

DIAMOND DRILLING

010

TOWNSHIP: Deloro

REPORT No.: 23

WORK PERFORMED BY: Placer Development Ltd.

CLAIM NO.	HOLE NO.	Footage	Date	Note
P 530704 568716	82-7	820.0	May/82	(1)

Notes: (1) #45-83

i. P

020

s.

DRILLING REPORT ON CLAIMS P.530704 & P.568716 PLACER/COMSTATE OPTION DELORO TOWNSHIP VENTURE 184 - AREA I

BY

PLACER DEVELOPMENT LIMITED

Toronto, Ontario January 1983

TABLE OF (42A06NW0133 23 DELORO

020C

15

	Pag	e
Introduction	. 1	
Location & Access	. 1	
Diamond Drilling	. 1	
Sampling & Assaying	, 2	
Geology	. 2	
Conclusions & Recommendations	, 3	
Table I Diamond Drill Hole Particulars	, 4	
Table II Diamond Drill Hole Surveying	, 4	
Appendix I Diamond Drill Logs - DEL-82-7		

List of Drawings Figure 1 Locality & Claims Map (1"=1320') After Page 1 Dwg.No.184-48 Location of DDH DEL-82-7 (1:2500) In Map Pocket

INTRODUCTION

A program of diamond drilling was completed on claim P.530704 during May of 1982 for stratigraphic information in an area of uncertain geology. It was hoped that with the resulting subsurface geology coupled with existing geophysics a valid interpretation of geology could be obtained.

LOCATION AND ACCESS

The claims presently under consideration, P.530704, P.568716 and P.568718 are all located in the northwest corner of Deloro Township within the Porcupine Mining Division. Figure 1. Access is provided by Pine Street South which is situated about 150 m west of the west boundary. Distance from the city centre of Timmins is approximately 5 km.

DIAMOND DRILLING

One inclined BQ drill hole was completed on claim P.530704 in May for a total of 249.9 metres. The drilling was completed under contract to Heath & Sherwood Drilling of Kirkland Lake. Drill hole particulars are provided in Table I and the hole is located on Dwg.No.184-48.

The drill hole was surveyed using a combination of 'tropari and clinometer during drilling. All survey data is provided in Table II.

contd. ...

after OMNR Plan M272

PLACER DEVELOPMENT LIMITED LOCALITY & CLAIMS MAP MAIN DELORO CLAIM GROUP DELORO TWP., ONTARIO NTS 42-A-6 Dec., 1982

Figure I.

SAMPLING AND ASSAYING

Sections of drill core displaying extensive quartz veining and/or sulphides were sampled for assay. Samples were routinely collected on a 1 metre interval, in zones selected for sampling, except where dictated by lithology. All core so selected was sawn in an effort to maintain unbiased sampling and preserve the geological details of the core. All samples were analysed for Au, Ag, As, Cu and Zn at Swastika Laboratories Limited, Swastika, Ontario. Gold assays were obtained by using a combined fire assayatomic absorption method with the resultant gold contents being expressed as parts per billion (ppb).

GEOLOGY

A detailed description of the rock types encountered in the drilling phase is presented in the Diamond Drill Log provided in Appendix I. The volcanic section as provided by the drilling is essentially one of multiflow tholeiitic basalts. Pillow selvages associated with vesicles and/or varioles are prevalent throughout as are coarse flow bases. Detail study of the spatial relationship of the vesicles and the pillow selvages strongly suggest a south facing overturned sequence. This would support surficial expression of south tops further to the east. The tholeiitic basalts are relatively unaltered with minor carbonate (CaCO₃) and chlorite alteration. The typical colour is dark green and because of this, those basalts have been tentatively classified as Fe-tholeiites until such time as chemical verification.

Assay results were largely negative.

contd. ...

2.

CONCLUSIONS AND RECOMMENDATIONS

From the diamond drilling completed during the 1982 campaign it was established that the central portion of the three claim block is underlain by relatively unaltered tholeiitic basalts which are in all probability overturned to the south. The competent nature of these rocks make them a reasonable choice for host rocks and subsequent geophysical interpretation should bear this in mind. It is also recommended that the geology of the southern part of claims P.568716 and P.568718 be established by an additional stratigraphic drill hole.

