CAMECO GOLD INC.

REPORT ON THE 2001 DIAMOND DRILLING PROGRAM BRISTOL PROPERTY (PLACER DOME OPTION)

 BRISTOL TOWNSHIP ONTARIO, NTS 42A/06
2.24251

D. Babin GEOLOGIST

SUMMARY

The 2001 diamond drilling program on the Bristol property (Placer Dome Option) was carried out by Cameco Gold Inc. staff from October 30 to November 19 and consisted of 1,483 metres, in three holes. The property is located 10 km west of Timmins, in the Bristol Twp., Porcupine Mining Camp, District of Cochrane. The property is under option from Placer Dome Inc. and consists of 102 unpatented mining claims covering an area of 1632 hectares.

Two of the holes (BRS01-06 and 08) were testing the northeast extension of the main porphyryhosted mineralization at shallow depth $(<200 \mathrm{~m})$, along the interpreted southwest-striking deformation zone. The third hole (BRS01-07) was testing the main porphyry-hosted mineralization, outlined by Placer Dome (1984-1986) and Cameco Gold Inc. (2000), between 400 and 600 metres vertical depth. The Drilling was performed by Bradley Brothers of Timmins.

All three holes were successful in intersecting gold mineralization hosted by strongly deformed and altered quartz-feldspar porphyry (QFP), along a major deformation corridor. The corridor is about $300-400$ metres wide and dip $55-70^{\circ}$ to the northwest. The best mineralized interval was intersected in hole BRS01-08 where a strongly chloritized section of the QFP was injected by chlorite-calcitesilica stringers containing 10% pyrite (in stringers and disseminated) and 2% chalcopyrite (in stringers). This interval returned $2.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \% \mathrm{Cu}$ and $3.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over 6.1 m . Similar mineralization style was found elsewhere in all three holes, but the gold values are more isolated and the chlorite alteration is less intense and pervasive. The best assay interval returned $3.8 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 5.0 \mathrm{~m}$ (including $8.3 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$) in hole BRS01-07. Mineralization zones are often spatially associated with tectonically brecciated intervals containing pre to syn-deformation sub-rounded and hematized QFP clasts.

Even thought no ore grade was intersected in this drill program, the three holes help support the concept that the deformation corridor is striking between 230° and 250°. This new orientation indicates that the mineralized system is open along strike, where no drilling has been done to date and strong I.P. anomalies remain untested.

Additional drilling is recommended along the interpreted northeast and southwest extensions of the main deformation corridor. A large and strong I.P. anomaly (Teck Corporation 1994-95 surveys) is present to the southwest and should be thoroughly investigated by drilling. The contact zones at the NE and SW margins of the porphyry have not been tested so far and they could represent a favorable environment where the mineralization blossoms out. The projected southwest and northeast extensions of the gold-bearing Bristol fault, to the north of the main deformation corridor should also be investigated by drilling, following the strong chargeability anomalies along the Bristol creek.

$$
2.24251
$$

TABLE OF CONTENTS

Page
SUMMARY
1.0 INTRODUCTION
2.24251
1.1 Property, Location, Access and Topography 1
1.2 Claim Ownership and Land Status 1
1.3 Previous Work 4
2.0 GEOLOGY
2.1 Regional Geology 5
2.2 Local Geology 6
2.3 Property Geology and Gold Mineralization 7
3.0 2001 CAMECO GOLD EXPLORATION DRILLING
3.1 Purpose and Description of 2001 Drilling Program 9
3.2 Drilling Observations and Results 15
4.0 CONCLUSIONS 18
5.0 RECOMMENDATIONS 19
6.0 REFERENCES 20
7.0 CERTIFICATES OF QUALIFICATION 22

LIST OF FIGURES

Figure 1 Property Location Map 2
Figure 2 Property Claim Map and Drill Hole locations 3
Figure 3 Geology, Drill Hole and Property Location 8

TABLE OF CONTENTS - continued

LIST OF TABLES

Table 1 Claims Upon Which Work Was Completed 4
Table 2 Drilling Statistics 10
Table 3 Hole BRS01-06 Summary Geological Description 11
Table 4 Hole BRS01-07 Summary Geological Description 12
Table 5 Hole BRS01-08 Summary Geological Description 14
Table 6 Bristol Project, Fall 2001 Summary of Significant Assays 17

LIST OF MAPS

Map 1 Vertical Geological Cross Section, L26+00E, TECK Grid, Looking Southwest -Hole BRS01-06(1:1,000) (BRI02001)

Map 2 Vertical Geological Cross Section, L21+00E, TECK Grid, Looking Southwest -Hole BRS01-07(1:1,000) (BRI02002)
$\begin{array}{ll}\text { Map } 3 & \text { Vertical Geological Cross Section, L28+00E, TECK Grid, Looking Southwest -Hole } \\ & \text { BRS01-08 (1:500) (BR102003) }\end{array}$

LIST OF APPENDICES

Appendix A Detailed Diamond Drill logs - 2001 Drill Program

Appendix B Gold Assay and ICP Certificates for all Analyses

1.0 INTRODUCTION

This report describes the results of the 2001 diamond drilling program on the Bristol Property, Placer Dome option, totaling 1,483 metres in three holes (BRS01-06 to 08). The work was carried out by Cameco Gold Inc. (CGI) staff between October 30 and November 19, 2001.

1.1 Property, Location, Access and Topography

The Bristol Property is located in the centre and along the eastern boundary of Bristol Township, in the District of Cochrane, Ontario (Fig. 1). Highway 101 bisects the property in an EW direction and provides ready access from the City of Timmins, located 10 km to the east. Access north of highway 101 is provided by the Malette access road which trends in a NNW direction. Access south of the highway is through Gagnon's auto wrecking yard. A NW grid (Az. 150 degrees) formerly cut by Teck Corporation in 1995, provides immediate controlled access points to the north and south of highway 101.

The topography is relatively flat and covered by black spruce with local alders growing near meandering creeks and rivers. Locally edges of certain creeks exhibit steep banks due to considerable historical erosion. The entire property is covered by a 20 to 25 m thick veneer of overburden which consists of sand and local clay.
Recent cutting and replanting have occurred to the immediate south and north of the highway. A portion of the Tembec lumber operations (formerly Malette) is located south of highway 101 near the Bristol/Ogden Twp. boundary, in Ogden Twp.

The narrow, locally meandering Bristol Creek, travels across the entire width of the property in a NE direction south of and parallel to highway 101. A sub-parallel unnamed creek, is located approximately 1.0 km to the south of the Bristol Creek. Both creeks join the north trending Mattagami River, located along the western margin of Ogden Twp.

1.2 Claim Ownership and Land Status

The Bristol property consists of a contiguous block of 102 unpatented claims located in Bristol Twp., except for eleven which are located in Ogden Twp. (Figure 2). The property is under option from Placer Dome Inc. and Cameco is working towards earning 100% interest. The mining rights cover an area of 1632 hectares. Claim ownership is registered with Cameco Corporation of Saskatoon, Saskatchewan, but the work is being carried out by Cameco Gold Inc., a wholly owned subsidiary of Cameco Corp. All claims are in good standing with the Ontario government. A list of claims covering the work is provided in Table 1.

TABLE 1

Claims Upon Which Work Was Completed	
Claim \#	Hole \#
997465	BRS01-06 and BRS01-08
997467	BRS01-07
997470	BRS01-07
997471	BRS01-06
997472	BRS01-08 and BRS01-06

1.3 Previous Work

The general geology of the Bristol Twp. area was first mapped for the Ontario government by Hawley (1927) and subsequently re-mapped by Ferguson (1957).

Placer Dome (1986) reports that the Hoyle Mining Company Limited drilled a 1,195' hole in 1945, in the SW corner of the property. Records of this drilling were not located by the writer. However, the presence of feldspar porphyry and felsic volcanics were reported in this hole, according to Placer Dome.

Geophysical Surveys Inc. completed an airborne geophysical survey for Tegalder Resources Inc., in December, 1980. This combined EM and magnetic survey was completed over most of the property.

