

42A06NW2025 2.20504

14 OGDE

Report of Work Geology of Claims 1205822, 1213116 and 1228640 Ogden Township Project

Echo Bay Mines Ltd.

Summary

Two days were spent mapping and sampling claims 1213116, 1205822, and 1228640, located in the northeast section of Ogden Township. An additional half day was spent collecting additional samples of an auriferous quartz-feldspar porphyry located on the east end of claim 1205822.

The three contiguous claims are situated approximately 600 meters north of Echo Bay's Ogden Township Property and lie immediately west of the Kennilworth Mine, a past producer of 50,000 ounces of gold.

Outcrop on the property is limited to a small hill of carbonated and fractured feldspar +/- quartz porphyry located on claim 1205822. Nine grab samples were collected from the outcrop, returning up to 1.0 gpt Au. An additional 15 sample were collected systematically across the porphyry, and although slightly anomalous, failed to return values greater than 1000 ppb Au. The porphyry appears to be one of several porphyritic bodies that have intruded into a mixed package of mafic and ultramafic volcanic rocks deposited immediately north of the Porcupine – Destor fault in Ogden Township. These porphyries are spatially associated with significant gold mineralization at the Kennilworth mine to the east, and at the Thomas Ogden Gold Mines showing to the west.

The claims have been drilled in the past with a minimum of seven drill holes. These holes generally tested the volcanic stratigraphy but failed to adequately test the volcanic—porphyry contact.

Future exploration should be focussed along this contact to test for economic gold mineralization.

42A06NW2025 2.

2.20504

OCDEN

010C

TABLE OF CONTENTS

1.0 Introduction

2.0 Property Description

3.0 Location and Access

4.0 Personnel

5.0 Previous Work

6.0 Regional Geology

7.0 Property Geology

8.0 Conclusions

FIGURES AND MAPS

		Scale
Figure 1	Location Map	1:140,000
Figure 2	Claim Disposition Map	1: 25,000
Map 1	Property Geology	1: 5,000

List of Appendices

Appendix I Assay Certificates

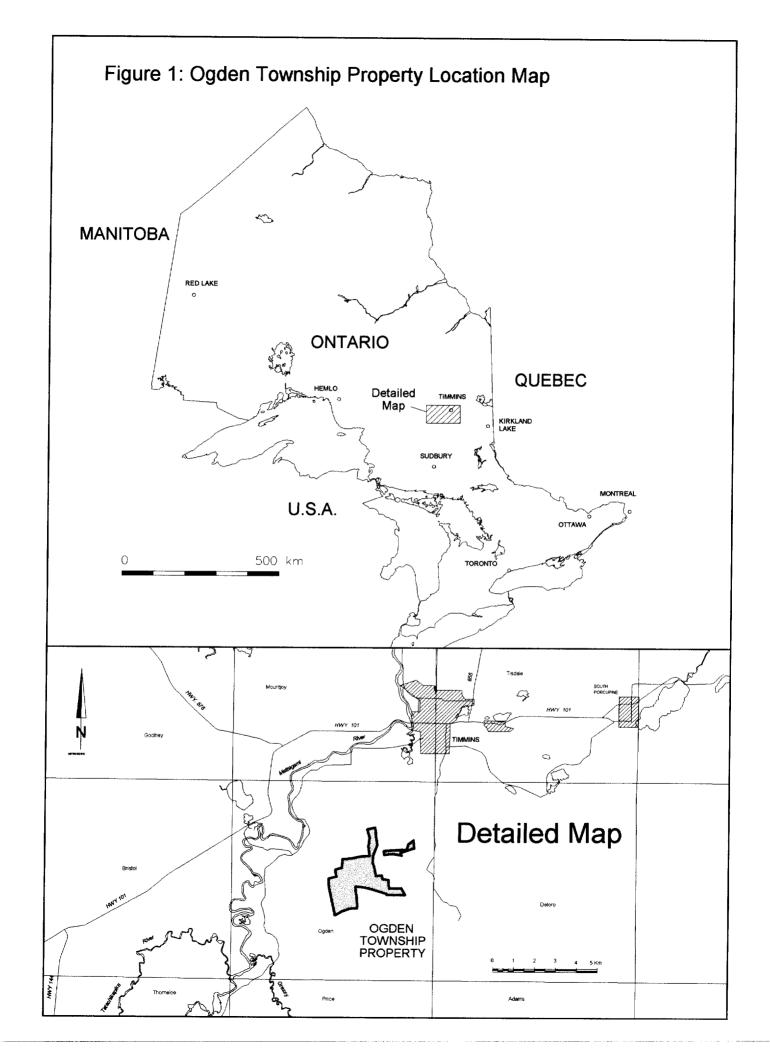
Introduction

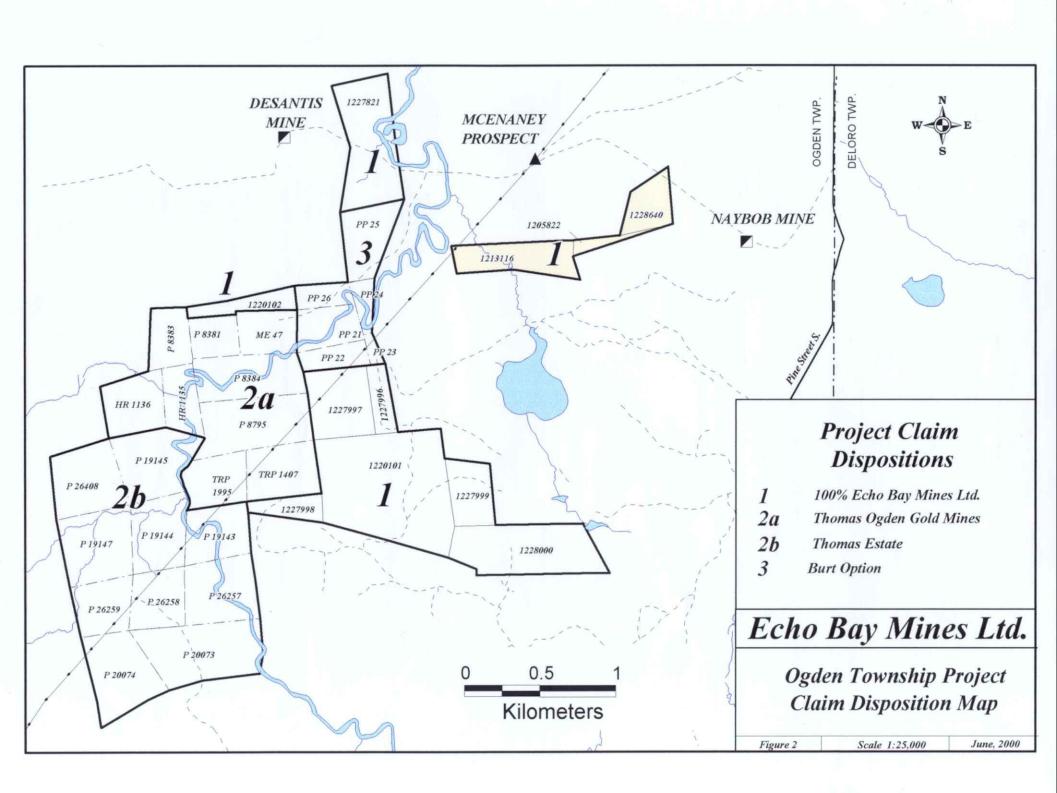
On June 14 and 15, 2000, claims 1213116, 1205822, and 1228640 located in the northeast section of Ogden Township were mapped and sampled at a scale of 1:5,000. After an initial 9 samples of a quartz porphyry located on claim 1205822 returned significantly anomalous gold values, an additional half day (July 15th) was spent collecting 15 additional samples across the outcrop.