Respectfully Submitted,

DDD/of

Davidson

Drill Hole Number	<u>Locat</u>	<u>ion</u>	Azimuth <u>Drilled</u>	Dip	Final <u>Depth</u>
DEL-82-7	L1+50E,	5+50S	170 ⁰	-45 ⁰	249.9 m

<u>TABLE</u> Diamond Drill Hole Particulars

TABLE II

Diamond D	<u>rill</u>	Hole	Surveying
-----------	-------------	------	-----------

Depth	<u>Azimuth</u>	<u>Dip</u>
Collar	170 ⁰	-45 ⁰
61.0 m		-470
122.0 m		-46 ⁰
183.0 m		-430
246.0 m	173 ⁰	-41 ⁰
	<u>Depth</u> Collar 61.0 m 122.0 m 183.0 m 246.0 m	DepthAzimuthCollar170°61.0 m122.0 m183.0 m173°

APPENDIX I

(

Diamond Drill Logs - DEL-82-7

-5-

HDLE DEL82007 PLACER DEVELOPMENT LTD.,V.184,COMSTAT-DELORO DELORO TWP.,TIMMINS,ONT. CLAIM ND. 530704 and 568718 GRID NORTH -550.00 GRID EAST 150.00 GRID AZIMUTH OF HOLE 180.00 VERTICAL ANGLE -45.00 TRUE AZIMUTH OF HOLE 170 TOTAL DEPTH OF HOLE: 249.90mt. Logged by: C.G.Keech on (day/sc/yr)...22MAY82 Drilled by: Heath and Sherwood (sc/yr)...MAY82

FROM 0.00MT. TO 51.BONT. DVERBURDEN SAND CASING TO 53.35 METRES.

FRON 51.80MT. TD 69.20MT.

light grey IRON THOLEIITE with VARIOLIES PILLOWS Structures noted: MICROVEINS dip 85, MICROVEINS dip 50 17 DUARTZ as microveins .3% PYRITE as disseminations and scattered crystals 17 LEUCOXENE as blebs 2.5% CALCITE as microveins 1% PYRRHOTITE as disseminations and scattered crystals

> PILLONED VARIOLITIC FLOW TOP. CENTRE OF PILLONS MORE FELSIC.

FROM 69.20MT. TO 78.90MT.

medium green IRON THOLEIITE with PILLOWS VARIOLIES Textures noted: MASSIVE, AMYGDALDIDAL Structures noted: MICROVEINS dip 50, 1% QUARTZ as microveins .3% PYRITE as disseminations and scattered crystals 2.5% LEUCOXENE as blebs 2.5% CALCITE as microveins

> ONE FLOW UNIT WITH PILLOWED SECTION DOWN HOLE TOPS MAYBE DOWN HOLE , IE TOPS TO SOUTH.

FROM 74.30MT. TO 74.45MT. .3% of this subinterval is QUARTZ VEIN with 30 % CALCITE

CONTAINS MINOR AXINITE (1%) AT TOP OF VEIN.

FRDM 75.30MT. ID 75.70MT. 2.5% of this subinterval is BUARTZ VEIN with 40 % CALCITE CONTAINS 10 % AXINITE AS PATCHES.

FROM 78.40NT. TO 78.65MT. 1% of this subinterval is QUARTZ VEIN

1

QUARTZ VEIN with 40 % CALCITE CONTAINS 5% AXINITE AS PATCHES. CUBIC PY AT UPPER CONTACT. FROM 78.90NT. TO 114.80MT.

. •

medium green IRON THOLEIITE Textures noted: CRENULATED , BANDED , SCHISTOSE 1% QUART2 as microveins .3% FYRITE as disseminations and scattered crystals .1% LEUCOXENE as blebs 2.5% EPIDOTE as microveins 5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization

CONTACT SHARP.

FROM 80.80MT. TO 87.40MT. 100% of this subinterval is

> dark green IRON THOLEIITE with 5% LEUCOXENE 5% LEUCOXENE as blebs 5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization

FROM 105.15MT. TO 114.80MT. 20% of this subinterval is

QUARTZ VEIN with 30 % CALCITE

.01% TOURMALINE as disseminations and scattered crystals .3% PYRITE as disseminations and scattered crystals 02-CA VEINS RANGE IN WIDTH FROM 1 TO 10 CM .

FROM 114.BOMT. TO 123.60MT.

medium green IRON THOLEIITE Textures noted: MASSIVE .01% PYRITE as disseminations and scattered crystals 2.5% LEUCOXENE as blebs 5% EPIDOTE as microveins 5% CHLORITE as pervasive mineralization 1% CALCITE as microveins

PATCHES OF BUFF, FINE BRAINED SILICA.

FROM 123.60MT. TO 174.50MT.

dark green IRON THOLEIITE Textures noted: MASSIVE 11 QUART2 as microveins .3% FYRITE as mucroveins 5% LEUCOXENE as blebs 1% EPIDOTE as microveins 2.5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization

CALCITE ALTERATION INCREASES DOWN HOLE.

