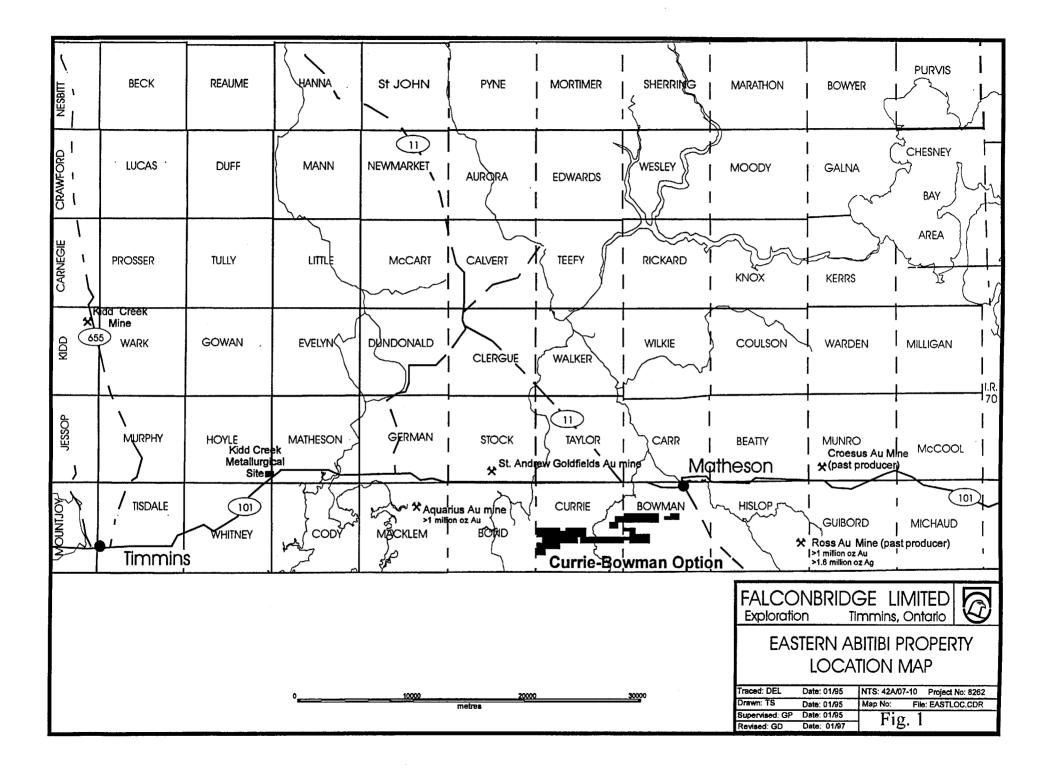
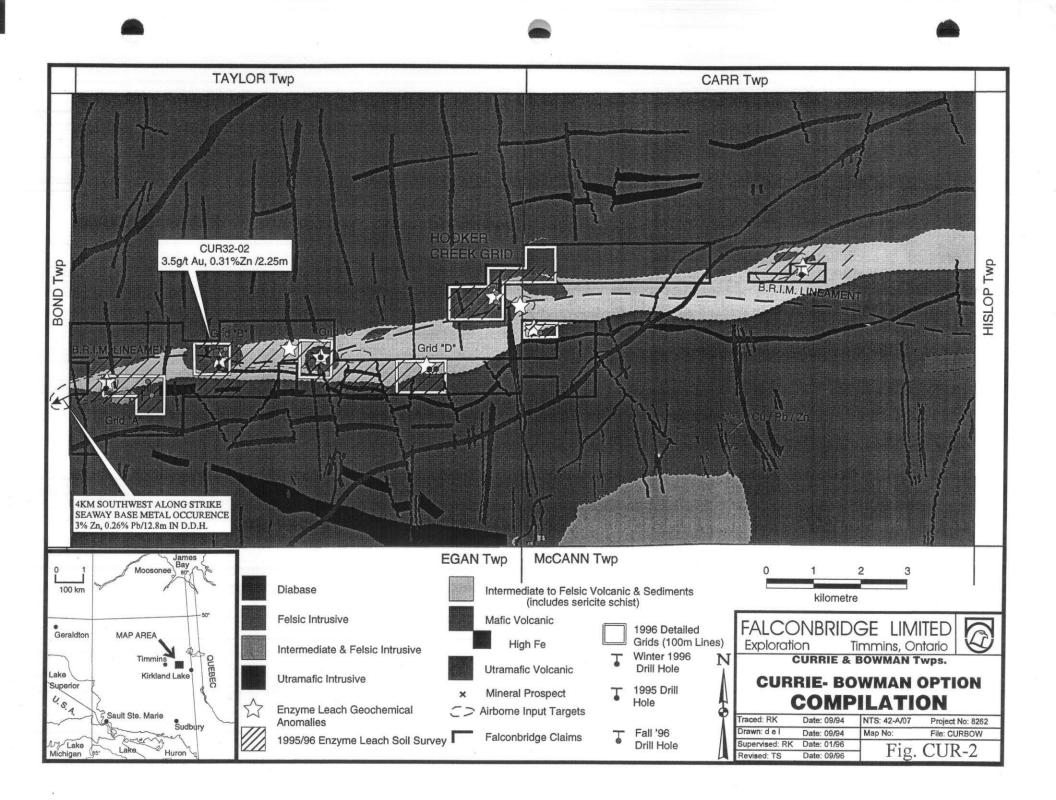
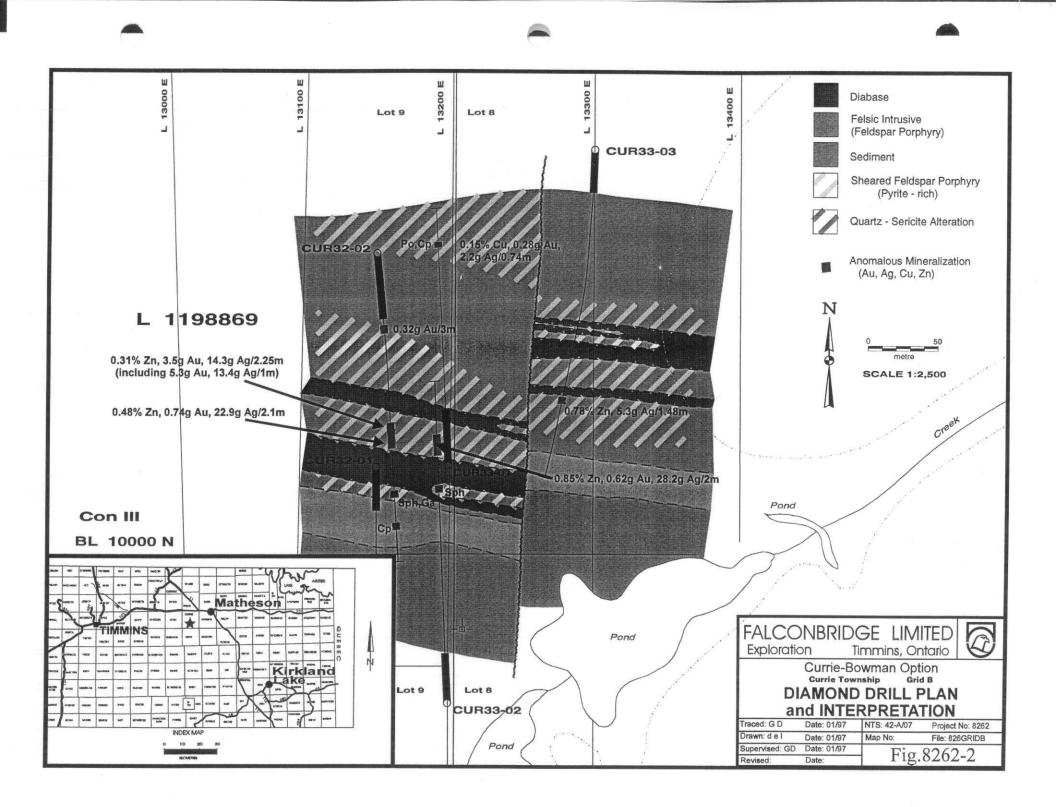
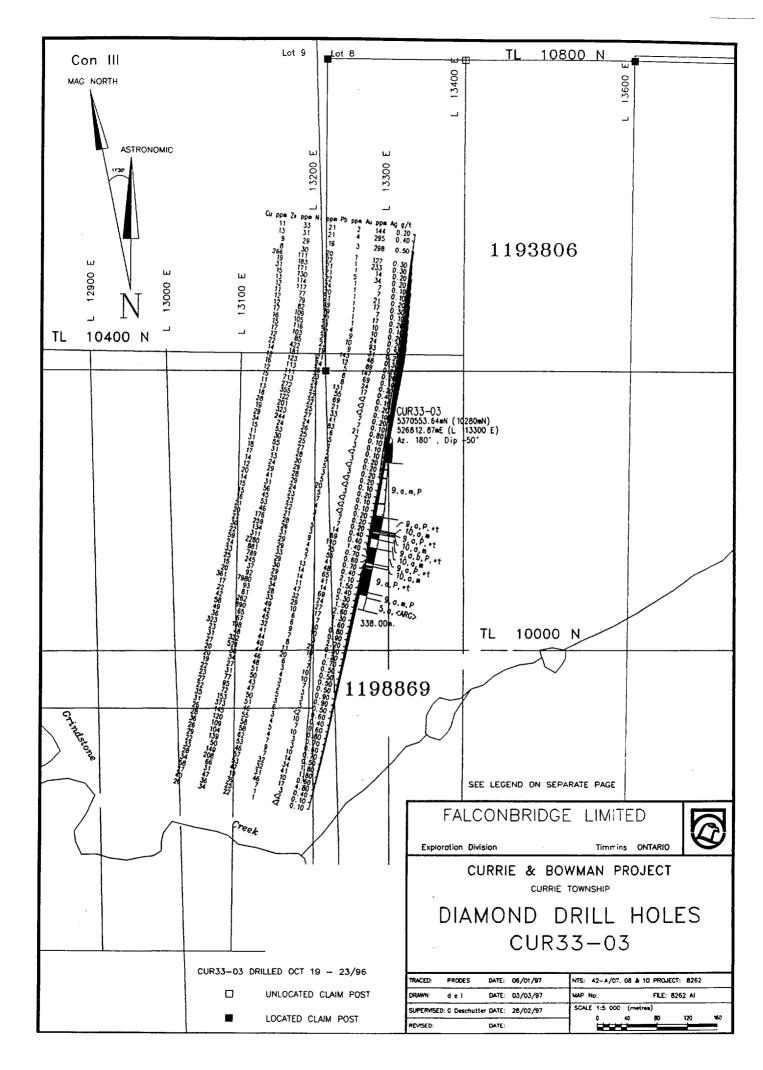
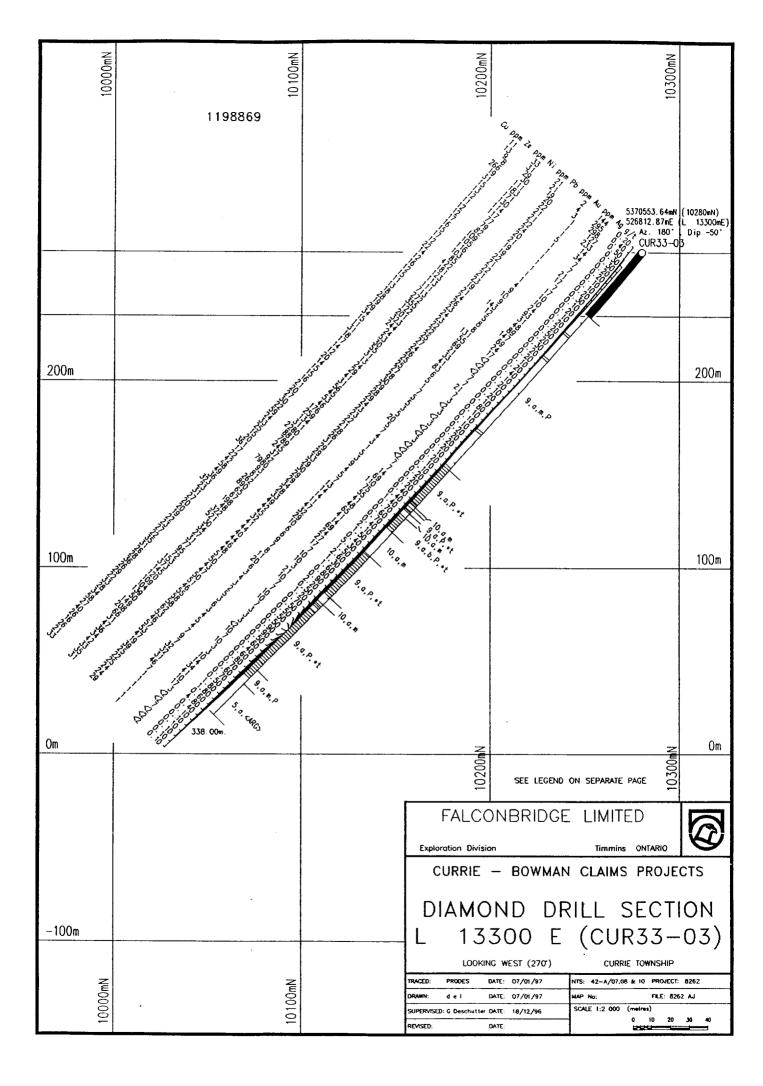