Texasgulf Canada Limited completed a combined airborne EM and magnetic survey over a number of townships west of Timmins in May, 1981. This survey covered the NW corner of the property. Flight lines were orientated north-south with one-eight ($1 / 8$) mile line spacing. Texasgulf Canada subsequently drilled seven overburden holes immediately north of the north property boundary in late 1981, to test airborne conductors marking the north sediment/mafic volcanic contact.

Placer Dome Inc. [formerly Dome Exploration (Canada) Limited] acquired the property in 1984. Placer cut a north-south grid with 100 m spaced lines and 25 m station pickets over the entire property. Placer mapped the property in the fall of 1984, however only two trenches with mafic volcanics were located in the NE corner of the former Placer Dome Bristol Property.

Placer completed an HLEM and magnetic survey in 1984 and a VLF survey was completed over the southern half of the property in 1985. Placer completed 14 km of I.P. in 1987 and an additional 7.5 km of I.P. in 1988.

Placer completed three separate drill campaigns on the property. In the fall of 1985, holes 246-1 through 246-22 were completed (4917 m). In the spring and fall of 1987, holes 246-23 through 246-50 were completed (7453 m). In 1988, holes 246-51 through 246-81 ($7,773 \mathrm{~m}$) were completed. A total of 81 holes and $20,143 \mathrm{~m}$ was completed on the property over a period of four years. All of this drilling was targeting shallow mineralization above the 300 m elevation.

Teck Corporation Limited optioned the property from Placer Dome in 1994-1995, and completed $\$ 412,370$ worth of work. This work consisted of new line cutting (ie. oriented NW at 150 Az .), real section I.P. over a selected portion of the property and four diamond drill holes (1625 m).

Cameco optioned the property in the fall of 1998. Compilation work and the selective relogging of historic core was completed during 1999. A magnetic and I.P./Resistivity survey (pole-dipole) was completed over the NW corner of the property in the winter of 2000 . In May 2000, Cameco completed a $1,006 \mathrm{~m}$ diamond drilling program testing the gold-bearing porphyry discovered by Placer. The drilling included two new holes and the deepening of two holes drilled by Placer in the 1980's (Coad et al., 2000). Elevated gold was detected in all four holes, with the best assay returning $11.4 \mathrm{~g} / \mathrm{t}$ Au over 0.7 m in hole BRS00-02. In November 2000, one more hole (BRS00-03), totaling 368 m , was drilled by Cameco on the Bristol property to test the mafic volcanic-sedimentary contact north of the Bristol Porphyry (Koziol, 2001). Area of bleaching, veining and "grey zones" similar to Hoyle Pond, all hosted by mafic volcanics were intersected, but they returned only weakly anomalous gold assays, up to $170 \mathrm{ppb} \mathrm{Au} / 1.5 \mathrm{~m}$.

2.0 GEOLOGY

2.1 Regional Geology

The Bristol property is located on the west margin of the world class Porcupine Gold Camp (PGC) in the southwestern portion of the 2.7 Ga Abitibi belt. Gold deposits in the Abitibi belt tend to cluster in camps, of which the PGC has been by far the most productive (61 million oz. gold) to date. The deposits in the Timmins area have been mined to depths greater than 2000 m . These centres of gold-bearing magmatic and hydrothermal activity are spatially located near to regional fault structures such as the Destor-Porcupine fault and the Cadillac Larder fault.

Orebodies in the PGC are typified by single or multiple quartz-carbonate veins with or without albite, tourmaline, sericite, fuchsite, pyrite and other sulphides, and native gold hosted in variably altered wallrock of intrusive, extrusive or sedimentary origin. Gold can occur both in the veins and the immediate wallrock. The most significant gold deposits are spatially associated with quartz feldspar porphyry stocks and dikes and with albitite dikes/sills or "syenites", both of which intruded folded Archean supracrustal rocks. The supracrustal rocks, felsic intrusions and gold mineralization were affected by metamorphism and penetrative deformation and folding during the Kenoran Orogeny.

2.2 Local Geology

All bedrock in the Timmins area is of Archean age except the Proterozoic diabase dikes. Four groups of Keewatin volcanic rocks, with less abundant intercalated sedimentary rocks, are present in the area. These are the Deloro and Tisdale Groups (Dunbar, 1948), the Krist Formation (Ferguson, 1968) and the Porcupine Group (Pyke, 1982). The Deloro Group underlies the Tisdale Group and consists of a calcalkaline group of volcanics which forms the core of the Shaw Dome located south of the Destor-Porcupine fault. The Tisdale Group of volcanics has been age dated between 2710 and 2702 Ma . They are predominantly iron-rich with a general trend to iron enrichment stratigraphically upwards. Intercalated komatiitic and magnesiumrich tholeiitic flows in the lower portion of the group give way to magnesium-rich flows intercalated with lesser iron-rich tholeiitic flows in the middle of the group, and finally to iron tholeiites at the top of the group (Pyke, 1982). The group is divided into four formations: the Northern, Central, Vipond and Gold Centre formations. Importantly, over 75% of the gold produced to date in the PGC was mined from orebodies in Tisdale Group rocks.

Krist Formation felsic volcaniclastic and Porcupine Group sedimentary rocks unconformably overlie the Tisdale Group (Buffam, 1948; Brisbin, 1997) and occupy synclines in Tisdale and Deloro Twps. Calc-alkaline, bedded, heterolithic, quartz and feldspar phyric intermediate to felsic volcaniclastic rocks characterize the Krist Formation. Interbedded wackes, including turbidites and argillites conformably overlie the Krist and are included in the Porcupine Group of sediments (Pyke, 1982). Sediments located further away from the Porcupine syncline have been included in the Whitney Formation, Hoyle Assemblage and recently the Porcupine Assemblage (Ayers et al., 1999).

The youngest Archean supracrustal rocks in the Timmins area belong to the Temiscaming Group. These sediments consist of polymictic conglomerates, wackes and argillites and unconformably overlie the folded Keewatin Tisdale Group, Krist Formation and Porcupine Group volcanic and sedimentary rocks. A maximum deposition age of $2679+/-3$ Ma has been recorded for these sediments. Importantly,
15% of gold mined in the PGC has been hosted by Timiskaming Group rocks, making them the second most important host of gold in the camp.

2.3 Property Geology and Gold Mineralization

The property geology is marked by a northeast trending package of sediments which are bounded to the north by mafic volcanics and intruded in the central part of the property by variably altered quartz feldspar porphyry (Figure 3). Recent age dating suggests that the mafic volcanic rocks on the north side of the property belong to the Tisdale Group (Ayers et al., 1999). Relogging of historic core by Cameco indicates that the sediments are moderately chloritic and locally exhibit tuff and tuffwacke type features. The sediments locally contain appreciable percentages of quartz grains. The mafic volcanic/sediment contact is marked by graphitic argillite and interpreted to dip north based on limited drill hole information in that area of the property. The property is intruded by numerous north trending diabase dikes of variable width. Over the central and south parts of the property, stratigraphic facing is to the south based upon graded bedding and flame structures in the sediments.

Structurally, the property is marked by a southwest striking series of steep north dipping faults or shears which impart a moderate to strong foliation to all rock types except the diabase dikes. These strong shear zones are best developed in the quartz feldspar porphyries which are locally strongly altered by sericite, chlorite and local hematite $+/$ - K-feldspar(?) alteration and local silicification. Albite phenocrysts are less common in these areas of intense alteration. Variably coloured anhydrite occurs locally as a late in-filling of quartz-carbonate (iron carbonate) veins which can occur as tensional and strike-type veins. Black tourmaline can occur within the quartzcarbonate veins or as minute black-green needles within the matrix areas of altered sediments and porphyries.

Gold values are spatially associated with disseminated fine to coarse grained subhedral pyrite which locally forms crude bands in the strongly foliated quartz porphyry. These chloritized bands of pyrite and local chalcopyrite may be cored by quartz-carbonate veins which have been subsequently boudinaged. Not all pyrite is associated with gold mineralization. Visible gold has been recognized as occurring as free grains in chlorite and/or quartz-carbonate veins or as inclusions in pyrite or chalcopyrite.

