## REPORT ON

A COMBINED HELICOPTER-BORNE MAGNETIC AND ELECTROMAGNETIC SURVEY<br>PRICE AND FRIPP TOWNSHIPS<br>PORCUPINE MINING DIVISION<br>ONTARIO<br>NTS: 42A/6

## RECEIVED

illl 2.81983

## MINING LANDS SECTION

TORONTO, ONTARIO, CANADA
JULY, 1983
J. A. MCCANCE, D.Eng. SAMIM CANADA LTD.

## ARGENTEX - LENOR

## PRICE AND FRIPP TOWNSHIPS PORCUPINE MINING DIVISIUN

## A Combined Helicopter-borne Magnetic and Electromagentic Survey, 1983

## TABLE OF CONTENTS <br> Page

1. INTRODUCTION 1
2. SURVEY AREA 2
3. LOCATION, ACCESS AND TOPOGRAPHY 3
4. LAND TENURE, OWNERSHIP 6
5. PREVIOUS WORK 7
6. GEOLOGY 10
7. AIRBORNE GEOPHYSICAL SURVEY . . 13
8. SURVEY RESULTS AND INTERPRETATION 14
8.1 MAGNETICS 16
8.2 VLF-EM 18
8.3 COAXIAL EM-915 Hz 21
9. CONCLUSIONS AND RECOMMENDATIONS 22

## APPENDICES

APPENDIX A
APPENDIX B

APPENDIX C

CERTIFICATE - J. A. McCance
3 TECHNICAL DATA STATEMENTS INCLUDING LIST OF CLAIMS AND LOCATION MAPS

EXCERPTS FROM MAY 1983 REPORT BY R.L.SCOTT HOGG, AERODAT LIMITED

## LIST OF FIGURES

| FIGURE 1 | LOCATION OF SURVEY AREA $(1: 250,000)$ |
| :--- | :--- |
| FIGURE 2 | LOCATION MAP ARGENTEX-LENORA OPTION <br> PROPERTY $(1 "=16$ miles $)$ |
| FIGURE 3 | REGIONAL STRATIGRAPHY OF THE TIMMINS- <br> MATACHEWAN AREA |

LIST OF MAPS
(Scale - 1/10,000)

| MAP 1 | AIRBORNE ELECTROMAGNETIC SURVEY CONDUCTOR MAP |
| :--- | :--- |
| MAP 2 | AIRBORNE ELECTROMAGNETIC SURVEY PROFILES <br> (915 Hz COAXial) |
| MAP 3 | TOTAL FIELD MAGNETIC MAP - NORTH |
| MAP 4 | TOTAL FIELD MAGNETIC MAP - SOUTH |
| MAP 5 | VLF-EM MAP - NORTH <br> (Total Field Contours with Profiles of the <br> Vertical Quadrature Component) |
|  | VLF-EM MAP - SOUTH |

1. INTRODUCTION

In March 1983, Samim Canada Ltd. optioned a 153 claim lead-zinc prospect in Price and Fripp Townships, Ontario.

An exploration program was initiated based upon Samim's geological assessment of this locale as a highly prospectable setting with known sulphide occurrences, a new zinc discovery in 1981, and favourable land status and location.

As part of this exploration program a multi-sensor airborne survey was flown by Aerodat Limited on March 30th and 31st, 1983 from an operations base at Timmins. Equipment operated included a 3 frequency electromagnetic system, a VLF-EM system, a magnetometer and a radar positioning system. A total of 207 line kilometers were flown at a nominal line spacing of 200 meters to provide further data for both direct targeting parameters and indirect mapping aids in covered areas.

The purpose of this report is to provide an assessment of these multi-sensor airborne results.

## 2. SURVEY AREA

The survey area consists of two overlapping survey blocks as shown in Figure l, at a scale of $1: 250,000$. The flight line direction in the northern block was $\mathrm{N} 25^{\circ} \mathrm{E}$ and in the southern block was $N 75^{\circ} \mathrm{E}$. The outline of these respective blocks are also indicated on the 1 " $=1 / 2$ mile claim maps (see Appendix B attached).


FIGURE 1: Location of Survey Area
3. LOCATION, ACCESS AND TOPOGRAPHY

The approximate center of this property is located about 24 kilometers south of the city of Timmins (see Figure 2) with the property limits generally being the west-central and south-central parts of Price Township also extending a short distance into Fripp Township to the south. Co-ordinates of this centerpoint are $48^{\circ} 18^{\prime} N$ latitude and $81^{\circ} 25^{\prime} \mathrm{W}$ longitude as indicated on topographic map 42A/6 "TIMMINS".

The property is accessible via bush road extending approximately 10 kilometers south from the gravel road between Timmins and Wawaitin Falls. This unimproved bush road runs along an esker ridge on the east side of the Grassy River. It provides suitable access for four-wheel drive vehicles but it is not maintained during winter months.

The general area is a well-wooded sand and boulder till plain, ground moraine and esker complex occasionally with swampy, kettled and ridged sections that form low to moderate relief. The east bank of the Grassy River, which occurs along both the northeast and southwest boundaries of the property, is marked by a sharp rise of up to 30 meters. Relief of this magnitude, although more localized, is present in the area of Latimer Lake. While thick glacial sand deposits exist in the general area they are localized mainly to the north of the claim group. Overburden, while extensive in places, is of shallow to moderate depth, with a reasonably good exposure of bedrock on the claims.


FIGURE 2
LOCATION MAP
ARGENTEX-LENORA OPTION PROPERTY
PRICE AND FRIPP TOWNSHIPS PORCUPINE MINING DIVISION TIMMINS AREA, ONTARIO

An Ontario Hydro power line crosses the northern part of Price Township and infrastructure suitable to mining operations exists in Timmins. Adequate supplies of water and mine-timber are also available in the immediate vicinity of the property.

## 4. LAND TENURE, OWNERSHIP

This contiguous property - the Argentex-Lenora Option property - consists of 153 unpatented claims (2373 hectares). Prior to option arrangements being completed with Samim Canada Ltd. in March 1983, these claims were held as two properties consisting of 45 claims held by Argentex Resource Exploration Corporation, and 108 claims held by Lenora Explorations Ltd. All 153 claims numbered P.611261, etc...., are listed in the attached Appendix B and are shown on claim maps $M-281$ and $M-307$ enclosed with this appendix.

## PREVIOUS WORK

As in most of the Timmins area, Price and Fripp Townships have had a history of gold and base metal prospecting dating back to the early 1900's. After the discovery of gold in the porcupine Camp, early work, largely unrecorded, was gold related and unsuccessful.

In the 1940's further work was completed in various parts of the property. Targets again appear to be gold oriented with exploration operations typically involving magnetic surveying and drilling (Timmins files $T-46, T-208, T-242$ ). Mineralized ( $\mathrm{po}, \mathrm{py}$ ) quartz veins and pyritic zones within iron formation units containing minor and trace amounts of chalcopyrite were noted but even drill intersections of massive and semi-massive sulphides west of the Grassy River appear to have been assayed only for gold (Goldale Mine - Stibbard property, 1946).

The results of a 1945 magnetic survey in the northern part of the current claim group (Timmins file $T-242$ ) revealed sulphide mineralization occurring within pronounced changes in strike or width of a highly magnetic iron formation unit. While two holes were recommended by Dr. N. B. Keevil no record exists of any drilling in this area. Further interest in this area was however, developed after an airborne magnetic and electromagnetic survey flown in 1966 by Canadian Aero Mineral Surveys Ltd on behalf of Acme Gas and Oil Company Ltd. (Timmins file T-1377 AFRO file 63.2118). Five airborne conductors were recommended for follow-up as massive sulphide targets interbedded with iron formation. Two of these conductors were subsequently surveyed by Crone Geophysics Ltd in 1969 (T-1377) using the VLF-EM technique and a geochemical follow-up survey recommended. Subsequent results on these conductors remains unreported.

Of the eight indicated airborne EM anomalies resulting from the 1966 Canadian Aero Survey, four anomalies are identified to be associated with an iron formation located between Katashaskepeko Lake and Latimer Lake in the southern part of Price Township. These conductive iron formations are believed to be an upper and more easterly unit, drilled by o'Leary Malartic Mines Ltd in 1964 (Timmins file $T-781$ ) and subsequently identified as a source of conductivity intermittently southwards into Fripp Township in electromagnetic surveying completed by Hollinger Consolidated Gold Mines Ltd. (T-646). Although iron formation units were clearly of interest in this earlier work the area of the iron formation hosting the most recent zinc discovery by Argentex Resources Exploration Corporation Ltd in 1981 (Timmins file $T-2431)$ was not covered by this Canadian Aero survey.

Nipiron Mines Ltd completed extensive geophysical and geological work on a conventional 400 foot grid during 1965 in an area north from Quartz Lake to within the southwesternmost claims of the current property. Results of these magnetic and electromagnetic surveys were non anomalous leading to the conclusion that no significant concentration of mineralization was present in the area (T-1026).

However, interesting copper values and reported gold assays obtained from the area immediately to the north and west of Latimer Lake attracted significant attention in the 1950's and 1960's. Limited drilling programs completed by Consolidated Tungsten Mines Ltd on the Ursula Dwyer property (T-612) in 1956 and drilling by McIntyre Porcupine Mines Ltd in 1957 (AFRO file No. DDH-12) in an area of known copper
showings (pyritic and quartz rich zones) was followed by a sizeable self-potential survey and drilling by o'Leary Malartic Mines Ltd in 1964 (T-781). Several strong anomalies were indicated from the SP results, some of which parallelled known copper bearing trends, however, the six hole drilling program reported by O'Leary Malartic does not appear to have tested these anomalies, instead testing features and perhaps an area of reported high gold values from one to two kilometers north of the Latimer Lake showings. This drilling intersected tuff, breccia, pink-granite and syenite without iron formation units. Drilling by others in 1956, 1957 and 1962, however, appears to have tested most known copper showings in the Latimer Lake area with up to 12 holes put down over a distance of 1.2 kilometers immediately northwest from Latimer Lake during this time. Of note however, is the inter section of galena, sphalerite and a silver bearing mineral from 981 feet to 984 feet in the second hole of Consolidated Tungsten's 1956 drilling program. Unrecognized at the time this interval appears to have remained unassayed.

During 1981 Mr . Harris Hansen prospected in the area of this previous drilling locating significant mineralized float and and occurrence of mineralized iron formation. Blasting, stripping and backhoe trenching has revealed high grade stringers of sphalerite and galena in part of the iron formation unit with significant pyrite and pyrrhotite. Additional magnetic and VLF-EM surveys were also completed during 1981.

Current recognition of the iron formation as a host to base metal mineralization in this area has resulted in substantial land assembly by Northgate Exploration Limited and others to the southeast "along-strike" from the Argentex-Lenora property.

## GEOLOGY

The survey area is underlain by a northwest trending sequence of Archean metavolvanic and metasedimentary rocks which have been intruded by trondhjemitic, granodioritic and granitic rocks. These intrusives form batholiths to the northeast and southwest of the volcanic belt.

Mapping by Pyke (1982) has identified, within these rocks, the division between what he termed the Lower Supergroup and Upper Supergroup lithostratigraphic units (see Figure 3). He notes that this division "marks a major change in volcanism and is the single most important stratigraphic marker in the area".

On the property rocks of the upper part of the Lower Supergroup include abundant iron formation, both oxide and sulphide facies, and calc-alkalic rhyolitic and dacitic tuff and lapilli tuff pyroclastics. Rocks identified to be the base of the overlying Supergroup are represented by various amphibolitic gneisses, interpreted to be mafic flows and pyroclastics,associated with thoeliitic volcanism and ultramafic units inferred to represent epizonal intrusions or flows during the komatiitic phase of volcanism. Within the volcanics,diabase and granite exist as late stage, generally smaller, intrusive masses.

Structurally, this sequence of metavolcanic and metasedimentary rocks has been disrupted by a series of north trending faults, notably parallel to the Grassy River and through Katoshaskepeko Lake. The westward terminus of a major easterly plunging synclinorium occurs at the Kenogamissi Batholith immediately west of the property (Pyke, 1982). The only evidence of
folding is on a local scale as tight drag-folds and buckle-folds within iron formation.

Published geology maps for Price and Fripp townships include ODM Geological Compilation Map No. 2205 (scale 1" = 4 miles); ODM Preliminary Map P. 941 (1974; scale 1" = 1 mile) and OGS Synoptic Series Map 2455 (1982; scale 1:50,000).