42A07NE0024 2 17125 BOWMAN

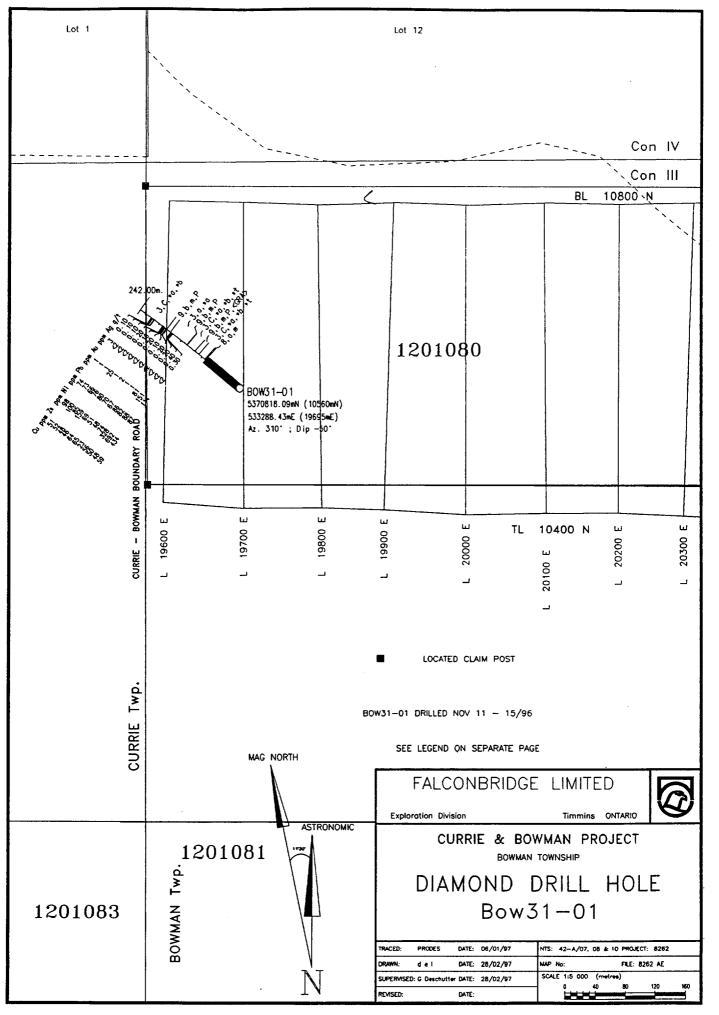

010

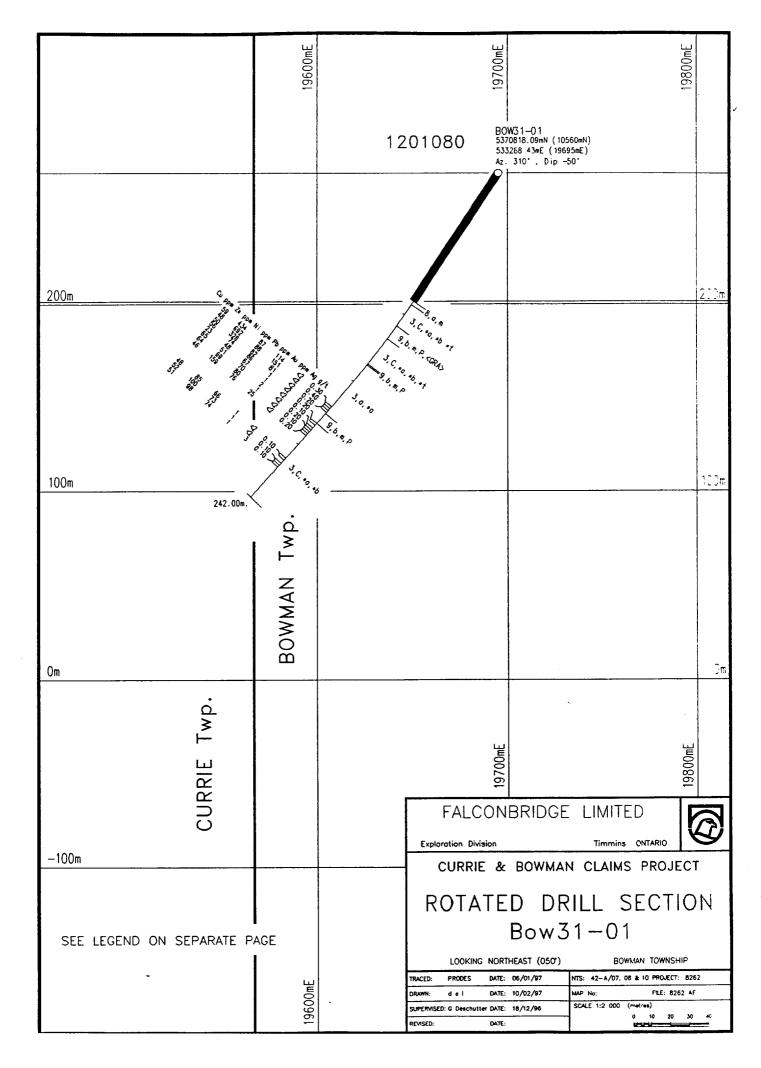

Diamond Drill Assessment Report Currie-Bowman Townships

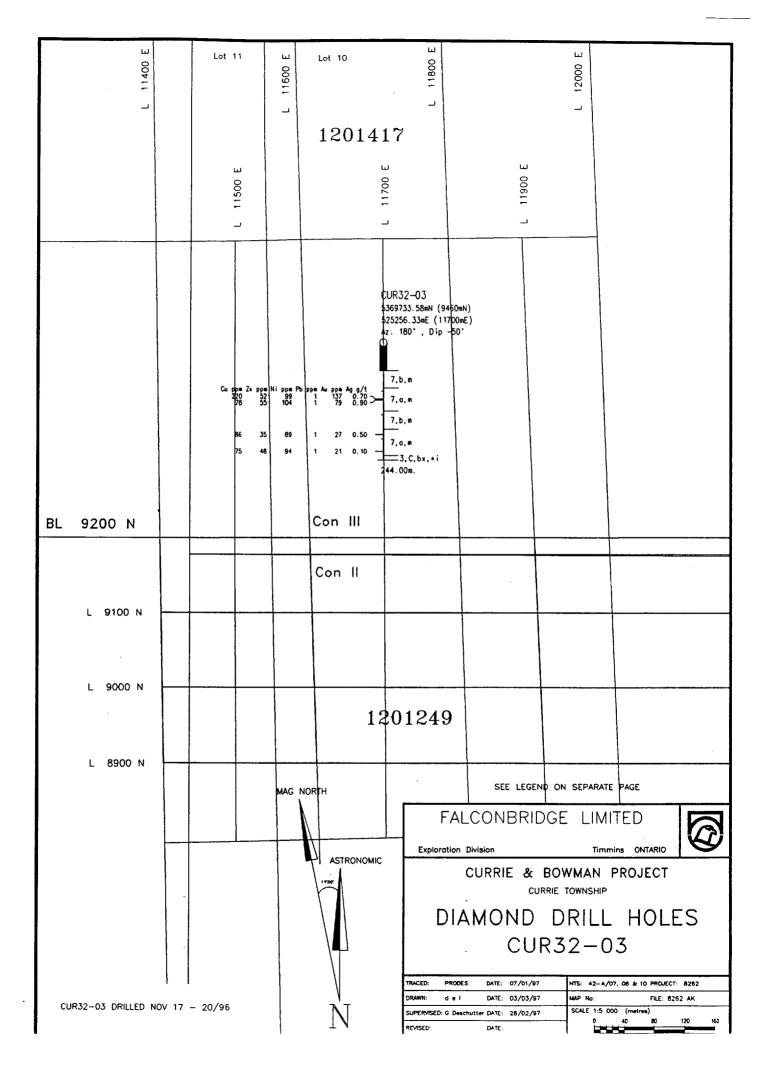

Falconbridge Limited March, 1997

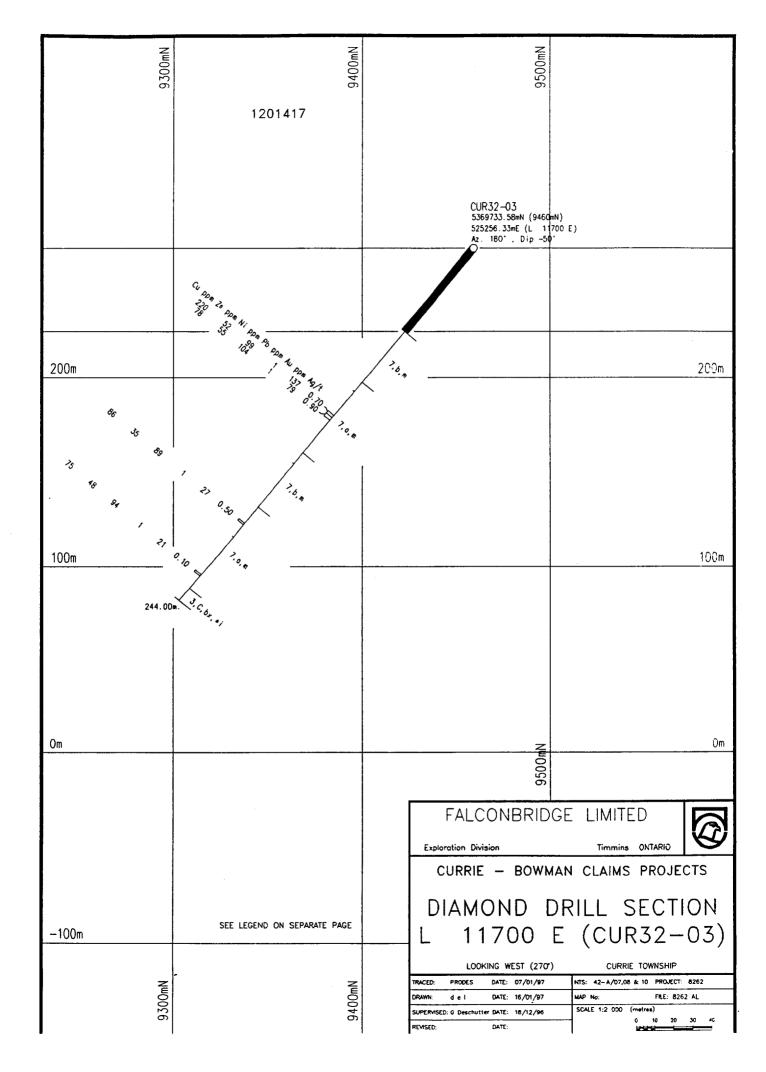

2.17125

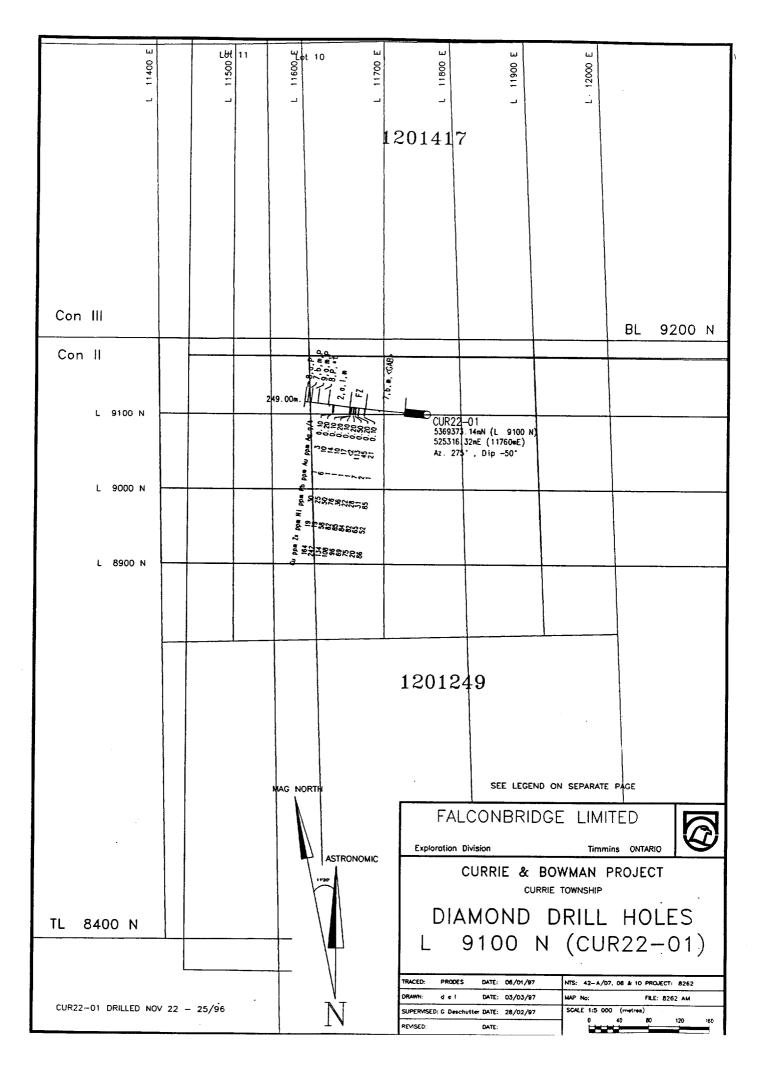


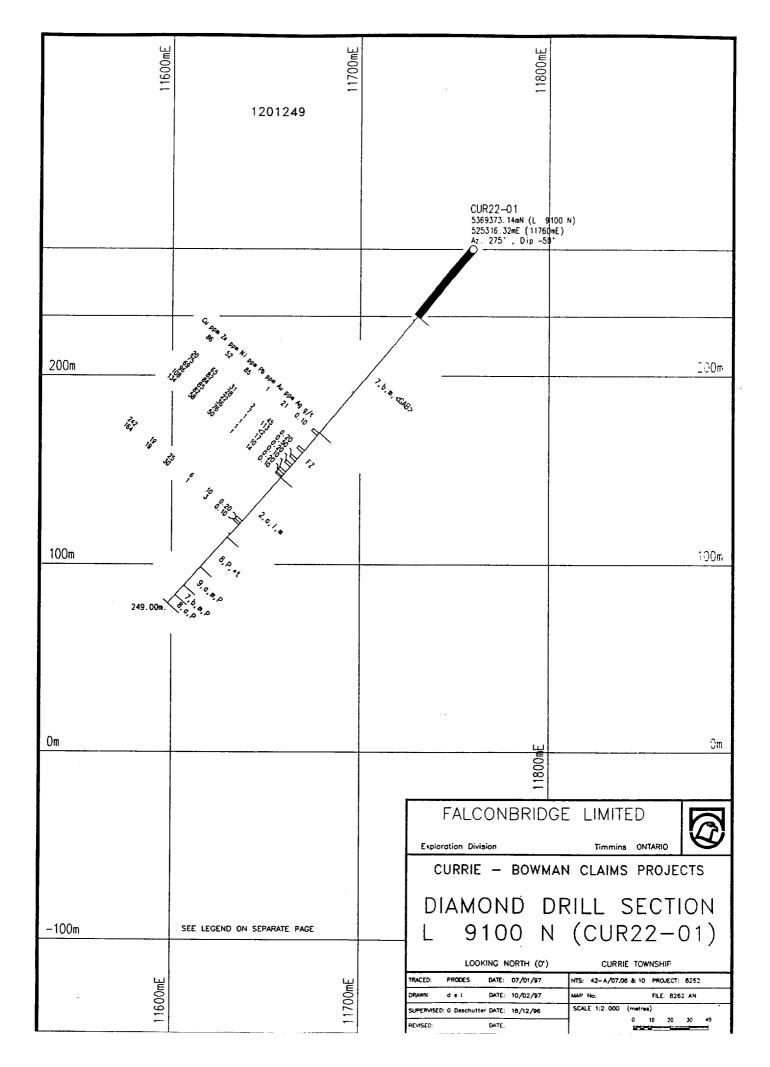









I


ł

HOLE NUMBER: CUR33-03			IDGE LIMITED HOLE RECORD			02/03/1997 ETRIC UNITS: X
PROJECT NAME: 8262 PROJECT NÜMBER: 8262 CLAIN NUMBER: L1198869 LOCATION: Currie Twp.	PLOTTING COORD	S GRID: UTN NORTH: 5370553.65N EAST: 526812.87E ELEV: 269.00		: 102+80N : 133+ 0E	LENGTH OF THE HO Start def	
	COLLAR ASTRONOMIC	AZIMUTH: 180° 0' 0"	GRID ASTRONOMIC AZIMUTH	: 180° 0' 0"		
DATE STARTED: 10/19/1996 DATE COMPLETED: 10/23/1996 DATE LOGGED: 10/25/1996	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: BQ		CONTRACTOR: Dominik Drilling CASING: BQ and NQ CORE STORAGE: Kidd Creek Minesit UTM COORD.: Zone 17	te

COMMENTS : MLAL, I.P., KLEN, and enzyme leach Cu anomalies WEDGES AT:

DIRECTIONAL DATA: WELNAV single shot surveys every 60 metres.

epth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
55.00	184*30' 0"	-48-54 0"	s	ок	WELNAV surveys				•	•	
115.00	184* 0* 0*	-49* 0* 0*	S	OK	•	- 1	-	-	•	-	
175.00	191*30* 0*			OK		-	-		•	-	
235.00	0* 0+ 0*	-46" 0 " 0"	S	DO	bad azimuth reading	-	-	-	-	-	
295.00	191*301 0"			OK	· · · · · · ·	-	-	-	-	•	
338.00	194*30' 0"	-44* 0* 0"	S	OK		-	-	-	-	-	
-	-	-	-	•		-	-	-	•	-	
-	•	-	-	-		· ·	-	-	-	-	
-	-	-	•	-		-	•	-	•	•	
-	•	-	-	-		-	•	-	-	•	
-	-	•	-	-		-	•	-	-	-	
-	-	• .	•	-		-	•	-	-	-	
-	- · ·	-	-	-		-		-	-	-	
-	•	-	-	-		-	•	-	-	-	
•	•	-	•	-		-	•	-	-	•	
-	•	-	•	-		-	•	-	-	-	
-	•	-	•	-		-	•	-	-	-	
•	•	-	-	-		-	-	•	•	-	
-	-	•	•.	-		•	-	-	-	-	
-	-	-	-	•		-	•	-	•	•	
•	•	-	-	-		-	-	-	-	-	
•	-	•	-	•		-	•	•	-	-	
-	-	-	•	•		-	-	-	-	-	
-	•	•	•	-		-	-	-	-	-	
-	-	-	•	•		-	-	-	-	-	

HOLE NUMBER: CUR33-03

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

.