3.0 2001 CAMECO GOLD EXPLORATION DRILLING

3.1 Purpose and Description of the 2001 Drilling Program

The Bristol fall 2001 drilling program was carried out from October 30 to November 19 and consisted of 1,483 metres, in three holes (BRS01-06 to 08). Two of the holes (BRS01-06 and 08) were testing the northeast extension of the main porphyry-hosted mineralization at shallow depth $(<200 \mathrm{~m})$, along the interpreted southwest-striking deformation zone. The third hole (BRS01-07) was testing the main porphyry-hosted mineralization, outlined by Placer Dome (1984-1986) and Cameco Gold Inc. (2000), between 400 and 600 metres vertical depth. The Drilling was performed by Bradley Brothers of Timmins.

The target selection, drill core logging, core sampling and overall project supervision in the field was provided by Dominic Babin, Geologist and Mike Koziol, District Geologist, both from Cameco Gold's exploration office in Sudbury. All of the drill cores were processed at coreshack facility behind Bradley Brothers shop in Timmins. Selected NQ-size cores were sawed in half with a diamond saw. Half the core was brought by Cameco staff directly to Bondar Clegg in Timmins for sample preparation and then was shipped to Chimitec Bondar Clegg in Val d'Or for assaying. The remaining half core is being kept as a permanent record and is cross-piled and stored temporarily in Bradley's back yard on Highway 101 West. All samples were prepared with industry standard crushing and grinding. Gold assays were obtained using fire assay procedures on a 30 -gram sub-sample with AA (atomic absorption) finish. The reject of samples with gold assays equal or above $2.0 \mathrm{~g} / \mathrm{t}$ were systematically re-assayed using FA-AA of a 30 -gram split (13 samples). Moreover, Chimitec conducted 13 internal assay checks using FA-AA on a 30 -gram sub-sample of selected pulp. An additional 35 element ICP scan following aqua regia digestion was completed on a suite of nine mineralized samples in hole BRS01-08.

The detailed geological logs are contained in Appendix A and the assay certificates form Appendix B. The drill hole locations and statistics are provided in Table 2 and are illustrated in figures 2 and 3. Summary geological description for each hole is presented in Table 3 to 5 and in the cover page of each log in Appendix A. Geological cross sections are appended in the back pocket.

TABLE 2

Drilling Statistics								
Hole \#	Collar				Azimuth	Dip	Final Depth	\# of Au Samples
	Easting (Teck Grid)	Northing (Teck Grid)	NAD 27 Easting	NAD 27 Northing				
BRS01-06	2600	-950	465196	5361749	150	-50	425.0	105
BRS01-07	2100	-500	464536	5361883	150	-62	813	145
BRS01-08	2800	-1025	465388	5361767	150	-50	245	55

Table 3: Hole BRS01-06 Summary Geological Description			
From	To	Geology	Comments
0.0	40.7	OVERBURDEN	
40.7	55.5	SILICIFIED AND FRACTURED QFP	Strongly fractured and weakly foliated. Injected by 15-25\% late quartz-carbonate veinlets. 1-3\% disseminated pyrite. $45.8-48.0 \mathrm{~m}$: Fault zone
55.5	92.0	GREYWACKE	Laminated to thickly bedded feldspar-rich sandstones, mudstones and pebble conglomerates. Top downhole. 1.5$4.0 \%$ disseminated and wispy coarse cubic pyrite. $91.0-$ 92.0 m : Strongly foliated section, could be part of the intrusive downhole.
92.0	113.4	WEAKLY FOLIATED AND ALTERED QFP	Weakly to moderately foliated QFP. Injected by 25% late quartz-carbonate veinlet stockwork from $92.0-99.0 \mathrm{~m}$. From 91.0 to 116.9 m , the interval contains $1-5 \%$ disseminated to wispy pyrite and it is gold anomalous ($158 \mathrm{ppb} \mathrm{Au} / 25.9 \mathrm{~m}$). Brecciated section from 112.3-113.4m.
113.4	169.1	STRONGLY FOLIATED AND SERICITIZED QFP	Minor gouge and brecciated fault zones. Generally less than 1% disseminated pyrite throughout, but locally the interval contains 2 to 5% wispy to disseminated pyrite coinciding with gold anomalies (up to $1.2 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 0.5 \mathrm{~m}$).
169.1	216.3	BRECCIATED, STRONGLY FOLIATED AND ALTERED QFP	Strongly foliated and altered QFP with 40% brecciated and fragmented sections, $1.0-6.4 \mathrm{~m}$ wide. The interval returned several gold anomalous assays ($>100 \mathrm{ppb} \mathrm{Au}$) associated with moderately to strongly chloritized intervals containing $>2.0 \%$ wispy to disseminated fine-grained pyrite ($<1 \mathrm{~mm}$ in size). The best composite section returned $517 \mathrm{ppb} \mathrm{Au} / 10 \mathrm{~m}$ from 206.3-216.3m.
216.3	356.3	STRONGLY FOLIATED AND ALTERED QFP	Strongly foliated and sericitized homogenous interval. From 226.2 to 252.2 m , the section returned several isolated anomalous gold assays ($<1.1 \mathrm{~m}$ wide) associated with $>2.0 \%$ wispy and disseminated pyrite. Minor chalcopyrite is also present locally within chlorite-carbonate-silica wisps and stringers. Best assay returned $2.1 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$.
356.3	373.2	FOLIATED, FRACTURED AND VEINED QFP	Moderately foliated and strongly fractured QFP, injected by 2 to 30% late quartz-carbonate-tourmaline veinlets, $0.2-$ 20 cm wide. Less than 1.0% disseminated pyrite throughout Only one anomalous gold assay ($156 \mathrm{ppb} \mathrm{Au} / 1.5 \mathrm{~m}$).
373.2	380.4	STRONGLY FOLIATED AND ALTERED QFP	Strongly foliated and moderately sericitized QFP with $<1.5 \%$ disseminated pyrite and $<2 \%$ quartz-carbonate veinlets.
380.4	389.0	BRECCIATED AND FOLIATED QFP	Moderately foliated and altered brecciated QFP. Fragments are preferentially hematized. $<0.8 \%$ disseminated pyrite.
389.0	411.3	$\begin{gathered} \text { WEAKLY FOLIATED AND } \\ \text { ALTERED QFP } \\ \hline \end{gathered}$	Strongly fractured throughout. Strongly foliated and brecciated interval, from 407.7-409.0m,
411.3	425.0	GREYWACKE	Well bedded sedimentary sequence composed of 80% sandstone beds, 15% siltstone beds and 5% granule conglomerate beds. $<1.5 \%$ pyrite stringers.

