX pyite along schicolossity plane At 194 Jag: 2/2 girld marked by drillers but only about 7'0 b) core bitween 184 Jag and 194 Jag Lower contact sharp at 35° to core and parallel to foliation/schiotossity b) both units. 55'2055 INTERMEDIATE PORPHYRITIC (?) DIKE Similar to 1712 to 190.7' locally unit contains white 205-2055 NTERMEDIATE PORPHYRITIC (?) DIKE Similar to 1712 to 190.7' locally unit contains white 205-2055 36 distinct near a 206 from all for		i i i i i i i i i i i i i i i i i i i		
Similar to 4'-105.3' Schintossity variable: from ~ 0° to ~ Be' to conce after flace and minim Inulting with cross-cutting black take or interts; heal trace Mex pyrit along schintossity plane. At 194 Lag: 2/2° grind marked by drillers but only about 70° 6° con bitween 184 Lag land 194 Lag Lower contact sharp at 35° to contains white 2155-275 155-2255 INTERMEDIATE PORPHYRITIC (?) DIKE Similar to 171.2' to 190.7'; locally writ contains white 2155-275 tion) yeldson 2000 to 100 years of an 100" long; these are 2005 36 distinct near North las the sche and north of the 2005 36 interfeel block of an 100" long these are 100" long; these are 2005 36 distinct near North and an 10" long; these are 2005 36 interfeel block of an one of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 distinct near North and an 10" long; these are 2005 36 interfeel block of an 10" long the 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an are 2005 and		( and and some and soft ( Carbonate i)		
Similar to 4'-105.3' Schintossity variable: from ~ 0° to ~ Be' to conce after flace and minim Inulting with cross-cutting black take or interts; heal trace Mex pyrit along schintossity plane. At 194 Lag: 2/2° grind marked by drillers but only about 70° 6° con bitween 184 Lag land 194 Lag Lower contact sharp at 35° to contains white 2155-275 155-2255 INTERMEDIATE PORPHYRITIC (?) DIKE Similar to 171.2' to 190.7'; locally writ contains white 2155-275 tion) yeldson 2000 to 100 years of an 100" long; these are 2005 36 distinct near North las the sche and north of the 2005 36 interfeel block of an 100" long these are 100" long; these are 2005 36 distinct near North and an 10" long; these are 2005 36 interfeel block of an one of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 distinct near North and an 10" long; these are 2005 36 interfeel block of an 10" long the 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an 10" long; these are 2005 36 interfeel block of an are 2005 and	1907-215.5	TALC-CHLORITE-CARBONATE- DUARTZ SCHUET		·····
Schustossing regist variable: Firm NO° to ~ Bo' to one with: I feldine and mir of sulting with (ross-cutting blacks tale with netter; it cal have MCX pyrit along schiptossity plane At 194 tag: 2/2 gived marked by drillers but only about 7'0 & core Bitween 184 tag and 194 tag bever contact sharp at 35° to core aris, parallel to foliotion/schiptossity & both units. 55'28'S INTERMEDIATE PORPHYRITIC (?) DIKE Similar to 1012' ta 190,7'; locally unit contains white 2155-2115 364 tion) fildson Bory talo less than 'lio" long there are 195-2255 36- distinct near ~ 216's contained of free are not all and 2000 Silicified breccia nores are rare only one nore up to ~ 2" will at 2160's containing ~ 26, FMX disalmi- nated py and chalcopynte also some Allohids in host norte with 11" of silicified boundary. Lower contact Sharp at 35° to core aris, and for an 'lio" host norte with all silicified boundary. Lower contact Sharp at 35° to core aris, and for an 'lio" Restored of the core of the aris of the and aris of the aris of the area of the aris  aris of the arise are arise aris of the arise arise arise arise arise		Similar to 4'-105.3'	917/100'	
to core axis: felding and minor Inviting with Cross-cuttions blacks tale winderts; I head have Mex pupite along Deficions site, plane, At 194 Lag: 2/2 gived marked by drillers but only about 710 6; cone bitween 184 tag and 194 tag Jower contact sharp at 35° to core axis, percelled to foliation/schiotossity 8) both units. 155-2055 INTERMEDIATE PORPHYRITIC (?) DIKE Similar to 171/2 to 190.7'; locally unit contains white 2055-2015 361 have quant to elongated percelled to foliation direct 2015-2015 361 distinct near ~ 216 for and rare, only one 2016 361 Silicified block and are rare, only one 2006 366 up to ~2° will at 216 55' containing ~26, FMX dissing - mated py and chalcopunite, also some Alled in how rate in this 14° of silicified boundary. Lower contact sharp at 35° to core axis, for a core and how a node with 14° of silicified boundary. Lower contact sharp at 35° to core axis, for and how a fact with 14° of silicified boundary. Lower contact sharp at 35° to core axis, for and how a fact with 14° of silicified boundary. Lower contact sharp at 35° to core axis, for a fact axis, for a fact axis, for a fact axis, for a fact and		Schiptossity very usriable : from ~ 0° to ~ Go.	10.7-199	
Cross-cutting place tale windets; Ireal have Mex punce along schiptossite plane 1 At 194 Lag: 2/2' grind marked by drillers but only about 7'0 & core biture 184 Lag and 194 Lag Lower contact sharp at 35° to core also, parallel to faliation/schiptossity & both units. (55-2355 INTERMEDIATE PORPHYRITIC (?) DIFE Similar to 171/2' to 190,7'; locally unit contains white 2155'275' 361 hard equant to clongated (parallel to faliation direc- 2115-2228 365) tion) yeldoon Story tale loss than '10" long; these and 228'255' 365 clicified bitcoin and the contains white also 255' 365 clicified bitcoin and the contains white also 255' 365 clicified bitcoin and the contains of the co		the cost which has a fair to be		
At 194 Lag : 2/2 grind marked by drillers but only about 7'0 by cone Biture 184 Lag and 194 Lag Lewer contact sharp at 35° to code aris, parallel to faliation schiotossity b) both units. USS-2055 INTERMEDIATE PORPHYRITIC (?) DIFE Similar to 171,2' to 190,7'; locally unit contains white 255'-2055 361 hard equant to elong attal parallel to faliation direc-20,5-2055 365 tion) yeldson 300 to loss than 110" long; these are 20,5-2055 365 distinct near No 216 Silicified by code are rare only one 2000 100 up to ~ 2" will at 21605' containing ~240 FMX disalmi- nated py and chalcopying also some substidy in host nack within 14" of silicified boundary. Lower contact Sharp at 35° to core aris, Cress withing tale weight in regitant in the cortaing in the containg in the cortaing in the cortaing in the cortaing in the cortain of the c				
only about 7'0 & come between 184 tag and 194 tag Lower contact sharp at 35° to cove axis, penallel to foliation/schistossity & both units. 155-2055 INTERMEDIATE PORPHYRITIC (?) DIFE Similar to 171,2' to 190,7'; locally unit contains white 2155-217.5' 361 hard equant to clongated penallel to foliation direc- tion) feldson Daystello less than '10" long; these are 2228-2255' 36: distinct near ~ 216' Sincified, breccia noves are rare only one zone up to 2" init at 21605' containing ~2%. FMX disseni- mated py and chalcopyinte, also Sorae Aughtids in host noise in this 14" of silicified boundary. Lower contact sharp at 35° to corder axis, Patenter of the contact sharp at 35° to corder axis, Patenter of the contact sharp at 35° to corder axis, Patenter of the contact			***************************************	
Lower contact sharp at 35° to code apio, parallel to foliation/schistossity 8) both units. (55-2255 INTERMEDIATE PORPHYRITIC (?) DIFE Similar to 171,2' to 190,7'; locally unit contains white 2155-217.5 361 hard equant to elongated per all to foliation direc- 20,5-2228 365 tion) feldson Derystolo less tham '10" long; these are 2228-2255 36 clistic of near ~ 216' inter are rare only one zone up to ~ 2" inter at 21605' containing ~2% FMX dissemi- mated py and chalcopyite, also Songe Autophids in host rack in the 14" of silicified boundary. Lower contact sharp at 35° to corder apio, rase withing tale wir lots in rest with direction of the contact of t				
foliation/schistossity 6) both units. 155-2055 INTERMEDIATE PORPHYRITIC (?) DIFE Similar to 171,2' to 190,7': locally junit contains white 2155-2175 361 hard equant to clongated (perallel to foliation direc- 2175-2228' 365 tion) yeldsoon Play tale liss tham '10" long; these are 2228-2255 365 distinct near ~ 216' Silicified beccia nones are rare only one none up to ~ 2" will at 216,5' containing ~2%. FMX disseni- nated py and Chalcopyite, also some sulphidy in host nock in this '19" of silicified boundary. Lower contact sharp at 35 to core aris. Patcher D FX dissenia of the unit.				
15.5-235.5 INTERMEDIATE PORPHYRITIC (?) DIFE Similar to 171,2' to 190,7'; locally unit contains white 215.5-217.5' 361 hard agreent to clongated parallel to foliation direc- tion) feldson Brystals liss than '10" long; these are 222.8' 365 distinct near ~ 216 Silicified breccia nones are rare only one 200.6' imegular Silicified breccia nones are rare only one zone up to ~ 2" mill at 21605' containing ~26, FMX disatmi- nated by and Chalcopyite also some Aulphids in Lower contact Shalp at 35° to corder aris, Patcher D FX disarming rare to min.		hewer contact sharp at 35° to code axis, parallel to		
Similar to 171,2' to 190,7'; locally unit contains white 215.5-217.5' 361 hard equant to elongated per allel to foliation direc- 217.5-222.8' 365 tion) yeldson Play talo less than '10" long; these are 2228-2255' 365 distinct near ~ 216 Silicified beccin nones are rare, only one zone up to ~ 2" into at 216,05' containing ~2%. FMX disalmi- nated py and chalcopyite, also some supplieds in host nock in this 14" of silicified boundary. Lower contact shalp at 35° to cone aris, Cress cutting talc very lets in rey t unit.		foliation/schistossity of both units.		
Similar to 171,2' to 190,7'; locally unit contains white 215.5-217.5' 361 hard equant to elongated per allel to foliation direc- 217.5-222.8' 365 tion) yeldson Play talo less than '10" long; these are 2228-2255' 365 distinct near ~ 216 Silicified beccin nones are rare, only one zone up to ~ 2" into at 216,05' containing ~2%. FMX disalmi- nated py and chalcopyite, also some supplieds in host nock in this 14" of silicified boundary. Lower contact shalp at 35° to cone aris, Cress cutting talc very lets in rey t unit.	215 6 2065			
hard equant to clongated (per allel to foliation direc- 20.5-222.8) 36- tion) feldson Drystale less than '10" long; these are 2228-2255 36- distinct near ~ 216 Silicified, breccia nores are rare only one zone up to ~ 2" nice at 21605' containing ~26's FMX dissioni- mated py and chalcopyrite, also some supplieds in host nock in this '14" of silicified boundary. Lower contact sharp at 35° to core aris, ress culling tale very lets in rest unit.	41212-49212			
tion) feldsom Drystalo liss than "10" long; these are 2228-2255 36 distinct near ~ 216 Silicified breccia rover are rare only one zone up to ~ 2" will at 21605' containing ~2% FMX disseni- mated by and chalcopyinge, also some supplieds in host rock in this "14" of silicified boundary. Lower contact shalp at 35° to core aris, ross culling tale wir lits in rest unit.		hand no + the the trans which is the the		361
distinct near ~ 216" Silicified breccia zores are rare only one zone up to ~ 2" inter at 21605' containing ~2%. FMX disseni- nated py and chalcopyinte, also some sulphides in host nock in this '14" of silicified boundary. Lower contact shalp at 35° to core aris, Cress cutting tale very lets in rest unit.		tin Mille Bour the person arec-	4	362
up to ~ 2" nile at 21695' containing ~26% FMX dissioni- nated py and chalcopyite, also some supplieds in host nock in this 14" of silicified boundary. Lower contact sharp at 35° to core aris, cross cutting tale very lets in rest unit.			22.8-225.5	363
Lower contact Sharp at 35° to core aris, Crosse cutting tale veir lets in rest unit.		Silicified biccii a a for a for the state		
nated by and chalcopyite, also some sulphides in host nock within "It" of silicified boundary. Lower contact sharp at 35° to core aris, cross cutting talc veir lots in rest unit. Patotes & FX disservice tid suite the second second		into a 2" will at all F' a to		
Lower contact shap at 35° to core aris, cross cutting talc veir lets in rest unit.		The first and the second of the manual of th		
cross cutting tale very lets in rest unit. Patotes D FX disservice tid with				
Cross cutting tale very leto in rest unit.	· · · · · · · · · · · · · · · · · · ·	Lower contact shalp at 35° by (a b) and		
Patoles & FX dessensing ted out the film of the		cross culture tale ver lete in new the with		
core, up to NU2%		Patents & FX despension ated and the film of the		
		core, up to NO2%		

PAP - 8452

PAGE 4 528 DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-9

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
<u> 2255-2311</u>	TALC - CARBONATE - CHLORITE - QUARTZ SCHIST. Right manne	225.5-229	364
		229-231.11	365
	there to Fing Danas V cortaining up to 3% ENY his		
	minated prite; bands are alterrating with tale	1	
	rich schiette, startight cone a		
<u> </u>	The work bolding & all the constant	1 1	
	ciated with cross - cutting tale vinlets		
	tower contact ship marked by slicken sided		1
	tale, at 40° to come divis		
2311-2222	CORPHYRY NILLE (2) 00		
	FORPHYRY DINE (?) OR SILICIFIED BRECCIA ZONE (?)		
	Tan to dark grey massive to deformed schis-	231.1-233.2	366
	tose unit, containing black hand possibly tournaline streaks and patches of FX disseminated orbits:		
	whit cortains up to ~40% rilley white - light gray to		
	Lower Donte et ground.		
233.2-270.6	TALC - CARBONATE - CHLORITE -QUARTZ SCHIST		
·	veinlets (cross-acting foliation shistossity) at	233.2-239	367
	would to to come and the 232 1 1 12 2301	239-244	368
	the his NO20/ and 1/ 1/4	244'-249'	369
		249'-254	370
	pods i unit is very delanded will	254-258	37/
<u>,</u>	tossite folding and las lite 12:	258-257.6	372
			·····
	takes on a shirlif Khake time		
	From 258 to 259 21 + (1)		
	the well and fully well and the same + ?		
	my madic randomy orgented winters me and and		
	lose section; quanti wein leto and light draw the		· · · · · · · · · · · · · · · · · · ·
	to brownish. tan no sulphides seen the		
	Local tan coloured, FX charty - looking sections	259.6-208	373
i i	with local threadlike black stringers parallel to foliation	26.9-264	374
		APT I	PAP - 8452

24

: DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: 4-9

PAGE 5 018

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
233.2'-270,6	possible town a line ?) from 259,6' to 259.9' and	264 <u>-269.2</u> 269.2-2701		0451 375
	from 260.3' to 260.8'; foliation at about 80 to core apps in both sections penallel to sharp contacts and parallel to schlotossity of talcschist	······································		
	theat rock in rich in 10 Unit becomes very anterite veinlets from ~ 267.5'			
	to 269.8° but still has recognizable cross cutting talc veinlets (unit is tan coloured with black the veinlets			
	with a biownish-light new quart vein from 269.2' to 269.4' contacts about 80° to core and no sulphides seen.			
<b></b>	at 45° to core axis parallel To cross- cutting tale			
	veinlets in this mit and parallel to foliation by			
270.6-278.6	QUARTZ FELDSPAR PORPHYRY DIKE (?) Foliated to massive, F to MX, dark gray to tan	270.6-274	0.025	376
······································	coloured possible QF Porphyry dike hard, silicified, variable in texture + structure, becoming massive	1/4 -218.6	0.001	
	with recognizable feldopar and quarter phenocrysto towards, lower contact. local Och (arite (?) \$ 2045			
	which is the width from 271.1' to 271.2' with black rebords			
	along margins (possible threadlike tournaline vein- lete?) containing trace FX pyrite local pyrite			
	blebs and wisper along foliation places of Lower contact sharp at 70° to core axis, some- what irregular, with trace FX pupite near contact			
278.6-287.4	TALC-CARBONATE-CHLORITE-QUARTZ SCHIST			
		278.6-284 ¹ 2011-2074	0.001	378
•	also ~ 10:10 milly white to translucent quarte acins	<u>407 4011</u>		<u> </u>
	Lower contact marked by quart wining	······································		PAP - 84

1

1

: DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-9 FOOTAGE SAMPLE DESCRIPTION OF CORE ASSAYS NUMBER 287.4-490 ANKERI SCHIST TE - TALC-QUARTZ ALTERAT F > 2974-2987 0.001 380 From nr. + and with 1000 284 7-290 38 38 295 300 0. 38 300-305 384 0.00 S 2 6 ron da 59  $\sim$ 29 nL ision N rom 385 -310 0.00 Ь 38 319 0.00 Dam a 38 On S A n2 2 33 am 390 3 00 00 **^**  $\frown$ 0.00 351-356 0.00 29 356-36.4 0.001 1396 6 る 70-80 and

P 4 P - 8452

PAGE 6 0 + 8

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-9

PAGE 7 - 4 8

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
287.4'-490	ANKERITE - TALC-QUARTZ SCHIST (ALT. ZONE?) (CONT	)		
	Apple neen spots in quarts very lit at 336.9			
	From \$ 355 mwards : "alter att on zone" with folia-			
	tion / schistossity at ~ 90° to core and; becomes very			
	schiptose, more sericitic (khaki colour in creased)			
Ł	Dialt gray chart-lasking arma from 25121 1 35121			
	Light grey, cherty-looking are from 351.2 to 351.3			
	From 360.4' to 364.3': chlorite rich schiot simi-	21011 2112	0.000	397
	las to 324.4' to 328.4' with possible silicified, brecciated	364.3-369	0.002	
			0.001	
	Local uchsite colour storg plistom alans	371-376'		400
	le.g. at 365.5' at ~ 370' etc.)		0.012	
·	From N368 on war de, local sections containing		0.001	402
	FX to rare CX cubes of pyrite, conerally as		0.001	403
		391-396		
		396'-400'	0.001	405
·····	Locally faint traces & cross- inthing tale vein-			
	lets ( Kirk Holded; e.g. bt ~ 378); also to cal small scale tolding to cal small			
	(< 1/10" hide parallel to banding.			
	Rock has a brownish, possibly exidized ? tinge			
	from ~ 364' to 391'. " " " " " " " " " " " " " " " " " " "			
		400-403	0001	406
			0.001	
	onwards.	406-407.5		
	quarty very yore from 407.5 to 408.9 with a	407.5-408.9	0.001	409
	possible single quarter vein (~10% host rock inclusions	408.9-410.8	0.001	410
			0.001	the second s
······································		413-416.7		
		416.7'-418'		
		<u>418'- 421'</u> 421'-424'	0.001	
	dark prown powerby tour maline - rich 3): handonly		0.001	
	briented Quarty Veins	427-428	0.007	417
		428-431.2	0.005	418
				PAP - 84

	DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NU	PAG JMBER: G	se 8 1-9	;)B
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
287.4-490	ALTERATION ZONE (CONT)			
	to light green, MX, sugary textured amonts: up to	431.2'-432'	0.001	419
	3" Frue width quart veinlets, parallel to	432-434'	0.001	420
	schiptossite at ~ 90° to core asis	434 - 438	0.001	421
	From 421 to 427.8; FX, duk guy to bull-light	438-443	0.004	422
,	greenest some with pyrite as MX dissept i rations	443-448	.0.001	423
	In last 1 associated with quarter veinlet.	448-456,3	0.001	424
i	From 431.2 to 431.6: about 75% light grey - trans-	4563-458		425
	hicest quarts as irregular veinlets	458-463		426
·	Locall, rare ten coloured, FX - aplanitic cherty -	463-468		427
	looking bands less than I" wide	468-473		428
	From 437.1' to 437.2' i " nide (true width; parallel	473-472		429
	to schiptossity at 90° to core apic with threadlike	478-483		430
•		483-488		431
		482-490		432
	maline appointed with quartz wein leto.			Ē
	Rose Kink fold at 6455 (senerally schistos-			l
	sity is very uniform in direction ~ 90° to core			- 
	Possible FX black fourmaline (?) as very small			i
	cryptale generally along schiptossite planes.			[
	About 5% FMX pipite disse his aled to stringer-like			í
	along schiotossity planes, from 485.6' to 485.8'	<u>.</u>		
•	From 487.4' to EOH (4'gd) increase in quart occurring	25		í
	ac pode and verelete generally with the kin coloured		<b>A</b> .	I
	pericitic material (host rock?) betwee, typ to 75% Quet			I
	but average ~ 40-50% ; no sulphides seen			
				í
490.0'	END OF HOLE			I
				I
				i
				I
				I
				I
				I
				PAP - B

	SUMMARY LOG.	PAGE	i of I
(	PROPERTY HU HOLE NUMBER U DIAMOND DRILL LOG @50'-63' @ 100'-59.5' GRID REFERENCE 105 ENGTH = 602 fect @250'-63' @ 300'-63' TOWNSHIPWHI @350'-64.5' @ 400'-64' AZIMUTH285 @450'-67.5' @ 500'-64.5' @550'-67.5' @ 600 RILLING COMPANY MORRISSETTE FOREMAN R. LAFON-DIP TESTS: ORE SIZE AQ CORE STORED AT: SITE LOGGED BY R. BALD DI	NTER -10 IS TNEY C AZ DIP AN -63.5	(GEOLOGY (GRID) LAIM 1009 NGLE - 65°
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0'-4'	CASING	NONDER	
4′-338.7′	TALC SCHIST (SOAPSTONE) QV Zones: 331' to 332, 5'; 333, 3' to 333, 7' QV : 333, B' to 334, B'		
3387-353	CHLORITE SCHIST	· · · · · · · · · · · · · · · · · · ·	
353-496.2	ALTERATION ZONE (CHLORITE AND/OR SERICITE SCHIST) Breccia Zone: 358.1' to 360' 367' to 370.9'; 413.2-415.5; QV: 396.4' to 397.1'	420.67	435.6'
496.2-511'	TALC SCHIST QV Zones; 499 to 501.4'; 505' to 506.5'		
511-534'	QUARTZ FELDSPAR PORPHYRY DIKE By, po, rare cp		
534'-539.2'	TALC SCHIST		
539.2 - 542.5	INTERMEDIATE DIKE ?		
542,5-5431	TALC SCHIST		
543.1-560.8	METASEDIMENTS (GREYWACKE AND ARGILLITE)		
560.8-596	TALC SCHIST		
596 - 602'	METASEDIMENTS		PAP - 8451

		DAGE 1	+ 8
	PROPERTY HU HOLE NUMBER U	INTER M	INE
	DIAMOND DRILL LOG ACID TESTS = @ 50' -63° GRID REFERENCE LENGTH = 602 feet. B6 SAMPLES DRILLING COMPANY MORRISSETTE FOREMAN R. LafontaineDIP TESTS: see above	CL DIP AN 50 - 67.5	AIM GLE - 65° <i>E600 - 63.5</i>
, 	CORE SIZE AQ CORE STORED AT: LOGGED BY R. Bald D	ATE Febr	rary 2 /83
FOOTAG		SAMPLE NUMBER	ASSAYS
0'- 4'			
4'-338:	"TALC SCHIST (SOAPSTONE) Black with white streaks/veinlets: very solt can scratch		
	core with a finger nail; white streaks lare carborate +	┨╌╶╌╌╌╻ ┨╍╴╴╴╴	
1	quarte inchistose but very deformed folded local		
	price faulting in the black tale along faulto; trace,		
	rock or within carbonate - quarts veinlets: local light		
· · · · · · · · · · · · · · · · · · ·	grey-tan sugary cherty-looking rores or Bands; local pross-cutting tale (black) reinerts generally at about		
	90° to 70° to core allo:	134-136.1	433
	From ~ 136,1' to 147.0': FX black, hard, tournaline cryptals and cryptal aggregates, needle-like, to clots	136.1-1391 139-1441	434
	locally associated with milky white car bong te vein-	144-147	436
	lets parallel to schistossity /foliation of whit, at	147-1491	437
	From 218.6 to ~ 240.5: chlorite - rich Dore, not as soft		
	as tale schipt, dank greenish grey, with only about 10%		
	about 5 to 10% dark green hard state amphibule		
	ordented and occur in patches or world within this		
	Interval; this chlorific unit also contains local trace. MtoCX pipite as dissemirated crustals, locally, unit		
·	lie foliated but random direction from 0° to about 80°		
L	Ho core agio); upon & lover contact irregular		PAP 8451

Carl and the second states and the second 
. DIAMOND DRILL LOG.

PROPERTY: HUNTER MINE HOLE NUMBER: U-10

PAGE 2 of 8

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
4'-338.7'	TALC SCHIST (SOAPSTONE) (CON'T)	~3.5 Gene	
	From 240.5' to 272.5': tale schipt Contains about 25%	2405-245	438
		245-250	439
	Curit in general is very gale any in colour due	250-255	440
	to quarte deixlete in part of the alog due to silvery-tale	255-260'	441
	throughout host rock; with cross- cutting dark freen-	260-25	442
	black tale veinlets at varians angle to core avis	265-270	443
	3" grind tag at 250 tag (c:obably rore like I foot		
	of missing ground core		
	From 271.5' to 271.9': milky white cx que to vein	270-272.5	444
	irregular and for ground cortates; ~ 10% grey hart rock		
	inclusions; no sulphides seen.	p'Grind	
	From 273' or word, unit contains local charty-looking	272.5-280	445
	grey or tan Dands, generally less Han I" wide cont	280-285	446
	Halving FMX disservice old phylite		
	From~ 273' to ~294', black- dank gice, cross-cutting		
	tale veinlets are wider than usual (up to about		
	"/10 "wide > possibly could cause some ground		
· · · · ·	problems?); 2 Foot grind at 280 tog		
	+ 200 lul at al G and an and an and	285-290	447
	at 288.4' at about 80-75° to conc aris.	290-295.5	448
	1 1997 el anna 10 unis alle cribid a bove	295.5-296.1	449
	the state of the state of a permit of the states of the st		
	the first of the the foots are it might		NOSI
	1 23V ype and your possible		
		296.1-300.7	450
	to Dilling and the second and the second		452
	Blog of the second a contest of the second s	301.8-305.3	453
	brally the + An Fille 200.1 To solit containing the		·····
	light grup here.	<b>_</b>	
	301.5 to 301.8' To To the ty naterial firm		
		2050' - /	
	Jan	305.8-310	454
		310'-315'	455 PAP-8452

PAGE 3 of 8 DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-10

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
4'-338.7' -	TALC SCHIST (SOAPSTONE) (CONIT)	315-320'	456
	trom 331' to 332.5': about 80-70% grey-brownish	320-325	457
<u> </u>	to rulky white locally slightly vuggy Quarts vein-	325-329	458
<i>\</i> 4		329- 331	459
<u> </u>	within this zone; quarter bands locally appear	331-332.5	460
<u>├</u> ────────────────────────────────────	a contain strall grants compitals and some lof the	332.5-3338	461
	marts bande may be perphyry dikes? a sinilar		
├	yone from 333,3' to 333,7" but I quart is white		
	and sugary fine-grained.		
	From 323.8' to 334.8'; irregular, coarse-grained	333.8-334.8	462
7		334.8-338.7	463
0	bout 20% dark grey talcose host rock inclusions		
F	no supplice seen lower cortact sharp at ~ 40 to	<b>_</b>	
F	ore agis, cross cutting deliation/set intossity & host		
┝────┟∕	Lower contact starp wat ~50° to core aver,~		
	Lower contact sharp at ~50° to core apro,~		
111	Darallel to tale veinceto in take schiet and to		
[ [*] 7	foliation & next unit.		
22070252	CHLORITE SCHIST		
		338.7 - 343	464
~ ~		<u>343-348</u>	465
K	and a start of the	348-353.2	466
ř	the support and the first accel		
	to NI" unde): 60 cross cutting fall veinlets seen!		
,	is this first 4 inches of unit it contains about		
E E	col anti the four provide the second		
2	the first and the state of the state		
4	he hended of this unit are particled of EAX		
W .	lical and a difference of the second se		
F 1	leached to pale grey - Pan coloury		
50 T	Foliation is about 80, to 90° to core ayin		
	Lower contact very gradational and may be		
			I
	arbitrarily placed rup to N20' or 30' lower down - hole fock type scence to be the pare in Nevt		

1

PAP - 8452

' Ç		(	· · · AR
2010 2017 2017	DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NU	JMBER: K-	-10
FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
353-4962 A	LTERATION ZONE (CHLORITE AND/OR SERICITE SCHIST)	3532-358.1	467
	Very similar rock type (chlorite schist) tope-		468
בע	ous unit except increasing amount of quart +		
	whomate weining:		
	From 358.1' to 360': silicified brecciated and		
u	ith ton coloured to light grey coloured anan the	360'-363'	46
6	ragmente within a allate rich, ratrix, none	363-367'	47
	too contains local bands and patches Slivery	367-368	47
	hard, dark brown ephanitic material (un knoch?	349-269	47
b	10 sulphides seen? a similar ane occurat	3489-370.91	47
	non 367 to 370,9' with a possible any FX porphy-	709'-32-91	47
K	4 from about 368' to 368.9" vite prescripted marking	3759-2701	47
a(	Id cross cut by quest veins local possible furthere	379-397	47
	Dots occur within the breckia zone for apporte?)	392-387	47
<i>H</i>	is precia core contains trace FX putite.	387-392	47
	From 375.8 on wards: unit locally taken	392-396.41	47
a	light green tinge possibly suchsite? is peri-		
C	te rich rather It dow chlorite rich and contain		
l	ocal zones & quarts + carbonate veinlets parelle	ſ	
+	o foliation / Schisto ssite: locally core breaked up		
hr	to disks!"		
	- Foliation from beginning & unit onwards		
is	about 80° to 90° to core byte with only a		
	eur local zones of deformation / folding towards		
B	eginning Vanit; Holiation schiptossity its very re-		
Q	clas from ~ 514 mwards. 1	· .	
———	From ~ 396.4' to 397.1': Milky white to translucent	3964-397.1	48
	interven with very megular contacto similarto	397.1'-398	4.8
i	53.8 to 334.8 except with block, hard possibly tour maline	398-403	48
pi	ch host vock inclusions,	403-4081	48
	(Bx) Local quarty-rich zones which have an into-	408-413.2	48
	Deligeous massive appear ance a some what	413.2-45.5	48
<b>-</b>	ou las To a tore c ci a but "fragments" are podo	4155-420.6	48
	Guart mot and a li from Ut 13,2' to 415 5' and	420 16-425,6	48
	10.6 to 135.6 containing local narrow (21") dark	125.6-430.6	48
0	own and nicky while OFF dikelets sandomly only ted.	4306-435.6	48
	(R.B. April 5/29).		PAP-

