

EGAN

42A07NE2003 2.18227

010

REPORT ON THE SHERATON-TIMMINS-EGAN TOWNSHIP CLAIMS

- F

PORCUPINE & LARDER LAKE MINING DIVISIONS, ONTARIO

INDUCED POLARIZATION / MAGNETIC SURVEY

for

HADDINGTON RESOURCES LTD. & SILVERSTONE RESOURCES LTD.

3.18237

RECEIVED MAR - 3 1998 GEOSCIENCE ASSESSMENT

Submitted by: R.J. Meikle Geophysical Engineering & Surveys Inc. January, 1998

 $\sim -C$

EGAN

42A07NE2003 2.18227

010C

TABLE OF CONTENTS

CONTENTS

PAGE NO.

INTRODUCTION	1
LOCATION AND ACCESS	1
CLAIM STATUS	
PERSONNEL	
PREVIOUS WORK	
PROPERTY GEOLOGY	
SURVEY PARAMETERS	4,5,6
SURVEY RESULTS	
CONCLUSIONS AND RECOMMENDATIONS	-
CERTIFICATE	9

LIST OF FIGURES

LOCATION MAP	NO.1
CLAIM SKETCH MAP	NO.2
GEOLOGY MAP	NO.3

APPENDIX

APPENDIX "A" - SCINTREX IPR-12 - RECEIVER APPENDIX "B" - SCINTREX TSQ- 3 - TRANSMITTER

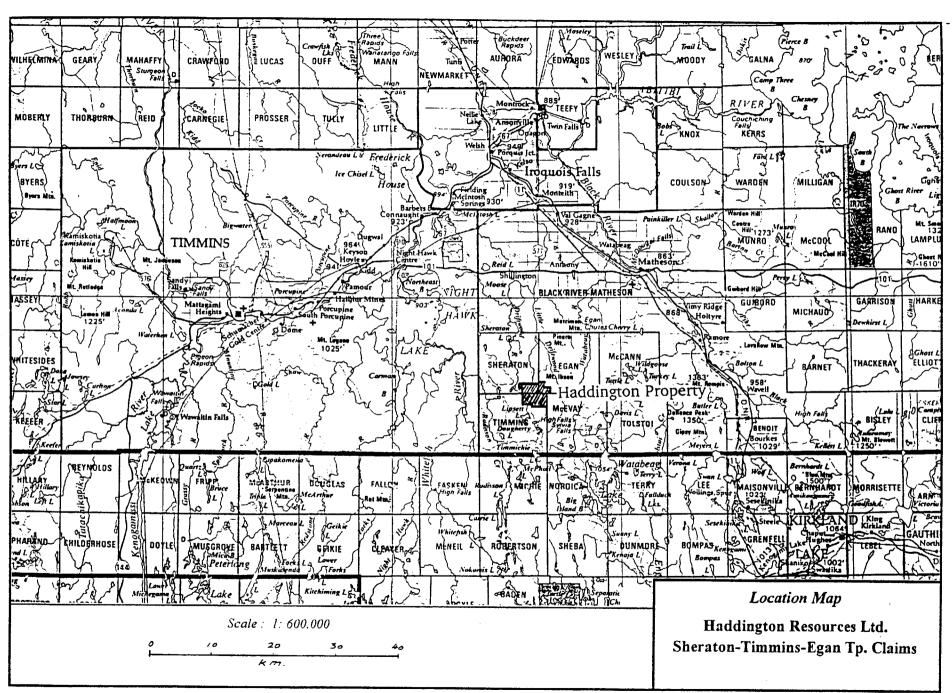
MAPS

IP PSUEDOSECTIONS - SCALE 1:2500 POCKET 1. NE LINES, NW LINES POCKET 2. SE LINES, PATENTED BLOCK LINES

MAGNETOMETER MAP - SCALE 1:5000 POCKET 3. TOTAL FIELD MAGNETOMETER

INTRODUCTION

This report deals with the logistics and results of a Magnetometer & Induced Polarization Survey on the Sheraton-Timmins-Egan Township Property, Porcupine and Larder Lake Mining Divisions, Ontario. The work was done on a contract basis by Geophysical Engineering & Surveys Inc., Timmins, Ontario, for Haddington Resources and Silverstone Resources Ltd.


The Magnetic Survey covered two patented claims in the centre of the property recently acquired by Haddington and subsequently not covered by the 1995 Magnetic Survey.

A 1995 I.P. Survey outlined an anomaly which appeared to extend through the above two patented claims. The current I.P. Survey covered the patented claims, outlining and confirming the continuity of the anomaly across the two claims. The current I.P. Survey covered the strike extension of this anomaly to the northwest and southeast, as well as an area of felsic volcanics bounded by L18e-L26e, from 500n to 1100n.

LOCATION AND ACCESS

The claim groups are centred near the corners of Sheraton, Timmins, and Egan Townships, approximately 50 km ESE of Timmins, Ontario. Sheraton and Timmins Townships are located within the Porcupine Mining Division, Ontario and Egan Township in the Larder Lake Mining Division, Ontario.

Access to the property is via the all weather, Gibson Lake Road which heads south from the intersection of Hwy 101 and Hwy 67, for approximately 28 km, where a branch road leads east to Lipsett Lake (approx. 3.5 km), where a road continues north to the west part of the claims, accessible by truck. The south and east parts of the property are accessible via a 4 wheel drive road leading east from Lipsett Lake.

1 .

CLAIM STATUS

The property consists of a contiguous group of 72 claim units in SE Sheraton, NE Timmins and SW Egan Townships as well as two patented claims in NE Timmins Township, as shown in Fig. 2. The claims are held by Haddington Resources Ltd., under three separate option agreements. The following is a list of the claim numbers.

Sheraton Township	<u>Claims</u>	<u>#Units</u>
	1156114	1
	1145115	1
	1158839	1
	1158841	1
	1158842	1
	1175435	1
	1175436	1
	1175437	1
	1175438	1
	1175439	1
	1175440	1
	1204143	2
Timmins Township	1158840	1
TIMMING TOURDALP	1128983	16
	1128984	15
	1204296	12
	1204297	1
Egan Township	1204220	8
Egan Township	1204298	4
	Total Unpatented	70 units
Timmins Township	34452, 34453	2 Patented

PERSONNEL

The following personnel were directly involved with the Magnetic and I.P. Surveys:

R.J. Meikle D. Brazeau D. Mckinnon	Supervisor Operator Operator	Timmins, Ontario " Connaught, Ontario Timmins, Ontario
K. Giroux R. Chartrand L. Anderson	Helper Helper Helper	et 111111111111111111111111111111111111

2

z

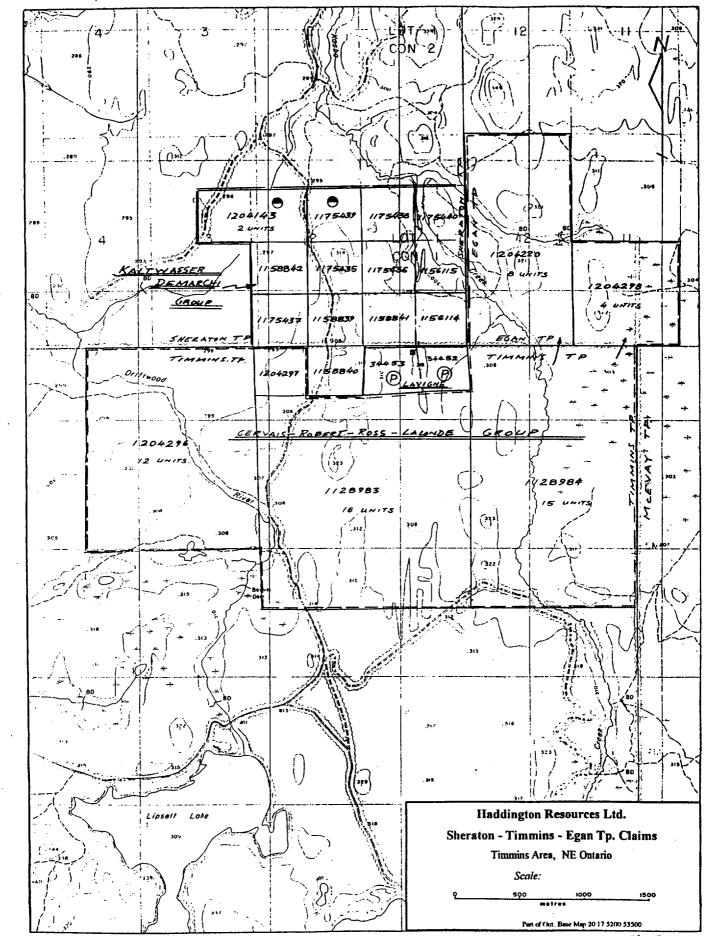
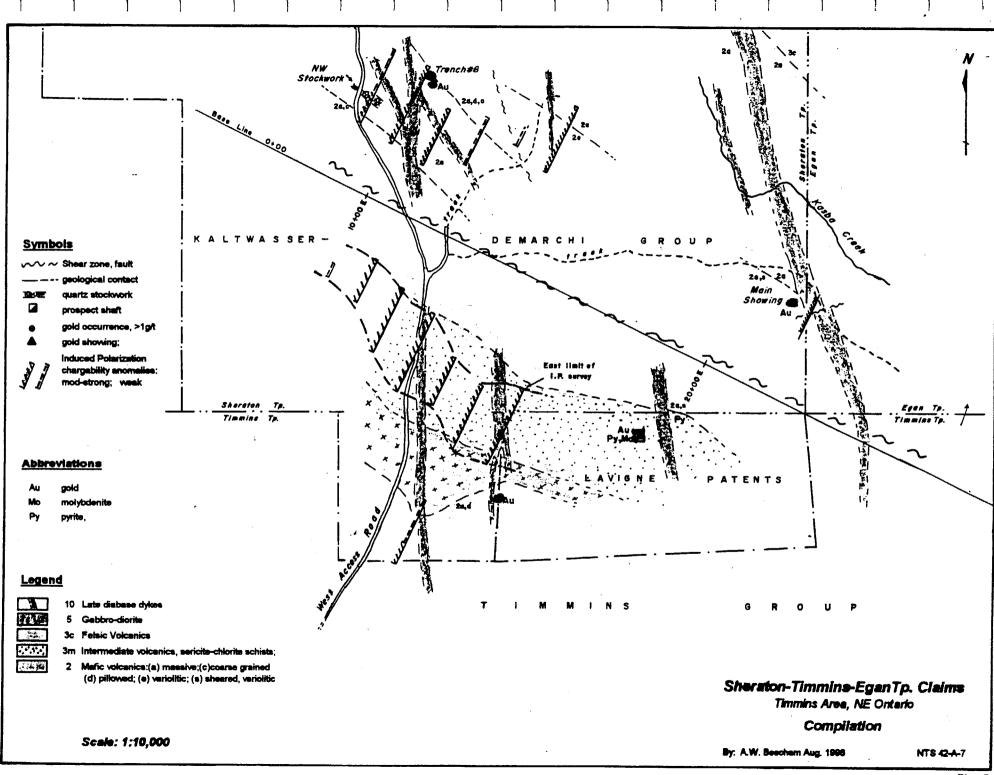



Fig 2

PREVIOUS WORK

The following is a brief outline of previous work done on the property:

1910-1911

- Two claims (now patented), #34452,34453, staked by L.A. Blanchette and Napoleon Seguin. - 40 ft. exploration shaft sunk on #34453 to test narrow qtz. veins at contact of feldspar porphyry dikes and chlorite schists,

with reported high Au. values.

1937

- Blanchette-Porcupine Mines drilled numerous holes in the area of the above shaft, no logs available.

1947

- 5 ddh's on claim #34452 - narrow qtz. stringers with pyrite noted, no gold values reported.

1974

- stripping and trenching, various parts of property.

1981-1984

- Johns-Manville Canada Inc., geological/geophysical surveys and stripping and trenching. Gold values reported from samples of quartz veins in feldspar porphyry dikes.

1987

- Placer-Dome Inc., held 15 units in SE Sheraton Twp.

- Magnetic and VLF-EM Surveys.

<u>1988</u>

- T. McAllister did Mag/VLF Survey over SE part of the current Kaltwasser-Demarchi claims and Kimex Inc. did the same over the western part as well as other parts of the property.

1990

- R. Kaltwasser and D. Demarchi re-discovered significant gold values in an old rock trench in the SE corner of Sheraton Twp. - between 1992-1994 they did some trenching, chip sampling, magnetic surveys and soil sampling.

1995

- The unpatented claims comprising the property subject of this report were optioned by Haddington Resources Ltd.

- 97.6 km grid cut and surveyed by Magnetometer, covering all of the Kaltwasser and Timmins group.

- some of the main area was re-mapped at 1:2500 and soil sampled. - selected areas over known showing covered by I.P. Survey.

- two patented claims described above were optioned in July/96.

PROPERTY GEOLOGY

The following is a condensed version of the "Property Geology and Mineral Occurrences" from a report entitled "Report on the Sheraton-Timmins-Egan Township Claims" by A.W. Beecham, August 1996. (see Fig. 3, taken from above report).

The property is approximately 45 km. ESE of the Timmins Camp and 20 km. south of the Destor-Porcupine Fault zone. The property is reported to be underlain predominately by Mafic volcanics with some intermediate and felsic volcanics as well as a small intrusion of feldspar porphyry in the main showing area. In the NW corner of Lot 2, Con. V1, Timmins Twp., a coarse grained, gabbro is reported to intrude between intermediate-felsic volcanics to the north and mafic volcanics to the south. Numerous NNW striking Archean, diabase dikes cut through the property.

SURVEY PARAMETERS

Magnetometer Survey

In 1997, a total of 4.5 km. of Magnetic Survey was completed over the two patented claims, #34452 and 34453. This data was tied in to and merged with 97.5 km of data from a 1995 magnetometer survey done on the rest of the property which at that time surrounded but did not include the two patented claims. The merged data was processed and plotted (Map. No. 1). The following is a brief description of the parameters used for the Magnetic Survey:

A GEM Systems, GSM-19, Proton Precession magnetometer was used to carry out the magnetometer survey. The instrument is synchronized with an identical unit recording base station to help eliminate magnetic diurnal variation. This should ensure an accuracy of less than 10 Nt.