Table 4: Hole BRS01-07 Summary Geological Description			
From	To	Geology	Comments
0.0	34.0	OVERBURDEN	
34.0	219.9	HIGHLY FRACTURED AND SILICEOUS QFP	Moderately siliceous and intensely fractured QFP. Fractures are filled with chlorite, calcite and/or sericite. Generally $<1 \%$ pyrite throughout. Series of late and weakly altered granodioritic dyke/sill between 97.8-139.3m. From 181.2-189.0m, the interval is moderately to strongly foliated and locally brecciated. From 201.0-212.7m, the interval is massive, fractured, pervasively chloritized and injected by $1-2 \%$ pyrite wisps and by $0.5-3 \%$ chalcopyriterich wisps and stringers. Only one sample returned anomalous gold assay of $267 \mathrm{ppb} \mathrm{Au} / 1.6 \mathrm{~m}$, from 204205.6 m .
219.9	286.2	GREYWACKE AND QFP	Moderately foliated, laminated to thickly bedded sandstones and mudstones, intruded by fractured QFP similar to above from 224.2-234. Im and from 242.8-253.9m. No anomalous gold assays.
286.2	307.9	HIGHLY FRACTURED AND SILICEOUS QFP	Similar to $34.0-219.9 \mathrm{~m}$. Brecciated contact zone from 306.7-307.9m. No anomalous gold assays.
307.9	400.5	WEAKLY FOLIATED AND ALTERED QFP	Weakly to moderately foliated and only weakly fractured QFP. Hematitic brecciated sections from 312.4-312.9m and from 314.8-316.4m. Minor greywacke interval from 371.8374.9 m . Generally less than 1% pyrite throughout, but locally up to 4.0% wispy pyrite. Highest assay returned $109 \mathrm{ppb} \mathrm{Au} / 1.0 \mathrm{~m}$.
400.5	495.1	STRONGLY FOLIATED AND ALTERED QFP	Strongly foliated and sericitized, weakly to moderately chloritized QFP injected by 1-7.5\% pyrite wisps and stringers. Minor chalcopyrite is also seen locally. Pyrite content decreases below 462.2 m (generally less than 0.5%). Mylonitic interval from $431.4-438.0 \mathrm{~m}$, at the contact with a weakly foliated and altered section from 438-454. 1 m . Most of the interval is weakly gold anomalous, with only one sample returning a gold assay higher than $400 \mathrm{ppb}(1.0 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au} / 0.5 \mathrm{~m}$ from $485.9-486.4 \mathrm{~m}$)
495.1	527.0	$\begin{gathered} \text { WEAKLY FOLIATED AND } \\ \text { ALTERED QFP } \\ \hline \end{gathered}$	Fault gouge at the lower contact from 526.5-527.0m.
527.0	691.7	STRONGLY FOLIATED AND ALTERED QFP	Strongly foliated and sericitized homogenous interval. Generally contains $<0.5 \%$ pyrite, but locally, it is injected by up to 10% pyrite-chlorite-calcite-silica stringers and wisps, containing rare chalcopyrite. These pyrite-rich intervals are always gold anomalous (up to $6.8 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 0.6 \mathrm{~m}$), but are generally very isolated ($<1 \mathrm{~m}$ intervals). Two significant pyrite-rich sections ($0.5-10 \%$ pyrite) containing minor chalcopyrite ($<0.5 \%$) were intersected from 638.1$643.2 \mathrm{~m}(542 \mathrm{ppb} \mathrm{Au} / 5.1 \mathrm{~m})$ and from $675-680.0 \mathrm{~m}(3.8 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au} / 5.0 \mathrm{~m}$).

Table 4: Hole BRS01-07 Summary Geological Description - Continued			
From	To	Geology	Comments
691.7	696.3	MYLONITE	Layered and transitional interval composed of aphyric chlorite-rich bands and porphyry-like bands. Probably a mylonite? One sample containing 5.0% wispy pyrite returned $1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 0.7 \mathrm{~m}$ from $691.7-692.5 \mathrm{~m}$.
696.3	716.1	FRACTURED AND BRECCIATED $Q F P$	Weakly foliated, but highly fractured and locally brecciated quartz-feldspar porphyry. Increase in pyrite content $(>1.5 \%)$ below 705.0 m , which is gold anomalous (194ppb $\mathrm{Au} / 12.1 \mathrm{~m}$, from $711.0-723.1 \mathrm{~m}$).
716.1	729.8	MYLONITE	Layered and transitional interval composed of aphyric chlorite-rich bands and porphyry-like bands. Probably a mylonite? 5.0% fracture-controlled pyrite from 716.1723.1 m .
729.8	768.2	FRACTURED AND WEAKLY FOLIATED QFP	Soft, foliated, homogenous and aphyric mafic intervals (dykes/sills?) from 734-745.1, from 749.5-751.8m and from $763.2-765.3 \mathrm{~m} .3-6 \%$ wispy pyrite from $763.2-768.2 \mathrm{~m}$, which returned weakly anomalous gold assays up to 167 ppb $\mathrm{Au} / 1.5 \mathrm{~m}$.
768.2	813.0	FOLIATED AND ALTERED QFP	Moderately to strongly foliated and altered, heterogenous interval. Moderately to strongly chloritized sections alternating with moderately to strongly sericitized sections and minor hematitic sections. Concentration of 1.0-7.5\% pyrite-chlorite-calcite-silica-chalcopyrite wisps and stringers from $789-799.7 \mathrm{~m}$ (returned $167 \mathrm{ppb} / 10.7 \mathrm{~m}$)

Table 5: Hole BRS01-08 Summary Geological Description			
0.0	37.0	OVERBURDEN	
37.0	69.0	MODERATELY FOLIATED AND ALTERED QFP	Moderately epidotized and weakly sericitized and chloritized. Several anomalous gold assays (up to 257 ppb $\mathrm{Au} / 1.4 \mathrm{~m}$) corresponding to local intervals with $2-4 \%$ wispy to disseminated pyrite associated with chlorite-calcite wisps.
69.0	74.9	MYLONITE	Strongly foliated porphyry-like horizons interlayered with aphyric chlorite-rich bands. 5% wispy to disseminated pyrite throughout. Returned $1.2 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 6.6 \mathrm{~m}$, from 69.0 75.3 m .
74.9	79.0	MODERATELY FOLIATED AND ALTERED QFP	Similar to $37-69 \mathrm{~m}$, but with less than 0.5% disseminated pyrite.
79.0	81.3	MYLONITE	Similar to $69-74.9 \mathrm{~m}$, but with $<2.0 \%$ wispy to disseminated coarse pyrite. Gold assays are returned less than 100 ppb .
81.3	93.8	SILICEOUS AND FRACTURED QFP	Highly fractured and weakly foliated. From $81.3-83.0 \mathrm{~m}$, the interval is more foliated and weakly hematized. Several anomalous gold assays from $81.3-87.6 \mathrm{~m}$, corresponding to samples with $2.5-3.5 \%$ wispy to disseminated coarse pyrite. The highest assay returned $1.8 \mathrm{~g} / \mathrm{tuu} / 1.5 \mathrm{~m}$ from 86.187.6 m .
93.8	130.7	MODERATELY FOLIATED AND ALTERED QFP	Similar interval to $37-69 \mathrm{~m}$. Generally less than 0.5% disseminated pyrite associated with chlorite specks. Local Chalcopyrite-pyrite-chlorite-calcite-silica stringers, $<5 \mathrm{~mm}$ wide returned anomalous gold assays of $523 \mathrm{ppb} \mathrm{Au} / 0.8 \mathrm{~m}$ (from 103.2-104.0m) and $2.6 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$ (from $110.0-$ 111.0m).
130.7	140.6	STRONGLY FOLIATED, ALTERED AND BRECCIATED QFP	Strongly chloritized and matrix-supported breccia with hematized and sericitized QFP clasts. 1.5-6.0\% wispy to disseminated medium grained pyrite throughout. Returned $0.4 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 10.5 \mathrm{~m}$, from $130.7-141.2 \mathrm{~m}$.
140.6	175.0	STRONGLY FOLIATED AND SERICITIZED QFP	Strongly sericitized and locally chloritized interval. Generally less than 0.5% disseminated to wispy pyrite, but locally pyrite content increases to $1.0-3.0 \%$ and returned anomalous gold assays (up to $2.4 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$). Minor chalcopyrite is also observed with the pyrite wisps from $154.3-160.9 \mathrm{~m}(0.5 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 6.6 \mathrm{~m})$ and from $166.8-167.8 \mathrm{~m}$ ($549 \mathrm{ppb} \mathrm{Au} / 1.0 \mathrm{~m}$). Matrix-supported brecciated section from 173.2-174.2m containing weakly hematized QFP clasts.
175.0	185.8	STRONGLY FOLIATED AND CHLORITIZED QFP	Strongly altered to pervasive chlorite. Contains 2-2.5\% wispy to disseminated pyrite from 175-179.7m, but returned only weakly anomalous gold assays up to $270 \mathrm{ppb} / 1.0 \mathrm{~m}$. From 179.7-185.8m, the interval contains 10% stringer and disseminated fine-grained pyrite and locally up to 2.0% stringer chalcopyrite. This section returned $2.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \%$ Cu and $3.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag} / 6.1 \mathrm{~m}$ (highest assay returned $3.5 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au} / 1.1 \mathrm{~m}$ from 179.7-180.8m).