The porphyry appears to be one of several auriferous quartz porphyry units that have intruded into a mixed package of mafic and ultramafic volcanic rocks deposited immediately north of the Porcupine – Destor fault in Ogden Township. These porphyries are spatially associated with significant gold mineralization at the Kennilworth mine to the east, and at the Thomas Ogden Gold Mines showing to the west.

Results of the survey are reported herein.

Property Description


The property consists of three contiguous un-patented mining claims (4 units) numbered 1213116, 1205822, and 1228640.


All claims are currently registered to Echo Bay Mines Ltd. of Timmins, Ontario.

Location and Access

The claims are located in the northeast quadrant of Ogden Township, approximately 6 kilometers south of the city of Timmins, Ontario.

Access to the property is via a gravel road, which intersects Pine Street South approximately 6 kilometers south of Timmins. This gravel road crosses the northeast corner of claim 1228640. To the west, the same road intersects a hydroelectric transmission line, which crosses the northwest tip of claim 1213116, 700 meters to the southwest.

Personnel

Paul Degagne completed the fieldwork, report writing and the drafting of the maps for the report. Dean Humphry of Timmins assisted the author by spending one day refurbishing the grid, prospecting and locating / attempting to locate claim posts.

Previous Work

Ogden Township was first staked and prospected shortly after the discovery of gold in the Timmins area in 1909. Significant gold production from nearby mines dates to the 1930's when the Buffalo-Ankerite and Delnite mines were brought into production.

The first detailed government geology map was produced by Hurst (1938). Previous to this, area mapping and showing examinations had been performed by Burrows (1912) and Hawley (1926). Open file Report 5012 by Carlson (1967) gives a detailed description of the geology and various mining properties in Ogden, Deloro and Shaw Townships.

Within one kilometer of Echo Bay's Ogden claim blocks, three properties (Naybob, DeSantis and McEnaney) have had underground development and two of these (Naybob and Desantis) have had a limited production of gold.

The following lists previous work performed on the three claims covered in this report, as documented in the MNDM's assessment office in Timmins:

1939

Assessment File T-327

McEnaney Gold Mines Ltd. drilled 5 holes on the present claims. Two holes were collared on claim 1228640 and intersected mafic and ultramafic flows and minor tuff and sediments. Three holes were collared to the north of claim 1205822 and drilled to the south, transecting the claim. All three holes intersected talc-rich volcanic rocks.

1984:

Assessment File T-2768

L. Bonney drilled two holes totalling 202 feet on what is now claim 1205822. The holes were drilled to test a large outcrop of quartz-feldspar porphyry. Both holes intersected porphyry with abundant quartz veining and minor sulphides. No sample results were included with the drill logs.

1984 Assessment File T-2977

In 1984, Noranda Exploration drilled hole MJ-84-05 on what is now claim 1213116. The hole, which intersected talc-chlorite schist, was drilled at an azimuth of 235 degrees to a depth of 264 meters.

In 1988, Noranda completed a magnetometer and VLF-EM survey on what is now claim 1228640. Mapping was completed on this claim in 1989.

Assessment File T-4060

A grid was cut and a magnetometer survey completed over the claims by Echo Bay Mines Limited in 1998.

Regional Geology

The property and surrounding area forms part of the southern portion of the Abitibi Greenstone Belt of the Superior Geological Province. In the southern Abitibi, metavolcanic and associated metasedimentary rocks and synvolcanic peridotitic to granodioritic bodies have been intruded by large volumes of younger aged tonalitic-granodiorite batholiths and later by granite, feldspar +/- quartz porphyry and syenite intrusives. During and after this period of magmatism, alluvial-fluvial clastic metasedimentary rocks and alkalic metavolcanic rocks were formed and now are spatially associated with regional, steeply dipping shear zones such as the Porcupine-Destor Fault Zone. The metamorphic grade of the supracrustal rocks is generally sub-greenschist to greenschist facies but reach amphibolite facies near the margins of the larger intrusions.

The volcanic rocks in the Timmins area have been subdivided into two groups; the older Deloro Group and the Tisdale Group, which by definition are separated by the 070° trending Destor-Porcupine Fault. The third major group of rocks in the Timmins area is the Porcupine Group, which is composed of clastic sediments. The Porcupine Group is thought to have formed during a period that overlaps with the formation of both the Deloro and Tisdale Groups.

The Deloro Group is made up primarily of mafic, intermediate and felsic metavolcanics. Narrow but lateraly continuous units of iron formation are hosted within the intermediate to felsic metavolcanics proximal to the Tisdale Group contact. The Tisdale Group is composed primarily of ultramafic to mafic metavolcanics with only a minor felsic component. Compositionally, the Deloro Group is calc-alkaline in nature whereas the Tisdale Group is tholeitic to ultramafic.

Within the property area, small felsic intrusions, usually quartz-feldspar porphyries or very fine grained felsite intrude the above rocks. Proterozoic aged diabase dykes cut all rock types in the area.

Property Geology

Mapping of the claims were performed on June 14 and 15, 2000 on a previously established grid consisting of 100 meter spaced wing lines with 25 meter picketed stations on each line.

The only outcrop on the property is located on TL 100N between lines 11E and 12E. This outcrop consists of a large hill of variably altered feldspar +/- quartz porphyry intruded by numerous quartz and carbonate stringers and veins. The porphyry exhibits weak to moderate pervasive sericite and carbonate alteration with generally trace to nil disseminated to cubic pyrite. Alteration of the porphyry is most intense on the east half, where fracturing, quartz veining and brecciation are common. A pit measuring 3 x 3 meters was located at 95N / 1205E on the east end of the outcrop.

Claim 1228640 is underlain by thick sand with mature jackpine growth. Mixed alder poplar and spruce underlie much of the remaining claims with the exception of a large area of wet grass and open water centered on claim 1213116.

Based on previous drilling, claim 1213116 and most of 1205822 are underlain by ultramafic flows (tale-chlorite schist), while claim 1228640 is underlain by ultramafic flows in the south, giving way to argillaceous sediments and mafic flows / tuff to the north.

An initial nine grab samples of quartz-feldspar porphyry were collected from the outcrop area including two from the pit. All samples were analyzed by Bondar Clegg Laboratories for gold, 35 element I.C.P., and wholerock analysis. Results are appended.

Several samples returned anomalous gold values greater than 100 ppb, including sample 34526, which returned 1.0 gpt. The higher gold values generally correspond to the more intensely altered samples (carbonate and sericite) with quartz stringers. Sample 34526 contained approximately 30% quartz.

After the initial results were received, an additional fifteen samples were collected systematically across the porphyry outcrop in a north-south direction. Sporadic anomalous gold values of up to 211 ppb were returned from the sampling.