The Proton Precession method involves energizing a wire coil immersed in a hydrocarbon fluid. This causes the protons in the proton rich fluid to spin or precess simulating spinning magnetic dipoles. When the current is removed the protons precess about the direction of the earth's magnetic field, generating a signal in the same coil which is proportional to the total magnetic field intensity. In this way, the horizontal gradient of the earth's magnetic field can be measured and plotted in plan form with values of equal intensity joined to form a contour map. This presentation is useful in correlating with other data sets to aid in structural interpretation. Individual magnetic responses can be interpreted for dip, depth and width estimates after profiling the data.

The following parameters were employed for the survey:

Instrument - GEM Systems, GSM-19 Proton Magnetometer Station Interval - 12.5m Line Interval - 100m Diurnal Correction Method - GSM-19 Recording Base Station Data Presentation - Posted, Contoured plan Map No. 1 - 1:5000 scale - Contour interval = 100 nano-teslas

Induced Polarization Survey

The current I.P. Survey was carried out over four separate parts of the property, described as the SE Lines, NW Lines and NE Lines, and Patent Block Lines. The following is a brief description of the I.P. Survey Method and the parameters used for the survey:

General IP Theory

The IP method involves applying voltage across two electrodes in a pulsed manner i.e. 2 seconds on, 2 seconds off. A second "dipole" or electrode pair, measures the residual potential or voltage between them after the voltage is shut off or during the 2 second off cycle. The potential is recorded at different times after the shut off. If, for example, there is sulphide mineralization within the measuring dipoles, they will be polarized or charges set up on the sulphide particles. This polarization gives the zone a capacitor effect, thereby blocking the current delay giving a higher chargeability reading.

A typical signature for many gold showings would be a chargeability high, resistivity high and magnetic low. This would be characteristic of a mineralized, highly altered carbonated and/or silicified zone. However, this is by no means the only geological setting for gold, therefore every profile should be looked at individually and correlated with all other geophysicalgeological data.

5

Electrode Array

The electrode array used for the survey was the Pole-Dipole Array. In this array, one current electrode (C1) and two receiver or potential electrodes (P1,P2), are moved down a line in unison. A second current electrode (C2), is placed normal to the expected strike direction an infinite distance away, at least one km. The two current electrodes are hooked up to a motor-generator and a current applied across them, usually less than 3 amperes. The applied voltage is pulsed in a 2 second on, 2 second off pattern controlled by the transmitter.

Thus we have a single pole current electrode following a pair or dipole of potential electrodes moving down the line. The advantage of this "Pole-Dipole" array over the "Dipole-Dipole" array is a deeper current pattern between the infinite and moving current electrode, resulting in better penetration of conductive overburden. Also, this array is considerably faster in areas of high electrode contact impedance due to frozen and or rocky ground conditions because only one current electrode placement is needed for each reading. A disadvantage of the "Pole-Dipole" array is a slightly more ambiguous interpretation due to the assymetry of the array.

The distance between the potential electrodes is fixed, usually 25 or 50 meters and this is called the "a" spacing. When the potential dipole is positioned with one "a" spacing between the C1 and the nearest P1, it is called a "N=1" reading with a theoretical plot point at the intersection of a 45 degree line drawn down in a section format from the C1 and nearest P1. When this N=1 reading is finished, the C1 remains stationary and the P1P2 dipole moves ahead one "a" spacing and a N=2 reading is obtained. Using the above plot convention it can be seen that the plot point is now further from the C1 and deeper. This is repeated for as many "N" readings as desired.

IP Survey Parameters

The IP survey was carried out using the following parameters:

Method: Time Domain Electrode Array: Pole-Dipole "a" spacing: 25 meters Number of Dipoles Read: 1-6 inclusive Pulse Duration: 2 seconds on, 2 seconds off Delay Time: 310 milliseconds Integration Time: 140 milliseconds Receiver: Scintrex IPR-12 Transmitter: Scintrex TSQ-3 3KVA. Data Presentation: Individual Psuedosections 4 Plates Scale: 1:2500

SURVEY RESULTS

The Magnetometer Survey consisted of 4.5 km to cover two newly acquired patented claims in the middle of the property. The results indicate that a large magnetic unit striking SE, diagonally across the property from the west boundary to the patented claims (1995 magnetic survey), does indeed continue through the patents, joining the same unit southeast of the patents. As per a report on the property by A.W. Beecham, 1996, this magnetic anomaly has a coincident I.P. response with known pyrite mineralization and coincident gold values.

Initially, the Sept.1997 I.P. Survey covered the newly acquired patented claims on parts of Lines 17e-22e (patented block) and the results indicated that the SE trending I.P. anomaly on the west edge of the patents continues through the patents from L17e/250s - L21e/260s. The anomaly appears to be shifted to the south on L22e @ 400s. The anomaly is resistive and strongly chargeable, especially on the southeastern part. This anomaly has a coincident magnetic correlation of a few thousand nano-teslas above background. A parallel anomaly to the south was detected on L17e/480s and L18e/525s. It is resistive and strongly chargeable with a strong, coincident magnetic correlation. The magnetic anomaly continues southeast along strike to L20e but the I.P. Survey coverage did not cover it east of L18e.

In Dec.1997, Haddington decided to extend I.P. Survey coverage to trace the northernmost anomaly described above to the southeast. The results show the anomaly continuing but with a change of strike direction to east-west. The anomaly was traced from L23e/475s to L25e/400s. The anomaly is strongly chargeable and resistive with a coincident magnetic high correlation. The anomaly was not detected on L26e and L27e and the I.P. coverage was not extended any further to the east. However, a similar magnetic anomaly is evident on L28e and L29e @ 350n, which could be a continuation of the I.P. anomaly. The magnetic map shows a linear, north-south trending magnetic low feature which could be a fault which would explain the break in the magnetic anomaly between L25e and L28e.

Also in Dec.1997, Lines 18e, 20e, and 22e were surveyed by I.P. from approximately 500n to 950n, to cover an area of felsic volcanics outlined in the most recent mapping program by Mr. A.W. Beecham. Survey production was slow in this area due to areas of outcrop and poor ground contacts. Three anomalies were detected.

7

The first anomaly is on L18e/725n and appears to be coincident with a north-south linear magnetic anomaly, most likely a dike. The second on L18e/600n is a weak to moderately chargeable, moderately resistive zone, possibly part of the first anomaly.

The third anomaly is on L22e/approx.975n, and although not as chargeable, it appears to be coincident with a parallel northsouth dike. However, the I.P. survey coverage did not extend far enough to resolve the above.

The Dec.1997 I.P. Survey also covered the northwest strike extension of the main, northern anomaly running through the two patented claims from L7e - L10e. The anomaly appears to continue to the northwest from L11e, but the chargeability is much weaker. There is a strong magnetic correlation with the I.P. anomaly on L9e and L8e, as well as a weaker magnetic correlation on L10e. There appears to be a northsouth break in the magnetics between L9e and L11e. L7e did not extend far enough south to cover the anomaly.

CONCLUSIONS AND RECOMMENDATIONS

The I.P. Survey was successful in extending the strike length of the main anomaly through the patents and to the southeast as well as to northwest.

Further work on this anomaly would depend on a compilation of the I.P. results with all recent drilling and mapping results. It appears that the I.P. method works reasonably well on the known mineralization on the property and as such more I.P. Survey may be warranted covering other prospective parts of the property.

CERTIFICATION

I, Raymond Joseph Meikle of Timmins, Ontario hereby certify that:

1. I hold a three year Technologist Diploma from the Haileybury School of Mines, Haileybury, Ontario, obtained in May 1975.

2. I have been practising my profession since 1973 in Ontario, Quebec, Nova Scotia, New Brunswick, Newfoundland, NWT, Manitoba, Germany and Chile.

3. I have been employed directly with Teck Corporation, Metallgessellschaft Canada Ltd. Sabina Industries, R.S. Middleton Exploration Services Ltd., self employed 1979-1997 (Rayan Exploration Ltd.) and currently with Geophysical Engineering & Surveys Inc.

4. I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience and on the results of the field work conducted on the property during 1997.

5. I hold no interest, directly or indirectly in this property, nor do I expect to receive any interest or considerations from the property, other than for professional fees rendered.

Dated this 20th day of Jan., 1998 at Timmins, Ontario.

R.J. Meikle

9

3 ×

APPENDIX 'A'

,

SCINTREX IPR-12, I.P. RECEIVER

SCINTREX

IPR-12 Time Domain Induced Polarization/Resistivity Receiver

Brief Description

 The IPR-12 Time Domain IP/Resistivity Receiver is principally used in exploration for precious and base metal mineral deposits. In addition, it is used in geoelectrical surveying for groundwater or geothermal resources, often to great depths. For these latter targets, the induced polarization measurements may be as useful as the high accuracy resistivity results since it often happens that geological materials have IP contrasts when resistivity differences are absent.

Due to its integrated, lightweight, microprocessor based design and its large, 16 line
display screen, the IPR-12 is a remarkably powerful, yet easy to use instrument. A wide variety of alphanumeric and graphical information can be viewed by the operator during and after the taking of readings. Signals from up to eight potential dipoles can be measured simultaneously and recorded in solid-state memory along with automatically calculated parameters. Later, data can be output to a printer or a PC (direct or via modem) for processing into profiles and maps.

The IPR-12 is compatible with Scintrex IPC and TSQ Transmitters, or others which output square waves with equal on and off periods and polarity changes each half cycle. The IPR-12 measures the primary voltage (Vp), self potential (SP) and time domain induced polarization (Mi) characteristics of the received waveform. Resistivity, statistical and Cole-Cole parameters are calculated and recorded in memory with the measured data and time.

Scintrex has been active in induced polarization research, development, manufacturing, consulting and surveying for over thirty years. We offer a full range of instrumentation, accessories and training.

The IPR-12 Receiver measures spectral IP signals from eight dipoles simultaneously then records measured and calculated parameters in memory.

Benefits

Speed Up Surveys

The IPR-12 saves you time and money in carrying out field surveys. Its capacity to measure up to eight dipoles simultaneously is far more efficient than older receivers measuring a single dipole. This advantage is particularly valuable in drillhole logging where electrode movement time is minimal.

The built-in, solid-state memory records all information associated with a reading, dispensing with the need for any hand written notes. PC compatibility means rapid electronic transfer of data from the receiver to a computer for rapid data processing.

Taking a reading is simple and fast. Only a few keystrokes are virtually needed

since the IPR-12 features automatic circuit resistance checks, SP buckout and gain setting.

High Quality Data

One of the most important features of the IPR-12 in permitting high quality data to be acquired, is the large display screen which allows the operator easy real time access to graphic and alphanumeric displays of instrument status and measured data. The IPR-12 ensures that the operator obtains accurate data from field work.

The number and relative widths of the IP decay curve windows have been carefully chosen to yield the transient information required for proper interpretation of spectral IP data. Timings are selectable to permit a very wide range of responses to be measured.

Specifications

Inputs

1 to 8 dipoles are measured simultaneously.

Input Impedance

16 Megohms

SP Bucking

 ± 10 volt range. Automatic linear correction operating on a cycle by cycle basis.

Input Voltage (Vp) Range 50 µvolt to 14 volt

Chargeability (M) Range 0 to 300millivolt

Tau Range

1 millisecond to 1000 seconds

Reading Resolution of Vp, SP and M

Vp, 10 microvolt; SP, 1 millivolt; M, 0.01 millivolt/volt

Absolute Accuracy of Vp, SP and M Better than 1%

Common Mode Rejection

At input more than 100db

Vp Integration Time

10% to 80% of the current on time.

IP Transient Program

Total measuring time keyboard selectable at 1, 2, 4, 8, 16 or 32 seconds. Normally 14 windows except that the first four are not measured on the 1 second timing, the first three are not measured on the 2 second timing and the first is not measured on the 4 second timing. (See diagram on page 2.) An additional transient slice of minimum 10 ms width, and 10ms steps, with delay of at least 40 ms is keyboard selectable.

Transmitter Timing

Equal on and off times with polarity change each half cycle. On/off times of 1, 2, 4, 8, 16 or 32 seconds. Timing accuracy of \pm 100 ppm or better is required.

External Circuit Test

All dipoles are measured individually in sequence, using a 10 Hz square wave. The range is 0 to 2 Mohm with 0.1kohm resolution. Circuit resistances are displayed and recorded.

Synchronization

Self synchronization on the signal received at a keyboard selectable dipole. Limited to avoid mistriggering.

Filtering

RF filter, 10 Hz 6 pole low pass filter, statistical noise spike removal.

Internal Test Generator

1200 mV of SP; 807 mV of Vp and 30.28 mV/V of $\boldsymbol{M}.$

Analog Meter

For monitoring input signals; switchable to any dipole via keyboard.

Keyboard

17 key keypad with direct one key access to the most frequently used functions.

Display

16 lines by 42 characters, 128 x 256 dots, Backlit Liquid Crystal Display. Displays instrument status and data during and after reading. Alphanumeric and graphic displays.

Display Heater

Available for below -15°C operation.

Memory Capacity

Stores approximately 400 dipoles of information when 8 dipoles are measured simultaneously.

Real Time Clock

Data is recorded with year, month, day, hour, minute and second.

Digital Data Output

Formatted serial data output for printer and PC etc. Data output in 7 or 8 bit ASCII, one start, one stop bit, no parity format. Baud rate is keyboard selectable for standard rates between 300 baud and 51.6 kBaud. Selectable carriage return delay to accommodate slow peripherals. Handshaking is done by X-on/X-off.

Standard Rechargeable Batteries

Eight rechargeable Ni-Cad D cells. Supplied with a charger, suitable for 110/230V, 50 to 60 Hz, 10W. More than 20 hours service at +25°C, more than 8 hours at -30°C.

Ancillary Rechargeable Batteries

An additional eight rechargeable Ni-Cad D cells may be installed in the console along with the Standard Rechargeable Batteries. Used to power the Display Heater or as back up power. Supplied with a second charger. More than 6 hours service at -30°C.

Use of Non-Rechargeable Batteries

Can be powered by D size Alkaline batteries, but rechargeable batteries are recommended for longer life and lower cost over time.