Table 5: Hole BRS01-08 Go					
Geology				\quad	Summary Geological Description - Continued
:---					
Comments					

3.2 Drilling Observations and Results

All three holes of the 2001 drilling program were successful in intersecting gold mineralization, located within the main deformation corridor. Of the 305 core samples taken, 119 samples returned more than 100 ppb Au and 24 samples returned assays greater than $1.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (significant assays presented in Table 6).

Drill hole observations indicate that the deformation corridor is about 300 to 400 metres wide and likely strikes at about $230-250^{\circ}$, dipping $55-70^{\circ}$ to the NW. Where tested by drilling, it is composed of strongly foliated and sericitized quartz-feldspar porphyry (QFP) locally fragmented by the deformation. The QFP is locally injected by irregular and crude chlorite-calcite-silica-pyrite (\pm chalcopyrite) stringers and wisps, weakly to strongly gold anomalous (hundreds of ppb to $8.3 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$). They are accompanied by pervasive dark chlorite alteration (varying from weak to strong) and cubic pyrite dissemination (weakly gold anomalous) into the wall rock. Gold is generally correlatable with the presence of pyrite and/or chalcopyrite. Contacts of the mineralized sections are gradational and diffuse. They are often spatially associated with brecciated intervals containing pre to syn-deformation sub-rounded and hematized QFP clasts/pseudo-clasts. No visible gold was observed in this phase of drilling, but it was observed in 2000 as free specks within quartz-carbonate-chlorite stringers containing pyrite or chalcopyrite (Coad and McCracken, 2000).

The chlorite-calcite-silica-sulphide stringers and wisps appear to have been emplaced late in the deformation event, because they are only weakly deformed compared with the host rock. In addition, the associated chlorite alteration overprints the early sericite alteration and the hematized QFP clasts associated with the main deformation event. Late quartz-carbonate-chlorite \pm hematite \pm tourmaline veinlet stockworks crosscut locally the QFP, but there is no apparent correlation between the veinlets and the gold. Where the QFP is less deformed and sericitized, the feldspar phenocrysts are preferentially epidotized and the rock is generally more siliceous, highly fractured and blocky. Within the deformation corridor, local fine-grained, chloritic and banded sections resembling mudstone intercalations were interpreted as mylonite zones, since they have transitional contact zones with the foliated QFP. They are locally injected by late pyrite-chlorite-calcite-silica wisps accompanied by pyrite dissemination, generally gold anomalous (up to $3.3 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 0.8 \mathrm{~m}$ in hole BRS01-08). In contrast,
sections of laminated to thickly bedded greywacke (unequivocal) and mafic volcanics have been observed near the edges of the porphyry and are generally unmineralized.

The best mineralized interval was intersected in hole BRS01-08 where a strongly chloritized section of the QFP was injected by 10% pyrite (in stringers and disseminated) and 2% chalcopyrite (in stringers) and returned $2.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \% \mathrm{Cu}$ and $3.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over 6.1 m (from $179.7-185.8 \mathrm{~m}$). The highest assay in that section was $3.5 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.1 \mathrm{~m}$. The hole collared and ended in deformed and altered QFP with several intersections of anomalous gold assays (see Table 6), associated with the presence of 1-6\% wispy and disseminated pyrite and minor chalcopyrite locally.

Hole BRS01-06 collared in relatively undeformed but strongly fractured QFP followed by 36.5 metres of laminated to thickly bedded greywacke sequence. The deformation corridor was intersected from 113.4 to 411.3 m , although the margins of the porphyry from $92.0-113.4 \mathrm{~m}$ and from $389.0-411.3 \mathrm{~m}$ are weakly to moderately foliated and could be included in the deformation corridor. Anomalous, but isolated gold assays were intersected throughout (see Table 6) with the highest assay returning $1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.1 \mathrm{~m}$. They are also associated with wispy to disseminated pyrite and minor chalcopyrite locally. A section from 206.3 to 252.2 m contains all but one of the assays grading more than $1.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and could correlate with the mineralized zone intersected in hole BRS01-08 from 179.7-185.8m. However, the gold anomalous section in hole BRS01-06 is not as well defined and is less chloritized as the section in hole BRS01-08, less than 200 metres to the northeast.

Hole BRS01-07 collared in relatively weakly deformed, highly fractured and siliceous QFP to 307.9 m , intercalated with a laminated to thickly bedded greywacke sequence from $219.9-286.2 \mathrm{~m}$. From $201.0-212.7 \mathrm{~m}$ the QFP is injected by $1-2 \%$ pyrite wisps and by $0.5-3 \%$ chalcopyrite-rich wisps and stringers, but only one sample returned an anomalous gold assay of $267 \mathrm{ppb} \mathrm{Au} / 1.6 \mathrm{~m}$. This contrasts with similar stringers found within the deformation corridor where gold assays are generally more anomalous. The deformation corridor was intersected from about 307.9 to the end of the hole, and significant weakly foliated and altered sections were observed throughout ($307.9-400.5 \mathrm{~m}, 495.1-527.0 \mathrm{~m}, 696.3-716.1 \mathrm{~m}$ and $729.8-768.2 \mathrm{~m}$). Overall, the deformation zone returned similar isolated $1-10 \mathrm{~g} / \mathrm{t}$ gold assays as intersected higher in the section by Placer Dome and Cameco Gold (Map 1 in back pocket). Gold is associated with sulphide-chlorite-calcite-silica stringers and wisps and pyrite dissemination. The best interval from 675.0 to 680.0 m returned $3.8 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au} / 5.0 \mathrm{~m}$, including a highest assay of $8.3 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$. Calcite-anhydrite-filled veinlets oriented sub-parallel to the foliation were observed below 715.5 m (as in holes 246-39X and BRS00-01), but they appear to be late and not related to the gold event. The nature and distribution of the gold assays in this deep test ($400-600 \mathrm{~m}$ vertical) indicate that the mineralization remains relatively consistent with depth.

TABLE 6: BRISTOL PROJECT, FALL 2001 SUMMARY OF SIGNIFICANT ASSAYS ($\mathrm{Au}>1.0 \mathrm{~g} / \mathrm{t}$ or $\mathrm{Au}>0.2 \mathrm{~g} / \mathrm{t}$ over 5.0 m core length)									
DDH	Length (m)	From (m)		To (m)		Width (m)		$\begin{gathered} \text { samples } \\ >1000 \mathrm{ppb} \\ \mathrm{Au} \end{gathered}$	Au Grade of Composite Zone (g/t)
BRS01-06	425.0	91.0		116.9		25.9			0.2g/t Au/25.9m
		155.3		155.8		0.5		1191	1.2g/t Au/0.5m
		206.3		216.3		10.0			0.6g/t Au/10.0m
	Incl.		207.7		208.7		1.0	1272	
			211.2		212.1		0.9	1487	
			215.3		216.3		1.0	1675	
		226.2		226.9		0.7		1790	1.8g/t Au/0.7m
		232.8		239.4		6.6			$0.6 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 6.6 \mathrm{~m}$
	Incl.		235.9		236.9		1.0	1891	
		251.1		252.2		1.1		1914	$1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.1 \mathrm{~m}$
BRS01-07	813.0	485.9		486.4		0.5		1001	1.0g/t Au/0.5m
		557.8		558.4		0.6		6783	$6.8 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 0.6 \mathrm{~m}$
		638.1		643.2		5.1			0.5g/t Au/5.1m
	Incl.		640.1		641.1		1.0	1780	
		650.1		651.1	. 1	1.0		2064	$2.1 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$
		675		680		5.0			$3.8 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 5.0 \mathrm{~m}$
	Incl.		676.0		677.0		1.0	1026	
			679.0		680.0		1.0	8319	
		691.7		692.5		0.7		1889	$1.9 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 0.7 \mathrm{~m}$
		711		723.1		12.1			$0.2 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 12.1 \mathrm{~m}$
		789		799.7		10.7			$0.2 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 10.7 \mathrm{~m}$
BRS01-08	245.0	69.0		75.3		6.6			1.2g/t Au/6.6m
	Incl.		70.5		72.0		1.5	2255	
			74.5		75.3		0.8	3316	
		86.1		87.6		1.5		1790	1.8g/t Au/1.5m
		110		111		1.0		2590	$2.6 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$
		130.7		141.2	. 2	10.5			0.4g/t Au/10.5m

Lab results reported in ppb have been converted to g / t and rounded to one decimal place to provide weighted average. Rejects of samples grading more than $\mathbf{2 . 0 g / t}$ Au were re-assayed and the two gold values were averaged mathematically. The re-assay values were similar to the original gold assays.

