Mining Claims: P. 553489 - P. 553502 incl.,
 $$
\text { P. } 553579 \text { - P. } 553589 \text { incl., }
$$
 $$
\text { P. } 553596
$$
 $$
\text { P. } 555191 \text { - P. } 555205 \text { incl., }
$$
 $$
\text { P. } 555427
$$
 $$
\text { P. } 555487 \text { - P. } 555496 \text { incl. }
$$

Lat. $48^{\circ} 28^{\prime} \mathrm{N}$, Long. $80^{\circ} 43^{\prime} \mathrm{W}$
N.T.S. 42-A-7

WESTERN MINES LIMITED

Horizontal Loop and Magnetic Surveys Bond Township, Ontario

Ian G. Park, B.Sc., M.Sc., F.G.A.C.

Consulting Geophysicist

The following report pertains to an examination and analysis of dual frequency ground horizontal loop electromagnetic and magnetic data, collected by Western Mines Ltd. on the Bond Project, Northeastern Ontario. The data was collected during the month of February, 1981. A single definite bedrock conductor was indicated by the electromagnetic survey, in addition to a number of probable overburden type conductors. Discrimination of the former and latter conductor types was made on the comparison of calculated In-phase/Out-of -phase ratios and conductivity thickness estimates at both 444 hz and 1777 hz . The conductivity-thickness estimates were based on the comparison of observed data with data from free air models. An apparent dip to the south was estimated for the single bedrock conductor. A few comments are also made in the text regarding the results of the ground magnetic survey.

PROPERTY, LOCATION AND ACCESS
The Bond Township property of Western Mines consists of 52 contiguous mining claims which constitute 2080 acres (see Table I and Claim Location Map). The property is located approximately 28 miles east of Timmins, Ontario. Access was accomplished using a 4 -wheel drive vehicle and skidoos, on both the BondCurrie Boundary Road which reaches the northeast section of the property or the Gibson Lake Road which reaches the southwest corner of the claim group. Both roads extend southwestds from Highway 101.

BOND PROPERTY

Owner: Western Mines Limited 100\%

Location: Bond Township (Porcupine M.D.)
Lat. $\quad 48^{\circ} 28^{\prime} \mathrm{N}$
Long. $80^{\circ} 43^{\prime} \mathrm{W}$

Property: $\quad 52$ mining claims, 2,080 acres

CLAIMS	DATE RECORDED		DUE DATE	LEASE DATE	EXTENSION TO
P.555427	March 5,1980		March 5,1981	March 5,1986	August 31,1981
P.555487-P.555496	March 5,1980		March 5,1981	March 5,1986	August 31,1981
P.555191-P.555205	Feb. 27,1980	Feb. 27,1981	Feb. 27,1986	August 31,1981	
P.553579-P.553589	March 5,1980	March 5,1981	March 5,1986	August 31,1981	
P.553596	March 5,1980	March 5,1981	March 5,1986	August 31,1981	
P.553489-P.553502	March 5,1980	March 5,1981	March 5,1986	August 31,1981	

In order to facilitate the acquisition of the geophysical data, an extensive grid was cut with lines spaced at 400 feet apart. The total number of miles of grid lines cut and surveyed was 43.04 miles while the number of miles of reference base lines cut and surveyed was 3.96 miles.

The instrument used for the ground horizontal loop survey was a MaxMin II which is manufactured by Apex Parametrics, Markham, Ontario. The nominal coil separation was 600 feet due to the possibility of deep overburden on the property. Lack of significant topographic relief negated the necessity for secant corrections to be made to the data. The station spacing was 100 feet and the two frequencies used were 1777 hz and 444 hz . The total mileage covered was 43.04 miles and the number of stations occupied was 2271.

A Scintrex MP-2 total field proton magnetometer was used for the magnetic surveys which covered the same limits as the horizontal loop survey. The station spacing was also 100 feet. A Scintrex MBS-2 base station magnetometer was installed at a convenient location 6 miles north of the grid and was used to remove diurnal variation and to monitor for magnetic storm activity. Accuracy of the survey data is thought to be about ± 10 gamas. The data indicated on the magnetometer survey map are residual values above an arbitrary level of 60000 gammas.