Within the lower part of the Upper Supergroup coppernickel sulphide mineralization has been reported associated with ultrabasic material. Copper sulphides have also been located associated with pyrite in siliceous rocks south of Katoshaskepeko Lake while considerable pyrite is associated with the several magnetite-rich iron formation units. The presence of copper, lead and zinc mineralization within these iron formation units (Hansen and Kasner discovery 1981) may have significant regional economic implications, as Pyke (1982) indicates that "south of the Destor-Porcupine Fault, iron formations seems to occupy the same stratigraphic position as the $C u-2 n$ deposits north of the fault" (see Figure 3), including the Kidd Creek Mine, and the deposits in the Kamiskotia area all within the upper formation of the Lower Supergroup.

| Pyke, D.R., $1982 \quad$ | Geology of the Timmins Area, |
| ---: | :--- |
|  | District of Cochrane, |
|  | Ontario Geological Survey Report 219, |
|  | P. $1-141$ |



Figure 3: Fegional Stratigraphy of the TimminsMatachewan Area

The present survey was flown to establish the geophysical "signature" of the known showing area and to provide further data for both direct targeting criteria and as indirect mapping aids within overburden covered areas.

A very close nominal line spacing, requiring precise flying procedures and accurate navigational control, was believed justified to permit quick location of previously undetected conductors and relate these to sources within this complex structural and lithostratigraphic geologic terrain. The Aerodat three frequency airborne system was used because of its flexibility and manouverability under complex topographic and overburden conditions. Target selection criteria and ground follow-up activities also required a multi-sensor airborne technique capable of improved definition of conductors and high resolution of magnetic anomalies.

The flight lines, nominally spaced at $200^{\circ}$ meters, were placed into two blocks of flying oriented in a direction east of north to optimize definition of stratabound conductive zones and iron formation units as mapped from outcrop. Consequently, flying was undertaken using headings of $025^{\circ}$ azimuth and $075^{\circ}$ azimuth for the north and south blocks respectively.

Details of aircraft equipment and personnel, data compilation, presentation and generalized interpretive considerations, including a list of all anomalies identified during survey form Appendix "C" of this report. These details have been extracted from a report prepared and submitted to Samim Canada Ltd by Mr. R. L. Scott Hogg, Aerodat Limited.

All results are presented as symbols, profiles or contours, on a rectified photomosaic base map of the survey area at a scale of $1: 10,000$. Separate presentations of the response received from each onboard sensor have been prepared and are included at the end of this report as maps 1 thru 6.

The interpretation scheme employed in establishing direct target areas required the use of a multiple data screening approach involving all three data sets as overlays. These targets are identified as numbered zones on map l - Airborne Electromagnetic Survey Interpretation Map.

Use of these data as indirect mapping aids involved independent analysis of each data set and correlation with prior mapping at several scales.

The exploration concept involved with these interpretations is based on syngenetic principles of ore formation within iron formation units. Such iron formations when associated with zinc-rich deposits in the major "gneiss belts" of the world have demonstrated internal facies relationships. Within a host iron formation, three mineralogically distinct sub-facies termed magnetite, sphalerite and pyrrhotite/pyrite can be deposited as discrete sub-basins or as overlapping and interfingering units. The effective use of geophysics in exploring for such stratabound zinc deposits involves correlative analysis of internal magnetic and conductive characteristics of the iron formation units. Such analysis often requires qualitative consideration of anomalies of low conductance or magnetic permeability values to establish these highly variable
facies relationships within the limits of these broad but favourable stratigraphic intervals. Such qualitative "target" zones may require further definition and field evaluation prior to drilling or the use of shallow drilling techniques to establish subcrop lithologies.

## 8.1 MAGNETICS

The most prominent features on these maps are narrow linear magnetic highs with amplitudes generally in excess of 1000 nanoteslas above a background value for the measured total field of 59,350 nanoteslas.

In the South Block a narrow zone (100-200 meters approx.) of strong magnetic contrast extends north northwest from close to the northeast end of Foolem Lake for a distance of 5.5 kilometers. Directly correlating with mapped iron formation units this anomalous feature, varies in amplitude, strike direction and width along its length. It is interpreted as representing the various depositional and deformational details associated with this major iron formation.

Northeast of this iron formation and extending north from Katoshaskepeko Lake is a broad magnetic anomaly generally defined by the 60,000 nanotesla contour. This area is interpreted to be underlain by an ultramafic body of unknown origin although previous mapping indicates amphibolitized volanics present. A narrow north trending linear within this broad zone is tentatively inferred to be a more localized iron formation which has been fault terminated at the north end of Katoshaskepeko Lake by a west northwest trending fault. This fault also appears to alter the strike of the major iron formation unit suggesting some structural deformation and displacement may have occurred in this area.

Centred 700 meters southwest of Latimer Lake the iron formation which hosts the Hansen zinc showing is clearly defined over a strike lenght of approximately 3.0 kilometers. Magnetic amplitudes however, do not exceed 60,000 nanoteslas within this anomaly whereas ground reconnaissance traverses of this area have identified magnetitite rich horizons,
over narrow widths, with amplitudes exceeding 70,000 nanoteslas. This apparent lack of resolution in the airborne results may be attributed to topographic limitations on flying operations within the immediate vicinity of this anomaly.

Numerous north trending but weakly magnetic zones have been interpreted as diabase dikes. Such features, commonly less than 100 meters in width appear to occur as a "swarm" somewhat isolated between the Grassy River fault and the Katoshaskepeko Lake fault.

Other structural features may also be identified from the magnetic results with the Grassy River fault, the Latimer Lake fault and the Katoshaskepeko Lake fault being readily identified as well defined zones of magnetic depression.

Several of the weaker magnetic anomalies appear to have offset relationships from which faulting of more limited scale is inferred to be present within the area of the South Block.

In the North Block three main magnetic zones are recognized. The southernmost anomaly is interpreted to be an iron formation unit which extends over a strike length of 3.6 kilometers. It trends northwest and may be terminated by the Grassy River fault. This anomaly exhibits a "scissors" shape approximately 2.5 kilometers along strike from the Grassy River where an east-west trending dike of olivine diabase has intruded the unit.

Centrally located within the North Block is a Prominent magnetic anomaly with peak amplitude greater than 62,000 nanoteslas. Primarily based on the limited dimensions ( 2.0 kilometers $\mathrm{x} 0.5 \mathrm{kilometers)}$ and an eastwest orientation, this anomaly has been inferred to be an intrusive gabbroic or ultramafic sill. Prior mapping has identified this zone as an iron formation and without further confirmation this remains a viable alternative interpretation. The northernmost magnetic anomaly has also been interpreted to be iron formation. Two narrow east-west trending iron formation units are inferred, with structural offset affecting continuity of these units in the vicinity of lines 2100 and 2110 , near the Grassy River.

### 8.2 VLF-EM

Although this technique is equally sensitive to overburden sources and variable subcrop conditions as well as disseminated and massive sulphide mineralization in bedrock, it was thought to be well. suited for the definition of "sulphiderich" zones within the iron formation units in the absence of such geologic noise factors. Vertical quadrature relationships have been used whenever feasible to establish source type as indicated by Hogg (see Appendix "C").

In the South Block four major VLF-EM features are recognized:

Trending north from Katoshaskepeko Lake the fault zone mapped by Pyke (1982) is visible as a total field anomaly with values ranging from $2 \%$ to $10 \%$. A stronger north northwesterly trending anomaly extending from Katoshaskepeko Lake to the Grassy River is associated primarily with an iron formation unit. Peak values of the total field along
this trend do not exceed 20 percent, reflecting the generally limited sulphide content of this horizon. For comparison an overburden related anomaly attributable to lake bottom sediments in Latimer Lake has an associated anomalous total field value exceeding 34 percent while a small lake to the southeast of Latimer Lake has an associated total field anomaly which exceeds 20 percent, again attributable to conductive lake bottom sediment.

A prominent northwest oriented anomalous zone of low amplitude, extending northwards from the Latimer Lake anomaly obscures any response associated with the iron formation unit located in this area. Due west of Latimer Lake a small closure can be identified,however, in the vicinity of the Hansen zinc discovery. This zone has a much stronger ground VLF-EM response and it is suggested that the airborne survey lacks resolution in this area because of topographic limitations during flying.

The most significant VLF-EM anomaly encountered occurs near the southern end of the survey area. It extends in a general northwest direction, has a strike length of 4.5 kilometers, and peak total field values of 26 percent. Although complicated by probable overburden sources, shearing and other structural irregularities attributable to the Grassy River fault zone this feature is interpreted to represent a late stage olivine diabase dike approximately 250 meters wide. This anomaly remains intriguing as it does not correlate with any photo linears, topographic or
glaciofluvial trends, magnetic anomalies or pronounced coaxial electromagnetic response.

In the North Block several conductors are identified with anomalies being more pronounced in the southern part of this Block.

The main iron formation unit trending northwest through this area has a corresponding VLF-EM anomaly attributed to the known pyrrhotite mineralization within this unit. However, the VLF-EM response bifurcates near the Grassy River in an area interpreted to be structurally complex. The VLF-EM pattern associated with the cross-cutting olivine diabase dike is a flanking response which is interpreted to be a fractured zone or area of more intense weathering along the northern contact of this dike. Similarly anomalous conditions 800 meters north from this latter anomaly are associated with the interpreted location of a gabbro sill. In this instance the VLF-EM anomaly appears to indicate the presence of increased amounts of sulphides along the south contact and within the enclosing rocks adjacent to the eastern end of this gabbroic unit.

In the northern part of the North Block two narrow, yet well defined, VLF-EM anomalies are separated from the anomaly trending east from Hydro Bay by a weak east-west trending anomaly interpreted to be caused by faulting.

These latter two anomalies are interpreted to represent the presence of increased sulphide mineralization near the contact with iron formation units, perhaps in a parallel sulphide-rich horizon within the enclosing amphibotic gneisses.

No other anomalies are interpreted to be attributable to sulphide occurrences in this area as the prominent anomaly along the southern boundary of the North Block is here inferred to represent an overburden related source.

## 8.3

COAXIAL EM-915 Hz

Ten target areas have been identified of which eight represent favourable facies areas within the iron formations and two targets reflect. isolated sources within the enclosing rocks.

Generally, the conductivity range of these survey results is of moderate order. Two anomalies have a conductivity thickness parameter normally attributable to massive sulphides (anomaly $2060 \mathrm{~B}-9.7$ mhos; anomaly 2160 E - 9.6 mhos) while seventeen anomalies have conductivity values exceeding 3.5 mhos and are interpreted to be caused by sulphides. All other anomalies have a conductivity thickness parameter of 2.0 mhos or less which makes the line to line correlation of conductor axes doubtful. However, most of the anomalies identified on the Interpretation Map (Map l) are distinct and in terms of strength may well be derived from disseminated and stringer sulphide zones as are present in the Hansen showing. The "showing" anomaly is a weak yet discrete three line conductor with reverse inphase character. Although numerous responses are not associated with magnetic "highs" the major electromagnetic conductors identified have coincident magnetic anomalies. These conductors are interpreted to define "sulphide-rich" zones within the iron formation units throughout the property

## CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the results of this multi-sensor airborne electromagnetic and magnetic survey have successfully provided both indirect mapping aids and direct targets for ongoing exploration.

By using the three independent data sets as exploration "screens" several probable facies relationships have been established through qualitative analysis of the internal magnetic and conductive characteristics of the iron formation units. The Magnetic and VLF-EM results have also successfully aided in more accurately identifying the true dimensions of the iron formation units present on this property. Several newly identified diabase dikes have also been identified in the South Block with the area between the Grassy River fault and the Katoshaskepeko fault shown in general to be a structurally complex zone. Lastly, as a mapping aid these results have confirmed the location of some previously mapped structures, i.e., the Grassy River fault, the Katoshaskepeko Lake fault, while providing additional data from which modifications to existing maps may be required in the area north of Katoshaskapeko Lake and west of the Grassy River. Unfortunately these results provided little additional evidence on which to locate the major batholithic intrusive contacts in this area.

Ten target areas have also been identified from these results. Of these eight targets have been interpreted to be stratigraphic intervals within iron formation suitable for the presence of stratabound zinc-rich mineralization. Two other targets occur as isolated conductors flanking the iron formation units or within the enclosing amphibolites
west of the Grassy River.