DATE: 02/03/1997

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 45.00	« OB » Casing Overburden				-	
45.00 TO 54.75	<pre>«9,a,m,P» Felsic Intrusive fine grained massive porphyritic</pre>	Massive, medium grey-green feldspar porphyry. The rock is composed of medium grey-green matrix which makes up 35 to 45% of the rock and is composed of very fine grained to aphanitic feldspar +/- quartz and occasional chiorite spec; 55 to 65% of the core is composed of very pale pink to off white sub to euhedral feldspar phenocrysts which range in size from <1mm to 1 cm in size (average 5 mm). First three metres of core are blocky. Core has no foliation (massive) except for occasional sheared zone. Brokenyblocky core from 97.04-97.80m. Soft mafic dyklets/xenoliths (?) from 134.10-134.43m and 134.69-134.94m. Lower contact is charaterized by more frequent \mathfrak{A} veining and moderate shearing. 128.00-130.00 «9, a, P, *tw Felsic Intrusive fine grained, porphyritic, sheared version of above.		Interval is relatively fresh with only trace amounts of chlorite alteration disseminated throughout the core in small patches,wisps, and individual grains. Rare mm-sized Qt, and Qt-Ca veinlets and fracture fillings cut the core at all angles.	Trace pyrite associated with Qt-Ch veinlets (up to 0.5 %).	
54.75 TO 52.22	<pre>«9,a,P,*t» Felsic Intrusive fine grained porphyritic sheared</pre>	128.05-130.00 + 12 33* + 51 shear» Foliation Variably Ch-altered, Qt+/-Ca veined, sulphidized, sheared feldspar porphyry. Foliation in the core varies from 35 to 55* to C.A. and is imparted by the allignment of micaceous mineral Chlorite ± sericite). Relict feldspar phenocrysts are slightly flattened in the plane of the foliation. Qt+/-Ca veinlets, mm to cm wide, cut the core usually parallel to shear foliation and occasionally at other, random angles. Waxy appearance to core over the last 22 cm of the unit. 158.90-159.00 + 52 50* shear» Foliation shear foliation imparted by phyllosilicates. 172.30-172.40 + 52 35* shear» Foliation shear foliation in core. 178.85-178.95 + 52 52* shear» Foliation shear foliation		Weak, pervassive chloritization dominates as the alteration phase and imparts a greenish tint to the core. mm to cm sized Qt and Qtt2q verilets common. Weak hematization over the last 22 cm of unit. 154.75-181.10 «ChPW» weak, pervasive, chloritization 154.75-181.10 «ChPW» weak, pervasive, chloritization 181.10-182.00 «SeSW» weak, spotty, sericitization 182.00-182.22 «HeSW,SiPW» weak, spotty, hematization; weak, pervasive, silicification	Smears, stringers, bands, and fine disseminations of pyrite from 0.5 to locally 20% over small (1cm) intervals. Average pyrite concentration over completed interval is about 2-3%. Py bands and wisps frequently parallel the shear foliation in the core. 4154.75-182.22 + Py03.0-5.0% 3.0-5.0% disseminated/blebby pyrite	

HOLE NUMBER: CUR33-03

.

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

.

	ER: CUR33-03	DATE: 02/03/1997				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
TO 83.95	<pre>«10,a,m» Diabase fine grained massive</pre>	Magnetic, massive, fine grained diabase dyke. First and last 10 cm have chilled texture. Rare mm sized Py blebs disseminated throughout unit (to 5%). Highly irregular upper and lower contacts with sheared porphyry.				
TO 86.82	<pre>«9,a,P,*t» felsic Intrusive fine grained porphyritic sheared</pre>	Medium grey, moderately altered, fine to medium grained, sheared feldspar porphyry. Core has a ghosty appearance where relict phenocrysts are still visible. 185.70-186.00 «10,a,m» Diabase fine grained, messive,		Predominantly weak and pervassive chloritization and silisification; weak fracture controlled sericitization. [183.95-186.82]+ChPW ,SiPW,SeFW+ Weak, pervasive, chloritization; weak, pervasive, silicification; weak, fracture/vein controlled, sericitization	3-5% finely disseminated Py; pale coloured Sph(?) blebs associated with small quartz stringers and blebs. f183.95-186.82f+PyD1.0-3.0%» 1.0-3.0% disseminated/blebby pyrite	
TO D 39.90 f 9	«10,a,m» Diabase fine grained massive	Massive, fine grained, magnetitic diabase dyke. 188.15-188.60 «9,a,P,*t» Felsic Intrusive fine grained, porphyritic,sheared				
TO 90 10.55 I 97 98 99 99 99 90 90 90 90 90 90 90 90 90 90	x9,a,b,P,*t «Felsic Intrusive fine grained medium prained porphyritic wheared	Fine to medium grained, grey-green, well foliated (sheared) feldspar porphyry. Foliation is imparted by flattened phenocrysts and micaceous minerals (chlorite and sericite). [195.70-195.80]#4[52 45*[shear≫ Foliation shear foliation imparted by micaceous minerals and flattened phenocrysts.		Chloritization and sericitization dominate; core takes on a salmon pink to red colour at the bottom of unit probably reflect ing weak hematization. 30 cm wide quartz veined zone at 192m. [189.90-193.40]=chPWs weak, pervasive, chloritization [193.40-198.70]=sePW ,chPWs weak, pervasive, chloritization; weak, pervasive, chloritization [198.70-200.55]=stePWs ,sePMs weak, pervasive, hematization; weak,	Very fine grained pyrite (1-2%) disseminated throughout interval; mm sized blebs of very pale sphalerite locally up to 1% specially associated with quartz veins. [189.90-200.55]+PyD0.5-2.0%, SphD0.1-1.0 %> 0.5-2.0% disseminated/blebby pyrite; 0.1-1.0% disseminated/blebby sphalerite	
TO Di B.17 fi gr	18Dase	Massive, fine grained, magnetic diabase dyke. Hematite staining imparts a speckeled red, black and green texture. Bottom 20 cm is chilled.		pervasive, sericitization		

HOLE NUMBER: CUR33-03

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

DATE: 02/03/1997

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
218.17 TO 248.95	<pre>«9,a,P,*t» Felsic Intrusive fine grained porphyritic sheared</pre>	Grey-green, fine grained, well foliated feldspar porphyry. Sericite and chlorite are the main alteration phases. Foliation ranges from 25 to 55° to C.A and averages 45°. Rock is paler than previous 9,P,*t unit due to more sericite alteration (less chlorite?). [219.00-219.10]+[52 46°]shear» Foliation shear foliation [224.25-224.35]+[52 24°]shear» Foliation shear foliation [231.25-231.35]+[52 45°]shear» Foliation shear foliation [241.27-241.37]+[52 45°]shear» Foliation shear foliation [247.50-247.60]+[52 54°]shear» Foliation shear foliation		Weak hematization at top of unit followed by silicification (abundant quartz veining) then sericitization and chloritization. Rare mm-sized bright green blebs (fuchsite) scattered throughout interval parallel to shear foliation. Different alteration abundances give the core a slightly banded appearance. [218.17-219.20]+HePW ,SiPW> weak, pervasive, hematization; weak, pervasive, silicification [219.80-221.50]+SiFM> moderate, fracture/vein controlled, silicification [221.50-248.95]+SePW ,ChPW> weak, pervasive, sericitization; weak, pervasive, chloritization	The unit generally contains 2-5% pyrite with enriched zones over 10cm reaching 50% Py. One 3.5 metre zone contains very pale (honey coloured) sphalerite in smears and stringers (locally up to 2% Sph over 30cm). [218.17-248.95]*Py01.0-5.0%* 1.0-5.0% disseminated/blebby pyrite usually parallel to the shear folition. 225.43-225.55 * <py>M30.0-50.0%,* 30.0-50.0% massive [239.00-243.30]*Sph00.1-2.0%* 0.1-2.0% disseminated/blebby sphalerite (very pale coloured; Zn-rich).</py>	
8.95 TO 54.25	≪10,a,m» Diabase fine grained massive	Massive, fine grained, magnetic diabase dyke. Unit has distinct chilled and weakly pyritic margins.				
4.25 TO 4.20	<pre>«9,a,P,*t» Felsic Intrusive fine grained porphyritic sheared</pre>	Strongly sheared, variably altered and sulphidized, feldspar porphyry. This unit contains abundant pyrite ranging from 3 to 50% as disseminations, bands, blebs and semi massive zones. Qt+/-Ca veins and veinlets are relatively common and are usually <3cm wide. Small bright green fuchsite grains are relatively common. Small intervals (<10cm) have a brecciated appearence where cm scale fragments of sheared porphyry appear cemented by fine grained pyrite. Rare cherty fragments which have a distinct waxy look are scattered throughout interval. Host of the pyrite banding and Wisps are oriented parallel to the shear foliation. Shearing averages 45° to C.A. Interval from 287.20 to 293.40m has a pyritic breccia texture where fine grained granular pyrite appears to cement fragments of sheared porphyry.		Nost of interval has a banded appearance due to different concentrations of sericite and chlorite. Small grains of bright green fuchsite are relatively common and are oriented parallel to the foliation. Cherty-looking frangments and masses usually associated with granular pyrite @ 270.30m; 283.80m; 288.40m. Concentration of fuchsite grains @ 301m.	Most of interval is pyrite-rich. Sulphide concentrations range from 3 to locally 50% Py over small intervals. 1254.25-257.68 +*Py03.0-10.0% 3.0-10.0% disseminated/blebby pyrite 1262.60-272.60 +*Py02.0-7.0% 2.0-7.0% disseminated/blebby pyrite 1272.60-287.69 +* <py>D2.0-3.0% 2.0-3.0% disseminated/blebby 1287.69-299.50 +*<py>D2.0-10.0% 2.0-10.0% disseminated/blebby 1299.50-299.85 +*<py>M40.0-60.0% 40.0-60.0% messive</py></py></py>	

HOLE NUMBER: CUR33-03

DRILL HOLE RECORD

. . LOGGED BY: G. De Schutter

DATE: 02/03/1997

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		255.73-256.55 «10,a,m» Diabase fine grained, massive, magnetic			299.85-304.20 + < Py>D1.0-5.0% 1.0-5.0% disseminated/blebby	
		d257.68-259.59∮≪10,a,m≫ Diabase fine grained, massive, magnetic				
		260.11-260.60 ≪10,a,m→ Diabase fine grained, massive, magnetic, chilled margins.				
		261.90-262.00 + S2 45° shear» Foliation Orientation of a pyritic band in sheared porphyry.				
		268.70-268.80 + S2 40° shear» Foliation shear foliation				
		281.20-281.30 + S2 45° shear» Foliation shear folition				
		293.50-293.60 + S2 45° + shear» Foliation orientation of pyritic banding				
		d300.85-300.95 kds² ksear» Foliation shear foliation.				
04.20 TO 14.45	<pre>«9,a,m,P» Felsic Intrusive fine grained massive porphyritic</pre>	Fine grained, grey, massive (non-foliated), weakly altered feldspar porphyry. Sub to euhedral light grey green phenocrysts 1mm to 1 cm in size make up approximately 30% of the core and are set in a medium grey aphanitic to very fine grained matrix which makes up 70% of the core. The is a gradational change from the foliated to the massive porphyry.		Weak silicification imparts a ghosty grey colour to the core.	Trace to 0.5% very fine grained Py disseminated throughout interval but mostly concentrated in and around Qt veinlets and fracture fillings.	
14.45 TO 38.00	<pre>«5,a,<arg>» Sedimentary fine grained mudstone-ar gillite</arg></pre>	Bedded dark and medium grey, fine grained argillite. Bedding averages 45° to C.A. Few lighter grey-coloured seams are coarser grained (wacke). Core is very weakly conductive. Mixed zone of sedimentary and intrusive breccia from 324.75 to 326.10m.		Minor Qt and Qt-Ca veinlets cut the core parallel and oblique to bedding.		
		¶320.00-320.10∦+ \$0 35° + Bedding bedding in the argillite				

HOLE' NUMBER: CUR33-03

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

HOLE NUM	BER: CUR33-03			DRILL HOLE RECORD		DATE: 02/03/1997
FROM TO	ROCK Type	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		1322.66-327.61 + 9,P* Feldspar porphyritic dyke segment with chilled margins. 1332.20-332.30 + 50 45° + 8edding bedding in the argillite				
338.00 TO 338.00	«EOH» End-Of-Hole					Total of 54 boxes of BQ core; hole is capped and noot making water; stored at Kidd Creek minesite.
HOLE NUME	ER: CUR33-03			DRILL HOLE RECORD		DGGED BY: G. De Schutter PAGE: 6

.

DATE: 03/02/1997

Sample	From (M)	To (M)	Leng. (M)	Cu ppm	Zn ppi		b pmr	Ni ppm	Au ppb	Ag ppm	Cu/Z	in Co ppm	Pt ppb	Pd ppb	\$ ppm	Se ppm	As ppm	Hg ppb	Sb ppm				Est.Cp %		Est.Gn ROCK TYPE X	Comments
AT04251	59.25	60.50	1.25		11	33	2	21			2									0.0	0.0	0.5	0.0	0.0	0.0 9,a,P	
AT04252	76.25	77.50	1.25	1	13	31	4	21	295	5 O.	4									0.0	0.0	0.1	0.0	0.0	0.0 9,a,P,*t	
AT04253	128.00	129.50	1.50		9	29	- 3	19			5									0.0	0.0	0.1	0.0	0.0	0.0 9,P,*t	
AT04254	153.50	155.00	1.50		8	30	1	20												0.0	0.0	0.0	0.0	0.0	0.0 9,P,*t	
AT04255	155.00	156.50	1.50		66	111	1	22												0.0	0.0	0.1	0.0	0.0	0.0 9,P,*t	
AT04256	156.50	158.00	1.50		19	183	1	21												0.0	0.0	2.0	0.0	0.0	0.0 9,P,*t	
AT04257	158.00	159.50	1.50		51	171	5	21												0.0	0.0	5.0	0.0	0.0	0.0 9,P,*t	
AT04258	159.50	161.00	1.50		15	130	1	22												0.0	0.0	2.0	0.0	0.0	0.0 9,P,*t	
AT04259	161.00	162.50	1.50		13	114	1	24		••										0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04260	162.50		1.50		12	117	1	20	-											0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04261	164.00	165.50	1.50		11	77	1	21												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04262	165.50	167.00	1.50		12	79	1	19												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04263	167.00	168.50	1.50		12	82	1	19												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04264	168.50		1.50		17	109	!	22												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04265	170.00		1.50		16	105	4	21												0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
AT04266	171.50		1.50		15	116	. 9	22												0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
AT04267	173.00		1.50		17	103	10	21												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04268	174.50		1.50		12	85	. 9	23	-											0.0	0.0	0.5	0.0	0.0	0.0 9,P,*t	
AT04269	176.00		1.50		22	422	143	19												0.0	0.0	2.0	0.0	0.0	0.0 9,P,*t	
AT04270	177.50		1.50		14	181	12	21												0.0	0.0	3.0	0.0	0.0	0.0 9,P,*t	
AT04271 AT04272	179.00 180.50	180.50	1.50 0.55		12 16	123 113	5	24 26												0.0 0.0	0.0	2.0 1.0	0.0 0.0	0.0 0.0	0.0 9,P,*t	
AT04272		181.79	0.74		12	111	8	23												0.0	0.0	1.0	0.0	0.0	0.0 9,P,*t 0.0 9,P,*t	
104273		182.22	0.43			713	131	24												0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
AT04275		185.50	1.55		11	272	55	23												0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
104276	186.00		0.82		13	355	69	22												0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
104277	189.90		1.50			122	21	22												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
104278	191.40		1.50		28	201	33	25		, ŏ.										0.0	0.0	1.0	0.0	0.0	0.0 9,P,*t	
104279		194.40	1.50		19	323	41	27												0.0	0.0	1.0	0.0	0.5	0.0 9.P.*t	
104280		195.90	1.50		9	244	83	24			-									0.0	0.0	1.5	0.0	0.1	0.0 9,P,*t	
104281		197.40	1.50		\$4	24	6	26												0.0	0.0	1.0	0.0	0.0	0.0 9,P,*t	
T04282		198.90	1.50		15	53	š	25												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
T04283		200.55	1.65		11	30	1	25												0.0	0.0	1.0	0.0	0.0	0.0 9,P,*t	
T04284	218.17		0.83		51	55	ż	27												0.0	0.0	0.5	0.0	0.0	0.0 9.P.*t	
104285	219.00		1.50		8	31	Ś	28												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
104286	220.50		1.50		7	13	ŝ	30												0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
104287	222.00		1.50		4	24	3	29	<2											0.0	0.0	3.5	0.0	0.0	0.0 9,P,*t	
T04288		225.00	1.50		2	29	5	28												0.0	0.0	0.5	0.0	0.0	0.0 9,P,*t	
T04289	225.00		1.50		20	41	20	29												0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
T04290		228.00	1.50		4	31	5	24												0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
T04291		229.50	1.50		5	56	7	23	<2											0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
T04292	229.50		1.50		5	45	4	23												0.0	0.0	2.0	0.0	0.0	0.0 9,P,*t	
T04293	231.00		1.50		6	53	3	22		0.										0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
104294	232.50		1.50		1	46	1	21	7											0.0	0.0	0.5	0.0	0.0	0.0 9,P,*t	
104295	234.00		1.50			176	5	28	14											0.0	0.0	0.5	0.0	0.0	0.0 9,P,*t	
T04296	235.50		1.50			259	3	26												0.0	0.0	1.0	0.0	0.0	0.0 9,P,*t	
T04297	237.00		1.50	3	0	134	9	31	110) 1.	4									0.0	0.0	0.1	0.0	0.0	0.0 9,P,*t	

HOLE NUMBER: CUR33-03

ASSAYS SHEET

HOLE	NUMBER	:	CUR33-0	3
------	--------	---	---------	---

. .