Unit has light given to fan colour to locally main that the green colour up the 10% where it takes on a deriver the the green colour farty abrustly (chlorite rich): dark the third green colour batty abrustly (chlorite rich): dark the the bicome of conitic to the factor of the first green to the the bicome of conitic to the factor of the factor of the the bicome of conitic to the factor of the factor of the the bicome of conitic to the factor of the factor of the the bicome of conitic to the factor of the factor of the the bicome of conitic to the factor of the factor of the the bicome of conitic to the factor of the the the bicome of the the the bicome of the the the the terms about 3 % to the dissense of the the bicome of the the the the constains about 3 % to the dissense of the the bicome of the the the the constains about 3 % to the dissense of the the bicome of the the the bicome of the the the the constains about 3 % to the dissense of the the the constains about 3 % to the dissense of the the constance of the the the the constance of the the the constance of the the the constance of the the the the the the the the the the the the the the the the the br>the the the the the the the the th	FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSAYS
Unit has light size to yan colour to locally main weight in green calour, jarry abrustly (chlorite takes on a de lier green calour, jarry abrustly (chlorite trick) dark weight (green calour, jarry abrustly (chlorite trick) dark weight (clean to 4792 when again first green tan 455-466 becomes chloritic weight dark green but all the time too the (using air lar in terture & stricture to serie school weight (want from a tobar 3 's FMX dissenir ated magoo 472'476' (interpretation about 3's FMX dissenir ated magoo 472'476' (clean to 479,2' when a green but all the time the becomes chloritic weight and the for when a with the (want from a tobart 3's FMX dissenir ated magoo 472'476' (interpretation about 3's FMX dissenir at 8 boart 75 ° 483'483' (core aya, feliation at 90° to core aue. 483'482' Lower contact gradational over about 2'' and (interpretation at 90° to core aue. 483'482' (core takes m a consensate on a core and for a string about 48' (appearance with variatable core angles in string (appearance with variatable core angles in string (appearance with variatable core angles in string (interpret light to de to for to core appendent to 505'584' (sold of the formation of 90' to core appendent to 505'584' (appearance with variatable core angles in string (appearance with string all of sold to schiotove tale 48' 500' (sold of form 50'' event heally costs cutting parallel to 505'584' (bith, up to 50'' event heally costs cutting parallel to 505'584' (bith, up to 50'' event heally costs cutting for a string of the string and theal formation and to 505' to 506'S with a m3'' Wide qu	353-496.2	ALTERATION ZONE (CON'T)	4356-4400'	49
Colour to 479.2' where a gain wint rather aburyly 456 466 becomes chloritic " This didn't gleen but all the third 460.444 hing airilar in three a striketing to Scricife schiot 444 4457 (400 alst from a 483.2' - 483.3' 484.4' and 486.5' where 4171'472 whit contains about 3's FMX dissemment ated magne 472'472' whit contains about 3's FMX dissemment ated magne 472'472' whit contains about 3's FMX dissemment ated magne 472'472' white cupitals; near 484' and 486' near disse 472'472' area theoritic (not scratched by fragernail) 4772'485 Gross cutting winters are seen at 8 bout 75° 493'473' to core ayid, foliation at 90° to core ayis. How contact gradational over about 2" and signalled by Softs are (scratched by fingernail) distinct cross cutting the variable core and a grading core takes on a somewhat notiled 378 dum cardinel appearance with variable core angles it scad for soft takes on a somewhat notiled 378 dum cardinel (Markey way scherols (at 20° to core ayis) distinct cross cutting take (at 20° to core ayis) (100 appearance with variable core angles) it scad (100 appearance with variable core angles) it scad (100 appearance with first gar angles) it scad (100 appearance with first gar angles) it scad (100 appearance with cardiable gar angles) it scad (100 appearance with first gar angles) it scad (100 appearance with cardiable gar angles) it scad (100 appearance with cardiable gar angles) it scad (100 appearance with cally first dum langles (solf-solf scale) (100 appearance with be all first dum langles) (solf-solf scale) (100 appearance with be all first dum langles) it scad (100 appearance with be all first dum langles) it scad (100 appearance with be all first dum langles) (solf-solf scale) (100 all angles) (solf to do k) first dum langles) (solf-solf scale) (100 all angles) (solf to do k) first dum langles) (solf-solf scale) (100 all angles) (solf to cole) (sole cutting i (sole sciel) (solf solf solf solf solf solf solf sole solf angles) (solf solf solf solf solf solf solf		Unit has light ancen to fan colour to locally medium	4406-444	49
Colour to 479.2' where a gain wint rather aburyly 456 466 becomes chloritic " This didn't gleen but all the third 460.444 hing airilar in three a striketing to Scricife schiot 444 4457 (400 alst from a 483.2' - 483.3' 484.4' and 486.5' where 4171'472 whit contains about 3's FMX dissemment ated magne 472'472' whit contains about 3's FMX dissemment ated magne 472'472' whit contains about 3's FMX dissemment ated magne 472'472' white cupitals; near 484' and 486' near disse 472'472' area theoritic (not scratched by fragernail) 4772'485 Gross cutting winters are seen at 8 bout 75° 493'473' to core ayid, foliation at 90° to core ayis. How contact gradational over about 2" and signalled by Softs are (scratched by fingernail) distinct cross cutting the variable core and a grading core takes on a somewhat notiled 378 dum cardinel appearance with variable core angles it scad for soft takes on a somewhat notiled 378 dum cardinel (Markey way scherols (at 20° to core ayis) distinct cross cutting take (at 20° to core ayis) (100 appearance with variable core angles) it scad (100 appearance with variable core angles) it scad (100 appearance with first gar angles) it scad (100 appearance with first gar angles) it scad (100 appearance with cardiable gar angles) it scad (100 appearance with first gar angles) it scad (100 appearance with cardiable gar angles) it scad (100 appearance with cardiable gar angles) it scad (100 appearance with cally first dum langles (solf-solf scale) (100 appearance with be all first dum langles) (solf-solf scale) (100 appearance with be all first dum langles) it scad (100 appearance with be all first dum langles) it scad (100 appearance with be all first dum langles) (solf-solf scale) (100 all angles) (solf to do k) first dum langles) (solf-solf scale) (100 all angles) (solf to do k) first dum langles) (solf-solf scale) (100 all angles) (solf to cole) (sole cutting i (sole sciel) (solf solf solf solf solf solf solf sole solf angles) (solf solf solf solf solf solf solf	·	grey colour up to 4679' where it takes on a darker	444-4481	49
Colour to 479.2' where a gain wint rather aburyly 456 466 becomes chloritic " This didn't gleen but all the third 460.444 hing airilar in three a striketing to Scricife schiot 444 4457 (400 alst from a 483.2' - 483.3' 484.4' and 486.5' where 4171'472 whit contains about 3's FMX dissemment ated magne 472'472' whit contains about 3's FMX dissemment ated magne 472'472' whit contains about 3's FMX dissemment ated magne 472'472' white cupitals; near 484' and 486' near disse 472'472' area theoritic (not scratched by fragernail) 4772'485 Gross cutting winters are seen at 8 bout 75° 493'473' to core ayid, foliation at 90° to core ayis. How contact gradational over about 2" and signalled by Softs are (scratched by fingernail) distinct cross cutting the variable core and a grading core takes on a somewhat notiled 378 dum can age 10' appearance with variable core angles it scad for softs of a core angles it scad appearance with variable core angles it scad for a false on a somewhat notiled 378 dum can age 482' 499' grad to active to scale angles it scad for a false on a somewhat motiled 378' dum can be to distinct cross cutting frage rail; core ages its cost of the scale o		men colour. Lairly abruoth (chlorite rich): dark	448-452	49
becomes chloritic with dirk gleen, but all the third 460-444 being ainita in Justice & structures to Scricite Schoot 441-4578 (Magot from a 483.2' - 483.3' 4944' and 486.5' where 4474-4774' 4 Unit contains abort 3's FMX dissemir sted mague 476'4774' 4 hite cupsteles; mean 484' and 486' nerry dark 476'4773' 5 green chloritic (not screatched by finger nail) 4772'485' for core ayid, foliation at 90° to core ayis, 475'485' Lower contact gradational over about 2'' and signalled by Soften one (Scratched by finger nail), distinct cross cutting tale weinfets and in general, for takes on a concentrat motion of stread appearance, with variable, one angles its stread of brapy, very schootse (at 90° to core ayis) tan to dark grey Katerial. 186.2'511' TALC Schist to dark, foliated to Schistory, tale 481' 491' s weinster and to core and the schoot of the stread for a for a for about 2'' and 10 distinct cross cutting tale, verified and in general 11 distinct cross cutting tale, one (schootoge tale 485' 493' 12 distinct cross cutting tale, one angles its stread 13 distinct cross cutting tale, one angles its stread 14 distinct for a concentrat motion of a stread 14 distinct for a concentrat the for schootoge tale 499' solved 15 distinct schoot as (at 90° to core ayis) tan to 16 distinct for a for a concentrat to schootoge tale 499' solved 14 distinct for a for a solve to core ayis) tan to 15 distinct for a for a solve the all grant to solve solve solved 16 distor play so the talk for a schootoge tale 499' solved solved 16 distor play to do in the for a for a schoot to schoot a solve solved 16 distor play to the solve the schoot as the solve solve solve solve solve solved 16 distor play to solve the solve as the schoot as the solve to solve the solve solve solve solve solve solve solve to a solve solve solve solve solve solve solve solve to solve the solve solve to solve solve solve solve to s		neen colour alternates with light green - tan	452-456	49
tite cupitals; near 484' and 486', nery dark 4712' 2 green chloritic (not scratched by fingernail) 473:483' 5 coass cutting vinlets are seen at 8 bout 75 ° 483.485' 5 to core and filment on at 90° to core and the 485.493' Lower contact gradational over about 2" and 473.482' Lower contact gradational over about 2" and 473.482' Lower contact gradational over about 2" and 473.482' Lower contact gradational over about 2" and 473.482' Core takes on a somewhat nightle grading grading core takes on a somewhat nightle grad in general appearance with variable core angles in stead of lineary, were schoots (at ~90° to core appendix) to a dark frey katerial (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		colour to 479.2' where again unit rather abuitty	456'- 460	49
tite cupitals; near 484' and 486', nery dark 4712' 2 green chloritic (not scratched by fingernail) 473:483' 5 coass cutting vinlets are seen at 8 bout 75 ° 483.485' 5 to core and filment on at 90° to core and the 485.493' Lower contact gradational over about 2" and 473.482' Lower contact gradational over about 2" and 473.482' Lower contact gradational over about 2" and 473.482' Lower contact gradational over about 2" and 473.482' Core takes on a somewhat nightle grading grading core takes on a somewhat nightle grad in general appearance with variable core angles in stead of lineary, were schoots (at ~90° to core appendix) to a dark frey katerial (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		becomes chloritic to 387.52 dark green but all the time	460'-444'	49
tite cupotels; near 484' and 486', nery dark 4712' 2 green chlorit c (not scratched by fingernail) 473:483' 5 bross cutting vinlets are seen at 8 bout 75 ° 483.485' 5 to core and foliation at 90° to core and . 4875.493' Lower contact gradational over about 2" and 473.4782' . Lower contact gradational over about 2" and 473.4782' . Core takes on a somewhat nottled grad in general . Core takes on a somewhat nottled grad in general . Core takes on a somewhat nottled grad in stead . 0 Urapy, wery schicotose (at 90° to core apps) tam to . dark frey kalerial . 96.2'511' TALC SCHIST . Corey (light to dark), foliated to schiotoxe talc . 9145.5014' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 10% with up to 50' . general (tamble cuttors for any signed) including a m/f wide forsible white perphysic dike grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant .		being similar in texture & structure to sericite schipt.	464 -467.9	49
tite cupotels; near 484' and 486', nery dark 4712' 2 green chlorit c (not scratched by fingernail) 473:483' 5 bross cutting vinlets are seen at 8 bout 75 ° 483.485' 5 to core and foliation at 90° to core and . 4875.493' Lower contact gradational over about 2" and 473.4782' . Lower contact gradational over about 2" and 473.4782' . Core takes on a somewhat nottled grad in general . Core takes on a somewhat nottled grad in general . Core takes on a somewhat nottled grad in stead . 0 Urapy, wery schicotose (at 90° to core apps) tam to . dark frey kalerial . 96.2'511' TALC SCHIST . Corey (light to dark), foliated to schiotoxe talc . 9145.5014' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 20% grant ± carbonate winlet, generally perablel to 505.5015' . 10% with up to 50' . general (tamble cuttors for any signed) including a m/f wide forsible white perphysic dike grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant . 20% and from 505' to 506.5 with a n3% kide grant .		weept from ~ +83.2'- 483.3' +84.4' and 486.5' where	4179-472	49
green chloritic (not scratched by finger nail) 4792-483 cross cutting vientets are seen at 8 bout 75 ° 483 4875 to core agis, foliation at 90° to core agis. 4875-493' ( Lower contact gradational over about 2" and "Bignalled by soften core (scratched by finger nail), distinct cross cutting tale, venlets and in general, core takes on a somewhat nintled 30% diven - Consigned apperanence, with variable core angles is stead of trapy, very schiolose (at ~90° to core agis) tan to dark grey katerial "B'2'511' TALC SCHIST (scratched by finger nail); core takes on a somewhat nintled 30% diven - Consigned apperanence, with variable core angles is stead of trapy, very schiolose (at ~90° to core agis) tan to dark grey katerial "B'2'511' TALC SCHIST (scratched by finger nail); cortaining low solid-sos' . 20% graat t carbonati, nintled, generally parattel to sos sols foldation plan to two health cutters for angles is sold sols foldation plan to two health cutters for angles is sold sols foldation plan to two health cutters for angles for a grand with up to 50', quart (health cutters for angles) for a grand including a ~1 inde describe while perpendent for sol, to at 5061' no sweptice while boots with a had wide quart wein at 5061' no sweptice up it a heal wide quart plane minor folding usen. "*		unit contains about 3% FMX disseminated magne-	472-476	49
Coross cutting vinlets are seen 1 at 8 bout 75 " 483-4875 4 to core ayid, foliation at 90" to core ayis. 4875-4985 4 Lower contact gradational over about 2" and Bignallid by saftly core (scratched by finger nail), distinct cross cutting tale, veinlets, and in general, core takes on a somewhat motiled grading of seried appearance, with variable core angles it stead of trapy, very schooles (at ~90° to core ayis) tan to lanke grey katerial. 96.2'511' TALC Sch15T Socy (light to da:k), foliated to schoology tale 4499' school sift (scratched by finger rail); cortaining 2but 5014' solution plan to tur biology cost cutting; lo cal 2 no 5065' lolidion plan to tur biology cost cutting; lo cal 2 no 5065' lolidion plan to tur biology cost of the grant of the solution at 501,t, and from 505' to 506.5 with a n30' wide quart wein at 506.1' no supplication of the perphyse dike		tite crystalo; near 484' and 486' very dark	476-479.2	50
Corosa cutting vinlets are seen 1 at 8 bout 75 ° 483-4875 4 to core aud, foliation at 90° to core auto. 4875-4983 4 Lower contact gradational over about 2" and Bignallid by softly core (scratched by finger nail) distinct cross cutting tale, veinlets and in general. Core takes on a somewhat motiled gradient of aired appearance, with variable core angles itstead of bracy, very schoolss (at ~90° to core auto) tan to dark frey katerial. 96.2'51' TALC SCHIST Core (ight to dark), foliated to schoology tale 499' Sold graat & carbonate minilet, generally peratted to 505-5065 foliation plan to tur boally cross cutting, lo cal 2 no 506,5' 1' inthe up to 50', guart (scale of 200 and 100 sold of 100 sold		green chlorific (not scratched by findernail)	479.2'- 483'	50
to core and, foliation at 90° to core and the top of the core and the top of the core about 2" and the top of the core (scratched by finger nail), and the cores cutting tale, veinlets and is general, appearance, with variable core angles it stead of thispy, very schoolse (at ~ 90° to core axis) tan to the grey (light to do.k.), foliated to school and to solve t		pross cutting veinlets are seen at 8 bout 75°	483-487.5	50
Lower contact gradational over about 2" and Signalled by soften core (scratched by forger nail), distinct cross cutting tale veinlets, and is general, core taken on a somewhat motiled 30% dium - grained appearance with variable core angles instead of Urapy, very schiotose (at ~90° to core asks) tan to dark grey haterial. 96.2'511' TALC SCHIST Core (ight to dark), foliated to schiotoge tale H19'5014' which asft (scratched by forger rail); cortaining 2bout 5014'505' 20% glact t carbonate nintlet, generally parattel to 505'5065' foliotion plan to tout be cally cross-cutting, lo cal zone 5065'511' with up to 50', quart (translucent to 506, to end your) to tool, and from 505' to 506, 5 with a ~3" wide quart wein at 506,1' no xulpication for your in these quart for the area of the core in the core in these quart for the formation of the distribution formation of the formation of the formation of the formation of the including a minute formation of the formation of the formation of the area of the formation of the area of the formation of the format		to core avid Isliation at 90° to core avia	487.5 - 493'	50
Lower contact gradational over about 2" and Signalled by soften one (scratched by finger nail), distinct cross cutting tale, veinlets, and in general, core takes on a somewhat mottled grading dium-ogained appearance, with variable core angles it stead of triapy, very schootse (at ~90° to core axis) tan to dark grey material 196.2'511' TALE SCHIST Soft (scratched by freer ail); cortaining 2014'5014' were hight to dark), foliated to schootose tale 419'5014' 20% griath to care will generally paratlel to 5014' 20% griath to cally cross-cuttors; to cal zone 5065'511' with up to 50's quarts (translucent to Schot geny, sugary) Fearborate, versite up to ~2" underson from 449 to 501.4' including a "I" under generally perphysed itse at 501.1', and from 50'to 50'to 50, 5' with a "3" bide quart wein at 506.1' ro rulpil dear been in these quart to perphysed itse points of the form form 50'to be to all of the perphysed itse wein at 506.1' ro rulpil dear been in these quart to perphysed itse points of the subscience in these quart to perphysed itse			493-496.2	5(
Fignalled by Softly core (scratched by finger nail), distinct cross cutting tale, veinlets, and in general, core taken in a somewhat nortiled midium -gained appearance, with variable core angles instead of winpy, very schiotose (at ~ 90° to core axis) tan to dark grey haterial. 196.2'511' TALE SCHIST (scratched by finger rail); cortaining 2but 5014' 5014' wehict aift (scratched by finger rail); cortaining 2but 5014' 5014' 20% grant to carbonate reinlet, generally parattel to 505' 5065' lolidion planes but locally cross-cutting; local 2ms 5065'511' with, up to 50', quarte (tranclucent to before the sugary) Fearborate very to a not a not a not a sugary of the solid solid state of the solid		Lower contact gradational over about 2" and		
Core takes on a somewhat nottled "The dium-lg ained appearance with variable core angles in stead of wapy, very schiotose (at ~ 90° to core airs) tan to dark grey haterial. 196.2'511' TALC SCHIST (ight to do:k), foliated to schistoge talce H19-5014' Scry (light to do:k), foliated to schistoge talce H19-5014' which soft (scratched by frger rail); cortaining 2bout 5014'-505' 20% grant t carbonate vernleto, generally parattel to 505'-5065' foliation planco but locally cross cutters; local 2mes 5065'-511' including a ~1' inde gessible white porphyry dike at 501,t', and from 505' to 506.5' with a ~3" vide quart vern at ~ 506.1', ro rulphides, ceen in Hese quart 1 2000				
8) Wriapy, very schiotose (at ~90° to core layis) tan to dark grey Katerial 196.2'511' TALC SCHIST (472: 499' 5 Grey (light to da: k), foliated to Schiotose tale 499'5014' schiot sift (sepatched by frgerrail); cortaining 2bout 5014'505' 20% grach t carbonate verifleto, generally parattel to 505'506's Loliation planco but locally cross-cutters; local zones 5065'511' with up to 50'l quark (translucent to Secht grey, sugary) Teanborate verifits, up to ~2" undel 500 from 499' to 501.4" including a ~1" inde describle white porphyse dike at 501.1', and from 505' to 506, 5 with a ~3" kide quarts wein at - 506.1' ro culpt: describer in these quarts 2000		distinct cross cutting tale veinlets and in general.		
Ante grey katerial 196.2'511' TALC SCHIST 96.2'511' TALC SCHIST 97.2 Grey (light to da: k), foliated to schiotose talc H19'5014' 98.2'511' TALC SCHIST 98.2'511' TALC SCHIST 98.2'501' State to da: k), foliated to schiotose talc H19'5014' 98.2'511' TALC SCHIST 98.2'511' TALC SCHIST 98.2'501' Schieft (separticle difference), foliated to schiotose talc H19'5014' 98.2'511' TALC SCHIST 98.2'511' TALC SCHIST 98.2'501' Schieft (separticle difference), foliated to schiotose talc H19'50' 98.2'511' TALC SCHIST (separticle difference), foliated to schiotose talc H19'50' 98.2'501' Schieft (separticle difference), foliated to schiotose talc H19'50' 98.2'501' Schieft (separticle difference), foliated to schiotose talc h19'50' 98.2'501' Schieft (separticle difference), foliated to schieft (separticle difference), foliated to schieft (separticle difference), foliated to schieft (separticle difference), foliated (separence), foliated (separei), foliated (separei), foliated		core takes on a somewhat nottled griedium - agained		
dark grey Raterial. 196.2-511' TALC SCHIST Grey (light to dark), foliated to schiotoge talc 499-5014' with soft (scratched by frger rail); cortaining 2bout 5014-505' 20% grant & carbonate veinlete, generally parablel to 505-5065 foliation plan to the locally cross-cuttures; To cal zones 5065.511' with up to 50% quarte (translucent to beight crey, sugary) Ecarbonate veinlete, up to ~2" undelso from 499' to 501.4" including a ~1" inde dossible while porphyry dike at 501,t' and from 505' to 506.5 with a ~3" unde quarte vein at ~ 506.1', no culptider creen in these quarte including action for the solid of the solid		appearance with variable core anales instead		
Grey (light to da:k), foliated to schiotoge tale 499'5014' which soft (scratched by frgerrail); cortaining ibout 5014'505' 20% quarts to carbonate whinlets, generally parattel to 505'5065' foliation planes that locally cross-cutting; local zones 5065'5065' unth up to 50'l. quarts (translucent to stickt grey sugary) Econbonate veinlists, up to N2" wide 500 from 499' to 501.4" including a "1" inde possible white porphyse dike at 501,t, and from 505' to 506.5' with a n3" vide quarts vein at - 506.1', ro sulplides seen in these quarts is and		of wispy, very schiptose (at ~ 90° to core airis) tan to		
Grey (light to da:k), foliated to schiotoge tale 499'5014' which soft (scratched by frgerrail); cortaining ibout 5014'505' 20% quarts to carbonate whinlets, generally parattel to 505'5065' foliation planes that locally cross-cutting; local zones 5065'5065' unth up to 50'l. quarts (translucent to stickt grey sugary) Econbonate veinlists, up to N2" wide 500 from 499' to 501.4" including a "1" inde possible white porphyse dike at 501,t, and from 505' to 506.5' with a n3" vide quarts vein at - 506.1', ro sulplides seen in these quarts is and		dark ney material.		
Grey (light to da:k), foliated to schiotoge tale 499'5014' which soft (scratched by frgerrail); cortaining ibout 5014'505' 20% quarts to carbonate whinlets, generally parattel to 505'5065' foliation planes that locally cross-cutting; local zones 5065'5065' unth up to 50'l. quarts (translucent to stickt grey sugary) Econbonate veinlists, up to N2" wide 500 from 499' to 501.4" including a "1" inde possible white porphyse dike at 501,t, and from 505' to 506.5' with a n3" vide quarts vein at - 506.1', ro sulplides seen in these quarts is and				
Grey (light to da: k), foliated to schiotoge tale 499'5014' wehist sift (scratched by firger rail): cortaining ibout 5014'505' 20% quarts t'carbonate veinlets, generally parattel to 505'5065' foliation plan to the locally cross-cutting; lo cal zones 5065'511' with up to 50'le quarts (translucent to stickt grey sugary) Teanbonate veinlits, up to N2" wide 500 from 499' to 501.4" including a "1" nide dossible white porphyse dike at 501,t, and from 505' to 506.5' with a n3" vide quarts vein at - 506.1', ro sulplides seen in these quarts is and	196.2-511	TALC SCHIST	496.2-4991	50
20% quarts & carbonate skinlet, generally parattel to 505-506.5 foliation plan to the locally cross-cutting, local zones 506.5.511' with up to 50% quarts (translucent to theht grey sugary) Economate veinlets, up to ~2" wide 500 from 499' to 501.4" including a ~1" wide dossible white porphyny dike at 501.4, and from 505 to 506.5 with a ~3" wide quarts vein at - 506.1', no culplides seen in these quarts form		Grey (light to dark) soliated to schistore talc	499-501.41	50
foliation planco tut locally cross-cutting, local zones 5065.511' with up to 50". quarty (tranklucent to stickt crey, sugary) Economate veinlets, up to ~2" wide 500" from 499" to 501.4" including a ~1" wide possible while porphyse dike at 501, t, and from 505 to 506.5 with a ~3" wide quarty vein at - 506.1' ro culplices seen in these quarty sorres some minor folding seen.			5014-505'	50
foliation plan to tout locally cross-cutting; local zones 506.5.5.11' with up to 50'l. quarts (tranclucent to trick on sugary) Economate veinlate, up to ~2" wide 50° from 499' to 501.4" including a ~1" vide possible while porphyse dike at 501,t, and from 505 to 506.5 with a ~3" vide quarts vein at ~ 506.1', ro culplides seen in these quarts from the		20% quarte + carbonate veinlet, generally parattel to	505-506.5	57
L'Andrate veinests, up to ND" vide 500 from 499 to 501.4" including a "I" vide possible white porphyny dike at 501,1, and from 505 to 506.5 with a n3" vide quarts vein at ~ 506.1, no rulphides seen in these quarts Some minor folding seen.				50
Economate veinleto, up to ~2" uide 50° from 499' to 501. 4" including a ~1" vide possible white porphycy dike at 501. I, and from 505 to 506. 5 with a ~3" vide quart vein at - 506. 1, ro culplides seen in these quart proves		with up to 50% quart tranklusent to stickt crey sugary)		
including a "/" vide dossible white porphyse dike at 501, and from 505 to 506. 5 with a "3" vide quarts vein at - 506.1, ro culptides seen in these quarts from a some minor folding seen.		I carbonate veinleto up to No" wide 500 hom 499' to 501, 491		· .
some minor folding seen.	····	including a " l'ide dossible white boothings dike		
some minor folding seen.	·	at 501,1, and from 505' to 506, 5' with a "n3" lide quart		
some minor folding seen.		vein at - 506.1. no rulphiden seen in these quarter marke		
Lower contact to sharp at 70° to love anis parallel		some minor folding seen.		
to Achistossity of falc Achist unit.		Lower contact to sharp at 70° to core auis parallel		

. `(`.

PAGE 6 078

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	AYS
511-534'	QUARTZ FELDSPAR PORPHYRY DIKE			
	Light grey, cherty looking, appanitic matrix with	511-513.5	0.001	510
	milley white plagioclass crystals up to ~ "10" diame	513,5-518'		511
		518-521'		512
	domly oriented disseminated throughout what rare	521-524.5		5/3
		5245-527.5		514
	about 10-20% plagioclase pheno crupto in unit	527.5-531		515
		531-5341		516
	this veinlets consisting of "pyrite, "pyrtotte (as cristel			
	aggregates or this sheets covering fracture surface)			
	Aurely 3) chalcopyrite cryptal aggregates, 4) a hard, black			
	appendic material (possibly tournaline ?) (overall			
	suppliede angune estimated to be about 2% along verilet			
	and an discrete, disseminated crystels), and 5) soft that			
	green, sericite? coating fracture surfaces			
	and corrary sharp at 10 to core all's porteut al	ļ		
	irregular; this carbonate winlets in porphysis and			
	abrighty at contact; contact is parallel to foliation /schiotos			
<u> </u>	Sity & next unit.			
4-5.39.2	TALC SCHIST	67 629 -		<u> </u>
	Similar to 496.2' to 511.0'; Foliation generally ~85-90	534'-539.2		51
	to core aris	<b>{}</b>		
	hower contact starp but slightly ground (because			
	of difference in hardress between the units, at ~ 90 to	<b> </b>		
	core asis parallel to schiptossity foligtion of two			
	units.	╉╂		<u> </u>
		<u>†</u> †		
9,2'-542,5	INTERMEDIATE DIKE ?	<u> </u>		
	Grey to tan, hard line - grained unit, generally	539.2-542.5		518
	masside to slith The folioted near mar sing comment.			
	bleached/silicified and cut by hand and and	<u> </u>		
	translucent to play quart weinlets & patches. Jordy	1 1		
	tan coloured zorca look cherte + could possibly be	1 1		
	porphyny?; Benyhand, not scritched by Knife	t		

.

٠

.

.

DIAMOND DRILL LOG. PROPERTY: HUNTER HINEHOLE NUMBER: 4-10 FOOTAGE DESCRIPTION OF CORE · SAMPLE ASS

FOOTAGE	DESCRIPTION OF CORE	NUMBER	ASSAYS
539.2-5425 INTERME	DIATE DIKE (CON'T)		
l No s	ulphiden seen		
lowe	tion / schiotossity of both units	let	
to selia	tion / schiptostity of both units		
12.5-543.1 TALC SC	HIST		
	lan to 496.2 - 5/1.0		
Low	in contact masked by quarty = carbonate	542.5-544.5	519
venlito			
43,1-5608 METASI	DIMENTS		
Grey	1- Khaki, MEX greymacke and FX-aplanitic	e l	
ante or	en-place argitute beda: cliquing and		
bedding	are parablel at N90° to core also		
Eco,	x upper contact to 544,5 unit contains		
~ 40% ca	rborate verleto, parallel to foliation: the	ع	
Carbonak	e veinlets abruptly decrease at 544.5'; about	-	
5 lo cart	mate veinlets from them on wards.		
	ally unit is bleached to pale grey colour	<u> </u>	
hut cou	vert contact interfingered for about 1"		
1 both	ears to be parallel to achiettesite / foliation		
	and the second ages it		
08-596 TALC S	SCHIST		
Ver	y soft alterrating band of silvery		
white de	Id dark grey- black tale; core preaks		
up into	dista with rounded edden		
- FX	to MX eacity scratched by Gagenail.		
	to 496.2 to 5/1/00 but hove to know		
Sch	istossity is about 80° to 90° to core apro.	<u>.</u>	
it is def	orned ( 600, N 5881 to ~ 5951		
- Croks	S willing black tale ver lety are seend		
tron 59:	5' to tower contact at ~ 85' to core and rer cortact presibly gradational or inter		
Lou	ver corlact presibly gradational or inter	-	
progenea	for ~ 211 1 OT		
			FAP

FAP - 8451

PAGE 2 08

~~ ~ ~ ~

PAGE 3 0 8 DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NUMBER: 4-10 SAMPLE NUMBER FOOTAGE DESCRIPTION OF CORE . ASSAYS 596-602' METASEDIMEN 07 (10 1-055. 0 602' EOH

PAP - 8452

.