4.0 CONCLUSIONS

The Bristol fall 2001 drilling program consisted of 1,483 metres, in three holes (BRS01-06 to 08). All three holes were successful in intersecting gold mineralization hosted by strongly deformed and altered quartz-feldspar porphyry (QFP), part of a major deformation corridor. The best mineralized interval was intersected in hole BRS01-08 where a strongly chloritized section of the QFP was injected by chlorite-calcite-silica stringers containing 10% pyrite (in stringers and disseminated) and 2% chalcopyrite (in stringers) and returned $2.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.3 \%$ Cu and $3.1 \mathrm{~g} / \mathrm{t}$ Ag over 6.1 m . Similar mineralization style was found elsewhere in all three holes, but the gold values were more isolated and the chlorite alteration was less intense and pervasive. Hole BRS01-07 had its best interval from 675.0 to 680.0 m which returned $3.8 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au} / 5.0 \mathrm{~m}$, including a highest assay of $8.3 \mathrm{~g} / \mathrm{t} \mathrm{Au} / 1.0 \mathrm{~m}$.

Even thought no ore grade was intersected in this drill program, the three holes help support the concept that the deformation corridor is oriented between 230° and 250°. This new orientation indicates that the mineralized system is open along strike, where no drilling has been done to date and strong I.P. anomalies remain untested (1994-95 Teck Corporation I.P. surveys). This orientation is more coherent with the regional and the Timmins area geology, which are generally striking to the southwest. The strong alteration and consistent mineralization were intersected in hole BRS01-08 and the corridor has not been drilled further east.

5.0 RECOMMENDATIONS

Additional drilling is recommended along the interpreted northeast and southwest extensions of the main deformation corridor, where no drilling has been done to date (Figure 3). From the 1994-95 Teck Corporation I.P. survey, a chargeability anomaly stronger than the main porphyry anomaly is present along the projected deformation corridor to the southwest of the main porphyry mineralization. This large anomaly should be thoroughly investigated by drilling, under frozen ground conditions since it is located under a swamp. The northeast extension can be tested any time of the year. The contact zones at the NE and SW margins of the porphyry have not been tested so far and they could represent a favorable environment where the mineralization blossom out.

Drilling should be also planned along the projected southwest and northeast extensions of the gold-bearing Bristol fault, to the north of the main deformation corridor, where strong chargeability anomalies were interpreted from the 1994-95 Teck Corp. I.P. surveys (Garnet Wood internal Memo, August , 2001). The Bristol fault appears to be parallel to the main deformation corridor, following the Bristol creek. The gold mineralization previously intersected by Placer Dome and Teck Corporation differs from the main deformation corridor as it is associated with quartz-tourmaline veinlet stockworks accompanied by pyrite disseminations, hosted by deformed QFP dykes intruding mafic volcanics. It represents a similar environment as the contact areas between the mafic volcanics and the porphyry which host most of the gold ore shoots at the Hollinger-McIntyre Mine.

6.0 REFERENCES

Ayers, J.A., Trowell, N.F., Amelin, Y., and Corfu, F., (1999), Project Unit 95-24. Geological compilation of the Abitibi Greenstone Belt in Ontario: Toward a revised stratigraphy based on compilation and new geochronology results. In Summary of Field Work and Other Activities 1998, Ontario Geological Survey Miscellaneous Paper 169, p. 14 to 24.

Brisbin, D.I. (1997), Geological setting of gold deposits in the Porcupine Mining Camp, Timmins, Ontario. Unpublished Ph.D. thesis, Queen's University, Kingston, 523 p.

Buffam, B.S.W. (1948), Moneta Porcupine Mine. In Structural Geology of Canadian Ore Deposits Volume 1. Canadian Institute of Mining and Metallurgy, Montreal, p. 457-464.

Coad, P., and McCracken, T., (2000), Cameco Gold Inc., Report on the 2000 Diamond Drill Work Program, Bristol Property (Placer Dome Option), Bristol Township, Ontario, NTS 42A/06, unpublished company report.

Cole, B. (1986), Dome Exploration (Canada) Limited, Report on Diamond Drilling, Project 246, Bristol Township, unpublished company report.

Cole, B. (1988), Placer Dome Inc., Diamond Drilling Report, 1987, Project 246, Bristol Twp., unpublished company report.

Cole, B. (1988), Placer Dome Inc., Diamond Drilling Report, 1988, Project 246, Bristol Twp., unpublished company report.

Dunbar, W.R. (1948), Structural relations of the Porcupine ore deposits. In Structural Geology of Canadian Ore Deposits, Volume 1; Canadian Institute of Mining and Metallurgy, Montreal, p. 442-456.

Ferguson, S.A. (1957), Geology of Bristol Township, District of Cochrane, Ontario, ODM Annual Report, Vol. LXV1, Pt. 7.

Gasteiger, W. (1981), Geophysical Reports on Airborne EM and Mag Survey by Texasgulf Canada Limited, Assessment Reports no. 2.4323 and 2.3888, Ministry of Northern Development and Mines.

Hawley, J.E. (1927), Geology of Ogden, Bristol, and Carscallen Townships, District of Cochrane, Ontario, ODM Annual Report, Vol. XXXV, Pt. 6, p. 1-36.

Houle, M.Y. (1995), Quarterly Report, Placer Dome Option, Bristol Twp., Project 16320, unpublished company report.

Koziol, M., (2001), Cameco Gold Inc., Report on the Fall 2000 Diamond Drill
Program, Bristol and Bristol North Properties, Bristol Township, Ontario, NTS 42A/06, unpublished company report.

Pyke, D.R. (1982), Geology of the Timmins area, District of Cochrane. Ontario Geological Survey, Report 219, 141 p., Map 2455.

Tegalder Resources Inc. (1980), Geophysical Report on Airborne Survey, Assessment Report no. 2.3752, Ontario Ministry of Northern Development and Mines.

Texasgulf Canada Ltd.(1981), Overburden Drilling Report, Assessment Report no. 2..5041, Ontario Northern Development and Mines.

7.0 CERTIFICATES OF QUALIFICATIONS

I, Dominic Babin, residing at 234 Moonlight Avenue, Sudbury, Ontario, P3B 3W1, do here by certify that:

I am currently employed as a Geologist by Cameco Gold Inc., 1349 Kelly Lake Road, Unit \#6, Sudbury, Ontario, P3E 5P5;

I attended l'Université du Québec à Chicoutimi, Quebec and graduated with a B. Ing., (Geological engineering) in 1995;

Since June, 1995, I have worked continuously as a geologist in exploration and postgraduate research;

I was on the property when the work was being carried out, and personally supervised the exploration activities.