Operating	Temperature	Range
-30°C to +5	50°C	

Storage	Temperature	Range
-30°C to	+50°C	

Dimensions

Console: 355 x 270 x 165 mm *Charger:* 120 x 95 x 55mm

Weights

Console: 5.8 kg Standard or Ancillary Rechargeable Batteries: 1.3 kg Charger: 1.1 kg

Transmitters available

IPC-9	200 W
TSQ-2E	750 W
TSQ-3	3 kW
TSQ-4	10 kW

In Canada

222 Snidercroft Rd. Concord, Ontario Canada, L4K 1B5	Fax:	(905) 669-2280 (905) 669-6403 (905) 06-964570
In the U.S.A.		
85 River Rock Drive Unit # 202 Buffalo, N.Y. U.S.A. 14207		(716) 298-1219 (716) 298-1317

IPR-12/94

APPENDIX 'B'

. . .

_

1

SCINTREX TSQ-3, I.P. TRANSMITTER

SCINTREX TSQ-3 Time and Frequency Domain IP and Resistivity Transmitter 3000 W

Function

The TSQ-3 is a multi-frequency, square wave transmitter suitable for induced polarization and resistivity measurements in either the time or frequency domain. The unit is powered by a separate motorgenerator.

The favourable power/weight ratio and compact design of this system make it portable and highly versatile for use with a wide variety of electrode arrays. The medium range power rating is sufficient for use under most geophysical conditions.

The TSQ-3 has been designed primarily for use with the Scintrex Time Domain and Frequency Domain Receivers, for combined induced polarization and resistivity measurements, although it is compatible with most standard time domain and frequency domain receivers. It is also compatible with the Scintrex Commutated DC Resistivity Receivers for resistivity surveying. The TSQ-3 may also be used as a very low frequency electromagnetic transmitter.

Basically the transmitter functions as follows. The motor turns the generator
 (alternator) which produces 800 Hz, three phase, 230 V AC. This energy is transformed upwards according to a front panel voltage setting by a large transformer
 housed in the TSQ-3. The resulting AC is then rectified in a rectifier bridge. Commutator switches then control the DC voltage output according to the waveform and frequency selected. Excellent output current stability is ensured by a unique, highly efficient technique based on control of the phase angle of the three phase input power.

Features

Current outputs up to 10 amperes, voltage outputs up to 1500 volts, maximum power 3000 VA.

Solid state design for both power switching and electronic timing control circuits.

Circuit boards are removable for easy servicing.

Switch selectable wave forms: square wave continuous for frequency domain and square wave interrupted with automatic polarity change for time domain.

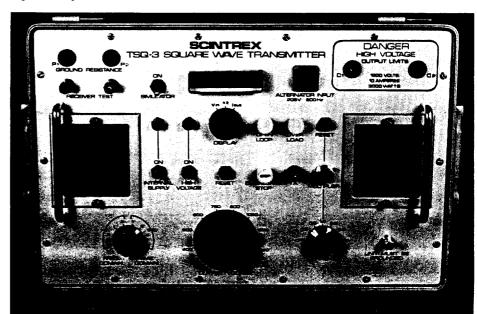
Switch selectable frequencies and pulse times.

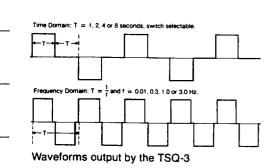
Overload, underload and thermal protection for maximum safety.

Digital readout of output current.

Programmer is crystal controlled for very high stability.

Low loss, solid state output current regulation over broad range of load and input voltage variations.


Rectifier circuit is protected against transients.


Excellent power/weight ratio and efficiency.

Designed for field portability; motor-generator is installed on a convenient frame and is easily man-portable. The transmitter is housed in an aluminum case.

The motor-generator consists of a reliable Briggs and Stratton four stroke engine coupled to a brushless permanent magnet alternator.

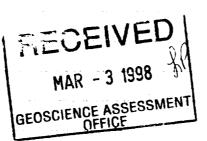
New motor-generator design eliminates need for time domain dummy load.

Technical Description of TSQ-3/3000W Time and Frequency Domain IP and Resistivity Transmitter

TSQ-3 transmitter with portable motor generator unit

222 Snidercroft Road Concord Ontario Canada L4K 1B5

Telephone: (416) 669-2280 Cable: Geoscint Toronto Telex: 06-964570


Transmitter Console	· · · ·
Output Power	3000 VA maximum
Output Voltages	300, 400, 500, 600, 750, 900, 1050, 1200, 1350 and 1500 volts, switch selectable
Output Current	10 amperes maximum
Output Current Stability	Automatically controlled to within $\pm 0.1\%$ for up to 20% external load variation or up to $\pm 10\%$ input voltage variation
Digital Display	Light emitting diodes permit display up to 1999 with variable decimal point; switch selectable to read input voltage, output current, external circuit resistance. Dual current range, switch selectable
Absolute Accuracy	±3% of full range
Current Reading Resolution	10 mA on coarse range (0-10A) 1 mA on fine range (0-2A)
Frequency Domain Waveform	Square wave, continuous with approximately 6% off time at polarity change
Frequency Domain Frequencies	Standard: 0.1, 0.3, 1.0 and 3.0 Hz, switch selectable Optional: any number of frequencies in range 0 to 5 Hz.
Time Domain Cycle Timing	t:t:t:t;on:off:on:off;automatic
Time Domain Polarity Change	each 2t; automatic
Time Domain Pulse Durations	Standard: $t = 1, 2, 4$ or 8 seconds Optional: any other timings
Time and Frequency Stability	Crystal controlled to better than .01%
Efficiency	.78
Operating Temperature Range	-30°C to +50°C
Overload Protection	Automatic shut-off at 3300 VA
Underload Protection	Automatic shut-off at current below 75mA
Thermal Protection	Automatic shut-off at internal temperature of +85°C
Dimensions	350 mm x 530 mm x 320 mm
Weight	25.0 kg.
Power Source	
Туре	Motor flexibly coupled to alternator and instal- led on a frame with carrying handles.
Motor	Briggs and Stratton, four stroke, 8 H.P.
Alternator	Permanent magnet type, 800 Hz, three phase 230 V AC
Output Power	3500 VA maximum
Dimensions	520 mm x 715 mm x 560 mm
Weight	72.5 kg
Total System	
Shipping Weight	150 kg includes transmitter console, motor generator, connecting cables and re-usable wooden crates

Ontario Ministry of Northern Du	Welopment Declaration of Assessment Performed on Mining Land Mining Act, Subsection 65(2) and 66(3), R.S.	Assessment Files Research Imaging
42A07NE2003 2.18227 EGAN	t work and correspond	3) of the Mining Act. Under section 8 of the Mining Act, this I with the mining land holder. Questions about this collection r, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.
nstructions: - For work performed - Please type or print	on Crown Lands before recording a claim, u in ink.	se form 0240.
Recorded holder(s) (Attach a	a list if necessary)	, e <u>i</u>
iame DivilnaD	KALTWASSER	Client Number 150541
ddress		Telephone Number
	448 - 8th AVE	705-273-2733 Fax Number
MATHESON	, ONT. POK IND	
Varne	RATION	Client Number 303255
ddress		Telephone Number 705 - 264 - 4750
<u> BCX 630</u>	1110 LAVIENE BLUD.	Fax Number
TIMMINS, C	NT. PUN 762	1
2. Type of work performed: Ch	eck (\mathbf{v}) and report on only ONE of the following	ng groups for this declaration.
Geotechnical: prospecting, s	urveys, Physical: drilling strip	
- assays and work under second		Office Use
Nork Type	T.P. SURVEYS	Commodity
		Total \$ Value of 26,410
Dates Work From 61 08	96 To 31 12 47	NTS Reference
Performed Day Month Slobel Positioning System Data (if available)	Year Day Month Year	Mining Division
anner Foerenning Operenii Mese (n ereinemo)	Mor G-Pian Number Mor G-Pian Number M-346/M-314/G-3971	Resident Geologist District
- provide pro - complete a - provide a n	ork permit from the Ministry of Natural Resource oper notice to surface rights holders before star nd attach a Statement of Costs, form 0212; nap showing contiguous mining lands that are o copies of your technical report.	rung work;
3 Dereon or companies who r	prepared the technical report (Attach a list if	f necessary)
the second se		Telephone Number
RAY MEIK	LE E. BOX 15 TIMMINS ONF PHN 705	765 - 268 - 4866 Fax Number
Address 170 SECOND AV	E. BOX 15 TIMMINS ONIT	705 - 360 - 7733
Name	PHN 7C5	Telephone Number
Address		Fax Number
Name	FECEIVED	Telephone Number
Address	MAR - 3 1998	Fax Number
	GEOSCIENCE ASSESSMENT	e personal knowledge of the facts set forth in

ແມ່ອີເ	Joolaradon	017100000	•••••••••••••••••••••••••••••••••••••••		-		
com	pletion and,	to the best	of my knowledge,	the	annexed	report i	s true.

SCHUMACHER, out. Telephone Number SCHUMACHER, out. Telephone Number PON 160 Deemed May 28/98 Fax Number Signature of Recorded Holder or Agent Agent's Address CE 53 Bex 802 E 0241 (03/97) FEB 27 1998 C 425pm N SION PORCUPINE

W9860.00149 W9880.00147 Recorded Holders (Supplementury List) CLIENT # 188 148 JACQUES ROBERT 321 HAILEYBURY CRES. PORCUPINE, ONT. Tel/FAX 705-235-8029 GEN DEL PON 100 CLIENT # 125156 DAVID E. DEMARCHI BOX 36 11 BRUCE ST. Tel 705-235-3888 SOUTH PORCUPINE, ON'T. ·····-· PON 1 HO HADDINGTON RESOURCES LTD. (OPTIONEE) 11th FLOOR - 808 WEST HASTINGS ST. CLIENT # VANCOUVER BC. 300 638 16c 2X4 Tel 604-687-7463 FAX 604-681-2578

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

work v minir colum	ng Claim Number. Or if was done on other eligible ng land, show in this nn the location number sted on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568	2	\$ 8,892	\$ 4,000	0	\$4,892
1	P-34452 PAT.	/	4732. ~		4722.	10.
2	P-34453 PAT.	1	3738:		3738.	
3	F-1128983	16	1685	6400.		
4	P-1128984	15	4490 · V	6000 .		
5	8-1156114	1	1148.		i148.	
6	P-1156115	1	816.	400.	416.	
7	P-1158834	/		400.		
8	P-1158840					
9	1- 1152841	1	1760.1	<u> </u>	1760.	
10	P-1158842	1	2630.1	<u> </u>	2630.	
11	P- 1175435	/		800.		
12	9-1175436	/		800.		
13	8-1175437	/	2040.	400.	1640.	
14	8-1175438			Ecro.		
15	8-1175439			800.		
	Column Totais	(Co,	HINGED	ON Ne	XT Puge	T

I, <u>NEIL</u> <u>MAC</u> <u>ISAAC</u>, do hereby certify that the above work credits are eligible under (Print Full Name) subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim

where the work was done.

Signature (of/Recorded Holder or Agent Authorized in Writing	Data					
	All techniques thomas of Adams and a strand	Date		$\sigma -$		A -	
			PA A	277	16		
	Per TVA Lear	1	1.00	σ	/ 4		
		A			(

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- 3. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

eceived Stamp	Deemed Approved Date	Date Notification Sent	
MECLEVISIN	Date Approved	Total Value of Credit Approved	
241 (03/97)	Approved for Recording by Mining	ing Recorder (Signature)	
FEB 27 1996 Č	· L		
y:25Ph D	OFIVED		
PORCUPINE MINING DIVISION	CEIVED		
£	MAR - 3 1998 CIENCE ASSESSMENT		
GEOS	CIENCE ASSESSMENT		
BLOO	OFFICE		

b. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this

	(P-3) (Com			<u>)w9880. 63147</u>	W9860.0	00149
work v minin colum	g Claim Number. Or if was done on other eligible g land, show in this in the location number ated on the claim map.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	J
eg	1234568	2	\$ 8,892	\$ 4,000	0	
16	P 1175 440		1301.	800.	501.	
211	P. 12.04143	2	410.	600		
718	P. 12042201	8	1660.	3200 .		
×14	P. 1204296	12		4800 .		
820	•	1				
\$21		4				
7						
8						
9						
10				*		
11						
12						
13						
14.						
15						
1	Column Totals		26,410.	26,400.	16,555.	10.

I,	NEIL	MAC ISAAC	, do hereby certify that the above work credits are eligible under
		(Print Full Name)	

subsection 7 (1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date Fit 25 mg / 98

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

- 1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.
- 2. Credits are to be cut back starting with the claims listed last, working backwards; or
- **3**. Credits are to be cut back equally over all claims listed in this declaration; or
- 4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

Received Stamp	ARMAR	Deemed Approved Date	Date Notification Sent
	S USE V E	Date Approved	Total Value of Credit Approved
0241 (03/97)	FEB 27 1998 C	Approved for Recording by Mining	a Recorder (Signature)
	4:25ph A		
	PORCUPINE MINING DIVISION	RECEIVE	
		MAR - 3 1993	
		GEOSCIENCE ASSESSMI	ENT

•		
Ø	Ontario	Mir No and

PORCUPINE M

G DIVISION

finistry of forthern Development nd Mines

Statement of Costs for Assessment Credit

<u>W9880.</u> 00147 Transaction Number (office use) W9860.00 14

Personal information collected on this form is obtained under the authority of subsection 6 (1) of the Assessment Work Regulation 6/96. Under section 8 of the Mining Act, this information is a public record. This information will be used to review the assessment work and correspond with the mining land holder. Questions about this collection should be directed to a Provincial Mining Recorder, Ministry of Northern Development and Mines, 3rd Floor, 933 Ramsey Lake Road, Sudbury, Ontario, P3E 6B5.