Recommendations regarding drill priority for these target zones must awajt a more detailed review of the airborne results from within these target locales. Further systematic prospecting, soil sample geochemistry, and both ground geologic and geophysical mapping are also recommended as first stage follow-up procedures on these targets. Priority throughout this follow-up phase should be directed to targets $1,5,6$ and 7.

July 27th, 1983


APPENDIX A
CERTIFICATE - J.A. MCCance, P.Eng.

I, JOHN A. MCCANCE of the Borough of North York, Metropolitan Toronto, Province of Ontario do hereby certify:

1. That I am a geophysicist and reside at 113 Hendon Avenue, Willowdale, Ontario.
2. That I graduated from Queen's University at Kingston in 1970 with a degree of Bachelor of Science, Faculty of Applied Science and have completed post-graduate training at the University of Western Ontario, London.
3. That I am a member of the Association of Professional Engineers of the Province of Ontario (Mining Branch).
4. That I have been practising my profession for a period of eleven years.
5. That I am employed by Samim Canada Ltd as Chief Geophysicist.
6. That I supervised this survey program submitted by this contractor and I am familiar with all survey details.

July 25 th, 1983


MINISTRY OF NATURAL RESOURCES TECHNICAL DATA STATEMENTS INCLUDING LIST OF CLAIMS AND LOCATION MAPS

APPENDIX C

EXCERPTS FROM MAY 1983 REPORT BY
R.L. SCOTT HOGG, AERODAT LIMITED

# REPORT ON <br> COMBINED HELICOPTER-BORNE <br> MAGNETIC AND ELECTROMAGNETIC <br> SURVEY <br> PRICE AND FRIPP TOWNSHIPS ONTARIO 

for
SAMIM CANADA LTD.
by
AERODAT LIMITED
MAY 1983

## TABLE OF CONTENTS

|  |  |  |  | Page No |
| :---: | :---: | :---: | :---: | :---: |
| 1. | INTRODUCTION |  |  | 1-1 |
| 2. | SURVEY AREA |  |  | 2-1 |
| 3. | AIRCRAFT EQUIPMENT AND PERSONNEL |  |  | 3-1 |
|  | 3.1 | Aircraft |  | 3-1 |
|  | 3.2 | Equipment |  | 3-1 |
|  |  | 3.2 .1 | Electromagnetic System | 3-1 |
|  |  | 3.2 .2 | VLF-EM | 3-1 |
|  |  | 3.2 .3 | Magnetometer | 3-2 |
|  |  | 3.2 .4 | Magnetic Base Station | 3-2 |
|  |  | 3.2 .5 | Radar Altimeter | 3-2 |
|  |  | 3.2 .6 | Tracking Camera | 3-3 |
|  |  | 3.2 .7 | Analog Recorder | 3-3 |
|  |  | 3.2 .8 | Digital Recorder | 3-4 |
|  |  | 3.2 .9 | Radar Positioning System | 3-4 |
|  | 3.3 | Person |  | 3-5 |
| 4. | DATA PRESENTATION |  |  | 4-1 |
|  | 4.1 | Base Map and Flight Path |  | 4-1 |
|  | 4.2 | Electromagnetic Profile Maps |  | 4-2 |
|  | 4.3 | Magnetic Contour Maps |  | 4-4 |
|  | 4.4 | VLF-EM Contour and Profile Maps |  | 4-5 |
|  | 4.5 | Electromagnetic Survey Conductor Map |  | 4-6 |
|  | $\begin{gathered} \text { APPENDIX I - } \begin{array}{l} \text { General Interpretive } \\ \text { Considerations } \end{array} \end{gathered}$ |  |  |  |
|  | APPE | NDIX II | - Anomaly List |  |

3. AIRCRAFT EQUIPMENT AND PERSONNEL

### 3.1 Aircraft

The helicopter used for the survey was an Aerospatial Astar 350D owned and operated by North Star Helicopters. Installation of the geophysical and ancillary equipment was carried out by Aerodat at Timmins.

### 3.2 Equipment

### 3.2.1. Electromagnetic System

The electromagnetic system was an Aerodat/ Geonics 3 frequency system. Two vertical coaxial coil pairs were operated at 915 and 4700 Hz and a horizontal coplanar coil pair at 4420 Hz . The transmitter-receiver separation was 7 meters. In-phase and quadrature signals were measured simultaneously for the 3 frequencies with a time-constant of 0.1 seconds. The electromagnetic bird was towed 30 meters below the helicopter.
3.2.2 The VLF-EM System was a Herz 2A. This instrument measures the total field and vertical guadrature component of two selected frequencies.

The sensor aligned with the flight direction is designated as "LINE", and the sensor perpendicular to the line direction as "ORTHO". The "LINE" station used was NAA, Cutler Maine, 17.8 KHz and "ORTHO" was NSS, Annapolis Maryland, 21.4 KHz .

### 3.2.3 Magnetometer

The magnetometer was a Geometrics G-803 proton precession type. The sensitivity of the instrument was 0.5 gamma at a 0.5 second sample rate. The sensor was towed in a bird 15 meters below the helicopter.
3.2.4 Magnetic Base Station

An IFG proton precession type magnetometer was operated at the base of operations to record diurnal variations of the earths magnetic field. The clock of the base station was synchronized with that of the airborne system to facilitate later correlation.

### 3.2.5 Radar Altimeter

A Hoffman HRA-100 radar altimeter was used to record terrain clearance. The output from the instrument is a linear function of altitude for maximum accuracy.

| 3.2 .6 | Tracking Camera |
| :---: | :---: |
|  | A Geocam tracking camera was used to record |
|  | flight path on 35 mm film. The camera was |
|  | operated in strip mode and the fiducial |
|  | rumbers for cross reference to the analog |
|  | and digital data were imprinted on the margin |
|  | of the film. |
| 3.2 .7 | Analog Recorder |
|  | A RMS dot-matrix recorder was used to display |
|  | the data during the survey. In addition to |
|  | manual and time fiducials the following data |
|  | was recorded: |
|  | Channel Input Scale |
|  | 13 altimeter (500 ft. at top of chart) |
|  | 03 high freq. quadrature $2 \mathrm{ppm} / \mathrm{mm}$ |
|  | 02 high freq. in-phase $2 \mathrm{ppm} / \mathrm{mm}$ |
|  | 05 mid freq. quadrature $4 \mathrm{ppm} / \mathrm{mm}$ |
|  | 04 mid freq. in-phase $4 \mathrm{ppm} / \mathrm{mm}$ |
|  | 01 low freq. quadrature $2 \mathrm{ppm} / \mathrm{mm}$ |
|  | 00 low freq. in-phase $2 \mathrm{ppm} / \mathrm{mm}$ |
|  | 15 . magnetometer 5 gamma/mm |
|  | 14 magnetometer 2 gamma/mm |
|  | 08 VLF-EM Total Field (Line) $2.5 \% / \mathrm{mm}$ |
|  | 09 VLF-EM Quadrature (Line) $2.5 \% / \mathrm{mm}$ |


| Channel | Input | Scale |
| :--- | :--- | :--- |
| 10 | VLF-EM Total Field (Ortho) | $2.5 \% / \mathrm{mm}$ |
| 11 | VLF-EM Quadrature (Ortho) | $2.5 \% / \mathrm{mm}$ |

### 3.2.8 Digital Recorder

A Perle DAC/NAV data system recorded the survey data on cassette magnetic tape. Information recorded was as follows:

Equipment
EM
VLF-EM
magnetometer
altimeter
fiducial (time)
fiducial (manual)
MRS III

Interval
0.1 second
0.5 second
0.5 second
1.0 second
1.0 second
0.2 second
0.2 second

### 3.2.9 Radar Positioning System

A Motorola Mini-Ranger (MRS III) radar positioning system was used for navigation and final flight path recovery. Distance from two established transponders is determined several times per second and a navigational computer triangulates this range-range data to determine UTM coordinate position.

## 3-5

### 3.3 Personnel

Personnel directly involved with the survey operation were as follows:

## Pilot: Bert Simon

Equipment Operator/Technician: W. P. Boyko

### 4.1 Base Map and Flight Path

A photomosaic constructed from rectified aerial photography was provided by Samim Ltd. It was used during the course of the survey for visual navigation and preliminary flight path recovery.

The recorded MRS III radar positioning data was used to derive the final flight track position, with an accuracy in the order of 10 meters. The flight path was plotted at $1 / 10,000$ scale and presented on the photomosaic base. Registration was confirmed by a check with manually plotted fiducials and the general accuracy with respect to photographic detail is within about 20 meters.

## $4-2$

### 4.2 Electromagnetic Profile Maps

The electromagnetic data was recorded digitally at a high sample rate of $10 /$ second with a small time constant of 0.1 second. A two stage digital filtering process was carried out to reject major sferic events, and reduce system noise.

Local sferic activity can produce sharp, large amplitude events that cannot be removed by conventional filtering procedures. Smoothing or stacking will reduce their amplitude but leave a broader residual response that can be confused with a geological phenomenon. To avoid this possibility, a computer algorithm searches out and rejects the major sferic events.

The signal to noise was further enhanced by the application of a low pass filter. The filter was applied digitally. It has zero phase shift which prevents any lag or peak displacement from occurring and it suppresses only variations with a wavelength less than about 0.25 seconds. This low effective time constant permits maximum profile shape resolution.

Following the filtering processes, a base level correction was made. The correction applied is a linear function of time that ensures that the corrected amplitude of the various inphase and quadrature components is zero.

## $4-3$

when no conductive or permeable source is present. This filtered and levelled data was then presented in profile map form.

The in-phase and quadrature responses of the coaxial 915 Hz configuration were plotted with the flight path and presented on the photomosaic base.

## 4-4

### 4.3 Magnetic Contour Maps

The aeromagnetic data was corrected for diurnal variations by subtraction of the digitally recorded base station magnetic profile. No correction for regional variation was applied.

The corrected profile data was interpolated onto a regular grid at a 2.5 mm interval using a cubic spline technique. The grid provided the basis for threading the presented contours at a 10 gamma interval.
4.4 VLF-EM Contour and Profile Maps

The VLF-EM signal from NAA, Cutler Maine was compiled in map form. The mean response level of the total field signal was removed and the data was gridded and contoured at an interval of $2 \%$.

The vertical quadrature component was presented in profile map form on the same presentation. The sign of the signal was reversed on $W$ and $S W$ bound lines such that the profiles reflect the profile that would have been recorded had all lines been flown on an $E$ or $N E$ heading. The vertical scale of the quadrature component was $1 \% / \mathrm{mm}$.

### 4.5 Electromagnetic Survey Conductor Map

The electromagnetic profile maps were used to identify those anomalies with characteristics typical of bedrock conductors. The in-phase and quadrature response amplitudes at 4700 Hz were digitally applied to a phasor diagram for the vertical half-plane model and estimates of conductance and depth were made. The values are tabulated in Appendix II and the conductance level is symbolized along the flight path.

With the aid of the profile maps, responses with similar characteristics were followed from line to line and interpreted conductor axes delineated. Some weaker, potential, but less certain bedrock conductor axes and extensions that were not included in the conductance symbolization process have been included.

Respectfully submitted, AERODAT LIMITED.

May 12, 1983

$$
\text { July } 25,1983
$$

## GENERAL INTERPRETIVE CONSIDERATIONS

## Electromagnetic

The Aerodat 3 frequency system utilizes 2 different transmitter-receiver coil geometries. The traditional coaxial coil configuration is operated at 2 widely separated frequencies and the horizontal coplanar coil pair is operated at a frequency approximately aligned with one of the coaxial frequencies.

The electromagnetic response measured by the helicopter system is a function of the "electrical" and "geometrical" properties of the conductor. The "electrical" property of a conductor is determined largely by its conductivity and its size and shape; the "geometrical" property of the response is largely a function of the conductors shape and orientation with respect to the measuring transmitter and receiver.

## Electrical Considerations

For a given conductive body the measure of its conductivity or conductance is closely related to the measured phase shift between the received and transmitted electromagnetic field. A small phase shift indicates a relatively high conductance, a large phase shift lower conductance. A small phase shift results in a large in-phase to quadrature
ratio and a large phase shift a low ratio. This relationship is shown quantitatively for a vertical half-plane model on the accompanying phasor diagram. Other physical models will show the same trend but different quantitative relationships.