Signed at Sudbury, Ontario, this 13th day of February, 2002

Dominic Babin
Geologist
Eastern Canada District

$$
2.24251
$$

APPENDIX A

Detailed Diamond Drill Logs - 2001 Drill Program

$$
2.24351
$$

Hole: BRS01-06

Project: Bristol

UTM East: 465196	UTM North: 5361749
Grid East: 2600	Grid North: -950
UTM base: NAD27	Local Grid : Teck
Claim \#: 997471,997465	Elevation: 295
Township: Bristol	Core Size: NQ
Start Date: 10/1/1930	Completion Date: 11/4/2001
Logged By: D. Babin	Length: $\mathbf{4 2 5 . 0 0}$

Drilled By: Bradley Brothers Ltd.
Core Storage: Bradley Bros. Ltd., Timmins

Down Hole: ezShot
Hole making water: No

Casing in Hole: Yes NW
\# of Au Samples: 105

Purpose: Test the northe-eastern extension of the main porphyry-hosted and mineralized deformation zone

Cameco

Hole: BRS01-06

Diamond Drill Log Sheet

Project: Bristol
Cameco
Hole: BRS01-06

Page: 3 of $\mathbf{2 2}$

Project: Bristol

Cameco

Hole: BRS01-06

Project：Bristol

Cameco

Hole：BRS01－06

E	Lithology						Alteration							Accessory Min．				Struct．		Assay				
	From （m）	To （m）	$\begin{aligned} & \text { Lith } \\ & \text { code } \end{aligned}$	lithology	text．	Comments	Chl	Ser	Silic	Epi	He m	Carb	othe r	\％Py	$\begin{gathered} \% \\ C p y \end{gathered}$	$\begin{gathered} \% \\ \mathrm{Qz} \end{gathered}$		Struc	＜tca	From （m）	To （m）	Sam\＃	Au ppb	Au
							OT	N	N	N	N	N＋		40	nm	욲								88
	55.5	92.0		greywacka												17	1．5\％$<0.5 \mathrm{~mm}$ wdPY							
			$1 \% 100$		laminated． load structures．	Dark grey to dark green，medium to coarse grained （ $2 \mathrm{~mm}<x<15 \mathrm{~mm}$ ）Host rock is crosscut by 1% ， $0.3-10 \mathrm{~cm}$ wide．White massive quart－carbonate veins，					\vdots													
$81-$					Stiated	crosscutting foliation．t ．．．Laminated to thickly	－		－		！													
\square						bedded，woakly foliated volcaniclastic wacke sequence．	－				！	！			，									
82.						toldspar－rich，massive sandstone beds，anywhere from	\vdots				！													
\cdots						10 cm to 2 mm thick，interbedded with 15% laminated mudstone beds and 10% pebble conglomerate beds	；	¢	－		！	！			＇									
83						（aphyric mafic and intermediate clasts）．Load structures	！		！		，	！												
				－		and detachment clasts suggest a top downhole．From	！	，	，		¢	！												
84						liny white quartz－dolomita veinlets．The veinlets are	\vdots		；		！	：			！									
84						sericitized，silicitiod and carbonatized halo．From	－				，	：			＇									
$85-7$							\vdots	：	，		！	，												
						fooks more like a coarse sandstone bed）．Most of the pyrite is disseminated or associated with	－		\vdots		！	！			；									
						chlorito－carbonato stringers（ $<2-3 \mathrm{~mm}$ wide）．	！	，	－		，	：			，			sfol1	55					
86							！		，		！				，			bed	55					
\％							！		，		，	\vdots			，									
87 －							：	：	，		，				，									，
87							：				，	－			！									！
\cdots							－		，		\vdots	！			，									！
88 ：							！		，		\vdots	\vdots												＋
是							\vdots				－	：												
事							！				\vdots	．												；
$89 \sim$							－					；												
$3 \times$							！		！		，	：												！
90－							，	\vdots	，		！	；												
F－							：	！			\vdots			！	，									
91.							！	－			，	！			，									，
者							！		，							－	$1.0 \%<0.5 \mathrm{~mm}$			91.0	92.0	83522	277	
92							）	\square	－					！		\vdots	WdPY， 0.1% WCP．			91.0	92.0	23522	27	
92 聿							！	Γ	\bigcirc	，	！	［						Stoth	70					
93 青							！	交	！			－		，						92.0	93.5	83523	27	，
93							！	\vdots	！			－												
雨＋							－	；	－			！												
94 者；						Dark grey ，quart－feldspar porphyritic．Medium grained	！	！	！			\vdots										83524	139	
者						（ $<5 \mathrm{~mm}$ ）phenocryst and vary fine grained（ $<0.5 \mathrm{~mm}$ ）	\vdots	！	\vdots	\vdots		！		．						93.5	95.0	83524	139	
95 －						White，brecciated quart－cartonate－chlorite veins veins，	－	！	－	：	，	！		！										
95						crosscutting foliation．． $3 . .-$ Very weakty foliated	，	！	！		，	！		，			2．5\％＜0．5mm							
						intrusive composed of $30-50 \%$ glassy to white	\vdots	，	\vdots		，	！		，	¢		${ }_{0}^{\text {dPY，}} 25.0 \%$			95.0	96.5	83525	50	－
96.	92.0	101.4	$\begin{aligned} & 80 \% \\ & 20 \% \end{aligned}$	feldspar	－foliated－ veined	10－20\％dark grey to bluish angular quartz phenocrysts	\vdots	\vdots	：	，	）	！		！	；		0．2－10cm wnoz．							
				porphyry		（ $9-4 \mathrm{~mm}$ in size）．The matrix is very dark green and		：	！	！		－			；									
97 ${ }^{\text {米 }}+$						compowed and are composed mainly of quartiz and	－	！	－	！	，	：		－	，									
聿						carbonate，with minor hematite in some veinlets or chlorite－filed fractures in others（pseudo－brecciation	！	：	\vdots			！		\vdots	，					96.5	98.0	83526	41	
98 ${ }^{\text {事 }}$						the later chlorite event）．Pyrite is seen as disseminated mainly with minor pyrite－chlorite wisps．	！	！	：			！		－	，									
											，													
刍＋							：	：	：	，	！	－		！	，					98.0	99.5	83527	150	，
99							！	：	！	\vdots	\vdots	\vdots					2．0\％＜ 0.5 mm							S
F＋									－	\bigcirc							dPY， 3.0%							
$1+$																	$0.2-0.5 \mathrm{~cm} w \mathrm{maz}$ ，					83528	64	

Cameco
Hole: BRS01-06

Project: Bristol

Cameco
Hole: BRS01-06

Project: Bristol

Cameco

Hole: BRS01-06

Project: Bristol

Cameco

Hole: BRS01-06

Page: 9 of 22

Project: Bristol

Cameco

Hole: BRS01-06

Project: Bristol

Cameco
Hole: BRS01-06

Page: 11 of 22

Page: 12 of 22

Cameco
Hole: BRS01-06

Diamond Drill Log Sheet

Project: Bristol

Cameco
Hole: BRS01-06

Project: Bristol

Cameco

Hole: BRS01-06

Cameco

Hole: BRS01-06

Hole: BRS01-06

Cameco

Hole: BRS01-06

Page: 18 of 22

Diamond Drill Log Sheet

Project: Bristol
Cameco
Hole: BRS01-06

Diamond Drill Log Sheet

Project: Bristol

Cameco
Hole: BRS01-06

Diamond Drill Log Sheet

Project: Bristol
Cameco
Hole: BRS01-06

Project: Bristol

Cameco

Hole: BRS01-07

Project: Bristol

Cameco
Hole: BRS01-07

Project: Bristol

Cameco
Hole: BRS01-07

Project: Bristol

Cameco

Page: 8 of 41

Project: Bristol

Cameco

Hole: BRS01-07

Project: Bristol

Cameco
Hole: BRS01-07

Diamond Drill Log Sheet

Project: Bristol

Cameco
Hole: BRS01-07

Project: Bristol

Cameco
Hole: BRS01-07

Project: Bristol

Cameco

Hole: BRS01-07

Project: Bristol
Cameco
Hole: BRS01-07

Project: Bristol
Cameco
Hole: BRS01-07

Diamond Drill Log Sheet

Project: Bristol
Hole: BRS01-07

Diamond Drill Log sheet

Project: Bristol
Cameco
Hole: BRS01-07

Page: 20 of 41

Project: Bristol

Cameco
Hole: BRS01-07

Page: 22 of 41

Page: 23 of 41

Project: Bristol

Hole: BRS01-07

Page: 24 of 41

Diamond Drill Log Sheet

Project: Bristol

Hole: BRS01-07

Page: 25 of 41
Project: Bristol
Hole: BRS01-07

Page: 27 of 41

Project: Bristol
Cameco
Hole: BRS01-07

Hole: BRS01-07

Diamond Drill Log Sheet

Cameco

Project: Bristol

Hole: BRS01-07

Diamond Drill Log Sheet

Project: Bristol
Hole: BRS01-07

Diamond Drill Log Sheet

Project: Bristol
Cameco
Hole: BRS01-07

Diamond Drill Log Sheet
Project: Bristol
Hole: BRS01-07

Diamond Drill Log Sheet

Project: Bristol
Hole: BRS01-07

Project: Bristol
Cameco
Hole: BRS01-07

Page: $\mathbf{3 9}$ of 41

Diamond Drill Log Sheet

Project: Bristol
Cameco
Hole: BRS01-07

Diamond Drill Log Sheet
Project: Bristol
Hole: BRS01-07

Cameco

Cameco Gold Inc.
 Summary Log Sheet

Hole: BRS01-08

Project: Bristol

UTM East: 465388

Grid East: 2800

UTM base: NAD27

Claim \#: 997472 , 997465

Township: Bristol

Start Date: 11/1/2017

Logged By:
D. Babin

UTM North: 5361767

Grid North: -1025

Local Grid : Teck

Elevation: 295

Core Size: NQ

Completion Date: 11/1/2019

Length: 245.00

Drilled By: Bradley Bros. Ltd.