Sample	From (M)	To (M)	Leng. (H)	Cu ppm	Zn ppm	Pb ppm	Ni ppm	Au ppb	A: Pi	-	u/Zn	Co ppm	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Kg ppb	Sb ppm					Est.Sp K 2	Est.Gn ROCK TYPE	Comments
AT04298		240.00	1.50		2 3			29	75	0.7										0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT04299		241.50	1.50		9 22		5	29	55	0.6										0.0	0.0	2.5	0.0	1.5	0.0 9,P,*t	
AT04300		243.00	1.50	2				33	41	0.7										0.0	0.0	1.5	0.0	0.1	0.0 9,P,*t	
AT05751		244.50	1.50	3			3	29	48	0.4										0.0	0.0	1.0	0.0	0.0	0.0 9,P,*t	
AT05752 AT05753		246.00 247.50	1.50 1.50	2			4	30	65	2.1										0.0	0.0	0.5	0.0	0.1	0.0 9,P,*t 0.0 9,P,*t	
AT05754		248.95	1.45				1	29 29	41 14	1.5										0.0	0.0 0.0	3.0 2.5	0.0 0.0	0.0	0.0 9,P,*t	
AT05756		255.73	1.48	36				29 34	69	0.4 5.3											0.0	7.5	0.0	0.0	0.0 9,P,*t	
AT05757		257.68	1.13	1				28	24	1.5										0.0 0.0	0.0	5.0	0.0	0.0	0.0 9,P,*t	
AT05758		260.11	3.52	l ż				33	27	2.6										0.0	0.0	8.5	0.0	0.0	0.0 9,P,*t	
AT05759		262.10	1.50		2 20			49	17	1.3										0.0	0.0	3.0	0.0	0.0	0.0 9,P,*t	
AT05760		263.60	1.50	5			6	42	7	1.6										0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
AT05761		265.10	1.50	4				45	10	0.8										0.0	0.0	3.0	0.0	0.0	0.0 9,P,*t	
AT05762		266.60	1.50	3				32	10	0.9										0.0	0.0	4.5	0.0	0.0	0.0 9,P,*t	
AT05763		268.10	1.50	32				41	3	2.2										0.0	0.0	3.5	0.0	0.0	0.0 9,P,*t	
AT05764		269.60	1.50	2			8	44	21	0.5										0.0	0.0	6.0	0.0	0.0	0.0 9,P,*t	
AT05765		271.10	1.50	3			-	40	10	1.2										0.0	0.0	5.0	0.0	0.0	0.0 9,P,*t	
AT05766		272.60	1.50	2			ò	44	7	0.7										0.0	0.0	4.5	0.0	0.0	0.0 9,P,*t	
AT05767		274.10	1.50	1 2				46	ż	0.5										0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
AT05768		275.60	1.50	1 2			-	48	10	0.5										0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT05769		277.10	1.50	1				51	10	0.5										0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT05770	277.10		1.50	Ż				50	7	0.5										0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT05771	278.60	280.10	1.50	2	37	7	2	43	3	0.9										0.0	0.0	1.5	0.0	0.0	0.0 9,P,+t	
AT05772	280.10	281.60	1.50	2	79	5	5	47	3	0.9										0.0	0.0	2.5	0.0	0.0	0.0 9,P,*t	
AT05773	281.60	283.10	1.50	2	27	2	3	50	3	0.5										0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT05774	283.10	284.60	1.50	3	5 15	3	6	51	<2	0.6										0.0	0.0	4.0	0.0	0.0	0.0 9,P,*t	
AT05775	284.60	286.10	1.50	3	1 37	3	3	46	10	0.4										0.0	0.0	5.0	0.0	0.0	0.0 9,P,*t	
AT05776	286.10	287.60	1.50	2	6 14	5	4	55	7	0.6										0.0	0.0	6.5	0.0	0.0	0.0 9,P,*t	
AT05777	287.60	289.10	1.50	2	8 12	0	5	58	10	0.8										0.0	0.0	3.6	0.0	0.0	0.0 9,P,*t	bx zone
AT05778		290.60	1.50	3				58	3	0.7										0.0	0.0	5.0	0.0	0.0	0.0 9,P,bx,*t	
AT05779		292.10	1.50	2				62	3	0.6										0.0	0.0	3.0	0.0	0.0	0.0 9,P,bx,*t	
AT05780	292.10		1.50	2				53	10	0.7										0.0	0.0	4.0	0.0	0.0	0.0 9,P,bx,*t	
AT05781		295.10	1.50	2				46	14	0.5										0.0	0.0	4.0	0.0	0.0	0.0 9,P,bx,*t	
AT05782	295.10		1.50	3				57	34	1.8										0.0	0.0	6.5	0.0	0.0	0.0 9,P,bx,*t	
AT05783			1.50	2				53	41	1.8										0.0	0.0	5.0	0.0	0.0	0.0 9,P,*t	
AT05784	298.10		1.40	3				47	10	0.6										0.0	0.0	4.0	0.0	0.0	0.0 9,P,*t	
AT05785	299.50		0.35	5				19	17	4.8										0.0	0.0	60.0	0.0	0.0	0.0 9,P, <py>,*t</py>	
AT05786		301.35	1.50	2				39	3	0.4										0.0	0.0	2.0	0.0	0.0	0.0 9,P,*t	
AT05787		302.85	1.50	4		_		25	<2	0.1										0.0	0.0	1.5	0.0	0.0	0.0 9,P,*t	
AT05788		304.35	1.50	2		•		22	~2	0.1										0.0	0.0	0.5	0.0	0.0	0.0 9,P,*t	
AT05789		305.85	1.50	1		-		25	7	0.1										0.0	0.0	0.5	0.0	0.0	0.0 9,P,*t	
AT05790		307.35	1.50	2		-		24	~2	0.1										0.0	0.0	0.5	0.0	0.0	0.0 9,P,(*t)	
AT05791		308.85	1.50	2		-		24	2	0.1										0.0	0.0	0.1	0.0	0.0	0.0 9,P,m, <si></si>	
ATUS/92	208.82	310.35	1.50	1 3	s 3	1	1	29	~2	0.1										Ų.U	0.0	0.0	0.0	0.0	0.0 Y,P,M	
AT05792	308.85		1.50	3				29	~2	0.1										0.0	0.0	0.0	0.0	0.0	0.0 9,P,m	

HOLE NUMBER: CUR33-03

ASSAYS SHEET

. .

.

· •.

PAGE:

8

HOLE N	UMBER :	CUR33-03	
--------	---------	----------	--

GEOCHEMICAL ASSAY

DATE: 03/02/1997

Sample	From (M)	To (M)	Leng. (M)	\$102 X	AL203 X	CA0 %	MGO X	NA20 %	к20 Х	FE203 X	1102 X	P205 X	MNO X	CR203	LO1 SUM X X	Y PPM	ZR PPN	BA PPN	CU PPM	ZN PPM	NI PPM	CR FIELD PPM NAME	CHEM ID	ALUM	
AT05662 AT05663 AT05664 AT05665 AT05665 AT05667 AT05668 AT05669 AT05670	53.00 83.00 113.00 158.00 191.00 221.00 263.00 293.00 311.00	161.00 194.00 224.00 266.00 296.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	65.92 65.84 61.51 63.08 65.38 64.53 62.93	16.25 16.28 16.54 16.16 17.08 16.74 15.95 17.03 16.66	3.07 3.72 3.94 2.47 1.20 2.71 1.75 3.30		5.89 5.82 5.83 3.82 4.70 5.17 3.19 3.91 6.59	1.00 0.84 0.76 1.06 1.74 2.50 1.76 1.62 0.64	2.71 2.82 2.63 4.88 5.71 3.18 4.22 4.71 3.60	0.30 0.29 0.30 0.49 0.55 0.53 0.62 0.63 0.41	0.14 0.16 0.14 0.18 0.18 0.18 0.20 0.18	0.03 0.03 0.10 0.12 0.02 0.02 0.01 0.04	0.08 0.11 0.08 0.02 0.04 0.05 0.06 0.06	2.45 98.30 1.88 99.43 1.63 99.03 4.49 99.11 2.64 100.53 2.65 98.37 4.29 98.18 4.67 98.27 2.81 100.67	<2 4 2 10 12 10 12 6 6	70 50 76 96 178 114 106 260 88		10 10 5 10 10 10 10 10 15	20 5 105 130 15 20 95 15	35 40 45 30 50 30 20 55 45	9,a,m,P 9,a,m,P 9,p,*t 9,P,*t 9,P,*t 9,P,*t 9,P,*t 9,P	9jA 9jA 9jA 8j 8j 8j\$ 8j\$ 8j\$ 8j\$	163 157 160 183 192 189 208 234 158	
·																									

HOLE NUMBER: CUR33-03

GEOCHEMICAL ASSAY

DATE: 03/02/1997

HOLE NUME	BEK : COI										GEOCH	EMICAL	ASSAYS															DATE:	03/02/1997
Sample	From (M)	To (M)	Leng. (M)	RB PPM	SR PPM	CO2 X	AG PPN	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	B1 PPN	SE PPM	KF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPN	ND PPM
AT05662 AT05663 AT05664 AT05665 AT05665 AT05666 AT05667 AT05669 AT05670	83.00 113.00 158.00 191.00 221.00 263.00 293.00	56.00 86.00 116.00 194.00 224.00 226.00 266.00 314.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00						15 15 15 10 15 10 10 10		100 100 <100 3500 22800 36800 46400 200	70 70 85 95 90 105 110 85		****															
														•															
								·																					
																,													

HOLE NUMBER: CUR33-03

GEOCHEMICAL ASSAYS

HOLE NUM	BER : CUR	33-03									GEOCH	EMICAL	ASSAYS															DATE: 0	3/02/1997
Sample	From (M)	To (M)	Leng. (M)	SM PPM	EU PPM	GD PPM	DY PPM	ER PPM	LU PPM	OS PPB	IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	8E PPM	MN PPM	GA PPM	GE PPM	IN PPM	TL PPM	SC PPM	BR PPM	MGO#	CA/AL N	I/MGO I	SHIKW ZN	/NA2
AT05662 AT05663 AT05664 AT05665 AT05665 AT05667 AT05667 AT05669 AT05670	113.00 158.00 191.00 221.00 263.00 293.00	86.00 116.00 161.00 194.00 224.00 266.00 296.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00				<u>, , , , , , , , , , , , , , , , , , , </u>										1 1 1 1 1 1 1 2						4 5 4 10 11 12 13 15 6		0.57 0.58 0.55 0.48 0.36 0.27 0.27	0.19 0.23 0.22 0.24 0.14 0.17 0.17 0.10 0.20	21 26 29 12 23 39 31 73 24	23 20 19 31 36 34 29 30 20	3 1 27 28 3 6 24 2

.

GEOCHEMICAL ASSAYS

GEOCHEMICAL ASSAYS

DATE: 03/02/1997

									 and the second se		 	 	
ample	From (M)	To (M)	Leng. (M)	YB PPM	NB PPM	HG PPB							
05662	53.00	56.00	3.00		<5		 	<u>-</u>		 	 	 	
05663 05664	53.00 83.00 113.00	86.00 116.00	3.00		ও ও ও ও ও ও ও ও ও								
5665	158.00	161.00	3.00		ব								
15667 15668	221.00 263.00	224.00 266.00	3.00 3.00		হ								
5669 5670	221.00 263.00 293.00 311.00	296.00 314.00	3.00 3.00		<5 <5								
•													

HOLE NUMBER: CUR33-03

· •.

•

GEOCHEMICAL ASSAYS

HOLE NUMBER: BOW31-01		DRILL	IDGE LIMITED HOLE RECORD		IMPERIAL UNITS: M	02/28/1997 ETRIC UNITS: X
PROJECT NAME: 8262 PROJECT NUMBER: 8262 CLAIM NUMBER: L1201080 LOCATION: Bowman Twp.	PLOTTING COORDS ON NO		NOR EA	ID: Hooker Crk TH: 105+60N ST: 196+95E EV: 270.00	COLLAR D LENGTH OF THE HO START DEP	IP: -50° 0' 0" LE: 242.00M
	COLLAR ASTRONOMIC AZIN	1UTH: 310° 0' 0"	GRID ASTRONOMIC AZIMU	TH: 310° 0' 0"		
DATE STARTED: 11/15/1996 DATE COMPLETED: 11/15/1996 DATE LOGGED: 12/02/1996	COLLAR SURVEY: NO RQD LOG: NO HOLE MAKES WATER: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: BQ		CONTRACTOR: Dominik Drilling CASING: BW left in hole CORE STORAGE: Kidd Creek Minesite UTM COORD.:	e

 ${\tt COMMENTS}$: Large I.P. chargeability high/enzyme leach Cu anomaly WEDGES AT:

DIRECTIONAL DATA:

Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	 Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
98.00	310°30' 0"	-48° 0' 0"	s	ок		-	_	-		-	
158.00		-43" 0" 0"		DÓ	Bad azimuth reading		-	-	-	-	
218.00	305°30' 0"	-41°30' 0"	' S	OK		1 -	_	-	-	-	
-	-	-	-	-		- 1	•	-	-	•	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
•	-	-	-	-		-	•	-	-	·	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	•	•	-		-	-	-	-	·	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	•	-	· -		-	•	-	-	•	
-	-	-	-	-		-	-	-	•	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	•	•	-	-		-	-	-	-	•	
-	-	•	-	-			•	-	-	•	
. .	-	-	-	-		-	-	-	-	-	
•	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-			-	-	-	•	
											LOGGED BY: G De Schu

HOLE NUMBER: BOW31-01

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

DATE: 02/28/1997

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
	« OB » Casing Overburden					Very blocky ground, rubble from 86 to 90.50 metres; very poor core recovery
90.50 TO 92.95	Intermediat			∯90.50-92.95∯≪CbPM» moderate, pervasive, carbonatization (calcite).	Trace amounts of very fine grained pyrite disseminated in unit.	
92.95 TO 98.10	thic Volcan	Service and the service servic		Weak sericitization of the groundmass of the variolitic mafic volcanics and associated weak cloritization of the varioles. Occasional quartz +/- calcite fracture fill and veins.		
8.10 TO 7.55	RA>» Felsic Intrusive medium grained massive	Light grey-green and specled white feldspar porphyrytic felsic intrusive. The unit is composed of 30-40% phenocrysts which are composed of 80-90% fine and very coarse grained feldspar (1-3mm and 1-3cm in size) and anhedral quartz 2-5mm in size. The larger feldspar phenos are euhedral and disticntly compositionally zoned. The phenos are set in a very fine to fine grained groundmass				

HOLE NUMBER: BOW31-01

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

DRILL HOLE RECORD

DATE: 02/28/1997

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
	granite	which is pale grey-green and composed of feldpsar, quartz and the occasional biotite flake. No significant alteration or mineralization is evident.	 			
то	<pre>«3,C,*a,*b, *t>Heteroli thic Volcan ic tuff lap illi tuff sheared</pre>			Variolitic portions of the mafic volcanic fragments/blocks are weakly sericitized.	Trace pyrite disseminated as fine euhedral cubes and grains throughout unit.	
TÔ	<pre>«9,b,m,P» Felsic Intrusive medium grained massive porphyritic</pre>	Slightly darker grey version of the felsic intrusive from 108.10 to 117.55m. Medium-sized phenocrysts (Qt, Fsp) set in a medium grey fine grained matrix.		No evident alteration seen.	None. 	
то	<pre><3, a, *a> Intermediat e Volcanic fine grained tuff</pre>	Medium to dark grey, fine grained, very weakly foliated ash tuff (reworked sediment?). Questionable gradded bedding at 141.55 m indicated tops is down hole (bedding? at 60° to C.A.). Looks more like a foliated sediment with stretched out graphitic fragments (fery small) at 170m; foliation at 65° to C.A. Trace amounts of rusty red to ruby red sphalerite +/- Ga(?) finely disseminated and fracture controlled from 170 to 174 m. Occasional light grey to off-white cm-scale band (vein? bed?) imparts a banded texture to the core. From 162 to 168 m the core is slightly darker (carbonaceous component?).			Very weak Sph mineralization (fracture controlled) from ~170 to 174 metres; one small galena bleb seen in carbonate veinlet. One mm-sized bleb oc Cp seen in a Qt vein at 171.25m.	
ro	<pre>«9,b,m,P» Felsic Intrusive medium grained massive porphyritic</pre>	Same felsic intrusive as from 92.95 to 108.10m. Light grey to grey-green in colour with large (>2cm) euhedral, compositionally zoned feldspars (rare). Lower contact is very shallow. Rare mm-sized Bt speck in matrix. No mineralization and trace amounts of fracture controlled alteration (Ep, Se?).			None.	
тој	<3,C,*a,*b» Heterolithi c Volcanic tuff	Similar to unit from 117.55 to 136.45 except less strained (foliated)-maybe less lapilli (?). Core is various shades of grey with the occasional band of off-white; few spotted fragments (variolitic		Patchy weak to moderate pervasive and fracture controlled silicification and epidotization throughout interval. Occasional Qt-Cc and Cc	Very fine grained pyrite finely disseminated in and around Qt-Cc veinlets and fractures.	