The phasor diagram for the vertical half-plane model, as presented, is for the coaxial coil configuration with the amplitudes in ppm as measured at the response peak over the conductor. To assist the interpretation of the survey results the computer is used to identify the apparent conductance and depth at selected anomalies. The results of this calculation are presented in table form in Appendix II and the conductance and in-phase amplitude are presented in symbolized form on the map presentation.

The conductance and depth values as presented are correct only as far as the model approximates the real geological situation. The actual geological source may be of limited length, have significant dip, its conductivity and thickness may vary with depth and/or strike and adjacent bodies and overburden may have modified the response. In general the conductance estimate is less affected by these limitations than the depth estimate but both should be considered a relative rather than absolute guide to the anomalies properties.

Conductance in mhos is the reciprocal of resistance in ohms and in the case of narrow slab like bodies is the product of electrical conductivity and thickness.

Most overburden will have an indicated conductance of less than 2 mhos; however, more conductive clays may have an apparent conductance of say 2 to 4 mhos. Also in the low conductance range will be electrolytic conductors in faults and shears.

The higher ranges of conductance, greater than 4 mhos, indicate that a significant fraction of the electrical conduction is electronic rather than electrolytic in nature. Materials that conduct electronically are limited to certain metallic sulphides and to graphite. High conductance anomalies, roughly 10 mhos or greater are generally limited to sulphide or graphite bearing rocks.

Sulphide minerals with the exception of sphalerite, cinnabar and stibnite are good conductors; however, they may occur in a disseminated manner that inhibits electrical conduction through the rock mass. In this case the apparent conductance can seriously under rate the quality of the conductor in geological terms. In a similar sense the relatively nonconducting sulphide minerals noted above may be present in significant concentration in association with minor conductive
sulphides, and the electromagnetic response only relate to the minor associate mineralization. Indicated conductance is also of little direct significance for the identification of gold mineralization. Although gold is highly conductive it would not be expected to exist in sufficient quantity to create a recognizable anomaly but minor accessory sulphide mineralization could provide a useful indirect indication.

In summary the estimated conductance of a conductor can provide a relatively positive identification of significant sulphide or graphite mineralization; however, a moderate to low conductance value does not rule out the possibility of significant economic mineralization.

## Geometrical Considerations

Geometrical information about the geologic conductor can often be interpreted from the profile shape of the anomaly. The change in shape is primarily related to the change in inductive coupling among the transmitter, the target, and the receiver.

In the case of a thin, steeply dipping, sheet-like conductor, the coaxial coil pair will yield a near symmetric peak over the conductor. On the other hand the coplanar coil pair will pass through a null couple relationship and yield a minimum over the conductor, flanked by positive side lobes. As the dip of the conductor decreases from vertical, the coaxial
anomaly shape changes only slightly, but in the case of the coplanar coil pair the side lobe on the down dip side strengthens relative to that on the up dip side.

As the thickness of the conductor increases, induced current flow across the thickness of the conductor becomes relatively significant and complete null coupling with the coplanar coils is no longer possible. As a result, the apparent minimum of the coplanar response over the conductor diminishes with increasing thickness, and in the limiting case of a fully 3 dimensional body or a horizontal layer or half-space, the minimum disappears completely.

A horizontal conducting layer such as overburden will produce a response in the coaxial and coplanar coils that is a function of altitude (and conductivity if not uniform). The profile shape will be similar in both coil configurations with an amplitude ratio (coplanar/coaxial) of about 4/1.*

In the case of a spherical conductor, the induced currents are confined to the volume of the sphere, but not relatively restricted to any arbitrary plane as in the case of a sheetlike form. The response of the coplanar coil pair directly over the sphere may be up to $8^{\star}$ times greater than that of the coaxial coil pair.

In summary a steeply dipping, sheet-like conductor will display a decrease in the coplanar response coincident with the peak of the coaxial response. The relative strength of this coplanar null is related inversely to the thickness of the conductor; a pronounced null indicates a relatively thin conductor. The dip of such a conductor can be infered from the relative amplitudes of the side-lobes.

Massive conductors that could be approximated by a conducting sphere will display a simple single peak profile form on both coaxial and coplanar coils, with a ratio between the coplanar to coaxial response amplitudes as high as 8.*

Overburden anomalies often produce broad poorly defined anomaly profiles. In most cases the response of the coplanar coils closely follow that of the coaxial coils with a relative amplitude ratio of 4.*

Occasionally if the edge of an overburden zone is sharply defined with some significant depth extent, an edge effect will occur in the coaxial coils. In the case of a horizontal conductive ring or ribbon, the coaxial response will consist of two peaks, one over each edge; whereas the coplanar coil will yield a single peak.

* It should be noted at this point that Aerodat's definition of the measured ppm unit is related to the primary field sensed in the receiving coil without normalization to the maximum coupled (coaxial configuration). If such normalization were applied to the Aerodat units, the amplitude of the coplanar coil pair would be halved.


## Magnetics

The Total Field Magnetic Map shows contours of the total magnetic field, uncorrected for regional variation. Whether an EM anomaly with a magnetic correlation is more likely to be caused by a sulphide deposit than one without depends on the type of mineralization. An apparent coincidence between an EM and a magnetic anomaly may be caused by a conductor which is also magnetic, or by a conductor which lies in close proximity to a magnetic body. The majority of conductors which are also magnetic are sulphides containing pyrrhotite and/or magnetite. Conductive and magnetic bodies in close association can be, and often are, graphite and magnetite. It is often very difficult to distinguish between these cases. If the conductor is also magnetic, it will usually produce an EM anomaly whose general pattern resembles that of the magnetics. Depending on the magnetic permeability of the conducting body, the amplitude of the inphase EM anomaly will be weakened, and if the conductivity is also weak, the inphase EM anomaly may even be reversed in sign.

VLF Electromagnetics

The VLF-EM method employs the radiation from powerful military radio transmitters as the primary signals. The magnetic field associated with the primary field is elliptically polarized in the vicinity of electrical conductors. The Herz Totem uses three coils in the $X$. Y. Z. configuration to measure the total field and vertical quadrature component of the polarization ellipse.

The relatively high frequency of VLF $15-25 \mathrm{KHz}$ provides high response factors for bodies of low conductance. Relatively "disconnected" sulphide ores have been found to produce measurable VLF signals. For the same reason, poor conductors such as sheared contacts, breccia zones, narrow faults, alteration zones and porous flow tops normally produce VLF anomalies. The method can therefore be used effectively for geological mapping. The only relative disadvantage of the method lies in its sensitivity to conductive overburden. In conductive ground the depth of exploration is severely limited.

The effect of strike direction is important in the sense of the relation of the conductor axis relative to the energizing electromagnetic field. A conductor aligned along a radius drawn from a transmitting station will be
in a maximum coupled orientation and thereby produce a stronger response than a similar conductor at a different strike angle. Theoretically it would be possible for a conductor, oriented tangentially to the transmitter to produce no signal. The most obvious effect of the strike angle consideration is that conductors favourably oriented with respect to the transmitter location and also near perpendicular to the flight direction are most clearly rendered and usually dominate the map presentation.

The total field response is an indicator of the existence and position of a conductivity anomaly. The response will be a maximum over the conductor, without any special filtering, and strongly favour the upper edge of the conductor even in the case of a relatively shallow dip.

The vertical quadrature component over steeply dipping sheet like conductor will be a cross-over type response with the cross-over closely associated with the upper edge of the conductor.

The response is a cross-over type due to the fact that it is the vertical rather than total field quadrature component that is measured. The response shape is due largely to geometrical rather than conductivity considerations and the distance between the maximum and minimum on either side of the cross-over is related to target depth. For a given target geometry, the larger this distance the greater the
depth.

The amplitude of the quadrature response, as opposed to shape is function of target conductance and depth as well as the conductivity of the overburden and host rock. As the primary field travels down to the conductor through conductive material it is both attenuated and phase shifted in a negative sense. The secondary field produced by this altered field at the target also has an associated phase shift. This phase shift is positive and is larger for relatively poor conductors. This secondary field is attenuated and phase shifted in a negative sense during return travel to the surface. The net effect of these 3 phase shifts determine the phase of the secondary field sensed at the receiver.

A relatively poor conductor in resistive ground will yield a net positive phase shift. A relatively good conductor in more conductive ground will yield a net negative phase shift. A combination is possible whereby the net phase shift is zero and the response is purely in-phase with no quadrature component.

A net positive phase shift combined with the geometrical cross-over shape will lead to a positive quadrature response on the side of approach and a negative on the side of departure. A net negative phase shift would produce the reverse. A further sign reversal occurs with a 180 degree
change in instrument orientation as occurs on reciprocal line headings. During digital processing of the quadrature data for map presentation this is corrected for by normalizing the sign to one of the flight line headings.

APPENDIX II

| FLIGHT | LINE | ANOMAL.Y | CATEGOKY | INPHASE | quall. | mhos | MTRS | MTRS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1010 | A | 0 | 0.7 | 8.5 | 0.0 | 0 | 40 |
| 1 | 1010 | F | 0 | 0.7 | 7.6 | 0.0 | 0 | 41 |
| 1 | 1020 | A | 0 | 0.9 | 4.9 | 0.0 | 0 | 55 |
| 1 | 1020 | B | 0 | 0.9 | 5.3 | 0.0 | 0 | 45 |
| 1 | 1030 | A | 0 | 0.1 | 4.1 | 0.0 | 0 | 45 |
| 1 | 1030 | F | 0 | 0.1 | 3.8 | 0.0 | 0 | 46 |
| 1 | 1040 | A | 0 | 0.8 | 6.0 | 0.0 | 0 | 39 |
| 1 | 1040 | F | 0 | -0.8 | 2.8 | 0.0 | 0 | 31 |
| 1 | 1050 | A | 0 | -0.8 | 5.8 | 0.0 | 0 | 28 |
| 1 | 1050 | F | 0 | 0.1 | 4.8 | 0.0 | 0 | 37 |
| 1 | 1060 | A | 0 | 0.1 | 3.2 | 0.0 | 0 | 38 |
| 1 | 1060 | E | 0 | -0.2 | 4.3 | 0.0 | 0 | 32 |
| 1 | 1070 | A | 0 | -0.9 | 3.9 | 0.0 | 0 | 29 |
| 1 | 1070 | F | 0 | -0.9 | 2.6 | 0.0 | 0 | 30 |
| 1 | 1080 | A | 0 | -0.2 | 1.2 | 0.0 | 0 | 37 |
| 1 | 1080 | F | 0 | 0.4 | 8.0 | 0.0 | 0 | 31 |
| 1 | 1080 | c | 0 | 1.0 | 10.4 | 0.0 | 0 | 31 |
| 1 | 1090 | A | 0 | 1.3 | 16.2 | 0.0 | 0 | 32 |
| 1 | 1090 | F | 0 | 0.9 | 15.2 | 0.0 | 0 | 30 |
| 1 | 1100 | A | 0 | 0.0 | 3.9 | 0.0 | 0 | 35 |
| 1 | 1100 | F | 0 | 0.7 | 5.5 | 0.0 | 0 | 40 |
| 1 | 1100 | c | 0 | 1.6 | 6.9 | 0.0 | 3 | 38 |
| 1 | 1110 | A | 0 | -2.9 | 4.4 | 0.0 | 0 | 27 |
| 1 | 1120 | A | 0 | 3.9 | 6.9 | 0.2 | 20 | 33 |
| 1 | 1120 | H | 0 | 8.9 | 9.4 | 0.8 | 25 | 27 |
| 1 | 1130 | A | 0 | 3.6 | 6.2 | 0.2 | 29 | 27 |
| 1 | 1130 | B | 0 | 1.5 | 3.8 | 0.0 | 25 | 35 |
| 1 | 1130 | C | 0 | 1.5 | 8.2 | 0.0 | 0 | 52 |
| 1 | 1140 | A | 0 | 2.3 | 4.1 | 0.2 | 28 | 36 |
| 1 | 1150 | A | 0 | $-0.7$ | 3.7 | 0.0 | 0 | 41 |

Estimated defth may be unreliahle because the stronser fart of the conductor may be deeper or to one side of the flisht. line, or because of a shallow dif or overburden effects.