			·	
Work Typ e	Units of work Depending on the type of work, list the nu hours/days worked, metres of drilling, kik grid line, number of samples, etc.		Cost Per Unit of work	Total Cost
MAY SURVEY	4.5 K.n	7	<i>85.</i>	383
DATA PROCESSING -1			etc	600.
DATA PROCESSING -1 T.P. SURVEY	16 DAYS		1450.	22 800
ASSESSMENT	REPORT & MAPS	Beno	a sections	600
			Sub. Tot.	24,383
			6.57.	1707
SUPERVISION	1.5 DAY5		200 ./dy.	300
Associated Costs (e.g. supplie	es, mobilization and demobiliza	tion).		
· · · · · · · · · · · · · · · · · · ·	SUPPLIES			20
	<u></u>			
	- defice Cooks			
	ortation Costs			
Food and	Lodging Costs			
	+ RECEIVED			
·	8201 2 0112			26,410
	MAR - 3 1998 GEOSCIENCE ASSESSMENT	Total V	alue of Assessment Work	26,410
Calculations of Filing Discounts:	OFFICE	ļ		
 Work filed within two years of perf If work is filed after two years and Value of Assessment Work. If this 	up to five years after performance	e, it can only	y be claimed at 50% of the i	ork. Fotal
TOTAL VALUE OF ASSESSMENT W	ORK	x 0.50 =	Total \$ value of	worked claimed.
 Note: Work older than 5 years is not elig A recorded holder may be required request for verification and/or communister may reject all or part of the second second	d to verify expenditures claimed in rection/clarification. If verification	n this staten and/or corre	nent of costs within 45 days ection/clarification is not mac	of a le, the
Certification verifying costs:				
I, <u>AEIL MAC ISAA</u> (please print full name) be determined and the costs were inc	, do hereby certify, that the curred while conducting assessme	amounts sh nt work on t	own are as accurate as may he lands indicated on the ac	reasonably companying
Declaration of Work form as	AGENT		I am authorized to make	
	ed holder, agent, or state company position with	signing authority)	
0212 (03/97) FEB 27 1996	Signature Mer	l n	nue Jonar A.	1 27/98
4:25 BM			• •	/

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

May 13, 1998

RICHARD F. KALTWASSER P.O. BOX 34 MATHESON, Ontario P0K-1N0

Geoscience Assessment Office 933 Ramsey Lake Road 6th Floor Sudbury, Ontario P3E 6B5

Telephone: (888) 415-9846 Fax: (705) 670-5881

Dear Sir or Madam:

Submission Number: 2.18227

		Status
Subject: Transaction Number(s):	W9860.00149	Deemed Approval
	W9880.00147	Deemed Approval

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Steve Beneteau by e-mail at benetest@epo.gov.on.ca or by telephone at (705) 670-5855.

Yours sincerely,

~ Ha

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

Correspondence ID: 12264 Copy for: Assessment Library

Work Report Assessment Results

Submission Num	n ber: 2 .18227				
Date Correspond	lence Sent: May 13	, 1998	Assessor:Steve Bene	eteau	
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9860.00149	1128983	SHERATON, TIMMINS	Deemed Approval	April 29, 1998	
Section: 14 Geophysical M 14 Geophysical IF		,			
Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9880.00147	1204220	EGAN	Deemed Approval	April 29, 1998	
Section: 14 Geophysical IF					

14 Geophysical MAG

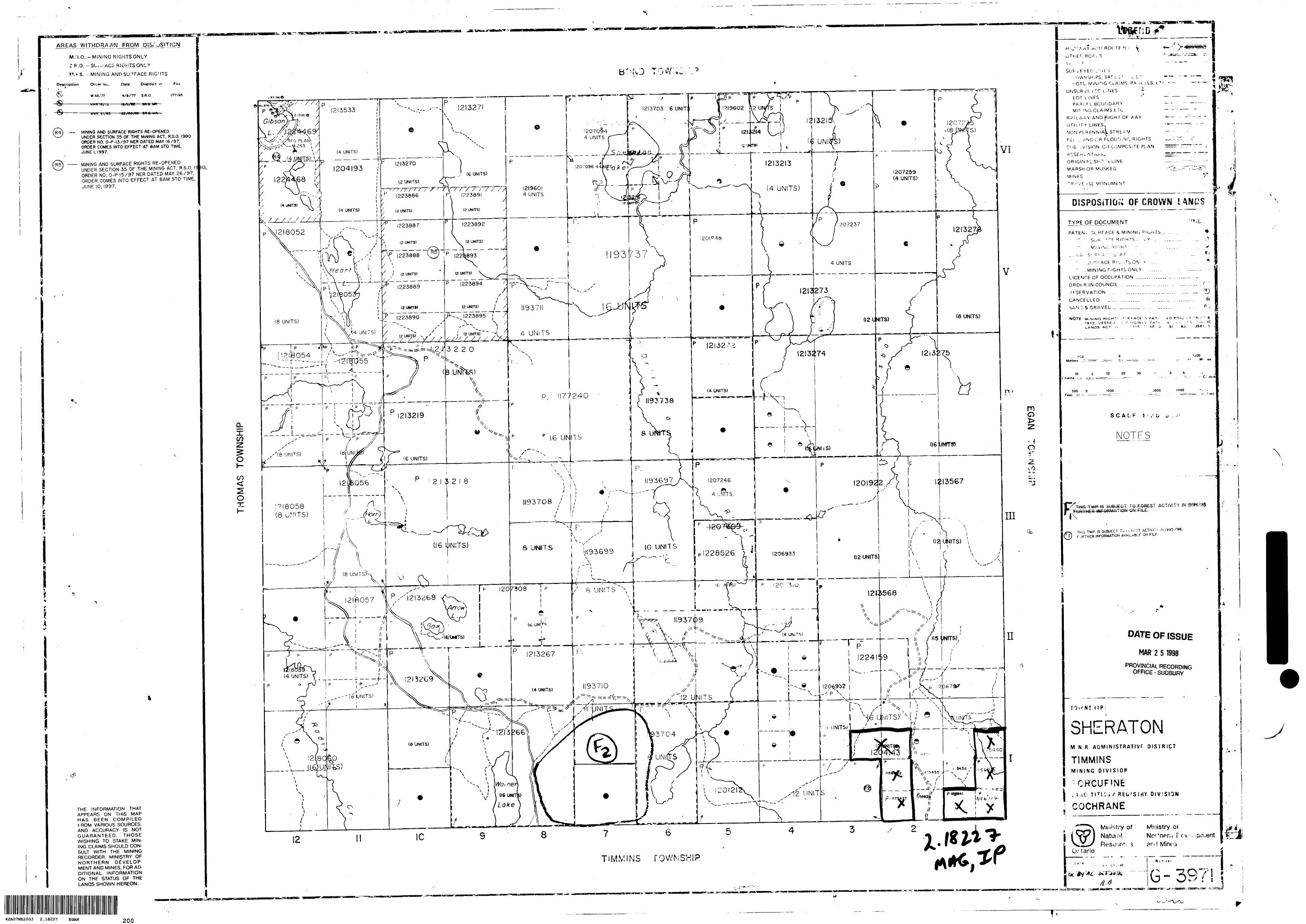
Work Report Assessment Results

Submission Number: 2.18227

Correspondence to:

Resident Geologist South Porcupine, ON

Assessment Files Library Sudbury, ON Recorded Holder(s) and/or Agent(s): Neil MacIsaac SCHUMACHER, ONTARIO, CANADA


RICHARD F. KALTWASSER MATHESON, Ontario

JCL CORPORATION TIMMINS, ONTARIO

JACQUES ROBERT PORCUPINE, Ontario

DAVID ENIO DEMARCHI SOUTH PORCUPINE, ON

HADDINGTON RESOURCES LTD. VANCOUVER, B.C.

4

MICHIE TWP. M. 301

32

42A07NE2003 2.18227 EGAN

210


	CCC.	
EGAN TWP 2. 18227 M. 346 HOT 2 HOT 10 HOT 12 MAG 1P	NOTES 400' surface rights reservation along the shores of all lakes and rivers.	
122977 1122977 1122977 1122984 P 1122047 1128984 P 1128984	Areas withdrawn from staking under Section 43 of the Mining Act_R.S.0.1970. Order No. File Date Disposition (%) #857/77 192164 28/6/77 S.R.O. (%) #86/77 188543 27/10/77 S.R.O. (%) #86/77 188543 10/10/78 S.R.O. (%) #34185 183543 10/10/78 S.R.+M.R.	
6 1228945 1228850 1228850 1228850 1228850 1228850 1228850 1228850 1228852 1020450 1228852 1020450 1228852 1020450 1228852 1020450 1000450	THIS TWP. IS SUBJECT TO FOREST ACTIVITY IN 1995/96. FURTHER INFORMATION IS AVAILABLE ON FILE.	
1028476 +028476 1028477 1/2 UNITS) 1028476 +028476 1028476 1028476 +028476 1028476 1228851 1029904 +029900 100000 1029904 +029900 100000 1228853 1000 1 1228853 1000 1 1224507 1224507 F.O. P.OI/98	LEGEND PATENTED LAND PATENTED TOR SUBJEACE RIGHTS ONLY LEASE LICENSE OF OCCUPATION CHOWN LAND SALES LOCATED LAND CANCELLED MINING RIGHTS ONLY SURFACE RIGHTS ONLY SURFACE RIGHTS ONLY HIGHWAY & ROUTE NO. ROADS TRAILS MARSH OR MUSKED MINES 'used only with summer resort locations or when space is limited	
P 1203973 HZ7450 HZ7450 HZ7470 HZ7450 HZ7460 HZ7	TOWNSHIP OF TOWNSHIP OF TOWNSHIP OF DATE OF ISSUE DATE OF ISSUE DISTRICT OF MAY 15 COCHRANE PROVINSIAL RECORDING PROVINSIAL RECORDING PROVINSIAL RECORDING DESCRIPTION DESCRIPTI	THE INFOPMATION APPEARS ON THIS HAS BEEN COMP FROM VARIOUS SCUP AND ACCURACY IS GUARANTEED. TH WISHING TO STAKE ING CLAIMS SHOULD SULT WITH THE MI RECORDER, MINISTR NORTHERN DEVE MENT AND MINES, FO DITIONAL INFORMA ON THE STATUS OF LANDS SHOV/N HERE
GM CM	DATE MARCH 71 PLAN NO. M.314 ONTARIO MINISTRY OF NATURAL RESOURCES SURVEYS AND MAPPING BRANCH	

ZMIMMIT ±₩₽

1314

AF8.M

MAP ILED RCES, NOT IOSE MIN-CON NING Y OF LOP R AD ION

				LINE: 1800 E
		55 <u>pn 575n 60pn 625n 65pn 675n 70pn 725n 75pn 775n 80pn 825n 85</u> pn M9 CHG. NII 4.8 6.4, 10 <u>9 10-8</u> , 5.9 8.3, 11.8 15.1 13, 3,,,,-8.6, 1.8 .9 .9	19 CHG.	INDUCED POLARIZATION SURVEY POLE-DIPOLE ARRAY
		N=2 4.5 10,2 $=$ 7.2 7.4 11.4 13.0 14.3 17.0 15 1.3 1.0 .5 N=3 6.1 $=$ 7.2 7.4 11.4 13.0 14.3 17.0 15 1.3 1.0 .5 N=3 6.1 $=$ 7.0 8.4 9.1 11.1 10.4 0 01.2 .9 1.3 .6 1.0 N=4 $=$	N = 1 N = 2 N = 3 N = 4 N = 5	
			NıĢ	N = 1, 2, 3, 4, "A" SPACING = 25,0 METRES RECEIVER: SCINTREX IPR-12 TIME POMAIN RX-TX TIMING: 2 *** ON 2 *** OFF TRANSMITTER; SCINTREX TSQ-3 3KVA &LICE TIMING: 310-405 #* PLOTTED WINDOW: SLICE #9
		RESISTIVITY Nº1 2.1K 6.0K 2.8K 5.5K 2.8K 7.1K 6.7K 21.8K 20.8K, 1,3K 26.0 170.0 129.0	RESISTIVITY	HADDINGTON RESOURCES LTD
		N12 2.0K 3.5K 4.0K 4.0K 3.3K 4.8K 0.1K 2.9K 1.4K 20.0 368.0 419.0 368.0 342.0 N13 1.3K 4.0K 3.1K 4.5K 2.7K 6.6K 2.9K 1.4K 20.0 368.0 419.0 368.0 342.0	N = 1 N = 2 N = 3	SHERATON - TIMMINS - EGAN
		N:4 1,4K 3.8K 3.5K 3.9K 3.9K	N = 4	PROPERTY
		NI6 2.7K 3.0K 4.2K 7.0K 236.0 353.0 419.0 466.0 542,0 659.0 671.0 670.0	N : 5 N : 6	DATE : DEC.\97 REF : 05
				SCALE = 1: 2500
				GEOPHYSICAL ENGINEERING & SURVEYS 1
		<u> </u>	·	
				LINE : 2000 E
				INDUCED POLARIZATION SURVEY
	N 1 N 2	⁶ ⁶ ² , 0 ² , 1 ² , 7 ¹ , 2 ¹ , 2 ¹ , 2 ¹ , 7 ¹ , 0 ¹ , 9 ¹ , 0 ¹ , 9 ¹ , 8 ¹ , 5	9 CHG. N:1 N:2	POLE-DIPOLE ARRAY
	N : 9 N : 4 N : 5 N : 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N = 4 N = 4 N = 5 N = 6	ΔΗΒ ΔΗΒ ΔΕΡΤΗ ΡΟΣΗΤ Ν = 1, 2, 3, 4, "A" SPACING = 25,0 ΜΕΤRES
		45 <u>pn 475n 50pn 525n 55pn 575n 60pn 625n 65pn 675n 70pn 725n 75pn 775n 80pn 625n 85pn 87</u> 5n		RECEIVER: SCINTREX IPR-12 TIME DOMAIN RX-TX TIMING: 2 sec ON 2 sec OFF TRANSMITTER: SCINTREX TSG-3 3KVA SLICE TIMING: 310-405 me PLOTTED WINDOW: SLICE se
RESISTIVITY	N=1		ESISTIVITY Nº1	HADDINGTON RESOURCES LTD
	N 12		N = 2	SHERATON - TIMMINS - ECAN

