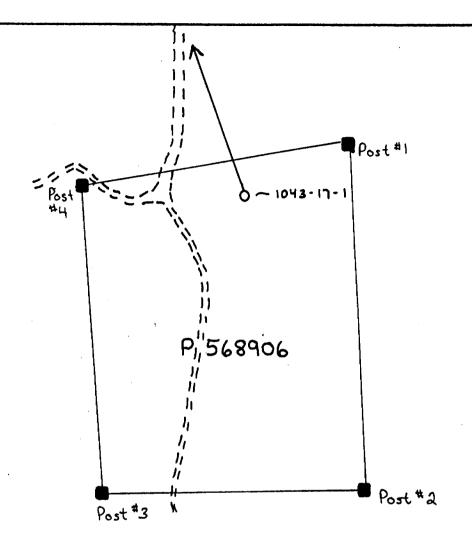


010

DIAMOND DRILLING


TOWNSHIP: Adams

REPORT No.:

WORK PERFORMED BY: Amax Minerals Exploration

CLAIM No. HOLE No. FOOTAGE NOTE DATE Sept/81 P 568906 1043-17-01 (1) 194.0 m

Notes: (1) #108-82

AMAX MINERALS EXPLORATION

Drill Hole Location Map

HOLE 1043-17-1

Scale: 1:5,0

ADAMS TOWNSHIP

J.Mp. Timmins

DIAMOND DRILL RECORD

Hole No. 1043-17-01

Hole No. 1043-17-01 Sheet 1	Length Bearing	194 0 metres 340	Commenced	September 18, 1981 Septebmer 22, 1981	Dip: Collar	_	60 ⁰	Location Sketch	North	
Property 1043-11, Additis-2 Township Adams Location LO, 25S	Dip Objective	-60° Stratigraphic Informa- tion	Completed Drilling Co. Core Size	St. Lambert BQ	Etch Test	Depth 1.25m	Rdg. True 59.50	1250E	→	
Logged By S. Davies Core Location Timmins Office		CTOIL	Casing Left/1	Lost in Hole NONE	Z	194m	58 50	 1 101 BL.	Claim No. P	
Remarks								<u> </u>	Scale:	30,000

From From	Metres To	DESCRIPTION
0	48.0	OVERBURDEN
48.0	54.06	GRANITE/GRANODIORITE
54.06	58.6	MAFIC FLOW
58.60	59.4	MAFIC TUFF
59.4	65.8	MAFIC FLOW
65.8	69.2	MAFIC TUFF
69.2	76.7	MAFIC FLOW
76.7	93.5	MAFIC TUFF
93.5	98.4	MAFIC FLOW
98.4	99.6	INTERCALATED CHERT BEDS & MAFIC FLOW
99.6	100.5	MAFIC FLOW
100.5	101.7	TUFF
101.7	102.8	MAFIC FLOW
102.8	104.0	MAFIC TUFF

g. Mraetcherson

Hole No. 1043-17-01
Sheet No. 2

Footage					
From	To	DESCRIPTION			
104.0	104.85	SANDSTONE (?)			
104.85	105.8	MAFIC FLOW			
105.8	106.46	MAFIC TUFF			
106.46	116.7	MAFIC FLOW			
116.7	117.3	CHERT BAND			
117.3	157.5	MAFIC FLOW			
157.5	169.5	BANDED MAFIC SEDIMENTS			
169.5	186.5	MAFIC TUFFACEOUS SEDIMENT			
186.5	194.0	SILICEOUS SEDIMENT			
	194.0	END OF HOLE			

Hole No1	043-17-0	1
Sheet No	3	

Footage		DESCRIPTION
From	To	DESCRIPTION
0	48.0	OVERBURDEN
48.0	54.06	GRANITE/GRANODIORITE
		Grey to pink in colour, medium to coarse grained. Subhedral porphyro-
		blasts up to 2mm in size. Contact is sharp but with a dense halo.
54.06	58.6	MAFIC FLOW
		Fine grained, black flow. Minor quartz stringers, lacking in
		carbonates. Approximately 1.5 metres of halo that is altered to chlorite.
		At 56.0 metres the angle of bedding is 40° to the core axis. Minor
		sulphides (pyrrhotite ?)
58.6	59.4	MAFIC TUFF
		Dark grey in colour, fine to medium grained. Subhedral to euhedral
		fragments up to 3cm in size. At 58.0 metres preferred angle of orienta-
		tion is 30° to the core axis. No carbonates and minor sulphides.
59.4	65.8	MAFIC FLOW
		,
		as per 54.0 - 58.6
		At 61.0 metres the angle of orientation is 40° to the core axis.
		From 64.15 to 64.65 feldspar porphyritic intrusions. Subhedral porphyro-
		blasts up to 2mm in size. Contacts are sharp and at 50° to the core axis.
65.8	69.2	MAFIC TUFF
		Fine to medium grained. Subhedral to euhedral fragments up to lcm
		in size. Core is cut by minor quartz veinlets at 50° to the core axis
		and by carbonate stringers at random angles.
		At 66.2 metres preferred angle of orientation is 40° to the core axis.
69.2	76.7	MAFIC FLOW
		as per 59.4 - 65.8