| FLIGHT | LINE | ANOMALY | CATEGOKY | FREQUENCY INPHASE | $\begin{aligned} & Y 4700 \\ & \text { QUALI. } \end{aligned}$ | $\begin{aligned} & \text { CONI } \\ & \text { CTF } \\ & \text { MHOS } \end{aligned}$ | IUCTIK IIEPTH MTRS | EIFI HEIGHT MTF: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1150 | F | 0 | 1.2 | 5.2 | 0.0 | 19 | 26 |
| 1 | 1160 | A | 0 | 1.0 | 10.6 | 0.0 | 0 | 38 |
| 1 | 1160 | H | 0 | 0.3 | 10.4 | 0.0 | 0 | 40 |
| 1 | 1160 | C | 1 | 14.5 | 6.0 | 3.7 | 26 | 32 |
| 1 | 1160 | II | 0 | 2.4 | 24.8 | 0.0 | 0 | 33 |
| 1 | 1160 | E | 0 | 1.5 | 21.9 | 0.0 | 0 | 32 |
| 1 | 1160 | F | 0 | -1.4 | 1.5 | 0.0 | 0 | 39 |
| 1 | 1170 | A | 0 | $-3.5$ | 2.7 | 0.0 | 0 | 26 |
| 1 | 1170 | H | 0 | 0.6 | 10.3 | 0.0 | 0 | 34 |
| 1 | 1170 | C | 0 | $-0.8$ | 1.8 | 0.0 | 0 | 33 |
| 1 | 1170 | II | 0 | 0.1 | 4.5 | 0.0 | 0 | 24 |
| 1 | 1170 | E | 0 | -0.9 | 2.2 | 0.0 | 0 | 40 |
| 1 | 1170 | F | 0 | 1.3 | 11.8 | 0.0 | 0 | 39 |
| 1 | 1180 | A | 0 | 1.0 | 6.9 | 0.0 | 0 | 48 |
| 1 | 1180 | E | 0 | 5.0 | 5.0 | 0.7 | 26 | 40 |
| 1 | 1180 | C | 0 | -0.1 | B. 9 | 0.0 | 0 | 37 |
| 1 | 1180 | II | 0 | 3.1 | 10.0 | 0.1 | 3 | 37 |
| 1 | 1190 | A | 0 | -0.8 | 3.4 | 0.0 | 0 | 28 |
| 1 | 1190 | E | 0 | 5.0 | 10.1 | 0.2 | 15 | 30 |
| 1 | 1190 | C | 0 | -0.6 | 7.9 | 0.0 | 0 | 42 |
| 1 | 1190 | II | 0 | -0.9 | 14.4 | 0.0 | 0 | 36 |
| 1 | 1190 | $E$ | 0 | -1.1 | 14.4 | 0.0 | 0 | 37 |
| 1 | 1200 | A | 0 | 0.9 | 9.0 | 0.0 | 0 | 46 |
| 1 | 1200 | E | 0 | -0.2 | 5.2 | 0.0 | 0 | 41 |
| 1 | 1200 | C | 0 | -0.7 | 3,1 | 0.0 | 0 | 32 |
| 1 | 1200 | II | 0 | 1.5 | $5 \cdot 8$ | 0.0 | 13 | 32 |
| 1 | . 1210 | A | 0 | 3.1 | 7.6 | 0.1 | 3 | 44 |
| 1 | 1210 | E | 0 | -2.4 | 4.9 | 0.0 | 0 | 28 |
| 1 | 1210 | C | 0 | 0.3 | 6.4 | 0.0 | 0 | 26 |
| 1 | 1210 | 11 | 0 | 0.7 | 10.4 | 0.0 | 0 | 34 |
| 1 | 1210 | $E$ | 0 | 1.0 | 17.0 | 0.0 | 0 | 26 |
| 1 | 1220 | A | 0 | 1.0 | 11.6 | 0.0 | 0 | 44 |
| 1 | 1220 | E | 0 | 2.6 | 10.5 | 0.0 | 3 | 33 |
| 1 | 1220 | C | 0 | $-2.5$ | 9.6 | 0.0 | 0 | 25 |
| 1 | 1220 | II | 0 | 1.2 | 5.4 | 0.0 | 19 | 25 |
| 1 | 1220 | E | 0 | 3.4 | 8.9 | 0.1 | 0 | 54 |
| 1 | 1220 | $F$ | 0 | 3.8 | 16.8 | 0.0 | 0 | 30 |
| 1 | 1230 | A | 0 | 5.3 | 18.7 | 0.1 | 0 | 39 |

Estimated defth may be unrelishle because the stronser fart of the conductor saz be deefer or to one side of the flisht line, or because of a shallow dif or overhurder effects.

| FIIGHT | LINE | ANOMALY | CATEGOKY | FRERUENCY INPHASE | 4700 QUAII. |  | IUCTOR IEPTH <br> MTRS | $\begin{aligned} & \text { EIFII } \\ & \text { HEIGHT } \\ & \text { MTFS } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLIGHT |  | ANOMAL | CATEGOAY |  |  |  |  |  |
| 1 | 1230 | B | 0 | 3.0 | 17.9 | 0.0 | 0 | 30 |
| 1 | 1230 | C | 0 | 2.8 | 8.6 | 0.1 | 0 | 4 E |
| 1 | 1230 | 1 | 0 | 0.5 | 6.2 | 0.0 | 3 | 27 |
| 1 | 1230 | E | 0 | 0.6 | 8.8 | 0.0 | 0 | 27 |
| 1 | 1230 | F | 0 | $-0.3$ | 6.2 | 0.0 | 0 | 28 |
| 1 | 1230 | $G$ | 0 | 4.7 | 17.5 | 0.1 | 0 | 32 |
| 1 | 1230 | H | 0 | $-1.6$ | 8.1 | 0.0 | 0 | 27 |
| 1 | 1240 | A | 0 | 4.7 | 11.8 | 0.1 | 7 | 27 |
| 1 | 1240 | B | 0 | 0.2 | 5.1 | 0.0 | 0 | 27 |
| 1 | 1240 | C | 0 | 3.9 | 9.6 | 0.1 | 0 | 50 |
| 1 | 1240 | D | 0 | 4.9 | 17.1 | 0.1 | 0 | 39 |
| 1 | 1250 | A | 0 | 5.0 | 21.9 | 0.0 | 0 | 35 |
| 1 | 1250 | B | 0 | 6.6 | 23.2 | 0.1 | 0 | 31 |
| 1 | 1250 | C | 0 | 4.3 | 21.5 | 0.0 | 0 | 31 |
| 1 | 1250 | 1 | 0 | 4,5 | 14.4 | 0.1 | 0 | 52 |
| 1 | 1250 | E | 0 | -3.5 | 9.7 | 0.0 | 0 | 26 |
| 1 | 1250 | F | 0 | 5.5 | 16.3 | 0.1 | 9 | 25 |
| 1 | 1250 | $G$ | 0 | $-1.6$ | 7.0 | 0.0 | 0 | 24 |
| 1 | 1250 | H | 0 | 3.5 | 14.2 | 0.0 | 4 | 28 |
| 1 | 1250 | J | 0 | 3.7 | 17.3 | 0.0 | 0 | 33 |
| 1 | 1260 | A | 0 | 2.8 | 12.3 | 0.0 | 6 | 27 |
| 1 | 1260 | H | 0 | 1.3 | 6.9 | 0.0 | 11 | 28 |
| 1 | 1260 | C | 0 | 3.8 | 12.7 | 0.1 | 0 | 54 |
| 1 | 1260 | II | 0 | 4.3 | 15.5 | 0.1 | 0 | 32 |
| 1 | 1260 | E | 0 | 3.4 | 18.8 | 0.0 | 2 | 24 |
| 1 | 1270 | A | 0 | 3.6 | 13.6 | 0.0 | 1 | 33 |
| 1 | 1270 | F | 0 | 2.5 | 7.0 | 0.1 | 15 | 32 |
| 1 | 1270 | C | 0 | -0.5 | 4.8 | 0.0 | 0 | 32 |
| 1 | 1270 | 0 | 0 | 1.8 | 8.4 | 0.0 | 9 | 29 |
| 1 | 1280 | A | 0 | 0.1 | 3.6 | 0.0 | 0 | 34 |
| 1 | 1280 | B | 0 | 4.3 | 9.4 | 0.2 | 2 | 43 |
| 1 | 1280 | C | 0 | 4.4 | 20.4 . | 0.0 | 0 | 32 |
| 1 | 1280 | I | 0 | 5.3 | 22.3 | 0.0 | 0 | 30 |
| 1 | 1290 | A | 0 | 5.3 | 17.7 | 0.1 | 4 | 28 |
| 1 | 1290 | H | 0 | 5.3 | 15.3 | 0.1 | 0 | 41 |
| 1 | 1290 | C | 0 | 0.2 | 3.8 | 0.0 | 3 | 28 |
| 1 | 1290 | II | 0 | 0.5 | 5.8 | 0.0 | 1 | 31 |
| 1 | 1290 | E | 0 | $-2.7$ | 15.5 | 0.0 | 0 | 29 |
| 1 | 1300 | A | 0 | 1.8 | $9 \cdot 6$ | 0.0 | 0 | 41 |

Estinated depth may be unreliable because the stronser part of the conductor may he deeper or to one side of the flisht line, or hecause of a shallow dip or overburden effects.

| FLIGHT | LINE | ANOMALY | CATEGOFY | FREQUENCY 4700 |  | CONIUCTOR |  | $\begin{aligned} & \text { BIRD } \\ & \text { HEIGHT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | IEFTH |  |
|  |  |  |  | INPHASE | QUAII. | MHOS | MTES | HTES |
| 1 | 1300 | H | 0 | -1.0 | 6.8 | 0.0 | 0 | 35 |
| 1 | 1300 | C | 0 | 5.9 | 5.0 | 1.0 | 41 | 26 |
| 1 | 1300 | II | 0 | 9.0 | 18.0 | 0.3 | 0 | 39 |
| 1 | 1300 | E | 0 | 8.0 | 25.4 | 0.1 | 0 | 34 |
| 1 | 1310 | A | 0 | 6.7 | 13.6 | 0.3 | 0 | 48 |
| 1 | 1310 | E | 0 | 6.2 | 7.5 | 0.6 | 30 | 26 |
| 1 | 1310 | C | 0 | -2.6 | 6.1 | 0.0 | $\cdots 0$ | 30 |
| 1 | 1310 | II | 0 | 2.5 | 11.5 | 0.0 | 3 | 30 |
| 1 | 1320 | A | 0 | 1.2 | 6.0 | 0.0 | 0 | 42 |
| 1 | 1320 | E | 0 | -0.8 | 4.2 | 0.0 | 0 | 34 |
| 1 | 1320 | C | 0 | 11.1 | 9.1 | 1.3 | 21 | 33 |
| 1 | 1320 | II | 0 | 6.9 | 14.5 | 0.3 | 0 | 41 |
| 1 | 1320 | E | 0 | 12.5 | 17.9 | 0.6 | 9 | 31 |
| 1 | 1320 | F | 0 | 7.2 | 11.1 | 0.4 | 19 | 28 |
| 1 | 1330 | A | 2 | 25.2 | 9.7 | 1.9 | 10 | 39 |
| 1 | 1330 | F | 0 | 13.5 | 24.7 | 0.4 | 4 | 30 |
| 1 | 1330 | C | 0 | 7.0 | 15.7 | 0.2 | 0 | 40 |
| 1 | 1330 | II | 0 | 2.6 | 11.0 | 0.0 | 7 | 28 |
| 1 | 1330 | E | 0 | -1.1 | 4.8 | 0.0 | 0 | 35 |
| 1 | 1340 | A | 0 | $-1.7$ | 2.6 | 0.0 | 0 | 38 |
| 1 | 1340 | B | 0 | 4.9 | 19.4 | 0.1 | 0 | 35 |
| 1 | 1340 | C | 0 | 4.2 | 11.6 | 0.1 | 4 | 36 |
| 2 | 2010 | A | 0 | 5.2 | 22.1 | 0.0 | 0 | 30 |
| 2 | 2010 | P | 0 | 4.9 | 23.7 | 0.0 | 0 | 29 |
| 2 | 2010 | C | 0 | 3.5 | 17.1 | 0.0 | 0 | 29 |
| 2 | 2010 | II | 0 | 6.0 | 9.1 | 0.4 | 19 | 31 |
| 2 | 2020 | A | 0 | 1.1 | 9.5 | 0.0 | 0 | 35 |
| 2 | 2020 | B | 0 | 1.4 | 10.5 | 0.0 | 4 | 25 |
| 2 | 2020 | C | 0 | 7.2 | 22.6 | 0.1 | 0 | 33 |
| 2 | 2020 | II | 0 | 3.0 | 18.7 | 0.0 | 0 | 26 |
| 2 | 2020 | E | 0 | 5.1 | 25.7 | 0.0 | 0 | 34 |
| 2 | 2030 | A | 0 | 3.1 | 15.1 | 0.0 | 0 | 31 |
| 2 | 2030 | E | 0 | 6.8 | 25.1 | 0.1 | 0 | 35 |
| 2 | 2030 | C | 0 | 13.9 | 36.9 | 0.3 | 0 | 27 |
| 2 | 2030 | n | 0 | 6.2 | 21.0 | 0.1 | 0 | 45 |
| 2 | 2030 | $E$ | 0 | 1.4 | B. 6 | 0.0 | 4 | 30 |
| 2 | 2040 | A | 0 | 6.0 | 20.7 | 0.1 | 0 | 30 |