HOLE NUMBER: BOW31-01

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

HOLE NUM	BER: BOW31-01			DRILL HOLE RECORD		DATE: 02/28/1997
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE		MINERALIZATION	REMARKS
	lapilli tuff	<pre>mafic volcanic fragments); felsic fragment (bleached mafic?) at 214.50 m 3 cm in size; moderate epidotization from 211.40 to 211.90m; occasional mm sized Qt-Cc veinlets/fractures contain very fine grained pyrite. Core contains some questionable sedimentary features - gradded bedding in wacke-looking sections?</pre>		veinlet/fractute cut core at all angles.		
242.00 TO 242.00	≪EOH» End-Of-Hole					Total of 28 boxes of BQ core; hole is capped and not making water; 86 m of BW casing left in the hole.

· .

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

ASSAYS SHEET

DATE: 28/02/1997

Sample	From (M)	To (M)	Leng. (M)	Cu Pp		2n opm	Pb ppm	Ni pp		Au ppb	Ag ppm		u/Zn	Co ppm	Pt ppb	Pd ppb	s ppm	Se ppm	As ppm	Hg ppb	Sb ppm	Est.Ni t	Est.1	ŧ			Est Sp	Est.Gn ROCK TYPE	Сопяте	ents
AR03008			1.50		59	434			87			0.3										0.0	0	. 0	0.0	0.0	0.1	0.1 3,a,*a		
AR03009		173.00	1.50		48 50	692 328		51 81	88 82			0.4 0.2										0.0		.0 .0	0.0	0.0	0.1	0.0 3,a,*a 0.0 3,a,*a		
AR03010 AR03011		174.50 184.90	1.50 1.50	11	56	320 74		1	86			0.2										0.0		.0	0.0	0.0	0.0	0.0 3,a,*a,*t		
	187.00		1.50	i i	23	48		1	67			0.1										0.0		.0	0.0	0.0	0.0	0.0 3,*a,*b		
AR03013		190.00	1.50	ï	65	51		2	70			0.2												. 0	0.1	0.0	0.0	0.0 3,*a,*b		
	190.00		1.50	i	64	69		1	80	<	2	0.1										0,0	0	. 0	0.0	0.0	0.0	0.0 3,*a		
AR03015	191.50	193.00	1.50	ii –	46	159		25	76	<		0.2										0.0		. 0	0.0	0.0	0.0	0.0 3,*a		
AR03017		212.50	1.50		48	85		1	66			0.1										0.0		. 0	0.5	0.0	0.0	0.0 3,*a,a		
AR03018 AR03019	215.00 216.50		1.50	ļ	52 51	100 98		1 1	73 74			0.1 0.1										0.0		.0 .0	0.5	0.0	0.0	0.0 3,a,*a 0.0 3,*a,a		
				1																										
OLE NUMBI	ER: BOW	31-01			· -									•	ASSAYS	SHEET													PAGE :	5

Same Prom To Lengt S102 AL201 Col PS0 AL20 PS0 PL02 PL
AT05681 95.00 98.00 3.00 64.24 13.00 3.13 2.37 1.50 1.84 7.95 0.93 0.10 0.10 0.10 4.92 100.47 100 64 30 140 90 3.a,m 23yB 86 AT05682 122.00 125.00 3.00 63.04 13.66 2.31 2.95 1.39 1.80 9.23 1.00 0.18 0.11 0.05 3.59 98.2 14 115 55 205 75 3.C,*a,*b,*t 3j 201 AT05683 149.00 152.00 3.00 66.37 12.00 3.00 0.18 0.11 0.05 3.19 98.91 14 118 40 235 95 3.6,*a,*b,*t 2jw 248 AT05683 194.00 188.00 188.00 1.01 0.18 0.09 0.06 3.04 99.53 14 118 35 275 85 3.a,*a,*t 3j 194 AT05685 194.00 187.00 3.00 62.33 14.44 2.24 3.03

GEOCHEMICAL ASSAY

GEOCHEMICAL ASSAYS

		·									GEOCH	EMICAL	ASSAIS															DATE :	28/02/19
Sample	From (M)	To (M)	Leng. (M)	RB PPM	SR PPM	CO2	AG PPM	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPM	LA PPM	CE PPM	ND PPM
05680 05681		93.00 98.00	2.00 3.00			·····			21		0.56	105													//				
	122.00	125.00	3.00	8					30 32		0.50	185																	
05683	149.00	152.00	3.00						24		0.34 0.27	195 160																	
05684	185.00	188.00	3.00						26		0.53	140																	
05685	194.00 227.00	197.00	3.00						32		0.34	190																	
	227.00	230.00	3.00	1					28		0.26	155																	
				İ																									
			ļ																										
			i																										
			i																										
			1																										
			i																										
			ļ																										
			1																										
			ï																										
			1																										
·																													
			N B																										
			ľ																										
			l																										
			l																										
			18 11																										
			Î																										
			Î.																										
			1																										
			1																										
			ï																										
			1																										
			A																										
			i i																										
			i																										
			Ä																										
			,																										

HOLE NUMBER: BOW31-01

GEOCHEMICAL ASSAYS

HOLE NUM	BER : BO	131-01									GEOCH	EMICAL	ASSAYS															DATE :	28/02/1	.997
Sample	(M)	To (M)	Leng. (M)	SM PPM	EU PPM	gd PPM	DY PPM	ER PPM	LU PPM	OS PPB	IR PPB	RU PPB	RH PPB	PT PPB	PD PPB	LI PPM	BE PPM	MIN PPM	GA PPM	GE PPM	in PPM	TL PPM	SC PPM	BR PPM	YB PPM	NB PPM	HG PPB	MGO#	CA/AL N	II/MG
AT05680 AT05681 AT05682 AT05683 AT05684 AT05685 AT05686	91.00 95.00 122.00 149.00 185.00 194.00	152.00 188.00 197.00	3.00 3.00 3.00 3.00 3.00											<u>Anna da mangang kang kang kang kang kang kang kan</u>		<u> </u>	3 3 3 3 3 3 3 3						9 17 18 14 15 18 15			<20 <20 <20 <20 <20 <20 <20 <20	2 11 20 14 2	0.41 0.43 0.45 0.47 0.45	0.23	2 3 3 2 3 3 3

• •.

GEOCHEMICAL ASSAYS

HOLE NUMBER: CUR32-03		FALCONBRIDGE LIMITED DRILL HOLE RECORD		DATE: Imperial Units:	02/03/1997 METRIC UNITS: X
PROJECT NAME: 8262 PROJECT NUMBER: 8262 CLAIM NUMBER: L1201417 LOCATION: Currie Twp		JTM 5369733.58N 525256.33E 269.00	ALTERNATE COORDS GRID: Grid "A" NORTH: 94+60N EAST: 117+ 0E ELEV: 269.00	LENGTH OF THE START	R DIP: -50° 0' 0" HOLE: 244.00M DEPTH: 0.00M DEPTH: 244.00M
	COLLAR ASTRONOMIC AZIMUTH:	180* 0' 0"	GRID ASTRONOMIC AZIMUTH: 180° 0' 0"		
DATE STARTED: 11/17/1996 DATE COMPLETED: 11/20/1996 DATE LOGGED: 12/16/1996	COLLAR SURVEY: NO ROD LOG: NO HOLE MAKES WATER: NO		RVEY: NO GGED: NO S1ZE: BQ	CONTRACTOR: Dominik Drillin CASING: BW left in hole CORE STORAGE: Kidd Creek Mine UTM COORD.:	

COMMENTS : Weak HLEM conductor coincident with northern edge of an enzyme leach Cu anomaly. WEDGES AT:

DIRECTIONAL DATA: WELNAV single-shot surveys every 60m.

epth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
88.00	184* 0* 0*	-52* 0* 0*	s		WELNAV surveys	- 1			•	-	
148.00		-49*30' 0"	S		-	-	-	-	•	•	
208.00	192*30* 0*	-50°30' 0"	S			· ·	-	-	-	-	
•	-	-	-	-		· ·	-	-	-	-	
-	-	-	-	-		•	-	-	-	•	
-	-	•	-	-		-	-	•	-	•	
•	-	•	-	•		-	-	-	-	-	
-		-	•	-		•	-	-	-	-	
	-	•	•	-			-	•	•	•	
-	-	-					-	-	-	-	
•	-	-	-			-	-	-	-		
-	-	•		-		-	•		•	•	
•	-	-	-	•			•	•	-		
-	-	-	-	-		-	•	•	•		
-	•	•	-	-		-	•	•	•	•	
•	-	-	-	-		-	-	-	-	-	
•	-	•	•	•		•	-	•	-	•	•
-	-	-	•	•		-	-	-	•	•	
•	-	-	•	•		•	-	-	-	•	
-	-	-	•	-		•	•	-	•	•	
•	-	-	•	-		•	-	•	•	•	
•	•	-	•	•		-	-	•	-	•	
•	•	-	:	•			-	-		•	

HOLE NUMBER: CUR32-03

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

.

PAGE: 1

· •.

DATE: 02/03/1997

FROM To	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 58.00	« 08 » Casing Overburden					
58.00 TO 93.45	≪7,b,m→ Mafic Intrusive medium grained massive	Mottled light and dark green, medium grained, massive, mafic intrusive. Fracture controlled carbonate (calcite) and hematization relatively common over complete unit; quartz and quartz-epidote veining common. Most of unit is very weakly magnetic. Ocasional breccia zones with silica and/or carbonate cement hosting cm to mm scale fragments of the intrusive. Most of the carbonate veins and masses have a brown rim (Fe-carbonate). Breccia zone from 76.20 to 77.95m where rounded fragments of the intrusive (generally 1 cm in size) are cemented by a very fine grained to aphanitic, pink to rusty-orange (Hem?) matrix. Broken core from 81.10 to 81.50m. Contact with underlying unit is strained/sheared with stringers of epidote imparting a strong shear foliation 25° to C.A. from 91.55 to 93.45m.		Mainly carbonate (calcite +/- Fe-carbonate) veins and masses; epidotization in minor amounts is fracture controlled; rare quartz veinlets; fracture controlled hematization relatively rare. 158.00-93.451+*EpFW ,CbFW, MeFW> weak, fracture/vein controlled, epidotization; weak, fracture/vein controlled, carbonatization; weak, fracture/vein controlled, hematization	No signs of any mineralization.	
93.45 TO 42.32	«7,a,m» Mafic Intrusive fine grained massive	Dark grey-green, fine grained, massive mafic intrusive; fine grained equivalent of the overlying unit (7); sheared contact with overlying unit. Significant amounts of Ep,Cb, and Qt alteration (mainly fracture controlled). Minor amounts of pyrite mineralization associated with the more altered and sheared portions of the unit. Frequent sections of highly blocky core; fault/shear zones from 115 to 121m; 127.30-127.90m. Shear zone from 136.5-137.04m with folded, sheared and brecciated strutures. Clay seam (gouge?) at 130.72-130.76. [115.00-121.00]+e[FAI]+ Fault Highly broken, sheared and brecciated core.		Unit is dominated by much fracture controlled carbonitization and minor fracture controlled epidotization; occasional glassy quartz vein; very rare hematite fractures and veinlets. 493.45-130.00 kCbFM> moderate, fracture/vein controlled, carbonatization which imperts a brecciated look to the core.	Trace to 1% finely disseminated pyrite associated with the shera/fault zones. [116.60-120.50]+dPy00.1-1.0%+ 0.1-1.0% disseminated/blebby pyrite restricted to highly sheared/breciated portions of unit.	
2.32 TO 9.30	≪7,b,m⊁ Mafic Intrusive medium grained massive	Highly broken, sheared and brecciated core. [127.33-127.91]=[AI]=> Fault Mottled light and dark green, medium grained, messive mafic intrusive; same unit as 58-93.45m. Sheared contact with underlying unit. Fracture controlled hematization more common; calcite filled fratures and brecciated units less common than previous unit. No obvious signs of any		Top of unit is dominated by fracture controlled carbonitization (weak) and thr rest of the unit has weak fracture controlled hematization. [142.32-147.50]=	None.	

HOLE NUMBER: CUR32-03

.

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

FROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		mineralization. Sheared contact with underlying unit; epidote alteration in stringer form at moderate to very shallow agles (15-40° to C.A>).		weak, fracture/vein controlled, carbonatization [147.50-165.00]#HefW* weak, fracture/vein controlled, hematization		
79.30 TO 55.50	<pre>«7,a,m» Mafic Intrusive fine grained massive</pre>	Dark grey-green, fine grained mafic intrusive/volcanic;same look as overlying unit 93.45-142.32m. Variably carbonate and epidote altered; no signs of any base metal mineralization. Broken core from 200.25 to 202m. Shear zone from 226-226.50m with shear fabric 20° to C.A.; gouge at 226.40m. Breccia zone from 221.3-226.75. Brecciated contact with underlying unit (much broken core).		Alteration limited to fracture controlled epidotization (weak) and carbonitization (weak).	Finely disseminated Py associated with small shear zones. 1990.60-190.95 + Py00.1-1.0% + 0.1-1.0% disseminated/blebby pyrite associated with a small shear zone. 1226.00-226.75 + <py>00.1-1.0% + 0.1-1.0% disseminated/blebby associated with small sheared zone.</py>	
15.50 TO 14.00	<pre>«3,C,bx,*i» Heterolithi c Volcanic breccia matrix supported</pre>	Mottled buff-light green and dark green, very coarse grained, heterolithic fragmental. The clasts range in size from 3mm to 5cm, are sub-to-well rounded and have very pronounced alteration rims up to 1 cm thick. Fragments make up to 40-50% of the core; the matrix is light to medium grey-green and appears to be composed of a mixture of chlorite and sericite. Unit may represent a flow-bottom breccia (if the overlying unit is actually a mafic flow). Weak, fracture controlled carbonitization and very weak fracture controlled prassic alteration (pink veinlets). No evidence of mineralization. Poor contact exposure with overlying unit (broken core). 30cm of core lost at 238m.		1235.50-244.00 ← CbFW ,K>FW> weak, fracture/vein controlled, carbonatization; weak, fracture/vein controlled, potassic alteration	One speck of Cp seen at 238.70m.	
4.00 TO 4.00	«EOH» End-Of-Hole					Total of 35 boxes of BQ core; hole is capped and not making water; core stored at Kidd Creek Minesite.