	N:3 550.0 \$87.9 829.0 \$48.0 566.0 485.0 452.0 361.0 340.0 328.9 272.0 221.0 244.0 219.0 495.0 201.0 169.0 165.0 N:4 729.0 \$607.0 879.0 \$75.0 \$55.0 \$26.0 540.0 567.0 452.0 401.0 334.0 314.0 298.0 267.0 260.0 237.0 216.0 21	ντε Ο Νι3 Ισο Νι4	SHERATON - TIMMINS - EGAN
	N:5 522.0 543.0 855.0 958.0 795.8 896.0 704.0 629.0 520.0 464.0 449.0 365.0 348.0 338.0 292.0 292.8 662.	0 552.0 N:5	PROPERTY
	N:6 456.8 684,0\894.0 1.11850,0871.0832.0693.0577.0599.0508.0412.0424.0352.0352.0510.86	87.0673,0 N16	DATE : DEC.\97 REF : 05
			SCALE = 1: 2500
······	·		GEOPHYSICAL ENGINEERING & SURVEYS
		· ·	
· · · ·		· · · · · · · · · · · · · · · · · · ·	LINE : 2200 E
			INDUCED POLARIZATION SURVEY
M9 CHG,	\$5 <u>ри 575и вори 625и 65ри 675и 70ри 725и 75ри 775и 80ри 825и 85ри 875и 90ри 925и 95ри 975и</u>	M9 CHG.	
	N:1 ,6 1.3 1.1 1.2 .9 .8 .8 .5 .8 .8 .9 .7 1.3 .4 .5 .3 1.4 1.2	2 Nº1	POLE-DIPOLE ARRAY
	N12 1.0 1.5 1.1 1,0 .8 .7 .8 .8 1.1 .6 1.4 .1 1.8 $2:3$ 2.1 N19 1.0 1.5 .9 1.0 .8 1.3 .9 1.0 .9 1.2 .4 .6 .4 .1 1.8 $2:3$ 2.1	N = 2	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ן אין דאין אין אין אין אין אין אין אין אין אין
	N=5 .6 1.5 .9 1.4 .8 1.2 1.7 1.0 1,5 .8 .8 .8 .8 .8 .8 2.6 2.9 2.5 9.6		
	N=6 1.0 1,2 .9 1.5 1,3 1.5 1.6 1.6 .9 1.4 .1 /3.3 3.0 2.7 3,1 3.8	3.2 3,1 N:6	рертн ^р езит N = 1, 2, 3, 4,
			"A" SPACING = 25.0 ΜΕΤRES
			RECEIVER: SCINTREX IPR712 TIME DOMAIN
		~	RX-TX TIMINS: 2 BOC ON 2 BOC OFF Transmitter; Scintrex TSQ-3 3KVA
			\$LICE TIMING: 310-405 ms Plotted Window: Slice #9
RESISTIVITY	55 <u>0N 575N 600N 625N 650N 675N 700N 725N 750N 775N 800N 825N 850N 875N 900N 825N 950N 97</u> 5N	RESISTIVITY	
,	Nº1 124.0 147.0 171.0 156.0 151.0 131.0 107.0 96.0 100.0 115.0 140,0 123.0 122.0 103,0 75.0 55.0 395.0 378.0	N=1	HADDINGTON RESOURCES LT
	N:2 258.0 34 3.0 251.0 22210 221.0 184.0 182.0 201.0 245.0 283.0 233.0 21010 187.0 184.0 81.0 253.0 671.0 537.0 N:3 464.0 404.0 307.0 289.0 271.0 289.0 921.0 415.0 459.0 356.0 91+0 288.0 200,0 148.5 1.5 k 1: 1803.0 475.0	N12	SHERATON - TIMMINS - EGAN
	N:4 490.0 A66.0 387,0 351.0 370.0 440.0 694.0 670.0 506.0 426.0 351.0 250.0 192.0 19	D N:3 ,1-2K N:4	
	N15 541.0 570.0 464.0 465.0 575.0 778-8 904.0 601.0 558.0 452.0 325.0 245 2/2 / 2.8K 2.2K 1.61836.0 1.5	5 <u>K</u> 1.4K N:5	PROPERTY
	NIE 646.0 673,0 597.0 702.0.871, p T. TROTT. 0 718.0 572.0 104.0 298.0/12 11K 2.7K 2.2K 1.1K T.9K	1.7K 1,5K N16	DATE : DEC.\97 REF # 05
			SCALE = 1: 2500
			GEOPHYSICAL ENGINEERING & SURVEYS I
			HADD AGTON RERSOURCES LTD.
			SHERATON - TIMMINS - EGAN TWP, PROP
			I.P. PSUEDOSECTIONS - NE LINES
			PLATE 1 of 1 1:2500
NE2003 2.18227	EGAN 230		

			LINE :	700 E
	10 <mark>0\$ 756 506 258 0N 25N 50N 10DN 125N 15</mark> DN		INDUCED POL SURV	
MĄ CHG. N N	1,0 .9 .8 .8 .7 1.1 -5 .9 -3.9 2.0	M9 CHG. N:1	POLE-DIPOLE	ARRAY
	· · · · · · · · · · · · · · · · · · ·	N # 2 N # 3	- <u></u> ®-,	ـــــــ ۲Φ٦
N	2.7 1.4 (-,4 .2 .2 1.0 (3 1.3 1.7	N # 4 N # 5	BEPTH	
	1005,758,508,258,0N,25N,50N,75N,100N,125N,150N RE\$ISTIVITY 130,0126.0121.0103.0109.0104.089.0119.0102.094.0102.0 N:1 130,0126.0121.0103.0109.0104.089.0119.0102.094.0102.0 N:1 121,193.0188.0185.0188.0159.0160.0147.0161.0202.0181.0143.0 N:2 133,216.0259.0258.0247.0256.0210.0209.0228.0255.0209.0 N:3 241,363.0270.0313.0324.0315.0251.0269.0254.0256.0297.0 N:4 363.0270.0313.0392.0364.0323.0339.0254.0255.0269.0252.0 N:4	N16	N = 1, 2, 3 "A" SPACING = 1	
			RECEIVER: SCINTREX RX-TX TIMING: 2 •• Transmitter: Scint Slice Timing: 310- Plotted Window: Sl	REX TSQ-3 3KVA 405 m:
RĘSISTIVITY N		RESISTIVITY N:1	HADDINGTON RES	OURCES LTI
N		I	SHERATON - TIMM	TNS - EGAN
N		I		ITNO LOAN
N		•	PROPER	RTY .
N			DATE : DEC.197	REF : G5
			\$CALE = 1	; 2500
			GEOPHYSICAL ENGINEER	

	LINE: 800 E
M9 CHG.	INDUCED POLARIZATION
M9 CHG.	SURVEY
M1 $2.2 \ 2.4 \ 2.8 \ 2.6 \ 2.7 \ 5.0 \ 2.9 \ 2.4 \ 2.3 \ 3.2 \ 5.3 \ 3.2 \ 5.3 \ 3.2 \ 5.3 \ 3.2 \ 5.3 \ 5.4 \ 5.3 \ 5.4 \ 5.3 \ 5.4 \ 5.4 \ 5.5 \ 5$	POLE-DIPOLE ARRAY

	45 <u>05,4258,4008,3758,3508,3256,3008,2758,2508,2258,2008,1758,1508,1258,1008,758,508,258,0</u> N		RECEIVER: SCINTREX IPR-12 TIME DOMAIN RX-TX TIMING: 2 eep ON 2 eep OFF TRANSMITTER: SCINTREX TSQ-3 3KVA SLICE TIMING: 310-405 me PLOTTED WINDOW: SLICE #9
RESISTIVITY Nº1 Nº2 Nº3	349.0 338.0 428.0 418.0 370.0 312.0 290.0 218.0 165.0 166.0 128.0 119.0 103.0 129.0 114.0 131.0 128.0 83.0 129.0	RESISTIVITY	HADDINGTON RESOURCES LT
	756.0 875.0 508-0 610.0 578.0 498.0 450.0 383.0 266.0 238.0 231.0 219-0 185.0 179.0 189.0 183.0 224.0 175.0 138.0	N 12	
		N 13	SHERATON - TIMMINS - EGAN
N : 4	1.8K 1.3K 1. He15, 0 838.0 733.0 732.0 675.0 588.0 539-8.415.0 414.0 396.0 376.0 310-0 289.0 354 0 319.0 319.0 377.0	N = 4	
N # 5	2.7K 2.0K 1.2H 39.0 064.0 78 .0 787.0 928.0 682.0 629.0 520.0 501.0 496.0 428.0 380.0 358.0 393.0 389.0	N15	PROPERTY
N 16	3.0K 3.0K 2.1K 1.5K 1.2H033.0 845.0 825.0 828.0 826.0 771-0.760.0 607.0 616.0 552.0 511.0 456.0 414.0 464.0	N 16	DATE : DEC.\97 REF : 05
			\$CALE = 1; 2500
			GEOPHYSICAL ENGINEERING & SURVEYS

			LINE :	900 E
M9 CHG- N N N N N N N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N M9 CHG. 1.0 N 1 .9 N 12 N 13 N 14 N 15 N 16	RX-TX TIMING: 2	E ARRAY
RESISTIVITY		HADDINGTON RE	0-405 m: BLICE #9	
. Na		143.0 Nº1 TO Nº2	- II	
N =	753.0 571.0 \$75.0 497.0 503.0 598.0 424.0 290.0 30510 519.0 346.0 369.0 347.0 422.0 363.0 368.0 368.0 368.0 368.0	N 13	SHERATON - TIM	MINS - EGAN
N 3	1.11852.0 627,0 689.0 652.0 728.0 725.0 552-0 365.0 433.0 417.0 438.0 479.0 809.0 416.0 485.0 504.0 508.0	N : 4	PROPE	RTY
N #	1.3K 1.21008.0 789.0 852.0 801.0 837.0 890.0 960.0 450.0 537.0 588.0 537.0 795-8 587.0 328.0 628.0 645.0	N 15		- ite
N	1.6K 1.4K 1.2K 1.0H858.0 1.0H893.0 988.0 + 0K82 0 \$38.0 633.0 600.0 858.0 714.0 690.0 658.0 773.0	N *B	DATE : DEC.\97	REF : G5
			\$CALE = 1	: 2500
			GEOPHYSICAL ENGINEER	

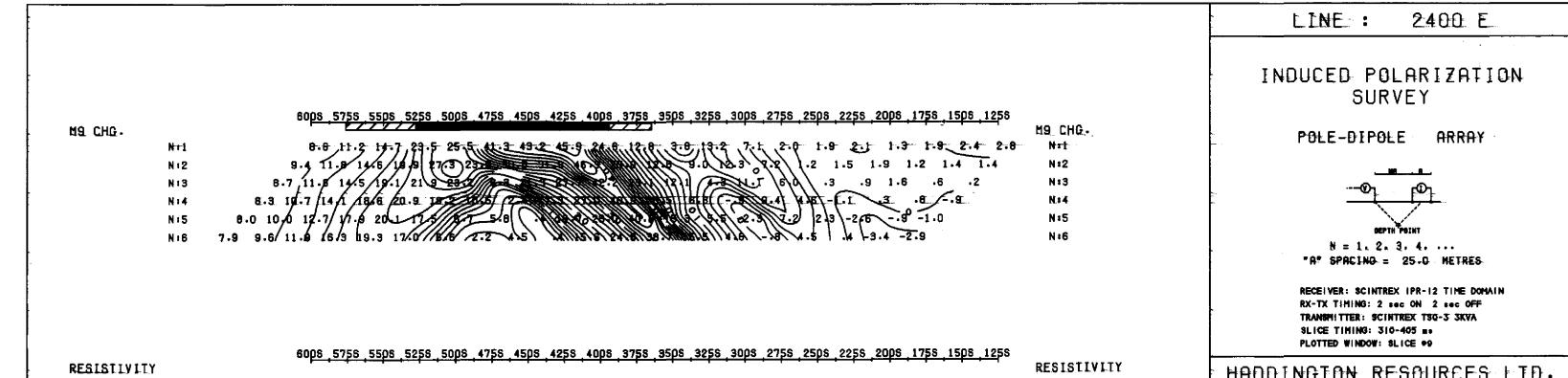
			LINE : 1000 E
19 CHG. Nº1 Nº2 Nº3 Nº4 Nº5 Nº6	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 4505 & 4255 & 4005 & 3758 & 3505 & 3255 & 3008 & 2758 & 2598 & 2258 & 2008 & 1756 & 1505 & 1258 & 1005 & 758 & 508 & 258 & 0N \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 4505 & 4255 & 4005 & 3758 & 3505 & 3255 & 3008 & 2758 & 2598 & 2258 & 2008 & 1756 & 1505 & 1258 & 1005 & 758 & 508 & 258 & 0N \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 4505 & 4255 & 4005 & 3758 & 3505 & 3256 & 3008 & 2758 & 2598 & 2258 & 2008 & 1756 & 1505 & 1258 & 1005 & 758 & 508 & 258 & 0N \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \bigg \\ \\ \end{array} \\ \end{array}$	M9 CHG. N:1 N:2 N:3 N:4 N:5 N:6	INDUCED POLARIZATION SURVEY POLE-DIPOLE ARRAY
	45 <u>08,4255,4008,3755,3505,3258,3008,2755,2508,2258,2006,1758,1505,1255,1005,758,508,255,0</u> N		RECEIVER: SCINTREX IPR-12 TIME DOMAIN RX-TX TIMING: 2 100 ON 2 100 OFF TRANSMITTER: SCINTREX T6Q-3 3KVA SLICE TIMING: 310-405 m PLOTTED WINDOW: SLICE 09
RESISTIVITY Nº1	285 0 244 0 221 0 229 0 146 0 218 0 258 0 827 0 416 0 429 0 4\$7 0 348 0 390 0 258 0 254 0 211 0 244 0 216 0 308 0 444 0 371 0 326 0 390 0 346 6 260 0 362 0 414 0 496 0 378 0 586 0 650 0 553 0 557 6 491 0 453 0 413 0 424 0 433 0 643 0 528 0 479 0 490 0 554 0 567 0 363 0 511 0 566 0 672 0 704 0 548 0 756 0 817 6 691 0 690 0 587 0 667 0 845 0 758 0 857 0 669 0 642 0 787 0 653 0 474 0 613 0 600 0 641 0 758 0 846 0 1 0 0 848 0 1 0 10 0 887 0 887 0 827 0	RESISTIVITY N:1 N:2 N:3 N:4 N:5	HADDINGTON RESOURCES LTD.
N #2 N : 3 N : 4 N : 5			SHERATON - TIMMINS - EGAN PROPERTY
N 16	1.2K 1.1K 1.2K 1.2K 9 POK 1 -01995.0 1.2012.0558.0701.0713.0790.0986.0 1.2K 1.4K 1.4K 1.4K 1.4K	NIB	DATE : DEC.\97 REF : G5
			SCALE = 1 = 2500
			GEOPHYSICAL ENGINEERING & SURVEYS INC.