•

, 19 Varman	SUMMARY LOG	PAGE	1.72
μ.	DIAMOND DRILL LOG @ 150', -55.5       @ 600'-56.5       GRID REFERENCE /05         ENGTH = 632 feet       @ 300' - 58.5       @ 600' - 56.5       TOWNSHIPWH         66 samples       @ 500' - 56.5       @ 400' - 60°       AZIMUTH 285	INTER -11 75,	MINE (CEOLOG
DI	66 Samples @500'-56.5 RILLING COMPANY MORRISSETTE FOREMAN R. LAFON-DIP TESTS: ORE SIZE AQ CORE STORED AT: SITE TAINE LOGGED BY R. BALD D.		
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0'-4'	CASING		
	TALC SCHIST (SOAP STONE) QV Zone: 257.4' to 257.7'; 261.9' to 262.5'		
262.5-286.9'	CHLORITE SCHIST (MAFIC METAVOLCANIC FLOW AND/OR LAPILI TUFF? OR MAFIC DIKE?)		
2869-292	TALC SCHIST (SOAPSTONE)		
292'-295.4'	CHLORITE SCHIST (?)		
<b>295</b> :4'~355'	TALC SCHIST (SOAPSTONE) QEPorphyry dike: 297.8 to 298.3 QV Zones: 349.1' to 350.8'; 351' to 355.3'		
<b>~ 356-358.9</b> ′	CHLORITE SCHIST (MAFIC DIKE OR METAVOLCANIC FLOW?)		
3589-359.61	TALC SCHIST		
3596'-385,2	CHLORITE SCHIST QVZones: 367.8' to 369.6', po ; 382.4' to 385.2' Breccia Zones: 373.1' to 375.3'; 375.8' to 376.7'		
3852-481,2	ALTERATION ZONE Breccia Zones: 430.6' to 431.4' ON Zones: 45001 + 4510': 45121 + 4518': 4521' + 4527'		
	QV Zones: 450.0' to 451.0'; 451.2' to 451.8'; 452.1' to 452.7; 453' to 453.9'; 455, 5' to 455.8; 479.9' to 480.6'		

PAGE 2-72 DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-11 FOOTAGE SAMPLE DESCRIPTION OF CORE . ASSAYS NUMBER 481.2-4961 MAFIC METAVOLCANIC FLOW (?) (CHLORITE SCHIST 496.1-510.8 ALTERATION ZONE (SERICITE -QUARTZ- CARBONATE-CHLORITE SCHIST) Breccia Zone: 509.7' to 510.1' 510.8-511.7 QUARTZ FELDSPAR PORPHYRY DIKE? SII7-5377 TALC SCHIST Q-C-V Zones: 516.5' to 518.2'; 519.2' to 521.3; 530.4' to 531.9' 537.7-540,0 QUARTZ FELDSPAR PORPHYRY DIKE 540.0-543.7 TALC SCHIST 543.7-5533 INTERMEDIATE DIKE? Silicified Zones; 543.8' to 545.5'; 549.4' to 550.7'; 550.9' to 553.3' 553.3-558.8 TALC SCHIST 558.8-5883 METASEDIMENTS (GREYWACKE AND MINOR ARGILLITE 588.3-616.0 TALC SCHIST (SOAPSTONE) 616.0-632.0 METASEDIMENTS (ARGILLITE AND MINOR GREYWACKE) 632.0' EOH

	PROPERTY HUI HOLE NUMBER 4- DIAMOND DRILL LOG @ 100' - 55.5° @ 500' - 56.5° GRID REFERENCE 200' - 55.5° @ 600' - 56.5° TOWNSHIP @ 300' - 58.5° 66 Samples @ 400' - 60.0° AZIMUTH	NTER M 11 Cl	AIM
	RILLING COMPANY MORRISSETTE FOREMANR. LafontainDIP TESTS:	TE Mar	ch 11/88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0'-4'	CASING		
4' - 262,5'	TALC SCHIST (SOAPSTONE) Black to Silvery Any very Soft (scratched by firger rail) faliated to schietobe (direction variable from 0° to 90° We core axis); unit mainly consists (flaky variety); contact- wariety and silvery-greenish flaky variety); contact- ning less than 5% milby white carbonate bein (etc, commonly parallel to foligation / Schiefossity plane; unit appears to be deformed with aber hant lolding seen; me cross cutting black fale veinlets seen undil ~ 55 (naue): trace local MCX pyrite crystals up to 14" diameter, associeted with carbonate vin - lits; 1/2 foot grind at 103 fag From ~ 144' to ~176'; Reck sections where core breaks up in to disks ~ 1/2" thick (since directions)		
	up in to disks ~ 12" thick (second ity drillers) 1'gand at 154 / tag 3' Wash at 163' tag 6 inch wash at 165' tag From ~180' wit contains abundant black, cross within tale vin lets. From 257.4' to 257.7': wart win gone containing abouts 75' gry to nilky white quart with wispy tale slips butwen quart, deir lets; bro bulghides seen Lower: contact sharp but & gaked by quart reiring infale Schist from 261.9' to I ower contact (smilar to 257.4' - 257.7').	257-258	520

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-11 

FOOTAGE	DESCRIPTION OF CORE OR MAFIC DIKE?	SAMPLE NUMBER	ASSAYS
<u> K2.5-286.9'</u>	CHLORITE SCHIST (MAFIC METRIOLCANIC FLOW AND/OR LAPILLI TUFF?		
	Dark neen to dark greenend are with pateling of		
	veinlets of white to light grey; moderate by soft (scrat.		
	ched by knife but not by fingernail) variable texture		
	from "fine-grained, massive with about 10% light		
	alternating rafic and Schie barde (firch larrie aled		
	locally bocally folded locally (mecinely back 245)		
	cupitale, disservinated throughout and randomly		
	ordented; also locally lespicially near 269') unit has		·
	tragmental appendance with delicate winder		
	a light grey FX acate " and he had in the		
	also some listic new white finder to or possible breccia zone ?; locally unit is possibly silicified		
	preccia zone?; locally unit is possibly silicified		
	From 6 10.6 To 212: tale - Sand in core Dox, no core possible Scam?		
	Lower corloct sharp, somewhat irregular but		
·	about 00- 70 to come allos chilorite schiet plached		
	to light grey colour within linch of contact		
2/ 9/ 292'	TALC SCHIST (SOAPSTONE)		
DUITZIZ	Similar + 100 + 012 51 - + Fail Line H		
	Similar to 180' to 262.5': about 50% light grey coloured		
	fragments - tale + carbonate + quarts verilets and patches Lower contact sharp at 30" to core agis, pahallel to		
	foliation of next unit but appears to cross cut		
· · · · · · · · · · · ·	blight follotion & tale schiet		
		· · · · · · · · · · · · · · · · · · ·	
2'-295,4'	CHLORITE SCHIST (?)		
	Similar to 262.5 to 286.9 but no emphibole		
	cryptalo seen i containing a ~ 1/2" wide hand hgo to		
	core and of fragmental locking material generally		
	inthe sharp contact: tul bed? or breccia?)		
<u> </u>	Lower contact sharp but irregular		
i	· · · · · · · · · · · · · · · · · · ·		1

.

\$

PAGE 2 0 7 10

. DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-11 Carlo Carlos Carlos

.

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
295:4-~356	TALC SCHIST (SOAPSTONE)		
	Similar to 286.9' to 292'; local black soft cross-		
	cutting tale veinlets,	297.8-298,3	521
	De Thocal zones of light grup holisted silicified		
	charty-looking withial semally cortaining up to		
	D'6 FMX pyate as disservinated crustales these		
	cherty bando and ganallely to rechtotossity (varia-		
	ble directions) and are test than I wide put		
	maybe wider; at 318.5'. 320.2' to 320.5'; 322.3' to		
	322.4" at 332.5" locally take on a pink - fan tinge	3/8-320.5	522
	From 320.5 to 322' possible grey and milky white	320.5-322	523
	quart win? or silicified madic dike? contains	322-322.91	524
	toursaline and grein chlorite as in filling along		
	fractures in quarts and about 3-5% FMX down inte-		
<b></b>	ted pyrite in patches; also local chlerite - rich		
<b> </b>	schist area harrout (< 1/2" uide) within with and		
	from 15 ser contact to 322,3' (Start & "charty" zone)		
	6 b"grind at 350' tag		
	@ From 297.8' to 298.3': tan- cream coloured foliated		
	quart-fildspar por physy dike, contactor sharp to		
	prectiated at about 56-70 40 cone axis, locally integrate		
· · · · · · · · · · · · · · · · · · ·	trace FX pyrite an disserving a ted competaled; contacts		
	roughly parallel to foliation of tale schist		
		6"grinds	
	From 349.1' to 350.8' (in cluding 6" grind?) and 351' to 355.3'		525
	yones containing ~ 50% to 70% Carbonate = quarty veinlite		526
		355,3-360	527
	appearance), with local breccia or porphysis sores		
	(dake brown with white to tan fragnich to or phero-	[	
	angete?); no sulphided seen.		
}			
	Lower contact resked by quarty meining,		
	corrace could be uphole & 6 in des or so,		·
	/		
		<u>I</u> [	PAP - 845

PAGE 3 0/ 10

SAMPLE NUMBER FOOTAGE DESCRIPTION OF CORE ASSAYS 356'-3589 (MAFIC DIKE OR CHLORITE SCH IST METAUOL 10 FLOW ? 290 11 79 lookin an menta no Veni 358.9-259.6 SCHIST TAL C 801 262 5 or acra Cer " ber na ta Sin. or ver Lor Lan Car worker. tac and da. tima 359.6-385.2 CH 1R TE SCU 15 Qua 365 man 528 +0 21 322 25-367.8 529 anin -319. 530 367. 3696-373 531 80  $\sim$ 70 40 32 ~ 8 mecain 532 375-3753-378 533 534 -387. 305 535 536 -3% 395 537 145106 n. 538 395-400 539 ~380 +0-382 400-405 non MXU 54 405-14 ю ai ad ati PAP - 8452

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-11

PAGE 4 8 10

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-11 

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS	;
385,2-481,2	ALTERATION ZONE			
	Dark grey to light grey to tan- Khaki chlorite ±	•		
	sericite I quarte I carbonate schiot: generally schio			
	tossity is about 70° to 90° to core and and very			
	little folding seen (only small scale Kink folds)			
	Ideal pale seen when conviting & possible			
	apple green fuct site in sericite schlot.			
	About 50% to 80% quart I carbonate veinlet	410-415		41
		415-420'	5	4:
	schiotossite planes) or cross - cutting wider veinlets	420-425	5	4
	(up to ~ / ikeh)	425-430	5	4
	Local patches of line dusting of syrite	430'-431.4	. 54	45
	Local Cross arthin black soft stall Deinleto	431.4'-435	5	'H
	making drag folds in faliation.	435-440'	54	47
		440'-445'	5	48
	similar to 373.1 to 375.3 etc. no sulphides seen.	445-450	51	49
	Tan-light green Khaki colorin from about 448 to 471			
`	Local breccia zones with tan-yellow angular looking			
	fragments in a quarty matrix (e.g. ~449.5')			
	Quarts vin nones consisting of grey sugary quarts			
	veiglets and lended between totally wispy sericitic			
	host rock parallel to schiotossite (generally at about			
	80° to 90° to core axis); locally these and their		· · · ·	
	some are cut by wide grant veins, also usually		l	
	parallel to schiptossite; quart win somes as follows:			
		450'-451'		50
		451-451.8		5
		451.8-452.7		5
	with ~ 5% wispy host rock in clusions and some	4527-4539		5
		4539-455.8		51
	4527'; 453' to 453.9', including a quart trein to 453.2'	4558-458	5	55
	and presible breecia near 453.41: 458.5' to 455.8', quart		5	50
	vein sinular, to 451.5 to 451.8.	461'-466'	5	5
	Local dank grey to dank greenish grey possibly	466-471	5	5
	chloritic sections ! 458' to 458.8' 459.4' to 460.2'	471'-476'	5.	5
l	From ~ 471', unit becomes progressively darker	476'-479.9'	5	60

PAGE 5 1 10

## DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-11

۹.		l l
GF	6	ol
GL	- <b>-</b>	
i .	11	

10

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
385.2-481.7	ALTERATION ZONE (CON'T)		
	with dank green sections from 472.4' to 472,6'.		
	Quarts very jone from 479.9' to 480.6' in the	479.9-481	561
,	milley while to translucent quart win from		
	480.4% to 480.6; trace MX presite in hast brock.		
	Kink microfolder near 478		
	hower contact gradational and difficult to		
	See because & quart veining but indicated mainly		
	Dis a change in colour of the hast rock schist. (texture		
· · · · · · · · · · · · · · · · · · ·	destructure tare miles of Similar).	<b>  </b>	
81.2-496.1	MAFIC METAVOLCANIC FLOW (?) (CHLORITE SCHIST)	11011 11011	
1. <u>C</u> 17011		481- 486	56
		486'-491'	56
	foliotid (at ~ 80° to 10° to cote land) chloritic	491-496.1	56
	cross - cutting chlorite filled beinlet (Similar	╏╸╴╴╴┟╸	
	to cross cutting tale vialeto in UM marker at	}	
	about 75-80° to come axis		
	From about 489.5' or wand are zones containing	ll-	
	Ex disserinated black crystals & nagratite	<u> </u>	
	Lower contact appears to be sharp mainly		
	recognized by a colour, change Fall it in Icatad		
	at 90° to cond ayis		
6.1-5/0.8	ALTERATION ZONE (SERICITE-QUARTZ-CARBONATE-CHLORITE SCHIST) Similar to 385.2'-481.2	496.1-501	56
	Similar to 385, 2'-481.2'		560
	Similar to 385, 2'-481.2' Local zones containing FX disservinated purite (locally along stringers parallel to foliation planes)	506-510.8	56
	and Jocal possible tournaling as FX disservicated		
	and Arcal Opossi on town all a post of the distance		
	black crystake (rare) Local breccia zonici sericite schiet : p. a. from		
	509.7' to 510.1' within chlorise Schiet, precia serie is		
·	deformed + lawlited but some fragments look like glace		
	in prince to look like glace	<u>I</u>	P4P.

DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: U-1

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSAYS
196.1450.8	ALTERATION ZONE (CONT)		
	shards, therefore it may be a hypoloclastite?		
	Lower contact starp parallel to schistossity of		•
<u></u>	attention zone at 12 85 to core avice 1		
10.8-511.7	QUARTZ-FELDSPAR PORPHYRY DIKE?		
<u></u>		510.8-511.7	568
	FX possible QFP with quarts and powerble stuf-		
	ched recuptallized milky white felderan cuptore:		
	locally contains <1% blobs of chalcopy ite & pyrite		
	disservinated the roughant and local pyrite 2000	-	
	challe with landonly oriented milky white to		
	tranclucent quart dir lete up to 1/2" wide text	-	
	generally threadlite massive to foliated ~90' to core		
,	apis (statching of "phenocrypts")		
	Lower contact sharp at ~ 80° to 85° to core		
	apis, parallel to foliation schiotossity of rext unit		
5117/-127-	The second		
511.1-35/7	TALC SCHIST	511.7-516.2	569
	Light grey with khaki tinge progressively be coming dark	SAMPLE ->	
······································	grey schistore with quart to carbonate veinlets and	5/6.5-578.2	570
	the state of the s	<u>518.2-521.3</u>	571
	in apour or to core ages but local santling a monor	5213-526.5	57:
	It is and has cross cutting tale - serie ven-	5265-530.41	57:
		530.4-5319	57
		5319-5377	575
	mount of quark & carbonate perning which is nost		
	519.2' to 521.3' and from 530.4' to 531.9' with there and	·····	
·			
	Carbonate Jones containing about 50% reciping.		
	Life the second second for have to the		
	ayis (schiptossity & talchchist bends to 50° from ~85° right at contact		
<b></b>	my in the stand of the the the the to so them to so right at control		

و م ال			Co'en
	DIAMOND DRILL LOG. PROPERTY: HUNTER HINEHOLE NI	PAG JMBER: 0	E B of 10
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
537.7-540.0	QUARTZ FELDSPAR FORPHYRY DIKE	537.7-540	576
	Pale pink siliceous material consisting of about 10%		
<u> </u>	milky white small (< 110" diameter) tabular to equant	ļļ	
<u> </u>	Vialian Diskish matrix: alar here a cherty-	╂────┼	
· · · ·	Ellio" diameter the porphyse is cut by hard out in	<u> </u>	
	ted, thread like, black peintets coss, bly containing black		
	hand tournaline (anorphous, to needle crystals seen)!		
	locally pyrite occurs as a thin coating on the	<b>↓</b>	
	Hourmaline verteto (or fractiones?) about 1% black tour-	<u> </u>	
	FIRAL DELANS,	<u> </u>	
	Lower contact is irregular but roughly 90° to		
	core apic.		
Lile of CUDA	TOLO SALLOT	ļļ.	
540.0'-543.7	TALC SCHIST slightly Similar to 531.91 to 537.7 : possible silicified	540'-5437'	577
	because it is only slightly scratched by linger i	540-543.7	
	Fjring whiteher og finger hut.	<u> </u>	
	Lower contact sharp at 60 ° to cone allo, paralle	1	
	to schistossity of tale schist 690° up to ~ 6'11 from		
	contact where it bends to contact)		
543.7'-553	INTERMEDIATE DIKE ?	Con' Cra	570
	Grey to dark grey to locally light grey ( Silici fied	545.1-545.5	579
	cores), fine-grained, to mottled possible dike? I inter	5494-553.3	580
	Fridiate composition; about 1" of dark green - black Schlos		
	rite at upper contact and about 1/4" at lower contact.	<b> </b>	
	Local silicified zones with bleached host rock	<u> </u>	
,	will white carborate winlets in a not pattern	<u> </u>	
	(randomly oriented, but seem to be connected); from	<u> </u>	
	~ 543. 8' to ~ 545, 5' from 549, 4' to 550.7 with ~ 12" of massi-		
	we chlow to similar to upper a lower cortacto: from		
	550.9 to lower contact including at nicky white Quarts	<b> </b>	
	Wein (~ 2" true uidth) from \$50.9' to 551' Lower contact irregular marked by quart + Carte or a tricker yeing About 1% FX dissection and pyrite locally, especially in selicified some	<u> </u>	PAP - 8452
	About 110 +X acoscolin ated pyrite locally, especially in schicified some	a l	*

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-11

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
<u>53.3'-5\$88</u>	TALC SCHIST Similar to 540.0' to 543.7' (Similar hardness) Cross cutting talc veinlets at about 556' generally at about 50° to core axis cross cutting schistossity	553.3'-558.8	581
	Scherally at 80° to core axis).		
58,8- <b>588.3</b>	METASEDIMENTS	558,8-562	587
	Greywacke, FX, grey with local minor black FX angillite bede; grey whicke locally contains up to 30% light grey carbonate I quart veinleto and lenses paralle		
	to locally cross cutting foliation bedding house pywhotite and for pyrite blebs disservi- mated or from 569.1' to 569.5' about 90% fragments? Opyrite with pyrshotite between; rarely chalcopy-	569.1'-569.5	58:
	From ~ 587' to lower contact, unit contains cross cutting veinleto of chlorites forms drag folds hower contact is cindistinct. Can be beated		
	within ~ 1" by thandness of units although metase- diments probably coxtain some tale within ~ 2-3" of contact (scratched by fingernail)		
18.3-616.0		· · · · · · · · · · · · · · · · · · ·	· ·
	2) MX, grey talcose bants 3) light greenish - silvery talc bands, MX, possibly mixed with greenish + carbona-		
	te; core breaks up into tests in this unit. () 255° to core apported to cal cross cutting black tale wirlets; schistossity is generally at about 90° to core appis		
	hower contact sharp at 90° to core axis,		

ı.

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-11

PAGE 10 \$ 10

FOOTAGE		SAMPLE NUMBER	ASSAYS	;
616.0-632.0	METASEDIMENTS Similar to 558.8-588.3 except more argillite (prhy about 5% greywacke as very named			
	bed less than I" wide From graded bidding, tops appear to be			
	downhole from upper cortact to ~ 623' then from ~ 626' to 627' tops appear to face uphole			
	then from ~627' to ~ 629' the writ is folded			
	that tops are again facing downhold	28.7'-630,1'	50	216
		<u>28.7-6-0.1</u> 30.1-631.3	58 58	35
	stain ; trace MX plyrite seen along a contact.			
	at ~ 629.5' Sight graphitic your occur (e.g.			
	6" grind at 600' tag			
632.0	EOH			
		U		
			<u></u> Р Д Р	

DIAMO LENGTH = 2 SAMPL	DRILLING COMPANY MORRISSETTE FOREMAN R. LAFONDIP TESTS: NONE CORE SIZE AQ CORE STORED AT: SITE TAINE LOGGED BY R. BALD I		(GEO) GR CLAIM /009 PANGLE -75	
FOOTAGE	DESCRIPTION OF CORE	. SAMPLE	ASSAYS	
O'4' CASING		NUMBER		
4-70' TALC SC		· · · · · · · · · · · · · · · · · · ·		
Porp	HIST (SOAPSTONE) Myry? or Breccia Zone; 37' to 38.5'			
. //	EDIATE DIKE?			
73.5' EOH				
}				

2 D	PROPERTY HU HOLE NUMBER U- GRID REFERENCE GRID REFERENCE TOWNSHIP AZIMUTH AZIMUTH RILLING COMPANY/ORRISSETTE FOREMANR. Lafontain DIP TESTS: NONE ORE SIZE AQ CORE STORED AT: SITE LOGGED BY R. BALD DI	NTER -12 C DIP AN	LAIM NGLE -75 °
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
	SEE NEXT PAGE FOR BEGINNING		
	OF LOG.		
		c	

PAGE 2 of 2 DIAMOND DRILL LOG. PROPERTY: HUN'TER HINE HOLE NUMBER: 4-12

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
5-4	CASING		
4-70'	TALC SCHIST (SOAPSTONE)		
	Very soft dark grey- black with white - light green	†	
	banda (silvery tale # quart = carbonate) = schistossite		
	is very contorted deformed.	1	
	Post core scoulary bad tround: 2 grind at 7 to	1	
	6' wash at 13' tag: 2' grind at 65' tag!	1	
	Local cross outling black tale veinlet	<u> </u>	
	Possible blownish porphyny? or breecia some	╂─────╂╴	
	from 37' to 38.5' MX, massive; scratched by	╂────╂─	
	Kammer but no by fingernail; local fragments?	<u> </u>	
	sen; lower contact ground, upper contact masked	<u> </u>	
	bu quart- tale uph, " the could marked	<u> </u>	
	becal plice + gray-tam charter losting bando para	<u></u>	
	let to schlotossity containing ~ 5% (locally) FMX pilite	<b>├</b> ───┤	
	(from ~ 65 to ~ 67', parallel to live Diane)	<u> </u>	
	Quarter + carbonate vein at 68.5 with CX printe		
	cute ven <1" nide.	┟────╂╸	·····-
	Prom 68.5 to lower contact, core is hander	┨────┨-	
	(scratched by rammer not firger mail) & naterial	<u> </u>	
	way be Children the moteral SI to leads (	łł-	
		65-701	580
	hower contact indistinct	6 <u>5 - 70</u> -	
		<u> </u>	
<u>s'- 73,5</u>	INTERMEDIATE DIGE ?		
	6" grind at 73' tag	<u> </u>	····
	Dank grey to locally light grey (bleached? silicified)		
	EX, hard material pointan to internediate dikes	70-73,5	587
	in previous 4-8 to 4-11 holes 5	10-13.5	50/
	- Chlorite vein leto between iliached hast rock		
	patches, about 2% FX to CX disseminated partic	<u> </u>	
		<u> </u>	<u> </u>
3.5	EOH Hole lost noder sucking	┨─────┨-	
	and the second s	1 J	

	SUMMARY LOG		1-42
· .	PROPERTY HI HOLE NUMBER UDIAMOND DRILL LOG $@ 100' - 54°$ HOLE NUMBER U GRID REFERENCE /05ENGTH = 471 FEET $@ 200' - 54.5°$ GRID REFERENCE /05 TOWNSHIPWH $@ 300' - 54°$ IO5 SAMPLES $@ 400' - 55.5°$ AZIMUTH 105	-13 75, ITNEY C	(GEOLOS) FRID) LAIM /009
	RILLING COMPANY MORRISSETTE FOREMAN R. LAFON DIP TESTS: DRE SIZE AQ CORE STORED AT: SITE TAINE LOGGED BY R. BALD D	ATE MAR	CH 21/88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0'-6'	CASING		
6'-43,3	TALC SCHIST (SOAPSTONE)		
	INTERMEDIATE DIKE?		
45.6'- 49.8	TALC SCHIST (SOAPSTONE)		
49.8'-53,4'	INTERMEDIATE DIKE?		
	TALC SCHIST (SOAPSTONE)		
56.7'-64.1'	INTERMEDIATE DIKE ? Sulicified Zone: 61.5' to 62.1'		
64.1'- 104.5'	TALC SCHIST (SOAPSTONE) Feldspar Porphyry(?): 90,2'+0 90,8'; 93.2' to 94,7' QVZ: 100.7' to 100.9'		
104.5-386.6'	ALTERATION ZONE Breccia Zones: 110.7' to 113.2'; 114.9' to 115.2'; 117.5' to 117.6' 132.8' to 133.7': 139.9' to 141.7'; 169.6' to 170': 179.6' to 180.1': 187.7'		
	to 188.7': 198.2' to 199.2', cp: 211.1' to 212.3'; 286.0' to 286.2'; 293.2' to 293.3': 303.2' to 310.0'; 318.7' to 320.1'		
	275.8': 277.1' to 278.7': 290.3' to 290.9': 291.5' to 292.7': 304.7' to 305.5: 306.6' to 312.7': 313.5' to 314.7': 316.6' to 320.5': 323' to		
	328.1'; 330.3'+0 332.9'; 333.7' to 334.3'; 354.6' to 354.9'		PAP 8451

1.55

t

. ł

.1

PAGE 20 72 SIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-13

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASS	AYS
386.6-401.4	QV: 391.3' to 391.6'			
409.4'-410'	QUARTZ FELDSPAR PORPHYRY DIKE			
410'-416.4'	CARBONATE-TALC-QUARTZ SCHIST (ULTRAMAFIC?) QVZone; 410' to 411.2';			
	METASEDIMENTS (?) (ARGILLITE, FINELY BANDED)			
417.6-447.2	TALC SCHIST			
447.2- 448.z	INTERMEDIATE DIKE			
448.2 [/] -455,2	TALC SCHIST			
455.5-471	METASEDIMENTS (GREYWACKE AND MINOR ARGILLITE)		<u></u>	
471'	EOH			
			·····	
	•			······································
·				PAP - 845

J

LE	DIAMOND DRILL LOG @ 100'-54. BIAMOND DRILL LOG @ 100'-54. GRID REFERENCE TOWNSHIP DIAMOND DRILL COG @ 100'-54. GRID REFERENCE TOWNSHIP DIAMOND DRILL COG @ 100'-54. GRID REFERENCE TOWNSHIP	NTER - 13	
JO DR	LLING COMPANY MORRISSETTE FOREMAN R. Lafontai, DIP TESTS: RE SIZE AQ CORE STORED AT: SITE LOGGED BY R. Bald DI	ATE Mar	$\frac{1}{2} - \frac{1}{8}$
POUTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
	SEENEXT PAGE FOR BEGINNING OF 106		
	J		
			•

\$

i

DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: 4-13

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0'-6'	CASING		
( <u> </u>			
**************************************	Dark grey to black with white blobs and parallel verified		
	tose, variable direction (from god to to core aris)		
	reinlets and pods and also some black Fx massive		
	tale banda/ weights parallel to schistossity. your		
	cross cutting black falc veinlets. 15 4' Wash at 11' tag		
	1.6' wash at 20' tag		
	Lower contact sharp but somewhat marked by		
	quarts verying at 45° to core agis parallel to the		
	~3" I contact		
3.3-45.6	INTERMEDIATE DIKE?		
	Joliated, harder than take schipt (alight, scritted)		
	toligted, harder than take schiet (slightly scratched		
	Silicified zores (not scratched by Elile, Silicifie		
	sonly commissily carry up to ~2%. Extendindening a ted		
	Syrite: about 15.1 2010 Silicified material in this		
	Lower contact masked by quantz veining and		
	take veining (?)		
c1'_490'	TALC SCHIST (SOAPSTONE)		
210 - 17:0		· · · · · · · · · · · · · · · · · · ·	
	cherty looping bands generally parallel to slightly manue		
	(in this case, some what deformed)		
	to schiptossity & tale schipt & to core aris prallel		
	rest wit which is silicified within 1/2" I contact		
	the stand of the stand of the stand		

PAP - 8452

DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: 4-13

PAGE 30

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
49.8-53,4'	INTERMEDIATE DIKE?		
	Similar to 43.3'- 45.6' foliation variable from		
	N 75 to ~40° to core ail		
	Lower contact sharp at 45° to core apo.		
	interrediate dike silicified within 2" of contact.		
3.4-56.1	TALC SCHIST (SOAPSTONE)		
	Similar to 6'- 43.3'; with I" under charty - looking		
	band at upper contact, containing traced FX put.		
••••••••••••••••••••••••••••••••••••••	common fall veinlets cross cutting schiptossity		
	but randowly oriented? unit here is deformed		
	folded, some ninor faulting		
		<i></i>	
	Lower contact smewhat masked by >14"		
	dark green tale veinlet but next unit is thank		
	at 70' to come aria, silicified within ~1" of		
	Cortille U		
67-64.1	INTERMEDIATE DIKE ?		
	a possible grey - milley white ~ 1.5" wide quarte win?		
	about 32 My him many statified yones conlaining		
	62.1' Fill accommated pipite from 61.5' to	61.5-62,11	588
	Lower contact ~ 40° to come, asis menu da la an		
	within 1" f contact, parallel to schistopsite of dert		
	unit. I man is preserved of ment		
	/		
<u>f.1'-~104.5</u>	TALC SCHIST (SOAPSTONE)	· · · · ·	
	Similar to 6' - 43,3'; some folding at ~ 78':		
	local cherty losting by do with FX pyrite as disserving-		
	the implate on along schiptossite bedding places		<del> </del>
	Possible grey MX Policted feldsfor por printer with		
	from 90.2' to 90.8' and '93.2' to ~94.7' mindle the safe for the		
	from 90.2' to 90.8' and '93.2' to ~94.7' moderately Saft mot scretched by finger ail, and cortain only ~ 5'h Questo + Carboot	1	