HOLE NUMBER: CUR32-03

DRILL HOLE RECORD

LOGGED BY: G. De Schutter PAGE: 3

HOLE	NUMBER	:	CUR32-03	

	BER : CUR	32-03											A3	SAYS SHE	E 1											DATE: 03/02/
Sample	From (M)	To (M)	Leng. (M)	Cu ppm	Zn		²b xpm	Ni ppm	Au ppb	Ag pp		u/2n Co Pf	o P' om P	t Po pb pp		Se ppm	As ppm	Hg ppb	Sb ppm	Est.Ni %	Est.Po %	Est.Py %	Est.Cp %	Est.Spl %	st.Gn ROCK TYPE	Commen
R03029 R03030 R03031 R03032	116.60 118.10 190.50 226.00	120.00	1.50 1.90 1.00 1.00	2	20 78 86 75	52 55 35 48	1	1 	04	137 79 27 21	0.7 0.9 0.5 0.1		35 34 23 31					ৎ ৎ ৎ ৎ		0.0 0.0 0.0 0.0	0.0 0.0	2.0 0.0 2.0 2.0	0.0	0.0 0.0 0.0 0.0	0.0 7,a,m,*t 0.0 7,a,m,*t 0.0 7,a,m,*t 0.0 7,a,*t	V <2ppm V <2ppm V <2ppm V <2ppm
																					_					

ASSAYS SHEET

PAGE: 11

•

HOLE NUM	BER : CUR	32-03									GEOC	HEMICAL	ASSAY												DATE:	03/02/1997
Sample	From (M)	To (M)	Leng. (M)	\$102 X	AL203 X	CAO X	MGO X	NA20 %	K20 X	FE203 X	T102 X	P205 %	MNO X	CR203 X	LOI X	SUM X	Y PPM	ZR PPM	BA PPM	CU PPM	ZN PPM	NI PPM	FIELD NAME	CHEM ID	ALUM	
AT05694 AT05695 AT05695 AT05696 AT05697 AT05698 AT05699 AT05700	61.00 88.00 97.00 133.00 172.00 202.00	64.00 91.00 100.00 136.00 175.00 205.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00	46.44 44.88 44.97 45.33 45.35	10.30 10.36 10.05 10.16 10.66		7.22 8.44 6.85 7.83 7.79	1.45 0.95 0.88 1.18 0.93 0.90 1.09	0.34 0.38 0.34 0.46 0.26	14.31 13.37 14.93 12.96 13.41 13.72 13.97	0.89 0.78 0.80 0.80 0.78 0.83 0.83	0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.10	0.21 0.19	0.07 0.07 0.07 0.08	3.16 3.59 6.42 3.91	99.66 100.08 99.01 100.47	20 14 18 14 16 12 14	38 29 36 34 30 29 28		65 75 70 75 70 80 75	65 65 65 80 55 95	115 165 140 145 150 170 145	7,b,m 7,b,m 7,a,m 7,a,m 7,a,m 7,a,m	6H 7hu 6H 7hv 7hv 7hv 7hv	62 63 57 59 60	

•

GEOCHEMICAL ASSAY

PAGE: 12

• •.

HOLE	NUMBER	:	CUR32-03

HOLE NUM	BER : CUR	32-03									GEOCH	EMICAL	ASSAYS															DATE:	03/02/1997
Sample	From (M)	To (M)	Leng. (M)	RB PPM	SR PPM	CO2 %	AG PPM	AU PPB	CO PPM	PB PPM	S PPM	V PPM	AS PPM	SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPN	W PPM	MO PPM	TH PPM	U PPM	B PPM	CS PPN	LA PPM	CE PPM	ND PPM
AT05694 AT05695 AT05695 AT05697 AT05698 AT05698 AT05698 AT05700	61.00 88.00 97.00 133.00 172.00	64.00 91.00 100.00 136.00 175.00 205.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00						49 54 55 53 58 58 59		0.03 0.11 0.08 0.05 0.02 <0.01 <0.01	310 270 285 295 280 300 285																	

HOLE NUMBER: CUR32-03

GEOCHEMICAL ASSAYS

Semple From To Lengo, (H) PM EU GD DV ER LU OS IR RU NN FP PM PM PM PPN PNN PNN PNN	HOLE NUM	BER : CU	،32-03								GEOCI	IEMICAL	ASSAYS											DATE:	03/02/1997
ATC5669 88.00 91.00 3.00 ATC5669 70 130.00 3.00 ATC5669 71 33.00 136.00 3.00 ATC5669 71 72.00 175.00 3.00 ATC5669 202.00 205.00 3.00 ATC5700 229.00 232.00 3.00 ATC5700 229.00 232.00 3.00 ATC5700 229.00 232.00 3.00	Sample		To (M)	Leng. (M)	SM PPM	EU PPN	GD PPM	DY PPM	ER PPM			RU PPB	RH PPB	PT PPB				GE PPM	IN PPM	SC PPM	MGO#	CA/AL N	I/MGO I		_
	AT05694 AT05695 AT05696 AT05697 AT05698 AT05699	(N) 61.00 88.00 97.00 133.00 202.00 229.00	(H) 64.00 91.00 100.00 136.00 175.00 205.00	(M) 3.00 3.00 3.00 3.00 3.00 3.00 3.00	SH	PPH	GD PPH	DY	PPH			RU PPB	RH PPB	PT PPB		PPH 3 3 3 3 3 3 3 3		GE PPM	IN PPM	PPM 30 28 28 28 28 27 29 28	0.55 0.56 0.57 0.56 0.58 0.57	1.65 1.48 1.45 1.61 1.56 1.56	15 23 17 21 19 22	32 32 36 29 33 31 31	45

GEOCHENICAL ASSAYS

HOLE NUMBER : CURSE-03

GEOCHENICAL ASSAYS

DATE:	03/02/	1997
-------	--------	------

Sample	From (H)	To (M)	Leng. (M)	YB PPN	NB PPM	NG PPB
AT05694 AT05695 AT05696 AT05697 AT05698 AT05699 AT05700	61.00 88.00 97.00 133.00 172.00 202.00	64.00 91.00 100.00 136.00 175.00 205.00	7 00		<20 <20 <20 <20 <20 <20 <20 <20	
K105700	229.00	232.00	3.00		<20	

.

HOLE NUMBER: CUR32-03

GEOCHEMICAL ASSAYS

HOLE NUMBER: CUR22-01		FALCONBRIDGE LIMITED DRILL HOLE RECORD	DATE: 02/03/1997 Imperial Units: Metric Units: X
PROJECT NAME: 8262 PROJECT NUMBER: 8262 CLAIM NUMBER: L1201249 LOCATION: Currie Twp	PLOTTING COORDS GRID: UTH NORTH: 5369373. EAST: 525316. ELEV: 269.0 COLLAR ASTRONOMIC AZIMUTH: 270°0'	32E EAST: 117+60E 00 ELEV: 269.00	COLLAR DIP: -50° D' O" LENGTH OF THE HOLE: 249.00M START DEPTH: 0.00M FINAL DEPTH: 249.00M
DATE STARTED: 11/21/1996 DATE COMPLETED: 11/25/1996 DATE LOGGED: 12/12/1996	COLLAR SURVEY: NO ROD LOG: NO HOLE MAKES WATER: NO	PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: BQ	CONTRACTOR: Dominik Drilling CASING: NW left in hole CORE STORAGE: Kidd minesite UTM COORD.:

COMMENTS : Weak HLEM conductor coincident with enzyme leach Cu anomaly WEDGES AT:

DIRECTIONAL DATA: WELNAV single-shot surveys every 60m.

epth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (M)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
59.00	274*30* 0"	-51* 0* 0*	s	OK	WELNAV SURVEYS	•			-	•	
120.00	276" 0' 0"	-49" 0" 0"	S	OK		· ·	-	-	· •		
180.00	276*30' 0*	-48* 01 0*	S	OK		- 1	-	-	•	•	
-	-	•	-	•			-	-	-	•	
•	-	-	-	-			-	-	-	-	
•	-	-	-	•		-	-	-	-	•	
-	•	•	-	-		-	-	-	-	•	
•	-	•	•	-		-	-	-	-	•	
•	-	•	-	•		•	•	-	-	-	
•	-	•	-	-		-	-	-	-	-	
•	-	-	-	•		-	-	•	-	•	
•	•	•	-	-		-	-	•	-	•	
-	•	•	•	-		-	-	-	-	•	
•	-	-	-	•			-	-	•		
-	•	-	-	•			-	-	-	•	
-	-	•	-	•		•	•	-	-	•	
-	-	•	-	•		-	•	-	-		
•	-	•	•	-		•	•	-	-	-	
•	-	•	-	-		•	•	•	•	•	
•	-	•	-	-		•	•	•	-	•	
•	•	-	-	•		•	•	-	-	•	
•	. •	•	-	-		•	•	-	-		
-	•	•	-	-		•	•	-	•	•	
	•	•	•	-		- 1	•	-	-	-	
-	•	-	-	•		-	-	•	-	-	

HOLE NUMBER: CUR22-01

. .

.

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

. .

DATE: 02/03/1997

From To	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 47.00	« OB » Casing Overburden					
47.00 TO 127.60	<pre>«7,b,m,<gab>» Mafic Intrusive medium grained massive gabbro</gab></pre>	Mottled dark green, off-white to pale pink, massive, weakly magnetic, variable epidote-altered mafic intrusive (gabbroic in composition); the epidote alteration ranges from fracture controlled to semi massive and imparts a pale apple green net veined texture to the core. Rare mm-sized hematite stained veinlets and fractures more common approaching bottom contact of unit. Rare felsic looking (white to pink) megacrysts with diffuse edges up to 2 cm in size occur sporadically throughout unit. Gouge at 110.60 to 110.70m. Bottom third of unit has moderate to poor core recovery (very blocky). {65.30-68.55}*10,a,m* Diabase fine grained, massive, strongly magnetic diabase; unaltered and unmineralized.		Strong pervasive and frature controlled epidotization of unit from 47 to 56m; the rest of interval has weak Ep alteration; rare salmon pink to rusty red hematite alteration throughout unit. One mm sized bleb of Cp seen at 60.75m. Bottom contact of unit looks faulted. 47.00-56.00[*EpFM* moderate, fracture/vein controlled, epidotization imparts an apple green net-veined texture to the core.		
127.60 TO 159.00	«FZ» Fault zone	Wide, complex fault zone most of which may be part of the overlying unit (mafic intrusive). Upper contact is highly broken-up and contains abundant hematization. Fragments of hematite altered mafic intrusive and felsic intrusive dominate this unit. Salmon pink syenitic dyklets to 15 cm wide cut the zone imperting a brecciated look to the core. Gt veins */- py have hematized margins (relatively rare). Portions of the mafic intrusive have a recrystalized appearence and may be silicified. Fault gouge at 159 to 159.05m. Mafic intrusive portions are much more magnetic than the overlying mfc intrusive. Medium grained seggregations of magnetite associated with the syenitic dykelets.		Hematization and silicification are main alteration phases. 127.60-159.00J-«HePM ,SiPW» moderate, pervasive, hematization; weak, pervasive, silicification	Finely disseminated pyrite associated with qt veins and silicified zones; segregations of magnetite associated with the syenitic dykes.	
59.00 TO 02.25	<pre>«2,a,l,m» Mafic Volcanic fine grained flows massive</pre>	Dark green, fine grained, massive mafic volcanic rock; locally sheared and considerable epidote altered in small intervals. Epidote and minor chloritic are main alteration phases (0 to locally 50% over 1 m intervals). Fine grained euhedral pyrite disseminated throughout unit in trace amounts but loc ally enriched to 5% in epidote altered shear zone. Shear zone from 190.30 to 193m		Epidote and minor chlorite are the main alteration phases in unit. Ep alt'n is primarily fracture controlled in wisps and stringers whereas the chl alt'n is primarily pervasive (but weak).	Minor pyrite occurs as fine grained blebs (<1mm) disseminated throughtout unit and as minor concentrations (5%) in shear zone and near bottom contact (porphyry).	

· ·

DATE: 02/03/1997

FROM	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		with much fracture and stringer style epidote alteration (45-50%). ROD is generally poor for this unit (25-40%).				
202.25 TO 223.30	<pre>«8,P,*t» Intermediat e Intrusive porphyritic</pre>	component which makes up 50% of the rock is		Minor cloudy grey quartz veining (<1cm in width) andfracture filling epidote are the only evident alteration phases/styles.	None.	
eakly fo	euhedral, 3 liated	-5mm feldspar crystals which exhibit a weak preferred orintation and 10% pale blue, anhedral, 2mm sized quartz grains; blue colour indicates this unit underwent considerable amountsof strain. The matrix component is dark grey to black, aphanitic to very fine grained and is composed of varying amounts of quartz, feldspar, and biotite. Frequent rounded mafic volcanic xenolith up to 5-7cm in size relatively common. Minor epidote, quartz veinlets and fracture fills are the only evident alteration. Transitional sheared contact with underlying unit.				
223.30 TO 236.15	*9,a,m,P* Felsic Intrusive fine grained massive porphyritic	Mottled pale pink and light to dark grey, massive, moderately altered feldspar-quartz porphyry. The phenocryst component makes up 30% of the rock and is composed of pale pink to orange, equant to rounded feldpars 1-4mm in size (95%) and anhedral glassy, 2-5 mm quartz grains (5%). SSheared, gradational contact with the overlying unit. The matrix component (70% of the rock) is light to dark grey, very fine grained to aphanitic and appears to be com posed of varying amounts of quartz, feldspar, bitite, chlorite and epidote. Intrusive contact with underlying unit.		Moderate chloritization and epidotization of the matrix (groundmass) and weak sericitization too. Rare xenolith of underlying unit.	None.	
236.15 TO 243.10	<pre>«7,b,m,P» Mafic Intrusive medium grained massive glomeroporp hyritic</pre>	Medium to dark grey with large patches of creamy-wite, massive glomeroporphyritic mafic intrusive. The groundmass makes up 75% of the rock, is medium grey and medium grained. The phenocryst component consists of very large (2-7cm), coarse grained aggregates of feldspar. Intrusive contact with underlying unit.		Minor fracture controlled hematization; phenocrysts take on a ghosty appearance near the bottom contact of the unit.	None.	

HOLE NUMBER: CUR22-01

DRILL HOLE RECORD

· •.

LOGGED BY: G. De Schutter

•

.

DATE: 02/03/1997

FRON TO 243.10		TEXTURE AND STRUCTURE Mottled medium to dark grey and pale grange pink	ANGLE TO CA		MINERALIZATION	REMARKS
10 249.00	Intermediat e Intrusive fine grained porphyritic	strongly altered feldspar porphyry. The phenocryst component (45-50% of the rock) is composed of small (1-2mm), anhedral to subhedral feldspars some of which have a light dusting of		relatively common. [243.10-249.00]-«EpPW» weak, pervasive, epidotization; many of the feldspar phenocrysts have difuse outlines.	Trace amounts of pyrite associated with fracture controlled Ep-Qt veinlets.	
249.00 TO 249.00	«EOH» End-Of-Hole					Total of 39 boxes of BQ core; hole is capped and not making water.
HOLE NUMB	ER: CUR22-01			DRILL HOLE RECORD		

DRILL HOLE RECORD

LOGGED BY: G. De Schutter

DATE: 03/02/1997

ample	From (M)	To (M)	Leng. (M)	Cu	Zn PP			Ni ppm	Au ppb	Ag ppm	Cu/Zn	Со ррп	Pt ppb	Pd ppb	S ppm	Se ppm	As ppm	Hg ppb	Sb ppm	Est.Ni E	st.Po (st.Py i		Est.SpE	Est.Gn ROCK TYPE	Connents
03021 03022 03023 03024 03025 03026 03027	128.00 140.00 146.00 150.00 155.00 156.50 158.00 190.30 191.80	141.50 147.50 151.50 156.50 158.00 158.90	1.50 1.50 1.50 1.50 1.50 1.50 0.90 1.50 1.20		86 20 75 69 96 108 134 242 164	52 65 82 84 85 82 58 19 19	1 2 7 1 1 1 1 6	85 3 24 24 36 76 50 25 30	1 4 8 11 2 < 5 1 5 1 5 1 5 1	7 0. 0 0. 4 0. 0 0. 3 0.	2 5 2 1 2 1 2		-							0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.2 2.0 1.0 2.0 0.5 0.0 4.0 3.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 7, bx, He 0.0 7, b, bx, He 0.0 9, c, m, P, He 0.0 9, b, m, P, He 0.0 9, b, m, P, He 0.0 7, a, He, Ep 0.0 7, b, He 0.0 2, a, Ep 0.0 2, a, Ep	¥ <2ppm
																						÷				
			1																							

HOLE NUMBER: CUR22-01

ASSAYS SHEET

		22-01									GEOC	HEMICAL	. ASSAY											1	DATE:	03/02/1997
Sample	From (M)	To (M)	Leng. (M)	sio2 X	AL203 X		MGO X	NA20 %	K20 X	FE203 X	1102 X	P205 %	MNO X	CR203	LOI	SUM X	Y PPM	ZR PPM	BA PPM	CU PPM	ZN PPM	NI PPM	FIELD	CHEM ID	ALUM	· · · · · · · · · · · · · · · · · · ·
AT05687 AT05689 AT05690 AT05691 AT05692 AT05693	47.00 80.00 122.00 145.00 176.00 197.00	148.00 179.00	3.00 3.00 3.00	47.61 48.34 58.82 45.95	7.37 10.58 9.30 9.13	6.14 11.50	11.83 7.46 2.67	1.76	0.32 1.26 1.32 0.28	17.99 14.41 10.44 20.34	1.26 1.76	0.06 0.06 0.28 0.16	0.18 0.11	0.05 0.03 0.01	0.86 1 3.22	100.45 97.63 98.54 98.54	12 14 8 20 28 12	28 26 29 75 66 26		100 90 25 20 80 70	70 40 25 50 200 70	115 155 115 40 40 150	7, b, m, Ep 7, b, m, Ep 7, c, m 7, b, bx, He 2, a, m, Ep 2, a, m, S, Ep	6H 6K 7(h)v 7(h)v 2hv 2hu	61 55 86 92 67 69	
																										·
DLE NUMBE									.		- CE OCUI							······································							_	

HOLE NUMBER: CUR22-01

GEOCHEMICAL ASSAY

.