Geochemical analysis shows locally elevated potassium and / or sodium values indicating alkali metasomatism of the porphyry body.

Conclusions

A mapping program of the three claim property identified a single outcrop consisting of altered quartz-feldspar porphyry. Grab samples from this porphyry unit returned anomalous gold values of up to 1.0 gpt Au. An assessment file search of old drill holes suggests that the remainder of the claims are underlain by talc-chlorite schist in the south and mafic flows and tuff to the north. These two units are separated by a thin package of graphitic argillite which trends approximately east-west through the lower part of claim 1228640.

The altered porphyry is one of several porphyry bodies associated with significant gold mineralization in the Kennilworth mine area. Although the claims have been drilled by a minimum of seven holes, the porphyry-volcanic contact has not been adequately tested. Future work on the claims should consist of drill testing this contact for economic gold mineralization.

Respectfully submitted,

Paul Degagne

Project Geologist - Echo Bay Mines Ltd.

Timmins, Ontario August 14, 2000

Appendix I Assay / Geochemical Certificates

Rapport Lab Geochimie Geochemical Lab Report

REPORT: T00-57217.0 (COMPLETE)

REFERENCE:

CLIENT: ECHO BAY MINES

SUBMITTED BY: P.DESGAGNE

PROJECT: 737

DATE RECEIVED: 19-JUN-00 DATE PRINTED: 25-JUI-00

DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	
		7117721020	DE120110H	EXTINCT TON	TIETHO	ROCK	9	-150	9	CRUSH, SPLIT	9
000621 1 AL	30 Gold	9	5 PPB	Fire Assay of 30g	30g Fire Assay - AA					PULVERIZATION	9
000621 2 Ag	Silver	9	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 3 Cu	ı Copper	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 4 Pb	Lead	9	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO:	: MR PAUL DEGAG	NE	INVOICE	TO: MR PAUL DEGAGNE	
000621 5 Zr	n Zinc	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 6 Mc	Molybdenum	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	*****	*****	*****	*****	*****	***
						This re	eport must not	be reproduced except	in full. The	data presented in th	is
000621 7 Ni	Nickel	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					Sample Number" and is	
000621 8 Cd	Cobalt	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA					n a dry basis unless	
000621 9 Cd	d Cadmium	9	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		ise indicated			,	
000621 10 Bi	Bismuth	9	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	****	*****	******	*****	*****	***
000621 11 As	s Arsenic	9	5 P PM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 12 St	Antimony	9	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 13 Fe	e Iron	9	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 14 Mr	n Manganese	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 15 Te	e Tellurium	9	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 16 Ba	a Barium	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 17 Cr	- Chromium	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 18 V	Vanadium	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 19 Sr	n Tin	9	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 20 W	Tungsten	9	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 21 La	a Lanthanum	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 22 A	l Aluminum	9	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 23 Mg	g Magnesium	9	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 24 C	a Calcium	9	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 25 N	a Sodium	9	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
000621 26 K	Potassium	9	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 27 s	r Strontium	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 28 Y	Yttrium	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 29 G	a Gallium	9	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 30 L		9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 31 N	b Niobium	9	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 32 S		9	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 33 T		ý	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 34 T		ý	0.010 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 35 Z		ý	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000621 36 S		ý	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						

34531

CHIMITEC BONDAR CLEGG

5 0.3 <5 8 <5 0.57 25 <10 23 224 10 <20 <20 29 0.21 0.06 0.01 .09 .06 7 <1 <2 1 <1 <5 <10 <.01 17 <.01

Rapport Lab Geochimie Geochemical Lab Report

CLIENT: ECHO BAY MINES PROJECT: 737 REPORT: T00-57217.0 (COMPLETE) DATE PRINTED: 25-JUI-00 DATE RECEIVED: 19-JUN-00 PAGE 1 OF 1 SAMPLE ELEMENT Au30 Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn NUMBER PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM PCT 34523 2 20 10 0.6 <5 33 <5 2.41 32 <10 39 49 40 <20 <20 74 1.61 1.89 0.46 .23 .14 137 9 4 16 2 <5 <10 .011 24 0.12 34524 3 5 13 2 9 4 0.4 <5 <5 <5 0.54 55 <10 97 116 20 <20 <20 62 0.63 0.28 0.06 .15 .30 17 1 <2 4 1 <5 <10 <.01 60 0.04 34525 6 30 1 10 6 < .2 < 5 20 < 5 0.91 22 < 10 91 107 12 < 20 < 20 68 0.63 0.38 0.38 .07 .21 57 4 < 2 3 < 1 < 5 < 10 < .01 16 0.02 34526 4 0.4 <5 17 <5 0.49 20 <10 69 122 6 <20 <20 43 0.31 0.02 0.11 .12 .25 25 25 2 <2 1 <1 <5 <10 <.01 32 0.01 34527 2 8 2 0.3 <5 9 <5 0.66 23 <10 52 157 9 <20 <20 34 0.37 0.12 0.10 .10 .17 27 1 <2 2 <1 <5 <10 <.01 23 0.01 34528 1 6 3 0.4 <5 16 <5 0.72 18 <10 106 98 12 <20 <20 54 0.53 0.08 0.11 .19 .35 42 3 2 2 <1 <5 <10 .015 42 0.01 34529 1 55 21 0.5 <5 <5 3.00 86 <10 8 150 74 <20 <20 158 2.41 3.42 <.01 .01 .04 7 3 7 28 3 <5 <10 .019 109 <.01 34530 3 6 19 2 18 8 0.4 <5 12 <5 1.14 19 <10 81 46 18 <20 <20 55 0.83 0.37 0.18 .22 .34 61 3 2 5 <1 <5 <10 <.01 37 0.06

Rapport Lab Geochimie Geochemical Lab Report

REPORT: T00-57254.0 (COMPLETE)

REFERENCE:

CLIENT: ECHO BAY MINES

SUBMITTED BY: P.DESGAGNE

PROJECT: 737

DATE RECEIVED: 06-JUL-00 DATE PRINTED: 21-JUL-00

APPROVED		ANALYSES	LOWER DETECTION	EVIDACTION	METHOD	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER		NUMBER
	ELEMENT	ANALTSES	DETECTION	EXTRACTION	METROD	ROCK	15	-150	15	CRUSH, SPLIT	15
000710 1 Au	50 Gold	15	5 PPB	Fire Assay of 30g	30g Fire Assay - AA					PULVERIZATION	15
000710 2 Ag	Silver	15	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
000710 3 Cu	Copper	15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 4 Pb	Lead	15	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ	REPORT COPIES TO:	: MR PAUL DEGAG	NE	INVOICE	TO: MR PAUL DEGAGNE	
000710 5 Zn	Zinc	15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 6 Mo	Molybdenum	15	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA	*****	*****	******	*****	*****	***
						This re	eport must not	be reproduced except	in full. The	data presented in th	is
000710 7 Ni	Nickel	15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	report	is specific to	those samples ident	ified under '	Sample Number" and is	
000710 8 Co	Cobalt	15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	applica	able only to th	e samples as receive	d expressed o	n a dry basis unless	
000710 9 Cd	Cadmium	15	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	otherwi	ise indicated	•	•	•	
000710 10 Bi	Bismuth	15	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	****	*****	*****	*****	*****	***
000710 11 As	Arsenic	15	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 12 sb		15	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
000710 13 Fe	Iron	15	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 14 Mn	Manganese	15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 15 Te		15	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 16 Ba		15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 17 Cr	Chromium	15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 18 V	Vanadium	15	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
000710 19 Sn	Tin	15	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 20 W	Tungsten	15	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 21 La	Lanthanum	15	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
000710 22 AL	Aluminum	15	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 23 Mg	Magnesium	15	0.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA	•					
000710 24 Ca	Calcium	15	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	ı					
000710 25 Na	Sodium	15	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	ı					
000710 26 K	Potassium	15	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	l .					
000710 27 Sr	Strontium	15	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	1					
000710 28 Y	Yttrium	15	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 29 Ga		15	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 3 0 Li	Lithium	15	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
000710 31 Nb	Niobium	15	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	\					
000710 32 Sc		15	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 33 Ta		15	10 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA						
000710 34 Ti		15	0.010 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000710 35 Zr		15	1 PPM	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA						
000710 36 S	Sulphur	15	0.01 PCT	HCL:HNO3 (3:1)	INDUC, COUP, PLASMA						
300, 10 30 3	outpiu	15	0.01 FG1	HOLLINGS (J.1)	INCO. COT. PLASTE	•					

Rapport Lab Geochimie Geochemical Lab Report

CLIENT: ECHO BAY MINES

REPORT: T00-57254.0 (COMPLETE)

DATE RECEIVED: 06-JUL-00

DATE PRINTED: 21-JUL-00

PAGE 1 OF 1

PROJECT: 737

																																	• • • • • • • • •				
SAMPLE	ELEMENT A	.30 A	g (ù :	Pb	Zn	Мо	Ni	Co	Cd	Bí	As	Sb	Fe	Mn	Te	Ba	Cr	٧	Sr	W	La	Αŧ	Mg	Ca	Na	K	Sr	Υ	Ga	Li	Nb	Sc	Ta	Ti	Zr	S
NUMBER	UNITS F	PPB PP	M PF	M F	PPM I	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPI	I PPM	PPM	I PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM:	PPM	PPM	PPM	PCT	PPM	PCT
																						ė															
34532		7 <	2 •	٠1 ·	<2	298	<1	139	40	0.5	<5	<5	<5	6.14	100	<10	11	177	101	<20	<20	77	4.52	6.15	<.01	<.01	.05	3	1	9	34	4	<5	<10	<.01	30 <	<.01
34533		53 <.	2	1	<2	33	<1	32	8	0.2	<5	<5	<5	1.05	188	<10	37	86	12	<20	<20	106	0.59	0.66	0.26	0.10	.08	43	5	<2	4	<1	<5	<10	<.01	95 0).04
34534		5 <.	2	2	5	63	1	36	12	0.3	<5	<5	<5	4.42	1280	<10	26	72	13	<20	<20	104	0.46	4.87	9.04	<.01	.13	1282	6	<2	3	<1	<5	<10	<.01	41 0	J. 10
34535		5 <.	2	2	2	35	<1	31	7	<.2	<5	<5	<5	1.10	182	<1(38	97	12	<20	<20	100	0.59	0.60	0.27	0.09	.07	40	4	<2	4	<1	∢5	<10	<.01	77 0).05
34536		174 <.	2	2	4	27	5	14	6	0.3	<5	25	<5	1.42	19	<10	175	49	14	<20	<20	91	0.62	0.20	0.16	0.04	.36	57	3	2	3	<1	ব	<10	<.01	7.0	0.06
															art.	÷			4000							v •						:					
34537		153 <,	2	3	8	18	<1	8	5	0.3	<5	61	<5	0.97	18	<10	181	78	3 14	<20	<20	89	0.81	0.38	0.21	0.05	.37	54	4	2	4	<1	<5	<10	<.01	60	0.02
34538		39 <.	2	9	3	14	<1	5	5	<.2	< 5	9	<5	0.91	200	<10	123	- 68	3 5	<20	<20	65	0.42	0.09	0.26	0.05	.30	54	3	<2	1	<1	⋖5	<10	<.01	8 (0.16
34539		98 <	2 '	16	3	11	1	5	4	<.2	<5	5	<5	0.90	131	<10	344	62	: 5	<20	<20	60	0.41	0.07	0.26	0.06	.30	65	3	~2	<1	<1	ত	<10	<.01	12 0). 15
3 4540		33 <.	2 :	50	2	18	1	6	4	<.2	<5	<5	<5	0.77	270	<10	270	75	. 6	<20	<20	62	0.42	0.15	0.35	0.06	.29	68	3	~ 2	1	<1	<5	<10	<.01	12 0	J.11
34541		68 <.	2 ′	17	4	7	<1	5	3	0.2	<5	36	<5	1.04	57	 <10	101	64	. 5	<20	<20	69	0.37	0.05	0.15	0.06	.29	56	2	4 2	<1	<1	⋖5	<10	<.01	12 0	J. 10
																	11000								0.00000											, 1 - 5	
34542		<5 < .	2	7	<2	20	<1	8	5	0.2	<5	<5	<5	1.05	239	<11	462	95	, ,	<20	<20	43	0.48	0.34	0.48	0.06	.24	77	3	<2	2	<1	<5	<10	<.01	15 0	0.22
34543	;	211 <.	2	3	5	7	1	4	3	0.3	<5	96	<5	1.07	45	<11	296	74			37.500	34			0.20					_	- 15 Pv		34.7		3.50	11 0	10.000
34546		<5 <,	2	1	<2	21	<1	15	7	<.2	<5	<5	<5	1.03	269	े <1।	29	54					1000	1	0.80		1,710,00		7:	_			1.0		<.01		
34547		85 <	2	5	6	15	<1	6	5	0.2	<5	16	<5	1.24			396			.57	- 18				0.52					_	111		14, 180		<.01		0.42
34548		7 <.	.2	2	<2	9	<1	6	- 3	<.2	<5	- 11	<5	0.51			68								0.07					~2	100				- 1	- 22 <	
																			-						_ ,				-	_							

Rapport Lab Geochimie Geochemical Lab Report

REPORT: T00-57217.1 (COMPLETE)

REFERENCE:

CLIENT: ECHO BAY MINES

SUBMITTED BY: P.DESGAGNE

PROJECT: 737

DATE RECEIVED: 19-JUN-00 DATE PRINTED: 14-AUO-00

DATE	NU	MBER OF	LOWER		
APPROVED ELE	MENT A	NALYSES	DETECTION	EXTRACTION	METHOD
000725 1 SiO2	Silica (SiO2)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 2 TiO2	Titanium (TiO2)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 3 Al203	Alumina (Al2O3)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 4 Fe203	Total Iron (Fe203)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 5 MnO	Manganese (MnO)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 6 MgO	Magnesium (MgO)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 7 CaO	Calcium (CaO)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 8 Na20	Sodium (Na20)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 9 K20	Potassium (K2O)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 10 P205	Phosphorous (P205)	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 11 LOI	Loss on Ignition	9	0.01 PCT	Ignition 1000 Deg.	
000725 12 Total	Whole Rock Total	9	0.01 PCT	•	
000725 13 Cr203	Chromium Oxide	9	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000725 14 Zr	Zirconium	9	1 PPM	Pressed Pellet	XRAY FLUORESCENCE
000725 15 Y	Yttrium	9	1 PPM	Pressed Pellet	XRAY FLUORESCENCE
000725 16 Rb	Rubidium	9	2 PPM	Pressed Pellet	XRAY FLUORESCENCE
000725 17 Sr	Strontium	9	1 PPM	Pressed Pellet	XRAY FLUORESCENCE
000725 18 Nb	Niobium	9	2 PPM	Pressed Pellet	XRAY FLUORESCENCE
000725 19 Ba	Barium	9	10 PPM	Pressed Pellet	XRAY FLUORESCENCE
SAMPLE TYPES	NUMBER S	SIZE FRACT	TIONS	NUMBER SAMPLE P	REPARATIONS NUMBER
DUCK	0	-150		0 AC DECE!	VCD 0

SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	
ROCK	9	-150	9	AS RECEIVED	9

REPORT COPIES TO: MR PAUL DEGAGNE

INVOICE TO: MR PAUL DEGAGNE

This report must not be reproduced except in full. The data presented in this report is specific to those samples identified under "Sample Number" and is applicable only to the samples as received expressed on a dry basis unless otherwise indicated

Rapport Lab Geochimie Geochemical Lab Report

CLIENT: ECHO BAY MINES

REPORT: T00-57217.1 (COMPLETE)

DATE RECEIVED: 19-JUN-00

DATE PRINTED: 14-AUO-00

PAGE 1 OF 1

PROJECT: 737

SAMPLE	ELEMENT	Si02	TiO2	Al 203	Fe203	Mn0	MgO	CaO	Na20	K20	P205	LOI	Total	Cr203	Zr	: Y	R h	Sr	Nb	Ba
NUMBER	UNITS			PCT				PCT			PCT	<i>(</i>)	in whitehouse					-	PPM	
34523		57.32	0.77	17.39	5.27	<.01	4.46	1.05	6.80	1.61	0.84	3.49	99.01	0.01	313	13	20	417	8	442
34524													99.90				-	149	•	1014
34525		71.03	0.50	14.94	1.84	<.01	0.84	.0.58	4.90	4.04	0.41	1.21	100.30	0.02	209	7	57	445	6	1601
34526		81.13	0.28	9.71	1.13	<.01	0.15	0.19	2.99	3.59	0.16	0.76	100.10	0.03	117	3	40	181	3	1036
34527		85.46	0.24	7.16	1.50	<.01	0.39	0.18	2.53	1.33	0.15	0.94	99,91	0.03	99	2	29	169	2	542

34528		76.04	0.42	11.73	2.34	<.01	0.53	0.25	3.62	2.27	0.22	1.42	98.86	0.03	178	4	56	206	4	968
34529		68.44	1.17	7.40	6.86	0.02	8.42	1.05	0.07	0.35	0.44	4.25	98.51	0.04	805	9	13	11	15	84
34530		60.09	0.65	20.39	3.19	<.01	1.30	0.37	7.67	2.93	0.30	2.19	99.09	0.01	249	6	74	381	7	740
34531		91.36	0.11	3.64	1.09	<.01	0.17	0.03	1.54	0.53	0.03	0.58	99.14	0.05	58	; <1	10	50	<2	136

Rapport Lab Geochimie Geochemical Lab Report

REPORT: T00-57254.1 (COMPLETE)

REFERENCE:

CLIENT: ECHO BAY MINES

SUBMITTED BY: P.DESGAGNE

PROJECT: 737

DATE RECEIVED: 06-JUL-00 DATE PRINTED: 15-AUO-00

DATE	N	UMBER OF	LOWER		
APPROVED ELE	MENT	ANALYSES	DETECTION	EXTRACTION	METHOD
000000 1 sio2	Silica (SiO2)	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 2 TiO2	Titanium (TiO2)	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 3 Al 203	Alumina (Al203)	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 4 Fe203	Total Iron (Fe203		0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 5 Mma	Manganese (MnO)	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 6 MgO	Magnesium (MgO)	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 7 CaO	Calcium (CaO)	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 8 Na20		15	0.01 PCT	BORATE FUSION	
000000 9 K20	Potassium (K2O)	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 10 P205	Phosphorous (P205) 15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 11 LOI	Loss on Ignition	15	0.01 PCT	Ignition 1000 Deg	. GRAVIMETRIC
000000 12 Total	Whole Rock Total	15	0.01 PCT		
000000 13 Cr203	Chromium Oxide	15	0.01 PCT	BORATE FUSION	XRAY FLUORESCENCE
000000 14 Zr	Zirconium	15	1 PPM	Pressed Pellet	XRAY FLUORESCENCE
000000 15 Y	Yttrium	15	1 PPM	Pressed Pellet	XRAY FLUORESCENCE
000000 16 Rb	Rubidium	15	2 PPM	Pressed Pellet	XRAY FLUORESCENCE
000000 17 Sr	Strontium	15	1 PPM	Pressed Pellet	XRAY FLUORESCENC
000000 18 Nb	Niobium	15	2 PPM	Pressed Pellet	XRAY FLUORESCENC
000000 19 Ba	Barium	15	10 PPM	Pressed Pellet	XRAY FLUORESCENCE
SAMPLE TYPES	NUMBER	SIZE FRAC	TIONS	NUMBER SAMPLE	PREPARATIONS NUMBER
ROCK	15	-150		15 AS RECE	IVED 15

REPORT COPIES TO: MR PAUL DEGAGNE

INVOICE TO: MR PAUL DEGAGNE

This report must not be reproduced except in full. The data presented in this report is specific to those samples identified under "Sample Number" and is applicable only to the samples as received expressed on a dry basis unless otherwise indicated

OTHERWISE INDICATED

Rapport Lab Geochimie Geochemical Lab Report

CLIENT: ECHO BAY MINES

REPORT: T00-57254.1 (COMPLETE)