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSAYS
4.1-~104.5'			•
	veinlets; also colour is lighter than dark grey-black		
	colores of tale schipt	·	
145-386.6	ALTERATION ZONE		
NU - 20014		·-	
		105.7-106.4	58
	laski a Ex ha d has lot i'd lot will 12	106.4'-110.7'	59
	disseminated pyrite and trace chalcopyrite: chester		
	looking bands have sharp contacto raiselle to falio-		
·	tion of host rock at about 80. to core airo.		
		1107-113.4	59
	to 117.6 and 132.8 to 133.7: these condict of yellow-cherty	113.4'-114.9'	59
	toking to white to light grey cherty-looking fragments	1149'-117.5'	59
	angellar to rounded randomly oriented to locally	117.5-120.1	59
	sughtly shetched at about 10 to 80° to core by	1201-124.0	59
	unit the nand (locally scratched by Frufe), silicified,	124.0'-127.1	59
	a light grey = imiles white cheste - lasting	127.1'-129.8	59
	exiented set D very Cot I that I'll ida I sandonly	29.8-12.8	59
	41/4" under and younger san down in the thready	32,8-133.7	59
	white to translucent of use the with with it is Call	1337-1360	60
	note cuptalo alora Vein marcino veino un to ~ "	139.9-141.7	60
		141.7 - 146.0	60
	2 light grey - brownish charte - looking quarte vein !!	146.0-151.0	60
	locally in these precia zondo, host rock is dark	151.0-156.0	60
	(chlorite) also tocally tragmento appear	156.0-157.3	60
	to be somed suith reaction soms: lo cally breaction	157.3-162.0	60
		1620-166.0	60
· · · · ·		1660-169.6	60
	117.6' to 119.2' and 119.6' to 119.8'	K9.6'-172.7	61
		·	
	1. 1/2 Day Carry C		
	129.8 jaloo local possibly siticified/bleached rore Jabo		

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
04.5-386.0	ALTERATION ZONE (CON'T)		
	From 119.8' to 120.1' 1 tam to light grey to milky white		
	quarte vein zone with about 10% bown hast york		
	Inclusions, O		
	Local silicified-bleached and carbonatized - bleached		
	sections, commonly massive to slightly foliated,		
	Also local chark grey to brown thank quarts?		
	veinlets randomly oriented locally appointed with		
M	préceia sones		
	From 139.9 to 141.7 : Breccia some similar to 10.7		
	to 113.2' etc.; also very narrow precisa sorred at 145'.		
	146.1', 155.5', 161', 162.5', 163,7'; 169.6' to 170' containing		
	FMX pyrite along foliation planes.		
	It pyrite in chlorite sich band near 142'		
	Local FX-MX disseminated pyrite from ~ 142' on-		
	words,		
	Near 146 + 147' are chlorite rich bands with		
	sharp contacts on downhale side and grada-		
· · · · · · · · · · · · · · · · · · ·	tional contacts on uphale side possible < 1/2" uide		
	tuff banda ?? or attention effect ??		
	Medun-grained green with unthe bossible very		
	small frequents? near 149.7' possible matic tuft?		
·			
	Bleached - tan none from 151.3' to 151.5' with ~1%		
	Ex disseminated pyrite.		
	Dark grey darrous (2 1/4") quarte veinlets at 135.1'		
	153, 155.1, 155.5 (near precia),	[]	
·····	Silicified zone from 157.0' to 157.3'	<b>!!</b>	
	Kink folding (miror) near 162	ļļ.	
	Silicified (white), preciated zone near 165.5,	ļ	
	with ~ 2% Mx pipite in between "fragmente"	ļ	
	From 172.7" to 179.8 ; chlorite with dark give	172.7-177.0	611
	with local precia zones	177.0-179.8	61
	Breccia amer : from 179.6 to 180.1' at 181.6' at 184.7, from	179.0-184.7	61
	187.7 to 188.7, at 192.10, at 195.4, from 198.2' to 199.2' (with	184.7-187.7	61"
	trace chalcopyrite? and strangly silicified prownish section from 199.2-1916	187.7 - 1887	6/

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-13

 $\mathbb{Z}_{\mathbb{Z}}^{2}$ 

· · · · · · · · · · · · · · · · · · ·	
PAGE 6 4	J

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSAYS
04.5-386.6	ALTERATION ZONE (CON'T)		
	Local ton, FX, cherty-looking some possibly silicified		<u>-</u>
	deached zones) containing up to ~3% FMX dissemina-	IAA 7' PI	616
	the Automation of the second s	191-193.1	6/6
	toral dark new grant sking to the high to al 1361	193.1-196'	618
	al 112. 7 al 113.1 at 1920	196'- 198.2	61
	From ~116 local apple green to Khaking 1200	198.2-199.61	62
	spots when host rock possible suchaite? I camible	199.6-203	62
	istim pericitic host voite): from here, (196) allos	203-2061	62
	Line to mainly SERICITE - OUARTZ- CARBONATE	206-211.1	62
		211.1-212.3	
·····	at ~206 to 45 to core avia (varia-	212.3-213.3	6-
	from ~ 00 to to to come aska)	213.3-2164	62
	service schot is folded (kink) tocally of 2028	26.4-219.3	62
	a forded bleb & pyrite parallel to folling of schiete		62
	sata) 0 0 0	223-226'	62
	, tocally a serie schust are very panour (2 1/4")	226-229'	6.
	aark brown hand vlinlets parallel me this of	229-231	6
· · · · ·	ACALSTUSSIN.		¥.
	Possible tournaline associated with bricht yellow		
	pragments in pricera cut by milky white quarter + Carbot		
	made wein from all. 1 to 2/2.3		
	Quarty + carborate win ~ 2" unde at 213,1 to		
	213.3' about 90 to core apis		
	Possible black hippons (per allel to schimits it)		
	1 toumaline at 214,4"		
	Finely laminated (possible tuff?) cherty - looking		
	when from 216.4' to 219.3' consisting of dark grey to tan		
	To light grey bands delicately land ated and locally		
	kink folded with a more massive, uniformely		
	tan coloured chesty-looking none from 217.3' I 218.1'		
		·····	
	iggregates,		
	aggregation ~ 216' onwards, schistossity is only slightly		
	variable, generally about 80° to 90° to core asis.		
	· · · · · · · · · · · · · · · · · · ·		

PAP - 8452

्र स्टब्स् सुद्ध		and the second	78/11
FOOTAGE	DIAMOND DRILL LOG. PROPERTY: HUNTER HINEHOLE N DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
-104.5-3864	ALTERATION ZONE (CONIT)		
	Local dank and smear within list + second - Fich-	231-236	632
	cite?) vich Sericite schiet. most of the and	Darl June	633
	anere speces apples linely langing ted with a trans	240.5-2441	634
	ting anorthand Ethaki coloured scription bands and cuthe	244'-248.3	635
	note lando some free sould from ~231 to ~240.5'	248.3-251	636
	from 242' to 244' from to 2483' to 254' and 2555' to 257'	251-254	637
	At ~257' to ~258' are local c. oss - cutting micro	254'-257'	638
	daulto (drag folds) similar to cross - cutting take	257-2604	637
	Veirlito in Sala Schint	ACS/ ACAT	
	From ~ 260.4' to ~ 266.5 : mainly massive MX	260.4-262.0	640
	unit containing about 20% black Ex dia 20 minut	220-245	641
	ted crystale possibly fourmaline?) very small	266.5-270	642
	equart, from 262.0' to +266.5' whit is with by a bant		64
	20- 30% drey to translucent grant rein late randowk	270-272	4 . 4
	and to grey to tranchectery thanks were toto, nandonly	272-275.3	64
	colour with black-blue spots	275.3-72.8	645
	Between 272' and 280' tack i 10 feet of cone. (not	275.8-277./	646
	B Lest	217.1 -2.18.7	647
		182-787	64
	Local zones containing parallel and for cross-	281-285	
	to 275.8 1: 277.7' to 278.7': 290.3' to 290.9': 291.5 to 292.7: tray public	205-270.5	650
	David har	210.3-012.7	65
	free to we have beered with the to yellow	7.016.7	65
	aleb from 293, 2' to 293, 3'	DAMPLE	
		297.3-300	65:3
		300 - 303.2	654
		303.Z-301.7	655
	, For the former	304.7-308	650
		308-310	657
	This will have the the method of the the method will	310-312.7	658
		B12.7-314.7	659
		314.7-318.7	660
	another ~ 3" If solid quarts - carborate	3187-320,1	661
•		B20.1-323	662
	1. Dul Dice Jan 11 Al Day El Antin and the Hold of Home of Die	823-325	663
	to 314.7; from 316.6' to 320.5' including a preceia zone from	B25-328/	664 PAP-8

PAGE 8 411 DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: U-13 FOOTAGE DESCRIPTION OF CORE · SAMPLE ASSAYS

-1045-386.6 ALTERATION ZONE (CON'T) 318.7 to 320.1 brown FX "matrix with khaki to white to yellow 328.1/33 hagments generally brown ish khaki colour; quarts veil 3303-33 Bode alob from 323' to 328.1 containing local pale 3329-33 green ("paotel green") quarts veine zone contains 7343-33 about 25'. quarts veino with local dark grees "mainleto 338.5-34	29         66           43         66           55         66           61         66           61         66           61         66           63         67           65         67
318.7 to 320.1' brown FX matrix with khaki to white to yellow 328.1-33 fragments generally brown ish khaki colour; quarts ven 3303-33 gove also from 323' to 328.1' containing local pale 3329-33 green ("pastel green") quarts veine zone contains 7343-33 about 25'. quarts veines with local dark greege "reinlets 339.5-34	29         66           43         66           55         66           61         66           61         66           61         66           63         67           65         67
hagments generally brown ish thati colour ; quarter ven 3303-33 300 also from 323' to 328.1' containing local pale 3329-33 Green ("pastel green") quarts verse stree contains of 343-33 about 25'. quarts verse with local dark green "" verse 105 ~ (14" unde at 324.42 325.5' and 328.7'; quarter Verse 2005 3404'-34 from 330,3' to 332.9'' (green 14" quarter verse at 331.4') and 341.3'343 from 333.7' to 334.3'; from 354.6' to 354.9'	29         66           43         66           55         66           61         66           61         66           61         66           63         67           65         67
And also from 323' to 328.1' containing local pale 5329-33 Green ("paoted green") quarts veine some contains 3343-33 about 25'. quarts veines with local dark grees?" veinlets 338,5-34 4" wide at 324.42 325.5' and 328.7': Quart Vein Zones 340,4'-34<br from 330,3' to 332.9" (grey 1/4" quarts vein at 331.4') and 341,3'343 from 333.7' to 334,3'; from 354.6' to 354.9'	<b>43</b> 66' <b>5</b> 66' <b>6</b> <b>6</b> <b>6</b> <b>6</b> <b>6</b> <b>6</b> <b>6</b> <b>6</b>
Green ("paoted Green") quarts weine stree contains 343-33 about 25% quarts weine with local dark grey?" weinlets 38:5-34 ~1/4" wide at 0324:40 325.5' and 328.7'; Quart Vein Zones 3404'-34 from 330,3' to 332.9" (grey 1/4" quarts wein at 331.4') and 341.3'345 from 333.7' to 334.3'; from 354.6' to 354.9'	<b>3.5 66</b> 9 <b>.3</b> 67 3.5 <b>67</b>
	04 66° 43 67 35 67
from 330, 3' to 332.9" ( grey 1/4" quark ven at 331.4') and 3413-343	4 <b>3</b> 670
from 330,3' to 332.9" ( grey 14" quark ven at 331.4') and 3413-343 from 333.7' to 334.3'; from 354.6' to 354.9'	
from 333.7' to 334.3'; from 354.6' to 354.9'	1 17
	4.1 67:
Cherty looking, very thin (< 1/2" wide) prownich - dark 344/-34	48 67:
provin black and bull coloured quarts weinlets with 348-35	50 674
associated brecciation along vein margins, running 350'-3:	55 67:
Almost slong core after (somewhat irregular) from 355-36 340.4' to 34K/3'; 343.5' to 344.1', and at 349.7': trace 360-36	.0' 670
340.4 to 34K/3'; 343.5' to 344.1', and at 349.7' : Utrace 360-31	5 67
- FX pyrite in host rock near veins 365-37	
Breccia at 347.3' and at 360.1' 370'-37	
Jan coloured, FX Cherty - looking unit from 367.1' to 367.3' 375-38	o' 680
contacts sharp at ~ 90° to core agin aut by threadlike 380'-38	1.1 68
grey quarts - carbonate randomly oriented veinlets;	
also makrower bands near 370.5°C	
Quarts vein at 369.7' to 369.8', milky white trans	
Kink folding near 375 Black to dark prover seins?) & hard material 2041's	
	and the second se
	86.4 683
ting zones from 384.1' to 384.8' (may prem uidth	
~2 inches).	
Foliation/schistossity is regular at ~ 90° to core axis	
Lower contact passibly occupied by FX	
ma EX fragmental - looking natrix. (breccia ?)	
from 386.3' to 386.6', both contacts are fairly	
thaspat ~ 90° to core and cut off stale servet	
in next writ, and cross cuts schistossite, Greet wit slightle	
, and the state of	PAP

DIAMOND DRILL LOG. PROPERTY: HUNTER MINE HOLE NUMBER: 4-13

	NUMBER	ASSAYS
CARBONATE - TALC-QUARTZ SCHIST (ULTRAMAFIC?)		
Light grey to light greenish grey to Khaki consisting	386.6-390	684
		68.5
and lensed, retighty parallel to each other +		
A The second sec		
	.	
pinte; unit is cross cut by randonly orien-		
ted milky white - translucent to light great guart		
		686
hower contact sharp at 30 to core ages, inter-		68-
fingered with next unit for ~ 12"		68
OUNPTZ EFIDEPAR PARQUYON		689
	4094-410	69(
inter and it and the property of an any	· · · · ·	· · ·
A A A A A A A A A A A A A A A A A A A		
At i all the the second of the second s	} <u>}</u>	
	} <u></u>	
Diskich foldapart + of any and to the off ran domy or and		
disseminated put to grand guard vinus; trace FX		····
Poure	·····	
Lower contact around pubably marked by		
Printale are pliqued harallobile presible and that		
at 65° to come all		
	·	
CARBONATE-TALC-QUARTZ SCHIST (ULTRAMAFIC 2)		
Similar to 386.6'- 409.4'	410-411-21	691
Quarte vein zone from upper contact to 411.2, mille	4/12 - 414	692
	····	
	and lensed, splight farallel to each other 4 schintosenty planed schintossity is variable from "90" to have y 0" to core and, locally falded, is carborate bando occur, between tale-kill host hore generally FX to MX containing local flebs Deal wilky white translucent to light operate gent to 391.6"); unit is pross cut by handonly orig- tell milley white translucent to light operate gent to 391.6"); unit is plt "slighty scratched by finger rail hower contact sharp at 50° to core axis, inter- fingered with next unit for ~ 10" QUARTZ FELDSPAR PORPHYRY ~15% milley white day first of the first of the string mystels in a cherty-lobking light free for a slight for and privatels in a cherty-lobking light free for a slight privatels in a cherty-lobking light for a sloght privatels in a cherty-lobking light for a sloght privatels for a slight for a sloght for a sloght privatels for a slight for a sloght for a sloght free for a sloght for a sloght for a sloght for a sloght privatels for a slight for a sloght for a sloght contact, thought light for a slight for a sloght for a sloght contact, thought light for a slight for a sloght for a sloght for a sloght (a sloght for a slight for a sloght for a sloght for a sloght light for a sloght for a sloght for a sloght for a sloght for a sloght contact for a sloght for a sloght for a sloght for a sloght for a sloght (a sloght for a sloght	and lensed, played farallet to each other 4 schridssale, played farallet to each other 4 schridssale, played (Actions Site, is warable from 90° to harder occurs between tale high forther to carbor at bands occurs between tale high forther to generally FX to MX cortaining lecal played 10 plate white - translucent to light grandomly or in the milky white - translucent to light grand of the st veinelts weine (up to 23" true width from 391.3" to 391.6"); unit is selft, "lightly scratched by finger will fingered with next with for 10" (wor 400" fingered with next with for 10" (wor 40" 10 very sile course light grand of the string 10 could for gate of sealled to court of the string 10 could for gate of sealled to court of the string 10 course contact graund, probably masked by 10 scally black for grand probably masked by 10 scally cortained prised 10 scally cortained prised 10 scally the sealled to possible scale by 10 scally cortained prised 10 scally cortained prised 10 scally cortained prised 10 scally the scalled to possible contact black 10 scally cortained prised 10 scalle to sealled to possible contact, 10 scalled to cort as the scalled to possible contact, 10 scalled to sealled to possible contact, 10 scalled to seally cortained prised 10 scalled to seally cortained prised prised 10 scalled to seally cortained

DIAMOND DRILL LOG. PROPERTY: HUNTER MINEHOLE NUMBER: U-13

10

FOOTAGE SAMPLE DESCRIPTION OF CORE . ASSAYS NUMBER 410'-416.4' C-T-O SCHIST UM3 CONIT ~ 50% : local 780 416.4'-4176 METAS 0 uni ation 20 cross - a 220 417.6-447.2 TALC SCH 15 a 00 C blac wer contact sharp at 60° to Core, all to schiotossite & tala schiot 447.2-448.2 INTERMEDIATE NIKE han Gi. ~ wi 6 to come 1a-0 ic mask 058751 Nest PAP - 8452

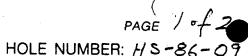
PAGE 16 6

OTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
2-455.2	TALC SCHIST		<u> </u>
	Similar to 417.6-447.2	1	
	Lower contact possibly gradational? or		
- Co	on +55.2' to ~455.5'	<b>  </b> -	
. 10	M 130.2 70 435.5	<b>}</b>	
-471 ME	ETASEDIMENTS		
	Similar to 416,4 to 417.6		
	Banding / foliation at ~75-80 to come aging	<u> </u>	
	- bocat pint fording		
	Possible thing graphitic bands near 470,		
lec			
	Trace FMX disseminated pyrite		
Ne	placement? A carborate terning and for		
	General grey to slightly Klaki Caling		·
	Greywocke and local angillite		
E	OH O		
·			
·			
		┝────┣-╸	

(RELOGANIE) SUMMARY 156

DIAMOND DRILL LOG. PROPERTY: HUNTER

HOLE NUMBER: HS-05-01


PAGE 1 - 4 1

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	AYS
0-55'	DVERBURDEN		P3/ton	
55-75'	TALLST			
55-75	TALC SCHIST QVZ: 62 +0 63		<b> </b>	
			<b>  </b>	
75-188.5	ALTERATION ZONE		<u> </u>	
	Bx: 85,0'-85,3': 88.5: 92.0'-92.3' 124.6': 125.8 to			
	126.7; 126.7 to 143 (with Q. Veining): 172.5 to 173;	126-129	0.02	12872
	Bx: 85.0'-85.3': 88.5; 92.0'-92.3' 124.6': 125.8 to 126.7': 126.7' to 143 (with Q. Veining): 172.5' to 173': Q.F.P.?: 87' to 88.5': 92.0' to 93.5': 123.7' to 126.7'; 166.0' to 167.5': 173.0' to 175.0':	129-132'	0.010	12873
	166.0' to 167.5' 173.0' to 175.0'. QVZ: 96'to 107' (ladder veins?);		<b> </b>	
	Fuchsite: 145.5' to 166;			
	FAULT ZONE (?): 180' to 183'	· · · · · · · · · · · · · · · · · · ·		
	Sericite schist: 183' to 188,5'; 196' to 213,0'			
188.5-	METASEDIMENTS			
251.8'	Greywacke & argillite		<b> </b>	
			┠	
251.8 -	TALC SCHIST			
311.2'				
311.2-536'	METASEDIMENTS		<b> </b>	
111. <u>6 - 2.36</u>	Treywacke + argillite		┠─────┤	
	Silvetied zones: 311.2 to 311.6: 315 7 to 319.1:44-475	locallyb	Keach	a
	Felsic (rhyolite) apilli tult? or siliceous an unitarti:			
	472.5' to EOH			
5361	EOH		<b> </b>	
/50		ure une	┟╌╌╌┥	
	this sample is still in the core -> box not split but a nil result	<u>765-767</u>		
	for it has been reported on the			
			12	
· · · · · · · · · · · · · · · · · · ·	7.6.	ta Bo	pur l	
	$\partial t_{\alpha}$	Jar-		
	- Cober	ſ	L	

(SELOGSING) SUMMARY LOG

	(DELOGS/NG) SUMMINANY LOU		$\mathcal{L}^{*}$	
		PAC	GE / •	<i>+ '</i>
	DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NU	MBER: H	5-85-	02
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
0'- 36'	OVERBURDEN	NUMBER	Au e3/ton	
	· · · · · · · · · · · · · · · · · · ·		-770n	· · · · · · · · · · · · · · · · · · ·
36-1191	TALC SCHIST			
119-246.3	ALTERATION ZONE (?)			
111-21613		160-165	0.010	30091
	189.4 to 189.8: 192.0 to 192.2 : 193.8 to 195.2 : 207.9' to 202 7'	203'-206'	0030	20100
	229 to 246.3	205-206	4050	30700
	Q.F.P (?: "Brooksite"): 129.6 to 130.8 (including Q.V. 130.2' to 130.7),			
	Q.V.Z: 132': 201' to 201.5 (with tour maline): 234-235.6' 236.8-238' Q.F.P.: 157' to 157.5': 160.9' to 161.5': 197.2'			
,	Q.F.P.: 157 to 157.5 160,9 to 161.5 ; 197.2			
246.3-249.7	TALC SCHIST			
249.7-307	ALTERATION ZONE			
	Bx: 249.7 to 251.2'; 255.3 to 256.0'; 298.5; 291			
307-355.6	METASEDIMENTS			
	· · · · · · · · · · · · · · · · · · ·			
355.6-358.1	TALC SCHIST			
2501-359-1	METASEDIMENTS			
<u> </u>				
359.7-449.3	TALC SCHIST			
	BX: 366.5 to 372.5 (OR FAULT ZONE); 424.5 to 426.0':			···
	426.7' to 427.8'			
449.3-656	METASEDIMENTS			
	QVZ (blacked): 5042 to 5047' 5154' to 5175' 510 0' to			
	519.1° 504.2 to 304.7° 581.5° to 582.3' 578.9" to 579.4'			
	(not bleached): 587 to 588.3 (not bleached): 651 th 51'			
· · · · · · · · · · · · · · · · · · ·	652' to 652.7"		$\rho$	
656'	EOH	Ba	X	·····
		a Ba		
	Kober			

( (RELOGGING) SUMMARY LOG



DIAMOND DRILL LOG. PROPERTY: HUNTER

SAMPLE FOOTAGE DESCRIPTION OF CORE ASSAYS NUMBER 0-2271 CASING 227-~352 SOAPSTONE QVZ: 342 - ~350, 5 352-415.5 TALC SCHIST Bx(?); 404.3-40.5 415.3-418. J 0.010 30196 4155-4255 INTERMEDIATE DIKE ? 475.5-429.5 TALC SCHIST 429.5-440.2 INTERMEDIATE DIKE ? 4402-4520 TALC SCHIST 452.0-453.9 INTERMEDIATE DIKE? 453.5-461.0 TALC SCHIST QFP? or "Brooksite"? : ~456.0 - ~456.2 461.0-528 ALTERATION ZONE 461-4637 0.010 30008 QFP: 478.5'-478.9'. 4437-444.5 0.010 3000 N's: 479.3' +83.9' to +84.2' +89.8; 493; 494 x: 514.3 - 521.5': 527' - 528' 0.015 30010 -49.50.015 30011 528-532.7 QUARTZ FELDSPAR PORPHYRY へのて 30019 5327-705T ALTERATION ZONE 0.045 30020  $\begin{array}{c} B_{X}: 532.7' - ~556': ~582.5' - ~584': 599 - ~607: ~6/9 - ~624 +86-489 \\ O_{V}Z: 587.2' - 588.3': 594' - 596': 607.5' - ~6/1': 618' - 619' - 635 +489 + 410.3' 0.15' \\ 5': 636.8' - 638.8': 647' - 652'' \\ \end{array}$ 3002 - 494 3 0.025 -Br 705.7-742.8 TALC SCHIST Bx: 708.2 - 708,3 : 708.4 - 709 2: 724.9 - 726.3 - 730 - 734 Lm-605 0.010

	AGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSA	AYS
997 METASEDIMENTS Graded bedding (?) showing tops facing downhole at 912' QV:967'-967.5';	TS1.2 QUAI	RTZ FELDSPAR PORPHYRY			
997 METASEDIMENTS Graded bedding (?) showing tops facing downhole at 912' QV:967'-967.5';	This	Settie			
997 METASEDIMENTS Graded bedding (?) showing tops facing downhole at 912' QV:967'-967.5';	1143 / HLC	VZ: 7537-755.2' 7572-758 3' 770.8-771 8'			
at 912' QV:967'-967.5';		, <u>, , , , , , , , , , , , , , , , , , </u>			
at 912' QV:967'-967.5';	997 MET	ASEDIMENTS			
QV: 967'-967.5;		raded bidding (?) showing tops facing down ho	4		·
	at 7/	01.917-9175			
7' EOH					
Image: Sector	T'EOH				
Image: Sector					
Image: Sector					
	· · · · · · · · · · · · · · · · · · ·		·		
			-		

		_		
4	۸	P -	8452	
			0452	

Roberts Bald

TT

DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NUMBER: HS-86-

. . .

٠

PAGE 1 of 2

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSA	AYS
6'- 172'	CASING (8' of water, mud and till to bedrock)			
172-378	SOAPSTONE			
378-413.4	TALC SCHIST Bx: 412'-413.4'			
	DX: 412 - 1/3.4-			
413.4-422	CHLORITE-AMPHIBRIE POCK (METAURICALUE)			·····
	BX: 420'- 422.3'			
122.3-502.1	TALC SCHIST			
	Bx: 424.5'-425.7':491.5-494.2':497.9-498.2': QV? or QFP.?: 434.5': 448-448.4':448.7-449.1': 501.2'-501.6':			
	QV: or QF-P. ? : 434.5 : 448-448.4; 4487-449.1;			
	OV7 1/49 5 1/60' 4615' 1/9/ 1/ 4017			
	QVZ: 449.5-450; 451.5; 496.1 - 496.7; "Brooksite" bands: 474; 495.8 QV: 492.3-492.8			
	QV: 492.3-492.8			
502.1-510	CHLORITE SCHIST (METAVOLCANIC?)			
Find Fulal				
510-314.91	QUARTZ FELDSPAR PORPHYRY OR FELSIC INTRUSION BX: 514'-514.9'			
514.9-649.3	ALTERATION ZONE			
	BX: 5149'- 524': 526-531'			
	QV: 582, 3 (Brownish ~ 2")</td <td></td> <td></td> <td></td>			
·····	QVZ: 587-588; 594-599.5; 604-609;			
102-1611		~ .		
Th3-627/	CHLORITE SCHIST			
541-663	ALTERATION ZONE			
63-7027	TALC SCHIST , 1.10			
	QVZ: 670'-671			
	TALC SCHIST QVZ: 670'-671' BX: 690.7'-691.3' QFP: 691.3'-691.7' Robert		ĵ.	
	V + P : 671.5' - 671.7' K ⁸			
	QV: 701.91			PAP.= 8452

PAGE 2 of 2 DIAMOND DRILL LOG PROPERTY & UNTRA HOLE NUMBER HS-86- POOTAGE DESCRIPTION OF CORE NUMBER ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYS ASSAYSAYSAYS ASSAYS ASSAYSAYS ASSAYSAY ASYAYSAYSAYSAY ASYA	, 		PAG	E 20F2
NUMBER     NUMBER     NOME       NUTTEL     METRSEDIMENTS     Image: Second conditions     Image: Second conditions       NUMBER     SCHIST     Image: Second conditions     Image: Second conditions       NUMBER     SCHIST     Image: Second conditions     Image: Second conditions       NUMBER     SCHIST     Image: Second conditions     Image: Second conditions       NUMBER     NETRSEDIMENTS     Image: Second conditions     Image: Second conditions       NUMBER     NETRSEDIMENTS     Image: Second conditions     Image: Second conditions       NUMER     Image: Second cond conditions	FOOTAOF	DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NU	IMBER: HS	-86-1
BALL'TAT     Image: Content of the second seco			NUMBER	ASSAYS
IST'IBL' METASEDIMENTS  IBU'TUS TALC SCHIST (SOAPSTONE)  IBU'TUS TALC SCHIST (SOAPSTONE)  IBUS BIS EQH  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	702.7-736.6	METASEDIMENTS		
IST'IBL' METASEDIMENTS  IBU'TUS TALC SCHIST (SOAPSTONE)  IBU'TUS TALC SCHIST (SOAPSTONE)  IBUS BIS EQH  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	736.6-737	TALC SCHIST		·
1884-1725 TALC SCHIST (SOAPSTONE)				
125-9/5       METASEDIMENTS         815       EOH	737 - 138.6	METASEDIMENTS		
	738.6-772.5	TALC SCHIST (SOAPSTONE)		
	777 5- 015			
	14.5-812			
Rowth Bala	815'	EOH		
Rowth Bala				
Rowth Bala	· · · · · · · · · · · · · · · · · · ·			
Rowth Bala				
Kipe				
Kipe				
Kipe		n.ta	<b>└</b> ───┤	
Kipe		The Do		
<6P		O W VS		
		Kir		

(AERODING) - WITTING NUG

DIAMOND DRILL LOG. PROPERTY: HUNTER

PAGE 1 - 4 HOLE NUMBER: 45-86-14

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	An ASS	AYS
0'-270'	OVERBURDEN			
270'-490.7'	SOAPSTONE/TALC SCHIST			
	Seapstone with local poss. a mygdules or varioles and passi			
	Soapstone with local poss. a mygdules or varioles and possi- ble pillow margins? from 270' to ~ 305' Bx: 315 to 322'			
	Tale schist: 347.5' to 490.7'			
		4479 -4499	0.0 35	30448
	(2,V.G. + 462.5 to 463.0"			
490.7 - 505.2	ALTERATION ZONE BX:~498' to 500			
	Bx:~498' to 500'	4935-4958	0.057	30451
505.2'-514.5	QUARTZ FELDSPAR PORPHYRY			
514.5-516.6	ALTERATION ZONE Bx: 514.5' to 515.3'			
5166-518.0	QUARTZ FELDSPAR PORPHYRY			
518.0-554.1	ALTERATION ZONE,			
	Bx: 518.0' to 521.5: 523,5 to 526,5 (with short section			
	Bx: 518.0' to 521.5': 523.5' to 526.5' (with short section of QFP or Q.V.): 533.0' to 534.0' QFP: 528' to 528.5'			
554.7-563.	(QUARTZ?) FELDSPAR PORPHYRY			
563.0-703.5	ALTERATION ZONE	·		
	Bx: 563.0' to 564.5 : 567.0' to 568.5 : 572: 573.5: 574.2': 576.0': 576.8: 592.2' to 604.5': 607' to 609': Sericite schist: 574' to 592': 599.5' to 605	574.5-577.0	0.258	30474
	576.0'; 576.8; 592.2' to 604.5'; 607' to 609';	511.0-580.5	0.018	30475
	QVZ; 609,5 +0610.5 : 633,3 +0 637.5 : 655.9 +0656.5:	1022-404	0 alla	30483
	617.4 to 679.6			
7035-743.9	TALC SCHIST	6520-1559		
	QUZ: 714.5; 723 to 724.4: 728 to 728.8: 734.8-735.4. 12	<u>6559-656</u> 8 1	0.052	30498
	Phere Bal	l		PAP - 8452

DIAMOND DRILL LOG. PROPERTY:

## F HOLE NUMBER: 2

PAGE 2.12

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASS	AYS
743.9'-75/.0	QUARTZ FELDSPAR PORPHYRY DIKE			
751.0-766.3	TALC SCHIST QVZ: 759.4 to 760.3			
	QVZ: 159.4 to 760.3			
7/12-0070	METASEDIMENT.			
166,5 80,40	TREASE DIFLENT			
807.0	FOH			
	· · · · · · · · · · · · · · · · · · ·			
	Roberta Bald			
	- Ban			
	A Leath +			
	1000			}
				PAP - 8452

(RELOGGING) SUMMARY LOG `(`

DIAMOND DRILL LOG. PROPERTY: HUNTER

HOLE NUMBER: HS-86-15

PAGE / .