_	IBER : CUR								<u> </u>			GEOCI	CHEMICAL	ASSAYS	2												DATE:	03/02/1997
Sample	From (M)	To (M)	Leng. (M)	P	RB PPM P	SR PPM	CO2 X	AG PPM	AU PPB	CO PPM	P8 PPM	S PPM			SN PPM	CD PPM	SB PPM	BI PPM	SE PPM	HF PPM	TA PPM	MO PPM	U	8 PPM	CS PPM	LA PPM	CE PPM	ND PPM
T05691	80.00 122.00 145.00 176.00	0 50.00 0 83.00 0 125.00 0 148.00 0 179.00 0 200.00	0 3.00 0 3.00 0 3.00 0 3.00							54 70 51 22 49 59		0.03 0.10 0.30 2.87 1.20 0.23	325 315 270 195 535	- <u></u> -								 <u> </u>	 		Pra	<u> </u>	<u> </u>	
IOLE NUMBER	ER: CUR	:22-01										GEOCH	IENICAL A	ASSAYS								 	 	<u></u>		<u></u>	PAGE:	3

	IEK : CUR	~~~	·								GEOCI	HEMICAL	ASSAYS															DATE:	03/02/19
Sample	From (M)	To (M)	Leng. (M)	SM PPM	EU PPN	gd PPM	DY PPM	ER PPM	LU PPN	OS PPB	IR PP S	RU PPB	RH PPB	PT PPB	P0 PPB	LI	BE PPM	MN PPM	GA PPM	GE PPM	I N PPM	TL PPM	SC PPM	BR PPM	MGO#	CA/AL I	NI/MGO 1		
AT05692	47.00 80.00 122.00 145.00 176.00 197.00	83.00 125.00 148.00 179.00	3.00 3.00 3.00 3.00														3 3 3 5 3						34 36 22 15 35 29		0.61 0.55 0.38	0.85	14 13 15 15 8 19	36 48 44 31 28 38	62 45 13 19 114 43
DLE NUMBER									<u>-</u>																•				

GEOCHEMICAL ASSAYS

GEOCHEMICAL ASSAYS

DATE: 03/02/1997

mple	From (M)	To (M)	Leng. (M)	YB PPM	NB PPM		DATE: 03/02/1
5687 5689	47.00 80.00 122.00 145.00 176.00 197.00	50.00	3.00		<20 <20		
5690 5691	122.00 145.00	125.00 148.00	3.00		<20 <20		
5692 5693	176.00 197.00	179.00 200.00	3.00 3.00		<20 <20 <20 <20		
	R: CUR22	2-01	l		·····	GEOCHEMICAL ASSAYS	

FALCONBR **JE LTD(EXPLORATION)**

ATTN: G. DESCHUTTER

PROJ:8262(EXPL)

TSL\ASSAYERS Laboratories

1270 FEWSTER DRIVE, UNIT MISSISSAUGA ONTARIO LAW 184 PHONE #: (905) 602-8236 FAX #: (905) 206-0513

TOTAL OXIDE ANALYSIS

REPORT No. : M84 / Page No. : 1 of 1 File No. : DC23RA.LOI Date : JAN-31-1997

6W-5305-RG1

Lithium MetaBorate Fusion

I.C.A.P.

SAMPLE #	B102 A1203 Fe203 CaO NgO Na20 K20 T102 Nno P205 Cr203 71	
		Zr Y Cu Zn Ni Co Nb V Sc Be LOI TOTAL S
		ppm ppm ppm ppm ppm ppm ppm % % %
AT05680	61.94 10.44 6.24 8.81 3.68 3.20 0.16 0.55 0.09 0.40 0.04	84 10 30 140 90 21 < 20 105 9 3 4.92100.42 0.56
AT05681		
AT05682	63 04 12 66 0 22 2 21 0 2F 1 02 FF 1 22	
AT05683	67.40 12.22 7.53 2.82 2.64 2.04 1.44 0.91 0.08 0.18 0.05 11	
AT05684		
		121 14 23 165 75 26 (20 140 15 3 3.04 99,47 0.53
AT05685	62.33 14.44 8.80 2.24 3.03 1.85 1.90 1.01 0.10 0.22 0.04 12	128 18 35 250 100 32 < 20 190 18 3 3.14 99.06 0.34
AT05686	68,20 12.36 7.47 3.55 2.68 2.21 0.92 0.94 0.10 0.20 0.05 10	109 12 40 215 100 28 < 20 155 15 3 1.97100.59 0.26
AT05687	47.97 9.58 15.69 13.96 7.94 1.12 0.52 0.97 0.21 0.08 0.08 2	28 12 100 70 115 54 < 20 325 34 3 0.48 98.53 0.03
AT05688	76.54 8.04 3.71 1.28 0.55 0.62 4.66 0.34 0.04 0.10 (0.01 27	279 118 15 245 40 7 40 30 5 1 2.72 98.80 0.01
AT05689	47.61 7.37 17.99 12.28 11.83 0.89 0.32 0.88 0.25 0.06 0.11 2	26 14 90 40 155 70 < 20 315 36 3 0.86100.34 0.10
AT05690	48.34 10.58 14.41 9.00 7.46 2.00 1.26 1.07 0.18 0.06 0.05 2	29 8 25 25 115 51 < 20 270 22 3 3.22 97.59 0.30
AT05691	58.82 9.30 10.44 6.14 2.67 2.70 1.32 1.26 0.11 0.28 0.03 7	75 20 20 50 40 22 < 20 195 15 3 5.47 98.51 2.87
AT05692		66 28 80 200 40 49 < 20 535 35 5 2.38 98.52 1.20
AT05693	47.91 10.40 14.18 12.74 7.93 1.64 0.60 0.87 0.24 0.08 0.07 2	26 12 70 70 150 59 < 20 300 29 3 3.42100.22 0.23
AT05694	45.85 9.14 14.31 15.07 7.47 1.45 0.48 0.89 0.22 0.08 0.06 3	38 20 65 65 115 49 < 20 310 30 3 4.72 99.67 0.03
AT05695	45,44 10.30 13.37 15.22 7,22 0.95 0.34 0.78 0.21 0.08 0.07 2	29 14 75 65 165 54 < 20 270 28 3 3.16 98.07 0.11
AT05696	44.88 10.36 14.93 15.06 8,44 0.88 0.38 0.80 0.19 0.08 0.07 3	36 18 70 65 140 55 < 20 285 28 3 3.59 99.62 0.08
AT05697	44.97 10.05 12.96 16.17 6.85 1.18 0.34 0.80 0.19 0.08 0.07 3	34 14 75 65 145 53 < 20 295 28 3 6.42100.03 0.15
AT05698	45.33 10.16 13.41 15.83 7.83 0.93 0.45 0.78 0.22 0.08 0.07 3	30 16 70 80 150 53 < 20 280 27 3 3.91 98.93 0.02
AT05699	45.35 10.66 13.72 16.63 7.79 0.90 0.26 0.83 0.21 0.08 0.08 2	29 12 80 55 170 58 < 20 300 29 3 3.96109.39 <0.01
AT05700	44.57 9.98 13.97 16.46 7.43 1.09 0.48 0.80 0.22 0.10 0.07 2	28 14 75 95 145 59 < 20 285 28 3 3.43 98.53 <0.01

SIGNED : Junt Maple

FALCONBRIL _ EXPLORATION LTD.

ATTN: G. DeSHUTTER

'ROJ: 8262

TSL/ASSAYERS boratories

1270 FEWSTER DRIVE, UNIT PHONE #: (905)602-8236

...SISSAUGA, ONTARIO L4W-1A4 FAX #: (905)206-0513

I.C.A.P. WHOLE ROCK ANALYSIS

Lithium MetaBorate Fusion

REPORT No. :	M834~
Page No. :	1 of 1
File No. :	NV19RA
Date :	NOV-19-1996
Oxides in %	- Minors ppm

W-4744-RG1

SAMPLE #	S102 A1203 Pe X X 64.75 16.25 2 65.92 16.28 2 65.84 16.54 2 61.51 16.16 4 63.08 17.08 5 65.38 16.74 3 64.53 15.95 4 62.93 17.03 4 64.51 16.66 3	x x x .71 3.07 1.6 .82 3.72 1.5 .63 3.72 1.5 .88 3.94 2.4 .71 2.47 2.2 .18 1.20 0.7' .22 2.71 0.69 .71 1.75 0.75	% %	x x 0.30 0.03 0.29 0.03 0.30 0.03 0.49 0.10 0.55 0.12 0.53 0.02 0.62 0.02 0.63 0.01	0.18.050 0.18.060	Zr Y ppm ppm 70 < 2 50 4 76 < 2 96 10 178 12 114 10 106 12 260 6 88 6	Cu Zn ppm ppm 10 20 10 5 5 5 10 105 10 130 10 15 10 20 10 95 15 15	40 15 45 15 30 10 50 15 30 10 20 10 55 10	Nb V ppm ppm < 5 70 < 5 70 < 5 70 < 5 95 < 5 90 < 5 105 < 5 110 < 5 85	5 1 1 4 1 1 10 1 4 11 1 2 12 1 2 13 1 4 15 1 4	LOI TOTAL \$ * pp 45 98.21 100 .63 98.95 .100 .64100.48 3800 .65 98.33 22800 .29 98.09 36800 .67 98.20 46400 .81100.60 200	`
-5677 -5678 -5679 /96								SIGNED :	Ran			

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Geochemical Analysis Certificate

6W-4429-RG1

Date: NOV-01-96

Company:	FALCONBRIDGE LTD (EXPLORATION)
Project:	8262 EXPL
Attn:	G.DeSchutter

We hereby certify the following Geochemical Analysis of 20 Core samples submitted OCT-24-96 by .

S amp 1 e Numb e r	Au PPB	Cu P PM	Zn PPM	Pb PPM	Ag PPM	Ni PPM	
AT04251	144	11	33	2	0.2	21	
AT04252	295	13	31	4	0.4	21	
AT04253	298	9	29	3	0.5	19	
AT04254	127	8	30	1	0.3	20	
AT04255	233	266	111	1	0.3	22	
AT04256	14	19	183	1	0.2	21	
AT04257	34	31	171	5	0.2	21	
AT04258	7	15	130	1	0.1	22	
AT04259	7	13	114	1	0.1	24	
AT04260	21	12	117	1	0.2	20	
AT04261	17	11	77	1	0.3	21	
`T04262	7	12	79	1	0.1	19	
AT04263	17	12	82	1	0.2	19	
AT04264	10	17	109	1	0.1	22	
AT04265	10	16	105	4	0.2	21	
AT04266	24	15	116	9	0.2	22	
AT04267	93	17	103	10	0.5	21	
AT04268	31	12	85	9	0.2	23	
AT04269	48	22	422	143	0.3	19	
AT04270	89	14	181	12	0.2	21	

Certified by

Established 1928

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 1 of 3

Geochemical Analysis Certificate

6W-4428-RG1

Date: NOV-01-96

Company:	FALCONBRIDGE LTD (EXPLORATION)
Project:	8262 EXPL
Attn:	G.DeSchutter

We hereby certify the following Geochemical Analysis of 64 Core samples submitted OCT-25-96 by .

Sample Number	Au PPB	Cu PPM	Zn PPM	Pb PPM	Ag PPM	Ni PPM	
AT04271	147	12	123	5	0.2	24	•
AT04272	69	16	113	8	0.1	26	
AT04273	24	12	111	8	0.2	23	
AT04274	17	15	713	131	0.4	24	
AT04275	<2	11	272	55	0.1	23	
AT04276	<2	13	355	69	0.2	22	
AT04277	\triangleleft	18	122	21	0.1	22	
AT04278	7	28	201	33	0.2	25	
AT04279	. 7	19	323	41	0.1	27	
AT04280	21	29	244	83	0.8	24	
AT04281	7	34	24	6	0.1	26	
^T04282	3	15	53	5	0.1	25	
.`04283	<2 3	11	30	1	0.1	25	
AT04284	3	31	55	7	0.2	27	
AT04285	<2	18	31	5	0.2	28	<i></i>
AT04286	3	17	13	5	0.2	30	
AT04287	<2	14	24	3	0.2	29	
AT04288	 ♥ 3 ♥ 	12	29	5	0.1	28	
AT04289	3	20	41	20	0.2	29	
AT04290	<2	14	31	5	0.1	24	
AT04291	<2	15	56	7	0.1	23	
AT04292	<2	15	45	4	0.2	23	
AT04293	7	16	53	3	0.2	22	
AT04294	7	21	46	1	0.2	21	
AT04295	14	20	176	5	0.4	28	
AT04296	69	27	259	3	0.4	26	
AT04297	110	30	134	9	1.4	31	
AT04298	75	22	311	4	0.7	29	
AT04299	55	59	2280	5	0.6	29	
AT04300	41	24	881	7	0.7	33	

Certified by

P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 FAX (705) 642-3300

Ę(

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation Page 2 of 3

🐧 👘 Established 1928

6W-4428-RG1

Geochemical Analysis Certificate

Date: NOV-01-96

Company:	FALCONBRIDGE LTD (EXPLORATION)
Project:	8262 EXPL
Attn:	G.DeSchutter

We hereby certify the following Geochemical Analysis of 64 Core samples submitted OCT-25-96 by .

Samp l e	Au PPB	Cu PPM	Zn PPM	Pb PPM	Ag P PM	Ni PPM	
Number					0.4	29	
AT05751	48	33	789	13		30	
AT05752	65	25	245	14	2.1 1.5	29	
AT05753	41	15	37	14			
AT05754	14	20	92	11	0.4	29 3	
AT05755 Control	264	5710	197	21	0.9		
AT05756	69	361	7980	47	5.3	34	
AT05757	24	17	93	32	1.5	28	
AT05758	27	22	81	29	2.6	33	
AT05759	17	42	262	10	1.3	49	
AT05760	7	58	890	6	1.6	42	
AT05761	10	49	65	6	0.8	45	
^T05762	10	36	67	9	0.9	32	
.05763	3	323	198	7	2.2	41	
AT05764	21	23	48	8	0.5	44	
AT05765	10	31	322	11	1.2	40	
AT05766	7	27	521	20	0.7	44	
AT05767	7	20	30	6	0.5	46	
AT05768	10	20	34	3	0.5	48	
AT05769	10	19	27	4	0.5	51	
AT05770	7	22	31	3	0.5	50	
AT05771	3	23	77	2	0.9	43	
AT05772	3	27	95	5	0.9	47	
AT05773	3	22	72	3	0.5	50	
AT05774	<2	35	153	6	0.6	51	
AT05775	10	31	373	. 3	0.4	46	
AT05776	7	26	145	4	0.6	55	
AT05777	10	28	120	5	0.8	58	
AT05778	3	36	109	4	0.7	58	
AT05779	3	26	104	7	0.6	62	
AT05780	10	29	139	9	0.7	53	

Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Page 3 of 3

Established 1928

6W-4428-RG1

Geochemical Analysis Certificate Company: FALCONBRIDGE LTD (EXPLORATION)

Date: NOV-01-96

 Company:
 FALCONBRIDGE LTD (EXPLORATIO

 Project:
 8262 EXPL

 Attn:
 G.DeSchutter

We hereby certify the following Geochemical Analysis of 64 Core samples submitted OCT-25-96 by

Sample Number	Au PPB	Cu P PM	Zn PPM	Pb PPM	Ag PPM	Ni PPM	
AT05781	14	22	50	7	0.5	46	
AT05782	34	33	149	32	1.8	57	
AT05783	41	28	208	32	1.8	53	
AT05784	10	34	66	31	0.6	47	

Certified by

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-4501-RG1

Company: FALCONBRIDGE LTD (EXPLORATION)

Date: NOV-06-96

Project: 8262 EXPL Attn: G. Deschutter

We hereby certify the following Geochemical Analysis of 9 Core samples submitted OCT-28-96 by .