2108227

In

· · ·

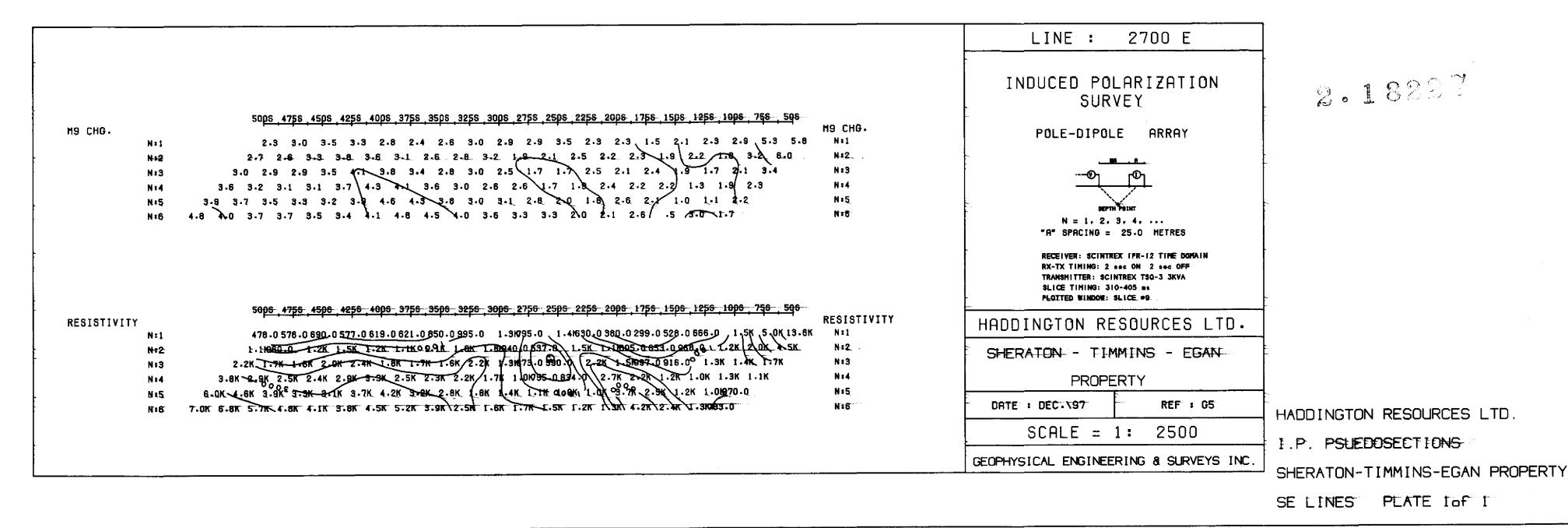
.


•

HADDINGTON RERSOURCES LTD. SHERATON - TIMMINS - EGAN TWP. PROPERTY I.P. PSUEDOSECTIONS - NW LINES PLATE 1 of 1 1:2500

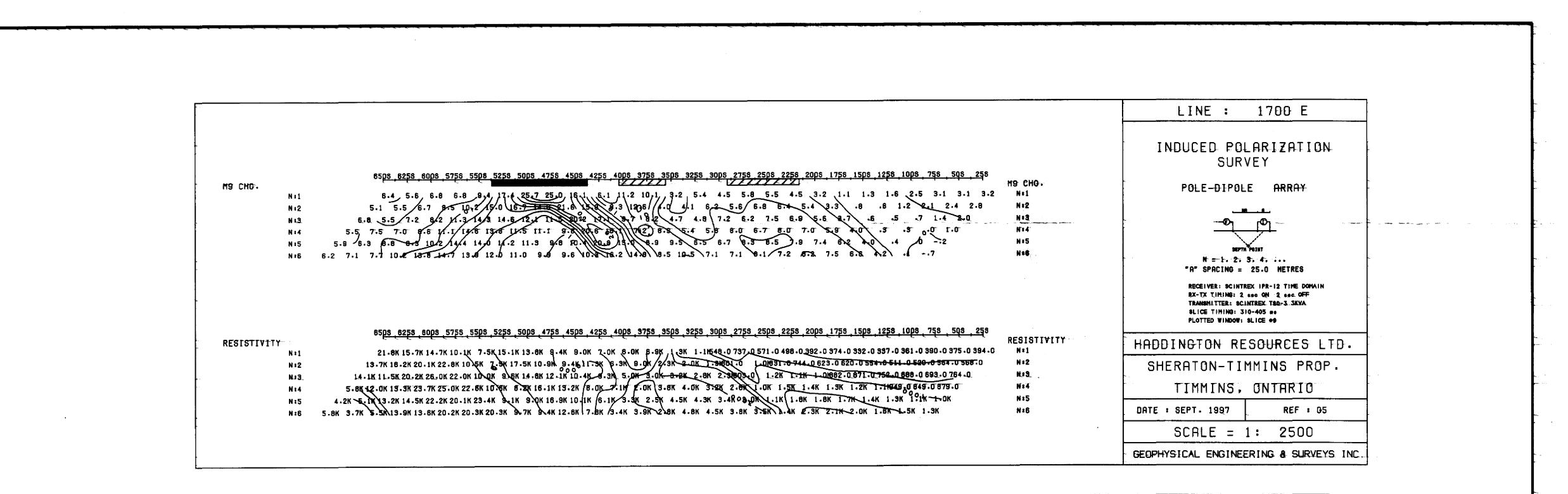
42A07NE2003 2.18227 EGAN

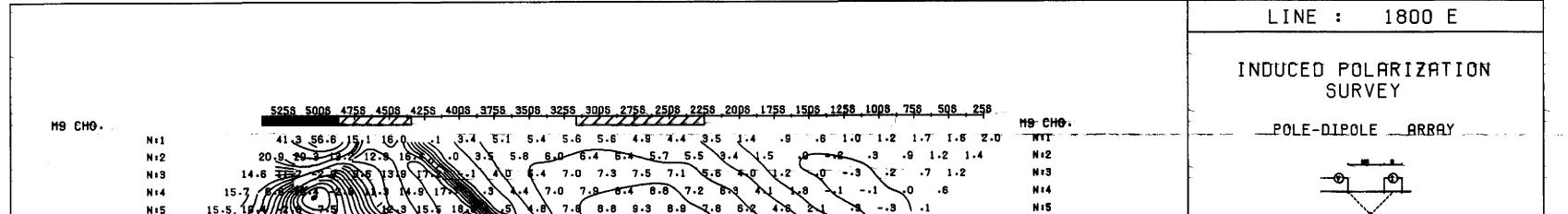
			LINE :	2300 E
M9 CHG. N+1 N+2 N+3 N+4 N+5	$\begin{array}{c} 5755 5505 5255 5005 4755 4505 4255 4005 3755 3505 3255 3005 2755 2505 2255 2005 1755 1505 1255 1005 755 505 925 925 9255 9255 9255 9255 9255 $	M9 CHG+ N=1 N=2 N=3 N=4 N=5		/EY
N 16	9.2 8.3 7.4 70.6 7.0 7.4 10 2 2.8 23.1 22 9 90 2 3 1 2 3 9 30 2 3 3 - 3.3 - 3.9 - 4.7 - 4.4 - 4.4 - 4.0 - 3.7 - 1.8	N≢6	RX-TX TIMING: 2	25-0 METRES EX IPR-12 TIME DOMAIN See ON 2 Sec OFF NTREX TSQ-3 3KVA 0-405 ms
RESISTIVITY N+1	57 <u>55,5595,5258,5095,4755,4595,4255,4098,3755,3598,3256,3095,2758,2598,2258,2095,1755,1595,1255,1095,755,5</u> 98 3.0K 6.0K 11.4K, 2.7K 1.1613.0 385.0 240.0 265.0 212.0 226.0 175.0 239.0 258.0 251.0 271.0 240.0 265.0 287.0 391.0 526.0 554.0	RESISTIVITY	HADDINGTON RE	SOURCES LTD.
N #2 N #3 N #4	3.0K 3.0K 7.1K 3.9K 7.1K 1.5K 1.1094.0482.0548.0450.0427.0345.0441.0498.0506.0461.0456.0509.0481.0822.0821.0 3.5K 2.6K 2.2K 2.4K 4.5K 3.0K 2.2K 1.6K 1.1094.0913.0914.0637.0629.0660.0760.0712.0704.0684.0692.0616.077740 3.1K 3.0K 2.1K 1.5K 2.7K 5.0K 5.0K 5.0K 5.0K 2.5K 1.6K 1.2K 1.3051.0835.0838.0835.0838.0951.0979.0862.0851.0821.0507.0 2.3K 2.5K 2.5K 1.6K 1.6K 1.6K 5.2K 3.9K 6.2K 3.9K 6.0K 2.4K 1.5K 1.8K 1.2K 1.0K 1.2K 1.3K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K 1.2	N 12 N 13 N 1 4	SHERATON - TIM PROPE	
N # 5 N # 6	2.3K 2.5K 2.5K 1.7K 1.8K 3.8K 8.1K R.6K 5.0K 4.0K 2.7K 2.0K 1.9K 1.4K 1.3K 1.2K 1.3K 1.5K 1.5K89.0815.0	N = 5 N = 6	DATE : DEC.\97	REF : G5
			SCALE = 1	: 2500
			GEOPHYSICAL ENGINEE	RING & SURVEYS INC.

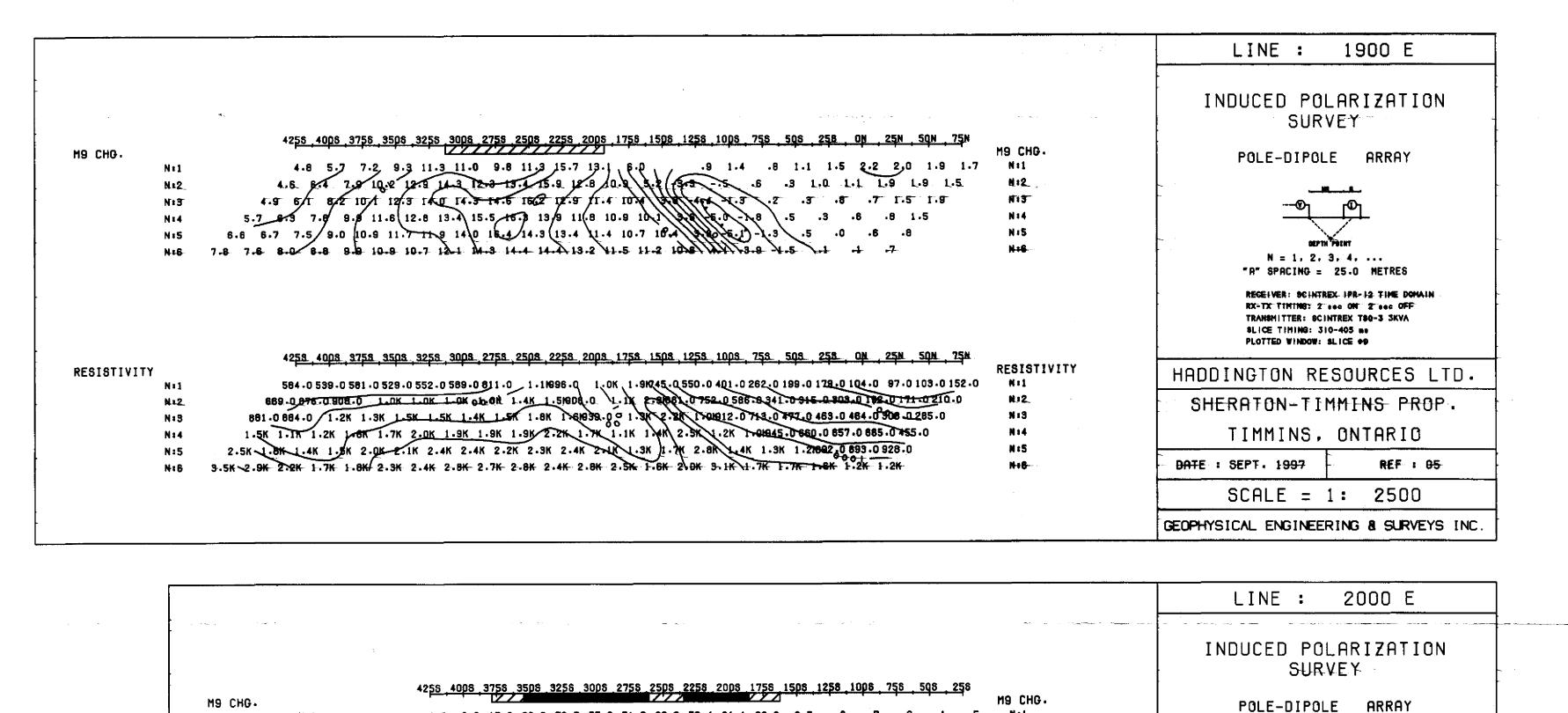


REGIOLIYALI	1 786.0 901.0 1.0K 1.2K 1.6K 2.2K 2.0K 1.4K 1.8K 1.1V18.0, 6.6K 2.3K 2.0K 1.5K58.0351.0381.0335.0335.0	NYI	FHUULNULUN RESU	JUREES LIU.
I	2 1.3K 1.5K 1.9K 2-1K 1.6K 1.6K 2.2K 3.1K 1.5K 3.1K 1.2K 1.5K 2.3K 2.4K 2.000 2.0586.0527-0377.0	N#2	SHERATON - TIMM	1INS - EGAN
I	1.4K 1.9K 2.3K 2.9K 2.6K 1.6K 2.6K 2.8K 3.4K 2.7K 2.7K 2.7K 1.0K 2.3K 3.TK 2.8K 1.4K 2.7K 2.7K	N = 3		
l	4 1.8K 1.9K 2.6K 320K 3.2K 2.9K 2.1K 2.4K 5.9K 5.0K 2.3K 3.6K 1 104 3 4 2.7K 2.8K 2.9K 4.28629.0	N=4	PROPER	YTY
l	5 2.1K 2.3K 2.5K 9.2K 3.1K 2.7K 2.5K 2.3K 2.8K 4.5K 4.5K 4.5K 2.8K 1.5K 2.8K 1.5K 2.9K 2.2K 3.0K 3.0K 1.0K	N = 5		······································
I	16 2.6K 2.5K 2.7K 2.9K 3.1K 2.3K 2.8K 2.7K 2.6K 3.8K 4.0K 5.8K 2.2K 2.8Heb6 b 42 3 3.2K 2.4K 3.2K 2.7K	N#6	DATE : DEC.\97	REF : G5
			SCALE = 1:	2500
			GEOPHYSICAL ENGINEERI	NG & SURVEYS INC.