DIAMOND DRILL RECORD

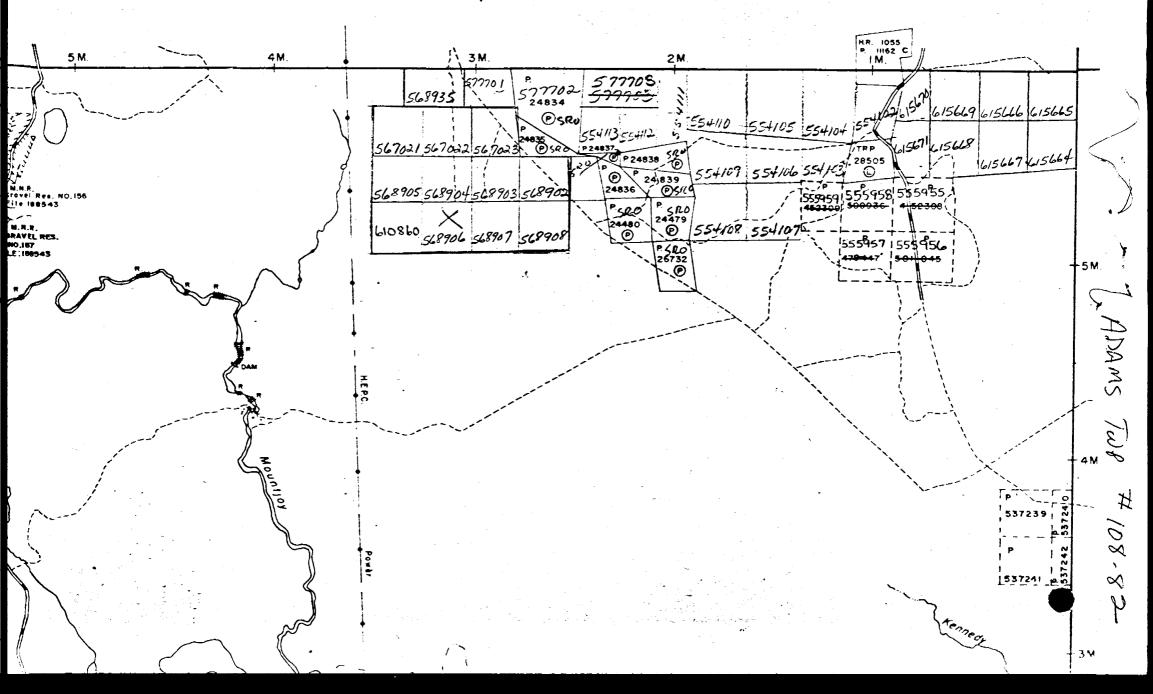
			
age	DESCRIPTION		
То			
93.5	MAFIC TUFF		
	as per 65.8 - 69.2		
	At 77.5 angle of orientation is 40° to the core axis.		
	Minor sulphides <1% and quartz veinlets with K-feldspars 91.8 - 92.3		
ļ	lcm quartz carbonate vein at 10° to the core axis associated with the veinlet is carbonatization and minor sulphides.		
	- associated with the verniet is carbonatization and minor surprides.		
98.4	MAFIC FLOW		
	as per 69.2 - 76.7		
99.6	INTERCALATED CHERT BEDS & MAFIC FLOW		
	Chart is apparish to white in colour with fungments up to low in		
	Chert is greenish to white in colour with fragments up to 1cm in size. The beds are up to 10cm wide such as 99.0 metres and are at 40°		
·	to the core axis. The contacts are sharp.		
	to the core axis. The contacts are sharp.		
100.5	MAFIC FLOW		
	as per 93.5 to 98.4		
101 7	TUFF		
101.7	1011		
	Euhedral to subhedral fragments up to lcm in size. Upper and lower		
	contacts are sharp and at 40° to the core axis. Very minor amounts of		
	carbonate and barren of sulphides. The fragments are probably feldspar.		
102.8	MAFIC FLOW		
	as per 99.6 - 100.5 102.0 - 102.4 minor, more felsic flows with fragments up to 1cm in size		
	and sulphides <1%.		
	and surprines <1%.		
104.0	MAFIC TUFF		
	as per 69.2 - 76.7		
	Some minor chert banding (.5cm) containing small amounts of		
	sulphides. Preferred orientation 40° to the core axis.		
	<u>'</u>		
	93.5 93.5 98.4 99.6		

Hole No. 1043-17-01 Sheet No...