DATE RECEIVED: 06-JUL-00

DATE PRINTED: 15-AUO-00

PAGE 1 OF 1

PROJECT: 737

ELEMENT	SiO2	T102	Al 203	Fe203	MnO	MgO	CaO	Na20	K20	P205	LOI	Total	Cr203	Zr	Y	Rb	Sr	Nb	Ba
UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM
	58.28	0.71	11.21	11.02	0.02	12.56	0.06	0.09	0.55	0.04	6.11	100.70	0.05	358	2	18	9	6	801
	63.60	1.22	18.69	1.77	0.03	1.25	0.47	9.46	1.16	0.05	1.66	99.38	0.03	658	15	20	259	17	298
	37.11	1.00	6.62	5.94	0.15	7.88	14.20	0.12	4.83	0.04	21.78	99.69	0.01	575	15	61	1265	11	533
	68.27	0.42	17.48	1.07	<.01	0.75	0.05	8.90	0.98	0.03	0.80	98.77	0.02	284	2	26	240	6	176
	61.20	0.76	20.51	3.26	<.01	1.07	0.30	5.85	4.20	0.27	2.50	99.95	0.01	306	7	95	308	9	1425
	70.64	0.57	15.08	2.63	<.01	1.29	0.37	3.55	3.30	0.30	2.06	99.80	0.02	235	6	81	216	5	1526
	68.59	0.53	16.07	2.49	0.03	0.62	0.45	5.16	3.78	0.26	1.68	99.67	0.02	218	5	80	417	. 6	1486
	68.36	0.52	16.20	2.45	0.02	0.53	0.56	5.39	3.82	0.30	2.28	100.46	0.01	217	7	73	435	6	1769
	69.22	0.50	15.73	2.15	0.04	0.67	0.60	5.03	4.13	0.26	1.57	99.93	0.02	212	6	74	425	5	1957
	70.25	0.54	15.68	2.54	<.01	0.54	0.28	5.41	3.30	0.22	1.49	100.26	0.02	214	5	73	348	7	1165
	70.41	0.45	14.17	2.14	0.03	0.82	0.78	4.22	4.64	0.25	2.22	100.22	0.09	185	6	74	497	5	2241
	69.76	0.55	15.44	2.88	<.01	0.86	0.36	2.79	4.52	0.27	2.30	99.74	0.02	221	6	106	256	7	2077
	64.39	0.34	17.91	1.71	0.04	1,41	1.36	8.39	2.07	0.03	2.48	100.14	0.01	231	2	29	396	4	361
	69.76	0.50	14.98	2.60	0.03	0.67	0.93	5.26	2.55	0.33	2.16	99.80	0.02	199	6	60	343	6	1499
	72.67	0.53	15.09	1.37	<.01	0.65	0.19	6.38	1.69	0.12	1.10	99,79	0.02	223	5	42	419	7	597
		VNITS PCT 58.28 63.60 37.11 68.27 61.20 70.64 68.59 68.36 69.22 70.25 70.41 69.76 64.39 69.76	VNITS PCT PCT 58.28 0.71 63.60 1.22 37.11 1.00 68.27 0.42 61.20 0.76 70.64 0.57 68.59 0.53 68.36 0.52 69.22 0.50 70.25 0.54 70.41 0.45 69.76 0.55 64.39 0.34 69.76 0.50	UNITS PCT PCT PCT 58.28 0.71 11.21 63.60 1.22 18.69 37.11 1.00 6.62 68.27 0.42 17.48 61.20 0.76 20.51 70.64 0.57 15.08 68.59 0.53 16.07 68.36 0.52 16.20 69.22 0.50 15.73 70.25 0.54 15.68 70.41 0.45 14.17 69.76 0.55 15.44 64.39 0.34 17.91 69.76 0.50 14.98	58.28 0.71 11.21 11.02 63.60 1.22 18.69 1.77 37.11 1.00 6.62 5.94 68.27 0.42 17.48 1.07 61.20 0.76 20.51 3.26 70.64 0.57 15.08 2.63 68.59 0.53 16.07 2.49 68.36 0.52 16.20 2.45 69.22 0.50 15.73 2.15 70.25 0.54 15.68 2.54 70.41 0.45 14.17 2.14 69.76 0.55 15.44 2.88 64.39 0.34 17.91 1.71 69.76 0.50 14.98 2.60	UNITS PCT PCT PCT PCT PCT 58.28 0.71 11.21 11.02 0.02 63.60 1.22 18.69 1.77 0.03 37.11 1.00 6.62 5.94 0.15 68.27 0.42 17.48 1.07 <.01 61.20 0.76 20.51 3.26 <.01 70.64 0.57 15.08 2.63 <.01 68.59 0.53 16.07 2.49 0.03 68.36 0.52 16.20 2.45 0.02 69.22 0.50 15.73 2.15 0.04 70.25 0.54 15.68 2.54 <.01 70.41 0.45 14.17 2.14 0.03 69.76 0.55 15.44 2.88 <.01 64.39 0.34 17.91 1.71 0.04 69.76 0.50 14.98 2.60 0.03	UNITS PCT PCT PCT PCT PCT PCT PCT 58.28 0.71 11.21 11.02 0.02 12.56 63.60 1.22 18.69 1.77 0.03 1.25 37.11 1.00 6.62 5.94 0.15 7.88 68.27 0.42 17.48 1.07 <.01 0.75 61.20 0.76 20.51 3.26 <.01 1.07 70.64 0.57 15.08 2.63 <.01 1.29 68.59 0.53 16.07 2.49 0.03 0.62 68.36 0.52 16.20 2.45 0.02 0.53 69.22 0.50 15.73 2.15 0.04 0.67 70.25 0.54 15.68 2.54 <.01 0.54 70.41 0.45 14.17 2.14 0.03 0.82 69.76 0.55 15.44 2.88 <.01 0.86 64.39 0.34 17.91 1.71 0.04 1.41 69.76 0.50 14.98 2.60 0.03 0.67	UNITS PCT PCT PCT PCT PCT PCT PCT PCT 58.28 0.71 11.21 11.02 0.02 12.56 0.06 63.60 1.22 18.69 1.77 0.03 1.25 0.47 37.11 1.00 6.62 5.94 0.15 7.88 14.20 68.27 0.42 17.48 1.07 <.01 0.75 0.05 61.20 0.76 20.51 3.26 <.01 1.07 0.30 70.64 0.57 15.08 2.63 <.01 1.29 0.37 68.59 0.53 16.07 2.49 0.03 0.62 0.45 68.36 0.52 16.20 2.45 0.02 0.53 0.56 69.22 0.50 15.73 2.15 0.04 0.67 0.60 70.25 0.54 15.68 2.54 <.01 0.54 0.28 70.41 0.45 14.17 2.14 0.03 0.82 0.78 69.76 0.55 15.44 2.88 <.01 0.86 0.36 64.39 0.34 17.91 1.71 0.04 1.41 1.36 69.76 0.50 14.98 2.60 0.03 0.67 0.93	UNITS PCT PCT PCT PCT PCT PCT PCT PCT PCT 58.28 0.71 11.21 11.02 0.02 12.56 0.06 0.09 63.60 1.22 18.69 1.77 0.03 1.25 0.47 9.46 37.11 1.00 6.62 5.94 0.15 7.88 14.20 0.12 68.27 0.42 17.48 1.07 <.01 0.75 0.05 8.90 61.20 0.76 20.51 3.26 <.01 1.07 0.30 5.85 70.64 0.57 15.08 2.63 <.01 1.29 0.37 3.55 68.59 0.53 16.07 2.49 0.03 0.62 0.45 5.16 68.36 0.52 16.20 2.45 0.02 0.53 0.56 5.39 69.22 0.50 15.73 2.15 0.04 0.67 0.60 5.03 70.25 0.54 15.68 2.54 <.01 0.54 0.28 5.41 70.41 0.45 14.17 2.14 0.03 0.82 0.78 4.22 69.76 0.55 15.44 2.88 <.01 0.86 0.36 2.79 64.39 0.34 17.91 1.71 0.04 1.41 1.36 8.39 69.76 0.50 14.98 2.60 0.03 0.67 0.93 5.26	UNITS PCT	UNITS PCT	UNITS PCT	UNITS PCT	UNITS PCT	UNITS PCT	UNITS PCT	UNITS PCT	UNITS PCT	UNITS PCT

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Transaction Number (office use) W0060.00336 Assessment Files Research Imaging

sections 65(2) and 66(3) of the Mining Act. Under section 8 of the Mining Act, this ent work and correspond with the mining land holder. Questions about this collection ient and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.