FROM 123.60MT. TO 125.10MT. 100% of this subinterval is light green IRON THOLEIITE with VARIOLIES 1% BUART2 as microveins .01% FYRITE as euhedral crystals 1% LEUCOXENE as blebs

2.5% EPIDDTE as microveins 1% CALCITE as microveins POSSIBLY A FLOW TOP, NO FLOW CONTACT DBSERVED. FROM 135.00MT. TO 139.80MT. 100% of this subinterval is dark green IRON THOLEIITE Textures noted: FOLIATED , CRENULATED Structures noted: FDLIATION dip 40, 1% BUARTZ as microveins .1% PYRITE as euhedral crystals 1% LEUCOXENE as blebs 1% EPIDOTE as microveins 2.5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization FROM 154.55MT. TO 154.90NT. 100% of this subinterval is BUARTZ VEIN with 20 % CALCITE 1% PYRITE as microveins INCLUSIONS OF FETH CONTAINS 5 % LEUCOXENE . FROM 156.55MT. TO 157.70MT. 90% of this subinterval is DUARTZ VEIN with 30 % CALCITE 1% TOURMALINE as microveins .1% PYRITE as disseminations and scattered crystals .01% CHALCOPYRITE as disseminations and scattered crystals CONTAINS INCLUSIONS OF FETH. FROM 157.70MT. TO 160.65MT. 100% of this subinterval is dark green IRON THOLEIITE 1% BUART2 as microveins 2.51 PYRITE as euhedral crystals 2.5% EPIDDTE as microveins 2.5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization FROM 174.50NT. TO 189.15MT. medium green IRON THOLEIITE Textures noted: MASSIVE 1% DUARTZ as microveins 13% PYRITE as disseminations and scattered crystals 5% LEUCOXENE as blebs 1% EPIDOTE as microveins 5% CHLORITE as blebs 2.5% CALCITE as microveins 02-CA VEIN, 5 CH WIDE AT 172.0 H .

FROM 165.75MT. TO 167.30MT. 100% of this subinterval is OUARTZ VEIN with 40 % CALCITE .01% PYRITE as disseminations and scattered crystals

FROM 187.40MT. TO 168.15MT. 100% of this subinterval is

> light green IRON THOLEIITE 1% DUARTZ as microveins 2.5% PYRITE as euhedral crystals 5% EPIDOTE as microveins 5% CHLORITE as pervasive mineralization 5% CALCITE as microveins LOWER CONTACT AT 5 CM WHITE 02-CA VEIN.

FROM 188.15MT. TO 205.50MT.

medium green IRON THOLEIITE Textures noted: MASSIVE Structures noted: FOLIATION dip 40, 2.5% BUARTZ as microveins .01% PYRITE as disseminations and scattered crystals 5% LEUCOXENE as blebs 5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization

> THIS UNIT IS COARSER GRAINED, CENTRE OF A FLOX OR POSSILBLY A DYKE OF FETH COMPOSITION.

FROM 189.40MT. TO 190.25MT. BO% of this subinterval is

> DUARTZ VEIN with 30 % CALCITE .3% TOURMALINE as microveins .1% PYRITE as disseminations and scattered crystals DDNTAINS INCLUSIONS OF FETH (20 % INCLUSIONS)

FROM 196.SONT. TO 200.90MT. 100% of this subinterval is

> nedium green IRON THOLEIITE Textures noted: FOLIATED, CRENULATED Structures noted: FOLIATION dip 70, 2.5% QUARTZ as microveins .3% PYRITE as disseminations and scattered crystals 5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization CONTACTS GRADATIONAL.

FROM 204.90MT. 10 205.50MT. 90% of this subinterval is

> BUARTZ VEIN with 30 % CALCITE .01% PYRITE as disseminations and scattered crystals CONTAINS INCLUSIONS OF FETH (10 % INCLUSIONS)

FROM 205.50MT. TO 242.90MT.

Ļ

medium green IRON THOLEIITE with VARIOLIES 2.5% DUART2 as microveins .01% FYRITE as disseminations and scattered crystals .3% CHALCOPYRITE as disseminations and scattered crystals 2.5% CALCITE as microveins .01% ARSENDPYRITE as disseminations and scattered crystals PILLOW CENTRES ARE MORE FELSIC. POSSILBE FLOW TOP.

FROM 212.40MT. TO 232.20MT. 100% of this subinterval is

> nedium green IRDN THOLEIITE Textures noted: MASSIVE Structures noted: MICROVEINS dip 40, MICROVEINS dip 70 1% QUARTZ as microveins .01% FYRITE as disseminations and scattered crystals 2.5% LEUCOXENE as blebs 2.5% LEUCOXENE as blebs 1% CALCITE as microveins 1% CALCITE as microveins BOTH CONTACTS GRADATIONAL.

FROM 242.90MT. TO 246.50MT.

dark grey INTERMEDIATE TUFF with BUARTZ , FELDSPARS, 6EN. , and 30.% CALCITE 1% BUARTZ as microveins .01% PYRITE as disseminations and scattered crystals 5% SERICITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization

> EDTH CONTACTS SHARP, CONTAINS POSSIBLE QZ SHARDS, FELDSPAR CRYSTALS, AND LITHIC FRAGMENTS.