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	A ASS	AYS
0-256'	CASING (TRICONED THROUGH SOAPSTONE)		<u> </u>	
256-469.5	TALC SCHIST (SOAPSTONE)			
	Bleached Q.V's: 432' to 439' (possible "Intermediate			
	dike unit"			
,				
469.5-723	ALTERATION ZONE			
	BX: 471.2'; 477.5' to 477.9; 480.9' to 482.2'; 483; 493.3'	1170 1170		
	+0 495 : 497.9': 502.2' +0 503.8: 513.9': 515.5': 516.8': 517.1'+0	712-475,3	0.747	30507
	Cio 21, 521 2112 521 51 527 1212 51 513, 513, 513, 516, 8 517, 1 to			
	519.2'; 536.2' to 536.5'; 537.0' to 565.3'; 567.5':643' to 647;	482.3-487.0	0.016	30512
	649' to 652.4' 655.6' to 658.9' 661' to 662, 3' 664.3' to 665.2;			
	~669'	5130-5170	0.029	30517
	proproje vin : 415,3 70 416.2	517.0'-522.0	0.039	305/8
	$\square \bigcirc			_
	V.G. ; 486.1': Some where From 472.0' to 475,3' (A. Brooks; could-	5631-820	0009	20531
	m + Lind and 1: 563.3 (NO ID) CER IN BOX - E NAULS			
	QVZ: 486.1 to 486.2; 495.6' to 496.1; 600.8' to 601.0'	5152-5102		3-521
	666.3' to 666.8'	102,2 2 88.0	0.011	203 24
	QV:659.5: 664.1: 684.5 to 684.9			
	QFP: 475.3' to 476.2' (?"BROOKSITE ?); 555.4 to 564.0';			
	565,0' to 565.3' : 686' to 689. 5' (or filsic hagmental?):			
	263,0 to 163.3, 000 to 601. 2 (or filere pagmental :);			
7-22 795				
723-795	TALS SCHIST			
	QV: 737.3'; 739.5			
	QVZ: 737.7' to 738.6': 741.8 to 744 (QFP? 743-743.2')			
	QFP: (?) 746.0' to 747.3'			
	BX: 747.3' to 748.5'			
	METASEDIMENTS(?) 1758.4 to 760.7			
795-847	METASEDIMENT			
847'	EOH			
	LOA / DA			
	<u>A</u>			
N. S. C. C.	1100			
······				
•				

(KELOGGING) -MATINA

. (

••

DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE N

HOLE NUMBER: HS-86-1C

PAGE 107

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	A ASS	AYS
0'-210'	OVERBURDEN			
10-255'	CASING (TRICONED SOAPSTONE; POOR GROUND CONDITIONS)	· · · ·		<u> </u>
255395,5	SOAPSTONE/TALC SCHIST			
	Bx: 360.3 :	3599-363.2	0.092	3060
	QVK: 363,4' to 364.2' (V.G.); 365.7' to 366.0'; 392.5' to	363,2-3650		
	392.8' (with ankerite) QFP: 365.7' to 372.2' (sheared ?)	2107 2101		70/ 5
	- Ort South 10 Sizia (Shearing :)	365.7-368.5	0.013	3060
95.5-418.3	ALTERATION ZONE:	368.5-372.2	1.299	3060
Anima ana atana atan	Bx: 398: ~402' to 406.8: 408.7' to 413.9'	394.5.397.5	0.011	80/0
	QFP OR QX.: 403.9': 418.7' to 411.2': 417 to 418.3' QV: 406.5' to 406.7'	P14:2-21/2	0.011	<u>po60</u>
	QV: 406,5' to 406.7' 3			
10 3-40.	CHLORITE SCHIST	<u> </u>		<b>_</b>
0.2 100	Locally contains magnetite (possible iron thole; te?)	+		<u></u>
80-639.5	ALTERO TION ZOUS	4		<u> </u>
	QFP: 485,4' to 487.3': 530.9' to 536,1' loss filsic frage to 1	1		f
•				<u> </u>
	Fuchsite: 487.3' to~487.6'			
	BX: 494.6 to 501.2': 511 5': 625 0': 0631 5'.	497.3-499.3	00044	3067
	QV.: 500.7 to 501.2 (V.G.): 536.8 to 527.3' 568.6' 576 9' to 5779	11.3 11.3	0.0007	10002
	Silicification + bleaching in chlorite schist locally from	500.7-50.2	OACHV.G	2012
	1480 ton494.6'	501.2 - 502.8	0.05/	2062
	Chloritic: 527.3' to 530.9'	502.8-505.2	0.013	3062
39.5-6.58.2				
21,3-638,2	TALC SCHIST , QV.Z.: 645 to 656.5			
(0) / (9)	METASEN, MENN			
58,2'-659,2 59,2'-7,20,4	METASEDIMENT TALC SCHIST	<u>م</u>		
2112 - 1204		<u> </u>		
04-922.0	TALC SCHIST METASEDIMENT Q.V: 908.1' to 909.4'; 912.5' to 913.1' EOH	ľ		
(222 - 1	Q.V: 908.1' to 909.4'; 912.5 to 913.1'			
922.0'	EOH KOW			l

[KELOGGING) -uni-linging , 

PAGE 1 of 1 DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NUMBER: HS-86-19

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	Au ASS.	AYS
0- 124'	OVERBURDEN			
124-187	CASING (TRICONED THROUGH SOMPSTONE)			
10-1-0				
187-327.5	SOAPSTONE			
	Possible fault zone ?			
, 329.5-441,5	TALC SCHIET			
021.0- T41.5	TALC SCHIST ,	ļ		
	QFP?; 350.7 to 351.7; 358.8 - 362.3; 373.7 to 377.3; QYZ: 394.5' to 398.2'; 415.7' to 417.8			
	"Brooksite "veinlets: from 398.2' to 399.2'			
, ,	BIUNDIT VEINERS From DTD. & TO 347.2			
4415-554	ALTERATION ZONE	4.25. 2010	0.001	307110
	BX: 459- 485': 487 5'-492 5' EAG U'- 506 9' 513' 574 5'	4435-448.0 448.0-450.7	0.014	2-7,10
	w 5 2 2' - w 5 3 2 5' + w 5 4 4 4 - 5 4 4 9' + 5' - 5' - 5' - 5' - 5' - 5' - 5' - 5	un l'unu		
	QVZ:~464,5'-465,5': 469.2'-470.5': 475.5'-476 n' +404'-485'.	130.1-434.0	0.005	30130
	515.5'- 517.2' : 520.5'- ~ 522: 523.5'- 524.3': ~ 530.8- 532.5'	480.2-485.0	0.030	30759
		485.0'-487.0		
	QFP : ~ 542,2'- 542,5': 544.9'- 545,4':	487.0-490.5	0,004	30761
		490.5-493.5	0.005	30762
554'-660.2	TALC. (CHLORITE) SCHIST			
	Fault gouge : 602.5	499.5 - 504.0	0.010	30765
11				
660.2 - 734	METASEDIMENTS QVZ: 707'-734'			
	(XVA + IU) = I J T			
734'	E, O, H,			
	N			
	, Bar			
	Ohen			
	Kan			
				PAP - 9461

(RELOGGING) SUMMART LOG DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NUMBER: HS-86-20

SAMPLE FOOTAGE ASSAYS DESCRIPTION OF CORE ' NUMBER 0'-210' CADING 210-227' SOAPSTONE 227-298 FELDSPAR PORPHYRY 298-301 SOAPSTONE 301-~SOB TALC SCHIST Intermediate dike ? with silicified veinlets: 399.7 to 401.3'; 403.7'- 405.7'; 414.5'-415.0'; 417.3'-418.5'; 423'-423.7': Bx: 485.2'-486.9 ;~492'-~495'; 509'-~511'; ~ 508-637 ALTERATION ZONE BX:~532'-537'; 576.8'-~578'; 584.3'-587'; 597.5'-606.6' VG: (seen by A. Brooks) 6 specks between 584.3 -586.5 EOH (HOLE ABANDONED, RODS STUCK, 6371 Aberta Boto

PAGE 1 of 1

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
<u>p'-2'</u>	CASING		
2'-24,5	CHLORITE-CARBONATE-QUARTZ SCHIST		
14.5-32.0	INTERMEDIATE DIRE(?) QVZODE: 29.9' to 32.0'		
32.0'- 56.0'	TALC SCHIST (SOAPSTONE)? QVZONE: 34.5' to 38.1' (or INTERMEDIATE DIKE?)		
56.0'	EOH, Broke through to 360L stope		
	hol		
	On the		
	Ké pér		