DIAMOND DRILL RECORD

Foota From	ge - Metres To	DESCRIPTION
	104.85	SANDSTONE (?)
		Dark grey to black in colour. Medium grained and bedding is not
		obvious. Minor pyrite 1-2% with some having rusted. Contacts are sharp.
	ļ <u> </u>	
_104.85	105.8	MAFIC FLOW
		20 00 00 100 0
		as per 99.6 - 100.5
	 	Sulphide content is higher ~2% ?. At 105.0 metres angle of bedding is 35° to the core axis.
		the rest more as ungree or beauting is on to the tore axis.
105.8	106.46	MAFIC TUFF
		Upper and lower contacts are sharp. Fine grained. Dark fragments
		(subhedral) up to 1mm in size. 1-2% sulphides and ≃10% carbonate.
106.46	116.7	MAFIC FLOW
		711.12 7.201
		as per 99.6 - 100.5
		Quartz veinlet, 1cm wide, at 108.0 metres with sulphide mineraliza-
		tion (cubic pyrite).
		At 109.0 metres angle is 35° to the core axis.
	•	111.0 - 114.0, some sulphides assoiciate with veinlets (minor)
		At 106.3 - 116.7 carbonate stringers increase to about 5-8%.
116.7	117.3	CHERT BAND
	117.0	SHELL DINE
		Purple to grey chert with subhedral fragments up to 3mm. Black
		Purple to grey chert with subhedral fragments up to 3mm. Black stringer at 10° to the core axis altered a narrow band to carbonate.
		Upper and lower contacts are sharp. Minor sulphides.
117.3	157.5	MAETC FLOW
117.3	13/.3	MAFIC FLOW
		as per 106.46 - 116.7
		From 117.3 to 121.0 metres the core is broken and small fractures and
		offsets are seen in the quartz carbonate stringers. There is also some
		chloritization along the fracture planes. This could indicate a fracture
		zone or area of weakness.
		At 121.0 metres, 3cm quartz vein with chalcopyrite mineralization.
		The vein brecciated the flow rock.

Hole No. 1043-17-01 Sheet No.....


Footage - Metres							
From	To	DESCRIPTION					
		Minor sulphides associated with the fractures.					
		Angles to the core axis: 120.0 metres is 40° to the core axis.					
		123.0 metres is 37° to the core axis.					
		126.0 metres is 35° to the core axis.					
		From 129.0 - 135.0 some pyrrhotite mineralization associated with fracture					
		From 131.0 - 133.0, carbonate alteration in bands.					
		At 138.0 metres angles of bedding is 35° to the core axis. From					
		143.8 to 150.2 parent rock has been carbonatized and altered to a					
_		greenish colour with brown patches (ankerite?). Sulphide mineralization					
		(pyrrhotite and pyrite) is associated with some of this alteration and					
		with fractures.					
		From 156.43 to 156.82 the wall rock has been highly carbonatized due to					
		two quartz carbonate veinlets.					
		From 154.5 to 155.0 quartz carbonate veins with pyrite, chalcopyrite,					
		and pyrrhotite mineralization.					
		4114 9 11110 1 41 1 41 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 1 4 1					
157.5	169.5	BANDED MAFIC SEDIMENTS					
	,,,,,,,	77.1.000 18.1. 19 Q 103.1.1=11.0					
		Dark grey, fine grained sediments with carbonate bands up to 2cm in					
		size. Bands are at 45° to the core axis. Some bands contain a brownish					
		mineral which could be ankerite. Small amounts (<1%) sulphide mineral- ization. Minor quartz carbonate veinlets cut the core at random angles,					
		and offset some of the carbonate bands.					
		From 165.8 to 166.4 chert band-purple to green in colour, contacts					
		are sharp.					
		Most of the veinlets have carbonate haloes. The sulphide content					
		increases slightly downhole.					
169.5	186.5	MAFIC TUFFACEOUS SEDIMENT					
		At 171.0 metres angle of bedding is 45° to the core axis.					
		From 176.26 - 176.50 wall rock has been carbonatized by a quartz					
		carbonate veinlet and sulphide mineralization is about 10%. Crystals					
		are foliated at 30° to the core axis and may be amphiboles. Evidence of					
		soft sediments (slumping and bedding). Sulphide mineralization (chalc,					
		py, and pyrrhotite) occurs in small veinlets.					
	From 185.3 to 186.0 rock has been brecciated by shearing and quart						
		infilled between the fragments. Some sulphides and maybe ankerite.					
	:						

Hole 1	vo.1043-	-17-01	
Sheet	No6	<u>; </u>	ورساوه و روس و وها داني

	·			
Footage - Metres				
From	To	DESCRIPTION		
186.5	194_0	SILICEOUS SEDIMENT		
		Fine grained mafic sediment. Quartz carbonate veinlets at random angles with some sulphide mineralization. From 188.1 to 188.46 and from 188.78 to 189.15 purple chert beds with		
		angles with some sulphide mineralization.		
		1 SOME CATOONATES		
		At 192.1 quartz vein. 3cm wide with some ankerite. At 187.0 metres bedding is 45° to the core axis. A5 192.0 metres bedding is 40° to the core axis.		
		At 187.0 metres bedding is 45° to the core axis.		
		A5 192.0 metres bedding is 40° to the core axis.		
	194.0	END OF HOLE		
		·		
	-			
				

Hole l	vo_1043	-17-0	L
Sheet	No	7	

Deloro Twp. - M.272