FROM 244.70MT. TO 245.70MT. 100% of this subinterval is

> medium green IRDN THOLETITE Textures noted: BANDED Structures noted: BANDING dip 40, 2.5% QUART2 as microveins .01% PYRITE as disseminations and scattered crystals 5% CHLORITE as pervasive mineralization 2.5% CALCITE as pervasive mineralization

FROM 246.50MT. TO 249.90MT.

redium green IRON THOLEIITE with VARIOLIES PILLOWS Textures noted: , BANDED 1% DUART2 as microveins .01% PYRITE as disseminations and scattered crystals 2.5% CALCITE as microveins UPPER 2.0 MEIRES BANDED, POSSIBLY SHERAED. PILLOW CENTRES ARE MORE FELSIC.

REDH

END OF HOLE.

IN-HOLE SURVEY AT 61.00 MT. GRID AZIMUTH DF HDLE 180.00 VERTICAL ANGLE -47.00 TRUE AZIMUTH DF HDLE 170

IN-HDLE SURVEY AT 122.00 MT. BRID AZIMUTH OF HDLE 180.00 VERTICAL ANGLE -46.00 TRUE AZIMUTH OF HDLE 170

TN-H		PUEV AT	246. 00 KI	r						
GRID TRUE	AZIMU AZIMU	TH OF H Th of H	DLE 183.00 DLE 173	VERTIC	al ai	NGLE -4	1.00			
IN-H	DLE SUI	RVEY AT	249.90 M1	•						
GRID TRUE	AZIMU	TH OF H	DLE 183.00	VERTIC	al a	NGLE -4	1.00			
AUMM			F	B AU P	M AS	PK CU	PK ZN	PK AS		
ALAB				WAST 5	WAST	SWAST	SWAST	SWAST		
ATYP			ŀ	-COR H	-COR	H-COR	H-COR	H-COR		
ANTH				FAAA	AA	AA	AA	AA		
RASY				FA	AA=	FIRE A	SSAY (306 AS	SAY TON)	
RASY				¥1	th Ai	N ATOMI	C ABSO	RETION	FINISH.	
A001	7390	7490	3185	5	0.0	105	54	19		
A001	7490	7590	3186	5	0.0	75	45	18		
A001	10510	10610	3187	20	0.3	91	66	3		
A001	10610	10710	3188	0	0.0	92	59	2		
A001	10710	10810	3189	20	0.2	110	64	5		
A001	10810	10910	3190	20	0.2	115	98	9		
A001	11100	11200	3191	20	0.0	84	65	29		
A001	11200	11300	3192	5	0.0	162	71	11		
A001	11300	11400	3193	Û	0.0	47	179	5		
A001	15455	15555	3194	0	0.0	61	67	2		
A001	15555	15655	. 3195	5	0.0	173	114	7		
A001	15655	15755	3196	5	0.0	221	45	3		
A001	15755	15855	3197	30	0.0	363	93	38		
A001	15855	15955	3198	5	0.3	260	97	43		
A001	15955	16055	3199	5	0.0	254	117	26		
A001	16640	16740	3200	0	0.0	15	23	1		
A001	18715	18815	3201	20	0.5	1400	320	40		
R001	18925	19025	3202	10	0.0	34	41	18		
A001	19980	20080	3203	5	0.0	87	64	13		
100A	20450	20550	3204	0	0.0	37	52	12		
A001	20910	21010	3205	5	0.0	139	77	16		
A001	21010	21110	5206	0	0.0	130	5/	19		
A001	21110	21210	3207	0	0.0	121	۵۲, ۵۵	/		
A001	23700	23800	3208 7000	5	0.0	1/4	87	1		
A001	23500	23900	3204	10	0.0	128	80	v		
A001	24230	24330	3210	5	0.0	88	۲۵ مح	1		
A001 A001	24000	24430	3211	V 10	0.0	00 51	170	1		
RUVI DACV	24400	24000	0711 0711	TAVEN	5.0 Enp	DI DETODO	17V 950010			REDONE
DAGV.	1010	1010	PEL-76	HALK	1 1/11	(LINUU	121116	nut nu	oct noon	OLCONLI
NHƏT Raqv	0000	0000 8300	DEL 78 DEL 78							
RUCA BUCA	10326	10320	DFL -70							
RASV	10770	10720	DEL 70							
RASY	15500	15500	DEL-7F							
RASY	19880	19880	DEL-7F							•
	11000		*** **							

•

Ь

RASY 24400 24400 DEL-7H RASY 24810 24810 DEL-71 /END

and here