SIMMARY-REINTERPRETED (R.Bald) DRILLING PAGE / 0/1 DIAMOND DRILL LOG. PROPERTY: HOLE NUMBER: 44-85-2

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASS	AYS
0-19.11	TALC SCHIST (ULTRAMAFIC?)			
19.1-34.5'	INTERMEDIATE DIKE?	·····		
	Silicified (also 36.1'-37.9': 42.2'-43.3')			. <u></u>
34.5-67.3	TALC SCHIST (ULTRAMAFIC?) QVZone: 56.8' to 60.0'			
73-110 0	ALTERATION ZONE (CHLORITIC)			
	Breccia Zones? : 68.3 - 69.2'; 72.9' to 73.4'; at 74.2';	72,5-74,0	0.15	9060
	Breccia Zones?: 68.3 - 69.2'; 72.9' to 73.4'; at 74.2'; at 76.5': 101.3' to 104.5' QY': 76.8' to 77.0'; 78.3' to 79.0' (bossibly also brecciated?) 86.0' to 87.0'; 88.3' to 88.8'; 92.6' to 76.0'	76.5-78.3	0.40	9011
	·	78,3-79.0	0.42	9012
110.0-124.5	TALC SCHIST			
1245-174.5	ALTERATION ZONE (CHLORITIC SERICITIC)			
	QFPorphyry ?: 130.2' to 131.3'; 169.3' to 174.5' (breccia- ted aloo)	171.0-172.0	0.05	9092
/	Bréccia Zone: 172.6' to 173.4'; 174.0' to 174.4'			
174.5 <b>-18</b> 8.0	QF Porphyry Dike Brechidted: 174.5 to 176.0'; 179.8 to 185.5'			
	ALTERATION ZONE (SERICITIC)			
251,0'	EOH			
~~~~~	EON			
·····				
	AT The Dates			
	Kiburi			
· · · ·				PAP - 8452

1985 Sampling =	
	PAGE 1 07 3
	PROPERTY HUNTER MINE
	HOLE NUMBER HS-85-01
DIAMOND DRILL LOG	GRID REFERENCE 24, 642, 24N; 7,829.61E
a cid testo @ 100' = -50° @ 400' = -45°	GRID REFERENCE 24,642.24N; 3829.61E ELEVATION TOWNSHIP 10,932.16 CLAIM
DIAMOND DRILL LOG a cid teolo @ 100 = -50 @ 400 = -45 @ 200 = -45 @ 500 = -45 @ 300 = -46.5 @ 500 = -45 LENGTH	= 536 fort AZIMUTH 103°53DIP ANGLE - 45
	DIP TESTS:
CORE SIZE BQ CORE STORED AT: SITE RE	ELOGGED BY R. BALD DATE JULY 12/88
FOOTAGE, OVERBURDEN DESCRIPTION OF CORE	SAMPLE NUMBER A ASSAYS
155-7751 TAIR SCHIST LATE of Aching In voice	
ave Laark grey to cherty grey, in th	possible tournaline):
75-188.5 AZ: BX: 85.0'- 85.3 (with Qiveining)	
	~1" of Bx at 88,5');
12'-93.5' (Bx for first~3 inches)	Likite at hite?
Possible ladder weins (randomly on	
	· ~96'-~107'
0.FP? : 123.7 to 126.7 with Bx i	
Bx with Q. Vaining; 1267, to M	
ped recognizable white to brown Carbonate 2	
ney aphanific material	
AZ contains local fuchsite from	~145,5 to 166' (varia-
ble schietosity directions, from ~ 45"	to 90° to CAxis: local
tink folding); also local inderow section	
Possible BX? or FX-MX brown QF 167.5' up to ~ 5% MCX pyrite as str	Porphyry dike :~166 to
ty planes; similar section from 173-175'	ingers along schistosi- with Bx from 172,5' to
173' some possible malachite near 17	
Rusty, earthy weathered buggy 30	
with missing core from 182' to 1894 (po	SSIDLE FAULT ZONE?)
183' to~188.5'; contains black possibly ta	
(disseminated throughout: dossible le	le or biotite spots. Loie volcanie? or Bald
Feldson Porshing? deformed; and fic	m~196' to 209.5' (fro] T. A
196 to ~ 197.50 intercalated with OF	× anterite schiet) Alert
and from ~ 209.5' to 213.0'	Kim

DIAMOND DRILL LOG.

з. - , - ,

.

.

. PROPERTY: HUNTER

HOLE NUMBER: HS-85-01

PAGE 2 of 3

FOOTAGE	METASEDIMENT DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
188.5-	From~188.5' to ~196' and 213' to 251.8' : FX schist	1 1	· ·	
251.81	Variable percent chlorife-rich and ankerite-rich	1		
	bands, locally finely laminated twith chlorite -	1		
	filled cross faults. Lespecially from ~ 191' to 196'); from	11		
	2211 h 25181, ha c to 12 / 1 h - 1 / 1 / 1 / 1 / 1	4}		·
	dark grey (possible matic plour or FX metasediment?	, 		
	mainly IFX dark arey wacks? with loved dark	┦────┤	; 	-
Ī	grey-black fine banded (angillite ? consisting mainly	łł		
1	Spenterite > no graphite or tale observed	·}}		
		╉━━━━━┥		-
	Note: see sy vious page for F. Porph? or feloic volc?		j	
†		4		
-10-2112	- foliation ~ 50° for 65° to Core Axis TALC SCHIST + somewhat irregular,			
5/18-2016		<u> </u>		
+	- upper contact sharp with slickensides, at-60	·		
	to core and the startes to sing for a to a			l
	5/ both units			
	-contorted at 2+ calcite bands (not oxidized-brown)			
	- becomes yelly schiptose from ~ 294' to lower contact very			
	talcose, black	1		
	/	11		
11.2-536	METASEDIMENTS	1		
	- Greywacke, + argillite.	11		
	- silicitied from upper contact to 311.6' and from 315.2'	5117-7157		0693
		315.2-318.1		0694
	veinlets randomly oriented) no subalided down	\$15.2-316.1	· #	0677
	-at N353,5 + 354,5 P graded bedding in argillite-grey-	{ }		
<u>.</u>	wacke shows tops facing downhole. I afgillite guy-	╉────┤	· · ·	<u> </u>
		<u> </u>		
				<u> </u>
	parallel to each other at adiments generally ~ perpen-	1	<u> </u>	
	dicular To bedding			
	417 Possine soft sedement deformation near \$12 and	and a second		·
			e Balance (* 19	and the second sec
	-local cyrvilinear venlets, normally nat 0° to CA			
	ooks like polyouturing, slickinsider? with this coal		TV I	
	2) Sivery tall: tate veinlets locally from ~ 420' to ~447	A SALE AND AND	Y A I	1X
24	The second received the second the second se	3 19 3 19 4 1 / / / / / / / / / / / / / / / / / /	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	V AU 🔪

DIAMOND DRILL LOG.

PROPERTY: HUNTER

HOLE NUMBER: HS-85-01

	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	YS
311.2'-536'	METASEDIMENTS (CON'T)			
	- from ~ 441' to 2475 : local deformation of sediman -			
	fary beds (Kinks contorted the cal, Q. Veinling) with			
	Some bleaching 30% country rotk to pale grad (AZ?) - Sample 12828 is reported as Nil but It is still	11 11.0		
	- sample 1288 is reported as Nil but It is still in core box. (465' to 469')	465-469		
	- from N 472.5' to 536.0'; (core solit + mixed up)			
		hyoli	<u> </u>	
	lapilli tuff ?? with local stretched siticons !!	nyon	₽	
	Iragmente? up to ~ 1/4" long: unit consists & Seri-			
	cite + ankarite; foliated of 55-65° to core allo inith			
	~ 5% dark grey, possible quarty prains, equant.			
	possibly recuptablized; locally contains narrout (< 1/4")			
	dark-grey-black, FR adgillite bando at 520' 521', 527'			
	locally contorted associated with CX Quarts + needle			
	Southaline Crystals, up to ~ 12" long, Vein ~ mormal		·	
	to come allo); chaillit bands allow at 529, 535			
5341				
5361	ЕОН			
5361				
5361				
5361				
5361				
5361				
5361				
5361		and the second		
		and the second		
			10	
			10	

PAGE 3 07 3

		PAGE	: f	4
	PROPERTY H			
	HOLE NUMBER H			
· A .	- DIAMOND DRILL LOG GRID REFERENCE 24	,642,961	N;782	5,40
acid te	DIAMOND DRILL LOG $a^{15} \otimes 100' = -87.5^{\circ} \otimes 400' = 83^{\circ}$ $a^{200'} = -83^{\circ} \otimes 500' = -86.5^{\circ}$ $a^{200'} = -84.5^{\circ}$ $a^{200'} = -84.5^{\circ}$ $a^{200'} = -84.5^{\circ}$ $a^{2100'} = -84.5^{\circ}$ $a^{210'} = -86.5^{\circ}$ $a^{210'} = -86.5$			
	$@ 200^{\circ} = -83^{\circ}$ $@ 500^{\circ} = -86.5^{\circ}$ $@ 300^{\circ} = -84.5^{\circ}$ $AZIMUTH - AZIMUTH - AZI$	- DIP A	NGLE -	- 90
C	RILLING COMPANY NOREX FOREMANI DIR TERTE			
C	ORE SIZE BQ CORE STORED AT: SITE RELOGGED BY R. Bald D.		1	/
	T	ATE Ju	Ly is	88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	A ASS	AYS
0-36'	OVERBURDEN	NUMBER	Hu 12/ton	
21/10/			1-/10n	
36-2119				
	more carborate & generic udinkets grey, containing	ļ		
	very gradational contact		<u> </u>	
19-246.3	ALTERATION ZONE (?)			
	talcose in sections		z	
	Q-Ankerite rock between these two B& 2 men with	ooking		
	QEP (?): "Brooksite" material (EX tan Stricer No		<u> </u>	
	phenox's seen cut by quarts and carbon ate, we as		}	
	The second			
	Veinlets; locally "brook dite" material appears to be			
	Veinlets; locally "brook dite" material appears to be banded with dark green-black ribbons & chlorite; from	9.6 to 130	0.8' (av	fro
	Veinlets; locatly "brook dite" material appears to be banded with dark green-black ribbons & chlorite: from 1 QV: (~3" wide) near 132' 130.2' to 130.7'; By	9.6 to 130 130.7	0.8'(QV to 131.	fro
	Veinlets; locally "brook dite" material appears to be banded with dark green-black ribbons & chlorite; from	9.6 ¹ +6 130 6 130.71	0.8'(QV to 131.	fro D'S
	Veinlets: locatly "brook dite" material appears to be banded with dark green-black ribbons & Chlorite: from 11 QV: (~3" wide) dear 132" Local zones: of "brooksite" material (cherty - looking.	9.6 to 130 (130.7/	0.8'(QV to 131,	fre D')
	Veinleta: locatly "brookdite" material appears to be banded with dark green-black ribbons & Chlorite: from 11 QV: (~3" wide) dear 132' Local zones of "brooksite" material (cherty - 100 king, tan, FX) Variable Schiptosite directions binly Chloritic with Igcal more sericitic sections	9.6 ¹ + 130 130.7 ¹	0.8'(QV to 131.	fro D')
	Veinlets; locally "brookdite" material appears to be banded with dark green-black ribbons & chlorite; from 11 QV: (~3" wide) dear 132' Local zones of "brooksite" material (cherty - 100 king, tan, FX) Variable schiptosite directions (binly) Chloritic inth local more sericitic sections Bx: 151.8 to 162.3 including 2 QFP zones (brecciated)	L 130.7 [/]	+ 131.	fro 0)
	Veinlite; locally "brookdite" material appears to be banded with dark green-black ribbons 8) chlorite; from 11 QV: (~3" wide) dear 132' Local zones: of "brooksite" material (cherty - looking, tan, FX) Variable Schiptosite directions binly) Chloritic with local more sericitic sections Bx: 151.8 to 162.3 including 2 OFP zones (brecciated) OFPC:: 157 to 157.5; 160.9 to 167.5; 197.2	9.6 + 130 130.7 160-165	+ 131.	5005
	Veinlets: locally "brookdite" material appears to be banded with dark green-black ribbons & Chlorite: from 11 QV: (~3" wide) dear 132' Local zones of "brooksite" material (cherty - looking, tan, FX) Variable schiptosity directions (binly) Chloritic with local more sericitic sections Bx: 151.8 to 162.3 including 2 OFP zones (brecciated) OFPC): 157' to 157.5': 160.9' to 167.5'; 197.2' From 162.3' to : sericite ± fuchsite + ankerite	L 130.7 [/]	+ 131.	0)
	Veinlite: locally "brookdite" material appears to be banded with dark green-black ribbons & chlorite:from 11 QV: (~3" wide) dear /32" Local zorea: of "brooksite" material (cherty - looking, tan, FX) Variable schiptosite directions (binly) Chloritic with local more sericitic sections BX: 151.8 to 162.3 including 2 OFP zones (breccia tod) OFPC): 157 to 157.5 : 160.9 to 167.5 : 197.2 From 162.3 to sericite = fuchsite + ankerite schist with pagelet grey guests wins + local ~ 1% FCX py: kinks	L 130.7' 160'-165'	+ 131.	0)
	Veinlets; locally "brook dite" material appears to be banded with dark green-black ribbons 8) chlorite; from 1 QV: (~3" wide) hear 132' Local zones of "brooksite" material (cherty - 100 king, tan, FX) Variable schiptosite directions binly) Chloritic with local more sericitic sections BX: 151.8 to 162.3 including 2 OFP zones (brecciated) OFPC): 157' to 157.5': 160.9' to 167.5'; 197.2' From 162.3' to : sericite ± fuchsite + anterite schist with parglet ofer guests wins + local ~ 1% FCX py: kinks BX: 169.5' (189.4'- 189.8'; 192.0'-192.2'; 193.8'-195.2'; 207.	L 130.7' 160'-165'	+ 131.	0)
	Veinlets; locally "brookdite" material appears to be banded with dark green-black ribbons & Chlorite:from: QV: (~3" wide) dean 132" Local zones of "brooksite" material (cherty - looking, tan, FX) Variable Schiptosite directions binly) Chloritic with local more sericitic sections Bx: 151.8 to 162.3 including 2 OFP zones (breccia trd) OFPC: 157 to 157.5 : 160.9 to 167.5 : 197.2" From 162.3 to : sericite ± fuchsite + ankerite schist with penglel given wins + local ~ 1% FCX py: Links Bx : 169.5 (c/1" chid.): 189.4 - 189.8 : 192.0 - 192.2 : 193.8 - 195.2 : 207	L 130.7' 160'-165'	+ 131.	0)

DIAMOND DRILL LOG.

PROPERTY: 4UNTER

PAGE 20f4 HOLE NUMBER: HS-85-02

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	A. ASS	AYS
119-246.3	ALTERATION ZONE (CON'T)		03/4	
	Sericite + ankerite + quarte Schist with local fuchoi-	203-206	0.030	30/00
	te along schiptosity plane cut by grey & milky white quart	1		
		216-218,8		0695
	schistositi planes	218.8-2199		0696
	Sericite schipt is locally finely laminated	5199'-224.1	-	0697
	+0 /	2241-224		0698
	Bx zone (~ 80°%. Bx with spections of non-brecciated	226-229'		0699
	schiet); 229'-246.3' (including 2 QVZ')	229-2340		0700
	Q.V.Z: 234.0' - 235.6'; 238.8'-238.0	2340-235.6	1	0851
		235.6-236	s'	0852
246.3-	TALC SCHIST	236.8-238.	5	0853
249.7'	contorted schiptosity.	2380-242		0854
		2420'-246.	5	0855
249.7 - 307	ALTERATION ZONE	246.3-249:	t.	0856
	Bx; 249.7'-251.2'; 255.3'-256.0'; 288.5'	249.7-25/2		0857
		251.2-255.3	1	0858
		255,3-256.0		0859
	generally parallel to schip to the which is very variable	2560-258.	<u>></u>	0860
	from o to go. to core aging	1		
		ļ,		
	Tale-rich grey unit with dark green - black spots (tale)	288.0-287		0861
	and local buff - fellow fragments (up to ~ 12 long) from 283 to	289-293		0862
		293-296'	·	0863
	Gradually becoming finely layered, more sedimentary -			
	looking but no recognizable, I clear contact.		·	
2561		<u> </u>		
01- 232.0	METASEDIMENTS.			
	Similar to AZ but local fine laminations (randomly		- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	
	oriented and locally folded			
	ALIGN THE ALLAND ALIGN IN ALIGN IN MALINATION	P		
	for 310' to 315: 335' to 339.5': 355.3' to 355.6'			_
	Locar when we near receions, very millen to az showing			
	at fine laminations (mixed interfingered AZ + sediments)	$ \cap$	μ	
	Closely spaced Kink filds new 342' Possibly an interdigitating contact (looks mixed for 10's Plat)		PB	per
	Possibly an interdigitating contact (looks mixed for 10's of feet)		Ø	

で育玩います

DIAMOND DRILL LOG. PROPERTY: HUNTER

PAGE 3 . f L HOLE NUMBER: #5-85-02

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSAYS
55,6-358.1	TALC SCHIST		
R. 1-359.7	METASEDIMENTS		
<u> <u> </u></u>	Mainly black, FX argillite, Kink folding; bedding		
	~50-60° to CA		
<u>9.7-449, 3</u>	TALC SCHIST		
	Bx or possible fault Zone: from 366.5 to ~372.5, soft crum	-	
·	bly tale nich core; carborate veins are "contorted; most		
	slips and for carbonate veinlets are at 45° to cA		
	Possible graphitic (HX cryotals?) argillite from 411.5' to 413.7' bedding / foliation at 35 " to CA	ļ	
	Unit appears to be polyentured ?/pillowed? from ~ 386' to		·····
	400° (curvilinean nones filled with MX anterite crystals)		
·	Bx: 424.5' to 426.0'; 426.7' to 427.8' (including ~1" wide grey		
	moderately soft carbonate (3) vein).		
	Carbonate? + Feldspar?) Dein (irregular) at 439 (losts		
	like a porphyry but is scratched by Knike)		
	rial becomes slightly harden		
	aar be comes seighting harden		
9.3-656	METASEDIMENTS.		
	Graphitic angillite some what deformed from upper,		
	contact to ~ 457 bids not well be lined a dama t		
	by then chlorite and arealite windsta		
······································	I From ~ 457' amount of greywacke in creases		
	Local bleached sections with Q. Veining: 504.2-304.7; 515.4'-517.5:518.2-519.1	504.2-504.7	0864
. :	tops facing uphole at N459 N462, ~474.5		
	Local contorted beds.	515H-5175	086
	Quint MCX chlorite, none (possible fault none? -> sedi-	517.5-518.2	0860 0867
	mentary beds very folded of contorted from ~ 555.5' to 567.5'	<i>5/8. Z = <u>5/9.</u>/1</i>	000/
	local ex-MX pulite in Qivins; and local CX anteride allo		0868
	564.5 (now tan Caloria 1):0 (50 01/7 from KR15 to 582 31	561'-565	0869
	avens (cx, milky white, appear to be barren): 578.9 to		
	579.4: 587 to 588.3 (contain mit brokankerite crystals.	518.9-5784	0870
	Riberta	Bold	PAP - 8

DIAMOND DRILL LOG.

· , · • • • (•

and the second second

PROPERTY: HUNTER

.

HOLE NUMBER: HS-85-02

.

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS	
449.3-656		581.5-582,3	087	77
	Ankerite veinlets & diverinated crystals from	587 - 588.3	087	72
	Z fold at ~ 586. 5' From ~ 596.5' to EOH : unit become light ney to			
	grey with plack spots (quart systals?); sericitic only farely laminated (normally writern F-MX foliated); orssible some seliceous tagent to (attest ched parallel			
	to Latin tion from 642 to Q.V. (CX minor ankerite, cross cutter schiptosite): from			
	650' to 651''; similar Q. Vein zone from 652'-652.7' Schiptosity directions very variable.			
656'	EOH			
	•			
	<u>^1</u>	ente	od	
	Kor	r Da	~ _	

5	1986 sampling = 340'- 353'; 415.3'- 440.2'; 447'- 663.4'	; 667.3	- 667.6	ذ م
,	1986 Sampling = 340 - 353; 415.3'- 440.2'; 447'- 663.4' (18.6'-668.9'; 670'-688'; 781-790'; 791'-795; 893'-706' (SOME PROBLEMS WITH SPLITTING).	PAGE	1' 7'	ť
	PROPERTY HU	NTER	•	
			7	
	, DIAMOND DRILL LOG LENGTH = 997 GRID REFERENCE			
@0	$= -51^{\circ}$, 107° A/ (307) equal (307) $= -77$	CI	LAIM	
ۍ نک را نک	$60^{\circ} = -58.5^{\circ}$ (2456) = -53 AZIMUTH 107	DIP AN	IGLE	5/*
	=-51°, 107 742 (Surveyed) @ 130 = -77 @ 456 = -53° AZIMUTH 107 BF = -51°, 107°30, (Sparry Sun) @ 624' = -50°, 106°A2 (Sparry Sun) @ 750', RILLING COMPANY NOREX FOREMAN DIP TESTS:	· /0,9/6	. 34	
C	DRE SIZE BQ CORE STORED AT: MINESITE RELOGGED BY R. Bald D.		2/5	38
				
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	An ASSA	YS
0'-227'	CASING		- J	<u>/////</u>
227 ~ 200			·····	
221-352	SOAPSTONE QVZ: 342-350.5			
	1			
- 352- 415.5	TALC SCHIST			- <u></u>
	Bx (?) brown matrix, light grey-white talc-rich frag- marts": 404.3-405			
415.5-425.5	INTERMEDIATE DIKE? Tale schist from 424.9' to 425.1'	415.3-418	0.010	30196
	Local silicified halpens along marging of andonely			
	oriented Q+ Carbonate veinlets, locally containing Fx to			
	CX pyrite. Generally with is a dark crey, hard locally foliated			
	chlorite - rich vack.			
425.5-421.5	TALC SCHIST			
4295-440.2	INTERMEDIATE DIKE?			
	Local silicified halves along Q-C veinlet margins,			
	Fto CX anterite crystals, disseminated from ~ 438,5 to			·
440.2-452.0	TALC SCHIST	To A		
452.0-453.5	INTERMEDIATE DIKE ?	6 1d		
134.0- 753.5	NICRMEDIATE DIRE.	por		
	· ·			

DIAMOND DRILL LOG. PROPERTY: HUNTER

HOLE NUMBER: *H S - 2*らー 0 9

PAGE 2044

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	A. ASS	AYS
453.5-4610	TALC SCHIST		The off	770
	"Brooksite"?or QFP? (tan Fx chests locking Silicercus	f	····	
	"Brooksite"?or QFP? (tan. Fx. charts locking Silicous material) cut by QV's : ~456.0'-~456.2'			
461.0-528		461'-463.7'	0.010	30008
	chloritic within 6" of upper contact	<u>4637'-464,5</u>	0,010	30009
	Local fuchsite (e.c. near 468')	4645-4675	0.015	30010
	Possible "Birotsite" near 470	4675-469.5	0.015	30011
	From ~ 470.5' to 493.9' : chloritic with threadlike to	469.5-470.7	0.010	30012
	~ 1/5" unde cross cutting chlorite vein lets; and local QV's			
	and "brooksite" bands; contorted banding	483.7-484.2		
		484.2-486.0		
	maline?) ricinlets, cut by Q. Veincets): 478.5-478.9' with	486.0-489	0.01	30021
<u> </u>	~12" dark brown bx abong lower contact.	489-490,3	0.155	30022
	484.2' (@ 75° to CA, to py" A. Brooks' Nor +489.8: 493': 494'	490.3-492.5	0.035	30023
		492.5-494.3	0.025	30024
		494.3'- 499'	0.010	30025
······································	and the first and the second and		ļ	
	Recording color Thake Coround Jourando lower contact.	· · · · · · · · · · · · · · · · · · ·		
	BX: 514 3' to "521.5' with miky white to varely brow-		jl	
	(1. 1. 2, which y 3. (Eucled, 321 = 328		· · · · · · · · · · · · · · · · · · · ·	
528-532.7	QFP			
	Visible white felds par pheno mysto; locally preciated.			
	possible tourmaline? (dart bro An hard 2 chan tic)			
	between fragments in brice ated zones: cut his a 15% or	· · · · · · · · · · · · · · · · · · ·		
	(milky white randomly priented)			
5327-705.7	ALTERATION ZONE			
	Bx: 532.7'-~556 (gradational lower contact)			
	SURCINE SUMAA DAVE DAVE LATER STALL	577-580'	0.010	30051
	- 380; local Kinking; local FX- squite (trace). Wal Queining			
	BX: 592, 5 to ~ 584 (by truth of QV. at 583.21)			
	QUZ's: 587.2' to 588,3': 594'- 596': 607.5 ~611:618' to 6 19'			-
n dan dan s	BX: 549 - 2607 : 2619 - 2624	600-605'	0.010	30058
	624-632:5: MX light mening with black specks / puba		A	ĺ.
		Kober	Bole	d

•

• (•

PAGE 3 of 4 HOLE NUMBER: H S-86-09

DIAMOND DRILL LOG. PROPERTY: 44NTER HOLE NUMBER: H S-86-0 DOTAGE DESCRIPTION OF CORE . SAMPLE NUMBER: ASSAYS DESCRIPTION OF CORE . SAMPLE NUMBER: ASSAYS SZT-7657 ALTERATION ZONE (CON'T) SAMPLE DESCRIPTION OF CORE . SAMPLE NUMBER: ASSAYS DESCRIPTION OF CORE . SAMPLE ASSAYS DESCRIPTION OF CORE . SAMPLE DESCRIPTION OF CORE . SAMPLE . SAMPLE . SAMPLE DESCRIPTION OF CORE . SAMPLE . SAMP	,	· · ·		3074
Denter De de la de	2 • • •	DIAMOND DRILL LOG. PROPERTY: 44NTER HOLE N		
by anterite curstele QVZ in 35% - 136.5': 636.8 - 638.8'; 647 - 652': 6346 77' 079: Creat, bande (1320) Cleat, bande (1320) Cleat, bande (1320) 257-7226 TALS SCHIST Chloritic march from upper Contact to 707' Exi 708.2' to 708.3' (dark blown, MX, possible, QFP 2) 707-701' 098: 708.4' to 709': Quart, circled, divernin at d, MCX, from 707' to From 709' durad, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted verneted banding : 739' - 742.8' 124-726.8' 096. Corean to light given verder of 257-732' 096. 28-757.2' QUARTZ FELDSPAR FORPHYRY Lower contact Sharp but irregular 135'7280' 097. there do the verder of the form a line 7. Crean to light given verder of the 200 man ge- Crean, coloured Massing 097. 104.2' 105.2' 107.2' 1097. 104.2' 105.2' 107.2' 1097. 104.2' 105.2' 107.2' 1097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 108.2' 107.2' 108.2' 107.2' 108.2' 107.2' 1097. 104.2' 105.2' 107.2' 108.2' 107.2' 108.2' 107.2' 1097. 104.2' 105.2' 107.2' 108.2' 107.2' 108.2' 107.2' 1097. 104.2' 105.2' 105.2' 105.2' 105.2' 1075.2'	FOOTAGE	DESCRIPTION OF CORE		ASSAYS
by anterite curstele QVZ in 35% - 136.5': 636.8 - 638.8'; 647 - 652': 6346 77' 079: Creat, bande (1320) Cleat, bande (1320) Cleat, bande (1320) 257-7226 TALS SCHIST Chloritic march from upper Contact to 707' Exi 708.2' to 708.3' (dark blown, MX, possible, QFP 2) 707-701' 098: 708.4' to 709': Quart, circled, divernin at d, MCX, from 707' to From 709' durad, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted, unit contains Cross - Curter of 248-726.8' 096. 4. der verneted verneted banding : 739' - 742.8' 124-726.8' 096. Corean to light given verder of 257-732' 096. 28-757.2' QUARTZ FELDSPAR FORPHYRY Lower contact Sharp but irregular 135'7280' 097. there do the verder of the form a line 7. Crean to light given verder of the 200 man ge- Crean, coloured Massing 097. 104.2' 105.2' 107.2' 1097. 104.2' 105.2' 107.2' 1097. 104.2' 105.2' 107.2' 1097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 100 man ge- Carean, coloured Massing 097. 104.2' 105.2' 107.2' 108.2' 107.2' 108.2' 107.2' 108.2' 107.2' 1097. 104.2' 105.2' 107.2' 108.2' 107.2' 108.2' 107.2' 1097. 104.2' 105.2' 107.2' 108.2' 107.2' 108.2' 107.2' 1097. 104.2' 105.2' 105.2' 105.2' 105.2' 1075.2'	32.7-7057	ALTERATION ZONE (CON'T)	63.4-667.3	1981
 QVZ: 1235'-1336.5'. 636.8 - 638.8', 147 - 652'; UST (37) From (57' onward: locally grey 3chiat (144 marrow (2.5435)) Chert, band: (1422) Lower Cortact gradational 164.5'; TALS SCHIST Chioritic marche for upper Contact to 709' BX: 708.2' to 708.3' (dark blown, MX, possible, GFP 3) 707'70' 708.4' to 709'; Guart curitale divenin a tid MCX, from 707' to 708.4' to 709'; Guart curitale divenin a tid MCX, from 707' to 708.4', dahk grey - blue. From 709' otward, unit contains cross-curiting 249'7263 (96) Hale winter Defermed / contacted banding : 739' - 742.8' 724.78' (129) 28-75/2 CUARTZ FELDSPAR PORPHYRY Cream to light queen to by van de contacted Mission (129) Autor of the formation of the formatio		bly an territe crystals		0982
Erom 6.54' sonward : locally grey schipt with married chert, bande (Ase) 1 Lower (mrack gradational 257-7428 TALS SCHIST Chloritic marks & one upper (mract to 709' BX: 708.2' to 708.3' (dark blown, MX, possible QFP 2) 707-709' 708.4' to 709' 708.4' to 709' 1 Tob 4' to 709' 1 Tob 709' orward, unit contains Cross - cutting 249-726 3096 1 Ale winher 1 Deformed (contarted banding '739' - 742.8' 1 Deformed (contarted banding unt 1 Deformed Mas'748.8' 1 Deformed (contarted by Contarted banding unt 1 Deformed Mas'748.8' 1 Deformed (contarted by Contarted banding unt 1 Deformed Mas'748.8' 1 Deformed (contarted banding unt 1 Deformed banding unt 1 Deformed 1 De		QVZ:~635"-636.5': 636.8 - 638.8; 647-652:		0983
cherty bands (new) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			1 .	
1 Lower Contact gradational 257-7428 TALC SCHIST Chloritic manuly from upper Contact to 709' Bxi 708.2' to 708.3' (dark blown, MX, possible, QFP 3) 707-707' 0983; TOB.4' to 709'; Quart curstale, disseminated MCX, from 707' to 708.4' to 709'; Quart curstale, disseminated MCX, from 707' to 708.4' to 709'; Quart curstale, unit contains cross - Curture 1249-7263 096; Hill adak gray share, unit contains cross - Curture 1249-7263 096; Hale veintet: 707.742.724,9'-726.3'; T32'-734.1' 708.4' to 709' of ward, unit contains cross - Curture 1249-7263 096; Hale veintet: 708.4' to 709' of ward, unit contains cross - Curture 1249-7263 096; Hale veintet: 708.4' to 709' of ward, unit contains cross - Curture 1249-7263 096; 1002: 724,9'-726.3'; T32'-734.1' 709: Deformed/contorted banding: 739' - 742.8 714.729 (0792) Contact sharp but inregular 737-739 739: Contact sharp but inregular 749: Contact sharp but inregular 740: Conta		cherty band (rare)	192,5-693,5	0984
25.7.7428 TALC SCHIST Chloritic march for upper Contact to 709 BX: 708.2' to 708.3' (dark blown, MX, possible, QFP 2).707'70' (098) TOB.4' to 709'. Ruant cupstele, disseminated MCX, from 707' to Prom 709' of ward, unit contains cross-cu77ing 7249'7263 (096) Hale wintet. QV2: 724.9'-726.3'; 732'-734.1' Deformed contorted banding '739'-742.8' August cupstele of the point irregular Top 709' of ward, unit contains cross-cu77ing 7249'7263 (096) Hale wintet. QV2: 724.9'-726.3'; 732'-734.1' Deformed contorted banding '739'-742.8' Have contact sharp but irregular Top 728' down to light green 40 or angle-cream, coloured, 1448'748' (097) Lower contact sharp but irregular Top 728' down to light green 40 or angle-cream, coloured, 1448'748' (097) Lower contact sharp but white filds point irregular Have delike block windless of the point alino ?' Have delike block windless of the point alino ?' Have delike block windless of the point alino ?' Top failing white cut by Quant cardina the upin fail '287' '207' (097) Have delike block windless of the point alino ?' Top 10000000 of the school of the point of the school of the s		Lower Contact gradational		
Chloritic marche for upper contact to 709 BX: 708.2' to 708.3' (dark blown, MX, possible, GFP 3) 707-701' 098: 708.4' to 709': Quart clustelo, disserin attad, MCX, from ~ 707' to 708.4', dark long - blow From 709' of ward, unit contains cross - cuiting 749-7263' 096 Hale veinleti Deformed contented banding: 739' - 742.8' 734'-729' 0991 Lower contact Sharp but irregular 737-728' 0992 28-7512 QUARTZ FELDSPAR PORPHYRY Cycan to light green 40 orange- crean coloured 749:7428' 0992 thard siliccours material cuit by randemy privated 763:7504' 0992 thard dike block vender 40 orange- crean coloured 749:7428' 0992 thard siliccours material cuit by randemy privated 763:7504' 0992 thard siliccours material cuit by randemy privated 763:7504' 0992 thard siliccours material cuit by and the 751' 751' 2072 Mard siliccours material cuit by wards of the 751' 7552' 0996 1000000000000000000000000000000000000				
Bx: 708.2' to 708.3' (dark blown, MX, possible QFP ?) Tor 701' 098: 708.4' to 709': Quart curstale discerinated MCX, from 707' to 708.4', dalk grey 'blue. From 709' oburad, unit contains cross-curture 1249-726.3 095. 4alc veinlet. QX2: 724.9'-726.3': 732'-734.1' Deformed contorted banding: 739'-742.8 724-737' 0999 Lower contect sharp but irregular 737'729 0992 28-7512 QUARTZ FELDSPAR PORPHYRY Croom to light green yo orange-cream coloured 7443'7495 0972 thread like block veinleto 0 torange-cream torange 743'755' 0976 10926 1000000 to tairs 0 willy white felds part 7512'7551 0975 Mathematice creation of the schoot 1 will for a torange to the folds part 7512'755' 0976 10926 100000 to tairs 0 willy white felds part 7512'755' 0976 10926 100000 to tairs 0 willy white felds part 7512'755' 0976 10926 100000 to tairs 0 will for a torange to the schoot 1 win 10000 to 10000 to 10000 to 10000 to 100000 to 100000 to 100000 to 100000 to 10000000000	105.7-742.8	TALC SCHIST		
708.4' to 709'; Quart custale discensinated MCX, from 707' to 708.4', dahk grey 'blue. From 709' of ward, unit contains cross-cuttere 1249'7263 096. 4ale veinlet. QVZ: 724.9'-726.3': 732'-734.1' Deformed contorted banding: 739'-742.8' Lower contact Sharp but irregular 739'7428' 0992 Lower contact Sharp but irregular 739'7428' 0992 Lower contact Sharp but irregular 739'7428' 0992 28-7512 QUARTZ FELDSPAR PORPHYRY Cream to light green 40 orange-cream coloured 7449'7428' 0992 threadlike block veinlite by vanderney origined 7449'7428' 0992 Locally unit cut airs milley white foldspore 7612'7532' 0992 Unotale; booldy unit cut airs milley white foldspore 7612'7532' 0992 149.5' Hored on Schiet i ~1" long at 744.9' and 749.5' 252'7572' 0997 TH9.5' Hored Schiet i ~1" long at 744.9' and 749.5' 10 7504' (bands) Lower contact masked by Quarts twining 122'7743 TALC SCHIST Deformed for a for a for a for 759' QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0992 White great wasked by Quarts of solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' -755.2' 1757.2' - 758.2' (almost solid milley 1512'783' 0997 QVZ: 753.7' - 755.2' 1757.2' - 758.2' (almost solid milley 7512'783' 0997 Phile and Contact of a for green		Chloritic mainly from upper contact to 709		
708.4 to 709': Ruest clustale discerning at d, MCX, from 707 to 708.4 dark grey blue. From 709 obward, unit contains cross - cutting 7249'726.5 096 tale veintet. QVZ: 724.9 - 726.3; 732' - 734.1' Deformed /contented banding: 739' - 742.8 132'-739. 098 Lower contact sharp but irregular 732'-728 099 Lower contact sharp but irregular 732'-729 098 28-7512 QUARTZ FELDSPAR PORPHYRY Cycam to light green to orange - cream coloured 7443'7428 0992 hand Siliceons motional cut by vandernly origined 745'7512 0992 Horadeike block veinted by touch maline? Lower contact sharp but irregular 100'-722 000 100'-722 000 100'-720 000 100'-7			707-7091	0985
708.4' dahk grav blue. From 709' of ward, unit contains Cross-cutting 749-7263 096. Hale veinter 042: 724.9'-726.3'; 732'-734.1' Deformed/contorted banding: 739'-742.8' 1241-727' 0981 Lower contact sharp but irregular 737-729 0985 Lower contact sharp but irregular 737-729 0985 28-7512 QUARTZ FELDSPAR PORPHYRY Cream to light green to orrange-cream coloured, 748-7486 0992 Cream to light green to orrange-cream coloured, 748-7486 0992 hand Siliccours material cut by randomly origined 765-7684 0982 Hardalike block veinter of tournaline 2 thoradlike block veinter of tournaline 2 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 766-7682 0982 Cream to light green to by randomly origined 766-7682 0982 Cream to light green to by randomly origined 766-7682 0982 Create book veinter of tour aline 2 Create book of a contained with the folde per raise of to 0982 Create book of tourned by Quanty - carbona to vein- 7632'7852' 0996 1000 (100 created by Quanty - carbona to vein- 7632'7852' 0997 Inclusion of tour contact mashed by Q-Carbonate veining E12-7743 TALC Schift Decoming to carbonate winner contact mashed by Q-Carbonate veining 0 012-7743 TALC Schift Quando Carbonate veining 0 012-7743 Cont of transition carbonate veining 0 0072: 753.7' 755.2's 757.2' 758.3's along fractures of too of the 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		708.4' to 709':		~