		LINE : 2500 E
M9 CHG. N = 1 N = 2 N = 3 N = 4 N = 5 N = 6	$\begin{array}{c} 55p5 5255 50p5 4758 45p5 4255 40p5 3755 35p5 3258 30p6 2758 25p6 2255 20p5 1758 15p6 1258 10p5 755 508 \\ \hline $	INDUCED POLARIZATION SURVEY POLE-DIPOLE ARRAY
	55 <u>08 5258 5008 4758 4508 4255 4008 3758 3505 3258 3005 2758 2508 2258 2008 1758 1508 1258 1008 755 50</u> 8	RECEIVER: SCINTREX IPR-12 TIME DOMAIN R X-TX Timing: 2 sec QN 2-sec QFE Transmitter: Scintrex TSQ-3 3KVA SLICE Timing: 310-405 ms Plotted Window: SLICE #9
RESISTIVITY N:1 2.5K 5.6K 7.3K 8.5K 6.9K 5.1K 1.8K 2.9K 1.4K 1.3H09 0.344 N:2 1.9K 4.4K 7.9K 6.6K 7.5K 6.2K 3.7K 2.6K 2.5K 2.0K 1.2K 1.9K 1.9K 2.6K 3.7K 2.6K 2.5K 2.0K 1.2K 1.9K 1.9K 2.6K 3.7K 6.6K 4.5K 2.4K 3.0K 2.2K 1.9K 1.9K		HADDINGTON RESOURCES LTD.
	1.9K 4.4K 7 5K 6.2K 5.3K 5.2K 3.7K 2.6K 2.5K 8.0K 1.269 0.497.0 388.0 369.0 329.0 241.0 250.0 262.0 267.0 295.0 N:2 1.9K 2.6K 4.7K 6.8K 5.3K 7.2K 4.6K 4.5K 2.4K 3.0K 2.2K 2 060 0.647.0 545.0 562.0 440.0 333.0 367.0 373.0 457.0 N:3 2.4K 2.6K 2.6K 3.9K 5.1K 5.3K 5.3K 3.8K 2.9K 5.1K 2.5K 2.8K 1.00070.0 914.0 656.0 563.0 440.0 480.0 532.0 N:4	SHERATON - TIMMINS - EGAN PROPERTY
N #5 N #6	3.0K 2.7K 2.3K 2.2K 2.0K 4.7K 3.7K 5.8K 4.5K 4.2K 3.2K 3.5K 2.8K 3.1K 3.9K 1.4K 1.4875.0810.8.707.0550.0641.0 N:5 3.1K 3.3K 2.5K 2.0K 1.5K 2.6K 3.4K 3.9K 3.0K 5.0K 4.4K 3.7K 3.9K 3.1K 3.9K 1.7K 1.3K 1.4K 1.4875.0852.0703.0 N:6	
	الايلان	SCALE = 1: 2500
		GEOPHYSICAL ENGINEERING & SURVEYS INC.


50p6 4756 4505 4258 4005 3758 3508 3255 3005 2755 2505 2255 2005 1755 1255 1005 755 508		LINE : 2600 E
MS CHG. No		INDUCED POLARIZATION SURVEY
N13 9.5 7.3 9.4 6.0 4.5 2.4 4.8 2.2 2.0 1.8 1.5 1.3 .8 .3 .4 .7 1.9 1.5 N13 N14 8.5 10.0 7.8 6.8 5.2 4.0 2.6 2.3 8.0 1.6 1.5 .9 .2 .5 .7 1.1 N14 N15 5.4 8.8 6.8 5.2 4.0 2.6 2.3 8.0 1.6 1.5 .9 .2 .5 .7 1.1 N14 N15 5.4 8.8 6.8 5.2 4.8 2.2 3.0 2.5 2.2 1.9 1.6 .9 .2 .6 .6 N15 N16 4.2 5.2 4.8 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.5 1.5 1.5 1.5 1.4 .5 N15 N16 4.2 5.4 5.4 5.4 5.4 5.4 <t< td=""><th>M9 CHG. N9 CHG.</th><td>POLE-DIPOLE ARRAY</td></t<>	M9 CHG. N9 CHG.	POLE-DIPOLE ARRAY
N15 5.4 8.8 10-10 500 6.8 5.2 4.1 3.2 4.8 2.2 3.0 2.5 2.2 1.9 1.6 .9 .2 .6 .6 N15	N13 9.5 7.3 9.4 6.0 4.5 2.4 p3 1.8 2.2 2.0 1.8 1.5 1.3 .8 .3 .4 .7 1.3 1.5 N13	··
	NIS 5.4 8.8 1020 5.0 6.8 5.2 4.4 3.2 4.8 2.2 3.0 2.5 2.2 1.9 1.6 .9 .2 .6 .6 NIS	


	4000 (TEO (TEO (DEC 1000 DEC 2000 DEC 2000 DEC 2000 DEC 2000 1750 1750 1750 1750 1750 TEO 1750 DEC		PLOTTED WINDOW: SLICE #9	
RESISTIVITY N:1	50ps, 4758, 45ps, 4258, 40ps, 3755, 35ps, 3255, 30ps, 2755, 25ps, 2258, 20ps, 1758, 15ps, 1258, 10ps, 758, 508 11.1K 10.9K 9.1K 4.1K 1, 3K721.0 414.0 267 0 240.0 199.0 169.0 130 0 116.0 139.0 177.0 209.0 294.0 243.0 369.0	RESISTIVITY N#1	HADDINGTON RESOURCES L	ſD.
N # 2 N # 3 N # 4	12.0K 12.5K 12.0K 2.3K 1.7K 2.1K 1.1096.0 456.0 373.0 319.0 312.0 257.0 216.0 253.0 301.0 9 1.0 492.0 282.0 26.3K 12.9K 11.8K 3.7K 1.6K 2.2K 3.6K 1.5K72 0 647.0 550.0 491.0 508.0 402.0 318.0 351.0 471.0 569.0 570.0 14.6K 25.4K 10.9K 3.7K 2.8K 2.0K 3.0K 4.2K 2.0K 1.2K99.0 771.0 720.0 730.0 547.0 408.0 503.8 597.0 632.0	N = 2 N = 3 N = 4	SHERATON - TIMMINS - EGAN PROPERTY	
N ≥5 N ⊧6	3.2K 14.8K 20.6K 4 5K 8.8K 9.02K 2.5K 3.7K 5-3K 2.3K 1.2K 1.2K 1.1020.0 958.0 881.0 547.0 612.0 644.0 971.0 6.2K 13.0K 10.PK 1.2K 3.1K 3.8K 3.0K 4.5K 5.9K 2.0K 2.0K 2.5K 1.4K 1.2K 1.2K 1.2K85.0648.0 650.0	N = 5 N = 6	DATE : DEC.197 REF : 05	
			SCALE = 1: 2500	
			GEOPHYSICAL ENGINEERING & SURVEYS	
<u></u>			GEUPHYSICAL ENGINEERING & SURVEYS	



· .

N15 N16	15.5, 19.4 120 + 5.5 + 5.5 + 10.0 + 10.0 + 20 + 10.0 + 20 + 10.	N+16.	RECEIVER: SCINTREX IPR-12 TIME DOMAIN RX-TX TIMING: 2 +++ ON 2 +++ OFF TRANSHITTER: SCINTREX TSG-3 SKVA SLICE TIMING: 310-405 m+ PLOTTED WINDOW: SLICE +9
RESISTI∀ITY Nº1 Nº2 Nº3 Nº4	52 <u>58,5005,4753,4505,4255,4008,3758,3508,3258,3008,2753,2505,2258,2008,1758,1508,1253,1008,755,508,25</u> 3.2K 5.7K 2.7K 1.5619.0616.0728.0787.0869.0765.0616.0412.0283.0204.0181.0228.0258.0277.0255.0225.0219 6.0K 2.7K 2.4K 2.2K 2.7K 1.1K 1.1K 1.2K 1.2K 1.2K 1.1K64.0606.0549.0355.0322.0390.0407.0459.0450.0424.0 8.3K 5.1K	RESISTIVITY N:1 N:2 N:3 N:4 N:5	HADDINGTON RESOURCES LTD. SHERATON-TIMMINS PROP. TIMMINS, ONTARIO
N # 5 N # 8	14.4K 10 3K 5.9K 2,3K 7.5K 9.3K 4.1K 4.3K 2.0K 1.8K 1.6K 2.2K 2.2K 2.3K 1.8K 1.6K 1.6K 9.9 0 772-0 904.0 1.0K 7.5K 12.7K 8.2K 6.6K 3.3K 1.8K 3.6K 4.4K 3.6K 1.8K 2.6K 1.8K 2.2K 2.8K 2.6K 2.7K 2.2K 1.9K 1.2N57-0 1.2K	N18-	DATE = SEPT - 1997 REF = 05
			SCALE = 1: 2500
			GEOPHYSICAL ENGINEERING & SURVEYS INC.

N#1

N=2

N=1 N #2 N = 3

N 54

N = 5

N+1

N#2

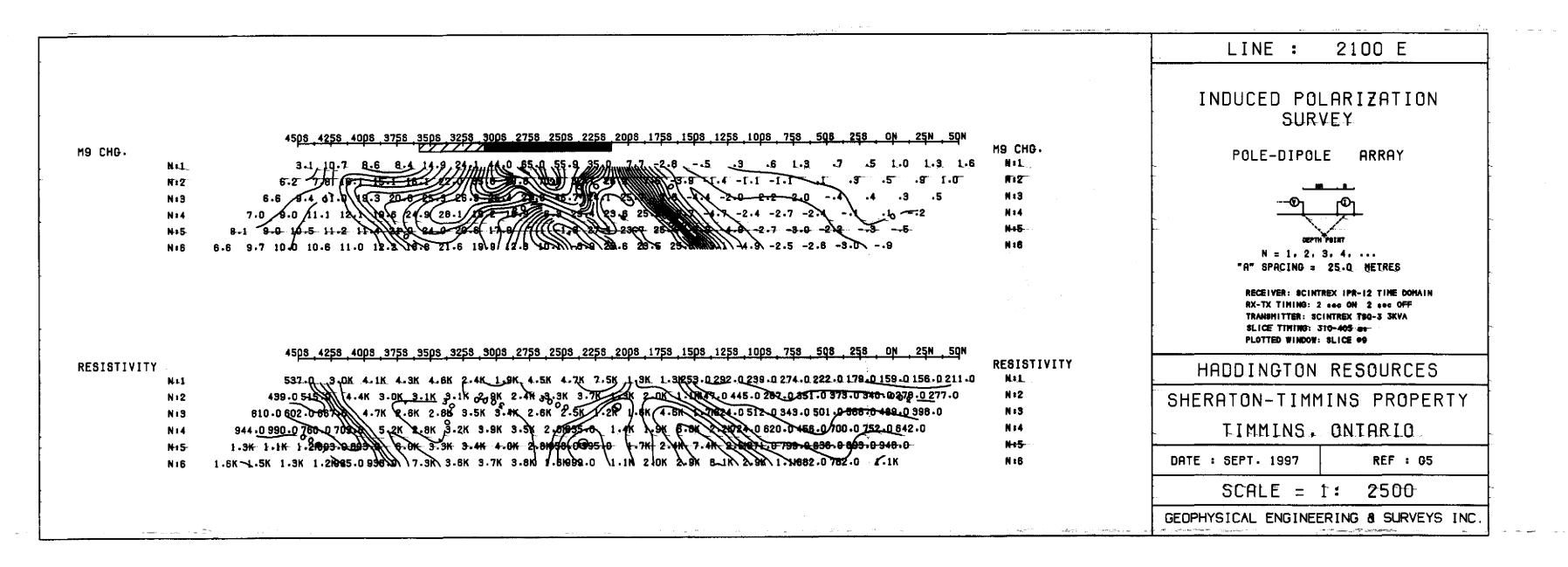
N:3

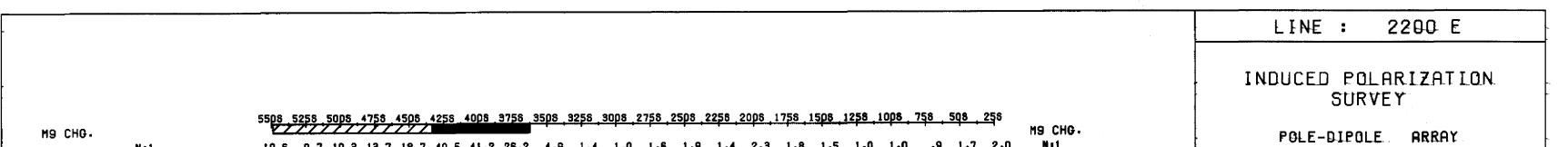
N14

N15

N 18

RESISTIVITY


N+6


5.5 8/2 10.0 2 3 3 11 2 15

N 22 N 33 N 14 N 75 N 16	5.5 8/2 11.0 6.0 8/1 9.2 8 9 5.2 4.0 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N = 3 N = 4 N = 5- N = 8	RECEIVER: SCINTREX IPR-12 TIME RX-TX TIMING: 2 sec ON 2 sec O TRANSMITTER: SCINTREX TSO-3 3K SLICE TIMING: 310-405 se PLOTTED WINDOW: SLICE OF		
RESISTIVITY	42 <u>58 40p8 3758 35p8 3258 30p3 2758 25p8 2258 20p8 1758 15p8 1258 10p8 758 508 25</u> 8 298.0 514.0 574.0 1.6K 1.4K 1.5K 4.4K 1.7K 7.1K 5.1K 3. <u>3K</u> 3.9K 1.1K605.0 294.0 192.0 147.0	N:2	HADDINGTON RESOUR	RCES	
N#1 N#2	587.0 642.0 522.0 /1.1K 3.1K 2.2K 2.5K 2.2K 5.0K 7.9K 2.0K 2.0K 3. 10 10 593.0 972.0 995.0		SHERATON-TIMMINS PROPERTY		
N # 3 N # 4	944. <u>0.959.0</u> 651.0815.0 4.5K 3.1K 19K 3.0K 6.7K 3.9K (.2K) 3K 4.2K 2772 0534-0 1.2K 1.4645.0985.001.1K 2.2K 6.4K 2.7K 2.7K 3.3K 3.1K 2.2671.0 (.3K 4.7K 1.0K 1.6K 1.3K 1.3K 1.3K 1.2K 1.4K 2000 6.0K 3.8K 2.7K 1.0K 2.3K 1.9818.0 (.3K 6.8K 2.6K	N 13 H 14 N 15	TIMMINS, ONTARI	NS, ONTARIO	
N 16	1.6K 1.9K 1.9K 1.9K 1.2K 1.6K 2.7K 5.6K 3.6K 2.7K 1.6K 2.9K 1.9K 3.6K 2.9K 1.9K 1.9K 1.9K 1.9K 1.9K 1.5K 2.7K 7.5K	N18	DATE : SEPT. 1997 REF	: 05	
			SCALE = 1: 250)0	
			GEOPHYSICAL ENGINEERING & SU	RVEYS IN	