Estimated depth mas be unreliable because the stronser part of the conductar may be deefer or to one side of the flisht line, or hecause of $\operatorname{a}$ shallow dif or overhurden effects.

| FLJGHT | LINE | ANOMALY | categoky | FRERUEHCY INPHASE | $\begin{aligned} & \text { Y } 4700 \\ & \text { QUAlI. } \end{aligned}$ |  | IUCTOR DEFTH MTKS | $\begin{gathered} \text { BIFI } \\ \text { HEIGHT } \\ \text { MTRS } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | ---- |  |  |
| 2 | 2040 | F | 0 | 10.0 | 30.2 | 0.2 | 3 | 24 |
| 2 | 2040 | c | 0 | 13.7 | 36.6 | 0.2 | 0 | 30 |
| 2 | 2040 | 1 | 0 | 21.1 | 51.6 | 0.4 | 0 | 27 |
| 2 | 2040 | E | 0 | 17.3 | 47.2 | 0.3 | 0 | 23 |
| 2 | 2050 | A | 0 | 0.9 | 2.7 | 0.0 | 32 | 33 |
| 2 | 2050 | F | 2 | 48.4 | 21.3 | 5.0 | 9 | 28 |
| 2 | 2050 | c | 2 | 55.5 | 19.8 | 6.9 | 5 | 32 |
| 2 | 2050 | II | 1 | 13.1 | 7.0 | 2.5 | 23 | 34 |
| 2 | 2050 | E | 0 | 12.5 | 24.9 | 0.4 | 6 | 27 |
| 2 | 2060 | A | 1 | 20.4 | 10.4 | 3.1 | 29 | 21 |
| 2 | 2060 | B | 3 | 81.2 | 24.2 | 9.7 | 12 | 21 |
| 2 | 2060 | c | 1 | 37.9 | 20.7 | 3.5 | 18 | 21 |
| 2 | 2060 | 1 | 0 | -0.2 | 3.4 | 0.0 | 0 | 25 |
| 2 | 2070 | A | 1 | 32.3 | 19.7 | 2.9 | 11 | 30 |
| 2 | 2070 | E | 1 | 15.2 | 9.5 | 2.1 | 25 | 27 |
| 2 | 2080 | A | 0 | 5.9 | 21.5 | 0.1 | 10 | 19 |
| 2 | 2080 | 8 | 0 | 7.9 | 32.9 | 0.1 | 0 | 31 |
| 2 | 2080 | c | 0 | 7.8 | 8.5 | 0.7 | 26 | 28 |
| 2 | 2080 | II | 0 | 11.2 | 8.2 | 1.5 | 24 | 32 |
| 2 | 2080 | E | 2 | 57.0 | 22.8 | 6.0 | 7 | 29 |
| 2 | 2090 | A | 0 | 2.0 | 4.6 | 0.1 | 22 | 36 |
| 2 | 2090 | F | 0 | 1.9 | 8.3 | 0.0 | 8 | 31 |
| 2 | 2090 | c | 1 | 30.9 | 20.0 | 2.6 | 12 | 29 |
| 2 | 2090 | II | 0 | 4.8 | 14.1 | 0.1 | 9 | 27 |
| 2 | 2090 | E | 0 | 1.6 | 6.9 | 0.0 | 11 | 31 |
| 2 | 2090 | F | 0 | 1.8 | 7.8 | 0.0 | 7 | 33 |
| 2 | 2090 | 6 | 0 | 5.0 | 4.0 | 1.0 | 44 | 28 |
| 2 | 2100 | A | 0 | 4.1 | 8.4 | 0.2 | 9 | 39 |
| 2 | 2100 | F | 0 | 5.0 | 7.5 | 0.4 | 28 | 26 |
| 2 | 2100 | C | 0 | 5.9 | 8.3 | 0.4 | 28 | 24 |
| 2 | 2100 | 1 | 0 | 2.7 | 6.7 | 0.1 | 29 | 20 |
| 2 | 2100 | E | 0 | 2.7 | 7.6 | 0.1 | 20 | 26 |
| 2 | 2100 | F | 0 | 3.5 | 11.9 | 0.1 | 14 | 22 |
| 2 | 2100 | 6 | 0 | 1.8 | 10.8 | 0.0 | 8 | 23 |
| 2 | 2100 | H | 0 | 4.9 | 16.6 | 0.1 | 2 | 30 |
| 2 | 2100 | J | 1 | 31.2 | 18.7 | 2.9 | 11 | 30 |
| 2 | 2100 | $K$ | 0 | 3.3 | 13.3 | 0.0 | 1 | 33 |
| 2 | 2100 | M | 0 | 2.6 | 17.9 | 0.0 | 0 | 26 |
| 2 | 2100 | N | 0 | 1.5 | 13.8 | 0.0 | - 0 | 28 |

Estimated depth mas be unreliable because the stronser part of the conductor may be depper or to one side of the flisht line, or because of a shellow dif or overburder effects.

| FLIGHT | LINE | ANOMALY | CATEGOKY | FREQUENCY INPHASE | $\begin{aligned} & 4700 \\ & \text { RUAI. } \end{aligned}$ | CONSIUCTOR |  | HIRI HEJGHT MTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | CIF | IEPTH |  |
|  |  |  |  |  |  | MHOS | MTES |  |
| ------- | ---- | ------- | --------- | -------- | ----- | ---- | ---- | ---- |
| 2 | 2110 | A | 0 | 1.7 | 11.1 | 0.0 | 0 | 30 |
| 2 | 2110 | F | 0 | 2.8 | 16.9 | 0.0 | 0 | 30 |
| 2 | 2110 | C | 0 | $-1.2$ | 3.9 | 0.0 | 0 | 26 |
| 2 | 2110 | II | 0 | 20.0 | 20.2 | 1.2 | 8 | 32 |
| 2 | 2110 | E | 0 | 3.6 | 6.0 | 0.3 | 28 | 29 |
| 2 | 2110 | F | 0 | 1.7 | 6.2 | 0.0 | 16 | 29 |
| 2 | 2110 | 6 | 0 | 0.0 | 9.2 | 0.0 | 0 | 32 |
| 2 | 2110 | H | 0 | 8.3 | 16.0 | 0.3 | 11 | 28 |
| 2 | 2110 | $J$ | 0 | 6.5 | 18.7 | 0.1 | 1 | 32 |
| 2 | 2110 | $K$ | 0 | 2.6 | 5.6 | 0.1 | 27 | 28 |
| 2 | 2120 | A | 0 | 2.7 | 7.6 | 0.1 | 11 | 34 |
| 2 | 2120 | H | 0 | 1.8 | 7.1 | 0.0 | 4 | 38 |
| 2 | 2120 | C | 0 | 1.1 | 7.4 | 0.0 | 7 | 27 |
| 2 | 2120 | II | 0 | 10.7 | 11.3 | 0.9 | 22 | 27 |
| 2 | 2120 | E | 0 | 5.4 | 7.5 | 0.4 | 29 | 25 |
| 2 | 2120 | F | 0 | 20.2 | 15.9 | 1.7 | 16 | 29 |
| 2 | 2120 | G | 0 | 6.3 | 16.4 | 0.2 | 10 | 26 |
| 2 | 2120 | H | 0 | 3.7 | 10.0 | 0.1 | 15 | 27 |
| 2 | 2120 | J | 2 | 38.1 | 13.9 | 6.0 | 9 | 33 |
| 2 | 2130 | A | 0 | 1.2 | 2.2 | 0.1 | 50 | 29 |
| 2 | 2130 | E | 0 | 3.0 | 2.9 | 0.6 | 50 | 30 |
| 2 | 2130 | C | 0 | 1.5 | 11.0 | 0.0 | 0 | 34 |
| 2 | 2130 | II | 0 | 5.1 | 18.8 | 0.1 | 1 | 29 |
| 2 | 2130 | E | 2 | 3\%.9 | 13.0 | 6.5 | 14 | 28 |
| 2 | 2130 | F | 1 | 21.6 | 11.5 | 3.0 | 15 | 33 |
| 2 | 2130 | G | 0 | 8.3 | 6.4 | 1.3 | 33 | 28 |
| 2 | 2140 | A | 0 | 5.5 | 12.4 | 0.2 | 3 | 37 |
| 2 | 2140 | B | 0 | 2.9 | 17.7 | 0.0 | 0 | 29 |
| 2 | 2140 | C | 0 | 52.2 | 48.5 | 1.9 | 4 | 25 |
| 2 | 2140 | I | 1 | 22.3 | 10.3 | 3.7 | 25 | 24 |
| 2 | 2140 | E | 0 | 8.7 | 29.2 | 0.1 | 2 | 25 |
| 2 | 2140 | $F$ | 0 | 4.9 | 17.9 | 0.1 | 11 | 20 |
| 2 | 2140 | G | 0 | 2.9 | 12.6 | 0.0 | 17 | 16 |
| 2 | 2140 | H | 0 | 4.2 | 9.8 | 0.2 | 15 | 29 |
| 2 | 2140 | J | 2 | 39.3 | 15.8 | 5.3 | 18 | 23 |
| 2 | 2140 | $k$ | 0 | 1.3 | 11.2 | 0.0 | 0 | 32 |
| 2 | 2150 | A | 0 | 10.5 | 9.1 | 1.2 | 23 | 31 |
| 2 | 2150 | B | 1 | 18.5 | 7.8 | 3.9 | 16 | 37 |
| 2 | 2150 | c | 2 | 47.5 | 21.8 | 4.7 | 1 | 36 |
| 2 | 2150 | 1 | 0 | 2.8 | 6.3 | 0.1 | 12 | 39 |

Estinated defth may be urireliable because the stronger part of the conductor mas he deeper or to one side of the flisht line, or hecause of a shallow dip or overburden effects.

| FLIGHT | LINE | ANOMALY | CATEGORY | FREQUENCY INPHASE | $\begin{aligned} & 4700 \\ & \text { QUALI. } \end{aligned}$ | $\begin{aligned} & \text { CONI } \\ & \text { CTF } \\ & \text { MHOS } \end{aligned}$ | IUCTUK IE.FTH MTES | EIF:II HEIGHT MTRS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2150 | $E$ | 0 | 3.4 | 6.9 | 0.2 | 23 | 29 |
| 2 | 2160 | A | 0 | 4.2 | 9.9 | 0.1 | 10 | 34 |
| 2 | 2160 | B | 0 | 3.7 | 11.2 | 0.1 | 10 | 28 |
| 2 | 2160 | C | 1 | 19.5 | 12.1 | 2.4 | 19 | 29 |
| 2 | 2160 | II | 2 | 32.6 | 11.3 | 6.1 | 21 | 24 |
| 2 | 2160 | E | 3 | 54.2 | 14.9 | 9.6 | 6 | 33 |
| 2 | 2160 | F | 0 | 9.6 | 13.2 | 0.6 | 14 | 31 |
| 2 | 2160 | G | 0 | 22.6 | 18.5 | 1.7 | 9 | 33 |
| 2 | 2170 | A | 0 | 14.5 | 16.6 | 0.9 | 15 | 27 |
| 2 | 2170 | E | 2 | 33.1 | 12.0 | 5.8 | 11 | 33 |
| 2 | 2170 | c | 0 | 5.1 | 5.1 | 0.7 | 36 | 29 |
| 2 | 2170 | II | 1 | 44.1 | 25.4 | 3.4 | 6 | 31 |
| 2 | 2170 | E | 0 | 17.0 | 23.3 | 0.7 | 3 | 33 |
| 2 | 2170 | F | 0 | 7.3 | 21.7 | 0.1 | 0 | 35 |
| 2 | 2180 | A | 0 | 4.2 | 17.2 | 0.0 | 0 | 35 |
| 2 | 2180 | B | 1 | 18.4 | 10.9 | 2.5 | 16 | 34 |
| 2 | 2180 | C | 1 | 41.7 | 24.0 | 3.4 | 9 | 28 |
| 2 | 2180 | II | 0 | 4.9 | 10.4 | 0.2 | 13 | 31 |
| 2 | 2190 | A | 0 | 5.2 | 10.9 | 0.2 | 19 | 25 |
| 2 | 2190 | B | 0 | 9.2 | 17.4 | 0.3 | 7 | 31 |
| 2 | 2190 | C | 1 | 20,8 | 12.8 | 2.4 | 16 | 32 |
| 2 | 2200 | A | 0 | 17.6 | 23.3 | 0.8 | 11 | 26 |
| 2 | 2200 | E | 0 | 14.3 | 16.1 | 0.9 | 13 | 30 |
| 2 | 2210 | A | 0 | 13.1 | 16.0 | 0.8 | 11 | 32 |
| 2 | 2210 | B | 0 | 7.1 | 16.4 | 0.2 | 0 | 37 |
| 2 | 2210 | C | 0 | 7.2 | 13.3 | 0.3 | 6 | 36 |
| 2 | 2210 | II | 0 | 3.9 | 10.2 | 0.1 | 6 | 36 |
| 2 | 2210 | $E$ | 0 | 3.5 | 6.6 | 0.2 | 18 | 35 |

Estinated defth mey he urireliable hecause the stronser part of the conductor may be deefer or to one side of the flisht line, or hecause of a shallow dip or overburden effects.