Core Storage: Bradley Bros. Ltd., Timmins
Down Hole: ezShot

Hole making water: No
Casing in Hole: Yes NW
\# of Au Samples: 55

Purpose: Test the extension of the main porphyry-hosted and mineralized deformation zone, 160 m to the north-east of hole BRS01-06.

Whole Rock Sample			
From (m)	To (m)	Sample \#	lithology

Diamond Drill Log Sheet Cameco Project: Bristol Came: BRS01-08																								
	Lithology						Alteration							Accessory Min.				Struct.		Assay				
	From (m)	To (m)	Lith code	lithology	text.	Comments	ChI	Ser	Silic	Epi	$\begin{gathered} \mathrm{He} \\ \mathrm{~m} \end{gathered}$	Carb	othe r	$\% \mathrm{Py}$	$\begin{gathered} \% \\ \mathrm{Cpy} \end{gathered}$	$\begin{aligned} & \% \\ & \mathrm{Qz} \end{aligned}$		Struc	< tca	$\begin{aligned} & \text { From } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { To } \\ (\mathrm{m}) \end{gathered}$	Sam\#	Au ppb	Au
							N	N	N	N	N	N		69	nm	-08								888
	0.0	37.0	OB	Overburden																				

Project: Bristol

Cameco
Hole: BRS01-08

Cameco
Hole: BRS01-08

Page: 5 of 13

Project: Bristol

Cameco
Hole: BRS01-08

Cameco
Hole: BRS01-08

Cameco

Page: 11 of 13

Cameco
Hole: BRS01-08

Page: 12 of 13

Page: 13 of 13

APPENDIX B

Gold Assay and ICP Certificates for all Analyses

CAMECO GOLD INC.
MIKE KOZIOL
\#6-1349 KELLY LAKE ROAD
SUDBURY, ONTARIO
P3E 5P5

REPORT: T01-57390.0 (COMPLETE)

CLIENT: CAMECO GOLD INC.
PROJECT: BRISTOL

REFERENCE: 174591

```
SUBMITTED BY: D. BABIN
```

DATE PRINTED: 14-NOV-01

REPORT COPIES TO: MIKE KOZIOL

INVOICE TO: MIKE KOZIOL

This report must not be reproduced except in full. The data presented in this repart...is.specific. ta those samples ..identified under. in sample. Number.. and. is applicable only to the samples as received expressed on a dry basis unless otherwise indicated

CAMECO GOLD INC.
MIKE KOZIOL
\#6-1349 KELLY LAKE ROAD
SUDBURY, ONTARIO
P3E 5P5

[^0]

REPORT COPIES TO: MIKE KOZIOL
 INVOICE TO: MIKE KOZIOL

This report must not be reproduced except in full. The data presented in this report is specific to those samples identified under "Sample Number" and is applicable only to the samples. as received expressed on a dry basis units. otherwise indicated

Certificat D'Analyse

 Assay Lab Report

MIKE KOZIOL
\#6-1349 KElly lake road
SUDBURY, ONTARIO
P3E 5P5

CAMECO GOLD INC.
MIKE KOZIOL
\#6-1349 kelly lake road
SUDBURY, ONTARIO
P3E 5P5

CAMECO GOLD INC.
MIKE KOZIOL
\#6-1349 KELLY LakE ROAD
SUDBURY, ONTARIO
P3E 5P5

CAMECO GOLD INC.
MIKE KOZIOL
\#6-1349 KELLY LAKE ROAD
SUDBURY,ONTARIO
P3E 5P5

CAMECO GOLD INC.
MIKE KOZIOL
\#6-1349 KELLY LAKE ROAD
SUDBURY,ONTARIO P3E 5P5

Rapport Lab Geochimie

Rapport Lab Geochimie bondar clegg

Work Report Summary

Transaction No:	W0260	1493			us: APP	OVED			
Recording Date:	2002-S	-20		Work Done	m: 200	OCT-30			
Approval Date:	2002-S	-26			to: 200	NOV-19			
Client(s):									
114820		MECO COR	ORATION	ORPORAT	N CAMECO				
Survey Type(s):									
		ASSAY		PDRILL					
Work Report Detai									
Claim\#	Perform	Perform Approve	Applied	Applied Approve	Assign	Assign Approve	Reserve	Reserve Approve	Due Date
P 997465	\$33,599	\$33,599	\$0	\$0	\$0	0	\$33,599	\$33,599	2004-JUL-06
P 997467	\$33,103	\$33,103	\$0	\$0	\$0	0	\$33,103	\$33,103	2003-JUL-07
P 997470	\$23,555	\$23,555	\$0	\$0	\$0	0	\$23,555	\$23,555	2004-JUL-06
P 997471	\$4,809	\$4,809	\$0	\$0	\$0	0	\$4,809	\$4,809	2004-JUL-06
P 997472	\$8,293	\$8,293	\$0	\$0	\$0	0	\$8,293	\$8,293	2004-JUL-06
	\$103,359	\$103,359	\$0	\$0	\$0	\$0	\$103,359	\$103,359	

External Credits:	\$0	
Reserve:		
	\$103,359	Reserve of Work Report\#: W0260.01493
	\$103,359	Total Remaining

Ministiy of
Northern Development
and Mines

Ministère du
Développement du Nord et des Mines

Date: 2002-SEP-26

MARIAN (MIKE) KOZIOL
CAMECO CORPORATION/CORPORATION
CAMECO
1349 KELLY LAKE ROAD
UNIT \#6
SUDBURY, ONTARIO
P3E 5P5 CANADA

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO
P3E 6B5

Tel: (888) 415-9845
Fax:(877) 670-1555

Submission Number: 2.24251
Transaction Number(s): W0260.01493
Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

If you have any question regarding this correspondence, please contact BRUCE GATES by email at bruce.gates@ndm.gov.on.ca or by phone at (705) 670-5856.

Yours Sincerely,

Ron Gashinski
Senior Manager, Mining Lands Section

Cc: Resident Geologist
Cameco Corporation/Corporation Cameco (Claim Holder)

Assessment File Library
Cameco Corporation/Corporation Cameco (Assessment Office)

GEOLOGICAL LEGEND

matic volcanics	
mylonite	Structure Legend
greywacke, schistosity
mafic intrusive, diabase	shear
granodiorite	shear
quartz-feldspar porphyry	cleavage
strongly deformed quartz-feldspar porphyry	Cleavag
strongly deformed and brecciated quartz-feldspar por phyry	
brecciated quartz-felspar porphyry	fracture

- fault zone

GEOLOGICAL LEGEND

GEOLOGICAL LEGEND

\square matic volcanics
mylonite
greywacke
matic intrusive, diabase
granodiorite
quartz-feldspar porphyry
strongly deformed quartz-feldspar porphyry
strongly deformed and brecciated quartz-feldspar porphyry
brecciated quartz-felspar porphyry
fault zone
Overburden

[^1]Overburden

[^0]: CAMECO GOLD INC.
 MIKE KOZIOL
 \#6-1349 KELLY LAKE ROAD SUDBURY, ONTARIO P3E 5P5

[^1]: Structure Legend
 …s schistosity
 shear
 contact
 -c cleavage
 , foliation

 - fault
 , fracture