708.4' dahk grav blue. From 709' of ward, unit contains Cross-cutting 749-7263 096. Hale veinter 042: 724.9'-726.3'; 732'-734.1' Deformed/contorted banding: 739'-742.8' 1241-727' 0981 Lower contact sharp but irregular 737-729 0985 Lower contact sharp but irregular 737-729 0985 28-7512 QUARTZ FELDSPAR PORPHYRY Cream to light green to orrange-cream coloured, 748-7486 0992 Cream to light green to orrange-cream coloured, 748-7486 0992 hand Siliccours material cut by randomly origined 765-7684 0982 Hardalike block veinter of tournaline 2 thoradlike block veinter of tournaline 2 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 765-7684 0982 Cream to light green to by randomly origined 766-7682 0982 Cream to light green to by randomly origined 766-7682 0982 Cream to light green to by randomly origined 766-7682 0982 Create book veinter of tour aline 2 Create book of a contained with the folde per raise of to 0982 Create book of tourned by Quanty - carbona to vein- 7632'7852' 0996 1000 (100 created by Quanty - carbona to vein- 7632'7852' 0997 Inclusion of tour contact mashed by Q-Carbonate veining E12-7743 TALC Schift Decoming to carbonate winner contact mashed by Q-Carbonate veining 0 012-7743 TALC Schift Quando Carbonate veining 0 012-7743 Cont of transition carbonate veining 0 0072: 753.7' 755.2's 757.2' 758.3's along fractures of too of the 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Quarte cuptalo disseninated MCX, from 707 to		
+alc veinter QVZ: 724,9'-726.3'; 732'-734.1' Deformed/contented banding: 739'-742.8 Lower contact sharp but inregular 734-7428 0990 Lower contact sharp but inregular 739'-7428 0990 2.8-751.2 QUARTZ FELDSPAR PORPHYRY Cream to light green to orange-cream coloured 7443-7495 0999 Cream to light green to orange-cream coloured 7443-7495 0999 had Siliceous material cut by vandemy priested 7475-7504 0999 Hocally unit contains milley white felds per 7512'-7337' 0995 augotals: Isrally unit cut by Quahtz - carbona to wein- 7537' 2096 1016 (aandomes, oriented) 102-7343 TALC Schist: ~1" long at 744.9' and 749.5' to 750.4' (were deformed banding with pessible Lower contact masked by Q-Carbonate meining 102'-7743 TALC Schist masked by Q-Carbonate weining 012'-7743 TALC Schist 00972 012'-7743 TALC Schist 00972 012'-7743 TALC Schist 0200 012'-7743 TALC Schist 0200		708.4 dahk grey-blue.		
Halc veinter QYZ: 724,9'-726.3'; 732'-734.1' Deformed/contented banding: 739'-742.8 Hower contact sharp but incention Lower contact sharp but incention (28-75/2 QUARTZ FELDSPAR PORPHYRY Crean to light green to orange-crean coloured 7443-7485 (092) had Siliccours material cut by vandemy originated 745.7504 threadlike block veinted of town aline? Hordelike block veinted of town aline? Madom Siliccours material of town aline? Hordelike block veinted of town aline? Madom Siliccours of the silic cut by vandemy originated 745.7504 (092) Hordelike block veinted of town aline? Madom Siliccours material of town aline? Madom Siliccours of the silic cut by out of the felds per Hordelike block veinted of town aline? Madom Siliccours of the silic cut by out of the felds per Madom Siliccours of the silic cut by out of the felds per Madom Siliccours of the silic cut by Out the felds per Madom Siliccours of the silic cut by Out the felds per Madom Siliccours of the silic cut by Out the felds per Madom Silic cut by Out the felds per Madom Silic cut aline of the silic cut by Out the felds per Madom Silic cut aline of the silic cut by Out the felds per Madom Silic cut aline of the silic cut by Out the felds per Madom Silic cut aline of the silic cut by Out the felds per Madom Silic cut aline of the silic cut of the silic cut aline of the silic cut of		From 709" orward, unit contains cross-cutting	724.9-726.3	095
Deformed/contorted banding: 739' - 742.8 Lower contact sharp but irregular 737' 739 0989 2.8-7512 QUARTZ FELDSPAR FORPHYRY Cycam to light great to orrange cream coloured 7449' 7498' 0992 hand, Siliccoup material cut by vandemly oriented 7449' 7498' 0992 hand, Siliccoup material cut by vandemly oriented 7449' 7498' 0992 Logally, unit contains millay white felds per 752' 7504' 0992 Myotale; Isrally unit contains millay white felds per 752' 7572' 0992 149,5' to 750.4' (buy deformed by Quarty - carbona to vein - 752' 7572' 0992 149,5' to 750.4' (buy deformed banding with possible 1000 - rich's banding of and banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding with possible 1000 - rich's banding of a formed banding of a formed banding with possible 1000 - rich's formed banding of a formed banding with possible 1000 - rich's banding of a formed banding basis formed banding a formed banding of a formed banding a formed banding of a formed banding basis formed basis formed banding basis formed banding basis formed basis formed basis formed bandi		talc veinier		
Deformed/contorted banding: 739' - 742.8 Lower contact sharp but irregular 737'-739' 0985 28-75/2 QUARTZ FELDSPAR PORPHYRY Cycan to light green to orange-crean coloured, 7449'-7428' 0992 hand, Siliccoup material cut by vandemly origined 749'-7495' 0992 thereadlike block vender of town a line? Locally unit on tains milky white feldspen 7512'7552' 0992 Mystale; Isrally unit on tains milky white feldspen 7512'7552' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - carbona to vein - 7537' 0992 Differ (namdomby origined by Quarty - 759' (NZ: 753.7' - 755.2': 1757.2' - 758.3' (almost solid milly, 7572'783' 0992 white guart and minor carbonaty originals; Quart contain 752'783' 0992 white guart and minor carbonaty originals; Quart contain 752'783' 0992 pyrit as costings glorg fractured in guarts (7572'7783' 0992			732-734,1	093
Lower contact sharp but irregular 737-739' 0985 28-75/2 QUARTZ FELDSPAR PORPHYRY Cream to light green to orange cream coloured 7444:7495 hand, Siliccours motional cut by vandomly origined 7444:7495 hand, Siliccours motional cut by vandomly origined 7445:7504 Horadlike black winkles of town alone? Locally unit contains milky white feldspore 7512' 0975 Mystale; beally unit cut by Quanty - carbonate vein - 7537-7552' 0996 Inclusion of alcost in 1" long at 744.9' and 749.5' to 750.4' (berg defamed bean doing with possible Lower contact marked by Quanty - 0759' RVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572-783' 0997 QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 75768-7				0988
28-75/2 QUARTZ FELDSPAR PORPHYRY 28-75/2 QUARTZ FELDSPAR PORPHYRY Cream to light green to orange cream coloured 7443-7495 0992 hand Siliceous material cut by randomly origined 743-7495 0992 threadlike black veinlito b tour maline ? Locally, unit contains milly white felds per 7512-7857 0996 Locally, unit contains milly white felds per 7512-7857 0996 Inclusion of tour by Quanty - carbon a to vein - 7537-7855 0996 Inclusion of tour a bandong with possible tournaline - rich? Dando Lourer contact masked by Q-Carbonate reining 212-7743 TALC Sch15T Quart and minor carbonate cystals; quart contain 783-785 0996 Reform (d from 1996 contact to 759' QVZ: 755.7' 755.2' 1757.2' - 758.3' (almost solid melly, 7572-7883' 0996 Printe quart and minor carbonate cystals; quart contain 783-762' 0996 Printe quart and minor carbonate cystals; quart contain 783-762' 0996		Lower contact sharp but irregular	737- 739	0989
Cream to light great to orange - cream coloured 7449-7495 0992 hard, Siliccoup material cut by randomly oriented 7495-7504 0992 threadlike black veinlets of tour makine? 7504-7512 0999 Locally, unit contains milky white felds per 7512-7337 0999 augstale; boally unit cut by Quanty - carbonate vein - 7537-755.2' 0999 lette (nam domes, oriented) Trelusion of tale schiet: ~1" long at 744.9' and 749.5' to 750.4' (bey deformed banding with possible tournaline - rich?) bande) Lower contact marked by Quanta reining Lower contact marked by Q-Carbonate veining Deformed from increased by Q-Carbonate veining 092: 753.7' - 755.2'; 757.2' - 758.3' almost solid milky 7572'783' 0997 white quart and minor carbonate creates in quart cortain 583-762' 0997			739-742.8	0990
hand, Siliceory motional cut by vandomly privited 74.5750+ 0992 threadlike block veinlite & tour maline? Locally unit contains milky white felds per 7512'7537 0995 austale: locally unit cut by Quantz - carbonate vein- 7537'7552' 0996 lete (nandomber oriented) Inclusion of tale schiet: ~1" long at 744.9' and 749.5' to 750.4' (very deformed banding with possible tournaline - rich?) bands Lower contact mained by Q-Carbonate veining Deformed from upper contact to ~759' (VZ: 753.7' - 755.2'! 757.2' - 758.3' almost solid milty 7512'783' 0996 white quart and minor carbonate crystale; quart contain 783-762' 0997 prite' as contings along froctures in quart 17708-7718 01 100	2.8-751.2		742,8-7449'	0991
hand, Siliceory motional cut by vandomly privited 74.5750+ 0992 threadlike block veinlite & tour maline? Locally unit contains milky white felds per 7512'7537 0995 austale: locally unit cut by Quantz - carbonate vein- 7537'7552' 0996 lete (nandomber oriented) Inclusion of tale schiet: ~1" long at 744.9' and 749.5' to 750.4' (very deformed banding with possible tournaline - rich?) bands Lower contact mained by Q-Carbonate veining Deformed from upper contact to ~759' (VZ: 753.7' - 755.2'! 757.2' - 758.3' almost solid milty 7512'783' 0996 white quart and minor carbonate crystale; quart contain 783-762' 0997 prite' as contings along froctures in quart 17708-7718 01 100		Cream to light great to orange-cream coloured	744.9 - 749.5	0992
Locally unit contains milky white felds par 7512-7512 0995 crystale; peally unit cut by Quanty - carbonate vein - 7537-7552 0996 lete (randomety oriented) Trelusion O Hale Schipt : ~1" long at 744.9' and Trelusion O Hale Schipt : ~1" long at 744.9' and 749.5' to 750.4' (Very deformed banding with possible tower contact masked by Q-Carbonate veining Lower contact masked by Q-Carbonate veining Deformed from when cartact to ~759' QVZ: 753.7' - 755.2'; 757.2' - 758.3' (almost solid milky 7572'783' 0996 white quait and minor carbonate crystale; quart cortain 788.3' 7996 pyrite as containe glong fractures in quart 17708-7718 OA Jan 1			749.5-7504	0993
Cripitals; Josally unit cut by Quanty - carking the vein - 7537-7552' 0996 lets (nam domby oriended) Inclusion of tale schipt; ~1" long at 744.9' and 749.5' to 750.4' (Very deformed banding with possible townaline - rich?) bando Lower contact mashed by Q-Carbonate veining Deformed from in the cartact to ~ 759' QVZ: 753.7'-755.2': 1757.2'-758.3' almost solid milley 7572'783' 0998 white quait and minor carbonate crystals; quart contain 758.3-762' 0999 printe ast contained along fractures in quart \$ 170.8'-771.8' 01 Jac 1			750.4-751.2	0994
Itte (random by priced) Inclusion & tale schipt: NI" long at 744.9 and 749.5' to 750.4' (very deformed banding with prisible tower cortact marked by Q-Carbonate verning Lower cortact marked by Q-Carbonate verning Deformed from increase contact to ~ 759' QVZ: 753.7'-755.2': 757.2'- 758.3' almost solid milky 7572'758.3' 0998 while quait and minor carbonate erystale; quart cortain 758.3' 769' pipito ast continge glong fractures in quart 170.8'-771.8' 01 Jack	<u></u>	- geally unit contains milky white felds par	751.2-753.7	0995
The side of the schipt: NI" long at 744.9' and 749.5' to 750.4' (berry deformed banding with prisible townaline - rich?) bands Lower contact mained by Q-Carbonate veining Deformed from increased by Q-Carbonate veining Deformed from increased by Q-Carbonate veining QVZ: 753.7'-755.2'; 757.2'-758.3' almost solid milley 7572'783' 0998 white quait and minor carbonate crystals; quart contain 758.3' 0999 pupito as costings along fractures in quart 7.770.8' 771.8 Oi Ja 1		All a little that the termine the termine the termine the termine the termine termine the termine termin		0996
749.5' to 750.4' (berry deformed banding with possible townaline - rich?) bando Lower contact maited by Q-Carbonate veining Deformed from in the Cart to ~ 759' Deformed from in the Cart to ~ 759' QVZ: 753.7'- 755.2'; 757.2'- 758.3' almost solid milky 7572'758.3' 0998 white quait and minor carbonate crystalo; quart contain 758.3'-762' 0999 pyrite as costings along fractures in quart 7.770.8-771.8 Oi Ja 1			755.2-757.7	0997
Howmaline - rich? bands) Lower contact marked by Q-Carbonate veining Deformed from in the contact to ~ 759' QVZ: 753.7'-755.2': 757.2'-758.3' almost solid milky 7572'758.3' 0998 white quart and minor carbonate crystals; quart contain 758.3-762' 0999 pyrite ast contained along fractures in quart 170.8-771.8 01 Ja 1				
Lower contact marked by Q-Carbonate veining 1.2-7743 TALC SCHIST Deformed from information carbonate to ~759' QVZ: 753.7'-755.2'! 757.2'-758.3' (almost solid milley 757.2'-758.3' 0998 white quart and minor carbonate crystals; quart cortain 758.3-762' 0999 pupite ast costings glong fractures in quart 7.770.8-771.8 (in 1a, 1)				
Deformed from inter cartact to ~759' Deformed from inter cartact to ~759' QVZ: 753.7'-755.2': 1757.2'-758.3' (almost solid milley 7572'758.3' 0998 white quait and minor carbonate crystalo; quart contain 758.3-762' 0999 pyrite ast contings glong fractures in quart 7.770.8-771.8 OI 10, 1			l	
Deformed from "1" (a Tact to ~ 759' QVZ: 753.7'-755.2'; 757.2'-758.3' (almost solid milley 7572'-758.3' 0998 white quait and minor carbonate crystals; quart contain 758.3'-762' 0999 pyrite ast contings along fractures in quart 7:170.8-771.8 (1) 10, 1		Lower contact marked by Q-Carbonate veining		
Deformed from "1" (a Tact to ~ 759' QVZ: 753.7'-755.2'; 757.2'-758.3' (almost solid milley 7572'-758.3' 0998 white quait and minor carbonate crystals; quart contain 758.3'-762' 0999 pyrite ast contings along fractures in quart 7:170.8-771.8 (1) 10, 1	e 1 - 7 - 1 -	TALO FALLIST		
White quait and minor carbonate crystalo; quart contain 757.2'- 768.3' 0998 white quait and minor carbonate crystalo; quart contain 758.3-762' 0999 pyrite as costings along fractures in quart 7.770.8-771.8 (1) 10, 1	51.2-1/43		J	
white quait and minor carbonate crystalo; quart contain 158.3-762 0999 pypite ast coatings along fractures in quart 7.770.8-771.8 01 10 1	,	- Lictorn id from in the contract to ~ 159	 	
pypete ast contings along fractures in quart 7.170.8-171.8 11 Ta 1				0998
		while quail und minor carbonate crystals; quart contain	758.3-762	0999
Lower contact sharp, somewhat masked by Q. veins Kob R. ed.				la 11_
		Lower contact sharp, somewhat masked by Q. veins	Kober	Reld

• • (•

DTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSAYS
5-997	METASEDIMENTS	770.8-771.8	/00
	Somewhat deformed from upper contact to ~		
	776.5	· · ·	
	Local threadlike cross cutting veinlets from		
	upper contact To~784' Purite-rich bar do for 789'- 790'		
	Local purplish finge greyto black to dark green to hilt area		
	No graded redding for top determinations		
	Amphibole-rich bands (after ating black & green) from		
	874.3' to 878.3' (gradually deciseving any libele content)		
	Locally silicified quart weits.		
	At~906.5, ~ 3" of almost solid pyprhotite.		••••••
	Possible goded bedding stouring top's taking downhole	 	
	Bedding 70°, crosscutturg chlorite vien threadlike win-		
	lite at 20" bidding at ~ 966 at 10° to CA, then ~ 90° at 967		
	Then 20° at ~ 968.5, then 75'-90° at 971' 60° to CF at 981"		
	Quarty vein from 967' to 967.5': CX milky white suart		100
	with minor tx anderite (slightly yellow); sediments defor-		
	net near quart ven marging Bedding folded near 973		
	Bedding folded near 993'		
7	EOH		
	EOF	<u> </u>	
		<u> </u>	
		↓	

· •

· 1986 sam	pling = 505' to 570'; 588' to 609'; 655' to 365	1	
709 70	720	PAGE	1 = 4
	PROPERTY H		
			10
ACIO TESTS: DIAMON	ND DRILL LOG LENGTH = 815 feet GRID REFERENCE $72, -73, 42'(SURVEYED) @ 150' = -74^{\circ}$ TOWNSHIP $@ 750' = -77^{\circ}$ AZIMUTH (09)		
$e^{\circ} = 109^{\circ} 20'A$	$72, -73$ $42'(SURVEYED) @ 150' = -74^{\circ} TOWNSHIP$	C	LAIM
@ 300'= -74°	@750' = -77' A7IMUTH (09)		NGLE -73°42 (
	ELENATION ELEVATION	10,916	3'
DRILLING COMPAN	NY NOREX FOREMAN DIP TESTS:	J 4	
CORE SIZE BQ	CORE STORED AT: MINES, TE RELOGGED BY R. BALD DI	ATE Aug.	5/88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
0-172' CASING (8:	'of water, mud + till to bedrock)		
172-378 SOAPSTONE			
Det y Fai	ated beally poor sound, possible Porcupine		
Lower	contact somewhat gradational		
378- 413.4 TALC SCH	IST		
Ex : 4 '2	- +0 +13, +' (with Q.V's)		
- OULER	contact inregular		
4134-422.3 CHLORITE-	MMPHIROLE ROCK (METAVOLCANIC?)		
Black	ampribole lades, sandowing oriented; dank green		
mascine To	ideally strated		
5x;~4	120' to #22.3' with queen matrix	420-422.3	0938
howen	r instact ground		
422.3-502.1 TALC SCH	(5)		0920
	ile - Qurich from upoen contact to lower contact	<u>422.3-424.5</u> 4245-425.7	0939
Possit	ale "x (ankerite-rich): 424.5' to 425.7' with local	4257-427	0941
navrow (2	1/4") prownich Alcincito, randomly oriented.	427-430'	0942
		430-434	0943
to clean P		434-435	0944
@ 434.5.44	18 to 448.4': 448.7' to 449.1'	435-438' 439-441'	0945
QYZ:	449,5-450 : 451.5	441-445	0947
"Brool		445-448	0948
L		448-449.1'	0949
	<i>R</i>	operta	Bald

ż

- DIAN

.

.(

DIAMOND DRILL LOG. PROPERTY: HUNTER

PAGE 20 f 4 HOLE NUMBER: HS-86-10

FOOTAGE	-> TALC SCHIST (CONFORMIPTION OF CORE .	SAMPLE NUMBER	Au ASSAYS
422.3 - 502.1	1- Bx; 491.5' to 494.2': 497.9' to 498.2';	449.1-450	0950
	QV: 492.3' to 492.8' (with host rock inclusions & Bx).	450-452	0951
	QVZ: 496.1' to 496.7'	452-457'	0952
	QFP? (tan - light brown, Silicence, MX poss. Q. cms.		
	tale 2) 501.2' to 501.6' with Q.V. and dk grean cl (crite	4725-474.5	0953
	Cross-cutting tale (serietie there de lower cartact)	489.2-491.5	0954
	veinlets to lower contact: cossibly is actually "ALTE-		1/
	RATION ZONE ?"?	492.8-494.2	
		494.2'-496.1	095-1
502.1-510	CHLORITE SCHIST (METF. VOLCANIC?)	496.1-497	0958
	with local anterite veinlets.	497-498.2	1 0959
	lower contact vague, cradational?, chlorite schiet	498.2-501	6960
	augrain to the silidifed (2) - part deal to thing N/ ??	501-502.1	0961
	coilact 0	502,1-505	
Cal Culat		505-510'	0.005 30153
510-514.9'	QUARTZ FELDSFAR FORFILLRY ?? OR FELSIC INTRUSION	<u> </u>	
	Gray- There looking, locally brecciated/cut by quarte	535-540	0.005 30159
	Stockwork / / / / / / / / / / / / / / / / / / /	540-545	0.002 30160
······································	Well developed BX from ~ 514' to lower contact		
514.9-649.3	ALTERATION ZONE	+	<u> </u>
	Bx: 5149'- 524' ; (chlorite schipt from ~ 5198-521').	571-574'	0963
	526'-~531':	574-577	0964
	chlorite rich 531-532	577-580.5	0965
	Sericite schiet (with local fuch inte): 532- 542	580.5-582	0966
	Gradually Decorring darker Decy-green from 542	582-582.9	0967
	grwando (poss. & creave in chlorite of ankenite?) to ~ 559	5829-5837	0968
· · · · · · · · · · · · · · · · · · ·	local start sections of scripte - Fich material)	6837-587'	0969
	Serieitic-antingenessy' Orward Ankentic section (MX ankerite crujstals) and quarta veiring	587'- 588'	0970
	Ankentic section (MX ankerite crujutale) and quarta wirring		
	Vic 1/2") at 582.3'	609-612'	0971
	QVZ: 587 - 588: 594 - 599.5: 604 - 609'	624-627	0972
	Local kinking near 640' and 645' to 648' Lower contact gradational		
		634 - 637	10973

• (•

PAGE 3 6/4

DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NUMBER: HS-86-10

SAMPLE FOOTAGE DESCRIPTION OF CORE . ASSAYS NUMBER 649.3-654.11 CHLORITE SCHIST 444-6471 0974 FMX Tel ~~5% milt 70 both man red 654.1-163 AL ZONE DK 654.1-655 0975 outside to sericitic. tic brownish Con Near 662 : some ~ 3" unde Site ? "or BX. ~1% Lower contact See Jumbl.d 663-7027 TALC SCHIST MCX aren - Khaki with mp to ~ 50% white an keri-- grees par allel Ja tion 16 call 670-671 0976 c m 7 1 670'-67 177.2 -679.2 0977 179.2' lat low angle 677.0 690.7'- 691.3' 0978 690.7-691.7 691 section amira 0979 wito 700.3-702.7 700 QV : אין אי Lindo inequilar gradation inrı 7027-736.6 METASEDIMENTS 7027-704.1 0980 70324 Crip tal ind 704.1 Voiring Jone ന 19:51 Da scali To Ba P 1 0 - 8452 DIAMOND DRILL LOG. PROPERTY: HUNTER

.

PAGE 4 7 .

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	ASSA	YS
736.6-737'	TALC SCHIST Lower contact ground			
737-738.61	METASEDIMENTS Lower contact, broken core, partially masked by Q-Carborate Verring			
738.6-775.5	TALC SCHIST (SOAPSTONE) Zones & anterite -rich randomly oriented wirlets and sones of FMX disseminated anterite crystals Lower contact gradational? (next with has cross- cutting traved like criterite windets within ~ 6" of contact)			
772.5-815	METASEDIMENTS Layered argillite and gruywacke with local cherty looping bands <1" wille (chemical sediment?) Locally beds are contorted (e.g.e798') Locally graphitic			
815	E, O, H,			
	R	ferty	bald	P 1 2 - 845

	986 Sampling = 386.5' to 399'; 413 to 451.9' no advay really (.449.9' to 451.9'); 498.1' to 537.5' (from 537.5' to 541.2' Core is sold asay reported); 552.7' to 613.1'; 622.7' to 658.8; 684.5' to 703.5' PROPERTY HU HOLE NUMBER HS DIAMOND DRILL LOG LENGTH = 807' GRID REFERENCE CID TESTS @ 0' = -50' 1(@ 150' = -47' ELEVATION TOWNSHIP 10,0 @ 300' = -50' @ 500' = -52', 110' (tropari) AZIMUTH 106: @ 700' = -52', 111' (tropari) @ 807' = -52'. PILLING COMPANY ALOGEN	5-86-14	-	
_	@700' = -52°, 111° (tropari) @807' = -52°			
	RILLING COMPANY 700000 FOREMAN DIP TESTS:			,
C	ORE SIZE BQ CORE STORED AT: SITE RELOGGED BY R. BALD D.	ATE Jul	y25/	.88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	An ASS	AYS
0-2701	OVERBURDEN	NOMOLI	03/for	
			7.00	
270'-490.7'	SOAPSTONE (TALC SCHIST)			
	From 270 to ~305: spapstone with local possible any dules?			
	(appear to be zoned; nour white carbonate?) or varidui			
	from ~1/10" to ~1/2" diameter, round to oval, locally			ļ
	coalescing; also local curvilinear yones of carbonate		<u> </u>	
	and silvery, tale (possible silver margins?) From 315 to 322; Breccia with tale matrix		 	
	From 347.5' to 490.7': TALC SCHIST (very deformed from		 	
	347.5' to 360'); chlorite-rich with CX amphibale? real 388.5 (6389.3')		 	
	From~ 414.5" to 447.9": possible ladder veris" in intermedia.	<u> </u>		
	Le dikedunit; locally contains up to ~60% disseminated MX.		1	
	ankerite custalo			
	Note: no obvious explanation for gold in sample 30448:	447.9-449.9	0.038	30449
	Note: no obvious explanation for gold in sample 30448; ordinary looking tale schiet; also next Sample (9156) has no	4499-451.9	0.005	9156
	description of assay scout or love left ("tile sampled">	4519 - 4555		090
	why?)			
••••••••••••••••••••••••••••••••••••••		4625-463.0		0904
	zorsericite?			
	Ankerite- Fich bandol Broot site I tan coloured, up to 1/2" uide at	469.0-470.0	ļ	090
		470.0-471.3]	0900
·····			 	<u> </u>
	Veinlets since the veinlets stop at brooksite " margin; also tale schist host rock is deformed but "brooksite" bands		 	
	are very regular atv85° to CA		ł	
	Lover contact arbitraou	hit	k nl	
		Vber	Dies	
			F	

DIAMOND DRILL LOG.

٠.

• (•

PROPERTY: HUNTER

HOLE NUMBER: HS-86-14

PAGE 2 04

FOOTAGE	DESCRIPTION OF CORE .	SAMPLE NUMBER	Au	AYS
490.7-505.2	ALTERATION ZONE		3/ton	
	Note: appears to be some core missing from section			
	493,5' to 495.8' which ran 0.057 03 Au /ton (possibly a piece NO.5' long); what is left of the sample appearent to be	493.5-495.8	0.057	30451
	NO.5' lone) what is left of the sample appears to be			
	silicifica (locally with tan streaks - Brook Site"?) with FX			
•	to CX disceminated synite locally			
	Bx: from 498.0(1)+0 \$00' (0.5' missing)			
505.2-514.5	QUARTZ FELDSPAR PORPHYRY			
	"sharp upper contact at 55° to CA; upper 4' Munit mest silicified and brecciated; late 2th Jank Stringers @ 35° + 70°			
<u></u>	silicified and brecciated : late 2th lank stringers @ 35° + 70°			
	to cA (2 sets): "O. 5 % purinte oblivall' sharp lourer contact	1		
	ted; out by thread like brown (tourmaline?) winleto			
	Mandomly orige tod			
514.5-5/6.6	ALTERATION ZONE			
	Bx: 514.5' to 515.3'			
	Lower contact sharp at 40° to CA, parallel to faliation			
	of both units.			ļ
			· · · · · · · · · · · · · · · · · · ·	
516.6-518.0	QUARTZ FELDSPAR FORFHYRY			ļ
	possibly with inclusion & schipt near 517 or 2			
	Smaller QFP dikes			ļ
	Lower contact irregular?, masted by Quarty veiring			
15.0.1 50.00			APLIT T	UT NO
<u>578.0-554.1</u>	ALTERATION ZONE	537.5-541.2	ASSAY A	
·	Bx: 518.0 to ~ 521.5 : 523.5 to ~ 526.5 (possibly with short		ļ	0907
	sections of OFP or brean Q.V.); ~ 533.0' to ~ 534.0'	543-547'	ļ	0908
	QFP(?), foliated, FMX, granular, tan coloured ; from ~528	547-5507'		0909
	to ~528.5' in chl-tale schist	550 7-55 27		0910
	tocal cross atting tale verifietor from ~ 538' to ~ 552'de-	· · · · · · · · · · · · · · · · · · ·		
	creasing downhole)			
5547' 5/2-	(QUARTZ ?) FELDSPAR PORPHYRY		}	
227.1-262.0			Ve	to
	fresh, white felds can anystals; locally preceived; cut by proun +	hreadle	Fr 1461	PAP - 84
	Roberta Bild	n a chine	•)	

PAGE 3 7 HOLE NUMBER: H 3-86-14

DIAMOND DRILL LOG.

564.5

.

ALTERATION ZONE

11

Ьx

: 563.0' +0

200

Bx

'<'

~576.0

•••••••

FOOTAGE

563.0-703.5

PROPERTY: HUNTER

DESCRIPTION OF CORE .	SAMPLE NUMBER	Auas	AYS
5: 5670' to 568.5': 572: 573.5': 574.2':	574.5-5770	0220	30474
5. B' (<1" bx some): 592,2" to 604.5"	5770'-580.5	2003	3047
~ 574 to ~392? (locally containing			
inlets parallel to schrittosity by I tocally			
(eta cross cut actintosite laluo front	602.3-6040	0.040	30483

ł	Sericite schiet from ~ 574 to ~ 592" (locally containing			· ·
	fuchsite and quarts veinlets parallel to schutosity but totally		Ĺ	
	quart + carbonate beir leta crass cut actintosity i also from	602.3-6040	0.040	30483
	h 599.5' to ~605'	ا	ļ	ļ
	BX: from 607 to ~609	ļ,		
	QVZ: ~ 609.5 to 610.5' (locally brown quart): 633,3 to 637.5'	613.1-614.3	Assay re	ESULT
	From ~ 611 to 621.5; abundant CX an Kerite Cupitals	614.3-615.5		0911
		6155-616,5		0912
		6165-619		0913
		619-6227		0914
	very namour (<1/20) brown chety looking QV at 616, at 45.	<u>}</u>	n n12	L
	Lo-CA	652.0-6559	mace	3-497
		655.9-656.8	0.020.051	30499
	wide about 70°-80° to CA screrally parallel to foliation	L		
	but locally cross cutting Prace py + po?) within Q.V.	·		
·	From ~ 656 to core now has an orange weather			0915
	ring rind, probably for iron carbonates	663-667'		0916
		667-669'		091
	with tourmaline hibbors parallel to win unalle);	669-670'		091
	From ~699' to 703,5' unit be comes darker, more chlo-			091
	sitic (les sericite); poss, gradually Fx brecciated (?)	673'-676'		092
	ane (N 2") near chitacte	676-679		092
		679-682		092
	hower in tact accusted by appearance of cross-	682'-684.5	[]	092
	cutting falc verlets and intrease in fale content of	<u> </u>		
	unit (thus making it softer than previous unit)			[
3.5-743.9	TALC SCHIST	<u> </u>		[
<u> </u>	QVZ: 714.5; 723 to 724.4 (CORE FROM 724.4 to 725.4 NOT	714-715		092
	IN BOX): 728 to 728.8 (SAMPLE J. Kirwin from 728.4' to 728.8');	723-724.4		092
	734. 8'to 735.4' (Q-Ankerite - Tourmaline?); massive	728-728.8	A	0,2 HI 0926
	Lower contact sharp at N90° to CA; some tale near contact.	734.8'-735.4'	1	092
,		742.8-7439	₽ -	092

PAGE 4 . F DIAMOND DRILL LOG. PROPERTY: HUNTER مېرونې د مېر د و. مېرونې د د د د د د د د HOLE NUMBER: # 5-86-14

the second second

, (°,

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS	
743.9-751.0	QUARTZ FELDSPAR, FORPHYRY DIKE	7439-747.0	092	9
	Cream to white to coloured, trace pupite and local threa	-		
	like black veinlet, rand only oriented poss, tournaline	747.0 -751.0	093	a
	locally cut by randomly oriented clear quart veinlets;	┠╂		
	recuptablized Lex ture.			
	Lower Erstact sharp at ~40 to CA;			
751.0-766.3	TALC SCHIST	759.4-760.3	093	\square
	QVZ: 759.4' to 760.3'			
	Lower co. Lact starp at rer to CA, subparallel to			
	ferrallen sundary of stin anuts			
766.3-807.0	METASEDIMENT			
	Locally finely barded locally deformed (kinked and	1		
	microfaulted);	 	<u></u>	
	Gray to dark gray: to black; appears to contain	 		
	ankerite for first 1/2 feet (now has an orange-			
· · · · · · · · · · · · · · · · · · ·	(No graded bidding to determine tops)	<u> </u>		
			· · · ·	
807.0'	EOH			
		<u> </u>		
		ļ		
}		ball	<u>∽</u>	
	C. Ita	$\downarrow = \downarrow$		
	(Sper			
			P 2 P -	845

DRILLING COMPANY NOREX FOREMAN ANDY R, DIP TESTS:	HUNTER S-86-15 O,916.99 (105 50 DIP A (S	CLAIM NGLE-50°16 URVEYED))
CORE SIZE BQ CORE STORED AT: SITE RELOGGED BY R.BALD FOOTAGE DESCRIPTION OF CORE	DATE July SAMPLE	ASSAYS	ך
0'-2560 CASING (TRI-CONED THROUGH SOAPSTONE)	NUMBER		-
-2300 CHSING [INI-CONED [HAUGGER SOMPSTONE]			-
560'-4695' TALC SCHIST (SOAPSTONE)			1
Bleached sections as holdes surrounding quart-carbon	at		1
weinlets hand only oriented net pattern possibly in "into	- 467-469.5]
mediate dyke "indit?) from ~ 432 to ~ +39" beon tain diase	- 469.5-471.0	0874	<u>.</u>
mirated FX 04		and trace	
	472.0-475	0.749 30508	
695-723' ALTERATION ZONE		V/2]
Bx: 471.2'; 477.5' to 477.9'; 480.9' to 482.2'; 483';	482,3-487	0.016130512	4
"Brooksite" vein (tan, FX, siliceous, very small quasts crystals			4
from 415.3 to 416.2 TEX pyrthe aissemine	ted	0075	4
V.G. (very FX in brown to grey ayart winlet < 14"	4875-490.0		-
wide cross cutting foliation schools site direction 49.1	490.0-493.3	0876	-
(Note: looked for V.G. from 472.0' to 475.3' moted by Anden 48	10 14933-495.0 6.2 495.0 - 496.1	0877	-
Brooks but couldn't find any	496.1'-497.4	0070	H
Bx : 493. 3' to 495' : 497.9' : 502.2' to 503. 8' : 513.9' : 515.5 : 516.8			
517.1' to 519.2' (narrow <'/2" Breccia dikes, see sample);		0.012 0000	
QVZ (brown, almost parallel to CA because, only on our	530-570	0.029 305/7	
pide 57 core): 495.6' to 496.1'		0.039 305/8	
	20 5220-526	0,006 30519	1
with less chlorite	7		1
Bx: 536.2' to 536.5'; 537.0 to ~ 565.3 (local zones) of schist			1
but cut by narrow precia zones): 567.5']
QF Porphyny? (no pheno crypts) on provon Q. V.?, lo cally brecon	ia	Tall]
Led: 555.4" to 564.0: 565.0' to 565.3' (these measurements	D_{Λ}	1 AVAIL	1
are approximate, cone appears to be jumpled here)			-

30537 mitter on an affration fifthe

•.j

 $(x_i)^{2}$

• • (•

1	(, · · · ,	PA(GE 2 .	ie 🔿
	DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NU			'
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
69.5-723	ALTERATION ZONE (CON'T)			
	V.G. noted by A. Brooks at 563.3 (this piece of	563.0-563.5	0.089	3053
	core no longer in the box; "given to E. Davis").			
	local para the	565.3-568,0	0.011	3053
	Sericite schist with Q. Veining from ~567.5 to 587.5 with			
	local white carbonate - rich veiplets and local fuchsite;			·
	QVZ: 600.8' to 601.0' (chlorite and tournaline, @75-			
	80° to CA; no sulphides seen);			