900

Mr. William L. Good
Mining Recorder Ministry of Natural Resources
60 Wilson Avenue
Timmins, Ontario
P4N 257
Dear Str:
We have received reports and maps for an Airborne Geophysical (Electromagnetic and Magnetometer) survey submitted on Mining Claims P 611261 et al in the Townships of Price and Fripp.

This material will be examined and assessed and a statement of assessment work credits will be issued.

Yours very truly,
E.F. Anderson

Director
Land Management Branch
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416)965-1380
A. Barr:mc
cc: Samim Canada Ltd
Suite 2116
130 Adelaide Street West
Toronto, Ontario
M5H 3P5
Attention: Mr. John A. McCance

## Ministry of Natural Resources

GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

## TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT <br> FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Airborne Magnetic<br>Township or Area Price \& Fripp Townships<br>Claim Holder(s)Samim Canada Ltd., 130 Adelaide St.W. Suite 2116, Toronto, ontario M5H 3P5 Survey Company _- Aerodat Limited

Author of Report J.A. McCance, P.Eng. $\qquad$
Address of Author as above
Covering Dates of Survey_ $30 / 03 / 83$ to $25 / 07 / 83$
Total Miles of Line Cut 207 Iine kilometers flown

SPECIAL PROVISIONS

ENTER 40 days (includes line cutting) for first survey.
ENTER 20 days for each additional survey using same grid.

AIRBORNE CREIDITS (Special provision credits do not apply to airborne surveys) Magnetometer_21.36Electromagnetic $\qquad$ Radiometric (enter days per claim)


Res. Geol.
Previous Surveys


## GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS If more than one survey, specify data for each type of survey
Number of Stations____ Number of Readings _________

Station interval Iine spacing $\qquad$
Profile scale
Contour interval.

| Instrument _ | Accuracy - Scale constant |
| :--- | :--- |
| Siurnal correction method |  |
| Base Station check-in interval (hours) |  |
| Base Station location and value |  |

Base Station location and value $\qquad$


Instrument
Scale constant
Corrections made $\qquad$

Base station valuc and location

Elevation accuracy

Instrument
Method [] Time Domain
[] Frequency Domain
Parameters - On time Frequency.

- Off time

Range

- Delay time
- Integration time

Power
Electrode array
Electrode spacing
Type of electrode

Airborne Magnetics coverage over claim block
airborne data Block $A A-200=80.87 \mathrm{~km}$ airborne data Block B-200 $=50.57 \mathrm{~km}$

Total AEM cover over claims 131.44 km

Total number of claims in Block covered by airborne surveys: 153 claims

Calculation:
Total credits per sensor ( 40 m days/mile of coverage)
$(131.44 \div 1.609) \times 40=3267.62 \mathrm{~m}$ days

Total credits per sensor per claim (assuming uniform distribution of credit throughout claim group)

$$
\frac{3267.62}{153} \text { m days/sensor }=21.36 \mathrm{~m} \text { days/claim sensor }
$$




## SELF POTENTIAL

$\qquad$
Survey Method

Corrections made $\qquad$

## RADIOMETRIC

Instrument $\qquad$
$\qquad$
Values measured
Energy windows (levels)
Height of instrument $\qquad$ Background Count
Size of detector
Overburden.
$\qquad$

> (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL. WEAL LOGGING ETC.)
Type of survey.
Instrument $\qquad$ .

Accuracy. $\qquad$
Parameters measured $\qquad$

Additional information (for understanding results)

## AIRBORNE SURVEYS

Type of survey (s) _.... Magnetics (helicopter-borne)
Instruments) Geometries G-803 Magnetometer
Magnetometer sensitive (Epryify fofeach वxplof survey) a 0.5 second sample rate Accuracy contour accuracy 10 gammas
 Aircraft used . North Star Helicopters
Sensor altitude. Magnetometer 15 meters below aircraft NAV: visual t Motorola Mini Ranger radar positionNavigation and flight path recovery method ing F.P.R. Radar position(accuracy 10 meters) with standard tracking camera data recovery using rectified aerial photography Taccuracy 20 meters)
Aircraft altitude__nominally 60 meters A. G. I. . line Spacing 200 meters (nominally)
Miles flown over total area _207 line kilometers_O_Over claims only _131.44 kilometers

Numbers of claims from which samples taken $\qquad$

Total Number of Samples__________
Type of Sample (Nature of Material)
Average Sample Weight
Method of Collection. $\qquad$

Soil Horizon Sampled $\qquad$
Horizon Development. $\qquad$
Sample Depth $\qquad$
Terrain $\qquad$

Drainage Development
Estimated Range of Overburden Thickness
$\qquad$
$\qquad$

SAMPIE PREPARATION (Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis. $\qquad$
$\qquad$
$\qquad$
$\square$

## General

- 

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Ontario

## GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

## TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL. REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC

Type of Survey (s) Helicopter VLF-EM
Township or Area Price and Fripp Townships
Claim Holder (s) Samim Canada Ltd.

$$
130 \text { Adelaide St.W., Suite 2116, Tor. }
$$ M 5 H 3 P 5

Survey Company Aerodat Limited
Author of Report J.A. McCance, P. Eng.
Address of Author as above
Covering Dates of Survey $\frac{30 / 03 / 83 \text { to }}{\text { (linecutting to office) }}$
Total Miles of Line Cut - 207 line kilometers flown


AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)
Magnetometer $\qquad$ Electromagnetic 21. 36 Radiometric
(enter days per claim)
DATE: 25 July 1983 SIGNATURE:


Res. Geol. Qualifications


GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations____ Number of Readings ___
 $\qquad$
Profile scale
Contour interval $\qquad$

Instrument $\qquad$
Accuracy - Scale constant
Diurnal correction method $\qquad$
Base Station check-in interval (hours)
Base Station location and value $\qquad$
$\qquad$
y Instrument $\qquad$
Coil configuration
Coil separation
Accuracy
$\qquad$

Method: $\quad \square$ Fixed transmitter $\quad \square$ Shoot back $\quad \square$ In line Parallel line
Frequency.
(specify V.L.F. station)
Parameters measured

Instrument
Scale constant $\qquad$
Corrections made $\qquad$
$\qquad$

Base station value and location

Elevation accuracy $\qquad$

Instrument
Method $\quad \square$ Time Domain

## $\square$ Frequency Domain

Parameters - On time Frequency $\qquad$

- Off time Range -
- Delay time $\qquad$
- Integration time $\qquad$
Power
Electrode array
Electrode spacing
Type of electrode $\qquad$

AEM coverage over claim block
airborne data Block $A A-200=80.87 \mathrm{~km}$ airborne data Block B-200 $=50.57 \mathrm{~km}$ Total AEM cover over claims 131.44 km

Total number of claims in Block covered by airborne surveys: 153 claims

Calculation:
Total credits per sensor ( 40 m days/mile of coverage)
$(131.44 \div 1.609) \times 40=3267.62 \mathrm{~m}$ days

Total credits per sensor per claim (assuming uniform distribution of credit throughout claim group)

$$
\frac{3267.62}{153} \mathrm{~m} \text { days/sensor }=21.36 \mathrm{~m} \text { days/claim sensor }
$$

| TOTAL NUMBER: | 153 claims N |  | NTS: $42 \mathrm{~A} / 6$ |  |
| :---: | :---: | :---: | :---: | :---: |
| PROJECT NAME: | Argentex-Lenora |  | TOWNSHIPS: Price |  |
| MINING CLAIM |
| PREFIX/NUMBER | PREFIX/NUMBER | PREFIX/NUMBER | PREFIX/NUMBER | PREFIX/NUMBE |
| P. 611261 | P. 611309 | P. 618914 | P. 622817 | P. 622880 |
| 611262 | 611310 | 618915 | 622818 | 622881 |
| 611263 | 611311 | 618916 | 622819 | 622882 |
| 611264 | 611312 | 618917 | 622820 | 622883 |
| 611265 | 611313 | 618918 | 622821 | 622884 |
| 611266 | 611314 | 618919 | 622822 | 622885 |
| 611267 | 611315 | 618920 | 622823 | 622912 |
| 611268 | 611316 | 618921 | 622824 | 622913 |
| 611269 | 611317 | 618922 | 622825 | 622914 |
| 611270 | 611318 | 618923 | 622826 | 622915 |
| 611271 | 611319 | 618924 | 622827 | 622916 |
| 611272 | 611320 | 618925 | 622828 | 622917 |
| 611273 | 611321 | 618926 | 622829 | 622918 |
| 611274 | 611322 | 622590 | 622862 | 622919 |
| 611275 | 611323 | 622591 | 622863 | 622920 |
| 611276 | 611324 | 622592 | 622864 | 622921 |
| 611277 | 611325 | 622593 | 622865 | 622922 |
| 611278 | 611326 | 622594 | 622866 | 622923 |
| 611279 | 611327 | 622595 | 622867 | 624012 |
| 611280 | 611328 | 622596 | 622868 | 624013 |
| 611281 | 611329 | 622597 | 622869 | 624014 |
| 611282 | 611330 | 622598 | 622870 | 624015 |
| 611283 | 611331 | 622599 | 622871 | 624016 |
| 611284 | 618906 | 622600 | 622872 | 624017 |
| 611285 | 618907 | 622601 | 622873 | 624018 |
| 611286 | 618908 | 622602 | 622874 | 624019 |
| 611287 | 618909 | 622812 | 622875 | 624020 |
| 611288 | 618910 | 622813 | 622876 | 624021 |
| 611289 | 618911 | 622814 | 622877 | 624022 |
| 611290 | 618912 | 622815 | 622878 |  |
| 611308 | 618913 | 622816 | 622879 |  |

## SEIF POTLENTIAL.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |

Corrections made

## RADIOMETRIC

Instrument $\qquad$
Values measured
Energy windows (levels) $\qquad$
Height of instrument Background Count $\qquad$
Size of detector
Overburden (type, depth - include outcrop map)

OTHERS (SFISMIC, INRII, WHAA, IOGGNNG JTC.)
Type of survey.
Instrument $\qquad$
Accuracy
Parameters measured $\qquad$

Additional information (for understanding results) $\qquad$

## AIRBORNE SURVFYS

Type of survey(s) Helicopterborne VLF-EM $\qquad$
Instrument(s) Herz Industries Ltd. Totem 2A VLF-EM instrument
Accuracy Total field signal: 2 (specify for cach typc of survey)
Aircraft used Aerospatial A-Star 350 D Helicopter owned/operated by North star
Sensor altitude_At nominal aircraft altitude
Navigation and flight path recovery method NAV:Visual + Motorola Mini Ranger radar positioning F.P.R. Radar position(accuracy 10 metres) with standard tracking camera data recovery using regtified aerial photography (accuracy 20 metres) 200 metres
Aircraft altitude nominalin 6 metres A.
Miles flown over total area 207 line kilometers $\qquad$ Over claims only 131.44 kilometers

Numbers of claims from which samples taken. $\qquad$
$\qquad$

Total Number of Samples
Type of Sample (Nature of Material)
Average Sample Weight.
Method of Collection. $\qquad$

Soil Horizon Sampled $\qquad$
Horizon Development $\qquad$
Sample Depth $\qquad$
Terrain. $\qquad$

Drainage Development $\qquad$
Estimated Range of Overburden Thickness
$\qquad$

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis $\qquad$
$\qquad$
$\qquad$

General_ $\qquad$ General $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ -
$\qquad$
$\qquad$
$\qquad$

## Ministry of Natural Resources

## GEOPHYSICAL - GEOLOGICAL - GEOCHEMICAL TECHNICAL DATA STATEMENT

## TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

```
Type of Survey(s) Helicopter-borne coaxial EM
Township or Area Price \& Fripp Townships
Claim Holder(s) Samim Canada Ltd., 130 Adelaide St. W
    Suite 2116 , Toronto, Ontario M5H 3P5
```

Survey Company __Aerodat Limited
Author of Report J.A. McCance, P.Eng.
Address of Author as above
Covering Dates of Survey $30 / 03 / 83$ to $25 / 07 / 83$
Total Miles of Line Cut 207 line kilometres flown

SPECIAL YROVISIONS

ENTER 40 days (includes
line cutting) for first
survey.
ENTER 20 days for each additional survey using same grid.