Sample Number	Au PPB	Cu PPM	Zn PPM	Pb PPM	Ag PPM	Ni PPM	
AT05785	17	58	31	46	4.8		
AT05786	3	27	47	7	0.4	39	
AT05787	<2	40	36	1	0.1	25	
AT05788	<2	26	34	1	0.1	22	
AT05789	7	16	42	1	0.1	25	
AT05790	<2	26	33		0.1	24	
AT05791	<2	21	35	1	0.1	24	
AT05792	<2	33	31	1	0.1	29	
AT05793 Control	288	5700	194	20	1.1	3	

Certified by

Established 1928

Swastika Laboratories

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Geochemical Analysis Certificate

6W-5373-RG1

Company:FALCONBRIDGE LTD EXPLORATIONProject:8262 (EXPL)Attn:G.Deshutter

Date: DEC-30-96

We hereby certify the following Geochemical Analysis of 12 Core samples submitted DEC-20-96 by .

Sample Number	Au PPB	Cu PPM	Zn PPM	Pb PPM	Ag PPM	Ni PPM	
AR03008	4	59	434	114	0.3	87	
AR03009	<2	48	692	151	0.4	88	
AR03010	<2	50	328	81	0.2	82	
AR03011	<2	56	74	1	0.2	86	
AR03012	<2	23	48	1	0.1	67	
AR03013	<2	65	51	2	0.2	70	
AR03014	<2	64	69	1	0.1	80	
AR03015	<2	46	159	25	0.2	76	
AR03016 control	309	5550	194	19	1.0	3	
AR03017	<2	48	85	1	0.1	66	
AR03018	<2	52	100	 1	0.1	73	
AR03019	3	51	98	1	0.1	74	

Certified by

P.O. Box 10, Swastika, Ordario P0K 1T0 Telephone (705) 642-3244

A Division of TSL/Assayers Inc.

Assaying - Consulting - Representation

Established 1928

Geochemical Analysis Certificate

6W-5374-RG1

Company: FALCONBRIDGE LTD EXPLORATION Project: 8262 (EXPL)

Date: JAN-21-97

Project: 8262 (EXPL) Attn: G. Deshutter

We hereby certify the following Geochemical Analysis of 13 Core samples submitted DEC-20-96 by .

Sample	Au	Cu	Zn	Pb	Ag	Ni	Co	As	W	
Number	PPB	PPM	ррм	PPM	PPM	PPM	PPM	PPM	PPM	
AR03020	21	86	52	1	0.1	85	-		-	
AR03021	45	20	65	2	0.2	31	-	-	-	
AR03022	113	75	82	7	0.5	28	-	-	-	
AR03023	<2	69	84	1	0.2	22	-	•	-	
AR03024	17	96	85	1	0.1	36	-	-	-	
AR03025	10	108	82	1	0.2	76	-	-	-	
AR03026	14	134	58	1	0.1	50	-	-	-	
AR03027	10	242	19	6	0.2	25	-	-	-	
AR03028	3	164	19	1	0.1	30	22	<5	<2	
AR03029	137	220	52	1	0.7	99	35	<5	<2	
AR03030	79	78	55	1	0.9	104	34	<5	<2	
AR03031	27	86	35	1	0.5	89	23	<5	<2	
AR03032	21	75	48	1	0.1	94	31	<5	<2	21

Results for W to follow

Certified by

Declaration of Assessment Work Performed on Mining Land

Mining Act, Subsection 65(2) and 66(3), R.S.O. 1990

Transaction Number (office use) 19750.00 urch imading

(v) Ontario

Personal info Mining Act, th Questions at 933 Ramsey

900

2 17125

55(2) and 66(3) of the Mining Act. Under section 8 of the

ssment work and correspond with the mining land holder.

histry of Northern Development and Mines, 6th Floor,

Instruction...

Name

- Please type or print in ink.

1. Recorded holder(s) (Attach a list if necessary)

Ministry of Northern Development and Mines

Client Number

a claim, use form 0240

130679

Resident Geologist

ist

District

FALCONBRIDGE LIMITED Telephone Number Address 267-1188 571 MONETA AVE (705)P.O. BOX 1140, Fax Numbe P4N 7H9 (705) 264 - 6080TIMMINS, ON TARIO Client Number Name Telephone BECEIVED Address Fax Numb MAR 06 1997 MINING LANDS BRANCH Type of work performed: Check (~) and report on only ONE of the following groups for this declaration. 2. Physical: drilling, stripping, Geotechnical: prospecting, surveys ł Rehabilitation trenching and associated assays assays and work under section 18 (regs) Office Use Work Type DIAMOND DRILLING (1073 m in 4 holes) Commodity Total \$ Value of Work Claimed Dates Work 96 То From 11 96 25 11 **NTS Reference** 07 Performed Yea Month Day Month Yea Township/Area Global Positioning System Data (if available) **Mining Division** CURRIE-BOWMAN TWPS

Please remember to: - obtain a work permit from the Ministry of Natural Resources as required;

M or G-Plan Number

m 341

provide proper notice to surface rights holders before starting work;

Ł

- complete and attach a Statement of Costs, form 0212;

M 333

provide a map showing contiguous mining lands that are linked for assigning work;

- include two copies of your technical report.

3. Person or companies who prepared the technical report (Attach a list if necessary)

Name	Telephone Number
DOMINIK DRILLING (1981) INC	(705) 235 - 4545
	Fax Number (705) 235 - 4612
BARY DE SCHUTTER - FALCONBRIDGE LTD.	Telephone Number (705) 267 - 1188
	Fax Number (705) 264 - 6080
	Telephone Number
Address A 1007	Fax Number
MAR 4 1997 10:00 K.	

Certification by Recorded Holder or Agent 4.

SCHUTTER GARY DE ___, do hereby certify that I have personal knowledge of the facts set (Print Name)

forth in this Declaration of Assessment Work having caused the work to be performed or witnessed the same during or after its completion and {\!}_{\!\!\mathcal{A}} to the best of my knowledge, the annexed report is true.

Signature of Récorded	Holder of	Agent				Date Feb 28/97
Agent's Address 571 MONETA	AVE	TIMMINS	ON	PYN 7H9	Telephone Number (705)267-1188	Fax Number (705) 264-6080
0241 (02/96)					June 02 / 9	

Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to 5. the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form. 1JAJON ANUL

;				N9 180. C	/01 7 7	
work was mining la column t	Claim Number. Or if s done on other eligible and, show in this the location number t on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26, 825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8, 892	\$ 4,000	0	\$4,892
1 🗸	1198869	12	\$25,016	0	0	\$ 25,016
2 -	1201080	2	# 17,012	0	Ö	\$17,012
3 ~	1201249	12	\$ 17,889	0	0	\$ 17,889
4 、	1201417	8	\$19,735	0	0	\$ 19,735
5						
6					0	
7					2.17	125
8	· · · · · · · · · · · · · · · · · · ·					
9						
10			REC	EIVED		
11	· · · · · · · · · · · · · · · · · · ·			1007		
12			MAR			
13			MINING L	ANDS BRANCH		
14	•					
15	•					
	• · · · · · · · · · · · · · · · · · · ·	Column Totals	\$ 79,652	0	0	\$ 79,652
		ъ.	L	L		1

I, <u>GARY DE SCHUTTER</u> (Print Full Name) _____, do hereby certify that the above work credits are eligible under subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to

the claim where the work was done.

Signature of Recorded Holds Agent Authorized in Writing 97 65 28 th

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (~) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only	RECEIVED	
Received Stamp	MINING DIVISION	Deemed Approved Date Date Notification Sent
	MAR 4 1997 10:00ズ	Date Approved Total Value of Credit Approved
0241 (02/96)	70.00	Approved for Recording by Mining Recorder (Signature)

Ministry of Northern Development and Mines

Statement of Costs for Assessment Credit

Transaction Number (office use) 19780.001

Personal information collected on this form is obtained under the authority of subsection 6(1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, the information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to the Chief Mining Recorder, Ministry of Northern Development and Mines, 6th Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

Work Type	Units of Work Depending on the type of work, list the num of hours/days worked, metres of drilling, kik metres of grid line, number of samples, etc.	X	Total Cost
DEILUNG INVOICES	1073m in 4 holes	~\$67/m	\$71,824
GEOCHEMICAL ANALYSES	115 samples	\$13 50/smpl	\$1,661
WHOLE ROCK ANALYSES	22 samples	\$18.00/Smpl	# 424
		2.17	125
	s, mobilization and demobilization)		
GEOLOGIST SUPERVISION (25 d	(INCLUDING LOGGING) ays)	\$ 200/day	\$5000
CORE CUTTER (4 day	{s)	\$ 91/day	\$ 364
Trans	portation Costs	RECEIVED	
TRUCK RENTAL + GAS		MAR 6 1997	\$ 379
BACENED Food	and Lodging Costs	MINING LANDS BRANCH	
LARDER LAKE MINING DIVISION			
MAR 4 1997 10:00 ×.	Total Value	of Assessment Work	\$79,652

Calculations of Filing Discounts:

1. Work filed within two years of performance is claimed at 100% of the above Total Value of Assessment Work. 2. If work is filed after two years and up to five years after performance, it can only be claimed at 50% of the Total Value of Assessment Work. If this situation applies to your claims, use the calculation below:

TOTAL VALUE OF ASSESSMENT WORK $\times 0.50 =$ Total \$ value of worked claimed.

Note:

- Work older than 5 years is not eligible for credit.

- A recorded holder may be required to verify expenditures claimed in this statement of costs within 45 days of a request for verification and/or correction/clarification. If verification and/or correction/clarification is not made, the Minister may reject all or part of the assessment work submitted.

Certification verifying costs:

SCHUTTER DE 1. GARY

__ , do hereby certify, that the amounts shown are as accurate as may (please print full name)

reasonably be determined and the costs were incurred while conducting assessment work on the lands indicated on

the accompanying Declaration of Work form as	AGENT UF FALCONBRIDGE LTD. (recorded holder, agent, or state company position with signing authority)	I am authorized
to make this certification.		

Date Feb 28/97

Ministry of Northern Development and Mines

May 8, 1997

Roy Spooner Mining Recorder 4 Government Road East Kirkland Lake, ON P2N 1A2

Dear Sir or Madam:

Ministère du Développement du Nord et des Mines

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone:	(705)	670-5853
Fax:	(705)	670-5863

Submission Number: 2.17125

				Status
Subject:	Transaction	Number(s):	W9780.00144	Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

C+++++

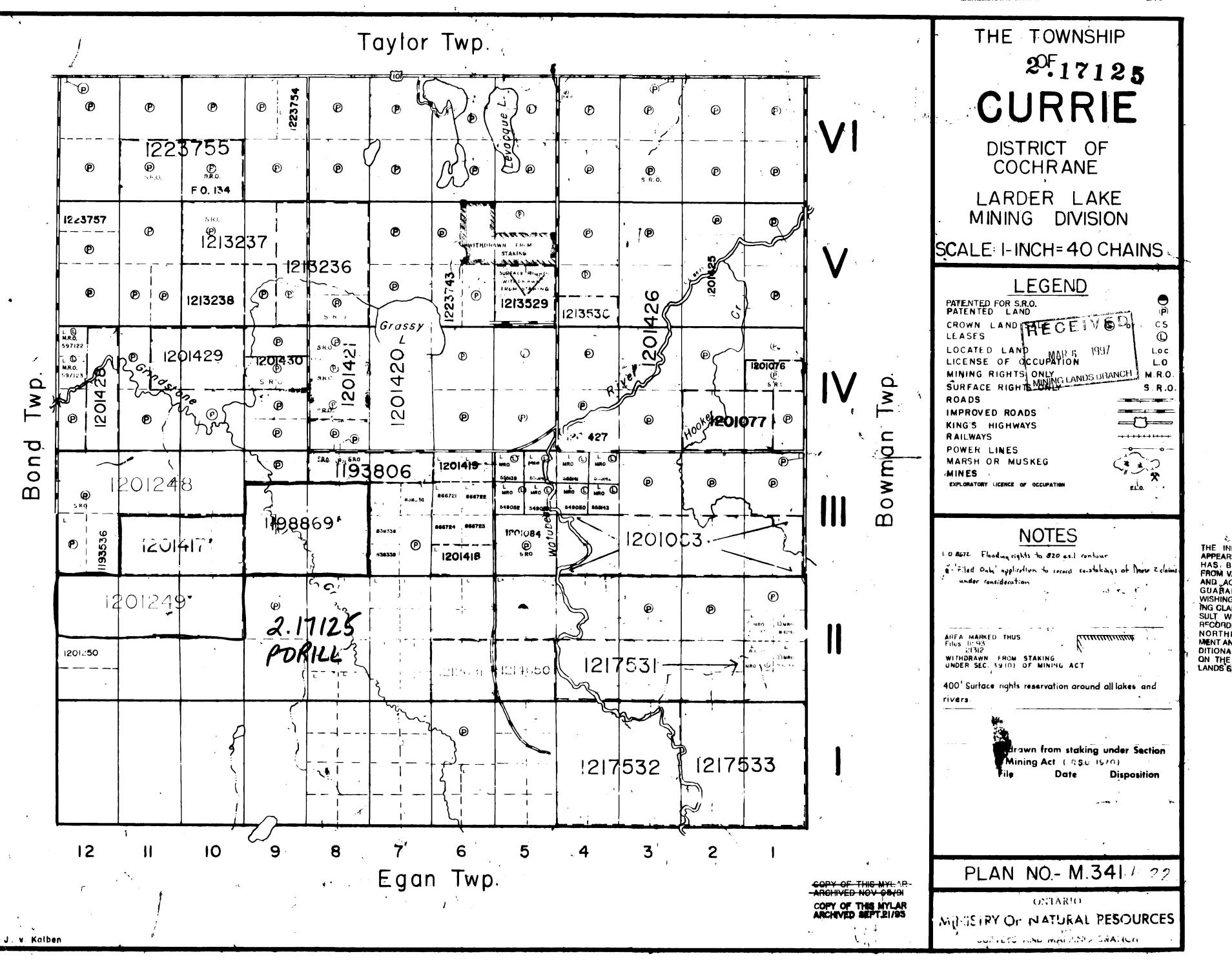
If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

NOTE: This correspondence may affect the status of your mining lands. Please contact the Mining Recorder to determine the available options and the status of your claims.

If you have any questions regarding this correspondence, please contact Lucille Jerome by e-mail at jerome_l@torv05.ndm.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,


ACGAN.

ORIGINAL SIGNED BY Ron C. Gashinski Senior Manager, Mining Lands Section Mines and Minerals Division

Correspondence ID: 10819 Copy for: Assessment Library

Work Report Assessment Results

Submission Number: 2.17125 Date Correspondence Sent: May 08, 1997			Assessor: Lucille Jerome		
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9780.00144	1198869	CURRIE, BOWMAN	Approval	May 07, 1997	
Section: 10 Physical PDRI	LL				
Correspondence	to:		Recorded Holde	r(s) and/or Agent(s):	
Mining Recorder Kirkland Lake, ON	l		Gary De Schutter FALCONBRIDGE LIN Timmins, ONTARIO		
Resident Geologist Kirkland Lake, ON					
Assessment Files Sudbury, ON	Library				

٩,