	Local sericite Schipt sections in mainly chlorite			
	schist from ~ 587.5 onward.			
	610,8 to 615,5 : atz-Ankerite Rock : bull grey-brown : massi-			
	ve irregular barren ~ 20% overall beining of amorphous silica			
	stringers 0-70° to CA; nil py; slarp upper contact at			
	70° to CA: 3% overall dark "eyes" < 0.16" diameter of			
<u></u>	magnetite; lower contact gradational (a 75° to CA" (A. Brock			
•	100 MX			
	Bx: 643 to 647; 649 to 652.4'; 655.6' to 658.9'; 661 to			
	662.3; 664.3' to 665.2'; 669. ;		L	
	QV's (brown-chesty looking): 659.5' (~1"); 664.1' (< 1/2"); locally			
	throughout Bx: 1684.5 to 684.9 (Tregular more than sie?)			
	0VZ:6663 to 666.8 (irregular)	· · · · · · · · · · · · · · · · · · ·		
	Kinks at 667.5			
	chloritic@~675 brownich			
	Bleached sericitic-quarte section From ~ 86' to ~ 689.5':			<u> </u>
	possible foliated DEP? Vor felsic Fagmental?	l		
	Becoming da Fer from ~ 714' to hower contact			
	Lower contact denoted by sudden appearance of cross-	1		
	cutting tale veinlets and softer core (scrattched by fingernail)			
		ļ	<u> </u>	
23'-795.0			<u> </u>	
	QV (brown with trace CX py): 737.3 (< 1/2", cross cutting ful =)	737-737.7		0932
	739.5 (low angle to CA ~ 1/2 "17.	737.7-738.0		093
·	QVZ: 737.7' to 738.6': 741.8' to 744 (with possible slightly	738.1-741.5	1	093
	pink QFP? from 743 to 743.2			h
•	QFP? or QV: 746,0 to 747,3 white to locally pinteish	D .	My a	
	cross cut by at grey ankerite windets sharp contacts at 25 4	LAD	1-Dal	<u>۹</u>

DIAMOND DRILL LOG. PROP

.

ī

PROPERTY: HUNTER

PAGE 35/30 HOLE NUMBER: 5-86-15

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSA	YS
723-795,0	TALC SCHIST (CON'T)			
	Bx: (with cx white rarbonate crustals) 747,3 to			
	748,5			
	FX finely banded grey material (possibly meta sedimento)			
	from 758.4 to 760.7; 50. to CA; po-vich			
	Lower contact sharp but core split here & mixed up			
	Somewhat.		l.	
795.0-847	METASEDIMENT			
	Local bleaching (anteritic alteration?) from			
	upper contact to ~ 797		-	
	I No graded bedding suitable for etop reterminations			
:	Gray wacke & argillite			
	Near upper contact, local threadlike cross			
	auttin chilorite? veincets			
	near 829.)	· · · · · · · · · · · · · · · · · · ·		
	near 829)			
2471	Entl			
8471	ЕОН			
8471	Еон			
8471	Еон			
847'	EOH			
847 /	EOH			
847'	Еон			
847 /	EOH			
847 /	EOH			
847 /	EOH			
847 /	EoH			
847 /	EoH			
847 /	EOH			
847 /	EOH			
847 /	EoH			Δ
847 /				
847 /		Rober	To Bal	

···· , (,

.5		DAOE	1 . F	3
్రహి – కి		PAGE	1 +	
	PROPERTY H			•
	HOLE NUMBER H	5-86 -	-16	
	DIAMOND DRILL LOG GRID REFERENCE			
	$A(1) T \in STS : (a, 0) = -S0^{\circ}/6 \qquad ELEVATION TOWNSHIP 109.$	1687 (
L	DIAIVIOND DRILL LUG Onio herence ENGTH = 922 feet ALIO TESTS: @ 0' = -50° 16' ELEVATION TOWNSHIP 10,91 ENGTH = 922 feet JSO' = -50° @ 300' = -50° @ 300' = -50° ELEVATION TOWNSHIP 10,91 ENGTH = 922 feet JSO' = -50° @ 300' = -50° @ 300' = -50° @ 900' = -48° AZIMUTH/04'	25' DIP A (sur)	NGLE	-50°/(
DF	RILLING COMPANY NOREX FOREMAN Andy DIP TESTS:	(JUK)		-/
CC	DRE SIZE BQ CORE STORED AT: SITE RELOGGED BY R. BALD D	ATE JU	LY 20,	/88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASS	AYS
0-210'	OVERBURDEN			1
210 - 255	CASING (TRICONED SOAPSTONE; POOR GROUND CONDITIONS)			
	SOAPSTONE/TALC SCHIST			
232 - 3/3,5		327.5 +0	all	(10
		359.9	trace	sample.
	Tale schist (carbonate parallel vein (etc) from 320' Note: Box 4 (327'- 346') appearts to have been mixed up ha	359.9-363.2	0.092	30600
	A state of the sta	363.2-365.0	1.129*	30601
	Tage & avein material is scattered throughout box appear	365.0-365.7	trace	30602
	By 30 21/ 2" is the source of intermediate ayke	365.7-368.5	0.0131	30603
	QV: 363.4 to 364.2' with dark brown streaks through with	3685-372.2	1.299	30604
	fit i la the fit when the fit w			
	in the spectra of	3730-3770	GROUN) (oRE
	CALC A B BUILT			
	remain: Some V.G. Still in box).			
1				
	looking filds par? Xuls seen ; "2% py diss. 10 cal dark brown			·
	(tournaline?) seam randomly priented + locally associa-			
	to with impediate of the balance of the second of the seco			
			·····	
	Divening in OFP (e.g. 365.7 to 366.0' streaks not solid Q.V.)			
	4'Grind at 377' 4'Grind at' 387' but 10' & core between			
LP	377' + 387' ??); only ~4' of core between 367' + 377' tags			
	Note: host rock is tale wich on both sides of golden		/	1
	hearing silicified rome /QEP. " cross cut but day & change	01.1		↓
	tale windets up to 14" wide ! unit is dark are	Var	poll	λ
	white - grey carborate bands: NOT AZ,			

2 DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NUMBER: HS- 86-76

FOOTAGE

255-~395.

~1395,51-

418.3'

418,3-480

5'

ha

SOAPSTONE

in.

Gra

TALC

Ъ.

DESCRIPTION OF CORE · SCHIST CONT tar 20mode 0 O CARDSIN 4-a a 392.5 392 2mc. trong Ω +0 Voining

PAGE 20

GROC

Ð

ASSAYS

088

30606

30607

19

D Con

SAMPLE

NUMBER

377-382

382-387

129

τc

39/

-391.9

31/.9-392.8

392.8-394.5

	ATEDATINI TANK			4
-	ALTERATION ZONE	394.5-397.5	0.011	ĺ
		297 1100		ł
	Qui 2001 willand I will and the start of the	397.5-4020	0,004	l
-	BX: 398' ;~402' to ~ 406.8' including OFP(?)/Q.V. at 403.9'	402 0 +0)	all	Í
_	(about 7 10ng), and area-brown, U.V. Hob 5" to How Mr. Hop - 1 11/20	424 . ()	1	İ
	including Brown-tan & white Feldspan Porphyny / visible	TATIO	TTACL	ŀ
1	1.4 A for any the teraspan for physical wisible			l
4	while perdapan phenocurate from 410-7' to 21/2.			ſ
	white beldspan phenocursto) from 410.7' to 411.2; QFP (tan + white): 417' to 418.3'			ŀ
1				l
r				ſ
	CHLORITE SCHIST (Poss, Fe tholeiite? -> magnetite)			ł
T	h i - magnente		· · ·	i
╉	Dark green with white - fan ankerike fanante wirlet			ſ
1	paraelel to foliation ; local magnetite (Arden Brooks'			r
I	11 and the prooks			

109 9 2 6 m.n 75-80 ina purit Fron 455.5 increa 40. SLA ي ا

480-639.5 ALTERATION ZONE all trace لصمورة RF ·P?, 40 487.3 425.4 0.007 S З 10~487.6 511.5 501.2 Inca da 'C ate · 526 8 boun d .01 0.013 505.2 to all 52 530.9 \sim 6 541.7 trace Samp : critains somes a ta っ Tren H ab "fron over

PAGE 50 DIAMOND DRILL LOG. PROPERTY: HUNTER HOLE NUMBER: 45-86-16 SAMPLE ASSAYS DESCRIPTION OF CORE ' FOOTAGE NUMBER CONT 480-639.5 nock Dossibl "Quast 0886 0887 ନଟନ **NF** 0892 587-590 0900 639.5-658.2 TALC SCHIST (14 about 25% locally 5945 to 10~656.5 лII 645 Ovens overa 639.0' taining ~ 80% trace samples SCO 645.0 to all 5 Samples 661.0' 658.2-659.2 METASEDIM trace kan alc 719.4 +0 all 13 bra CA Jo. Roz NOP In 767.0' trace Samples 659.2-720.4 TALC SCHIS Brooks OV Sec 719.4' · DBC Tany unit mich イ TAL ¢ SCH! 157 Sikela me usha Hry-5: 10 1.05 908.1-909.4 (901 720.4-922.0 0902 HATASET IL EL Arai detel mi INAC : no ma L EON 6 922Æ EOH 91 12.5 3.1 (CX Ken in Ro QV'S at 908.140 10

···. . (.

42.50	sampling = 548,7 +0 553,7, 557,0 - 364,3; 377.7 +0 379.3; 394.5 - 534,0; 541,0'-563.5; 707.0'-734.0.	- 401.	5 (
		PAGE	1. 3
	PROPERTY Hu		· •
	HOLE NUMBER H	5-86-	19
,	DIAMOND DRILL LOG LENGTH = 734 fast GRID REFERENCE DO' = 106°AZ, -49°, surveyed @150' = -50° TOWNSHIP		
ن من ا	$e^{3} = 106^{\circ} AZ, -49^{\circ}, surveyed (2)50 = -50^{\circ}$ TOWNSHIP $e^{3} = -51^{\circ}$ $e^{450'} = -51^{\circ}$ AZIMUTH IN	, C	LAIM
		19 DIP AN	NGLE - 48° 50
DRI	ILLING COMPANY NOREX FOREMAN DIP TESTS	(54R)	1.65 IEYED)
CO	RE SIZE B& CORE STORED AT: Minssite RELOGGED BY R. Buld D	ATE Aug	, 2/88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
5-124	ONER BUIRDEN	NUMBER	
124 - 1871	CASING (TRICONED THRONGH DOPHETTARE)		
	CHERCONED PRINTING CONTRACTION		
197- 329.5	SOAPSTONE		
	Possible finalt gone ?? very breecisted, Alips, deformed,		
:29.5-441,57	Free 129 5 Ja 200 - MAL AL		
	The ack of the Brooks (og)		
	QFP?: 350.7 to 351.7 (dark grey-white: Dossible and day		
i,	QFP : : 350.7 to 351.7 (dark grey-white: possible Lodder cins? in intermediate dike?) - 358.8 to 362.3 (docally pinkish		
c	ut by milky white CX Rtz vein 5); 373, 7' to 377, 3' (Incally pinkish,		
¢	ream-coloured or dark grey: locally clearly folding in	local tout	malue
7	- OTTO TO STELL - Solo Davien Ush the out	×	veinfeits)
	1" unde each) with stringers @ 5-15 to CA" (A. Brooks 1/04) "398,2' to 399,2'-5 "Brooksite" unito (<1" Lach)@ 35-40 to A. Lacal Silification		
C	A FILL ALLION + 10 DY LINE A FILLS LOW	· · · · · · · · · · · · · · · · · · ·	
	415.7 - 417.8 - Similar 18 394.5 - 399.2': 35% - 40% Utinum		
	verall commonly (2 60-70 to (A (A. Brooks' /09)		
4	increase in anterite content		
	Lower contact appears, sharp, parallel to latistim-		
<u>S</u>	chistosity of both units @ ~ 60-70 + 1 CA		<u> </u>
		1 all	Rid
		sour -	Pro-

DIAMOND DRILL LOG. PROPERTY: HUNTER

۰.

.

PAGE 2 . HOLE NUMBER: H 3-86-19

.3

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	Au ASS	AYS
441.57554	ALTERATION ZONE	4425-448	0.014	20740
	Dark green childritic from lippen contact to ~ 441.8	443.5-448.0 449 -450.7	0.012	30749
	them becomes light green to khake coloured scricite	450,7-454.0	12,0025	3.750
	schipt with cathola T. + at and T. I all the		0.00-	120100
	BX: ~459' to ~485' (with quartz win a ones barten white)	1		<u> </u>
	BX: ~459' to ~485' (uith Quents is a gores barren white) QVZ: ~464.5' to 465.5', 469. 2' to 470.5', 475.5' to 476.0'			1
		#80.2-#85	0.030	3:759
L	Bx: 487.5' to 493, 5: 506.4' to 506.9':	H05-487'	0.007	30760
	Becoming dark green, chloritic how ~495	497-4925	10004	20761
	474.8-475.1. 478.84 479.3- coffee brown colourisd vine-	490.5-4935	18.005	30762
	nel pipete + (a incanda a a cas Le A "/A Group & 100)			
	BX: 513 to 524.5': 532 to 21533.5': 544 1 544 9'(1) HOV	<u>}</u>		
	QVZ: 515.5 to 5172 (alallor and to CO) ~5205	4995-504.0	adic	30765
	JOIL TO OCL S LUSTL. CA DIOUS			
·	Qtz (?) very hand, irregula, vein=);			
	NOTE: 5340 to 536 is split in box but no assay	534'-536'	SPLIT	247 NO
	result is reported in log and is not indicated as			
	being split vin log)	536-538,5	_	0935
	QFP: ~5422 40 542.5 (core mixed up: very silicified	638.5-540		0936
	aut by milky white Feldspar + Qtz veinlets, OFP is	540'-541'		0937
	licht brown - tan looks cherty Irackystallized: 544.91			
	to 545.4 (pinkish with black tourmaline veirlets, cut by			
	glasser (VVS: local way small white subidant Edition			
	phenocrussto in Dink noticial			
	QV : ~540.0" (< 1/2 " unde, brown ; ~ 90 * to CA).			
	hower contact gradational, care becomes dank			
	grey with little or the Q! Cartovering:			
Esul-1100				
554-660.2	TALC-CHLORITE SCHIST			
	No aross- cutting his, windets. Dart un argue allogica d'alcore,			
	En il transfer the price & Lakeder		Te	
	Fault-goige 6 600.5'	<u> </u>	ber	
	Beconder dry teleose for a EE7 (chloritic for 554-587)		De	là
	Local MX materile crejelals pervasure carboro tratini)		Ŷ	
Lange and the second se	hower on that sharp at ~ 65 of to Ch. parollel to fell in burn	en: +- 5		

DIAMOND DRILL LOG. PROPERTY: HUNTEP

• • •

. (.

PAGE 3 . H

i 3

FOOTAGE	DESCRIPTION OF CORE ·	SAMPLE NUMBER	ASSA	YS
660.2-73411	TETASEDIMENTS		T	3
	hecally linely banded black angilite and any commarke			
	Locally deterned (contented thatted bedding) ' local thread.			
4	like chlorite tich cross fartings			
	Bidding ~ 45°-60° 1 CK			
	Bidding ~ 45°-60° + CA From ~ 707 ton734 bleached victions with charter			
	losping ba des burget in nend			
	No graded beddings surtable for any determinations			
734'	É.O.H.			
· · · · · · · · · · · · · · · · · · ·				
-				
·····				
· · · · · · · · · · · · · · · · · · ·				
				· · ·
		To A		
	Ω_{L}	, d		
	X 6 ^D	Bori		
	// C			
LI				P4P - 8452

· •	286 sampling = 397.7 - 425.7; 483.3 - 497.5; 507 - 637		_
	(• • •	PAGE	1,43
	PROPERTY H		· · · ·
	DIAMOND DRILL LOG LENGTH=637 (Lole GRID REFERENCE = 104°42' = 50°07' (EURIENEN) @ 2001 Jods jammed) TOWNSHIP		
	DIAMOND DHILL LOU shandoned, hods jammed) TOWNSHIP	· ·	
<u>a</u>)()	= 104°42', -50°07 (SURVEYED) @ 200'= -53° AZIMUTH 104 0'= -53° @ 630'= -54° AZIMUTH 104		
	-	N = 10	916.97
DF	RILLING COMPANY NOKEX FOREMAN ARAY DIP TESTS		
C(DRE SIZE BQ CORE STORED AT: Mine site RELOGGED BY R. BALD D	ATE Aug	. 16/88
FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
$2^{-}210^{\prime}$			
	THROUGH IT)		
10-2771	SOAPSTONE		
0-22/	Breccipted locally solt and any		
	Brecciated bally; very soft, poor core recovery	DADUT 1	OOT OF MIS
27-298	FELDSPAR PORPHYRY	227-231	
	Light grey to dark a surger FX, to, CX: locally contains	231-232	
	up To ~25% milky white white whedeal locally zoned pla-	232-237	
	groclase celdspar phenocripte in a F-fix matrix	237-242	
	consisting of fildspar and grant and which bles amount	242 - 247	
	1 maket mineralo' (tale near upper contact	247-252	
	pradually being substituted by brack amphibole);	252-257	
	To cally coorphying had in Site brecera land quart-	257-262	
	The or amphible of prenteto (randomly criented)		
	Nemy as a race ver al abo pentains a blugist	¥	
E E	and mercane mercine mara and conting along verheet		
-32-1	Upper an tact it regular and precisiated.		
· · · · ·			
	along blinlets. not sharp Gince	296-298	
	O Lower contact ~ 90° to CA but feldspan phenocrypts		
	at contact one influen a falce matrix 1	_	
	"I sample taken by Kirwin (from 283-285")		
78-301	SOAPSTONE		11
98'- 301'	Lewer contact demoted by change from chaotic, preccia-	Λι	to 1
98'- 301'		0,be	Bald

DIAMOND DRILL LOG. PROPERTY: HUNTER

1. 3

, (.

•

R.

FOOTAGE		SAMPLE NUMBER	ASSAYS
301-~508	STALC SCHIST	++	
	Alternating some BUdark blueish black sale rich	1	·
	material with carbonate and quart banding and usinens		
	and 2) Khaki to greenish grees sorres similar in structur		
	Ver sam size & texture possibly containing more		· · · · · · · · · · · · · · · · · · ·
	service te : or ankerte ? A. Brooks		/
<u> </u>	Tossible intermediate dike material in silia Cal		·
	Vericero. 775m 311.1 = 701.3 : 403.7 - 405.7 (poss, ble QF Porp?		
	brownish, FX massive ; from~ 404.7'); 414.5'-415.0' (poss. 0 FPmp)		
	with preciated host rock within ~ 2" B upper contact	<u> </u>	
	417.3'-418.5'(poss. QFP?), 423.0'- 423.7' (dark guy);		
	Local "brooksite" Bandy <1" vide		
	Local cross cutting black tale, veinleto especially	I	
	from N418- 208 (commonly suparallel to core axis but		
			
		łł	
I	~ 485.5 to 486); ~ +92'-~ 495' (with tan - yellow siliceous fragment	<u>}</u>	
I	and massive (ilonite): 509'- ~511' (menty tan- yellow fragments	<u></u>	
	with possible minor Feldspan por shipy in from the	H	
	ceous matrix?)	├ ──── ├	
	Chlorite-rich yone : (alunst marine chlorite	h+	
	to accorded with carbon ste from 486.9' - 489' 490.2' - 492'. A		- + 1 +
508-637-	CHOOLSING (POSS, proving (VE PARATURA VA 21 21	puer confo	ra grada III
LTERATION	the with movement and FMX kunte mean 51.20	I	
ZONE	Bx: ~532-537 (with possible provide chat and		
	weining from ~ 532/2' - ~ 532.7"). locally very chiprite - wich	r+	
	Chlorite schirt has a said desaid	(
·	From 535 mwald Sericite schist locally fuch site -		
·	rich with ankerite and an art veinlets	1 10 10 10 10 10 10 10 10 10 10 10 10 10	
/	herty quarts matrice and the imine the fall 2'= 501 might	517-57856	0.016 308
1 - M - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	there quarts matrice a difficient to 171 21- 500 -1	<u></u>	

· • •

0.122 30829 5843-58 ~ NO. 502 G

DIAMOND DRILL LOG. PROPERTY: LUNTER

,

e 1944

. (. .

HOLE	NU	IMI	3F	:H:	Ħ	>	-	
		_			_	r		•

PAGE

FOOTAGE	DESCRIPTION OF CORE	SAMPLE NUMBER	ASSAYS
508-37	ALTERATION PONE (CONT)	 -	
	IX anteerite rock with generity wearing, and ver betwee	<u> ∽</u>	
	Bx (possibly carbor atized? + part of Ex unit?)	┠╂-	
	Bx: 59715-606.6	├ ──── ├	
	Service schiot with local any anterite - vich	┠	
	chist and Schol with local of EoH From N 615 to EOH, core breaks up into "coins"		
	From N 615 to EOH, core breaks up into "corns"	<u></u>	
1.0-1	EOH (HOLE ABANDONED).	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	
637	EOH (HOLE ABANDONED).	tt	
		tt	
		tt	
		 	
		 	······
			
		╂╂	
 		╉┦	
		╉────┨	
		<u> </u>	
		<u>+</u> }	
		tł	
<u> </u>			
<u> </u>			
}			
	· · · · · · · · · · · · · · · · · · ·		
1			
		10	
		IK (b)	Dara
. , .			

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSIS + GEOCHEMISTS VANCOUVER UFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 887 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

.

Certificate of ASSAY

hereby cer	tily the	following	results	for sa	nples sub	mitted.	
n se provinsi provi Provinsi provinsi p	an ng An satawa sa sa sa sa sa				•	· , ···	
		E*AU-FIRE OZ/TON					:
n an		0.001 ····		e ganta que e	e al e		
A STATE OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER	.08	0.002					•
	.64	0.019			,		
52	.24	0.007					
53	5.80**	0.169		Υ.			
56	• 44	0.013					
57	.04	0.001					
	.06	0.002			,		
59	.03	0.001					
60	.02	0.001				•	
	an an an an an an an an an an an an an a	*********			****		
261	.01	0.001					
262	. 01	0.001					
63	.01	0.001					
264	.03	0.001					
265	.02	0.001				****	
666	1.54	0.045					
267	.10	0.003					
17 0	.03	0.001					
271	.17	0,005					
72	.72	0.021					
an di saban Manana di Kabula di Kabula di Kabula di K		and the second second second second			RINGST PARKEN		
	10	0.003					
74	.03	0.001				,	
175 ·	.09	0.003					
276	.04	0.001					
97	.10	0.003					
	.03	0,001		E Marken and Article			
278	.03	0.003				•	
279	.07	0.000					
	.01	0.001		-			
181	.04	0.001					
515	• UZ				*****	******	
* 1 4	SEAY TON			1 W - 1	• • • • •	a ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e ser e s Recentre de la constante de la c	/
** 54	MPLE CON	TAINS POSS	BLE META	ALLICS	100		/
				,	Xr-	· · · · /	
• • •					IG-Sh.	Man)
			- Charles and the state of the second	and have	1 CAA		
			Certifi	EU 1. Y		f-f	

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS + ASSAYERS + ANALYSTS + GLOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (804) 980-5814 OR (804) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (804) 980-9621 TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of ASSAY</u>

Company I wap I goon		File	182-994/P2
COMPANY I WAD I GODN POWER I NABIGODN AL DALL DAL DALL			IJULY 18/88 ROCK ASSAY

He hereby certify the following results for samples submitted.

	0.4449.91 D	un <mark>Giel (1994)</mark> Alexandra de la completa de
	.01	0.001
0322	. Ŏ2	0.001
323	.01	0,001
	······································	
2324	.02	0.001
0325	.05	0.001
0326 0327	.01 .09	0.001
2327 S	.04 .04	0.003
->∡Ω -== kilion tersten	. L/C)	0.002
0329	.01	0.001
0330	.01	0.001
0331	.02	0.001
0332	.01	0.001
0333	,01	0.001
03 34 03 35	.02 .01	0.001
03 36	.03	0.001 0.001
0351	.15	0.004
)352	• • • • • • • • • • • • • • • • • • •	0.001
	, 01	O. OO1
354	.02	0.001
3555	.01	0.001
356	.01	0.001
510	.01	0.001
	╾ <u>┑</u> ╬ <i>┿┫╊╄┪┫</i> ┫┓╾╸╸┿┝╼╼╼	
2520	. 1 1	0.003
	.41 1.47	0.012
	1.4/	0.043
521 522		
	1.44 3.20**	

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISIS + ASSAYLRS + ANALYSIS + GLOCHEMISIS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE:

TIMMING OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of ASSAY</u>

CONTRACTOR				File:82-994/P3 Date:JULY 19/88 Type:ROCK ASSAY
He hereby certify	_ the follow	ing result	s for samples	submitted.
Sa lin a Number	G/TONNE	RE*AU-FIRE OZ/TON		•
	1.08ac	0.032	n an tain an ta	
		0.002		
25 28		0.001		
25 29		4.385		
an al an an an an an an an an an an an an an	د مربوع مربوع مربوع درو مربوع دید مربوع مربوع مربوع مربوع مربوع مربوع	-1 e 4010707	****	
2530	.14	0.004		
2531		0.008		
2552	.02	0.001		
8 1				
* 1 ASSAY T	ON			
	********************		****	
1. €				
त्य स्थले स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्वर्थन्त्र स्व	*****	*****		
and the state of the second second second second second second second second second second second second second				
. 1				
an an An An				
	ng sa sa sa sa sa sa sa sa sa sa sa sa sa			
•				
2.2準理				
Charles And Andre States and a second second second second	4			
(1). (1).				
(.)				
	* * * * * * * * * * * * * * * *			
17項 車車 1216月21日 				
			A	> /
• 18. <u>8.</u>			/¥	\bigcirc \cdot /
			1/Kan	i ha h
		Certifi	ed by 1704	JUIMS

MINGEN LABORATORIES LTD.

Specialists in Hineral Environments

705 West 15th Street North Vancouver. B.C. Canada V7M 1T2

PHDNE: (604) 980-5814 DR (604) 988-4524

TELETIVIA USA 7601067 UC

Certificate of GEOCHEM

Company:WABIGOON RESOURCES Project:HUNTER Attention:R.BALD

Filei82-276/P1 DateiFEB 18/88 Type:RUCK A89AŸ

He hereby certify the following results for samples submitted.

in the second second second second second second second second second second second second second second second	AU DZZTON	AU 07TONNE	Sample Number
	0.001	.02	003
5 - 19 F	0,001	.01	908
	0.001	.03	9.50
	0.001	. 02	021
	0.001	.01	045
***************************************	0.001	" Ö <u>1</u>	073
	0.001	.02	577
	0.001	, 01	992
	0.001	. OŠ	594

Certified by

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

TELEX: VIA USA 7401067 90

Certificate of ASSAY

Company:WABIBOON RESOURCES Project:HUNTER Attention:R.BALD

File:82-275/P1 Date:FEB 18/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample	AU	AU	
Number	GZTONNE	DZ/TON	
00 01	.01	0.001	
00-02	.17	0,005	
00-04	.01	0.001	
00 05	.06	0,002	
00 06	.02	0.001	
00 07	.03	0.001	
00 09	.10	0,003	
00 10	.01	0.001	
00 11	.01	0.001	
00 12	.02	0.001	
00 13	.04	0.001	······································
00 14	.02	0.001	
00 15	.03	0.001	
00 16	.01	0.001	
00 17	.01	0.001	
00 18	.01	0.001	
00 19	.02	0.001	
00 22	.01	0.001	
00 23	.03	0.001	
00 24	• 04	0.001	
00 25	.06	0,002	
00 26	.03	0.001	
00 27	.02	0.001	
00 28	.05	0.001	
00 29	.03	0.001	
00 30	.04	0.001	
00 31	.01	0.001	
00 32	.06	0.002	
00 33	.02	0.001	
00 34	.12	0.004	
	*******	*********	

Certified by

MIN-EN KABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 112

E: (604) 980-5814 DR (604) 988-4524

TELEXIVIA USA 7601067 UC

· • •

Certificate of Assay

Company:WABIGDON RESOURCES Project:HUNTER Attention:R.BALD

File:82-275/P2 Date:FEB 18/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

	AU DZ/TON		AU G/TONNE	ample Imber
	0.001		.05) 35
анан алан алан алан алан алан алан алан	0.004		.15) 3 6) 37
· · · · · · ·	0.001 0.003		.02) 38
	0.001		.01	39
*****	0.001		.02) 40
	0.004		.12	• 41
	0.001		. O 1	9 42
	0.004		. 14) 43
	0.001		.02	9 44
**********	0.002		.06	9 46
,	0.001		.01	9 47
	0,003	0.003	.09	9 48
•	0.004		.14	49
	0.001		.02) 50
	0.001		.03	51
	0.007		.24	90
	0.001		.01	91
	0.001	0.001	.01	93
•	0.001		.04	95
	0.001		.03	9 9 9 6
	0.001		.01	97
	0.001		.02	98

Certified by_

MIN- IN LABORATORIES LTD.

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

rnUNE: (604) 980-5814 DR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: WARIGDON RESOURCES Project:HUNTER MINE Attention:R. BALD

File:02-202/R1 Date:FEB 19/08 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample	AU	AU
Number	G/TONNE	DZ/TON
099	.01	0.001
100	.01	0.001
101	.01	0.001
102	.02	0.001
103	.01	0.001
104		
105	.03	0.001
	. 14	0.004
106	1.05	0.031
107	. 37	0.011
108	.02	0.001
109	.01	0.001
110	,05	0.001
111	.03	0.001
112	.14	0.004
113	.09	0.003
114	.09	0.003
115	. OB	0.002
116	. 41	0.012
117	.02	0.001
118	.04	0.001

119	.17	0.005
120	.13	0.004
121	.13	0,004
122	.01	0.001

Certified by___

MIN-EN LABORATORIES LTD.

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

Fitter: (604)980-5814 DR (604)988-4524

TELEXIVIA USA 7601067 NC

Certificate of ASSAY

Company:WABIGOON RESOURCES Project: HUNTER Attention:R.BALD

File:82-2917P1 Date: FEB 20/88 Type:ROCK A98AY

He hereby certify the following results for samples submitted.

Sample Number	AU GZTONNE	AU DZZTON	
0235	, 01	0.001	
0236	.02	0,001	
0232	. 01	0.001	
923 8	. 01	0.001	
02239	.03	0.001	
0240	.02	0.001	
0254	, 02	0.001	
0255	.08	0,002	
0268	.01	0.001	
0288	, 05	0.001	
0286	.09	0.003	
0300	4.52	0.132	
0316	.01	0.001	
0318	, 0.3	0,001	
0320	.02	0,001	
0123	.04	0.003	
0124	. 01	0.001	
OJ 25	.02	0.001	

Certified by -7 6--

MIN-EN LABORATORIES LTD.

.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 112

E: (604)980-5814 OR (604)988-4524

TELEXIVIA USA 7601067 SC

Certificate of ASSAY

Company:WABIGOON_RESOURCESFile:82-292/PlProject:HUNTERDate:FEB_22/88Attention:R.BALDType:ROCK_ASBAY

He hereby certify the following results for samples submitted.

AU 87770N	AU GZTONNE	Sample Number
 0.001	.02	0126
0,001	.03	5127
0.002	.06	01.58
0.029	1.00	5129
0.001	.03	54.30
 4.433	152.00	film f.w.
0,150	17. I (3	C-2*
1.218	41.76	FC) 25 8

. *BEADS RETURNED.

.212:4342

certified by Europe

HIN ON LABORATORIES LTD.

一下

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 1T2

E: (604)980-5814 DR (604)988-4524

TELEXIVIA USA 7601067 UC

Certificate of ASSAY

Company:WABIGODN RESOURCES Project:HUNTER MINE Attention:R. BALD

File:82-3147Fi Date:FEB 22788 Type:RDCK A88AY

He hereby certify the following results for samples submitted.

Sample	AU	AU		
Number	GZTONNE	DZ/TON		
01 31	. 10	0.003	*****	****
01 32	.01	0.001		
01 33	.02	0,001		
01 34	.01	0.001		
01 35	.05	0.001		
01 36	.01	0.001		
01 37	.08	0.002		
01 38	.03	0.002		
01 39	.01	0.001		
01 40	.01	0.001		

01 41	.01	0.001		
01 42	.16	0.005		
01 43	.01	0.001		
01 44	.01	0.001		
01 45	.01	0.001		
01 46	. 10	0.003	** **************************	*****
01 47	.02	0.001		
01 48	.01	0.001		
01 49	.01	0.001		
01 50	.01	0.001		
01 51	.02	0.001	********	
01 52	.01	0,001		
01 53	.01	0.001		
01 54	.01	0.001		
01 55	.02	0.001		
01 56	.01	0.001		
01 57	.01	0.001		
01 58	.01	0.001		
01 59	.01	0.001		
	a 141 an			

Certified by

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Ganada V7H 1T2

- .E: (604)980-5814 DR (604)988-4524

980-3814 UR (604)988-4524 TELEXIVIA USA 7601067 UC

Certificate of ASSAY

Company:WABIGDDN RESOURCES Project:HUNTER MINE Attention:R.BALD

File:82-332/P1 Date:FEB 25/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

	-	AU	Sample Number
	C	GZTONNE	vander
		*.81	2501
• · ·		.01	2502
		.01	2503
		.06	2504
		.01	2505
		.01	506
		*4.28	507
		. 61	508
		.18	509
		.01	510
	***	.02	511
(.01	512
		.01	513
•		*.50	514

*SAMPLES CONTAIN METALLIC GOLD.

Certified by_

MIN-

LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 112

, ____(E) (604) 980-5814_DR_ (604) 988-4524

TELEXIVIA USA 7401067 UC

Certificate of ASSAY

Company:WABIGDDN RESOURCES Froject:HUNTER MINE Attention:R.BALD File:82-336/P1 Date:FEB 26/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample	LIA	AU	
Number	G/TONNE	DZ/TON	
0160	.02	0.001	
0161	.01	0.001	
0162	.01	0.001	
0163	.01	0,001	
0164	.01	0.001	
0165	.01	0.001	
0166	.06	0.002	
0167	.01	0,001	
0168	.01	0.001	
0169	.01	0.001	
0170	.01	0.001	
0171	.03	0.001	
0172	.02	0.001	
0173	.01	0.001	•
0174	.01	0.001	
0175	.04	0.001	
0176	.01	0.001	
0177	.01	0.001	
0178	.01	0.001	
0179	.02	0.001	
0180	. 10	0.003	
0181	.01	0.001	
0182	.01	0.001	
0183	.01	0.001	
0184	.03	0.001	
0185	.05	0.001	
0186	.03	0.001	
0187	.01	0.001	
0189	.01	0.001	
0189	.01	0,001	
**********************			*************

Certified by

MIN-EN CABORATORIES LTD.

Specialists in Hineral Environments 705 Nest 15th Street North Vancouver, B.C. Canada V7M 112

NET 141990-5814 OR 16041988-4524

TELEX: VIA USA 7601067 UC

.

•

Certificate of ASSAY

Company:WARIGUOU PESOURCES Project:HULDER MUMES Attention:R.BOLD

14

File:82-3367P2 Date:FER 2778B Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Humber	AL GZTONNE	คน 877 ⊁ £∩⊳}	
0190 0191 0192 0192 0193 0193	, 02 • 01 • 03 • 04 • 04	0.001 0.001 0.001 0.001 9.001 0.001	
0405 5496 6492 5498	. 07 . 02 . 40 . 94	0.002 0.001 0.012 0.012 0.001	

Certifien by

MIN-IN CADORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 112

- IE: (604)980-5814 DR (604)988-4524

TELEXIVIA USA 7401047, UC

Certificate of ASSAY

Company:WABIGOON RESOURCES Project:HUNTER MINE Attention:R.BALD

File:82-348/P1 Date:FEB 27/88, Type:RDCK A9SAY

He hereby certify the following results for samples submitted.

Sample	AU	AU	
Number	G/TONNE	DZ/TON	
0199	. 41	0.012	• • • • • • • • • • • • • • • • • • •
0200	.36	0.011	
0297	.01	0.001	
298	.01	0.001	
0299	.02	0.001	
0301	.05	0.001	
0302	.03	0.001	
0303	.01	0.001	
>304	.01	0.001	
0305	.02	0.001	
0306	.01	0.001	******
0307	.01	0.001	· · · · · · · · · · · · · · · · · · ·
0308	.02	0.001	
0309	.01	0.001	•

Certified by

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7N 132

For Let (604) 980-5814 OR (604) 988-4524

TELEXIVIA USA 7601067 UC

 $\sim N$

<u>Certificate of ASSAY</u>

Company:WAR1GOON_RESOURCESFile:62+361/P1Project:BUNTER_MINEDate:FEB_28/88Attention:R.DALDType:ROCK_ASSAY

We hereby certify the following results for samples submitted.

Sample Muchee	¥∆L} BZTONNE	×AU 07710N	
	. o2	ó, 001	
	. <u>6</u> 4	Q.001	
	, 01	0.001	
1 2 3 1 1 2 3 1	. 30	0.003	
3.2A	, B 2	0.025	
	, 05	0.001	
×γ Ω	. O i	0.001	
19, 13 CA	. 01	0.001	
3. 9 .0	.01	0.001	
3/ 3 I	★★★、333	0.039	1
X92	. 50	0.015	
.3\$ \$) (3	.01	Ö. 001	
3 19 4	. 02	0.001	
386	. 01	0,001	•
386	.01	0.001	
-344.3	, 04	0,001	
3 3 8	.01	0.001	
*AU-1 ASSAY	TON.		

**SAMPLE CONTAINS METALLIC GOLD.

Centified by

IIN EN LABORATORIES LTD.

Specialists in Hineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7H 112

£: (604)980-5814 DR (604)988-4524

TELEXIVIA USA 740

Certificate of ASSAY

Company:WAB1000N RESOURCES Project:HUNJER MINE Attention:R.BALD

File:82-386/P1 Date MAR 5/88 Type: ROCK ABBAY

We hereby certify the following results for samples submitted.

مربع مربع المربع ال المربع المربع br>المربع المربع		AU DZ/TON	AU G/TONNE	10
	*****	0.001	. 04	** ** *** *** ***
		0.003	. 11	
		0.026	. 90	
		0.001	. 01	
		0.003	.09	
***************************************	· · · · · · · · · · · · · · · · · · ·	0,005	.16	
		0.001	. 01	,
		0.001	.01	
		0.001	.01	
		0.001	.01	
***************************************	* * * * * * * * * * * * * * * * * * * *	0.002	.06	
t.		0,007	, 25	398
		0.001	. 05	399
•		0.001	.01	400
		0.012	. 41	401
,	** * * * * * * * * * * * * * * * * * * *	0.001	.02	402
		0.001	.03	403
		0.001	. 01	404
		0.001	.04	405
		0.001	.02	406
♦ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		0.001	.01	407
		0.001	.01	408
		0.001	.01	409
·		0.001	.03	410
		0,001	- 01	411
	****	0.001	.01	412
		0.001	.02	413
•		0.001	. O 1	414
		0,001	.01	415
		0.003	.09	416

Certified by

MIN-DEN LABORATORIES LTD.

900 163.5479

OM 88-6-L-139

THIS SUBMITTAL CONSISTED OF VARIOUS REPORTS, SOME OF WHICH HAVE BEEN CULLED FROM THIS FILE. THE CULLED MATERIAL HAD BEEN PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED IN THESE SERIES):

1 General Account - The Hunter Mine =>	See file 63.5069
Property Wabinoon Res. Inc.:	0M86-5-P-137
Property; Wabigoon Res. Inc.; John.L. Kirwin; Mar/87.	
) / 0	
	۲
· .	
	i.
ř.	

63.5479

WABIGOON RESOURCES LIMITED

OM88-6-L-139

Hunter Gold Mines Limited Silverwedge Mines Limited Gulfshore Uranium Mines Limited Canadian Soapstone Mines Limited

OMEP APPLICATION FOR GRANT. NUMBER OM 88-6-L-139. HUNTER GOLD MINES LIMITED.

Enclosed is Technical Information (in duplicate) including:

Dr. John L. Kirwan's Report dated December 20, 1988.

Dr. John L. Kirwan's Report dated October 28, 1988.

Roberta C. Bald's Report dated September 19, 1988.

Diamond Drill Logs with assays.

Dr. John L. Kirwan's Report dated Mar. 20/87 updated May 18/88. --- for background information.