AIRBORNE CREDITS (Special provision credits do not apply to airborne zurveys) Magnetometer__E $\underset{\text { (enter days per claim) }}{\text { Electromagnetic } 21,36 \text { Radiometric }}$ $\qquad$


Res. Geol. $\qquad$ Qualifications $\qquad$

| Previous Surveys |  | Date | Claim Holder |
| :---: | :---: | :---: | :---: |
| File No. | Type |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  | ... |
| ............... |  |  | $\ldots$ |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  | ................ |
|  |  |  |  |

## GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey
Number of Stations _________ Number of Readings _____

Station interval $\qquad$ Line spacing

Profile scale
Contour interval $\qquad$

Instrument
Accuracy - Scale constant
Diurnal correction method
Base Station check-in interval (hours)
Base Station location and value $\qquad$

OU Instrument
븍 Coil configuration
Coil separation $\qquad$
Accuracy $\qquad$ Fixed transmitterShoot backIn line

Method: (specify V.L.F. station)
Frequency $\qquad$

Parameters measured

Instrument $\qquad$
Scale constant

## Corrections made

$\qquad$

Base station value and location

Elevation accuracy

Instrument $\qquad$
Method $\square \square$ Time Domain
Frequency Domain
Parameters - On time Frequency $\qquad$

- Off time Range
- Delay time $\qquad$
- Integration time $\qquad$
Power.
Electrode array
Electrode spacing
Type of electrode $\qquad$

AEM coverage over claim block
airborne data Block $A A-200=80.87 \mathrm{~km}$
airborne data Block B-200 $=50.57 \mathrm{~km}$
Total AEM cover over claims 131.44 km

Total number of claims in Block covered by airborne surveys: 153 claims

Calculation:
Total credits per sensor ( 40 m days/mile of coverage)

$$
(131.44 \div 1.609) \times 40=3267.62 \mathrm{~m} \text { days }
$$

Total credits per sensor per claim (assuming uniform distribution of credit throughout claim group)

$$
\frac{3267.62}{153} \begin{aligned}
& \mathrm{m} \text { days/sensor } \\
& \text { claims }
\end{aligned}
$$

TOTAL NUMBER:
PROJECT NAME:
MINING CLAIM
PREFIX/NUMBER
P. 611261

611262
611263
611264
611265
611266
611267
611268
611269
611270
611271
611272
611273
611274
611275
611276
611277
611278
611279
611280
611281
611282
611283
611284
611285
611286
611287
611288
611289
611290
611308

153 claims
Argentex-Lenora

NTS:
TOWNSHIPS: Price Fripp

MINING CLAIM PREFIX/NUMBER

## P. 611309

 611310611311
611312
611313
611314
611315
611316
611317
611318
611319
611320
611321
611322
611323
611324
611325
611326
611327
611328
611329
611330
611331
618906
618907
618908
618909
618910
618911
618912
618913

MINING CLAIM PREFIX/NUMBER

## P. 618914

618915
618916
618917
618918
618919
618920
618921
618922
618923
618924
618925
618926
622590
622591
622592
622593
622594
622595
622596
622597
622598
622599
622600
622601
622602
622812
622813
622814
622815
622816

MINING CLAIM PREFIX/NUMBER
P. 622817
P. 622880
$\begin{array}{ll}622818 & 622881 \\ 622819 & 622882\end{array}$
622819
622883
622821
622884
622822622885
622823622912
622824622913
622825
622826
622827622916
622828622917
622829622918
622862622919
622863622920
622864622921
622865622922
622866622923
622867624012
622868624013
622869624014
622870 : 624015
622871 : 624016
622872 . . 624017
$622873 \quad 624018$
$622874 \quad 624019$
622875624020
622876624021
622877624022

## SELF POTENTIAL



Corrections made $\qquad$

## RADIOMETRIC

## Instrument

Values measured
Energy windows (levels)
Height of instrument Background Count $\qquad$
Size of detector
Overburden $\qquad$ (type, depth - include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)
Type of survey
Instrument $\qquad$
Accuracy
Parameters measured $\qquad$

Additional information (for understanding results)

## AIRBORNE SURVEYS

Type of survey(s) Helicopter-borne EM ( 915 Hz , coaxial system)
Instrument(s) Aerodat/Geonics 3 frequency EM system
Analog record: $2 \mathrm{ppm} / \mathrm{mm}$ (specify for each type of survey)
Accuracy Digital record: time constant 0.1 sec . Filtered profile map: lupm

Sensor altitude_ 30 meters below aircraft
Navigation and flight path recovery method NAV:Visual + Motorola Mini_Ranger radar positioning F.P.R. Radar position (accuracy 10 meters) with, standard tracking camera data Aircraft altitude nominally 60 meters A.G.L. $\qquad$ Line Spacing 200 meters (nominal)
Miles flown over total area_ 207 line kilometers Over claims only $\qquad$

## GEOCHEMICAL SURVEY - PROCEDURE RECORD

Numbers of claims from which samples taken

Total Number of Samples
Type of Sample (Nature of Material)
Average Sample Weight
Method of Collection.

Soil Horizon Sampled $\qquad$
Horizon Development $\qquad$
Sample Depth $\qquad$
Terrain. $\qquad$

Drainage Development
Estimated Range of Overburden Thickness
$\qquad$
$\qquad$

SAMPLE PREPARATION
(Includes drying, screening, crushing, ashing)
Mesh size of fraction used for analysis. $\qquad$
$\qquad$
$\qquad$
$\qquad$

## General

$\qquad$ General $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

July 27th, 1983

Ontario Ministry of Natural Resources, Mining Lands Branch - Sixth Floor, Whitney Block, Queen's Park, Toronto, Ontario, M7A 1X1

Attn: Mr. F. W. Mathews

Dear Mr. Matthews:
Re: Submission of multi-sensor airborne data for assessment work credits on 153 claims in the Porcupine Mining Division: P611261, etc.

Enclosed please find two copies of our report on the results of a recent multi-sensor airborne geophysical survey completed over 153 claims in Price and Fripp Townships, Procupine Mining Division. This work was completed under contract by Aerodat Limited.

We are hereby respectfully requesting that this submitted work be recorded as an amount in excess of 64 days assessment work on each of these 153 claims.

JAM/ams Encl.

RECEIVED
ul 2,81983

MINING LANDS SECTION<br>CC: D. S. Kerby

Yours truly,
 Chief Geophysicist
(Geophysical, Geological,
Instructions: -- Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.
Geochemical and Expenditures) Note: - Only days credits calculated in the
Expenditures" section may, be entered
n the "Expend. Days Cr." columns.
The Mining Act
Type of Surveys)
Geophysical-Airborne electromagnetic-
Vertical-coaxial coil system Claim Holder (s) vertical-coaxial coil system Price and Trip Twp. Prospector's Licence $N o$.
Samim Canada Ltd
Suite 2116, 130 Adelaide St. W., Toronto, Ontario M5H 3P5 Survey Company


## Aerodat Limited

Name and Address of Author (of Geo-Technical report) | Date of Survey | (from 8 to) |  |  |
| :---: | :---: | :---: | :---: |
| 30 | 03 | 83 | 06 |
| Day | 05 | 83 |  |

Total Miles of line Cut N/A
J.A. McCance, coo Samim Canada Ltd. (see above)

Credits Requested per Each Claim in Columns at right

## Special Provisions <br> For first survey:

Enter 40 days. (This includes line cutting)

For each additional survey: using the same grid:

Enter 20 days (for each)

|  |
| :--- |
|  |

Complete reverse side
and enter total (s) here
credits do not apply
to Airborne Surveys.
(see cafendigutions attached

## Expenditukes-texciudas impower stripping ton



Performed pr firms)


## Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected In columns at right.

## Date

May 30th/83 Certification Verifying Report of Work

Mining Claims Traversed (List in numerical sequence)



I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

TOTAL NUMBER:
PROJECT NAME:

MINING CLAIM
PREFIX/NUMBER
P. 611261

611262
611263
611264
611265
611266
611267
611268
611269
611270
611271
611272
611273
611274
611275
611276
611277
611278
611279
611280
611281
611282
611283
611284
611285
611286
611287
611288
611289
611290
611308

153 claims
Argentex-Lenora

NTS:
TOWNSHIPS: Price Fripp

MINING CLAIM PREFIX/NUMBER
P. 611309

611310
611311
611312
611313
611314
611315
611316
611317
611318
611319
611320
611321
611322
611323
611324
611325
611326
611327
611328
611329
611330
611331
618906
618907
618908
618909
618910
618911
618912
618913

MINING CLAIM PREFIX/NUMBER
P. 618914

618915
618916
618917
618918
618919
618920
618921
618922
618923
618924
618925
618926
622590
622591
622592
622593
622594
622595
622596
622597
622598
622599
622600
622601
622602
622812
622813
622814
622815
622816

MINING CLAIM PREFIX/NUMBER
P. 622817

622818
622819
622820
622821
622822
622823
622824
622825
622826
622827
622828
622829
622862
622863
622864
622865
622866
622867
622868
622869
622870
622871
622872
622873
622874
622875
622876
622877
622878
622879

MINING CLAIM
PREFIX/NUMBE
P. 622880

622881
622882
622883
622884
622885
622912
622913
622914
622915
622916
622917
622918
622919
622920
622921
622922
622923
624012
624013
624014
624015
624016
624017
624018
624019
624020
624021
624022


## MINING CLAIMS



Instructions: - Please type or print.

- If number of mining claims traversed exceeds space on this form, attach a list.

1153

The Mining Act exceeds space on this form, attach a list.
(Geophysical, Geological, Geochemical and Expenditures) - Only days credits calculated in the "Expenditures" section may be entered in the "Expend. Days Cr." columns. - Do not use shaded areas below.

Geophysical-Airborne total magnetic field Claim holder (s)
Samim Canada Ltd. Address

Suite 2116, 130 Adelaide St. W., Toronto, ontario M5H 3P5 Survey Company

Aerodat Limited
Name and Address of Author (of Geo-Technical report)
J.A. McCance, $c / o$ Samim Canada Ltd. (see above)

Credits Requested per Each Claim in Columns at right Mining Claims Traversed (List in numerical sequence)

| Special Provisions <br> For first survey: <br> Enter 40 days. (This <br> includes line cutting) | - Electromagnetic |  |
| :---: | :---: | :---: |
| Geophysical <br> For each additional survey: <br> using the same grid: <br> Enter 20 days (for each) | - Magnetometer |  |

## Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.


## Date

May 30th/83
Certification Verifying Rep ort of Work

$\qquad$
,

Price and Trip Twp.
Prospector's Licence No.
T-1193


Mining Lands Comments


To: Geophysics thu Barlow

$\square$ To: Geology - Expenditures

| Comments |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
| Approved | $\square$ Wish to see again with corrections | Date |

$\square$ To: Geochemistry

| Comments |  |  |
| :--- | :--- | :--- |
|  |  |  |
| $\square$ Approved | $\square$ Wish to see again with corrections |  |

$\square$ To: Mining Lands Section, Room 6462, Whitney Block.
(Tel: 5-1380)