LOCAL GEOLOGY (from ODM Preliminary Geol. Map, P161)

The geology of the property and of Bond Township is poorly known, primarily due to the paucity of outcrops and due to a pervasive ground cover of clay and sand. All known outcrops are restricted to the eastern half of the township. Keewatin lavas ranging in composition from basic to acid are the oldest rocks in the area. Outcrops of these lavas occur on the property in the northeast corner of Lot II, Concession II. The strike of the foliation is roughly east-west, with a steep dip of 80° to the south. The lavas are intruded by several north-south trending dykes belonging to the Matachewan dyke swarm. Regional aeromagnetic data (EMR Map 7085G and ODM Map P161) has outlined a northeast trending dyke on the property which belongs to the Keweenawan diabase dyke swarm. This dyke extends across the property from Lot 7, Concession II to Lot 4, Concession II.

The results of the ground electromagnetic survey are illustrated on the accompanying plan maps which are plotted at a scale of $1^{\prime \prime}$ to 400 feet. There is a separate plan map for each survey frequency (1777 hz and 444 hz).

Only one zone of legitimate bedrock conduction was outlined. Zone A was found to extend from Line 0 to Line 28 W with a strike direction of approximately $N 45^{\circ} \mathrm{E}$. Conductivity-thickness products based on the 444 hz data range from a low of 4 mhos on Line 28 W to a high of 26 mhos on Lines 8 W and 16 W . All values are within the range of known graphite/sulfide conductors. There is some evidence for the presence of conductive overburden overlying at least a portion of the conductor. This is based on the sign reversal and phase rotation of the quadrature component at 1777 hz , particularly on Lines 0 an 4 W .

The remainder of the property appears to be generally resistive except for the indicated presence of areas of clay filled troughs. This is true for the areas from 52 W to $96 \mathrm{~W}, 132 \mathrm{~W}$ to 156 W and from 4 W to 52 W on the west grid. All of the anomalous responses associated with these interpreted conductive overburden features exhibit low In-phase to Out-of-phase ratios and consistent to decreasing conductivity-thickness products with decreasing frequency.

The magnetic contour map is dominated by an east-north-east trending anomaly which crosses almost the entire property. Residual anomaly amplitudes range from 1000 to 2500 gammas above local background and the response is thought to represent the expression of a Keweenawan diabase dyke. The latter is segmented
in the vicinity of L32W to L4OW. Areas to the northwest of the dyke are relatively featureless in terms of magnetic signature and this could be an indication of underlying sedimentary or acid volcanic terrain. Slightly higher backgrounds to the southeast of the dyke could conceivably reflect the presence of more basic volcanic material. The strong anomaly on the southeast corner of the property could reflect the underlying presence of ultrabasic material, but is not indicated as a diabase dyke by the regional aeromagnetic map.

CONCLUSIONS
One zone of legitimate bedrock conduction was outlined on the Bond Project property and drilling could be warranted provided the conductor has not been previously drilled. The remainder of the property is not underlain by conventional massive sulfide or graphite targets which respond to classical electromagnetic survey methods.

Respectfully submitted,

Ian G. Park,
Consulting Geophysicist

Ministry of N

900

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey (s) Magnetometer and Electromagnetic

MINING CLAIMS TRAVERSED List numerically

(prefix)
(number)
P. 555427
P. 555487 to P. 555496 incl.
P. 555191 to P. 555205 incl.
P. 553579 to P. 553589 incl.
$\left.\begin{array}{llc|}\hline \text { SPECIAL PROVISIONS } & \text { DAYs } \\ \text { CREDITS REQUESTED }\end{array} \quad \begin{array}{cl}\text { per claim }\end{array}\right\}$

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

Res. Geol. \qquad Qualifications \qquad 2.3866 Previous Surveys

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Instrument __ Scintrex MP-2, MBS-2 (Base Station)

曷 昜 5

Accuracy - Scale constant 10 Garmas
Diurnal correction method Base station 6 miles north of grid.
Base Station check-in interval (hours)
Base Station location and value \qquad
\qquad

Instrument \qquad
Scale constant \qquad
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument \qquad
Method \square Time Domain Frequency Domain
Parameters - On time Frequency

- Off time \qquad Range
\qquad
- Delay time \qquad
- Integration time \qquad
Power \qquad
Electrode array
Electrode spacing \qquad
RECORDED HOLDER
F RECORDED HOLDER

BOND TOWNSI IIP

MINISTRY OF NATURAL RESOURCES
 APR 22 1981

PORCUPINE MINING DIVISION
DISTRICT OF COCHRANE SCALE 40 CHAINS TO ONE INCH

<24+oow - pothe

$$
\angle 28+00 \mathrm{w} \text { — }
$$

L64+00w -

$$
\angle 72+00 w
$$