900

Instructions: - For work performed on Crown Lands before recording a claim, use form 0240.

- Please type or pnn 1. Recorded holder(s) (Attach		2050		
Manage	: /_4_/.	2050	Client Number	28711
Address P.O. Box 551 Tive	mmins, On. F	10-7E7	relephone Number	
			ax Number	705-363-222
Name			Client Number	
Address	et en		Telephone Number	
		F	ax Number	
2. Type of work performed: Ch				declaration.
Geotechnical: prospecting, sassays and work under section		ysical: drilling strippinching and associate		Renabilitation
Work Type	• ,			Office Use
mapping / geoche	emical	L_	Commodity	
. 376	<u> </u>		Fotal \$ Value of Work Claimed	\$ J,58D
Performed Day Month		2000 I	NTS Reference	
Global Positioning System Data (if available)	Township/Area Ogder	, I	Mining Division	Percupine
	Mor G-Plan Number G - 39"		Resident Geolog District	Percupine ist Jimmins'
- complete a - provide a r	oper notice to surface rights had attach a Statement of Comman showing contiguous minion copies of your technical repositions.	olders before startir sts, form 0212; ng lands that are lin	g work;	ing work;
3. Person or companies who p	prepared the technical repo	rt (Attach a list if ne	ecessary)	
Name	e - ECHO Bay M.		elephone Number	5- 363- 2366
Address P.O. Box 551	TIMMINS, ON P	4N-7F7 F	av Number	05-363-2222
Name	7,7,4,7,7,5		elephone Number	
Address		F	ax Number	- <u> </u>
Name		1	elephone Number	
Address		F	ax Number	
4. Certification by Recorded H I, Paul DEGAGNE (Print Name) this Declaration of Assessment Wo completion and, to the best of my h	, do hereby on the work to	be performed or wi		dge of the facts set forth in tme during or after its
Signature of Recorded Holder or Agent				Date Aug 3./2
Agent's Address	2 24	Telephone Number	, ,	Fax Number 27227
Ao. Box 551 Timmins	ON PYN TET	705-363 23	00	705-363-2222

0241 (03/97)

form. ,00060, 00336 Value of work Value of work Value of work Bank, Value of work Mining Claim Number. Or if Number of Claim applied to this to be distributed Units. For other performed on this assigned to other work was done on other eligible at a future date mining claims. mining land, show in this mining land, list claim or other claim. column the location number hectares. mining land. indicated on the claim map. \$24,000 \$2,825 \$26,825 N/A TB 7827 16 ha eg \$24,000 0 1234567 12 eg 0 \$4,892 2 \$ 8,892 \$ 4,000 1234568 eg 1 1 0 1205822 0 785 8**q**0 0 0 000 1690 1213 116 2 795 3 95 1228640 5 6 2.20504 7 8 9 10 11 12 14 15 2580 O 2580 795 Column Totals 1, PAUL Degagne' ___, do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done. Signature of Recorded Conder of Agent Authorized in Writing Ang. 21/2000 Instructions for cutting back credits that are not approved. Some of the credits claimed in this declaration may be cut back. Please check (✓) in the boxes below to show how you wish to prioritize the deletion of credits: 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated. 2. Credits are to be cut back starting with the claims listed last, working backwards; or 3. Credits are to be cut back equally over all claims listed in this declaration; or 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe): - country to be come Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary. For Office Use Only **Date Notification Sent** Deemed Approved Date Received Stamp Total Value of Credit Approved Date Approved Approved for Recording by Mining Recorder (Signature) 0241 (03/97) RECEIVED AUG 2 2 2000 1.1000 GEOSCIENCE ASSESSMENTS
OFFICE

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Transaction Number	er (office use)
WCCGC.	00330

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 685.

Work Type	Units of work Depending on the type of work, list the number of hours/days worked, metres of drilling, kilometres of grid line, number of samples, etc.	Cost Per Unit of work	Total Cost
apping /sampling	2.5 days	# 300	\$750
ospection lacid refurbishing	1 day	150	1 150
port writting	1.5 days	\$ 300	150
aftimu	1.5 days	# 300	# 150
ule Rock Analyses	24	19.50	468
N+34 ICP ANDLYSS	24	13.00	# 312
Associated Costs (e.g. supplied	s, mobilization and demobilization).		
	2.205 ₀₄		
Transpo	rtation Costs		
Food and	Lodging Costs		
			2580
Delevisions of Filips Discounts	Total	I Value of Assessment Work	2,580
. If work is filed after two years and t	ormance is claimed at 100% of the above up to five years after performance, it can c situation applies to your claims, use the ca	only be claimed at 50% of the T	rk. Total
TOTAL VALUE OF ASSESSMENT WO	DRK x 0.50) = Total \$ value of v	vorked claimed.
Note: Work older than 5 years is not eliging A recorded holder may be required request for verification and/or correct Minister may reject all or part of the	to verify expenditures claimed in this state action/clarification. If verification and/or co	tement of costs within 45 days or prection/clarification is not mad	of a e, the

Certification verifying costs:

I, Paul Degaque, do hereby certify, that the amounts shown are as accurate as may reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on the accompanying Declaration of Work form as Project Geologich-Echo Box Mines I am authorized to make this certification.

(recorded holder, agent, or state company position with signing authority)

0212 (03/97)

AUG 29 2390

GEOSCIENCE ASSESSMENT

Ministry of Northern Development and Mines

October 6, 2000

Paul DeGagne

P.O. BOX 551

P4N-7E7

ECHO BAY MINES LTD.

TIMMINS, ONTARIO

Dear Sir or Madam:

Ministère du Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9845 Fax: (877) 670-1555

Visit our website at: www.gov.on.ca/MNDM/MINES/LANDS/mlsmnpge.htm

Status

Submission Number: 2.20504

Subject: Transaction Number(s): W0060.00336 Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact LUCILLE JEROME by e-mail at lucille.jerome@ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

ORIGINAL SIGNED BY Steve B. Beneteau

Acting Supervisor, Geoscience Assessment Office

teven B. Beneteau

Mining Lands Section

Work Report Assessment Results

Submission Number:

2.20504

Date Correspondence Sent: October 06, 2000

Assessor: LUCILLE JEROME

Transaction

First Claim

Number

Township(s) / Area(s)

Status

Approval Date

W0060.00336

1205822

OGDEN

Approval

October 06, 2000

Section:

Number

12 Geological GEOL

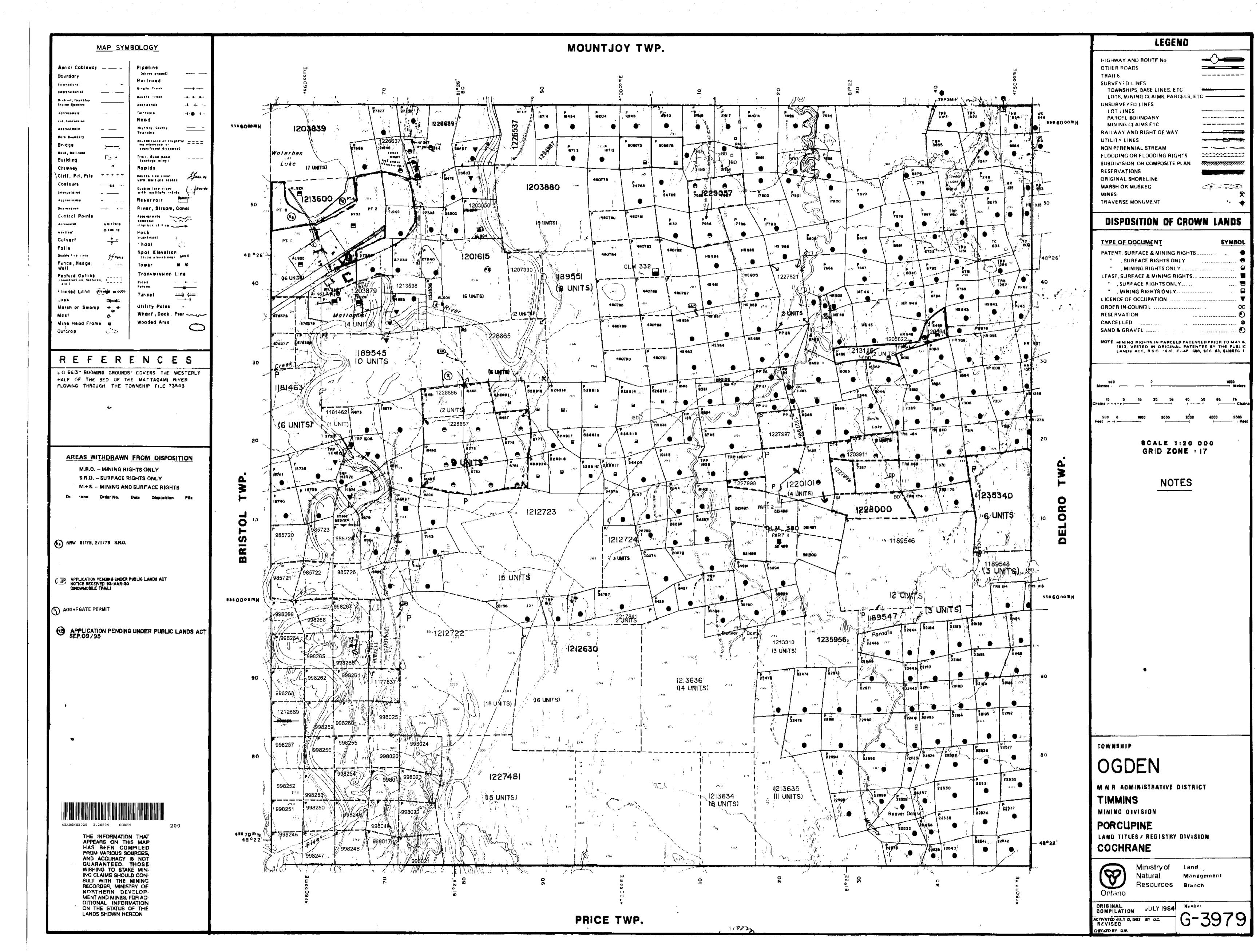
17 Assays ASSAY

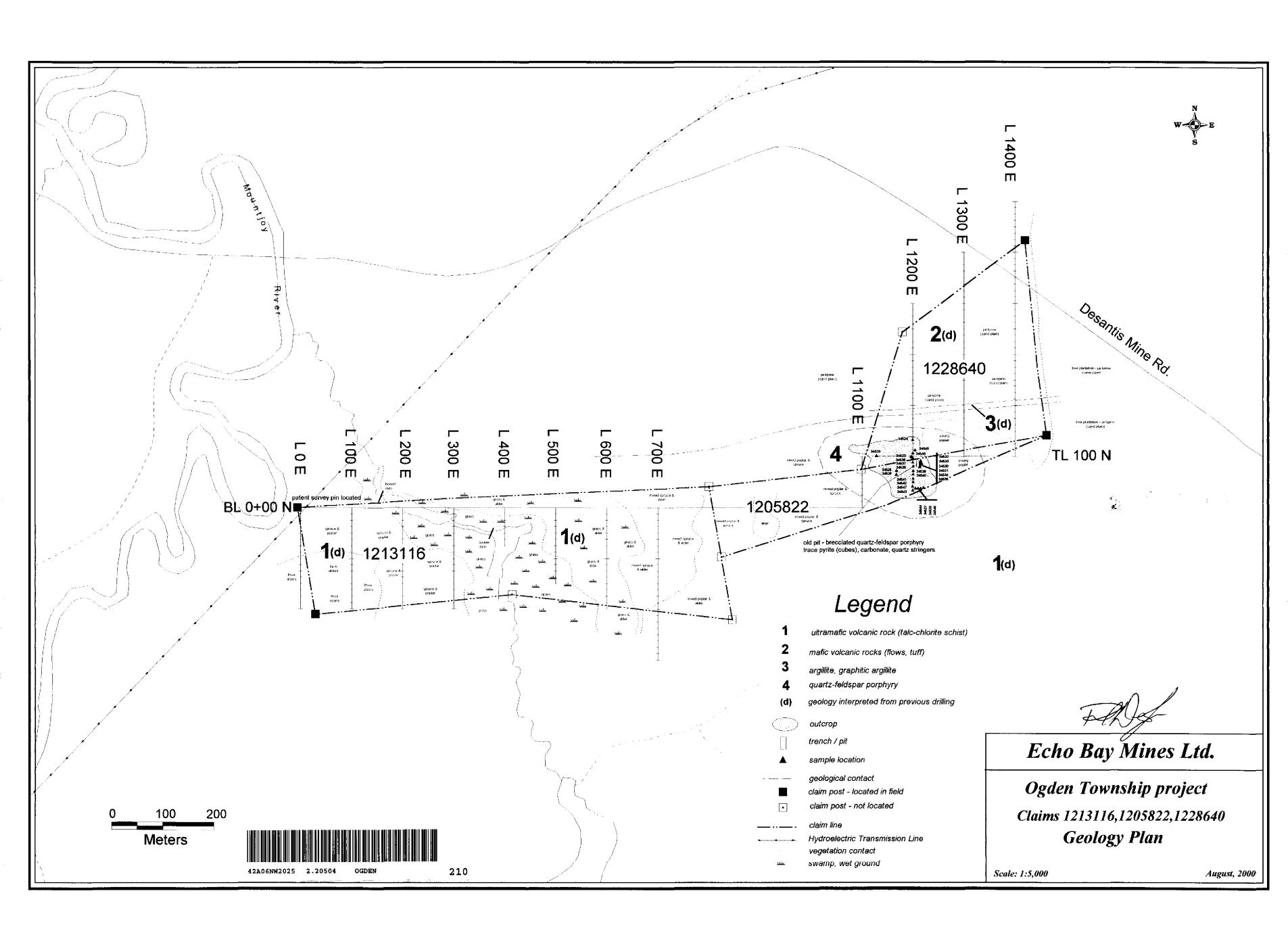
At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

Correspondence to:

Resident Geologist

South Porcupine, ON


Recorded Holder(s) and/or Agent(s):


Paul DeGagne

ECHO BAY MINES LTD. TIMMINS, ONTARIO

Assessment Files Library

Sudbury, ON