.5 N#1

N#2

والمحالية والربية

PLATE 1 of 1 1:2500

PATENTED BLOCK LINES

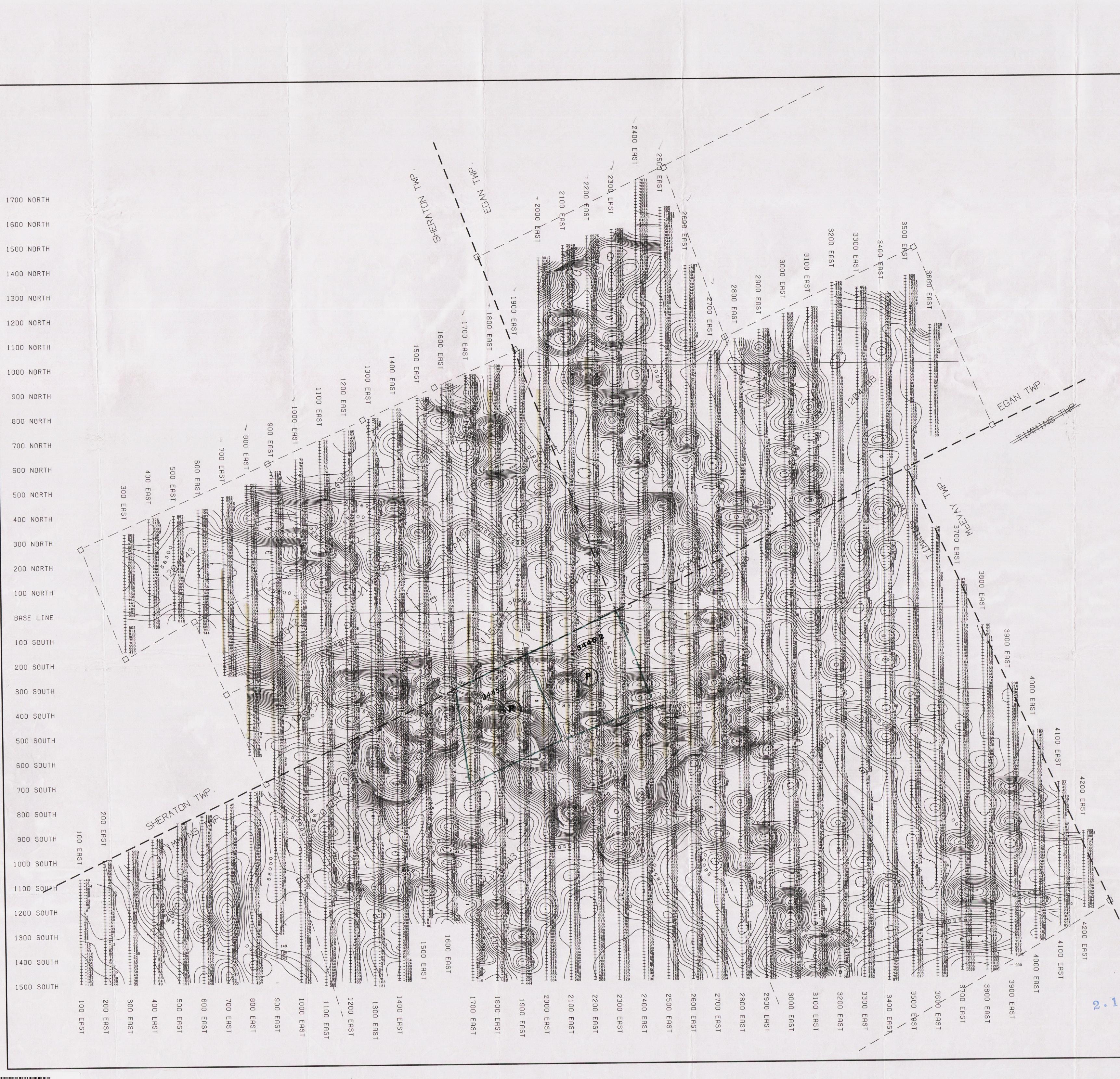
SHERATON/TIMMINS TWP. PROPERTY

I.P. SURVEY 2.1 JARVEY

HADDINGTON RESOURCES

N+5 DATE : SEPT. 1997 REF : G5 N 18 SCALE = 1: 2500 18 A. 1 GEOPHYSICAL ENGINEERING & SURVEYS INC.

 $\begin{array}{c} 10.6 & 9.7 & 10.3 & 13.7 & 18.7 & 40.5 & 41.2 & 26.2 & 4.8 & 1.4 & 1.0 & 1.6 & 1.9 & 1.4 & 2.3 & 1.8 & 1.5 & 1.0 & 1.0 & .9 & 1.7 & 2.0 \\ \hline 9.6 & 10.8 & 10.8 & 14.7 & 22 & 23.7 & 10.5 & 10.5 & 20.5 & 10.7 & 1.8 & 1.0 & 1.4 & 1.0 & .5 & .8 & .4 & .5 & .7 & .9 & .9 & 1.4 \\ \hline 9.6 & 10.8 & 10.8 & 14.7 & 22 & 23.7 & 10.5 & 10.5 & 20.5 & 10.7 & 20 & 1.8 & 1.0 & 1.4 & 1.0 & .5 & .8 & .4 & .5 & .7 & .9 & .9 & 1.4 \\ \hline 9.6 & 10.8 & 10.8 & 14.7 & 22 & 23.7 & 10.5 & 10.5 & 20.5 & 10.7 & 20 & 1.8 & 1.0 & 1.4 & 1.0 & .5 & .8 & .4 & .5 & .7 & .9 & .9 & 1.4 \\ \hline 9.6 & 10.8 & 10.8 & 14.7 & 22 & 23.7 & 20.7 & 20.7 & 1.8 & 1.0 & 1.4 & 1.0 & .5 & .8 & .4 & .5 & .7 & .9 & .9 & 1.4 \\ \hline 9.6 & 10.8 & 10.8 & 14.7 & 22 & 24.0 & 18.5 & 17.9 & 20.7 & 20.7 & .4 & .9 & .4 & .6 & .7 & .4 & .4 & .6 & .9 & .8 & .9 \\ \hline 8.3 & 8.5 & 11.1 & 14.2 & 19.9 & 24.0 & 18.5 & 17.9 & .7 & .1 & .5 & -.5 & -1.3 & -.8 & -.4 & .4 & .8 & .9 & .8 & .14 \\ \hline 8.5 & 7.2 & 6.3 & 014 & 2 & 17.0 & 21.0 & 18.6 & 22.3 & 17.9 & 17.8 & 0.7 & 0004 & 19 & 1.4 & .4 & 1 & -.7 & -1.2 & -.6 & -. & .8 & .8 & .8 \\ \hline 8.9 & 7.2 & 7.9 & 6.7 & 16.2 & 19.3 & 18.1 & 21.9 & 18.1 & 17.6 & 4.8 & 32.5 & 0.1 & 1.9 & -.7 & .1 & -.8 & -1.0 & -.6 & .3 & .6 & .8 \\ \hline 8.9 & 7.2 & 7.9 & 6.7 & 16.2 & 19.3 & 18.1 & 21.9 & 18.1 & 17.6 & 4.8 & 32.5 & 0.1 & 1.9 & -.7 & .1 & -.8 & -1.0 & -.6 & .3 & .6 & .8 \\ \hline 8.9 & 7.2 & 7.9 & 6.7 & 16.2 & 19.3 & 18.1 & 21.9 & 18.1 & 17.6 & 4.8 & 32.5 & 0.1 & 1.9 & -.7 & .1 & -.8 & -1.0 & -.6 & .3 & .6 & .8 \\ \hline 8.9 & 7.2 & 7.9 & 6.7 & 16.2 & 19.3 & 18.1 & 21.9 & 18.1 & 17.6 & 4.8 & 32.5 & 0.1 & 1.9 & -.7 & .1 & -.8 & -1.0 & -.6 & .3 & .6 & .8 \\ \hline 8.9 & 7.2 & 7.9 & 6.7 & 16.2 & 19.3 & 18.1 & 21.9 & 18.1 & 17.6 & 4.8 & 32.5 & 0.1 & 1.9 & -.7 & .1 & -.8 & -1.0 & -.6 & .3 & .6 & .8 \\ \hline 8.9 & 8.9 & 1.8 & 1.2 & 1.9 & 18.1 & 17.6 & 4.8 & 32.5 & 0.1 & 1.9 & -.7 & .1 & -.8 & -1.0 & -.6 & .3 & .6 & .8 \\ \hline 8.9 & 8.9 & 1.8 & 1.0$ H++4-----N+5 THION HT SO N + 6 N = 1. 2. 3. 4. ... SLICE TINING: 310-405 ... PLOTTED WINDOW: SLICE +9 55<u>p8 5258 50p8 4758 45p8 4258 40p8 3758 35p8 3258 30p8 2758 25p8 2258 20p3 1758 15p8 1258 10p8 758 508 25</u>8 RESISTIVITY 30.1K 14.8K 11.5K 2.8K 1.6K 1.3K593.0 1.1K668.0 454.0 244.0 309.0 355.0 415.0 416.0 349.0 348.0 267.0 261.0 224.0 255.0 340.0 17.3K 18.0K 11.3K 5.0K 2.7K 2.1K26.0 593.0 929.0 0 0 91650-0 40.0 481.0 574.0 704.0 624.0 538.8 547.0 514.0 515.0 373.0 420.0 2.3K 17.8K 13.1K 5.8K 4.4K 3.4K 2.1K72.0 460.0 1.4K 1.6K 1.2K525.0 654.0 797.0 923.0 835.0 730.0 846.0 510.0 752.0 512.0 1.1K 1.1K 7.1K 5.8K 5.1K 3.8K 2.5K525.8 1.8K 2.5K 1.9K52.0 842.0 989.0 1.2K 1.1K 1.9K 1.2K 1.1K 1.9K 1.9K 1.3K 1.8K907.0 1.5K 1.4K 1.4K 1.4K 1.5K 1.3K 2.5K 1.5K755.0 595.0 6.1K 6.3K 6.0K 5.5K 3.9K 1.1K93.4L 12.6K 3.0K 2.8K24.0 T.2K 1.1K 1.8K 1.8K 1.7K 1.8K N=1 N 12 N 13 8++


"A" SPACING = 25.0 HETRES RECEIVER: SCINTREX IPR-12 TIME DOMAIN RX-TX TIMING: 2 sec ON 2 sec OFF TRANSHITTER: SCINTREX TSQ-3. 3KVA. HADDINGTON RESOURCES SHERATON-TIMMINS PROPERTY TIMMINS, ONTARIO

ing the second second

الرادي المسالي للمسيسان

المدوم والروادي معورج ويتحيهم ويهممه والمح

المريبي فقن المحتجم المراجعين المراجع

42A07NE2003 2.18227 EGAN 270

LEGEND

INSTRUMENT: EDA OMNI PROTON PRECESSION MAGNETOMETER PARAMETERS MEASURED: EARTH'S TOTAL MAGNETIC FIELD (NANO-TESLAS) READING INTERVAL: 12.5 M CONTOUR INTERVAL: 100 NANO TESLAS DIURNAL CORRECTION METHOD: RECORDING OMNI BASE STATION DATUM SUBTRACTED FROM ALL PLOTTED READINGS: 58.000 nT PEAK MAGNETIC HIGH: * PEAK MAGNETIC LOW: •

NOTE: SURVEYED BY M.C. EXPLORATION & GEOPHYSICAL ENGINEERING & SURVEYS INC.

TOPO LEGEND

_____ Claim Line

Claim Post Located

Claim Post Assumed

I. P. COVERAGE

				1		
		200	2 120 2	50 100		
ſ	Client:	HA	DDINGTON	RESO	URCES LTD.	
	Property:	SHEF	RATON - TIM	MINS -	- EGAN PROPERTY	
	TITIE: TOTAL FIELD					
227 MAGNETOMETER SURVEY						
	Processed: RJM		Checked: RJM			
	Date: JAN. 1998 Province: ONT.		Township: SHERATON TIMMINS, EGAN TWP. N.T.S.:			
	Scale: 1:5,000		Drawing: G5MAG			
			A			

U